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Abstract 

 

This study explores the concept of residual entropy as an alternative approach to traditional entropy 

measures. The field of information theory, built upon Shannon's entropy, has been instrumental in 

understanding the dynamics of systems. However, existing literature has recognized the limitations of 

applying traditional entropy measures to systems that have already been in existence for a certain 

duration. This study delves into the concept of residual entropy, acknowledging the need for a more 

suitable approach for such systems. Specifically, we investigate the characteristics of residual entropy 

using a quantile-based framework. By deriving the quantile residual entropy function for various lifetime 

models, we gain insights into the reordering and ageing phenomena captured by the quantile version of 

the residual entropy equation. Our findings contribute to an enhanced understanding of residual entropy 

and provide a novel perspective on analyzing and interpreting the behavior of established systems. 

 

Keywords: Shannon entropy, Residual entropy, Quantile function, Residual entropy. 

 

 

1. Introduction 
 

Physicists first created the idea of entropy in the backdrop of the equilibrium thermodynamics, which 

was then broadened with the creation of statistical mechanics. Claude Shannon devised a mathematical 

notion called entropy to describe the stochastic nature of missing data in phone-line transmissions [19]. 

According to the concept of differential entropy for a continuous random variable X having density 

functions 𝑓𝑋(𝑥) is given by 

𝐻(𝑋) = − ∫ 𝑓𝑋(𝑥) log 𝑓𝑋(𝑥)𝑑𝑥
∞

0
     (1) 

In order to generalize the Shannon entropy evaluation, Mathi and Haubold [12] created a new 

generalized entropy evaluation linked to a random variable  𝑋 having pdf 𝑓(𝑥),  is expressed as 
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 𝑀𝛼(𝑋) =
1

𝛼−1
(∫ [𝑓(𝑥)]2−𝛼𝑑𝑥 − 1

∞

−∞
), 0 < 𝛼 < 2, 𝛼 ≠ 1    (2) 

When 𝛼 → 1  (2) goes to the Shannon entropy measure defined in (1). 

One feature of (2), as described in [11] and [20], is that combining the maximal entropy concept with 

normalization and power limitations prompts the widely recognized route model [12]. It should be 

highlighted that the route model incorporates several well-known statistical distributions as special 

instances.  

The date is frequently abbreviated in reliability as well as life evaluation, thus equation (1) isn't 

an acceptable metric in such cases. Thus, if there is data about the present age, that may be utilized for 

determining its degree of unpredictability, Shannon's entropy is inapplicable. Ebrahimi [7] proposes a 

more realistic method that takes ageing into consideration and is characterized as  

𝐻(𝑋; 𝑡) = − ∫
𝑓(𝑥)

 𝐹(𝑡)
log

𝑓(𝑥)

 𝐹(𝑡)

∞

𝑡
𝑑𝑥      (3) 

where 𝐹̅(𝑡) is the survival function. For 𝑡 = 0, (3) reduces to (1) 

The remainder of the Mathai-Haubold (Dar and Al-Zahrani, [5]) entropy functional can be expressed 

for a positive random parameter X, which represents the lifespan of a unit at time t. It is given by 

equation (4) 

𝑀𝛼(𝑋; 𝑡) =
1

𝛼−1
{∫

𝑓2−𝛼(𝑥)

𝐹2−𝛼(𝑡)
𝑑𝑥 −

∞

𝑡
1} , 0 < 𝛼 < 2, 𝛼 ≠ 1    (4) 

Any theoretical studies and implementations that utilize the aforementioned metrics depend upon the 

distribution function, however they may not be appropriate in cases when the distributions aren’t 

analytically tractable. A different technique to investigate is to employ quantile functions, which are 

specified by 

𝑄(𝑢) = 𝐹−1(𝑢) = 𝑖𝑛𝑓{𝑥/𝐹(𝑥) ≥ 𝑢}, 0 ≤ 𝑢 ≤ 1     (5) 

