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Abstract 

Handling of high-dimensional data is an important issue in robust literature. For analyzing data, 

location measure plays a vital role in almost all statistical methods. The location parameter of a 

distribution is used to find the central value. Many computational methods are used to find the measure 

of location for analyzing data. The data depth procedure is one approach to finding the true 

representative of the entire data and it is one of the key concepts in multivariate data analysis. Data 

depth is a term used to describe how deep a particular point is inside the broad multivariate data cloud. 

Instead of the typical smallest to biggest rank, the sample points can be ordered from the center outward. 

Mahalanobis depth is one of the popular depth procedures. The traditional approach used to find 

Mahalanobis depth is based on Mahalanobis distance, it is based on the classical sample mean vector 

and covariance matrix. So the conventional Mahalanobis depth is sensitive to outliers and may fail 

when the data is contaminated. To solve this problem, the Minimum Covariance Determinant (MCD) 

estimators are used instead of classical estimators. However, the MCD estimators cannot be calculated 

in high dimensional data sets, in which the variable number is higher than the subset size. To calculate 

Mahalanobis depth values in high dimensional data, propose a new depth function namely the Robust 

Regularized Mahalanobis Depth (RRMD), which can be calculated in high dimensional data sets. The 

proposed procedure is based on Minimum Regularized Covariance Determinants (MRCD) estimators, 

this study shows that the proposed depth function is successful in finding the deepest point in high 

dimensional data sets with real and simulation studies up to a certain level of contamination. 

 

Keywords: mahalanobis depth, outliers, robust distance, minimum covariance 

determinant estimator, minimum regularized covariance determinant estimators 

 

 

I. Introduction 
 

Data depth is a key concept in the nonparametric method of multidimensional analysis of data. The 

idea of data depth was proposed by Tukey [13] as a graphical tool for displaying two-dimensional 

data sets, and it has now been expanded to include multivariate data sets, Donoho and Gasko [3]. 

Data depth is a statistical technique that describes data distribution in accordance with center-

outward ordering instead of density or linear ordering, Liu [6], Modarres [10]. According to Liu et 

al. [8], the idea of data depth is being used for statistical analysis with multiple variables since it 

offers a nonparametric method. Several researchers have established various notions of depth 

preliminaries in the literature. 

Researchers are looking for solutions in robust depth procedures to address the sensitivity 

issue in high-dimensional data analysis. Also can build robust depth procedures to handle the 
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presence of outliers by replacing the classical estimators with robust estimators such as M-

estimators, Minimum Covariance Determinant (MCD) estimators, Mia Hubert and Michiel 

Debruyne [4], Minimum Volume Ellipsoid (MVE) estimators, Stefan Van Aelst and Peter Rousseeuw 

[12], and Minimum Regularized Covariance Determinants (MRCD), Kris Boudt, Peter Rousseeuw 

[1]. 

A very reliable estimator of multivariate location and scatter is the Minimum Covariance 

Determinant (MCD) approach. Given an 𝑛 ×  𝑝 data matrix 𝑌 = ( 𝑌2, … , 𝑌𝑝)′ with 𝑦𝑖 =

( 𝑦𝑖1 , 𝑦𝑖2, … , 𝑌𝑖𝑝)′, its objective is to find ℎ observations whose sample covariance matrix has the 

lowest possible determinant. Here ℎ < 𝑛 is fixed. The average of these h points serves as the MCD 

estimate of location, while the scatter estimate represents a multiple of the covariance matrix. The 

maximum possible breakdown value is found in the MCD, which also possesses a bounded 

influence function (i.e. 50%) when ℎ = [(𝑛 + 𝑝 + 1)/2]. This covariance matrix of any h-subset must 

be non-singular for the dimension p to meet 𝑝 <  ℎ, which is a significant restriction of the MCD 

technique. In fact, taking n > 5p is frequently advised for the estimator's accuracy. This restriction 

leaves a hole in the selection of high-breakdown techniques. In order to reduce this gap, Boudt et al. 

(2020) suggested modifying the MCD so that it can be used for high dimensions. A regularized 

covariance estimate, which is a weighted mean of the sample covariance of the h-subset and a preset 

positive definite target matrix, is intended to replace the subset-based covariance. The regularized 

covariance based on the h-subset that results in the least overall determinant is then the Minimum 

Regularized Covariance Determinant (MRCD) estimate. In addition to supporting high dimensions, 

the MRCD estimator's key characteristics include maintaining the MCD estimator's excellent 

breakdown qualities and being highly conditioned by construction. 

