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Abstract

This research article introduces a novel family of distributions achieved through the methodol-
ogy of the π-power transformation technique. The study focuses on one specific member that is
inverse Weibull distribution within this family, which showcases a hazard function exhibiting
distinct J, reverse-J, bathtub, or monotonically increasing shapes. The article explores the
essential characteristics of this distribution and employs the maximum likelihood estimation
(MLE) method to estimate its associated parameters. To evaluate the accuracy of the estima-
tion procedure, a simulation experiment is conducted, revealing a decrease in biases and mean
square errors as sample sizes increase, even when working with small samples.

Furthermore, the practical application of the proposed distribution is demonstrated by an-
alyzing two real medical and traffic datasets. By employing model selection criteria and con-
ducting goodness-of-fit test statistics, the article establishes that the proposed model surpasses
existing models in performance. The application of this research work can be significant in
various fields where modeling and analyzing hazard functions or survival data are essential,
while also making contributions to probability theory and statistical inferences.

Keywords: π-Power transformation, Half logistic, Reliability, Pivotal quantity

1. Introduction

Statistical models play a crucial role in representing and analyzing datasets in practical applica-
tions. While traditional distributions such as Weibull, Lomax, gamma, log-normal, exponential,
beta, etc. have been widely used, they may not always provide a satisfactory fit for complex
datasets. To address this limitation, researchers have been actively working on developing new
models that offer greater adaptability and generality. These advancements often involve tech-
niques such as exponentiation and the T-X approach to generate more flexible distributions. In
this research article, we concentrate on an alternative approach called the π-power transformation
(PPT) family, which was introduced by Lone and Jan [14]. The PPT family provides a distinct
blend of high skewness and flexibility to the base distribution. The authors specifically examined
the Pie-exponentiated Weibull as a member of this family. Prior to its introduction, the alpha
power transformation (APT) approach had gained significant popularity among researchers in the
fields of probability theory and survival analysis. Using the APT technique, numerous authors
have put forward new generalized models and distribution families. For instance, Nassar et al. [20]
employed the APT technique to define the new family of distributions using log transformation.
Mead et al. [18] have further studied the APT family by providing some mathematical properties
which were not provided in Mahdavi and Kundu [15]. Further, Lomax distribution was trans-
formed using APT by Maruthan and Venkatachalam [17]. Ihtisham et al. [9] and Ihtisham et
al. [10] studied the Pareto and inverse Pareto distributions using the APT approach, with the
inverse Pareto distribution being applied to model real data related to extreme values. Similarly,
Hozaien et al. [8] and Klakattawi and Aljuhani [12] introduced new models using the APT family
of distributions. Alotaibi et al. [1] have introduced a new distribution as a weighted form of the
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APT method while Gomma et al. [6] introduced the Alpha power of the power Ailamujia distribu-
tion, which offers a flexible hazard function. They utilized this distribution to model COVID-19
datasets from Italy and the UK. Furthermore, Nassar et al. [22] defined a new family utilizing the
quantile function of the APT family whose cumulative distribution function (CDF) is

F (t) =
log [1 + (α− 1)G (t;ϕ)]

log (α)
; t > 0, α > 0, α ̸= 1,

where G (t;ϕ) is the CDF and ϕis the parameter space of base distribution. Similarly, Elbatal et
al. [5] introduced another new APT family whose CDF is

F (x) =
αG(x)G (x)

α
;α > 0, x ∈ ℜ.

Similarly, Kyurkchiev [13] has introduced a family of distribution based on the Verhulst logistic
function and its CDF is

F (x) =
2G (x)

1−G (x)
;x ∈ ℜ.

Another new method for transformation can be found in Kavya and Manoharan [11] and the CDF
of this transformation is

F (x) =
e

e− 1

{
1− e−G(x)

}
;x ∈ ℜ.

Also using the APT method Mandouch et al. [16] have reported a new two-parameter family of
distributions whose CDF is

F (x) =
αkW{G(x)} − 1

α− 1
;α > 0, α ̸= 1, x ∈ ℜ.

Lone and Jan [14] have introduced another new family using the concept of the APT family and
named it the Pie-Exponentiated transformed (PET) family whose CDF is

F (x) =
π{G(x)}α − 1

π − 1
;α > 0, x ∈ ℜ.

