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Abstract

This study presents a limited buffer secondary service queue with multiple vacations and server
breakdowns. The model under consideration includes two types of impatient policies: balking and
reneging. After the completion of the essential primary service, only few consumers choose to proceed
with secondary service with a certain probability. During the active period of the server, it is subject
to breakdown and the broken down server is immediately sent for repair. Further, the server will go
on vacation as soon as there are no waiting consumers in the queue. On returning from a vacation, if
the system is still empty the server leaves for another vacation and continues to do so until atleast one
consumer is found at a vacation termination epoch. The model is analyzed under steady-state conditions
and the explicit expressions of various performance indices are evaluated. A few numerical results
illustrate how the model parameters have an effect on the performance metrics.

Keywords: Balking, reneging, secondary service, multiple vacations, breakdown, repair.

1. Introduction

Vacation models address a very significant category of the real-world congestion scenarios that
are seen in both day-to-day living and in industrial settings. In the context of queueing, the
period of time during which the server is not available is referred to as a vacation. During
the active period, the server operates at maximum capacity, but while it is on vacation, it does
not carry out any tasks. The numerous adaptable implementations encourage us to investigate
queuing systems with server vacations that can be exploited in some beneficial method when
coping with congestion problems in various frameworks. These systems may be used in a variety
of contexts. Over the course of more than two decades, number of scholars and practitioners
have investigated vacation models of many sorts. Their goals have been either to find solutions
to specific queueing issues at hand or to acquire a knowledge of the stochastic processes that
evolve as a result of these models. Excellent studies on these vacation models have been done
by Doshi [8, 9], Takagi [21], Tian and Zhang [22], Jau-Chaun Ke et al. [15], Panta et al. [18], etc.

Consumers typically have less patience when waiting for service because they value their
time. In the research that has been done on queueing, impatience of consumers has been exam-
ined mostly in the context of consumers abandoning the queue because of either a prolonged
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wait that they had previously experienced or a lengthy wait that they predicted would occur
upon arrival. In many service or operational contexts, such impatience is frequently noticed
through the acts of consumers “balking" or “reneging" from waiting in a queue. Altman and
Yechiali [1] undertook an analysis of consumer dissatisfaction in server vacation queues. A study
on priority queues with impatient consumers has been presented by Foad and Baris [10]. Yue
et al. [27] conducted research on the effects of synchronised vacations and impatient consumers
in a multi-server queue. Jamol Pender [14] computed a novel approximation for single-server
queues with abandonment based on the truncated normal distribution. Ammar [3] came up
with the time dependent results of an M/M/1 vacation queue that included an anticipating
server and impatient consumers. Sampath and Liu [19] conducted the research to determine
how impatience of customers affected the performance of an M/M/1 queueing system subject
to waiting server and differential vacations. A Bernoulli feedback queueing system with K-
variant vacations, waiting server and impatient consumers has been considered by Amina and
Guendouzi [2]. Mathematical evaluation of the M/M/C vacation queuing model with a waiting
server and dissatisfied consumers has been carried out by Ganesh and Ghimire [11].

Numerous malfunctions in the service providing facility are a major source of service inter-
ruptions in various manufacturing processes. In such circumstances, service will not be provided
to the waiting consumers until the service providing facility is repaired. Such breakdowns in
service are typical in commercial settings like factories and phone booths, as well as in the use
of mechanical technologies like electronic computers. William et al. [26] examined a queueing
model with vacations where the service station may experience a breakdown while it is in op-
eration. Queuing system with fixed capacity and vacancies as well as server breakdowns has
been dealt by Ghimire and Ritu [12]. An MX/G/1 queue with server breakdowns and repairs
has been analyzed by Djamila et al. [7]. Hanumantha Rao et al. [13] has studied an impatient
consumer two-phase queuing system with server breakdowns and delayed repair. Under the
T-policy, the investigation of two phase queue with breakdowns and vacations has been carried
out by Khalid and Lotfi [17]. A bulk service queue with server breakdowns and repairs had
been investigated by Bharathidass et al. [4]. Srinivas et al. [20] researched a server breakdown
queueing system with repairs and vacations.

