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Abstract

The lifetime distributions are used to understand and explain the real life circumstances in various fields

(medical, engineering, etc.). Many times it is very tough task to complete an experiment with complete

data due to lack of time, money or some other factors and get the data in incomplete form. to draw the

information from such type of data (incomplete data), we use some censoring techniques. In the field

of statistics, there are several censoring techniques available where type-I censoring is most commonly

used due to its simplicity. In this article, the scale Muth distribution (SMD) is considered as a lifetime

distribution under type-I censoring scheme. The parameter estimation has been done by classical as well

as Bayesian approach. Under the classical paradigm, two most popular methods were used maximum

likelihood estimation (MLE) and the maximum product of spacing estimation (MPSE). And under the

Bayesian paradigm, we used the informative priors for each parameter and obtained the estimates by

considering the squared error loss function using an approximation method, Metropolis Hasting (MH)

algorithm. The performance of each estimator is evaluated by their mean squared error or simulated

risk. Also, a real data set is used to illustrate the real phenomena and to estimate the parameter using

above-mentioned techniques under type-I censoring scheme.

Keywords: Scale Muth distribution, type-I censoring, classical approach, Bayesian approach, real

data analysis.

1. Introduction

A new popularized lifetime distribution, Muth distribution was introduced by J. E. Muth

[1] in the field of reliability theory. Muth distribution has less probability mass on right tail in
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comparison of some other well known distribution like Weibull, Gamma and log-normal. The

cumulative distribution function (cdf) and probability density function (pdf) of this distribution

are defined respectively:

F(y; α) = 1 − e{αy− 1
α (e

αy−1)} y > 0, α ∈ (0, 1] (1)

f (y; α) =

(eαy − α)e{αy− 1
α (e

αy−1)} y > 0, α ∈ (0, 1]

0 otherwise
(2)

A very few properties of this distribution was given in [1] and mainly focuses on its strict

positive memory and mean residual lifetime. After this Rinne [2] used this distribution as lifetime

model with German data set of car prices for fitting. In 2008, Leemis and McQueston [3] given

a well defined figure and showed the relationship with exponential distribution. When the

shape parameter α → 0 it converges to standered exponential distribution having parameter

1, and given its name as Muth distribution. In 2015, Jodra et.al. [4] again highlighted this

distribution and derived some other statistical properties such as, moment generating function

(mgf), Quantile function, rth moments, moments of order statistics , mode, median and given a

scale transformation form of this distribution named as SMD with scale parameter β > 0 and

shape parameter α ∈ (0, 1].

Estimation of parameters of SMD with classical methods has been done in [4]. After that

many of authors used this distribution with different transformation and derived their properties

and applications such as Jodra et. al. [5] define power Muth distribution, Chesneau and Agiwal

[6] given inverse power Muth distribution and observed that there is no restriction to select

the values of α in eq.[1] as α < 0 and α ∈ (0, 1] but α ̸= 0. In 2022, Saroj et.al. [7] given a

new lifetime distribution with up-side down bathtub (UBT) shape hazard, named as inverse

Muth distribution(IMD) by taking inverse transformation of Muth distribution, and derived some

statistical properties of IMD where it was found that the moment of any order for IMD does

not exist for α ∈ (0, 1]. Also, the scale transformation was considered from the IMD named

as scale inverse Muth distribution with real data applicability [7]. Recently in 2022 Sonker et.

al.[8] estimated the parameter under simple stress-strength reliability and multi-component stress

strength. In 2018, Almarashi and Elgarhy [9] given a Muth generated (M-G) class of distribution

with the help of Muth distribution as a generator and T-X generated family [10]. Then Al-Babtain

et. al. introduced a Transmuted M-G class of distribution [11] and Almarashi et. al. introduced

a new truncated M-G family of distribution[12]. Some censoring schemes are also used by

some authors for different form of Muth distribution such as power Muth distribution under

progressive censoring scheme [13] and SMD under type-II censoring scheme [14].

Generally lifetime distributions are used under the life testing experiments, where we get the

data in ordered form by failure (or death) of testing units. Many of the times, it is very tough

task to record failure time of each event due to lack of time cost effectiveness and many more.

In all these cases we need a technique that helps in drawing inferences about population after

observing a part of testing units. For this, there are several censoring techniques are available
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for different cases and situations. There are many censoring methods available in statistics one

of them is type-I censoring scheme which is a simplest censoring technique and the form of

right censoring. Under the type-I censoring scheme, we select a time point To to terminate the

experiment and record the failure time of the event which fails before To, and after To it assumed

that all the remaining items are censored. A very impressive experimental example for real life

situation under type-I censoring was given in [15]. For the more details about type-I censoring

see [16] & [17].

In this article, classical as well as Bayesian method of estimation are used to estimate the parameter

of SMD under type-I censoring scheme. In classical method two most popular method MLE

and MPSE are used and Bayesian estimation is performed under squared error loss function

(SELF) and an approximation method is used to find the estimates because our posterior is not in

simplest form.

2. Classical methods of estimation

2.1. Maximum Likelihood Estimation

In the classical inference, one of the most popular estimation method was proposed by R. A.