Hence, researchers are continuously developing and exploring new models and families of distri-
butions to better capture the characteristics of complex datasets. The PET family has emerged
as a popular approach, offering increased skewness and flexibility to the base distribution. These
advancements have led to the proposal of various generalized models and distributions, which have
been successfully applied to a range of datasets, including those related to COVID-19, reliability
engineering, and extreme values. Building upon the concept of the PET, we have introduced a
novel method to enhance existing distributions by incorporating a logistic form of CDF of any
continuous distribution, which we refer to as the π-power half logistic-G (π-PHL-G) family of dis-
tributions. This new family offers increased robustness compared to other compound probability
distributions and demonstrates great potential for modeling real-life datasets. The suggested family
possesses two parameters that enable it to capture a broader range of characteristics exhibited by
a dataset, including skewness, kurtosis, failure rate, and mathematically tractable. This enhanced
flexibility allows for a more accurate representation of complex data patterns and distributional
properties. By considering the π-PHL-G family, researchers, and practitioners can better account
for the intricate nature of real-world datasets, leading to improved modeling outcomes. Among
the members of the π-PHL-G family, one distribution stands out as particularly noteworthy-the
inverse Weibull distribution. The inverse Weibull distribution has long been employed in reliability
theory and life testing due to its ability to capture failure rates and survival probabilities effectively
see [19, 24, 25]. With the integration of the π-PHL-G framework, the Weibull distribution can
be further adapted and refined to better align with the unique characteristics observed in various
applications. We have organized the remaining sections of this paper as follows; π-PHL-G family is
introduced in Section 2, while its particular member, the π-PHL-Weibull distribution, is presented
in Section 3. Some statistical properties are discussed in Section 4, and in Section 5, we discuss
statistical inferences of the π-PHLIW distribution. The simulation experiment, application, and
conclusion of the suggested model are presented in Sections 6, 7, and 8 respectively.
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2. π-PHL-G Family and Some Important Functions

Let Y ∼ π-PHL-G family, then the CDF and PDF of π-PHL-G family U (y; Ψ) and u (y; Ψ) for
y ∈ ℜ, and Ψ > 0 is vector of parameters are defined as

U(y; Ψ) =
π(

2T (y;Ψ)
1+T (y;Ψ) ) − 1

π − 1
; y ∈ ℜ. (1)

u(y; Ψ) =
(log π)

π − 1
π(

2T (y;Ψ)
1+T (y;Ψ) ) 2t(y; Ψ)

[1 + T (y; Ψ)]
2 ; y ∈ ℜ. (2)

where T (y; Ψ) and t (y; Ψ) are the CDF and PDF of any continuous distribution and T̄ (y; Ψ) is the
reliability function. Further reliability and hazard functions of π-PHL-G family can be expressed
as

R(y; Ψ) = 1−

{
π(

2T (y;Ψ)
1+T (y;Ψ) ) − 1

π − 1

}
; y ∈ ℜ.

h(y; Ψ) =
(log π)

π − 1
π(

2T (y;Ψ)
1+T (y;Ψ) ) 2t(y; Ψ)

[1 + T (y; Ψ)]
2

[
1−

{
π(

2T (y;Ψ)
1+T (y;Ψ) ) − 1

π − 1

}]−1

.

2.1. Qunatile function and Random deviation

QY (p) = T−1

{
log ((π − 1) p+ 1)

(2 log π − log ((π − 1) p+ 1))

}
. (3)

and

y = T−1

{
log ((π − 1)u+ 1)

(2 log π − log ((π − 1)u+ 1))

}
.

2.2. Linear form of π-PHL-G distribution

The CDF defined in Equation 6 can be expressed in the linear form as

U(y; Ψ) =
1

π − 1

∞∑
i=0

∞∑
j=0

2i (log π)
i

i!

(
i
j

)
T i+j(y; Ψ)− 1

π − 1
. (4)

Now differentiating Equation 5 with respect to y we get the linear form of PDF as

u(y; Ψ) =
1

π − 1

∞∑
i=0

∞∑
j=0

2i (i+ j) (log π)
i

i!

(
i
j

)
T i+j−1(y; Ψ)t(y; Ψ).

u(y; Ψ) =
∞∑
i=0

∞∑
j=0

∆ijT
i+j−1(y; Ψ)t(y; Ψ), (5)

where ∆ij =
(

1
π−1

)
2i(i+j)(log π)i

i!

(
i
j

)
.

3. π-Power Half Logistic Inverse Weibull (π-PHLIW) Distribution

Let Y be a continuous random variable following the inverse Weibull distribution, then the CDF
and PDF are

T (y; Ψ) = e−βy−δ

.

t(y; Ψ) = βδy−(δ+1)e−βy−δ

.
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Now using Equation 3 as a base distribution, we introduce a new distribution π-PHLIW distribution
as a special member having CDF

U(y;β, δ) =
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

π − 1
;β, δ > 0, y > 0. (6)

The PDF of the π-PHLIW distribution can be expressed as

u(y;β, δ) =
2βδ(log π)

π − 1
π

(
2e−βy−δ

1+e−βy−δ

)
y−(δ+1)e−βy−δ[
1 + e−βy−δ

]2 ; y > 0. (7)

Now some key functions like reliability and hazard function of the π-PHLIW distribution can be
presented as

R(y;β, δ) = 1− 1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}
; y > 0.

h(y;β, δ) =
2βδ(log π)

π − 1
π

(
2e−βy−δ

1+e−βy−δ

)
y−(δ+1)e−βy−δ[
1 + e−βy−δ

]2
1−

π

(
2e−βy−δ

1+e−βy−δ

)
− 1

π − 1



−1

.