Gilchrist [9] has presented an alternative to the distribution function in statistical data analysis and 

modeling known as the quantile function (QF). QF is often favored since it provides a straightforward 

analysis with less influence from extreme observations. To learn more about the properties and 

usefulness of QF in identifying models, Nair and Sankaran [14], Sunoj et al [17], and related sources 

offer detailed studies. Researchers have become increasingly interested in using quantile-based entropy 

measures as an alternative approach to measuring the uncertainty of a random variable. These 

measures possess unique properties compared to the distribution function approach. Sunoj and 

Sankaran [17] have recently explored the quantile version of Shannon entropy and its residual form as  

𝐻 = ∫ log 𝑞(𝑝) 𝑑𝑝
1

0
      (6) 

and 

𝐻(𝑢) = 𝐻(𝑋; 𝑄(𝑢)) = log(1 − 𝑢) +
1

1−𝑢
∫ log 𝑞(𝑝)𝑑𝑝

1

𝑢
    (7) 

respectively, where the quantile density function 𝑞(𝑢) =
𝑑𝑄(𝑢)

𝑑𝑢
 can be defined by 𝑓𝑄(𝑢) = 𝑓(𝑄(𝑢)) and 

Using these definitions, equation (8) is expressed as, 

𝑞(𝑢)𝑓(𝑄(𝑢)) = 1      (8) 

Further, Nanda et.al. [13] introduced quantile based Renyi’s entropy function and study properties and 

applications of the proposed measure.     

In this paper, we introduce a novel quantile-based version of the generalized residual entropy 

function and examine its key properties. We first demonstrate that the proposed measure provides a 

unique determination of the quantile distribution functions and derive an entropy function for specific 

quintile functions that lack an explicit form for distribution functions. Additionally, we define ordering 

and aging properties based on the quantile residual entropy function and analyze their characteristics. 

Lastly, we present a characterization of certain lifetime models that are valuable in analyzing lifetime 

data. 

This paper is organized as follows. Section 2 outlines the development of our new quantile-

based residual entropy measure and explores its properties. Section 3 delves into the aging and 
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ordering properties of the quantile-based residual entropy. Finally, Section 4 presents a set of 

characterization theorems based on the quantile residual entropy measure. 

 

2. Quantile based M-H Residual Entropy 
 

From equation (5), we can see that for a continuous distribution function F, the composite function 

F(Q(u)) is equal to u, represented as FQ(u). We can define the density quantile function as fQ(u) = f(Q(u)) 

and the quantile density function as 𝑞(𝑢) = 𝑄′(𝑢) where the prime notation indicates differentiation. 

Equation (4) and (8) together yield the expression for the quantile version of the M-H residual entropy. 

𝑀𝛼(𝑋; 𝑄(𝑢)) =
1

𝛼−1
{

∫ (𝑓𝑄(𝑝))
2−𝛼

𝑞(𝑝)𝑑𝑝
1

𝑢

(1−𝑢)2−𝛼 − 1} , 0 < 𝛼 < 2, 𝛼 ≠ 1   (9) 

𝑀𝛼(𝑋; 𝑄(𝑢))      =
1

𝛼−1
{

∫ 𝑞𝛼−1(𝑝)𝑑𝑝
1

𝑢

(1−𝑢)2−𝛼 − 1}     (10) 

The expression (10) is known as the quantile M-H residual entropy, which quantifies the average level 

of uncertainty in the conditional density with respect to predicting an outcome of X up until the 100 (1-

u)% point of the distribution. Following theorem shows the uniqueness of quantile version of residual 

entropy. 

Theorem 2.1: Show that the quantile version of   residual entropy determines the underlying 

distribution uniquely. 

