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Abstract 

Aim: Regression analysis is one of the statistical methods which helps to model the data and helps in 

prediction, a large data set with higher number of variables will often create problem due to its 

dimensionality and hence create difficulties to gather important information from the data, so it is a need 

of a method which can simultaneously choose important variables which contains most of the information 

and hence helps to fit the model. Least absolute shrinkage and selection operator (LASSO) is a popular 

choice for shrinkage estimation and variable selection. But LASSO uses the conventional least squares 

technique for feature selection which is very sensitive to outliers. As a result, when the data set is 

contaminated with bad observations (Outliers), the LASSO technique gives unreliable results, so in this 

paper the focus is to create a method which can resist to outliers in the data and helps in giving a 

meaningful result. Method: proposed a new procedure, a LASSO method by adding weights which uses 

the concept of redescending M-estimator, which can resist outliers in both dependent and independent 

variables. The observation with greater importance receives a higher weight and less weight to the least 

important observation. Findings: The efficiency of the proposed method has been studied in the real and 

simulation environment and compared with other existing procedures with measures like Median 

Absolute Error (MDAE), False Positive Rate (FPR), False Negative Rate (FNR), Mean Absolute 

Percentage Error (MAPE). The proposed method with the redescending M-estimator shows a higher 

resistance to outliers compared to conventional LASSO and other robust existing procedures. 

Conclusion:  The study reveals that the proposed method outperforms other existing procedures in terms 

of MDAE, FPR, FNR and MAPE, indicating its superior performance in variables selection under outlier 

contaminated datasets.  

Keywords: Feature Selection, LASSO, MAPE 

 

I. Introduction 

One of the most frequent problems we run into in real-time applications and other scientific fields is 

data including outliers. The existence of outliers, according to Chatterjee and Hadi [4], may leads to 

influence the parameter estimation and inaccurate predictions for traditional approaches. Both 

dependent variables and covariates (predictor variables) may contain outliers. As a result, it's crucial 

to deal with outliers in regression analysis. For outlier detection problems, numerous robust regression 

algorithms have been created, such as S- estimator [7], the least median of squares estimator [11], the 

MM- estimator [18], the τ- estimator [19], and so on. It is well known that there are some M- estimator-

based regression methods such as Huber regression which does not delete large residuals, and Tukey 

regression is not Robust against the outliers in the leverage points. [12], Redescending M-estimators are 

more resilient than M-estimators since they totally reject extreme outliers. Alamgir et al. [1] proposed 

an efficient Redescending M-estimator for robust estimation.                                                                                                                                 

 In practice, a large number of variables are often incorporated at the beginning of modelling. The 
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interpretation of models that contain all of the variables is extremely difficult, even when irrelevant 

factors may increase variance. Therefore, one of the most significant issues in data analysis is the choice 

of an important variable. Popular methods for variable selection are penalized regression methods such 

as Least Absolute Shrinkage and Selection Operator (LASSO) [13], Smoothly Clipped Absolute 

Deviation (SCAD) [6] and adaptive LASSO [20], and so on. Most of the methods mentioned above are 

closely related to Ordinary Least Squares (OLS) technique. OLS-based methods are not resistant to 

outliers therefore the outliers can cause problems in a variable selection based on OLS. So, the robust 

variable selection approach has to be studied. There are numerous effective variable selection 

techniques in the literature, including the Least Absolute Deviation (LAD)-LASSO [15], which deals 

with heavy-tailed error, WLAD-LASSO [14], the weighted Wilcoxon-type SCAD method [13], the 

Huber’s criterion and adaptive lasso penalty [9], the quantile regression for analyzing heterogeneity 

ultra-high dimension [16], the variable selection in the semiparametric varying- coefficient partially 

linear model via a penalized composite  quantile loss [8], the Composite Quantile Regression (CQR) 

[21], the   variable selection with the exponential squared loss [17], Penalized least trimmed square 

(LTS) [2],  Maximum Tangent Likelihood Estimator (MTE) [10], and so on. In this paper, a new robust 

feature selection method has been introduced. The improved version of the LASSO method uses a 

weight from a Redescending M-Estimator which can tolerate outliers in the X-Y space. The study based 

on simulation and real data indicates that the proposed robust feature selection procedure performs 

better than other existing methods.           