In the modelling of a wide variety of congestion issues that arise during real-life activities,
queueing systems that include the provision of a secondary service (SS) play an essential role. In
queueing models that include SS, the server offers the primary service (PS) to all of the arriving
consumers. However, after the PS has been completed, only few consumers choose to receive
SS, according to a predetermined probability. Take the banking sector as an illustration; among
the primary duties imposed upon any bank are the receipt and dispensing funds in the form of
deposits, withdrawals, loans, advances, etc. Printing of passbooks, issue of checks, lockers, etc.,
fall under the category of secondary services that banks conduct in addition to their primary
duties. Kalyanaraman and Pazhani [16] analyzed a single server queue with optional service
and server vacations. Uma and Punniyamoorthy [23] have investigated a single-server bulk
queue with vacations, balking and secondary service. A bulk arrival queue with SS and server
breakdowns has been researched by Charan and Sandeep [5]. Charan et al. [6] have studied
the effects of secondary services and service disruptions on bulk queues. The time dependent
behaviour of a bulk service queueing system with optional service and impatient consumers
has been studied by Vijaya Laxmi and Andwilile [24]. A Markovian secondary service queue
operating under triadic policy has been considered by Vijaya Laxmi et al. [25].

The current article deals with a finite capacity Markovian queue with secondary service,
multiple vacations, breakdowns and impatient consumers. The paradigm under consideration
has many real-world uses in places as diverse as communications networks, manufacturing
systems, cloud computing, customer service centres, etc. Consider the following example of a
call centre that provides services to customers. The call centre employs customer support agents
to handle inbound calls received at the call centre from customers seeking assistance. Customers
after receiving the required assistance and are prepared to pay an extra price can take advantage
of the premium service option that is available through the contact centre. During times of
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low call volume or off-peak hours, it is possible that the server can schedule for a vacation
during which they will be offline in order to conserve money and resources. Occasionally,
there may be brief disruptions in service as a result of server experiencing technical problems
or being required to undergo maintenance. It is always possible that customers contacting the
call centre may be impatient and reluctant to wait in the queue for lengthy periods of time. In
this practical application, the call centre aims to manage server breakdowns effectively, offers an
optional service to customers who value quicker support and allows server vacations during low
demand to optimize resource usage. By doing so, the call centre enhances the overall customer
experience and reduces the likelihood of impatient customers abandoning the queue.

Owing to the practical application as one mentioned above, we study an M/M/1/N multi-
ple vacation queue with secondary service, breakdowns and impatient consumers. The vacation
durations, secondary service durations and breakdown times are assumed to be follow expo-
nential distribution. Balking and reneging are the two forms of consumer impatience which
have been included in the current article. Both the forms of consumer impatience are considered
to be state dependent. Using iterative approach, the model’s steady-state results are achieved.
The expected system size, expected balking rate, expected reneging rate and other performance
parameters are reported. Through a limited number of numerical experiments, the parameter
influence on the performance indices is demonstrated.

The remaining sections of the paper are structured as follows. A detailed explanation of the
model has been provided in Section 2. In Section 3, we reported the results of the steady-state
model under discussion. Section 4 provides different metrics by which the model’s effectiveness
may be evaluated. In Section 5, some numerical findings illustrating the impact of the model
parameters on the performance metrics are shown and in Section 6, conclusions are drawn.

2. Model Overview

Consider an impatient consume M/M/1/N queue with multiple vacations, secondary service,
and server breakdowns.

• Consumers arrive one at a time according to Poisson process with rate λ. Arriving con-
sumers make a decision whether to be a part of the queue or not depending on the queue
size. Let bn be the probability of joining the queue and 1− bn be the probability of not join-
ing the queue, where n denotes the number of consumers in the system. We also, assume
that b0 = 1, bn+1 ≤ bn and bN = 0.