This study proposes a new depth procedure, namely Robust Regularized Mahalanobis 

Depth (RRMD), which can be used to find the location measure in high dimensional datasets by 

comparing the existing method. In the suggested algorithm, Mahalanobis depth is obtained based 

on MRCD estimators instead of classical mean and covariance matrix. Using various kinds of 

simulation tests and two real datasets, it is examined if the recommended algorithm for location 

estimation in high dimensional data produces accurate results even if the data is contaminated. 
The rest of this paper is structured as follows. Section 2 describes traditional Mahalanobis 

depth, the robust estimator used, and the proposed method. The results and discussions based on 

the real data and simulation study will be given in section 3. The conclusion will be provided in the 

last section. 
 

 

II. Methods 
 

Today, in numerous domains, huge amounts of data are produced and tainted by noise. It is 

important to establish training methods that are resilient to data instabilities and disruptions. In this 

section, the foundations of controlled learning are discussed, including the traditional Mahalanobis 

Depth, the estimator used in this study – Minimum Regularized Covariance Determinant Estimator, 

and the proposed depth procedure - Robust Regularized Mahalanobis Depth. 

 

I. Mahalanobis Depth 

Mahalanobis depth (MD) was first described by Liu et al. [7] from Mahalanobis distance. 

Mahalanobis [9] established the statistical idea of generalized distance which is calculated by using 

a classical mean vector and covariance matrix. For determining the Mahalanobis depth of an 

observation, the Mahalanobis distance is used. The positive inverse of Mahalanobis distance is 

termed as Mahalanobis depth. For an observation 𝑦 ∈  𝑆 ⊂ 𝑅𝑑 about a d- dimensional data, 

The squared Mahalanobis distance (𝐷) and Mahalanobis depth (𝑀𝐷) are given by  

𝐷(𝑌, �̅�, 𝑆) = (𝑌 − �̅�)′𝑆−1(𝑌 − �̅�) 
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𝑀𝐷(𝑌, �̅�, 𝑆) = [1 + 𝐷(𝑌, �̅�, 𝑆)]−1 

where �̅� and S are the mean vector and sample covariance matrix. Since it is reliant on non-

robust parameters like the mean and dispersion matrix, this algorithm lacks to be reliable.  

To get a reliable result MD is calculated using a robust location vector and covariance matrix 

using MCD estimator instead of classical mean vector and covariance matrix. Generally, the Minimum 

Covariance Determinants (MCD) estimators are used for this aim. Due to the failure of MCD 

estimators to be generated for high-dimensional datasets, this approach is not applicable in 

these cases. So, the Mahalanobis depth using MCD estimator can’t be applicable when want to 

analyze a high dimensional data set. 

 

II. Minimum Regularized Covariance Determinant Estimator (MRCD) 

 

The MRCD estimator is a modified version of NCD estimators for high-dimensional data 

and was proposed by Boudt et. al. [1]. To guarantee that the MRCD scatter estimator is scale 

equivariant and location unvarying, as is common in the literature, first, standardize the variables. 

The use of a trustworthy univariate location and scale estimate is required for standardization. For 

this, the median of each subset is calculated and placed in a location vector called 𝑚𝑥. Additionally, 

each variable's scale using the Qn estimator of Rousseeuw and Croux (1993) is calculated, then insert 

these scales into 𝑑𝑥, the diagonal matrix. 

Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛 )′ be an 𝑛 × 𝑝 matrix with 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝  )′; its goal is to identify 

the h observations with the sample covariance matrix with the lowest determinant. The term 𝐻 refers 

to a set of ℎ variables denoting the data contained in the subset, while the term ℋℎrefers to the 

compilation of all of these sets. The corresponding ℎ × 𝑝 submatrix of 𝑋 is denoted by 𝑋𝐻  for a 

particular 𝐻 in ℋℎ . The mean and sample scatter matrix of 𝑋𝐻 are given by 

 

𝑀𝑋(𝐻) = ℎ−1𝑋𝐻
′ 𝐼ℎ                                    (1) 

 

𝑆𝑋(𝐻) = (ℎ − 1)−1(𝑋𝐻 − 𝑀𝑋(𝐻))′(𝑋𝐻 − 𝑀𝑋(𝐻))                               (2) 

 

After that, the MCD method seeks to minimize the determinant of 𝑆𝑋(𝐻) for all 𝐻 ∈ ℋℎ. 

