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Abstract

In this present paper, a class of Lorentzian almost paracontact metric manifolds known as the LP-
Kenmotsu (Lorentzian para-Kenmotsu) is considered that accepts a connection of quarter-symmetric. In
this work, it was found that an LP-Kenmotsu manifold is either φ-symmetric or concircular φ-symmetric
with respect to quarter-symmetric metric connection if and only if it is symmetric with respect to the
Riemannian connection, provided the scalar curvature of Riemannian connection is constant.
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I. Introduction

In 1989, Matsumoto [4] introduced the notion of Lorentzian paracontact and in particular,
Lorentzian para-Sasakian (LP-Sasakian) manifolds. Later, these manifolds have been widely
studied by many geometers such as Matsumoto and Mihai [5], Mihai and Rosca [6], Mihai, Shaikh
and De [7], Venkatesha and C. S. Baggewadi [13], Venkatesha, Pradeep Kumar and Bagewadi
[14, 15] and obtained several results on these manifolds.

In 1995, Sinha and Sai Prasad [11] defined a class of almost paracontact metric manifolds
namely para-Kenmotsu (briefly P-Kenmotsu) and special para-Kenmotsu (briefly SP- Kenmotsu)
manifolds in similar to P-Sasakian and SP- Sasakian manifolds. In 2018, Abdul Haseeb and
Rajendra Prasad [1] defined a class of Lorentzian almost paracontact metric manifolds namely
Lorentzian para-Kenmotsu (briefly LP- Kenmotsu) manifolds. As an extension, many geometers
have studied these Lorentzian para-Kenmotsu manifolds [8, 10, 12]. Sai Prasad, Sunitha Devi and
Deekshitulu have considered LP-Kenmotsu manifolds admitting the Weyl-projective curvature
tensor W2 and shown that these manifolds admitting a Weyl-flat projective curvature tensor, an
irrotational Weyl-projective curvature tensor and a conservative Weyl-projective curvature tensor
are an Einstein manifolds of constant scalar curvature [9].

A linear connection ∇̃ in an n-dimensional differentiable manifold is said to be a quarter-
symmetric connection [3] if its torsion tensor T is of the form

T(X, Y) = ∇̃XY− ∇̃YX− [X, Y]

= η(Y)φX− η(X)φY,
(1)
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where η is a 1-form and φ is a tensor field of type (1,1). In particular, if we replace φX by X and φY
by Y, then the quarter-symmetric connection reduces to the semi-symmetric connection [2]. Thus,
the notion of quarter-symmetric connection generalizes the idea of semi-symmetric connection,
and if quarter-symmetric linear connection ∇̃ satisfies the condition

(
∇̃X g

)
(Y, Z) = 0 for all

X, Y, Z ∈ χ (Mn), where χ (Mn) is the Lie algebra of vector fields on the manifold Mn, then ∇̃ is
said to be a quarter-symmetric metric connection.

Motivated by these studies, in the present paper, we study the geometry of Lorentzian
para-Kenmotsu (LP-Kenmotsu) manifolds with respect to quarter-symmetric metric connection.
The present paper is organized as follows. Section 2 is equipped with some prerequisites about
Lorentzian para-Kenmotsu manifolds.

Further on, in relation to the quarter-symmetric metric connection in an Lorentzian para-
Kenmotsu manifold, we derive the relations for the Ricci tensor S̃ and the Riemannian curvature
tensor R̃ in section 3.

Further in sections 4 and 5, we study the φ-symmetry and concircular φ-symmetry of
Lorentzian para-Kenmotsu manifolds with respect to quarter-symmetric metric connection re-
spectively.

II. Preliminaries

An n-dimensional differentiable manifold Mn admitting a (1,1) tensor field φ, contravariant
vector field ξ, a 1-form η and the Lorentzian metric g(X, Y) satisfying

η(ξ) = −1, (2)

φ2X = X + η(X)ξ, (3)

g(φX, φY) = g(X, Y) + η(X)η(Y), (4)

g(X, ξ) = η(X), (5)

φξ = 0, η(φX) = 0, rankφ = n− 1. (6)

is called Lorentzian almost paracontact manifold [4].

In a Lorentzian almost paracontact manifold, we have

Φ(X, Y) = Φ(Y, X) where Φ(X, Y) = g(φX, Y). (7)

A Lorentzian almost paracontact manifold Mn is called Lorentzian para-Kenmotsu manifold if [1]

(∇Xφ)Y = −g (φX, Y) ξ − η (Y) φX, (8)

for any vector fields X and Y on Mn, and ∇ is the operator of covariant differentiation with
respect to the Lorentzian metric g.