• Consumers who join the queue wait for certain period of time, T, which follows exponential
distribution with parameter α. If the service does not start before this time, he may leave
due to impatience. The average reneging rate of a consumer is taken as (n − 1)α (n ≥ 0),
where n represents the number of consumers in the system.

• Consumers who enter the system are served according to FCFS discipline by a single server.
All the consumers receive a primary service (PS) and exit from the system with probability
ω while only few consumers may opt for secondary service (SS) with probability ω̄ = 1 −
ω. The service durations during PS and SS follow exponential distribution with parameters
µ1 and µ2, respectively.

• Under the multiple vacation policy, the server will take a series of breaks in the form of
vacations in between two consecutive busy times, and it will continue to do so until it
locates a waiting consumer in the system. The vacation durations are also assumed to
follow exponential distribution with parameter σ.

• The server is subject to breakdown both during PS and SS with rate β. The broken down
server is immediately sent for repair. The repair times are exponentially distributed with
rate δ.
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3. Steady-state analysis

At steady-state, let

• πn,0 - Probability of n consumers in the system and the server in vacation,

• πn,1W - Probability of n consumers in the system and server in working state during PS,

• πn,1B - Probability of n consumers in the system and server in breakdown state during PS,

• πn,2W - Probability of n consumers in the system and server in working state during SS,

• πn,2B - Probability of n consumers in the system and server in breakdown state during SS.

Using the Markov theory, the set of steady-state equations may be obtained as

λπ0,0 = ωµ1π1,1W + µ2π1,2W , (1)

(λbn + σ + (n − 1)α)πn,0 = λbn−1πn−1,0 + nαπn+1,0, 1 ≤ n ≤ N − 1, (2)

(σ + (N − 1)α)πN,0 = λbN−1πN−1,0, (3)

(λb1 + β + µ1)π1,1W = (ωµ1 + α)π2,1W + σπ1,0 + µ2π2,2W + δπ1,1B, (4)

(λbn + β + µ1 + (n − 1)α)πn,1W = (ωµ1 + nα)πn+1,1W + µ2πn+1,2W + σπn,0 + δπn,1B,

+λbn−1πn−1,1W , 2 ≤ n ≤ N − 1, (5)

(β + µ1 + (N − 1)α)πN,1W = σπN,0 + δπN,1B + λbN−1πN−1,1W , (6)

(λb1 + β + µ2)π1,2W = απ2,2W + ω̄µ1π1,1W + δπ1,2B, (7)

(λbn + β + µ2 + (n − 1)α)πn,2W = nαπn+1,2W + ω̄µ1πn,1W + δπn,2B + λbn−1πn−1,2W ,

2 ≤ n ≤ N − 1, (8)

(β + µ2 + (N − 1)α)πN,2W = ω̄µ1πN,1W + δπN,2B + λbN−1πN−1,2W , (9)

(λb1 + δ)π1,1B = απ2,1B + βπ1,1W , (10)

(λbn + δ + (n − 1)α)πn,1B = nαπn+1,1B + βπn,1W + λbn−1πn−1,1B, 2 ≤ n ≤ N − 1,(11)

(δ + (N − 1)α)πN,1B = βπN,1W + λbN−1πN−1,1B, (12)

(λb1 + δ)π1,2B = απ2,2B + βπ1,2W , (13)

(λbn + δ + (n − 1)α)πn,2B = nαπn+1,2B + βπn,2W + λbn−1πn−1,2B, 2 ≤ n ≤ N − 1,(14)

(δ + (N − 1)α)πN,2B = βπN,2W + λbN−1πN−1,2B. (15)

The steady-state probabilities are obtained by solving the above system of equations recur-
sively as shown below.