The paper is organized as follows. In section II provides brief introduction to LASSO method. A new 

technique, Alarm Weight LASSO (AW-LASSO) and its corresponding algorithm is described in Section 

III. In section IV, real data analysis and a simulation study and is carried out to comprehend how well 

the suggested method works. Finally, section V gives summary and conclusion. 

II. LASSO Methods 

Regressions models are commonly used in statistical analysis. A popular use is to model the predicted 

risk of a likely outcome. Unfortunately, using standard regression techniques to create a model from a 

set of candidate variables often results in overfitting, which   increases the number of variables that are 

eventually included in the model and overestimates how well the included variables explain the 

observed variability (an effect known as optimism bias). Extreme (extremely low or very high) risk 

observations are particularly difficult for the model to forecast. A shrinkage and variable selection 

strategy for regression models is LASSO regression. In order to create a model that minimizes the 

prediction error, LASSO regression seeks to discover the variables and corresponding regression 

coefficients. This is accomplished by placing a restriction on the model parameters that causes the 

regression coefficients to decrease towards zero, or more specifically, by requiring that the total 

absolute value of the regression coefficients be smaller than a predetermined value (λ).  The equation 

of the LASSO is given below 

2

1

 = min  | |
n

LASSO i j ij j

i j j

y X


   
=

  
 − + 
   
                                                                               (1) 

Since λ controls the amount of regularization the choice of λ is often made by using an automated k-

fold cross validation approach. If λ = 0 the LASSO is same as OLS. As λ increases, the number of non-

zero components of β decreases, at λ = ∞, the LASSO gives the null model. The above LASSO method 

is based on OLS loss function which is not resistant to outliers, therefore, to address this issue, we 

modified the LASSO by adding a new weight to form Alarm Weight LASSO which is Elaborately 

discussed in the section III. 
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III. Alarm Weight LASSO 

Consider the linear regression model  

, 1,2,3,...,T

i i iy x i n  = + + =                                                                                                    (2)                                                                                             

where Yi is the response variable Xi = (xi1, xi2, …, xip)T  is the p-dimensional covariate vector, β = (β1, β2, …, 

βp)T are the regression parameters, and εi  are the iid random errors. We assume that βo = 0. This can be 

achieved by centering the covariates and response variable. That is, from now on we will consider the 

model   

, 1,2,3,...,T

i i iy x i n = + =                                                                                                            (3) 

To estimate β is to minimize the ordinary least square (OLS) criterion  

2

1

( )
n

T

i i

i

y x 
=

−                                                                                                                                        (4) 

The OLS estimates β by minimizing the error sum of squares, i.e.,  

 

( ) ( ) € min
T

OLS

Y X Y X


  = − −                                                                                                (5) 

The OLS approach to estimate the regression parameter is very sensitive to the outliers. One of the 

alternatives to OLS is to use weighted OLS. Weighted regression is its robustness against outliers. 

Weighted regression can assign less weight to outliers and hence reduce their impact on the estimate of 

the coefficients. Which is obtained by minimizing the OLS criterion 

2

1

( )
n

T

i i i

i

w y x 
=

−                                                                                                                                    (6) 

where wi, for i = 1,2,3,…,n is the weights which is determined by a redescending M-Estimator which 

can resist outliers in both X and Y space. The influence function describes the sensitivity of the overall 

estimate of the outlying data and is defined as  
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                                                                                                         (7) 

 
The functional relationship between ψ and ρ is given by  

( ) ( )
d

r r
dr

 =                                                                                                                                                    (8) 

Integrating out the  - function under the initial condition, we get the corresponding ( )r  , given by 
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The weight function w(r)=  (r)/r, is as follows 
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−
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                                   (10)                                                                                          

 

where “r” denotes residual and “c” is tuning constant.  

 
Efficiency and robustness are two characteristic of a robust procedures that are inversely connected. As 

a result, choose an estimator with the highest resistance and the lowest efficiency loss. Nobody can 

afford to select a highly robust estimator that is resistant to outliers at the expense of decreasing 

efficiency. These two properties should be balanced in some way. The weight function ensures that the 

residuals with the highest weight (close to 1) correspond to the majority of good observations. Figure 

1, represents the weight function w(r) of redescending M-estimator 

 
             Fig.1: Alarm Weight function of redescending M estimator 

 
From Figure 1, As can be seen, only severely outlying observations are given 0 weights, ensuring that 

good observations are used to their full potential and that extreme outliers are not overly relied upon. 