It can be easily seen that in a LP-Kenmotsu manifold Mn, the following relations hold [1]:

∇Xξ = −φ2X = −X− η (X) ξ, (9)

(∇Xη)Y = −g (X, Y) ξ − η (X) η (Y) , (10)

for any vector fields X and Y on Mn.

Also, in an LP-Kenmotsu manifold, the following relations hold [1]:

g(R(X, Y)Z, ξ) = η(R(X, Y)Z) = g(Y, Z)η(X)− g(X, Z)η(Y) (11)
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R(ξ, X)Y = g(X, Y)ξ − η(Y)X, (12)

R(X, Y)ξ = η(Y)X− η(X)Y, (13)

S(X, ξ) = (n− 1)η(X), (14)

S(φX, φY) = S(X, Y) + (n− 1)η(X)η(Y) (15)

for any vector fields X, Y and Z, where R is the Riemannian curvature tensor and S is the Ricci
tensor of Mn.

Definition 1. An LP- Kenmotsu manifold Mn is said to be symmetric if

(∇W R) (X, Y) Z = 0, (16)

for all vector fields X, Y, Z and W.

Definition 2. An LP-Kenmotsu manifold Mn is said to be φ-symmetric if

φ2 (∇W R) (X, Y) Z = 0, (17)

for all vector fields X, Y, Z and W.

Definition 3. An LP-Kenmotsu manifold Mn is said to be concircular symmetric if(
∇W C̃

)
(X, Y) Z = 0, (18)

for all vector fields X, Y and Z. Here C̃ is the concircular curvature tensor and is given by [16]

C̃ (X, Y) Z = R (X, Y) Z− r
n (n− 1)

[g (Y, Z) X− g (X, Z)Y] , (19)

for all vector fields X, Y and Z, where R and r are the Riemannian curvature tensor and scalar
curvature respectively.

Definition 4. An LP-Kenmotsu manifold Mn is said to be concircular φ-symmetric if

φ2 (∇W C̃
)
(X, Y) Z = 0, (20)

for all vector fields X, Y, Z and W.

III. Expression of R̃ (X, Y) Z in terms of R (X, Y) Z

In this section we express R̃ (X, Y) Z, the curvature tensor with respect to quarter-symmetric
metric connection, in terms of R (X, Y) Z which is the curvature tensor with respect to Riemannian
connection.

Let ∇̃ be a linear connection and ∇ be a Riemannian connection of an almost contact met-
ric manifold Mn such that

∇̃XY = ∇XY + U (X, Y) , (21)

where U is a tensor of type (1, 1). For ∇̃ to be a quarter-symmetric metric connection in Mn, we
have

U (X, Y) =
1
2
[
T (X, Y) + T′ (X, Y) + T′ (Y, X)

]
(22)

and
g(T′(X, Y), Z) = g(T(Z, X), Y). (23)
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From (1) and (23), we get
T′(X, Y) = η(Y)φX− g(φX, Y)ξ. (24)

Using (1) and (24) in (22), we obtain

U (X, Y) = η (Y) φX− g (φX, Y) ξ.

Thus the quarter-symmetric metric connection ∇̃ in an LP-Kenmotsu manifold is given by

∇̃XY = ∇XY + η (Y) φX− g (φX, Y) ξ, (25)

which is the relation between Riemannian connection and the quarter-symmetric metric connec-
tion on Lorentzian para-Kenmotsu manifolds.

Similarly, on simplication, we obtain the relation between the curvature tensor R̃ (X, Y) Z
of Mn with respect to the quarter-symmetric metric connection ∇̃ and the curvature tensor
R (X, Y) Z of Riemannian connection ∇ as follows:

R̃(X, Y)Z = R(X, Y)Z + [g(φY, Z) + g(Y, Z)ξ]φX]

− [g(φX, Z) + g(X, Z)ξ]φY

+ Xg(φY, Z)−Yg(φX, Z).

(26)

Then from (26), it follows that
S̃ (Y, Z) = S (Y, Z) , (27)

where S̃ and S are the Ricci tensors of the connections ∇̃ and ∇ respectively.

Further contracting (27), we get
r̃ = r, (28)

where r̃ and r are the scalar curvatures of the connections ∇̃ and ∇ respectively.