πn,0 = rnπN,0, 1 ≤ n ≤ N,

πn,2B = (dn + snk13 + tnk14 + znk15 + γnk16)πN,0, 1 ≤ n ≤ N,

πn,2W = (ln + ynk13 + wnk14 + xnk15 + mnk16)πN,0, 1 ≤ n ≤ N,

πn,1W = (gn + pnk13 + onk14 + fnk15 + hnk16)πN,0, 1 ≤ n ≤ N,

πn,1B = (qn + χnk13 + cnk14 + vnk15 + unk16)πN,0, 1 ≤ n ≤ N,

where

rN = sN = wN = fN = uN = 1,

tN = zN = dN = γN = xN = yN = lN = mN = gN = hN = oN = pN = vN = qN = cN = 0,

zN−1 = dN−1 = γN−1 = mN−1 = lN−1 = oN−1 = pN=1 = qN−1 = cN−1 = χN = χN−1 = 0

dN−2 = γN−2 = pN−2 = cN−2 = χN−2 = χN−3 = 0,

rN−1 =
σ + (N − 1)α

λbN−1
, sN−1 =

δ + (N − 1)α
λbN−1

, tN−1 = − β

λbN−1
, wN−1 =

β + µ2 + (N − 1)α
λbN−1

,
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xN−1 = − ω̄µ1

λbN−1
, uN−1 =

δ + (N − 1)α
λbN−1

, vN−1 = − β

λbN−1
, fN−1 =

β + µ1 + (N − 1)α
λbN−1

,

gN−1 = − σ

λbN−1
, hN−1 = − δ

λbN−1
/

rn =

(
λbn+1 + σ + nα

λbn

)
rn+1 −

(
(n + 1)α

λbn

)
rn+2, n = N − 2, N − 3, . . . , 1,

sn =

(
λbn+1 + δ + nα

λbn

)
sn+1 −

(
β

λbn

)
yn+1 −

(
(n + 1)α

λbn

)
sn+2, n = N − 2, N − 3, . . . , 1,

tn =

(
λbn+1 + δ + nα

λbn

)
tn+1 −

(
β

λbn

)
wn+1 −

(
(n + 1)α

λbn

)
tn+2, n = N − 2, N − 3, . . . , 1,

zn =

(
λbn+1 + δ + nα

λbn

)
zn+1 −

(
β

λbn

)
xn+1 −

(
(n + 1)α

λbn

)
zn+2, n = N − 2, N − 3, . . . , 1,

dn =

(
λbn+1 + δ + nα

λbn

)
dn+1 −

(
β

λbn

)
ln+1 −

(
(n + 1)α

λbn

)
dn+2, n = N − 2, N − 3, . . . , 1,

γn =

(
λbn+1 + δ + nα

λbn

)
γn+1 −

(
β

λbn

)
mn+1 −

(
(n + 1)α

λbn

)
γn+2, n = N − 2, N − 3, . . . , 1,

wn =

(
λbn+1 + β + µ2 + nα

λbn

)
wn+1 −

(
δ

λbn

)
tn+1 −

(
ω̄µ1

λbn

)
on+1 −

(
(n + 1)α

λbn

)
wn+2,

n = N − 2, N − 3, . . . , 1,

xn =

(
λbn+1 + β + µ2 + nα

λbn

)
xn+1 −

(
δ

λbn

)
zn+1 −

(
ω̄µ1

λbn

)
fn+1 −

(
(n + 1)α

λbn

)
xn+2,

n = N − 2, N − 3, . . . , 1,

yn =

(
λbn+1 + β + µ2 + nα

λbn

)
yn+1 −

(
δ

λbn

)
sn+1 −

(
ω̄µ1

λbn

)
pn+1 −

(
(n + 1)α

λbn

)
yn+2,

n = N − 2, N − 3, . . . , 1,

ln =

(
λbn+1 + β + µ2 + nα

λbn

)
ln+1 −

(
δ

λbn

)
dn+1 −

(
ω̄µ1

λbn

)
gn+1 −

(
(n + 1)α

λbn

)
ln+2,

n = N − 2, N − 3, . . . , 1,

mn =

(
λbn+1 + β + µ2 + nα

λbn

)
mn+1 −

(
δ

λbn

)
γn+1 −

(
ω̄µ1

λbn