3.1. Quantile function and Random deviation

The quantile function for the suggested distribution can be obtained by inverting the CDF defined
in Equation 6 as

QY (p) =

[
log

{
log ((π − 1) p+ 1)

(2 log π − log ((π − 1) p+ 1))

}−1/β
]−1/δ

. (8)

also, random number deviate can be expressed as

y =

[
log

{
log ((π − 1)u+ 1)

(2 log π − log ((π − 1)u+ 1))

}−1/β
]−1/δ

.

The π-PHLIW distribution has a density plot that can take on a diversity of shapes, including
symmetrical, left-skewed, right-skewed, or decreasing, and Figure 1 (left) shows some examples of
these shapes. The HRF, on the other hand, can take on the shapes of an increasing, a j, or a
reverse-j, and Figure 1 (right) shows some examples of these shapes.

4. Statistical properties of π-PHLIW distribution

4.1. Linear form of PDF of π-PHLIW distribution

After some mathematics using Equation 7, the PDF of π-PHLIW distribution can be obtained in
a linear form as

u(y;β, δ) =
∞∑
i=0

∞∑
j=0

∆∗
ijy

−(δ+1)e−(i+j)βy−δ

, (9)

where ∆∗
ij = βδ∆ij .
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Figure 1: Shapes of PDF and HRF of π-PHLIW distribution.

4.2. Moments

The rth moment of π-PHLIW distribution is

E [Y r] =
∞∑
i=0

∞∑
j=0

∆∗
ij

∞∫
0

yr−δ−1e−(i+j)βy−δ

dy

=
∞∑
i=0

∞∑
j=0

∆∗
ij

∞∫
0

t−
r
δ+1−1e−(i+j)βtdt

=
∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1Γ
(
− r

δ + 1
)

{(i+ j)β}−
r
δ+1

=
∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1Γ
(
δ−r
δ

)
{(i+ j)β}

δ−r
δ

; δ > r.

(10)

Now mean and variance of π-PHLIW distribution can be expressed as

E [Y ] =
∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1Γ
(
δ−1
δ

)
{(i+ j)β}

δ−1
δ

; δ > 1.

and

E
[
Y 2
]
=

∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1Γ
(
δ−2
δ

)
{(i+ j)β}

δ−2
δ

; δ > 2.

V [Y ] = E
[
Y 2
]
− [E (Y )]

2

=
∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1Γ
(
δ−2
δ

)
{(i+ j)β}

δ−2
δ

−

 ∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1Γ
(
δ−1
δ

)
{(i+ j)β}

δ−1
δ

2

; δ > 2.
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4.3. Moment Generating Function (MGF)

For any real number t, the MGF of π-PHLIW distribution can be defined as

MY (t) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

tk

k!

∞∫
0

yr−(δ+1)e−(i+j)βy−δ

dy

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

tk

k!

∞∫
0

t−
r
δ+1−1e−(i+j)βtdt

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

tk

k!

δ−1Γ
(
− r

δ + 1
)

{(i+ j)β}−
r
δ+1

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

tk

k!

δ−1Γ
(
δ−r
δ

)
{(i+ j)β}

δ−r
δ

; δ > r.

4.4. Characteristic Function

For any real number t, the characteristic function of π-PHLIW distribution can be defined as

ΦY (t) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

(vt)
k

k!

∞∫
0

yr−(δ+1)e−(i+j)βy−δ

dy

=

∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

(vt)
k

k!

∞∫
0

t−
r
δ+1−1e−(i+j)βtdt

=

∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

(vt)
k

k!

δ−1Γ
(
− r

δ + 1
)

{(i+ j)β}−
r
δ+1

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

(vt)
k

k!

δ−1Γ
(
δ−r
δ

)
{(i+ j)β}

δ−r
δ

; δ > r.

where v =
√
−1.

4.5. Incomplete moment

The incomplete moment for π-PHLIW distribution is given by

Mr(z) =
∞∑
i=0

∞∑
j=0

∆∗
ij

z∫
0

yr−δ−1e−(i+j)βy−δ

dy

=
∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1
[
γ
(
δ−r
δ , (i+ j)βz−δ

)]
{(i+ j)β}

δ−r
δ

; δ > r.

where γ(.) incomplete gamma function.