Fisher in 1920 based on likelihood function called MLE. The main principle of this method is to

search for the value of parameter which maximizes the likelihood function. In this article we

have to estimate the parameter of SMD under type-I censoring scheme. In this case the likelihood

function was defined by Cohen(1965)[18] as:

L(θ|x) = C
n

∏
i=1

[ f (xi)]
δi [1 − F(To)]

(1−δi) (3)

where δi is an indicator function which indicates that an experimental unit is observed or

censored. If To is the pre-assigned time point to terminate the experiment then δi is defined for

the ith; i = 1, 2, 3, ..., n unit as:

δi =

{
1 i f xi < To

0 i f xi > To

Let us suppose that the failure time of m units are observed from n before time point To, then the

constant C will be defined as n!
(n−m)! , and the Likelihood function is:

L(θ|x) =
m

∏
i=1

[ f (xi)][1 − F(To)]
(n−m) (4)

Let x ∼ SMD(α, β) having pdf and cdf as:

F(x; α, β) = 1 − e

{
α
β x− 1

α

(
e

α
β

x
−1
)}

x > 0, α ∈ (0, 1] (5)

f (x; α, β) =


1
β (e

α
β x − α)e

{
α
β x− 1

α (e
α
β

x
−1)

}
x > 0, α ∈ (0, 1]

0 otherwise
(6)
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then the Likelihood function is expressed as:

L(α, β|x) = n!
(n − m)!

m

∏
i=1

 1
β
(e(

α
β xi) − α)e

{
α
β xi− 1

α (e
( α

β
xi)−1)

}1 −

1 − e

{
α
β xi− 1

α (e
( α

β
xi)−1)

}
n−m

L(α, β/x) = C
1

βm

m

∏
i=1

(e( α
β xi) − α)e

{
α
β xi− 1

α (e
( α

β
xi)−1)

}e

{
α
β xi− 1

α (e
( α

β
xi)−1)

}n−m

(7)

where C = n!
(n−m)! . after taking the Log of both side of eq.[7] the log-likelihood defined as

log(L(α, β/x)) =log(C)− mlog(β) +
m

∑
i=1

log
(

e(
α
β xi) − α

)
+

m

∑
i=1

(
α

β
xi −

1
α
(e(

α
β xi) − 1)

)
(8)

+ (n − m)

(
α

β
To −

1
α
(e(

α
β To) − 1)

)
To obtain the MLE for α and β we have to search the value of α and β which maximizes the eq.[8].

now, differentiate the eq.[8] w.r.t. α and β and equating to 0 we get,

∂
∂α log(L(α, β/x)) = 0

m

∑
i=1

xie
α
β xi − β

β(e
α
β xi − α)

+
m

∑
i=1

{
xi
β
+

e
α
β xi − 1)

α2 − xi e
α
β xi

αβ

}
+ (n − m)

m

∑
i=1

{
To

β
+

e
α
β To − 1)

α2 − xi e
α
β To

αβ

}
= 0

(9)

and, ∂
∂β log(L(α, β/x)) = 0

−m
β
−

m

∑
i=1

(
αxie

α
β xi
)

(
e

α
β xi − α

) +
1
β2

m

∑
i=1

xi

(
e

α
β xi − α

)
+

To(n − m)

β2

m

∑
i=1

(
e

α
β To − α

)
= 0 (10)

now solve these two non-linear eq.[9] and eq.[10] to get the value of αand β with satisfying

the condition (
∂ log(L(α, β|x))

∂α∂β

)
αml , βml

< 0 (11)

As we can see that eq.[9] and eq.[10] are the complex function for α and β i.e. we can not solve

both the equations analytically. To obtain the value of α and β we used Newton Raphson iteration

method and get the the value of α and β as α̂ml and β̂ml which satisfying the condition eq.[11]

and maximize the eq.[8].

2.2. Maximum Product of Spacing Estimation

This (MPSE) method is an another method of estimation alternative to MLE which is originally

proposed by Cheng and Amin in 1983 [19] and Ranneby in 1984 [20]. It provides the consistent

and asymptotically unbiased estimate. This method cover the drawback of MLE where MLE fails

to estimate three or more parameter distribution like gamma, weibull and log-normal [21] and

also the major limitation of MLE is that it does not work satisfactorily for Heavy tailed continuous

distribution with unknown location and scale parameter [22]. The estimators obtained by MPSE
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method possess most of the large sample properties like sufficiency, consistency and asymptotic

efficiency, possessed by MLE under more general condition [[23] & [21]] and MPSE holds the

invariance property same as the MLE, shown by Coolen and Newby [24]. The consistency of

MPS estimator have been discussed in detailed in [25]. MPS method is mostly similar as MLE

where in case of MLE we use the likelihood function and search the value of parameter which

maximises the likelihood function but in the case of MPSE method we tried to find the estimated

value of parameter which maximises the product of spacing function based on cdf of the target

density function.

Let x1, x2, ..., xn, be an ordered random sample of size n from the univariate distribution. For the

MPSE, the general condition is that the density function is considered to be strictly positive in an

interval (a,b) and zero elsewhere (a = −∞ and b = ∞). In this article we have the cdf F(x) and

pdf f(x) defined in eq.[5] and [6] respectively with supporting value x > 0; 0 < α ≤ 1 and β > 0.

By this F(x) = 0 and f (x) = 0 for x < 0, and F(x) = 1 and f (x) = 0 for x > ∞. The ith spacing

function is defined as Di = F(xi)− F(xi−1) and the product of spacing function is S = ∏n+1
i=1 Di.

The average of this is measured by geometric mean of spacing denoted by ’G’ and defined as

G = S
1

n+1

If the sample is very likely or most probable, it is assumed that they gives the magnitude of

spacing more or less equal. Hence, MPSE will be that value of parameter which maximizes the S

or G. This study considered under type-I censoring so, the sample values belong in (0,∞) can

be divided in no. of parts of interval like [0, x1], (x1, x2], (x2, x3]...(xk−1, xk], (xk, To], (To, ∞).