)
hn+1 −

(
(n + 1)α

λbn

)
mn+2,

n = N − 2, N − 3, . . . , 1,

fn =

(
λbn+1 + β + µ1 + nα

λbn

)
fn+1 −

(
ωµ1 + (n + 1)α

λbn

)
fn+2 −

(
µ2

λbn

)
xn+2 −

(
δ

λbn

)
vn+1,

n = N − 2, N − 3, . . . , 1,

gn =

(
λbn+1 + β + µ1 + nα

λbn

)
gn+1 −

(
ωµ1 + (n + 1)α

λbn

)
gn+2 −

(
µ2

λbn

)
ln+2 −

(
δ

λbn

)
qn+1,

−
(

σ

λbn

)
rn+1, n = N − 2, N − 3, . . . , 1,

hn =

(
λbn+1 + β + µ1 + nα

λbn

)
hn+1 −

(
ωµ1 + (n + 1)α

λbn

)
hn+2 −

(
µ2

λbn

)
mn+2 −

(
δ

λbn

)
un+1,

n = N − 2, N − 3, . . . , 1,

on =

(
λbn+1 + β + µ1 + nα

λbn

)
on+1 −

(
ωµ1 + (n + 1)α

λbn

)
on+2 −

(
µ2

λbn

)
wn+2 −

(
δ

λbn

)
cn+1,

n = N − 2, N − 3, . . . , 1,

pn =

(
λbn+1 + β + µ1 + nα

λbn

)
pn+1 −

(
ωµ1 + (n + 1)α

λbn

)
pn+2 −

(
µ2

λbn

)
yn+2 −

(
δ

λbn

)
χn+1,

n = N − 2, N − 3, . . . , 1,

un =

(
λbn+1 + δ + nα

λbn

)
un+1 −

(
(n + 1)α

λbn

)
un+2 −

(
β

λbn

)
hn+1, n = N − 2, N − 3, . . . , 1,
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vn =

(
λbn+1 + δ + nα

λbn

)
vn+1 −

(
(n + 1)α

λbn

)
vn+2 −

(
β

λbn

)
fn+1, n = N − 2, N − 3, . . . , 1,

qn =

(
λbn+1 + δ + nα

λbn

)
qn+1 −

(
(n + 1)α

λbn

)
qn+2 −

(
β

λbn

)
gn+1, n = N − 2, N − 3, . . . , 1,

cn =

(
λbn+1 + δ + nα

λbn

)
cn+1 −

(
(n + 1)α

λbn

)
cn+2 −

(
β

λbn

)
on+1, n = N − 2, N − 3, . . . , 1,

χn =

(
λbn+1 + δ + nα

λbn

)
χn+1 −

(
(n + 1)α

λbn

)
χn+2 −

(
β

λbn

)
pn+1, n = N − 2, N − 3, . . . , 1,

k1 =
αz2 + βx1 − (λb1 + δ)z1

(λb1 + δ)γ1 − αγ2 − βm1
, k2 =

αd2 + βl1 − (λb1 + δ)d1

(λb1 + δ)γ1 − αγ2 − βm1
,

k3 =
αt2 + βw1 − (λb1 + δ)t1

(λb1 + δ)γ1 − αγ2 − βm1
, k4 =

αs2 + βy1 − (λb1 + δ)s1

(λb1 + δ)γ1 − αγ2 − βm1
,

k5 = αu2 + βh1 − (λb1 + δ)u1, k6 =
k2k5 + αq2 + βg1 − (λb1 + δ)q1

(λb1 + δ)v1 − αv2 − β f1 − k1k5
,

k7 =
k3k5 + αc2 + βo1 − (λb1 + δ)c1

(λb1 + δ)v1 − αv2 − β f1 − k1k5
, k8 =

k4k5 + αχ2 + βp1 − (λb1 + δ)χ1

(λb1 + δ)v1 − αv2 − β f1 − k1k5
,

k9 = αx2 + ω̄µ1 f1 + δz1 − (λb1 + µ2 + β)x1, k10 = αm2 + ω̄µ1h1 + δγ1 − (λb1 + µ2 + β)m1,

k11 =
k9k6 + αl2 + ω̄µ1g1 + δd1 + k2k10 + k1k6k10 − (λb1 + µ2 + β)l1
(λb1 + µ2 + β)w1 − αw2 − ω̄µ1o1 − δt1 − k9k7 − k3k10 − k1k7k10