4.6. Mean Residual Life

The Mean residual life for π-PHLIW distribution is given by

M(z) =
1

F (z)

µ−
∞∑
i=0

∞∑
j=0

∆∗
ij

z∫
0

y−δe−(i+j)βy−δ

dy

− z

=
1

F (z)

µ−
∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1
[
γ
(
δ+1
δ , (i+ j)βz−δ

)]
{(i+ j)β}

δ+1
δ

− z

where γ(.) incomplete gamma function.
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4.7. Order Statistics

Let yi(i = 1, 2, ..., n) ∼ π − PHLIW (y;β, δ) with CDF U(yi;β, δ) and PDF u(yi;β, δ). If ur(y)
denote the PDF of rth order statistic Y(r), then their CDF and PDF are given by Ur(y) =
IU(y)(r, n− r + 1)

ur(y) =
d

dy
[Ur(y)] =

d

dy

[
IU(y)(r, n− r + 1)

]
=

1

B(r, n− r + 1)
Ur−1(y)u(y) [1− U(y)]

n−r
.

ur(y) =
1

B(r, n− r + 1)

2βδ(log π)

π − 1
π

(
2e−βy−δ

1+e−βy−δ

)
y−(δ+1)e−βy−δ[
1 + e−βy−δ

]2
[

1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}]r−1

[
1−

{
1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}}]n−r

.

The CDF and PDF of first order statistic Y(1) are given by

U1(y) = 1−

[
1−

{
1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}}]n
; y > 0.

u1(y) =
2nβδ(log π)

π − 1
π

(
2e−βy−δ

1+e−βy−δ

)
y−(δ+1)e−βy−δ[
1 + e−βy−δ

]2
[
1−

{
1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}}]n−1

; y > 0.

The CDF and PDF of first order statistic Y(n) are given by

Un(y) =

[
1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}]n
; y > 0.

un(y) =
2nβδ(log π)

π − 1
π

(
2e−βy−δ

1+e−βy−δ

)
y−(δ+1)e−βy−δ[
1 + e−βy−δ

]2
[

1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}]n−1

; y > 0.

The Joint PDF of rth and sth order statistics is given by

urs(x, y) =
n!

(r − 1)!(s− r − 1)!(n− s)!
Ur−1(x).u(x) [U(y)− U(x)]

s−r−1
u(y). [1− U(y)]

n−s

urs(x, y) =
n!

(r − 1)!(s− r − 1)!(n− s)!
π

{(
2e−βx−δ

1+e−βx−δ

)
+

(
2e−βy−δ

1+e−βy−δ

)}
e−β(x−δ+y−δ) (xy)

−(δ+1)[
1 + e−βy−δ

]2 [
1 + e−βx−δ

]2
[
2βδ(log π)

π − 1

]2 [
1

π − 1

{
π

(
2e−βx−δ

1+e−βx−δ

)
− 1

}]r−1

[{
1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}}
−

{
1

π − 1

{
π

(
2e−βx−δ

1+e−βx−δ

)
− 1

}}]s−r−1

[
1−

{
1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}}]n−s

;x > 0, y > 0.

The Joint PDF of the 1st and nth order statistics are given by

u1n(x, y) = n(n− 1) [U(y)− U(x)]
n−2

u(x).u(y)

u1n(x, y) = n(n− 1)

(
2βδ(log π)

π − 1

)2
 1

π − 1

π

(
2e−βy−δ

1+e−βy−δ

)
− 1


−

 1

π − 1

π

(
2e−βx−δ

1+e−βx−δ

)
− 1



n−2

π

{(
2e−βx−δ

1+e−βx−δ

)
+

(
2e−βy−δ

1+e−βy−δ

)}
e−β(x−δ+y−δ) (xy)−(δ+1)[

1 + e−βy−δ
]2 [

1 + e−βx−δ
]2 ;x > 0, y > 0
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4.8. System Reliability Function

4.8.1 Series System:

Consider a system with n independent components, each component follows π − PHLIW (y;β, δ)
distribution. Let’s assume Ti(i = 1, 2, ..., n) ∼ π−PHLIW (y;β, δ) with CDF U(ti;β, δ) and PDF
u(ti;β, δ), then the system reliability for linear consecutive (series system) is given by

RS(t) =
n∏

i=1

Ri (t) =

[
1−

{
1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}}]n
;β, δ > 0, t > 0.

The CDF system reliability for linear consecutive (series system) is given by

FS(t) = 1−
n∏

i=1

Ri (t) = 1−

[
1−

{
1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}}]n
;β, δ > 0, t > 0. (11)

Differentiating the Equation 11, the PDF system reliability for linear consecutive (series system)
is given by

fS(t) =
dFS(t)

dt
=

2nβδ(log π)

π − 1
π

(
2e−βt−δ

1+e−βt−δ

)
t−(δ+1)e−βt−δ[
1 + e−βt−δ

]2
[
1−

{
1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}}]n−1

The Hazard function system reliability for linear consecutive (series system) is obtained by the
ratio of PDF and Reliability function of linear consecutive (series system).

hS(t) =
fS(t)

RS(t)
=

2nβδ(log π)

π − 1
π

(
2e−βt−δ

1+e−βt−δ

)
t−(δ+1)e−βt−δ[
1 + e−βt−δ

]2
[
1−

{
1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}}]−1

.