Proof:  Differentiating (10) with respect to 𝑢, we get   

(𝑞(𝑢))
𝛼−1

= (1 − 𝑢)1−𝛼 [
(2 − 𝛼){(𝛼 − 1)𝑀𝛼(𝑋; 𝑄(𝑢)) + 1}

−(1 − 𝑢)(𝛼 − 1)𝑀𝛼
′ (𝑋; 𝑄(𝑢))

]   (11) 

The equation establishes a clear connection between the quantile density function q(u) and 

𝑀𝛼(𝑋; 𝑄(𝑢)), which shows that quantile version of M-H  residual entropy determine the underlying 

distribution uniquely. The next two theorems gives the bounds of 𝑀𝛼(𝑋; 𝑄(𝑢)). The proof follows by 

using (10). 

Theorem 2.2: If  𝑀𝛼(𝑋; 𝑄(𝑢)) is increasing 𝑢, then 

𝑞(𝑢) ≤ (≥)
1

1−𝑢
[(𝛼 − 2){(𝛼 − 1)𝑀𝛼(𝑋; 𝑄(𝑢)) + 1}]

1

1−𝛼 𝑓𝑜𝑟 0 < 𝛼 < 1 (1 < 𝛼 < 2)  (12) 

If  𝑀𝛼(𝑋; 𝑄(𝑢)) is deccreasing 𝑢, then 

𝑞(𝑢) ≥ (≤)
1

1−𝑢
[(𝛼 − 2){(𝛼 − 1)𝑀𝛼(𝑋; 𝑄(𝑢)) + 1}]

1

1−𝛼 𝑓𝑜𝑟 0 < 𝛼 < 1(1 < 𝛼 < 2)   (13) 

In the following section, we will derive the quantile version of the residual entropy for several lifetime 

models.  

 

2.1 Govindarajulu’s Distribution 
 

Firstly, we will consider Govindarajulu's distribution, for which the quantile function and quantile 

density function are given by: 

𝑄(𝑢) = 𝑎{(𝑏 + 1)𝑢𝑏 − 𝑏𝑢𝑏+1} and 𝑞(𝑢) = 𝑎𝑏(𝑏 + 1)(1 − 𝑢)𝑢𝑏−1, 0 ≤ 𝑢 ≤ 1; 𝑎, 𝑏 > 0. 

Quantile based residual M-H Entropy of  𝑟𝑡ℎ  for Govindarajulu distribution as 

𝑀𝛼(𝑋; 𝑄(𝑢)) =
1

𝛼−1
{

(𝑎𝑏)𝛼−1(𝑏+1)𝛼−1𝛽𝑢((𝑏−1)(𝛼−1)+1;𝛼)

(1−𝑢)𝛼−1 − 1}    (14) 

where 𝛽𝑢(𝑎; 𝑏) is an incomplete beta function. 

 

2.2 Uniform Distribution 

 
𝑄(𝑢) = 𝑎 + (𝑏 − 𝑎)𝑢 and 𝑞(𝑢) = (𝑏 − 𝑎), 0 ≤ 𝑢 ≤ 1; 𝑎 < 𝑏. 
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𝑀𝛼(𝑋; 𝑄(𝑢)) =
1

𝛼−1
{(𝑏 − 𝑎)𝛼−1(1 − 𝑢)𝛼−1 − 1}     (15) 

 

2.3 Pareto-I Distribution 

 

𝑄(𝑢) = 𝑏{(1 − 𝑢)−1
𝑎⁄ }  and 𝑞(𝑢) =

𝑏

𝑎
{(1 − 𝑢)−(1+

1

𝑎
)
} , 0 ≤ 𝑢 ≤ 1; 𝑎, 𝑏 > 0. 

𝑀𝛼(𝑋, 𝑄(𝑢) =
1

𝛼−1
{(

𝑏

𝑎
)

𝛼−1 𝑎(1−𝑢)
1
𝑎(1−𝛼)

𝑎(2−𝛼)+(1−𝛼)
− 1}     (16) 

 

2.4 Generalized Pareto Distribution 

 

𝑄(𝑢) =
𝑏

𝑎
{(1 − 𝑢)−𝑎

𝑎+1⁄ − 1}  and 𝑞(𝑢) =
𝑏

𝑎+1
{(1 − 𝑢)−(

𝑎

𝑎+1
+1)

} , 0 ≤ 𝑢 ≤ 1; 𝑎, 𝑏 > 0. 