,

k12 =
k9k8 + αy2 + ω̄µ1 p1 + δs1 + k4k10 + k1k8k10 − (λb1 + µ2 + β)y1

(λb1 + µ2 + β)w1 − αw2 − ω̄µ1o1 − δt1 − k9k7 − k3k10 − k1k7k10
,

num = (k6 + k7k11) ((ωµ1 + α) f2 + µ2x2 + δv1 − (λb1 + β + µ1) f1)

+ (k2 + k3k11 + k1k6 + k1k7k11) ((ωµ1 + α)h2 + µ2m2 + δu1 − (λb1 + β + µ1)h1)

+(ωµ1 + α) (g2 + o2k11) + µ2 (l2 + w2k11) + δ (q1 + c1k11)

+σr1 − (λb1 + β + µ1) (g1 + o1k11) ,

den = (k8 + k7k12) ((λb1 + β + µ1) f1 − (ωµ1 + α) f2 − µ2x2 − δv1) + (k4 + k3k12

+k8k1 + k1k7k12) ((λb1 + β + µ1)h1 − (ωµ1 + α)h2 − µ2m2 − δu1) + (λb1 + β + µ1)

× (p1 + o1k12)− (ωµ1 + α) (p2 + o2k12)− µ2 (y2 + w2k12)− δ (χ1 + c1k12)

k13 =
num
den

,

k14 = k11 + k12k13, k15 = k6 + k7k14 + k8k13, k16 = k2 + k1k15 + k3k14 + k4k13

Finally, π0,N is computed from ∑N
n=0 πn,0 + ∑N

n=1 (πn,1W + πn,1B + πn,2W + πn,2B) = 1 as

π0,N = 1/(r0 +
N

∑
n=1

[k13(sn + yn + χn) + k14(tn + wn + on + cn) + k15(zn + xn + fn + vn) +

k16(γn + mn + hn + un) + dn + ln + gn + qn + rn]).

4. Performance Indices

Under this section various performance indices are presented. The expected system length (E[L])
is given by

E[L] =
N

∑
n=1

n (πn,0 + πn,1W + πn,1B + πn,2W + πn,2B)

=
N

∑
n=1

n
(
(rn + dn + ln + gn + qn) + k13(sn + yn + pn + χn) + k14(tn + wn + on + cn)

+k15(zn + xn + fn + vn) + k16(γn + mn + hn + un)
)
/(r0 +

N

∑
n=1

[k13(sn + yn + χn)
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+k14(tn + wn + on + cn) + k15(zn + xn + fn + vn + k16(γn + mn + hn + un)

+dn + ln + gn + qn + rn)

The probabilities that the server is in vacation (Pv), busy with PS (P1w), in breakdown state
during PS (P1b), busy with SS (P2w) and the probability that the server is in breakdown state
during SS (P2b) are, respectively, given by

Pv =
N

∑
n=0

πn,0,

=
N

∑
n=0

rn/(r0 +
N

∑
n=1

[k13(sn + yn + χn) + k14(tn + wn + on + cn) + k15(zn + xn + fn + vn)

+k16(γn + mn + hn + un) + dn + ln + gn + qn + rn),

P1b =
N

∑
n=1

πn,1b

=
N

∑
n=1

(qn + χnk13 + cnk14 + vnk15 + unk16) /(r0 +
N

∑
n=1

[k13(sn + yn + χn) + k14(tn + wn +

on + cn) + k15(zn + xn + fn + vn) + k16(γn + mn + hn + un) + dn + ln + gn + qn + rn),