MPSE method described in detail for the type-I censoring case in [14]. According to [14] we may

write the product of spacing function for chosen distribution as :

S (α, β|x) ∝

 f (To) · ∏m
i=1 Di ·

{
∏n+1

j=1 Dm+j

}
; i f |To − xm| < ϵ

Dξ · {∏m
i=1 Di} ·

{
∏n+1

j=1 Dm+j

}
; i f otherwise

(12)

where, Di = F(xi)− F(xi−1), Dm+j = (1 − F(To))/(n − m), Dξ = F(To)− F(xm) and F(x), f (x)

given in eq.(5), (6) respectively. Thus the MPSE can be obtained by maximizing S (α, β|x) =

log(S (α, β|x)). Now differentiating log of eq.(12) w.r.t. α and β we get,

∂

∂α
S(α, β|x) ∝


f ′(To)
f (To)

+ ∑m
i=1

F′(xi)−F′(xi−1)
F(xi)−F(xi−1)

− (n−m)F′(To)
1−F(To)

i f |To − xm| < ϵ

F′(To)−F′(xm)
F(To)−F(xm)

+ ∑m
i=1

F′(xi)−F′(xi−1)
F(xi)−F(xi−1)

− (n−m)F′(To)
1−F(To)

otherwise

(13)

where,
∂

∂α
f ′(x) =

A1

α2β

[
(α − e

α
β x
)
{

αx(e
α
β x − α)− βe

α
β x

+ β
}
+ α2(xe

α
β x − β)

]
∂

∂α
F′(x) =

A1

α2β

[{
αx(e

α
β x − α)− βe

α
β x

+ β
}]

and A1 = e(
α
β x− 1

α (e
α
β

x
−1))

And the partial derivative of log of eq.[12] w.r.t. β will be similar as eq.[13]

∂

∂β
S(α, β|x) ∝


f ′(To)
f (To)

+ ∑m
i=1

F′(xi)−F′(xi−1)
F(xi)−F(xi−1)

− (n−m)F′(To)
1−F(To)

i f |To − xm| < ϵ

F′(To)−F′(xm)
F(To)−F(xm)

+ ∑m
i=1

F′(xi)−F′(xi−1)
F(xi)−F(xi−1)

− (n−m)F′(To)
1−F(To)

o.w.

(14)
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where,
∂

∂β
f ′(x) = − A1

β2

[
β(e

α
β x − α) + αxe

α
β x

+ x(e
α
β x − α)2

]
∂

∂β
F′(x) = − A1

β2

(
e

α
β x − α

)
Now equating eq.[13], [14] to zero and solve it for α and β, we get the estimated value of

α and β which maximizes the eq.[12]. But the analytical solution is not possible because those

equations are not in closed form. Hence we use Newton Raphson method to solve it numerically

and get estimated value as α̂mp and β̂mp.

3. Asymptotic Confidence Interval

In this section, we define the interval estimation for αand β . Since the exact distribution of

MLE and MPSE is not easy to find because of the maximum likelihood and product of spacing

function is not in the explicit form. Several authors show that the MPSE method is asymptotically

equivalent to the MLE see [[19], [26], [27], [28]]. So, by using the large sample theory we may

propose the Asymptotic Confidence Interval based on MLE and MPSE function and we may

write the asymptotic distribution of both kind of estimator is:(
θ̂ − θ

)
≡ N

(
0, I−1(θ̂)); (15)

where,

θ̂ is the estimate of parameter

θ is the true value of parameter

I−1(θ̂) is the inverse of Fisher information matrix

The 100(1 − α∗)%confidence interval is defined as:

θ̂ ± Zα∗/2

√
Var(θ̂); (16)

where Var(θ̂) = −E
(

∂2(L)
∂x2

)−1

θ=θ̂
is the digonal element of the inverse of Information matrix I−1(θ̂)

In our case the information matrix is defined as:

I(α̂; β̂) =

[
I1,1 I1,2

I2,1 I2,2

]

Here I1,1 = ∂2

∂α2 , I2,2 = ∂2

∂β2 and I1,2 = I2,1 = ∂2

∂α∂β are the second order derivative of log-likelihood

function eq.[8] and the log of the product spacing function eq.[12] . So, for α the 100(1 − α∗)%

confidence interval is defined as:

α̂ ± Zα∗/2

√
Var(α̂); where α̂ is α̂ml and α̂mp (17)

and for β

β̂ ± Zα∗/2

√
Var(β̂); where β̂ is β̂ml and β̂mp (18)
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4. Bayes estimates of α and β under squared error loss function

In this section we considered Bayesian approach to estimate the parameter α and β under type-I

censoring scheme. In the Bayesian method it is assumed that our parameter are random in nature

instead of a fixed quantity. As the random nature of the parameter, we can associate it with

distribution function such as called prior distribution. Let us consider that gamma prior for scale

parameter β and beta prior for shape parameter α, as informative prior, therefore

π(α) ∝ αa−1 · (1 − α)b−1 (19)

and

π(β) ∝ βc−1 · e−dβ (20)

where, a,b and c,d are hyper parameters for beta prior and gamma prior respectively. Thus the

joint prior of α and β is

π(α, β) ∝ αa−1 · (1 − α)b−1 · βc−1 · e−dβ (21)

Now, according to the Bayes rule the formula for joint posterior of α and β is

Π(α, β|x) = π(α, β)L(α, β|x)∫
π(α, β)L(α, β|x)dα dβ

(22)

where, L(α, β|x) is likelihood given in eq.[7]. So, combining the eq.[7] and [21] the posterior for α

and β can be written as:

Π(α, β|x) ∝ C−1
1 · β(c−m−1) · α(a−1) · (1− α)(b−1) · e(n−m)( α

β To− 1
α (e

α
β

To−1))−dβ · e∑( α
β xi− 1

α (e
α
β

xi−1)) (23)

where, C1 =
∫

β(c−m−1) · α(a−1) · (1 − α)(b−1) · e(n−m)( α
β To− 1

α (e
α
β

To−1))−dβ · e∑( α
β xi− 1

α (e
α
β

xi−1)) dα dβ

In the case of Bayesian techniques, loss function play very important role. In this article, to

evaluate the Bayes estimator of α and β we use a symmetric loss function, squared error loss

function (SELF) which gives the equal weight for under and over estimation problem. The general

form of SELF can be expressed as:

L(θ̂, θ) = λ(θ̂ − θ)2; λ > 0 (24)

where θ̂ is the estimate of parameter θ. the Bayes estimator of parameter under SELF is posterior

mean i.e. posterior expectation Eθ [θ|x]. In our case it is found that the posterior mean for both

parameter is the ratio of two mathematically non-tractable integrals; so we use the Markov Chain

Monte Carlo (MCMC) with Metropolis-Hasting (MH) algorithm to obtain Bayes estimate. MH

algorithm is generalization form of basic algorithm originated by Metropolis and Ulman(1949)

[29], then Metropolis et. al. (1953) used first time in statistics study the equation of a state of

a two-dimensional rigid sphere system. In 1970, W. K. Hasting gives the original method by

using arbitrary proposal distribution and it popularized by name MH algorithm. For more detail

see[[30], [31] & [32]]. By using this technique we can generate the sample from posterior eq.[23]

and evaluate the Bayes estimate. The following iterative steps are involved in MH algorithm:

1. Set an initial guess value θ0.
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2. By using previous point Generate the next value of θ as θ j from the proposal density p∗(θ j|θ j−1).

Here we take normal distribution as the proposal density for parameter.

3. Then we generate u U(0, 1)and calculate the ratio:

r =
p(θ j|x

�

) · p∗(θ j−1|θ j)

p(θ j−1|x
�

) · p∗(θ j|θ j−1)

4. Set

θ j =

 θ j i f u ≤ p(θ j |x
�

)·p∗(θ j−1|θ j)

p(θ j−1|x
�

)·p∗(θ j |θ j−1)

θ j−1 otherwise

5. Repeat step (2-4) for j=1,2,3,...,M and obtain θ1,θ2,...,θM

6. To find Bayes estimate under SELF, we take

Ep
(
θ|x
�

)
=

(
1

M − M0

M

∑
M0+1

θ

)

where M0 is burn-in period of Markove chain.

5. Highest Posterior density interval

Nowadays, in the field of Bayesian inference is considered that the parameter of interest behaves

like a random variable, then what is probability that the parameter (say θ) lies within a specified

interval. Edwards et al. (1963) [33] suggested a method to calculate this interval and named

it credible interval. By using this many of the statistician summarizes the marginal posterior

density by 100(1 − α∗)% posterior credible intervals for the parameters. These intervals can be

easily calculated by analytically or MCMC simulation technique. The shortest interval among all

of the Bayesian credible intervals is called highest posterior density (HPD) interval. The HPD

intervals for parameter can be obtained by using method explained by Chen and Shao (1999)[34]

on the basis of MCMC sample from posterior density in Eq.[23]. There are also mentioned that

when a marginal distribution is not symmetric, a HPD interval is more desirable. Box and Tiao

(1973)[35] was already discused that the HPD interval has two main properties as: (i) the density

for the points which are lie within the interval is more than that for the points outside the interval,

and (ii) for a given probability say, (1 -α∗), the interval is of the shortest length. If we have the

posterior as p(θ|x) then the credible interval for θ is defined as:

(θ[(α/2)M], θ[1−(α/2)M])

and the HPD interval is defined as:

(θj∗ , θj∗+[1−(α/2)])

where, j∗ is chosen by which length lj∗ = min(θj+[1−(α/2)] − θj) for 1 ≤ j ≤ M − [(1 − α)M]

6. Simulation Study

Under this section, we study about the behavior of the estimated value of parameters using the

simulation study and compare the performances of MLE, MPSE and Bayes estimator on the basis
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of their mean squared error (MSE) values. To compute the value of MSE, we use the formula

as; MSE(θ)= 1
N ∑N

1 (θ − θ̂i)
2, where N is the number of simulated random sample (we choose

N=10000), θ is the true value of parameter and θ̂i is the estimated value of the parameter for ith

simulated random sample. all the computation was done by R-software like sample generation

from the considered distribution and finding the estimated value. To generate the random sample,

we considered the following steps:

Step 1. Provide some selected values of the parameters, α and β, and sample size n.

Step 2. Then generate a random sample from a standard uniform distribution U(0, 1), which also

be size n denoted as ui; i = 1, 2, 3..., n

Step 3. Now by using the quantile function of SMD given in [4], obtain uth quantile (random

sample) from the SMD xi.

Step 4. Repeat steps 2 and 3, for each i = 1, 2, ... , n we get a random sample of size n from the

SMD.