𝑀𝛼(𝑋, 𝑄(𝑢) =
1

𝛼−1
{(

𝑏

𝑎+1
)

𝛼−1 (1+𝑎)(1−𝑢)
𝑎

𝑎+1(1−𝛼)

(1+𝑎)(2−𝛼)+𝑎(1−𝛼)
− 1}      (17) 

 

2.5 Re-Scaled Beta Distribution 
 

𝑄(𝑢) = 𝑅{1 − (1 − 𝑢)
1

𝑐⁄ }  and 𝑞(𝑢) =
𝑅

𝑐
{(1 − 𝑢)

1

𝑐
−1} , 0 ≤ 𝑢 ≤ 1; 𝑎, 𝑏 > 0. 

𝑀𝛼(𝑋, 𝑄(𝑢) =
1

𝛼−1
{(

𝑅

𝑐
)

𝛼−1 𝑐(1−𝑢)
1
𝑐(𝛼−1)

𝑐(2−𝛼)+(𝛼−1)
− 1}     (18) 

 

2.6 Exponential distribution 
 

𝑄(𝑢) = −
log(1−𝑢)

𝜆
  and 𝑞(𝑢) =

1

𝜆(1−𝑢)
, 0 ≤ 𝑢 ≤ 1; 𝜆 > 0. 

𝑀𝛼(𝑋, 𝑄(𝑢) =
1

𝛼−1
{

1

(2−𝛼)𝜆𝛼−1 − 1}      (19) 

 

2.7 Power distribution 
 

𝑄(𝑢) = 𝑎𝑢
1

𝑐  and 𝑞(𝑢) =
𝑎

𝑐
𝑢

1

𝑐
−1, 0 ≤ 𝑢 ≤ 1; 𝜆 > 0 

𝑀𝛼(𝑋, 𝑄(𝑢)) =
1

𝛼−1
{(

𝑎

𝑐
)

𝛼−1 𝑐

𝑐(2−𝛼)+(𝛼−1)
[

1−𝑢
(2−𝛼)+

1
𝑐(𝛼−1)

(1−𝑢)2−𝛼 ] − 1}    (20) 

 

Following tables and figures gives the computations and comparison of quantile of M-H residual 

entropy respectively for different parameters for some life time distributions 
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Fig. 1: Quantile residual entropy plot of exponential distribution 

 
 

Table 1: Qunitile M-H residual entropy values exponential distribution 

 

Parameter Values 

  

0.1 0.6 0.9 1.5 3.5 9.4 

  

0.1 1.03749 0.74184 0.57922 0.26877 -0.69467 -3.28247 

0.3 1.26090 0.84087 0.64798 0.31244 -0.59119 -2.60456 

0.5 1.57836 0.96720 0.73509 0.36701 -0.49444 -2.08792 

0.7 2.04824 1.13355 0.84901 0.43757 -0.40051 -1.68863 

0.9 2.77883 1.36182 1.00437 0.53291 -0.30420 -1.37418 

1.1 3.98806 1.69344 1.22880 0.66961 -0.19719 -1.11935 

1.3 6.16792 2.21721 1.58149 0.88318 -0.06324 -0.90201 

1.5 10.64911 3.16398 2.21637 1.26599 0.13809 -0.69534 

1.7 22.43749 5.38030 3.69781 2.15666 0.55265 -0.43639 

1.9 87.14758 16.48519 11.10518 6.60281 2.48718 0.36780 
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Fig. 2: Qunitile residual entropy plot for Pareto I Distribution 

 
 