IV. Symmetry of LP-Kenmotsu manifold with respect to

quarter-symmetric metric connection

By the definition of symmetric LP-Kenmotsu manifold with respect to Riemannian connec-
tion, we define a symmetric LP-Kenmotsu manifold with respect to quarter-symmetric metric
connection by (

∇̃W R̃
)
(X, Y) Z = 0, (29)

where (
∇̃W R̃

)
(X, Y) Z = ∇̃W

(
R̃ (X, Y) Z

)
− R̃

((
∇̃W X, Y

)
Z
)

− R̃
((

X, ∇̃WY
)

Z
)
− R̃

(
(X, Y) ∇̃W Z

)
,

(30)

for all vector fields X, Y, Z and W.

∇̃W
(

R̃ (X, Y) Z
)
= ∇W

(
R̃ (X, Y) Z

)
+ η

(
R̃ (X, Y) Z

)
φW

− g
(
φW,

(
R̃ (X, Y) Z

))
ξ,

(31)

R̃
((
∇̃W X, Y

)
Z
)
= R̃ (∇W X, Y) Z + η (X) R̃ (φW, Y) Z

− g (φW, X) R̃ (ξ, Y) Z,
(32)

R̃
((

X, ∇̃WY
)

Z
)
= R̃ (X, ∇WY) Z + η (Y) R̃ (X, φW) Z

− g (φW, Y) R̃ (X, ξ) Z,
(33)
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R̃
(
(X, Y) ∇̃W Z

)
=R̃ (X, Y)∇W Z + η (Z) R̃ (X, Y) φW

g (φW, Z) R̃ (X, Y) ξ,
(34)

R̃(ξ, Y)Z = g(Y, Z)ξ − η(Z)Y− η(Z)φYξ + g(φY, Z)ξ, (35)

R̃(X, ξ)Z = η(Z)X− g(X, Z)ξ − η(Z)φXξ + g(φX, Z)ξ, (36)

R̃(X, Y)ξ = η(Y)X− η(X)Y + η(Y)φXξ − η(X)φYξ. (37)

By using (25), (31) to (37) in (30), we get(
∇̃W R̃

)
(X, Y) Z =

(
∇W R̃

)
(X, Y) Z + η

(
R̃ (X, Y) Z

)
φW

− g
(
φW, R̃ (X, Y) Z

)
ξ − η (X) R̃ (φW, Y) Z

− η (Y) R̃ (X, φW) Z + g (W, φX) R̃ (ξ, Y) Z

+ g (W, φY) R̃ (X, ξ) Z + g (W, φZ) R̃ (X, Y) ξ

− η (Z) R̃ (X, Y) φW.

(38)

Then by differentiating (26) with respect to W and on using (6), (7) and (10), we get

(∇W R̃)(X, Y)Z = (∇W R)(X, Y)Z− [g(φW, Y)η(Z) + g(φW, Z)η(Y)

+ Wg(Y, Z) + η(W)g(Y, Z)ξ]φX

+ [g(φW, X)η(Z) + g(φW, Z)η(X)

+ Wg(X, Z) + η(W)g(X, Z)ξ]φY

+ g(φX, Z)[g(φW, Y)ξ + η(Y)φW]

− g(φY, Z)[g(φW, X)ξ + η(X)φW]

+ [η(Y)g(X, Z)ξ − η(X)g(Y, Z)ξ]φW

+ [Yg(φW, X)− Xg(φW, Y)]η(Z)

+ g(φW, Z)[η(X)Y− η(Y)X].

(39)

Therefore, by using (2), (8) and (39) in (38), we obtain(
∇̃W R̃

)
(X, Y) Z = (∇W R) (X, Y) Z. (40)

Thus we can state the following:

Theorem 1. An LP-Kenmotsu manifold is symmetric with quarter-symmetric metric connection
∇̃ if and only if it is symmetric with respect to Riemannian connection ∇.

Corollary 1. An LP-Kenmotsu manifold is φ-symmetric with respect to quarter-symmetric
metric connection ∇̃ if and only if it is symmetric with respect to Riemannian connection ∇.

V. Concircular symmetry of LP-Kenmotsu manifold with respect to

quarter-symmetric metric connection

An LP-Kenmotsu manifold Mn is said to be a concircular symmetric with respect to
quarter-symmetric metric connection if

(∇̃W
˜̃C)(X, Y)Z = 0, (41)

for all vector fields X, Y, Z and W. Here the concircular curvature tensor ˜̃C with respect to
quarter-symmetric metric connection is given by

˜̃C(X, Y)Z = R̃(X, Y)Z− r̃
n(n− 1)

[g(Y, Z)X− g(X, Z)Y], (42)
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where R̃ is the Riemannian curvature tensor and r̃ is the scalar curvature of the quarter-symmetric
metric connection ∇̃.