P1w =
N

∑
n=1

πn,1w

=
N

∑
n=1

(gn + pnk13 + onk14 + fnk15 + hnk16) /(r0 +
N

∑
n=1

[k13(sn + yn + χn) + k14(tn + wn

+on + cn) + k15(zn + xn + fn + vn) + k16(γn + mn + hn + un) + dn + ln + gn + qn + rn),

P2w =
N

∑
n=1

πn,2w

=
N

∑
n=1

(ln + ynk13 + wnk14 + xnk15 + mnk16) /(r0 +
N

∑
n=1

[k13(sn + yn + χn) + k14(tn + wn +

on + cn) + k15(zn + xn + fn + vn) + k16(γn + mn + hn + un) + dn + ln + gn + qn + rn),

P2b =
N

∑
n=1

πn,2b

=
N

∑
n=1

(dn + snk13 + tnk14 + znk15 + γnk16)) /(r0 +
N

∑
n=1

[k13(sn + yn + χn) + k14(tn + wn

+on + cn) + k15(zn + xn + fn + vn) + k16(γn + mn + hn + un) + dn + ln + gn + qn + rn).

The expected balking rate (Br), expected reneging rate (Rr) and the expected rate of losing a
consumer (Lr) are given by

Br =
N

∑
n=1

λ(1 − bn) (πn,0 + πn,1W + πn,1B + πn,2W + πn,2B)

=
N

∑
n=1

λ(1 − bn)
(
(dn + ln + gn + qn) + k13(sn + yn + pn + χn) + k14(tn + wn + on + cn)

+k15(zn + xn + fn + vn) + k16(γn + mn + hn + un)
)
/(r0 +

N

∑
n=1

[k13(sn + yn + χn) + k14(tn

+wn + on + cn) + k15(zn + xn + fn + vn + k16(γn + mn + hn + un) + dn + ln + gn + qn + rn),
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Rr =
N

∑
n=1

(n − 1)α (πn,0 + πn,1W + πn,1B + πn,2W + πn,2B)

=
N

∑
n=1

(n − 1)α
(
(dn + ln + gn + qn) + k13(sn + yn + pn + χn) + k14(tn + wn + on + cn)

+k15(zn + xn + fn + vn) + k16(γn + mn + hn + un)
)
/(r0 +

N

∑
n=1

[k13(sn + yn + χn) + k14(tn

+wn + on + cn) + k15(zn + xn + fn + vn + k16(γn + mn + hn + un) + dn + ln + gn + qn + rn),

Lr = Br + Rr

=
N

∑
n=1

(λ(1 − bn) + (n − 1)α)
(
(dn + ln + gn + qn) + k13(sn + yn + pn + χn) + k14(tn + wn

+on + cn) + k15(zn + xn + fn + vn) + k16(γn + mn + hn + un)
)
/(r0 +

N

∑
n=1

[k13(sn + yn + χn)

+k14(tn + wn + on + cn) + k15(zn + xn + fn + vn + k16(γn + mn + hn + un) + dn + ln + gn

+qn + rn).

5. Numerical Results

The impact of the various model parameters on the performance indices is presented in this
section. The arbitrary choice of the model parameters for the purpose of numerical results is
N = 10, λ = 1.9, ω = 0.3, α = 0.5, µ1 = 2.9, µ2 = 2.5, σ = 2.0, β = 1.5, δ = 1.2. Table 1 displays
the steady-state probabilities for the above chosen set of parameters. The table also presents the
corresponding performance measures E[L], Pv, P1w, P1b, P2w, P2b, Br, Rr and Lr.