Table-2: Qunitile residual entropy values for Pareto I Distribution 

Paramet

ers 

a=0.5, b=0.3, 

u=0.5 

a=1.4, b=0.3, 

u=0.5 

a=2.5, b=0.3, 

u=0.5 

a=0.5, b=0.9, 

u=0.9 

a=0.5, b=2.3, 

u=0.9 

a=5.3, b=0.3, 

u=0.9 

  

0.1 1.759 4.442 7.484 0.655 0.281 0.133 

0.3 1.912 3.821 5.670 0.945 0.490 0.273 

0.5 2.066 3.157 4.075 1.431 0.895 0.590 

0.7 2.366 2.695 3.002 2.246 1.695 1.320 

0.9 3.029 2.445 2.322 3.813 3.472 3.194 

1.1 4.955 2.446 1.929 8.073 8.867 9.639 

1.3 30.698 2.973 1.805 63.668 84.366 108.375 

1.5 -5.453 7.239 2.217 -14.245 -22.773 -34.569 

1.7 -2.207 -3.718 21.216 -7.214 -13.912 -24.956 

1.9 -1.275 -0.988 -1.045 -5.188 -12.070 -25.585 

 

 

 
Fig. 3: Qunitile residual entropy plot for uniform distribution 
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Table-3: Qunitile residual entropy values for uniform distribution 

Paramet

ers 

a=0.9, b=2.5, 

u=0.5 

a=1.4, b=2.5, 

u=0.5 

a=2.3, b=2.5, 

u=0.5 

a=0.5, b=0.6, 

u=0.9 

a=0.5, b=0.9, 

u=0.9 

a=0.5, b=1.5, 

u=0.9 

  

0.1 -0.247 -0.792 -7.715 -68.995 -19.022 -7.715 

0.3 -0.242 -0.742 -5.731 -34.456 -12.169 -5.731 

0.5 -0.236 -0.697 -4.325 -18.000 -8.000 -4.325 

0.7 -0.231 -0.655 -3.318 -9.937 -5.422 -3.318 

0.9 -0.226 -0.616 -2.589 -5.849 -3.797 -2.589 

1.1 -0.221 -0.580 -2.057 -3.690 -2.752 -2.057 

1.3 -0.216 -0.547 -1.663 -2.496 -2.064 -1.663 

1.5 -0.211 -0.517 -1.368 -1.800 -1.600 -1.368 

1.7 -0.207 -0.489 -1.144 -1.372 -1.278 -1.144 

1.9 -0.202 -0.462 -0.971 -1.094 -1.050 -0.971 

 

The quantile residual entropy plots for the exponential, Pareto-I, and uniform distributions are shown 

in Figs. 1, 2, and 3. In the case of an exponential distribution, we have an increasing entropy plot for 

increasing values of the parameters and. For various parameter combinations, the entropy plot under 

the Pareto-I distribution exhibits both increasing and decreasing behavior. For various parameter 

values, the entropy plot under a uniform distribution also exhibits an increasing trend. Entropy values 

for exponential, Pareto-I, and uniform distributions are shown in Tables 1, 2, and 3, which depicts the 

same behavior as mentioned for graphical displays. 

 

3. Ageing and Ordering Properties of Quantile based M-H Residual Entropy 
 

These nonparametric classes of life distribution are defined using residual M-H quantile entropy. 

Definition increasing (decreasing) M-H residual quantile entropy (IMHRQE) is claimed to exist for X. 

(DMHRQE) if 𝑀𝛼(𝑋, 𝑄(𝑢))  is increasing (decreasing) in 𝑢 ≥ 0. 

Definition 3.2: If (𝑋 ≤𝑀𝐻𝑄𝐸 𝑌), then X is smaller than Y in the M-H quantile entropy order. 