The equation given in (1) thus modified by adding the weight of the redescending M estimator to form 

Alarm Weight LASSO and the equation is given below. 
2

1

 = min  | |
n

AW LASSO i i j ij j

i j j

w y X


   −

=

  
 − + 
   
                                                                          (11) 

wi represents the weight function and λ is the tuning parameter which is chosen by cross validation 

method. 

  

I. Computational Algorithm 

Consider the LASSO model given in (1). We use Iteratively Least Square Method (IRWLS) algorithm 

for the computation of the AW-LASSO. 

 

Step1: Find the initial estimates of   by using the ridge regression model. 

 

Step2: obtain the corresponding residuals from our initial estimates 

 

Step3: Compute the corresponding weights based on the proposed weight function  

 

Step4: Calculate the new estimate of AW-LASSO coefficients using the IRWLS algorithm 
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Step5: Repeat step 2 to 4 until convergence. 

IV. Experimental Results 

 
In this section various LASSO-type feature selection techniques are compared to the proposed method

ology in a real-world setting. Outliers were present in the real data, which were eliminated using the    

cook distance [5], and the analysis was done using the R programming language. The obtained results 

such as Median Absolute Error (MDAE), Mean Absolute Percentage Error (MAPE), number of variabl

es, for with and without outliers are also discussed. 

 

I. Real data examples 
 
Here we considered two data sets, namely Boston housing data and diabetes data, detailed                            

descriptions are available in the standard packages. The Boston data set has 506 observations of 15             

independent and a dependent variable.  The diabetes data set has 442 observations of 9    independent 

and a dependent variable.  The feature selection procedures have been performed after standardizing 

the variables, with and without outliers and the results are summarised in the table 1.  

 
Table 1: Error values, under with and without outliers  

Methods MDAE MAPE 

No. of  

Variables  

Selected 

 

Selected Variables 

Boston Housing Data 

 

LASSO 

0.303 

(0.123) 

4.27 

(0.783) 

12(12) 

 

Tract, ion, lat, Crim, Zn,  nox, rm, dis, tax, ptratio, b, istat 

(ion, crim, zn, indus, nox, rm, age, dis, tax, ptratio, b, istat) 

 

LAD  

LASSO 

0.267 

(0.177) 

4.07 

(1.20) 

12(15) 

 

Tract, ion, crim, zn, nox, rm, age, dis, tax, ptratio, b, istat 

(Tract, ion, lat, crim, zn, indus, nox, rm, age, dis, rad, tax, 

ptratio, b, istat) 

 

Huber  

LASSO 

0.291 

(0.189) 

3.97 

(1.17) 

11(12) 

 

Tract, ion, crim, nox, rm, age, dis, tax, ptratio, b, istat 

(Tract, ion, crim, zn, indus, rm, age, dis, tax, ptratio, b, 

istat) 

MTE  

LASSO 

0.306 

(0.245) 

4.24 

(1.32) 

10(11) 

 

Tract, ion, crim, nox, rm, dis, tax, ptratio, b, istat 

(ion, crim, zn, indus, rm, age, dis, tax, ptratio, b, istat) 

AW- 

LASSO 

0.301 
(0.124) 

3.59 

(0.783) 
6(11) 

ion, rm, tax, ptratio, b, istat 

(ion, crim, zn, indus, rm, age, dis, tax, ptratio, b, istat) 

Diabetes Data 

LASSO 

0.516 

(0.511) 
1.15 

(1.48) 

4(4) 

 

BMI, BP, S3, S5, (BMI, BP, S3, S5) 

LAD 

LASSO 

0.490 

(0.527) 
1.29 

(1.57) 

4(4) 

 

BMI, BP, S3, S5, (BMI, BP, S3, S5) 

Huber 

LASSO 

0.501 

(0.510) 
1.23 

(1.53) 

4(4) 

 

BMI, BP, S3, S5, (BMI, BP, S3, S5) 

MTE 

LASSO 

0.517 

(0.504) 
1.15 

(1.46) 

4(4) 

 

Bmi, bp, S3, S5, (BMI, BP, S3, S5) 

AW-

LASSO 

0.485 
(0.510) 

1.07 

(1.49) 
4(4) 

bmi, BP, S3, S5, (BMI, BP, S3, S5) 

(.) without outlier 

From the above table it is observed that under with and without outliers the proposed procedure, AW-

LASSO produces the error values are minimum and also select the significant variables when compared 

with the other procedures. 