 

𝐻𝑀𝐶𝐷 =  (𝑑𝑒𝑡(𝑆𝑋(𝐻))
1

𝑝⁄ ) 𝐻∈ℋℎ

𝑎𝑟𝑔𝑚𝑖𝑛                     (3) 

 

For statistical considerations, eqn (3) takes the pth root of the determinant. The geometric average of 

its eigenvalues is the pth root of the determinant of the scatter matrix. It is referred to as the 

standardized generalized variance. 

 

The mean of the h-subset is used to define the MCD estimate of location 𝑀𝑀𝐶𝐷 , while the MCD scatter 

estimate is expressed as a multiple of the sample scatter matrix, and is given by 

𝑀𝑀𝐶𝐷 = 𝑀𝑋(𝐻𝑀𝐶𝐷)                      (4) 

 

𝑆𝑀𝐶𝐷 = 𝐶𝛼𝑆𝑋(𝐻𝑀𝐶𝐷)                      (5) 

 

where 𝐶𝛼 is a consistency factor that is based on the trimming percentage = (𝑛 − ℎ)/𝑛 and is similar 

to the one provided by Rousseeuw and Croux [11]. 

 

The standardized observation is given by  

 

𝑍𝑖 = 𝑑𝑥
−1(𝑥𝑖 − 𝑚𝑥)                                   (6) 

 

The regularized scatter matrix of the standardized observation is 
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 𝒮(𝐻) =  𝜌𝑇 + (1 − 𝜌)𝐶𝛼𝑆𝑍(𝐻) 

where 𝑆𝑍(𝐻) is defined in (2), however, in the case of Z, c is the same consistency parameter as in 

(5). 

 

Let Α be the diagonal matrix containing eigenvalues of T, and the orthogonal matrix Q contains the 

relevant eigenvectors. Utilizing the spectral decomposition 𝑇 = 𝑄𝐴𝑄′ will be practical. 

 

Now,  

𝒮(𝐻) = 𝑄𝐴
1

2⁄ [𝜌𝐼 + (1 − 𝜌)𝐶𝛼𝑆𝑊(𝐻)]𝐴𝐴
1

2⁄ 𝑄′                  (7) 

 

where 𝑊 is the 𝑛 × 𝑝 matrix consisting of the transformed standardized observations  

𝑤𝑖 =  𝐴
−1

2⁄ 𝑄′𝑍𝑖, and 𝑆𝑊(𝐻) =  𝐴
−1

2⁄ 𝑄′𝑆𝑍𝑄𝐴
−1

2⁄  

 

The MRCD subset is given by 

 

𝐻𝑀𝑅𝐶𝐷 =  (𝑑𝑒𝑡(𝜌𝐼 + (1 − 𝜌)𝐶𝛼𝑆𝑊(𝐻))
1

𝑝⁄ ) 𝐻∈ℋℎ

𝑎𝑟𝑔𝑚𝑖𝑛                   (8) 

 

The MRCD location and scatter estimations of the initial data matrix X are defined as follows 

 
𝑀𝑀𝑅𝐶𝐷 = 𝑚𝑋 + 𝑑𝑥𝑀𝑍(𝐻𝑀𝑅𝐶𝐷)  

  

𝑆𝑀𝑅𝐶𝐷 = 𝐶𝛼𝑆𝑋(𝐻𝑀𝑅𝐶𝐷). 

 

III. Robust Regularized Mahalanobis Depth 

 

The proposed depth procedure namely Robust Regularized Mahalanobis Depth (RRMD), it 

is based on the Minimum Regularized Covariance Determinant estimator, which can be calculated 

in high dimensional data sets. ie., Mahalanobis depth can be calculated using robust location and 

covariance matrix calculated, the MRCD estimator instead of classical mean vector and covariance 

matrix. The robust MRCD estimator was proposed by Boudt et. al. [1] to locate the robust measure 

of location and scatter for high dimensional data. The computational depth procedure for RRMD is 

as follows. 