In step 3 the Lambert-W function W−1(.) can be computed using R-command lambertWm1()

from ‘lamW ’ package, see Adler [2]. In the simulation study, we choose the different combi-

nation of parameter values as (α = 0.3, β = 0.5), (α = 0.5, β = 0.5), (α = 0.7, β = 0.5),

(α = 0.3, β = 2.5), (α = 0.5, β = 2.5), (α = 0.7, β = 2.5), and observed the behavior of MSE

by varying sample size. For this we choose the different sample sizes as n = (30, 50, 70). In

case of Bayesian estimate we need the value of hyper parameters for which we take prior means

equal to true value of parameter and the variances can be chosen as, for small value of parameter

(α=(0.3,0.5) & β=0.5) we take small variance for gamma and beta prior and for the large value of

parameter (α=0.7 & β=2.5) we take some large variance for the both prior. An another issue in

this simulation study is the choice of To. We take To = (0.5, 0.9) for β=0.5 with different value of

α, and To = (3, 5) for β=2.5 with different value of α. On observing the simulation table [1-6] we

found that:

In general, as sample size increases the MSE of all estimators decreases. This shows that the

estimators are consistent. And this decreasing nature of MSE is also found with increasing To.

The average length of asymptotic confidence interval as well as HPD interval decreases as sample

size increases.

MSE of Bayes estimates is least in comparison of MLE and MPSE both, and the MSE of MPSE is

less that MLE.

Width of the HPD interval is smaller in comparison of width of asymptotic confidence interval

and the width of asymptotic confidence interval for MPSE is less than the width for asymptotic

confidence interval MLE.
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Table 1: Estimates of the parameters, MSE, CI and HPD interval for α=0.3, β=0.5