 

II. Simulation Study 

Simulation studies are carried out to check the efficacy of various methods. In our simulation study, 

the covariates are generated from a multivariate normal distribution with Mean μ = [o]p*1 and variance 
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Σ = [σij] = ρ |i-j| for various levels of correlation, ρ = 0.01, 0.5, 0.9 and number of variables, p=10, 15, 25. 

The model consists of six significant variables and the rest is considered noise variables. The 

performance of the proposed method is compared with various other robust methods along with the 

classical LASSO method. Various levels of contamination (0%, 5%, 10%, 20%) are studied for sample 

size n = 100, 200, 1000.  

 
Table 2: False Negative and False Positive rate of each method under various levels of contamination (0% and 5%) 

Method N Error 

η = 0 η = 5 

p = 10 p = 15 p = 25 p = 10 p = 15 p = 25 

Ρ ρ ρ ρ ρ ρ 

0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 

LASSO 

100 

FPR 0.36 1.02 0.92 0.64 0.75 0.69 0.43 0.55 0.54 0.93 0.99 0.92 0.69 0.73 0.66 0.47 0.56 0.47 

FNR 0.00 0.00 0.03 0.00 0.00 0.05 0.00 0.00 0.08 0.00 0.00 0.07 0.00 0.00 0.13 0.00 0.01 0.20 

200 

FPR 0.96 0.99 1.03 0.68 0.72 0.74 0.46 0.57 0.57 0.88 1.00 1.00 0.66 0.76 0.75 0.45 0.57 0.52 

FNR 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.07 

1000 

FPR 0.90 1.02 0.99 0.67 0.74 0.78 0.44 0.53 0.58 0.96 1.01 1.03 0.62 0.72 0.77 0.42 0.54 0.58 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LAD 
LASSO 

100 

FPR 0.59 0.73 0.77 0.27 0.42 0.43 0.10 0.18 0.23 0.49 0.67 0.66 0.22 0.31 0.28 0.06 0.09 0.15 

FNR 0.00 0.01 0.16 0.03 0.06 0.26 0.16 0.18 0.41 0.04 0.05 0.26 0.13 0.14 0.46 0.00 0.40 0.62 

200 

FPR 0.67 0.78 0.87 0.31 0.38 0.45 0.09 0.16 0.27 0.49 0.70 0.79 0.20 0.30 0.40 0.06 0.12 0.18 

FNR 0.00 0.00 0.04 0.00 0.00 0.15 0.00 0.04 0.22 0.01 0.00 0.12 0.02 0.04 0.22 0.16 0.14 0.42 

1000 

FPR 0.58 0.78 0.81 0.28 0.42 0.52 0.09 0.17 0.29 0.55 0.69 0.78 0.17 0.30 0.43 0.07 0.11 0.22 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.08 

Huber 
LASSO 

100 

FPR 0.56 0.71 0.74 0.24 0.37 0.40 0.09 0.15 0.20 0.47 0.60 0.63 0.21 0.27 0.25 0.05 0.07 0.12 

FNR 0.00 0.01 0.15 0.03 0.06 0.25 0.17 0.19 0.40 0.04 0.05 0.25 0.13 0.15 0.46 0.47 0.42 0.62 

200 

FPR 0.64 0.73 0.82 0.28 0.33 0.39 0.08 0.14 0.22 0.48 0.67 0.74 0.18 0.27 0.36 0.06 0.10 0.15 

FNR 0.00 0.00 0.04 0.00 0.00 0.12 0.00 0.04 0.20 0.01 0.00 0.11 0.02 0.04 0.21 0.15 0.14 0.43 

1000 

FPR 0.55 0.74 0.77 0.26 0.39 0.46 0.09 0.15 0.23 0.55 0.64 0.75 0.16 0.27 0.39 0.06 0.09 0.18 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.04 