Let  𝑀𝑀𝑅𝐶𝐷 , and 𝑆𝑀𝑅𝐶𝐷  be the location and scatter matrix using the MRCD estimator,  𝐷𝑀𝑅𝐶𝐷 

diagonal matrix, which consists of the diagonal elements of  𝑆𝑀𝑅𝐶𝐷 matrix. The Robust Regularized 

Mahalanobis Depth obtained from the regularized squared mahalanobis distance, 

𝐷(𝑌, 𝑀𝑀𝑅𝐶𝐷 , 𝑆𝑀𝑅𝐶𝐷) = (𝑌 − 𝑀𝑀𝑅𝐶𝐷)′ 𝐷𝑀𝑅𝐶𝐷
−1(𝑌 − 𝑀𝑀𝑅𝐶𝐷),, and is given by 

 
𝑀𝐷(𝑌, 𝑀𝑀𝑅𝐶𝐷 , 𝑆𝑀𝑅𝐶𝐷)  = [1 + 𝐷(𝑌, 𝑀𝑀𝑅𝐶𝐷 , 𝑆𝑀𝑅𝐶𝐷)]−1 

Let 𝑌 = ( 𝑌2, … , 𝑌𝑑) be a d dimensional multivariate data set and 𝑦 be a numerical vector whose 

depth is to be calculated. The following steps are carried out to find the proposed method. 

 

i. By using the dataset calculate robust MRCD location (𝑀𝑀𝑅𝐶𝐷) and scatter estimators 

(𝑆𝑀𝑅𝐶𝐷). Obtain 𝐷𝑀𝑅𝐶𝐷 diagonal matrix, which consists of the diagonal elements of 𝑆𝑀𝑅𝐶𝐷  

matrix. 

ii. The Regularized Squared Mahalanobis distance can be calculated from (i)  

ie., 𝐷(𝑌, 𝑀𝑀𝑅𝐶𝐷 , 𝑆𝑀𝑅𝐶𝐷  ) = (𝑌 −  𝜇𝑀𝑅𝐶𝐷)′ 𝐷𝑀𝑅𝐶𝐷
−1(𝑌 −  𝜇𝑀𝑅𝐶𝐷) 

iii. 𝑆𝐷 be the sorted distance given in (ii) 

iv. 𝑀𝑆𝐷 be the median from the distance from (iii), 
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𝑀𝑆𝐷
= 𝑀𝑒𝑑𝑖𝑎𝑛(𝑆𝐷)  

v. 𝐷𝑦  be the difference between Regularized Squared Mahalanobis distance value from (ii) 

and median from (iv), ie., 𝐷𝑦 =  𝐷(𝑌,  𝜇𝑀𝑅𝐶𝐷 , Σ𝑀𝑅𝐶𝐷) − 𝑀𝑆𝐷
 

vi. 𝐴𝑏𝑠(𝐷𝑦) be the absolute value of the difference in (v) 

vii. Now, the proposed depth procedure, Robust Regularized Mahalanobis Depth can be 

calculated by 𝑅𝑅𝑀𝐷𝑦 = [1 + 𝐴𝑏𝑠(𝐷𝑦)]−1 

 

III. Experimental Results 

   
The performance of the proposed RRMD procedure over the classical MD procedure, the 

experiments were conducted under actual and simulation environments by computing location 

measure corresponding to the deepest point in high-dimensional data and thus the obtained results 

are demonstrated in this sections. 

 

I. Real data study  

 
The proposed depth function can be used to find the location parameter in high-dimensional 

datasets. Two real data set is used here to evaluate the performance of the suggested algorithm 

compared with the existing method. The First one is the brain data which is also from the “rda” 

package of R software. The brain data contains two objects, namely the microarray expression data 

for 42 brain cancer samples, and the class labels for these samples. An expression data matrix 

(42x5597) and a class label vector for 42 samples. The second one is the NCI60 data which is obtained 

from the “ISLR” package of R software. The data contains expression levels on 6830 genes from 64 

cancer cell lines. Due to the enormous dimensions of these datasets, this study only used the first p 

(𝑝 > 3 ∗ 𝑛) variables for convenience. The results obtained from the real data study are summarized 

in the form of Table 1. 

 

 

Tab le 1: Deepest point and observation number of brain data and NCI60 data 

 

 

 

 

 

 

 

 

   
 

 
The suggested algorithm, Robust Regularized Mahalanobis Depth (RRMD) is obtained 

based on MRCD estimators and then the location parameter is calculated using the depth values for 

the high dimensional data set. Table 1 shows that the proposed method gives a same location under 

with/without outlier conditions, but the conventional method differs from it. 

 

 

 

 

Methods MD RRMD 

Brain data Highest Depth 

Value 

0.148 (0.103) 0.148 (0.103) 

Deepest Point 42 (16) 4 (4) 

NCI60 data Highest Depth 

Value 

0.097 (0.086) 0.031 (0.029) 

Deepest Point 23 (5) 49 (49) 

(.) – Without outlier 
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II. Simulation Study 

 

Simulation study were carried out under two different dimensions along with various 

amounts of contamination are employed to compare the performance of the proposed methodology 

to the current approach. The experiments were carried out by computing the maximum depth values 

that correspond to location measure. 