𝑀𝛼
𝑋(𝑄𝑋(𝑢)) ≤ 𝑀𝛼

𝑌(𝑄𝑌(𝑢)) for all  𝑢 ∈ [0,1]    (21) 

Definition 3.3: If (𝑋 ≤𝑀𝐻𝑄𝐹𝑅 𝑌), then X is smaller than Y in the M-H quantile failure rate. 

𝐻𝑋(𝑢) ≥ 𝐻𝑌  ∀ 𝑢 ≥ 0 

The following lemma is useful in proving the results in monotonicity of 𝑀𝛼(𝑋, 𝑄(𝑢)). 

Let 𝑓(𝑢, 𝑥): 𝑅+
2 → 𝑅+ and 𝑔: 𝑅+ → 𝑅+  be any two functions, according to Lemma 3.1  Given that the 

integrals exist, if _∫ 𝑓(𝑢, 𝑥)𝑑𝑥
∞

𝑢
  is increasing and g(u) is increasing (decreasing)  in u, then 

∫ 𝑓(𝑢, 𝑥)𝑔(𝑥)𝑑𝑥
∞

𝑢
 is   increasing (decreasing) in u. 

Theorem 3.1: Consider that X is a continuous random variable that is non-negative and contains the 

quantile function 𝑄𝑋(. )  and density function 𝑞𝑋(. ).   Define 𝑌 = ∅(𝑋),  as a nonnegative, where ∅(. ) 

increasing, convex(concave) function. (i)  Because whenever 𝑀𝛼(𝑋, 𝑄(𝑢))  is increasing (decreasing) in 

u, For  1 < 𝛼 < 2, 𝑀𝛼(𝑋, 𝑄(𝑢))  is increasing (decreasing) in u as well. (ii)  Because 

whenever𝑀𝛼(𝑋, 𝑄(𝑢))   is increasing (decreasing) in u, For  0 < 𝛼 < 1, 𝑀𝛼(𝑋, 𝑄(𝑢))  is increasing 

(decreasing) in u as well. 

Proof: (i) Using the stated condition, we may infer that 𝑀𝛼(𝑋, 𝑄(𝑢) =
1

𝛼−1
[

∫ 𝑞𝑋
𝛼−1(𝑝)𝑑𝑝

1
𝑢

(1−𝑢)2−𝛼 − 1]  increasing 

(decreasing) in u and denote 𝑞𝑋(. )  as the quantile density function of X. 

According to definition 11 
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𝑀𝛼
𝑌(𝑌, 𝑄𝑌(𝑢)) =

1

𝛼−1
[

∫ 𝑞𝑌
𝛼−1(𝑝)𝑑𝑝

1
𝑢

(1−𝑢)2−𝛼 − 1]     (22) 

𝑀𝛼
𝑌(𝑌, 𝑄𝑌(𝑢)) =

1

𝛼−1
[

∫ [𝑞𝑋(𝑝)∅′(𝑄𝑋(𝑝))]
𝛼−11

𝑢

(1−𝑢)2−𝛼 − 1]    (23) 

𝑀𝛼
𝑌(𝑌, 𝑄𝑌(𝑢)) =

1

𝛼−1
[

∫ (𝑞𝑋(𝑝))
𝛼−1

(∅′(𝑄𝑋(𝑝)))𝛼−11
𝑢

(1−𝑢)2−𝛼 − 1]    (24) 

(∅′(𝑄𝑋(𝑝))𝛼−1 is increasing (decreasing) and is non-negative, therefore by Lemma 3.1, (3.1) increasing 

(decreasing), which proves (i) of the Theorem. This is because 1 < 𝛼 < 2 and ∅  is non-negative, 

increasing (decreasing), and convex(concave) function. 

Similarly, when 0 < 𝛼 < 1, (∅′(𝑄𝑋(𝑝))𝛼−1 increasing (decreasing)  in p because is increasing 

and convex. As a result, theorem (3.1) is increasing (decreasing) in u, demonstrating the second part of 

the theorem. The preceding Theorem is immediately applied as follows. 