MTE LASSO 

100 

FPR 0.51 0.69 0.73 0.15 0.29 0.39 0.05 0.08 0.18 0.33 0.47 0.54 0.11 0.15 0.19 0.02 0.03 0.10 

FNR 0.35 0.16 0.22 0.69 0.40 0.33 0.75 0.66 0.54 0.55 0.38 0.40 0.79 0.66 0.64 0.91 0.87 0.73 

200 

FPR 0.94 0.92 0.97 0.60 0.60 0.64 0.15 0.26 0.39 0.61 0.78 0.84 0.25 0.32 0.43 0.03 0.07 0.16 

FNR 0.00 0.00 0.00 0.00 0.00 0.02 0.31 0.04 0.09 0.20 0.09 0.08 0.44 0.24 0.17 0.61 0.47 0.36 

1000 

FPR 0.90 0.97 0.93 0.67 0.70 0.74 0.44 0.48 0.53 0.96 0.97 0.96 0.61 0.66 0.71 0.42 0.48 0.53 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

AW-LASSO 

100 

FPR 0.37 0.51 0.51 0.22 0.34 0.35 0.13 0.21 0.22 0.27 0.39 0.37 0.13 0.22 0.17 0.07 0.13 0.12 

FNR 0.00 0.00 0.26 0.00 0.00 0.27 0.00 0.01 0.30 0.00 0.01 0.46 0.01 0.05 0.57 0.00 0.10 0.60 

200 

FPR 0.32 0.47 0.54 0.15 0.26 0.32 0.11 0.17 0.23 0.25 0.35 0.46 0.12 0.19 0.27 0.06 0.11 0.17 

FNR 0.00 0.00 0.13 0.00 0.00 0.16 0.00 0.00 0.15 0.00 0.01 0.30 0.00 0.01 0.31 0.00 0.02 0.34 

1000 

FPR 0.26 0.33 0.49 0.11 0.18 0.30 0.05 0.09 0.19 0.25 0.27 0.46 0.11 0.13 0.25 0.05 0.06 0.15 

FNR 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.09 0.00 0.00 0.10 0.00 0.00 0.11 

 

The performance of each model is measured by using MDAE, False Negative Rate (FNR), and False 

Positive Rate (FPR). FNR is defined as the proportion of zero coefficient estimates whose corresponding 

true coefficients are nonzero and FPR is defined as the proportion of nonzero coefficient estimates 

whose corresponding true coefficients are zero. The obtained results are summarized in Table 2-5. Also, 

for effective understanding of the performance of various methods, the pictorial representations of 

error measures are given in Figure 2 and 3 respectively. 

 
 

Table 3: False Negative and False Positive Rate of each method under various levels of contamination (10% and 

20%) 

Method N Error 

η = 10 η = 20 

p = 10 p = 15 p = 25 p = 10 p = 15 p = 25 

ρ ρ ρ ρ ρ ρ 

0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 

LASSO 
100 

FPR 0.93 1.00 0.83 0.65 0.73 0.53 0.48 0.54 0.33 0.90 0.93 0.65 0.63 0.71 0.38 0.45 0.52 0.20 

FNR 0.00 0.00 0.18 0.00 0.01 0.27 0.00 0.02 0.42 0.00 0.04 0.31 0.01 0.04 0.48 0.01 0.08 0.63 

200 

FPR 0.92 1.02 0.97 0.65 0.73 0.68 0.45 0.52 0.50 0.93 1.01 0.87 0.65 0.75 0.65 0.41 0.54 0.42 

FNR 0.00 0.00 0.05 0.00 0.00 0.08 0.47 0.00 0.11 0.00 0.00 0.12 0.00 0.00 0.11 0.00 0.01 0.24 
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1000 

FPR 0.89 0.97 1.01 0.67 0.74 0.76 0.00 0.57 0.00 0.92 1.02 0.99 0.68 0.75 0.75 0.46 0.53 0.57 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.20 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 