MLE MPS Bayes
n To Est. MSE CI Est. MSE CI Est. MSE HPDI

Length Length Length

α = 0.3

30
0.5 0.34704 0.07774

0.72461, 0.06792
0.65669

0.33273 0.06535
0.72461, 0.06792

0.65669
0.49504 0.04156

0.73352, 0.25224
0.48128

0.9 0.32891 0.04485
0.76512, 0.09032

0.67480
0.31103 0.03862

0.75007, 0.08840
0.66167

0.46616 0.03210
0.68793, 0.24349

0.44444

50
0.5 0.32582 0.05735

0.72646, 0.08661
0.63985

0.31781 0.05174
0.71290, 0.09112

0.62179
0.47571 0.03562

0.69921, 0.24710
0.45211

0.9 0.31201 0.03038
0.72890, 0.10531

0.62359
0.30214 0.02796

0.71555, 0.10427
0.61129

0.43824 0.02370
0.64006, 0.23556

0.40450

70
0.5 0.31557 0.04712

0.71985, 0.09472
0.62513

0.31017 0.04380
0.70609, 0.09875

0.60734
0.46208 0.03090

0.67481, 0.24393
0.43088

0.9 0.29997 0.02274
0.68941, 0.11159

0.57782
0.29338 0.02154

0.67894, 0.11067
0.56827

0.41580 0.01768
0.60281, 0.22852

0.37429

β = 0.5

30
0.5 0.51621 0.01738

0.80992, 0.36543
0.44448

0.50410 0.01401
0.76774, 0.36775

0.39998
0.50820 0.01338

0.69941, 0.35175
0.34765

0.9 0.50952 0.00725
0.67859, 0.38679

0.29180
0.50958 0.00640

0.67060, 0.39217
0.27843

0.52538 0.00699
0.67103, 0.39446

0.27657

50
0.5 0.51008 0.01114

0.73543, 0.37591
0.35951

0.50452 0.00943
0.93305, 0.38101

0.55204
0.49198 0.00676

0.63733, 0.36875
0.26858

0.9 0.50562 0.00415
0.63644, 0.40359

0.23284
0.50584 0.00366

0.63370, 0.40661
0.22708

0.51580 0.00388
0.62735, 0.41243

0.21492

70
0.5 0.50932 0.00790

0.70286, 0.38420
0.31866

0.50536 0.00674
0.72334, 0.38939

0.33395
0.48843 0.00462

0.61332, 0.38087
0.23245

0.9 0.50449 0.00286
0.61525, 0.41471

0.20054
0.50428 0.00271

0.61537, 0.41601
0.19936

0.51197 0.00259
0.60662, 0.42325

0.18337

Table 2: Estimates of the parameters, MSE, CI and HPD interval for α=0.5, β=0.5

MLE MPS Bayes
n To Est. MSE CI Est. MSE CI Est. MSE HPDI

Length Length Length

α = 0.5

30
0.5 0.48074 0.07860

0.83626, 0.10341
0.73285

0.45601 0.06665
0.82580, 0.11771

0.70808
0.52302 0.00395

0.76440, 0.27504
0.48936

0.9 0.50786 0.04226
0.85294, 0.17571

0.67723
0.47783 0.03675

0.83123, 0.17776
0.65346

0.52332 0.00517
0.74687, 0.29615

0.45072

50
0.5 0.49154 0.05688

0.84875, 0.15769
0.69106

0.47462 0.05084
0.83208, 0.16627

0.66582
0.52207 0.00485

0.75113, 0.28546
0.46566

0.9 0.50121 0.02726
0.79694, 0.23084

0.56610
0.48342 0.02516

0.77794, 0.22849
0.54944

0.51618 0.00582
0.71989, 0.30895

0.41094

70
0.9 0.48544 0.04791

0.83548, 0.18795
0.64754

0.47320 0.04426
0.81647, 0.19507

0.62140
0.51835 0.00532

0.73660, 0.29214
0.44445

0.9 0.50248 0.01965
0.75472, 0.26570

0.48902
0.48975 0.01847

0.73761, 0.26445
0.47316

0.51345 0.00587
0.70190, 0.32155

0.38035

β = 0.5

30
0.5 0.53008 0.01885

0.87626, 0.36571
0.51055

0.51941 0.01454
0.88980, 0.36510

0.52470
0.53692 0.01431

0.74564, 0.36762
0.37801

0.9 0.50709 0.00447
0.65383, 0.39495

0.25888
0.50638 0.00415

0.65251, 0.39464
0.25787

0.51898 0.00463
0.65208, 0.39763

0.25445

50
0.5 0.52053 0.01047

0.75021, 0.38034
0.36987

0.51528 0.00892
0.73297, 0.38130

0.35167
0.52322 0.00794

0.67951, 0.39025
0.28926

0.9 0.50307 0.00248
0.61212, 0.41396

0.19816
0.50265 0.00238

0.71388, 0.41340
0.30048

0.51130 0.00250
0.61151, 0.41741

0.19410

70
0.5 0.51661 0.00723

0.70762, 0.39148
0.31614

0.51257 0.00643
1.18937, 0.39147

0.79790
0.51562 0.00486

0.64536, 0.40269
0.24267

0.9 0.50260 0.00179
0.59260, 0.42653

0.16608
0.50227 0.00173

0.59251, 0.42607
0.16643

0.50890 0.00179
0.59275, 0.42927

0.16348
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Table 3: Estimate of the parameters, MSE, CI and HPD interval for α=0.7, β=0.5