Assume 𝑌 = 𝑋
1

𝛼, 𝛼 > 0.  as well as X has an exponential distribution with a failure rate of. The 

Weibull distribution with 𝑄(𝑢) = 𝜆−
1

𝛼(− log(1 − 𝑢))
1

𝛼.  becomes then shown in Y. In the occurrence of 

1 < 𝛼 < 2, (0 < 𝛼 < 1)., the non-negative increasing function 1 < 𝛼 < 2, (0 < 𝛼 < 1). is convex 

(concave). The Weibull distribution is hence increasing (decreasing) M-H quantile residual entropy if 

EE, according to Theorem 3.1: We now present a lemma that indicates the closure of the MHQE order 

under increasing convex transformation. 

Let 𝑓(𝑢, 𝑥): [0,1] × 𝑅+ → 𝑅+  be such that ∫ 𝑓(𝑢, 𝑥)𝑑𝑥 ≥ 0, ∀ 𝑢 ∈ [0,1]
1

𝑢
 and g(x) be any non-

negative function in x, then prove Lemma 3.2. ∫ 𝑓(𝑢, 𝑥)𝑔(𝑥)𝑑𝑥 ≥ 0, ∀ 𝑢 ∈ [0,1]
1

𝑢
 Theorem 3.2 states that 

if 𝑋 ≤𝑀𝐻𝑄𝐸 𝑌., consequently let X and Y be two random variables. Following that, for any non-negative 

increasing convex function ∅, ∅(𝑋) ≤𝑀𝐻𝑄𝐸 ∅(𝑌). 

Proof: To show that ∅(𝑋) ≤𝑀𝐻𝑄𝐸 ∅(𝑌), it is enough to show that 

1

𝛼−1
[

∫ (𝑞𝑋(𝑝))𝛼−1(∅′(∅𝑋(𝑝)))
𝛼−1

𝑑𝑝
1

𝑢

(1−𝑢)2−𝛼 − 1] ≤
1

𝛼−1
[

∫ (𝑞𝑌(𝑝))𝛼−1(∅′(∅𝑌(𝑝)))
𝛼−1

𝑑𝑝
1

𝑢

(1−𝑢)2−𝛼 − 1]    ∀ 𝑢 ∈ [0,1]   (25) 

Two cases arise: 

(i) Consider the case when 1 < 𝛼 < 2. Since 𝑋 ≤𝑀𝐻𝑄𝐸 𝑌, we have ∀ 𝑢 ∈ [0,1] 

1

𝛼−1
[

∫ (𝑞𝑋(𝑝))𝛼−1𝑑𝑝
1

𝑢

(1−𝑢)2−𝛼 − 1] ≤
1

𝛼−1
[

∫ (𝑞𝑌(𝑝))𝛼−11
𝑢

(1−𝑢)2−𝛼 − 1]     (26) 

 

which is equalvient to 

∫ (𝑞𝑋(𝑝))𝛼−1𝑑𝑝
1

𝑢
≤ ∫ (𝑞𝑌(𝑝))𝛼−1𝑑𝑝

1

𝑢
     (27) 

Thus, ∀ 𝑢 ∈ [0,1] 𝑞𝑋(𝑢) ≤ 𝑞𝑌(𝑢) and consequently 𝑄𝑋(𝑢) ≤ 𝑄𝑌(𝑢).  have been deduced from (27). 

Meanwhile, ∅′(∅𝑋(𝑢)) ≤ ∅′(∅𝑌(𝑢))  is caused by ∅′(. ) increasing in u because (.) is convex. Thus 

inequality (12) follows from (13) and Lemma 3.2. 

(ii)  Consider the case when 0 < 𝛼 < 1.  

The proof develops in a way that's similar to the rest of the case (i). 

Theorem 3.3: If 𝑋 ≤𝑀𝐻𝑄𝐹𝑅 𝑌, then 𝑋 ≤𝑀𝐻𝑄𝐸 𝑌.  