Using (25), we can write

(∇̃W
˜̃C)(X, Y)Z = (∇W

˜̃C)(X, Y)Z + η(˜̃C(X, Y)Z)φW

− g(φ(˜̃C(X, Y)Z, W))ξ − η(X)˜̃C(φW, Y)Z

− η(Y)˜̃C(X, φW)Z− η(Z)˜̃C(X, Y)φW

+ g(φW, X)˜̃C(ξ, Y)Z + g(φW, Y)˜̃C(X, ξ)Z

+ g(φW, Z)˜̃C(X, Y)ξ.

(43)

Now on differentiating (42) with respect to W, we obtain

(∇W
˜̃C)(X, Y)Z = (∇W R̃)(X, Y)Z− ∇W r̃

n(n− 1)
[g(Y, Z)X− g(X, Z)Y]. (44)

Therefore, by using of (28) and (39), we get from (44) that

(∇W
˜̃C)(X, Y)Z = (∇W R)(X, Y)Z− [g(φW, Y)η(Z) + g(φW, Z)η(Y)

+ Wg(Y, Z) + η(W)g(Y, Z)ξ]φX + [g(φW, X)η(Z)

+ g(φW, Z)η(X) + Wg(X, Z) + η(W)g(X, Z)ξ]φY

+ g(φX, Z)[g(φW, Y)ξ + η(Y)φW]

− g(φY, Z)[g(φW, X)ξ + η(X)φW]

+ [η(Y)g(X, Z)ξ − η(X)g(Y, Z)ξ]φW

+ [Yg(φW, X)− Xg(φW, Y)]η(Z)

+ g(φW, Z)[η(X)Y− η(Y)X]

− ∇Wr
n(n− 1)

[g(Y, Z)X− g(X, Z)Y].

(45)

Then by making use of (19), we rewrite the above equation (45) as

(∇W
˜̃C)(X, Y)Z = (∇W C̃)(X, Y)Z− [g(φW, Y)η(Z) + g(φW, Z)η(Y)

+ Wg(Y, Z) + η(W)g(Y, Z)ξ]φX + [g(φW, X)η(Z)

+ g(φW, Z)η(X) + Wg(X, Z) + η(W)g(X, Z)ξ]φY

+ g(φX, Z)[g(φW, Y)ξ + η(Y)φW]

− g(φY, Z)[g(φW, X)ξ + η(X)φW]

+ [η(Y)g(X, Z)ξ − η(X)g(Y, Z)ξ]φW

+ [Yg(φW, X)− Xg(φW, Y)]η(Z)

+ g(φW, Z)[η(X)Y− η(Y)X].

(46)

Using (2), (6) and (46) in (43), we get

(∇̃W
˜̃C)(X, Y)Z = (∇W C̃)(X, Y)Z. (47)

Hence we can state the following:

Theorem 2. An LP-Kenmotsu manifold is concircular symmetric with respect to ∇̃ if and
only if it is so with respect to Riemannian connection ∇.
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Corollary 2. An LP-Kenmotsu manifold is concircular φ-symmetric with respect to ∇̃ if and only
if it is so with respect to Riemannian connection ∇.

Now taking (2), (6) and (45) in (43), we get

(∇̃W
˜̃C)(X, Y)Z = (∇W R)(X, Y)Z− ∇Wr

n(n− 1)
[g(Y, Z)X− g(X, Z)Y]. (48)

If scalar curvature r is constant, the above equation (48) reduces to

(∇̃W
˜̃C)(X, Y)Z = (∇W R)(X, Y)Z. (49)

Thus we have the following assertion.

Theorem 3. An LP-Kenmotsu manifold is concircular symmetric with respect to quarter-
symmetric metric connection ∇̃ if and only if it is symmetric with respect to Riemannian
connection ∇, provided the scalar curvature r is constant.

Corollary 3. An LP-Kenmotsu manifold is concircular φ-symmetric with respect to quarter-
symmetric metric connection ∇̃ if and only if it is symmetric with respect to Riemannian
connection ∇, provided the scalar curvature r is constant.

VI. Conclusion

We explore a class of Lorentzian almost paracontact metric manifolds known as the Lorentzian
para-Kenmotsu that accepts a quarter-symmetric connection. In relation to the quarter-symmetric
metric connection, the relations for the Ricci tensor and the Riemannian curvature tensor in a
Lorentzian para-Kenmotsu manifold were derived. Further, it was found that an LP-Kenmotsu
manifold is either φ-symmetric or concircular φ-symmetric with respect to quarter-symmetric
metric connection if and only if it is symmetric with respect to the Riemannian connection,
provided the scalar curvature of Riemannian connection is constant. The paper ends with a
handful of bibliography.
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