 

First generated data with dimension, 100 × 300, with mean vector 𝜇 = (0,0, … ,0)1×300and 

covariance matrixΣ = 𝐼300. Here n=100, and p=300. Further same experiments were performed under 

various levels of contaminations, such as ε= 10%, 15%, 20%, 30% (For Location, 𝜇 =

(1.5, 1.5, … ,1.5)1×300 and Σ = 𝐼300, Scale, 𝜇 = (0,0, … ,0)1×300, and Σ = 1.5𝐼300, Location and Scale, 

 𝜇 = (1.5, 1.5, … ,1.5)1×300 𝑎𝑛𝑑 Σ = 1.5𝐼300) are taken into account.  Also, the same experiment is 

repeated for 200 × 400 dimensional data. The results obtained from the simulation study is given in 

table 2 and 3 respectively. 

 

From the simulation study it is concluded that the suggested depth procedure, RRMD can 

tolerate and gives the same deepest point up to a certain level of contamination. The MD method 

fails to provide identical location measurements even if the data contamination is very low. 
 

Table 2: Deepest point and observation number under various contamination models 

Simulation Study 1 

Dimension:𝟏𝟎𝟎 × 𝟑𝟎𝟎; n=100, p=300 

Highest Depth Values and the corresponding observation 

 
𝜺 

Location 

Contamination 

Scale Contamination Location-Scale 

Contamination 

𝑴𝑫 𝑹𝑹𝑴𝑫 𝑴𝑫 𝑹𝑹𝑴𝑫 𝑴𝑫 𝑹𝑹𝑴𝑫 

0.10 0.099 (96) 0.019 

(33) 

0.870 (41) 0.018 (33) 0.044 (93) 0.019 (33) 

0.15 0.034 (81) 0.019 

(33) 

0.056 (92) 0.018 (33) 0.086 (79) 0.019 (33) 

0.20 0.126 (10) 0.019 

(33) 

0.108 (77) 0.018 (33) 0.032 (88) 0.019 (33) 

0.30 0.014 (38) 0.019 

(28) 

0.082 (30) 0.018 (22) 0.046 (90) 0.019 (22) 

(.) –  Observation number 

 

Table 3: Deepest point and observation number under various contamination models 

Simulation Study 2 

Dimension:𝟐𝟎𝟎 × 𝟒𝟎𝟎; n=200, p=400 

Highest Depth Values and the corresponding observation 

 
𝜺 

Location 

Contamination 

Scale Contamination Location-Scale 

Contamination 

MD RRMD MD RRMD MD RRMD 

0.10 0.013 (5) 0.009 (17) 0.100 (20) 0.009 (17) 0.124 (86) 0.009 (17) 

0.15 0.151( 61) 0.009 (17) 0.162 (18) 0.009 (17) 0.073 (130) 0.010 (17) 

0.20 0.356 (33) 0.010 (17) 0.406 (155) 0.009 (17) 0.042 (128) 0.010 (124) 

0.30 0.126 (21) 0.010 (17) 0.035 (80) 0.009 (131) 0.112 (80) 0.010 (128) 

(.) – Observation number 
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IV. Conclusion 

 
Conventional methods should work reasonably well if certain assumptions are true, however, they 

may not be trustworthy if one or more of these assumptions are erroneous. Both sample mean vector 

and covariance matrix are extremely susceptible to anomalies. As a result, when the data contains 

anomalies, the traditional Mahalanobis depth fails to generate reliable results. For non-normal 

conditions, a robust alternative is required to improve accuracy even when the data somewhat 

depart from the model assumptions. When robust estimators such as MCD and MRCD are used the 

analysis performs well compared to traditional methods. To find the location measure in high 

dimensional data, this paper proposed a new robust depth procedure namely RRMD. The proposed 

method is compared with the existing procedure and gives reliable results up to certain levels of 

contamination. Robust methods perform well even when the model assumptions are not met. The 

study came to the conclusion that for robust and affine equivariant location, the proposed depth 

procedure gives better results followed by the existing method. By finding the deepest point in a 

dataset instead of relying on a more conventional method of determining location, the research 

groups can find the best location with greater precision when using these methods. 
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