4.8.2 Parallel System:

Consider a system with n independent components, each component follows π − PHLIW (y;β, δ)
distribution. Lets assume Ti(i = 1, 2, ..., n) ∼ π − PHLIW (y;β, δ) with CDF U(ti;β, δ) and PDF
u(ti;β, δ), then the reliability function for parallel system is given by

RP (t) = 1−
n∏

i=1

(1−Ri(t)) = 1−

[
1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}]n
;β, δ > 0, t > 0.

The CDF for the parallel system is given by

FP (t) =

[
1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}]n
;β, δ > 0, t > 0.

Differentiating the above equation, the PDF formula for the parallel system is given by

fP (t) =
2nβδ(log π)

π − 1
π

(
2e−βt−δ

1+e−βt−δ

)
t−(δ+1)e−βt−δ[
1 + e−βt−δ

]2
[

1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}]n−1

The Hazard function for a parallel system is obtained by the ratio of PDF and the Reliability
function of a parallel system.

hP (t) =

2nβδ(log π)
π−1 π

(
2e−βt−δ

1+e−βt−δ

)
t−(δ+1)e−βt−δ

[1+e−βt−δ ]
2

[
1

π−1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}]n−1

1−

[
1

π−1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}]n .
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5. Statistical Inference

5.1. Estimation

The parameters of the suggested model are estimated using the maximum likelihood method
(MLE). Let yi(i = 1, 2, ...,m) ∼ π − PHLIW (y;β, δ) with PDF u(yi;β, δ)then the log-likelihood
function can be calculated as

ℓ
(
y;β, δ

)
= n log (2βδ(log π))−n log (π − 1) + (log π)

n∑
i=1

(
2e−βy−δ

i

1 + e−βy−δ
i

)
− (δ + 1)

n∑
i=1

log yi

− β
n∑

i=1

y−δ
i − 2

n∑
i=1

log
(
1 + e−βy−δ

i

) .

(12)
Differentiating Equation 12 with respect to associated parameters, we get the first-order derivatives
as

∂ℓ

∂β
=

n

β
− (log π)

n∑
i=1

2y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}2 −
n∑

i=1

y−δ
i + 2

n∑
i=1

y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

} .
∂ℓ

∂δ
=

n

δ
+(log π)

n∑
i=1

2βy−δ
i (log yi) e

−βy−δ
i{

1 + e−βy−δ
i

}2 −
n∑

i=1

log yi+β
n∑

i=1

y−δ
i (log yi)−2

n∑
i=1

y−δ
i (log yi)βe

−βy−δ
i{

1 + e−βy−δ
i

}
By solving the above two non-linear equations using suitable software one can obtain the estimates
under the MLE method.

5.2. Cramer-Rao (CR) Inequality

If T (y1, ..., yn) is an unbiased estimator for k(ω), a function of parameter ω, then

V ar[T (y1, ..., yn)] ⩾

{
d
dωk(ω)

}2
E
(

∂
∂ω logL

) =
{k′(ω)}2

I(ω)
,

where I(ω) is the information on ω, supplied by the sample. To define CR lower bound (CRLB)
for β when δ is supposed to be known, then CRLB for an unbiased estimator T1(y1, ..., yn) of a
parameter β is given by 1

I(β) , where

I (β) = −E

[
∂2ℓ

∂β2

]
=

n

β2
+(log π)

n∑
i=1

E

 ∂

∂β

 2y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}2


−2

n∑
i=1

E

 ∂

∂β

 y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}



and

∂2ℓ

∂β2
= − n

β2
− (log π)

n∑
i=1

∂

∂β

 2y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}2

+ 2
n∑

i=1

∂

∂β

 y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}


Again CRLB for δ when β is supposed to be known, then CRLB for an unbiased estimator
T2(y1, ..., yn) of a parameter δ is given by 1

I(δ) , where

I (δ) = −E

[
∂2ℓ

∂δ2

]
=

n

δ2
− (log π)

n∑
i=1

E

 ∂

∂δ

2βy−δ
i (log yi) e

−βy−δ
i{

1 + e−βy−δ
i

}2


+ β

n∑
i=1

E
{
y−δ
i (log yi)

2
}

+ 2
n∑

i=1

E

 ∂

∂δ

y−δ
i (log yi)βe

−βy−δ
i{

1 + e−βy−δ
i

}


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And

∂2ℓ

∂δ2
= − n

δ2
+(log π)

n∑
i=1

∂

∂δ

2βy−δ
i (log yi) e

−βy−δ
i{

1 + e−βy−δ
i

}2

−β

n∑
i=1

y−δ
i (log yi)

2−2

n∑
i=1

∂

∂δ

y−δ
i (log yi)βe

−βy−δ
i{

1 + e−βy−δ
i

}
.