MLE MPS Bayes
n To Est. MSE CI Est. MSE CI Est. MSE CI

Length Length Length

α = 0.7

30
0.5 0.63980 0.06248

0.92610, 0.14204
0.78406

0.59994 0.05700
0.91185, 0.17602

0.73583
0.55456 0.02370

0.79820, 0.30191
0.49629

0.9 0.50786 0.04226
0.91664, 0.26414

0.65250
0.64827 0.02526

0.89101, 0.28691
0.60410

0.58975 0.01594
0.80713, 0.36497

0.44216

50
0.5 0.68032 0.03730

0.92746, 0.24556
0.68190

0.65050 0.03410
0.90945, 0.27204

0.63741
0.57610 0.01872

0.80553, 0.33467
0.47086

0.9 0.70544 0.01720
0.89096, 0.37177

0.51919
0.67673 0.01564

0.87044, 0.38060
0.48984

0.61656 0.01144
0.80940, 0.41673

0.39268

70
0.9 0.69356 0.02819

0.91520, 0.31706
0.59813

0.67052 0.02584
0.89762, 0.33618

0.56143
0.59264 0.01592

0.80882, 0.36402
0.44481

0.9 0.70790 0.01276
0.87322, 0.43324

0.43999
0.68693 0.01162

0.85563, 0.43526
0.42037

0.63296 0.00900
0.80789, 0.45184

0.35605

β = 0.5

30
0.5 0.53196 0.01545

0.93145, 0.37106
0.56039

0.52256 0.01226
0.80758, 0.36741

0.44017
0.56326 0.01757

0.78578, 0.38201
0.40377

0.9 0.50076 0.00278
0.61889, 0.40570

0.21319
0.49952 0.00257

0.61928, 0.40339
0.21588

0.50111 0.00277
0.61721, 0.39407

0.22314

50
0.5 0.51477 0.00624

0.69256, 0.39453
0.29802

0.51045 0.00563
0.79455, 0.39222

0.40234
0.54068 0.00797

0.70099, 0.40394
0.29705

0.9 0.50108 0.00166
0.58866, 0.42670

0.16196
0.49997 0.00158

0.60593, 0.42482
0.18110

0.49808 0.00166
0.58369, 0.41675

0.16695

70
0.5 0.51100 0.00391

0.64484, 0.41075
0.23409

0.50826 0.00365
0.64154, 0.40867

0.23287
0.53239 0.00491

0.66268, 0.41861
0.24407

0.9 0.50143 0.00115
0.57417, 0.43798

0.13619
0.50052 0.00110

0.57392, 0.43666
0.13726

0.49782 0.00109
0.56874, 0.42956

0.13918

Table 4: Estimates of the parameters, MSE, CI and HPD interval for α=0.3, β=2.5

MLE MPS Bayes
n To Est. MSE CI Est. MSE CI Est. MSE HPDI

Length Length Length

α = 0.3

30
3 0.33908 0.06482

0.74655, 0.07368
0.67287

0.32510 0.05521
0.73790, 0.07829

0.65961
0.48950 0.04125

0.79820, 0.30191
0.49629

5 0.33122 0.04056
0.76794, 0.09554

0.67240
0.31172 0.03484

0.75338, 0.09133
0.66206

0.46244 0.03133
0.67978, 0.24478

0.43500

50
3 0.32277 0.04611

0.74687, 0.09224
0.65463

0.31534 0.04189
0.73531, 0.09535

0.63996
0.46766 0.03350

0.68422, 0.24752
0.43670

5 0.31184 0.02651
0.71418, 0.10936

0.60482
0.30053 0.02438

0.70142, 0.10662
0.59480

0.43199 0.02197
0.62896, 0.23485

0.39411

70
3 0.31052 0.03601

0.73439, 0.09710
0.63729

0.30563 0.03362
0.72240, 0.10037

0.62202
0.45009 0.02728

0.65550, 0.24180
0.41370

5 0.30539 0.01948
0.66915, 0.11946

0.54969
0.29735 0.01840

0.65943, 0.11694
0.54248

0.41117 0.01666
0.59270, 0.22909

0.36360

β = 2.5

30
3 2.56213 0.33418

3.79115, 1.82942
1.96174

2.53662 0.25619
3.64655, 1.85827

1.78828
2.48647 0.13565

3.18897, 1.86317
1.32580

5 2.52823 0.18019
3.34280, 1.92556

1.41723
2.53977 0.14785

3.33731, 1.94855
1.38876

2.58703 0.12178
3.19483, 2.02135

1.17349

50
3 2.53769 0.21201

3.47349, 1.90637
1.56711

2.52595 0.16525
4.80067, 1.93116

2.86951
2.47033 0.10858

3.04908, 1.94862
1.10045

5 2.52399 0.09420
3.15481, 2.02575

1.12907
2.52977 0.08328

3.15171, 2.03905
1.11266

2.57688 0.07407
3.07648, 2.10567

0.97081

70
3 2.54392 0.14758

3.34860, 1.96835
1.38025

2.53228 0.12293
3.41558, 1.98083

1.43475
2.47440 0.07359

2.98561, 2.01011
0.97550

5 2.51170 0.07450
3.04064, 2.07754

0.96310
2.51796 0.06407

3.04172, 2.08817
0.95355

2.55707 0.06053
2.99013, 2.14544

0.84470

Agni Saroj, Prashant K. Sonker, Shalini Kumari, Rakesh Ranjan and Mukesh Kumar 
PARAMETER ESTIMATION OF SCALE MUTH DISTRIBUTION(SMD) UNDER 
TYPE-1 CENSORING USING CLASSICAL AND BAYESIAN APPROACHES