LAD LASSO 

100 

FPR 0.44 0.65 0.51 0.16 0.23 0.21 0.03 0.06 0.07 0.39 0.49 0.26 0.09 0.18 0.09 0.00 0.04 0.02 

FNR 0.14 0.09 0.44 0.35 0.32 0.64 0.71 0.57 0.82 0.32 0.29 0.66 0.63 0.49 0.83 0.92 0.77 0.94 

200 

FPR 0.52 0.64 0.69 0.21 0.24 0.28 0.05 0.08 0.11 0.42 0.55 0.52 0.15 0.21 0.21 0.02 0.05 0.06 

FNR 0.01 0.02 0.19 0.13 0.10 0.38 0.40 0.30 0.58 0.06 0.07 0.39 0.29 0.23 0.51 0.75 0.57 0.76 

1000 

FPR 0.46 0.63 0.79 0.20 0.27 0.39 0.07 0.10 0.14 0.44 0.60 0.78 0.16 0.23 0.38 0.05 0.07 0.17 

FNR 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.03 0.00 0.00 0.11 0.00 0.04 0.20 

Huber 
LASSO 

100 

FPR 0.43 0.58 0.50 0.16 0.19 0.19 0.03 0.05 0.06 0.38 0.46 0.26 0.09 0.15 0.08 0.01 0.04 0.01 

FNR 0.14 0.09 0.44 0.35 0.31 0.60 0.69 0.58 0.79 0.31 0.29 0.64 0.61 0.50 0.81 0.86 0.77 0.91 

200 

FPR 0.50 0.62 0.63 0.20 0.22 0.24 0.05 0.07 0.08 0.41 0.54 0.48 0.14 0.19 0.18 0.02 0.04 0.05 

FNR 0.01 0.02 0.19 0.14 0.10 0.38 0.39 0.31 0.59 0.05 0.07 0.40 0.28 0.24 0.52 0.72 0.58 0.79 

1000 

FPR 0.44 0.60 0.76 0.18 0.23 0.34 0.06 0.08 0.11 0.43 0.57 0.71 0.16 0.22 0.33 0.05 0.07 0.13 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.02 0.00 0.00 0.08 0.00 0.04 0.20 

MTE LASSO 

100 

FPR 0.25 0.40 0.41 0.07 0.09 0.15 0.01 0.03 0.04 0.24 0.30 0.21 0.04 0.07 0.06 0.01 0.02 0.01 

FNR 0.65 0.51 0.55 0.85 0.79 0.72 0.90 0.90 0.85 0.72 0.64 0.73 0.89 0.85 0.88 0.92 0.92 0.92 

200 

FPR 0.37 0.50 0.59 0.12 0.12 0.21 0.01 0.02 0.08 0.22 0.30 0.34 0.06 0.07 0.10 0.01 0.01 0.03 

FNR 0.46 0.26 0.25 0.71 0.58 0.50 0.86 0.82 0.63 0.67 0.53 0.56 0.84 0.80 0.69 0.92 0.92 0.85 

1000 

FPR 0.87 0.88 0.94 0.66 0.69 0.69 0.47 0.51 0.00 0.78 0.87 0.90 0.53 0.63 0.65 0.26 0.39 0.47 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.02 

AW-LASSO 

100 

FPR 0.29 0.38 0.23 0.12 0.18 0.10 0.06 0.12 0.05 0.27 0.37 0.14 0.17 0.21 0.06 0.08 0.14 0.03 

FNR 0.02 0.11 0.68 0.03 0.16 0.73 0.01 0.16 0.84 0.07 0.25 0.79 0.06 0.27 0.85 0.09 0.31 0.90 

200 

FPR 0.25 0.31 0.36 0.11 0.17 0.20 0.06 0.09 0.13 0.26 0.37 0.27 0.12 0.21 0.13 0.06 0.12 0.08 

FNR 0.00 0.04 0.43 0.00 0.04 0.47 0.00 0.07 0.50 0.01 0.10 0.59 0.00 0.11 0.67 0.00 0.15 0.73 

1000 

FPR 0.25 0.27 0.46 0.11 0.12 0.24 0.05 0.06 0.16 0.25 0.27 0.46 0.11 0.14 0.26 0.05 0.06 0.16 

FNR 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.58 0.00 0.00 0.18 0.00 0.00 0.18 0.00 0.00 0.22 

 

False Positive Rate (Figure-2a), the selection of insignificant variables by the method. In                                      

these circumstances, the conventional LASSO has a high False Positive Rate relative to other approach

es, it is because the LASSO tends to select a greater number of coefficients, while the MTE method's       

False Positive Rate rises as the sample size increases. In almost all situations, the AW-LASSO approac

h has a very low False Positive Rate. 