Table 1: Steady-state probability distributions

n πn,0 πn,1B πn,1W πn,2B πn,2W
0 0.043328 – – – –
1 0.022608 0.027649 0.038451 0.015641 0.019548
2 0.010840 0.055023 0.052865 0.037740 0.036276
3 0.004760 0.064685 0.050222 0.050595 0.041409
4 0.001911 0.055825 0.037802 0.048113 0.035437
5 0.000702 0.038317 0.023580 0.035631 0.024374
6 0.000236 0.021832 0.012510 0.021605 0.013991
7 0.000073 0.010615 0.005749 0.011075 0.006871
8 0.000021 0.004492 0.002317 0.004912 0.002940
9 0.000000 0.001682 0.000819 0.001923 0.001112
10 0.000000 0.000572 0.000236 0.00068 0.000379

E[L] = 3.145050, Pv = 0.084489, P1W = 0.224555,
P1b = 0.280694, P2w = 0.182339, P2b = 0.227923,

Br = 0.062196, Rr = 1.095870, Lr = 1.158070

The impact of arrival rate (λ) on Pv, P1w, P1b, P2w and P2b is depicted in Figure 1. From the
figure, it is evident that except Pv, all other values P1w, P1b, P2w and P2b increase with the increase
of λ. The reason behind this nature is that as λ increases the number of consumers in the system
increase due to which the server cannot leave for a vacation.

The changes in Pv, P1w, P1b, P2w and P2b with β is shown in Figure 2. The probability of the
server being in breakdown state both during PS and SS, P1b and P2b, respectively, increase with
the increase of β which is obvious. Due to this the remaining probabilities Pv, P1w and P2w
decrease with the growth of β as evident from the graph.
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Figure 1: Impact of λ on Pv, P1w, P1b, P2w, P2b

0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

β

 

P
v

P
1w

P
1b

P
2w

P
2b

Figure 2: Changes in Pv, P1w, P1b, P2w, P2b with β

0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

δ

 

P
v

P
1w

P
1b

P
2w

P
2b

Figure 3: Influence of δ on Pv, P1w, P1b, P2w, P2b
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The influence of δ on Pv, P1w, P1b, P2w and P2b is displayed in Figure 3. In contrary to Figure
2, P1b and P2b decrease with the increase of δ while Pv, P1w and P2w increase with δ.

The effect of the service rate during PS (µ1) on the expected system length (E[L])is depicted
in Figure 4 for different vacation rates σ. As evident from the figure, the expected system length
decline with the increment of µ1 for any choice of vacation rate (σ). Further, for a constant µ1
value, E[L] diminish with the growth in σ.

Figure 5 exhibits the effect of µ2 on the expected system length (E[L]) in models with (β = 1.5)
and without (β = 0.0) server breakdowns. In models without server breakdown, E[L] diminishes
with µ2 as intuitively expected. However, this trend is reversed in models with server breakdown
because there will no service during breakdown period leading to the increase in system length.

The impact of µ2 on the expected rate of losing a consumer (Lr) in models with (β = 1.5)
and without (β = 0.0) server breakdowns for different ω is revealed in Figure 6. It may be
perceived that, for any ω ( ̸= 1), Lr drops with the growth of µ2 in models without breakdown
(β = 0.0) while Lr grows with the growth of µ2 in models with breakdown (β = 1.5). Further,
ω = 1.0 implies that no client is opting for SS and hence, µ2 has no impact on Lr as a result
Lr remains the same for any µ2 in both the models. Furthermore, with the increase of ω, the
number of consumers leaving the system increase resulting in the decrease of Lr in models
without breakdown while this trend gets reversed in models with breakdown.

6. Conclusions

An impatient consumer queue with secondary service, vacations and server breakdowns has
been examined in this research. A wide range of real-time systems, including production
and manufacturing systems, computer and communication networks, inventory and distribu-
tion systems, and others, may employ the described approach. The state-dependent nature of
consumers’ impatience in a secondary service queue with server breakdowns and vacations are
the key contributions of this article. We used a recursive approach to obtain the steady-state
probabilities. To illustrate the effect of the system parameters, numerical data is presented as
table and graphs. This study might be expanded to include a renewal input impatient consumer
queue with SS and working vacations and is a topic for further research.
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