5.3. Asymptotical Properties

A consistent solution of the likelihood equation is asymptotically normally distributed about true

value θ0. Thus, θ̂ is asymptotically N
(
θ0,

1
I(θ0)

)
as n → ∞, Now β̂ is asymptotically N

(
β, 1

I(β)

)
as n → ∞ where

I (β) = −E

[
∂2ℓ

∂β2

]
=

n

β2
+(log π)

n∑
i=1

E

 ∂

∂β

 2y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}2


−2

n∑
i=1

E

 ∂

∂β

 y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}

.

δ̂ is asymptotically N
(
δ, 1

I(δ)

)
as n → ∞ where

I (δ) = −E

[
∂2ℓ

∂δ2

]
=

n

δ2
− (log π)

n∑
i=1

E

 ∂

∂δ

2βy−δ
i (log yi) e

−βy−δ
i{

1 + e−βy−δ
i

}2


+ β

n∑
i=1

E
{
y−δ
i (log yi)

2
}

+ 2

n∑
i=1

E

 ∂

∂δ

y−δ
i (log yi)βe

−βy−δ
i{

1 + e−βy−δ
i

}



Pivotal Quantity (PQ): Let yi(i = 1, ...,m) ∼ π − PHLIW (y;β, δ) with CDF U(yi;β, δ) then
pivotal quantity is defined as

−2
n∑

i=1

ln [U(yi;β, δ)] ∼ χ2
2n ⇒ −2

n∑
i=1

ln [1− U(yi;β, δ)] ∼ χ2
2n

PQ = −2

n∑
i=1

ln

 1

π − 1

π

(
2e

−βy
−δ
i

1+e
−βy

−δ
i

)
− 1


 ∼ χ2

2n

⇒ PQ = −2
n∑

i=1

ln

1−
 1

π − 1

π

(
2e

−βy
−δ
i

1+e
−βy

−δ
i

)
− 1



 ∼ χ2

2n.

Let xi(i = 1, ...,m) ∼ π − PHLIW (x;β, δ) and yi(i = 1, ...,m) ∼ π − PHLIW (y;β, δ) are
two independent random variable with CDF U(xi;β, δ) and U(yi;β, δ) respectively, then PQ1

PQ2
∼

Beta2 (m,n) and PQ1

PQ1+PQ2
∼ Beta1 (m,n) and n

m
PQ1

PQ2
∼ F (m,n) , where

PQ1 = −2
n∑

i=1

ln

 1

π − 1

π

(
2e

−βx
−δ
i

1+e
−βx

−δ
i

)
− 1


.

and

PQ2 = −2
n∑

i=1

ln

 1

π − 1

π

(
2e

−βy
−δ
i

1+e
−βy

−δ
i

)
− 1


.

5.4. Confidence interval for Large Sample

Under certain conditions, the first derivative of the logarithm of the likelihood function w. r. to
parameter θ viz., ∂ logL

∂θ , is asymptotically normal with mean zero and variance given by:

V ar

(
∂ logL

∂θ

)
= E

(
∂ logL

∂θ

)2

= −E

(
∂2 logL

∂θ2

)
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Hence for large n, Z =
∂
∂θ logL√

V ar( ∂
∂θ logL)

∼ N (0, 1) The result enables us to obtain a confidence

interval for the parameter θ in a large sample. Thus for a large sample, the confidence interval for θ
with confidence coefficient (1−c)% is obtained by converting the inequalities in P (|Z| ⩽ γc) = 1−c

where γc is given by 1
2π

γc∫
−γc

exp
(
−t2/2

)
dt = 1− c. Thus confidence interval for β and δ are given

by β̂ ± SE
(
β̂
)
and δ̂ ± SE

(
δ̂
)
at the confidence coefficient (1− c)%.

6. Simulation

In our research study, we employed the maxLik R package, developed by Henningsen and Toomet
[7], to generate samples from the quantile function described in Equation 8 for various combinations
of parameters of the π − PHLIW distribution. The MLEs were then computed for each sample
using the maxLik() function and the BFGS algorithm. This analysis allowed us to investigate
issues related to parameter estimation and determine the direction and magnitude of bias in the
MLEs, whether it be overestimation or underestimation.

In our simulation, we utilized sample sizes ranging from 100 to 400 with increments of 100. The
entire process was repeated 1000 times in order to obtain estimates of the mean square error (MSE).
The Biases and MSEs for the four different parameter combinations are presented in Tables 1 to
4. The results demonstrate that as the sample size increases, the corresponding Biases and MSEs
decrease toward zero. This finding suggests that the MLE method exhibits asymptotic efficiency,
and consistency, and follows the invariance property.