 

False Negative Rate (Figure-2b), or the number of significant variables that the technique failed to              

choose. The AW-LASSO False Negative Rate is usually always zero at all levels, but when the correlat

ion level rises, the approach produces inconsequential results. The MTE technique shows a high rate o

f False Negative, however as the sample size grows, the approach tends to converge to zero. 

 

 
(a). False Positive Rate for various levels of contamination and correlation  

 
(b). False Negative Rate for various levels of contamination and correlation 

 

Figure 2: FPR and FNR under various levels of contamination and correlation 
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Table 4: Median Absolute Error of each method under various levels of contamination (0% and 5%) 

Method N 

η = 0 η = 5 

p = 10 p = 15 p = 25 p = 10 p = 15 p = 25 

ρ ρ ρ ρ ρ ρ 

0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 

LASSO 

100 1.90 1.91 1.91 1.90 1.87 1.90 1.87 1.84 1.85 2.80 2.49 2.49 2.55 2.70 2.50 2.57 2.56 2.50 

200 1.96 1.96 1.96 1.97 1.96 1.96 1.94 1.93 1.94 2.85 2.37 2.34 2.39 2.75 2.37 2.44 2.41 2.39 

1000 2.02 2.03 2.02 2.02 2.02 2.02 2.01 2.01 2.01 2.80 2.35 2.22 2.30 2.80 2.24 2.35 2.30 2.23 

LAD LASSO 

100 1.99 2.01 2.02 2.37 2.10 2.05 3.10 2.57 2.09 2.51 2.24 2.23 2.40 2.57 2.36 2.44 2.35 2.43 

200 1.98 1.97 1.99 2.11 2.06 2.02 2.36 2.30 2.11 2.29 2.15 2.13 2.20 2.39 2.25 2.37 2.34 2.35 

1000 2.05 2.06 2.08 2.03 2.03 2.02 2.08 2.06 2.04 2.13 2.13 2.14 2.21 2.17 2.17 2.28 2.25 2.21 

Huber LASSO 

100 1.97 2.00 1.99 2.37 2.10 2.02 3.10 2.54 2.09 2.48 2.22 2.21 2.41 2.64 2.34 2.43 2.35 2.42 

200 1.98 1.97 2.00 2.11 2.06 2.01 2.37 2.31 2.09 2.28 2.15 2.12 2.22 2.37 2.23 2.39 2.30 2.37 

1000 2.06 2.07 2.08 2.03 2.03 2.02 2.08 2.07 2.04 2.13 2.13 2.14 2.24 2.18 2.16 2.28 2.25 2.20 

MTE LASSO 

100 3.03 2.15 1.99 4.44 2.75 2.06 4.76 3.44 2.10 2.30 2.20 2.16 2.43 2.63 2.36 2.35 2.26 2.41 

200 1.96 1.96 1.99 2.12 2.01 2.07 3.09 2.10 2.16 2.45 2.30 2.08 2.22 2.57 2.14 2.36 2.28 2.24 

1000 2.06 2.06 2.07 2.02 2.02 2.08 2.20 2.15 2.12 2.14 2.15 2.14 2.21 2.20 2.14 2.16 2.15 2.14 

AW-LASSO 

100 1.95 1.95 1.96 2.12 2.09 1.97 2.14 2.15 2.07 2.14 2.13 2.10 2.14 2.16 2.14 2.15 2.12 2.12 

200 1.97 1.97 1.98 2.10 2.04 1.98 2.11 2.13 2.09 2.16 2.12 2.12 2.15 2.17 2.14 2.14 2.12 2.12 

1000 2.03 2.02 2.02 2.00 1.99 2.00 2.05 2.00 2.02 2.14 2.15 2.13 2.16 2.26 2.17 2.16 2.15 2.15 

 
Table 5: Median Absolute Error of each method under various levels of contamination (10% and 20%) 

Method N 

η = 10 η = 20 

p = 10 p = 15 p = 25 p = 10 p = 15 p = 25 

ρ ρ ρ ρ ρ ρ 

0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 

LASSO 

100 2.90 2.81 2.80 2.96 2.97 2.92 2.96 2.91 2.92 3.88 3.82 3.80 4.12 4.06 4.03 4.20 4.21 4.10 