Proof: It is simple and hence omitted. 

 

4. Characterization Theorems 
 

The hazard quantile function, which is a simplification of the well-known hazard function and is 

valuable in reliability analysis, is a significant quantile measure. 

𝐻(𝑢) = ℎ(𝑄(𝑢)) =
𝑓𝑄(𝑢)

(1−𝑢)
=

1

(1−𝑢)𝑞(𝑢)
    (28) 

Next we state some characterization results of some well-known life time’s distribution based on 
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quantile residual entropy. 

Theorem 4.1:  Let X represent a random variable with an M-H residual entropy of the following form: 

𝑀𝛼(𝑋; 𝑄(𝑢)) =  
1

𝛼−1
{𝐶(𝐻(𝑢))

1−𝛼
− 1} , 0 < 𝛼 < 2, 𝛼 ≠ 1   (29) 

only if and when  

𝐶 =
1

2−𝛼
, then X has an exponential distribution. 

With a quantile density function, X has a Pareto distribution.  

If 𝐶 <
1

2−𝛼
. 𝑡ℎ𝑒𝑛 𝑞(𝑢) =

𝑏

𝑎
{(1 − 𝑢)−(1+

1

𝑎
)
} , 0 ≤ 𝑢 ≤ 1; 𝑎, 𝑏 > 0 

If 𝐶 >
1

2−𝛼
., X has a quantile density function of 𝑞(𝑢) =

𝑏

𝑎
{(1 − 𝑢)(

1

𝑎
−1)

} , 0 ≤ 𝑢 ≤ 1;  𝑏 > 0, 𝑎 > 1 with a 

finite range distribution. 𝑋 has uniform distribution if 𝐶 = 1. 

Proof: From section 2, the necessary part follows. 

For converse part, let (29) is true, then using (9), we have 

∫ 𝑞𝛼−1(𝑝)𝑑𝑝
1

𝑢
=  𝐶(𝐻(𝑢))

1−𝛼
(1 − 𝑢)2−𝛼     (30) 

Now using 𝐻(𝑢) =
1

(1−𝑢)𝑞(𝑢)
  in (30), subsequently separating it on both sides with regard to u, we obtain 

𝑞′(𝑢)

𝑞(𝑢)
= (

𝑐−1

𝑐𝛼−𝑐
) (

1

1−𝑢
)     (31) 

This gives 

𝑞(𝑢) = 𝐴(1 − 𝑢)
(

𝑐−1

𝑐−𝑐𝛼
)     (32) 

where A remains constant.  

As a result, if 𝐶 =
1

2−𝛼
, 𝐶 <

1

2−𝛼
, 𝐶 >

1

2−𝛼
, 𝐶 = 1, X has distributions that are respectively exponential, 

Pareto, and finite range. 

 

5. Conclusion 

 
This study has shed light on the concept of residual entropy and its relevance in the context of systems 

that have already been in existence for a specific duration. While Shannon's entropy serves as the 

foundation of information theory, the notion of residual entropy has emerged due to its inadequacy for 

such systems. By adopting a quantile-based approach, we have explored the characteristics of residual 

entropy in detail. 

Through the derivation of the quantile residual entropy function for various lifetime models, 

we have provided a novel perspective on analyzing and understanding the dynamics of established 

systems. Our investigation has further allowed us to delve into the reordering and ageing aspects 

inherent in the quantile version of the residual entropy equation. 

By extending the application of entropy measures to incorporate quantiles, we have bridged 

the gap in assessing the behavior of systems with a history of existence. This has opened up new 

avenues for research in information theory and its practical implications. 

Overall, our study emphasizes the importance of considering residual entropy based on 

quantiles, offering a more comprehensive understanding of system dynamics and enabling more 

accurate analyses in various domains. Further research can build upon these findings to explore 

additional applications and refine the quantile-based approach to residual entropy. 
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