Table 1: Bias and MSE for (β = 1.25, δ = 0.5)

Sample size
Bias MSE

β δ β δ

100 0.008 0.0085 0.0153 0.0018
200 0.001 0.0042 0.0072 9.00E-04
300 0.0035 0.0015 0.005 5.00E-04
400 0.0016 0.0026 0.0041 4.00E-04

Table 2: Bias and MSE for (β = 0.75, δ = 0.75)

Sample size
Bias MSE

β δ β δ

100 0.0015 0.0102 0.0077 0.0036
200 -9.00E-04 0.0057 0.0035 0.0018
300 0.0032 0.0019 0.0025 0.0012
400 2.00E-04 0.0031 0.0018 9.00E-04

Table 3: Bias and MSE for (β = 0.5, δ = 1.25)

Sample size
Bias MSE

β δ β δ

100 0.0035 0.0164 0.0046 0.0109
200 -0.0011 0.0083 0.0022 0.0055
300 0.0005 0.0031 0.0015 0.0036
400 -0.0018 0.0051 0.0011 0.0024
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Table 4: Bias and MSE for (β = 0.25, δ = 2.5)

Sample size
Bias MSE

β δ β δ

100 -6.00E-04 0.0207 0.0019 0.0149
200 0.0012 0.0056 9.00E-04 0.0068
300 7.00E-04 0.005 7.00E-04 0.005
400 -8.00E-04 0.0055 5.00E-04 0.0038

7. Application

In this section, we demonstrate the application of the π-PHLIW distribution using two real
datasets. The datasets utilized for applying the suggested distribution are presented below.
Data set I:
A real data set of the relief time of 20 patients taking an analgesic is provided in this section and
can be found in Chaudhary et al. [3]. Data are as follows: 1.4, 1.1, 1.7, 1.3, 1.8, 1.9, 2.2, 1.6, 2.7,
1.7, 1.8, 4.1, 1.2, 1.5, 3, 1.4, 2.3, 1.7, 2.0, 1.6
Data set II:
We consider the TRAFFIC data set given by Bain and Engelhardt [2] which represents 128 ob-
servations on times, in seconds, between the arrival of vehicles at a particular location on a road:
”0.2, 0.5, 0.8, 0.8, 0.8, 1.0, 1.1, 1.2, 1.2, 1.2, 1.2, 1.2, 1.3, 1.4, 1.5, 1.5, 1.6, 1.6, 1.6, 1.7, 1.8, 1.8,
1.8, 1.8, 1.8, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.3, 2.4, 2.4, 2.5, 2.5, 2.5, 2.6, 2.6,
2.7, 2.8, 2.8, 2.9, 3.0, 3.0, 3.1, 3.2, 3.4, 3.7, 3.9, 3.9, 3.9, 4.6, 4.7, 5.0, 5.1, 5.6, 5.7, 6.0, 6.0, 6.1, 6.6,
6.9, 6.9, 7.3, 7.6, 7.9, 8.0, 8.3, 8.8, 8.8, 9.3, 9.4, 9.5, 10.1, 11.0, 11.3, 11.9, 11.9, 12.3, 12.9, 12.9,
13.0, 13.8, 14.5, 14.9, 15.3, 15.4, 15.9, 16.2, 17.6, 20.1, 20.3, 20.6, 21.4, 22.8, 23.7, 24.7, 29.7, 30.6,
31.0, 33.7, 34.1, 34.7, 36.8, 40.1, 40.2, 41.3, 42.0, 44.8, 49.8, 51.7, 55.7, 56.5, 58.1, 70.5, 72.6, 87.1,
88.6, 91.7, 119.8, 125.3”

7.1. Model Analysis

We computed several well-known goodness-of-fit statistics to analyze both data sets I and II.
The fitted models were evaluated using various metrics, including the log-likelihood value (-2logL),
Akaike information criterion (AIC), Hannan-Quinn information criterion (HQIC), Anderson-Darling
(AD), Kolmogrov-Smirnov (KS), and Cramer-von Mises (CVM) with corresponding p-values. All
the essential computations and graphical plots were performed using the R software Wickham and
Grolemund [26] and the R Core Team [23]. To compare the fitting capability of the π − PHLIW
model, we have selected several models such as the Lindley Weibull (LW) Cordeiro et al. [4], alpha
power exponential (APE) Mahdavi and Kundu [15], Weibull, APT-Weibull (APTW) Nassar et al.
[21], and new APT-Weibull (NAPTW) Elbatal et al. [5]. We have presented the KS and PP
plots which provide an estimate of the CDF based on both data sets under study in Figures 2
and 3 (left for dataset-I, right for dataset-II). The estimated values of the parameters and their
associated standard errors (SE) for both datasets were presented in Tables 5 and 7, which were
obtained using the MLE method. Additionally, Tables 5 and 7 showcase model selection criteria
such as log-likelihood, HQIC, and AIC, and goodness of fit statistics such as KS along with p-value
for both datasets. Our observations show that the π-PHLIW model has the least statistics com-
pared to the LW, APE, Weibull, APTW, and NAPTW distributions, along with the corresponding
highest p-values. This indicates that the PiPHLIW model is more flexible and provides a good
fit. Furthermore, we have provided graphical illustrations of the fitted models in Figures 6 and 8,
which support our findings that the π-PHLIW model outperforms the other candidate models.