200 2.89 2.64 2.65 2.74 2.91 2.67 2.96 2.90 2.96 3.97 3.86 3.85 4.06 3.95 3.79 4.21 4.09 4.12 

1000 2.92 2.42 2.55 2.45 2.93 2.41 2.98 2.95 2.93 3.91 3.80 3.81 4.93 3.83 3.73 4.18 4.17 4.14 

LAD LASSO 

100 2.50 2.49 2.47 2.51 2.46 2.63 2.50 2.41 2.85 2.81 2.96 2.96 3.01 2.89 2.70 3.08 3.07 3.39 

200 2.56 2.35 2.42 2.37 2.49 2.57 2.60 2.40 2.71 2.89 2.99 2.99 3.00 2.85 2.81 3.68 3.75 3.33 

1000 2.53 2.28 2.30 2.36 2.35 2.35 2.51 2.47 2.41 2.77 2.63 2.65 2.84 2.78 2.77 3.29 3.11 2.89 

Huber LASSO 

100 2.45 2.50 2.46 2.35 2.44 2.61 2.53 2.42 2.83 2.60 2.96 2.97 2.99 2.81 2.80 3.04 3.03 3.39 

200 2.50 2.35 2.39 2.39 2.39 2.55 2.62 2.41 2.71 2.88 3.00 3.03 2.98 2.69 2.80 3.64 3.77 3.33 

1000 2.52 2.28 2.30 2.36 2.35 2.34 2.51 2.48 2.41 2.67 2.63 2.65 2.85 2.78 2.76 3.29 3.11 2.89 

MTE LASSO 

100 2.60 3.46 2.42 5.72 2.34 2.61 2.70 2.64 2.83 2.82 3.44 3.43 2.92 5.16 3.34 3.29 3.47 3.38 

200 2.62 2.90 2.36 5.23 2.81 2.58 2.75 2.48 2.66 2.84 3.47 3.48 2.96 5.01 3.22 3.17 3.49 3.37 

1000 2.58 2.32 2.31 2.36 2.33 2.31 2.72 2.35 2.42 2.94 2.78 2.79 2.93 2.84 2.72 3.12 2.89 2.75 

AW-LASSO 

100 2.40 2.32 2.36 2.44 2.37 2.32 2.41 2.48 2.52 2.68 2.62 2.63 2.61 2.68 2.65 2.66 2.69 2.65 

200 2.42 2.34 2.35 2.34 2.41 2.37 2.39 2.40 2.36 2.67 2.64 2.66 2.66 2.65 2.66 2.64 2.70 2.70 

1000 2.44 2.32 2.30 2.34 2.33 2.30 2.36 2.33 2.33 2.65 2.76 2.72 2.69 2.77 2.69 2.70 2.77 2.63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a). Median Absolute Error for various levels of contamination and correlation 

 

Figure 3: MDAE under various levels of contamination and correlation 

426



R. Muthukrishnan, C. K. James 
REDESCENDING M-ESTIMATOR BASED LASSO FOR FEATURE SELECTION 

RT&A, No 4 (76) 
Volume 18, December 2023 

 

The ability of the approaches to predict is seen in Figure 3. In comparison to other approaches                      

AW-LASSO has lower MDAE, but if the data contains no outlier the LASSO exhibits a higher predicti

on capacity than other methods and also the MTE method, shows a very high prediction error. Howev

er, the AW-LASSO method always has very low prediction error.  

 

IV. Conclusion 

 
Feature selection is a technique that aids in extracting the important variables from a larger range of 

variables. It is becoming increasingly vital in statistics and is crucial to statistical analysis. In this paper, 

it is proposed a new feature selection method, which uses a weight function from a redescending M-

estimator to modify the ordinary LASSO to form a new feature selection method namely, AW-LASSO. 

The proposed technique performs well in both with and without outlier condition by examining under 

the real datasets namely, the Boston Housing and Diabetic data sets. Further, the simulation studies 

also showed that the superiority of AW-LASSO method over the other methods. The study concluded 

that the proposed method can be used in the field of statistical learning, specifically in prediction 

models.  
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