RT&A, No 4 (76) 
Volume 18, December 2023 

439



Table 5: Estimates of the parameters, MSE, CI and HPD interval for α=0.5, β=2.5

MLE MPS Bayes
n To Est. MSE CI Est. MSE CI Est. MSE HPDI

Length Length Length

α = 0.5

30
3 0.49063 0.06249

0.86146, 0.12443
0.73703

0.46567 0.05350
0.84526, 0.13707

0.70819
0.52890 0.00457

0.76369, 0.28798
0.47572

5 0.51364 0.03845
0.84534, 0.18898

0.65635
0.48145 0.03331

0.82155, 0.18757
0.63398

0.52551 0.00554
0.74427, 0.30314

0.44113

50
3 0.49569 0.04508

0.84606 , 0.18054
0.66552

0.47960 0.04058
0.82739, 0.18762

0.63978
0.52462 0.00526

0.74473, 0.29795
0.44678

5 0.50622 0.02396
0.78083, 0.24494

0.53589
0.48643 0.02201

0.75979, 0.24123
0.51856

0.51811 0.00584
0.71663, 0.31660

0.40003

70
3 0.49200 0.03487

0.82882, 0.21163
0.61719

0.48054 0.03235
0.81042, 0.21597

0.59444
0.51908 0.00542

0.72744, 0.30437
0.42307

5 0.50179 0.01767
0.73912, 0.27530

0.46382
0.48773 0.01671

0.72061, 0.27285
0.44775

0.51249 0.00587
0.69522, 0.32677

0.36845

β = 2.5

30
3 2.60200 0.27134

3.90702, 1.86206
2.04496

2.56793 0.22632
4.41924, 1.86555

2.55369
2.56169 0.11156

3.26219, 1.93257
1.32962

5 2.52288 0.10553
3.22612, 1.97815

1.24797
2.52547 0.09680

3.23023, 1.97960
1.25063

2.55712 0.07207
3.11970, 2.02915

1.09055

50
3 2.56577 0.14969

3.42124, 1.96766
1.45359

2.54752 0.13165
3.35205, 1.97103

1.38102
2.54999 0.07483

3.12237, 2.03016
1.09221

5 2.51464 0.05957
3.03958, 2.08200

0.95758
2.51666 0.05730

3.04707, 2.08138
0.96569

2.54589 0.04696
2.99657, 2.11663

0.87995

70
3 2.55300 0.09713

3.25062, 2.02987
1.22075

2.53941 0.08819
5.83190, 2.02799

3.80391
2.54610 0.05616

3.04397, 2.08901
0.95496

5 2.51102 0.04241
2.94791, 2.13973

0.80818
2.51263 0.04122

2.95148, 2.14001
0.81147

2.53840 0.03553
2.92507, 2.16716

0.75791

Table 6: Estimates of the parameters, MSE, CI and HPD interval for α=0.7, β=2.5

MLE MPS Bayes
n To Est. MSE CI Est. MSE CI Est. MSE HPDI

Length Length Length

α = 0.7

30
3 0.66784 0.04386

0.93602, 0.18502
0.75101

0.62763 0.04023
0.91603, 0.21852

0.69750
0.57242 0.01912

0.80563, 0.32935
0.47628

5 0.69938 0.02430
0.91249, 0.27819

0.63430
0.65117 0.02269

0.88475, 0.29866
0.58609

0.59734 0.01431
0.80928, 0.37808

0.43120

50
3 0.68838 0.02839

0.91716, 0.29125
0.62591

0.66076 0.02607
0.89869, 0.31178

0.58691
0.59256 0.01550

0.80859, 0.36665
0.44193

5 0.70956 0.01542
0.88856, 0.38549

0.50307
0.67790 0.01394

0.86624, 0.39026
0.47598

0.62341 0.01003
0.81088, 0.42952

0.38137

70
3 0.69760 0.01970

0.89736, 0.36228
0.53508

0.67665 0.01817
0.88071, 0.37265

0.50806
0.60782 0.01306

0.80874, 0.39669
0.41204

5 0.71161 0.01148
0.87161, 0.44849

0.42313
0.68855 0.01042

0.85369, 0.44483
0.40886

0.63988 0.00781
0.80919, 0.46494

0.34425

β = 2.5

30
3 2.55373 0.14866

3.46516, 1.92668
1.53848

2.52432 0.13224
3.39144, 1.90963

1.48181
2.57792 0.08864

3.25633, 1.96686
1.28947

5 2.49284 0.06864
3.06494, 2.02924

1.03570
2.49091 0.06396

3.07687, 2.01978
1.05709

2.47366 0.04880
2.97784, 1.99879

0.97905

50
3 2.53912 0.07923

3.14974, 2.06092
1.08882

2.52252 0.07473
3.13833, 2.04526

1.09306
2.57224 0.06356

3.11481, 2.07595
1.03886

5 2.50142 0.04142
2.92997, 2.13616

0.79381
2.49971 0.03929

2.93508, 2.12985
0.80523

2.47471 0.03182
2.86599, 2.09898

0.76701

70
3 2.52649 0.05159

3.00072, 2.13151
0.86921

2.51528 0.04996
2.99912, 2.11911

0.88001
2.56087 0.04968

3.02008, 2.13653
0.88355

5 2.50640 0.02923
2.86355, 2.19413

0.66942
2.50501 0.02801

2.86692, 2.18957
0.67735

2.48004 0.02321
2.81090, 2.15919

0.65172
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7. Real Data Analysis

In this section, we use a real data set to illustrate the applicability of the proposed work in real life

situation. The data-set recently considered in [4], which is taken from the website of the Bureau

of Meteorology of the Australian Government (www.bom.gove.au). It represent the monthely

rainfall (in mm) between the period of January 2000 to February 2007 in the rain guege station of

Carrol, located in the State of New South Wales on the east coast of Australia. The data are given

as:

Table 7: Carrol Data-set (n=83)

12 22.7 75.5 28.6 65.8 39.4 33.1 84 41.6 62.3 52.5 13.9 15.4 31.9
32.5 37.7 9.5 49.9 31.8 32.2 50.2 55.8 20.4 5.9 10.1 44.5 19.7 6.4
29.2 42.5 19.4 23.8 55.2 7.7 0.8 6.7 4.8 73.8 5.1 7.6 25.7 50.7
59.7 57.2 29.7 32 24.5 71.6 15 17.7 8.2 23.8 46.3 36.5 55.2 37.2
33.9 53.9 51.6 17.3 85.7 6.6 4.7 1.8 98.7 62.8 59 76.1 67.9 73.7
27.2 39.5 6.9 14 3 41.6 49.5 11.2 17.9 12.7 0.8 21.1 24.5

To ensure that this data-set is appropriate for the illustration of proposed work, first we draw

the Total Time on Test (TTT) plot Fig.[1(a)], which shows that the Hazard rate of considered

data-set same as the considered distribution (increasing Hazard rate). The Kolmogorov-Smirnov

(K-S) test has been used to verify that this data fitted or not on the considered distribution, and

found that the the value of K-S statistic is 0.057005 and p-value is 0.9502 which were shows that

the considered data fitted on SMD. Graphical representation of K-S test is shown in Fig[1(b)].

(a) TTT Plot Carrol Data-set (b) empirical cdf and fitted cdf plot

Figure 1: (a) plot shows the increasing hazard rate and (b) show fitted cdf of real data on SMD

In [4] it is already shows that SMD gives best fit for this data-set in comparison of some other

lifetime distribution (Weibull, Gamma, log-Normal and exponential distribution), on basis of

their AIC and BIC values shown in table[8]. The MLE, MPSE and Bayes estimate of the parameter

for this data-set in case of type-1 censoring given in table[9].
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Table 8: MLE, AIC and BIC values for the Carrol Data-set

Model MLE AIC BIC

SMD (α, β) α̂ = 0.4608, β̂ = 33.9049 740.3600 741.5220

Weibull (a, b) â = 1.3665, b̂ = 36.9120 744.4891 745.6511

Gamma(a, b) â = 1.5160, b̂ = 22.3838 747.3087 748.4706

Exponential (λ) λ̂ = 0.0295 753.0520 753.6330

Log-Normal (µ, σ) µ̂ = 3.1597, σ̂ = 1.0253 767.1983 768.3602

(a) traceplot and marginal density plot for α

(b) traceplot and marginal density plot for β

Figure 2: Shows that MCMC traceplot and marginal density plot with histogram
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Table 9: Estimate of parameter for Carrol Data-set

MLE MPSE Bayes
To m est CI est CI est HPD

25 36
α

β

0.4079

33.4852

0.8835, 0.0589
0.8246

51.7903, 21.6500
30.1403

0.3912

33.2816

0.8807, 0.0529
0.8278

51.4880, 21.5130
29.9749

0.4328

33.4929

0.7031, 0.1414
0.5617

37.3285, 29.2367
8.0918

50 60
α

β

0.3060

36.3427

0.7129, 0.0726
0.6403

45.1023, 29.2843
15.8180

0.2985

36.2114

0.7081, 0.0694
0.6387

44.9145, 29.1947
15.7197

0.3565

36.4217

0.6010, 0.1126
0.4884

40.0513, 32.6227
7.4286

75 78
α

β

0.4266

34.1870

0.6486 , 0.2307
0.4179

39.8435, 29.3336
10.5099

0.4152

34.2052

0.6382 , 0.2223
0.4160

39.8796, 29.3382
10.5415

0.4254

34.3796

0.6131, 0.2169
0.3962

37.6232, 31.0938
6.5295

8. Conclusion

In this article, the considered model SMD is another form of Muth distribution by adding a

scale parameter. To estimate the parameters of this distribution, we used classical and Bayesian

approach under type-1 censoring scheme. In classical approach MLE and MPSE are obtain

for time censored data. For the Bayes estimate of the parameters, beta and gamma prior are

considered for shape parameter α and scale parameter β respectively. The simulation study was

also done by using Monte Carlo method of simulation. From the simulation study it is found that

the Bayes estimate perform better than classical method (MLE and MPSE) on the basis of their

MSE and length of interval estimation.
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