8. Conclusion

In this study, we have introduced an innovative distribution family called the π-power half logistic-G
family. Drawing inspiration from the PPT methodology, we selected the Inverse Weibull distribu-
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Figure 2: Graphs of KS plot of π − PHLIW distribution (left for dataset-I, right for dataset-II)

Table 5: Estimated parameters using the MLE method for the data set-I

Model parameter SE parameter SE parameter SE
π-PHLIW(β, δ) 6.0338 1.9673 3.8496 0.6916 – –
LW(α, β, λ) 9.2825 21.6417 2.0201 0.3020 0.0053 0.0241
APE(α, λ) 229.1815 16.7718 1.2110 0.1415 – –
Weibull(α, β) 0.1216 0.0563 2.7869 0.4274 – –
APTW(α, δ, λ) 93.1808 5.0649 1.6946 0.2693 0.6935 0.1681
NAPTW(α, β, λ) 105.5443 172.8892 1.5803 0.2237 0.8243 0.0895

tion as the foundation for this new family. The π-PHLIW distribution offers a wide range of hazard
function shapes, including increasing, bathtub, J-shaped, and reverse-J-shaped. By employing the
maximum likelihood estimation technique, we explored the statistical properties of this distribution
and estimated its parameters. To assess the accuracy of our estimation method, we conducted a
Monte Carlo simulation. The results revealed that the mean square errors decrease as the sample
size increases, even when dealing with small samples. To demonstrate the practical utility of the
π-PHLIW distribution, we applied it to two real engineering datasets. Through model selection
criteria and goodness-of-fit tests, we compared its performance against seven existing models. Our
findings strongly support the superiority of the π-PHLIW distribution over the alternative models,
suggesting its potential application in various fields, such as medical and life sciences, reliability
engineering, actuarial science, and survival analysis. Additionally, the π-power transformation
family of distributions holds promise as a foundation for developing novel models in the future.
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Figure 3: Graphs of PP plot of π − PHLIW distribution (left for dataset-I, right for dataset-II)
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Figure 4: Fitted PDF (left) and fitted CDF vs empirical CDF (right) (dataset-I)
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Figure 5: Fitted PDF (left) and fitted CDF vs empirical CDF (right) (dataset-II)

Table 8: Fitted statistics for the data set-II

Model -2logL AIC HQIC KS p(KS) CVM p(CVM) AD p(AD)

π-PHLIW 921.5701 925.5701 927.8877 0.0599 0.7479 0.1416 0.4165 1.0183 0.3477
LW 933.4466 939.4466 942.923 0.1219 0.0445 0.4260 0.0616 2.6348 0.0422
APE 935.1745 939.1745 941.4921 0.1518 0.0055 0.6127 0.0207 3.6848 0.0125
Weibull 939.3848 943.3848 945.7024 0.1163 0.0628 0.4712 0.0470 2.9577 0.0288
APTW 939.4115 945.4115 948.8879 0.1160 0.0637 0.4767 0.0455 2.9670 0.0285
NAPTW 926.9602 932.9602 936.4366 0.1096 0.0926 0.2956 0.1390 1.9828 0.0940

[20] Nassar, M., Alzaatreh, A., Abo-Kasem, O., Mead, M., and Mansoor, M. (2018a). A new
family of generalized distributions based on alpha power transformation with application to
cancer data. Annals of Data Science, 5, 421-436.

[21] Nassar, M., Alzaatreh, A., Mead, M., and Abo-Kasem, O. (2017). Alpha power Weibull
distribution: Properties and applications. Communications in Statistics - Theory and Methods,
46(20):10236-10252.

[22] Nassar, M., Dey, S., and Kumar, D. (2018). Logarithm transformed Lomax distribution with
applications. Calcutta Statistical Association Bulletin, 70(2), 122-135.

[23] R Core Team (2023). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

[24] Sapkota, L. P., and Kumar, V. (2022). Odd Lomax Generalized Exponential Distribution:
Application to Engineering and COVID-19 data. Pakistan Journal of Statistics and Operation
Research, 18(4), 883-900. https://doi.org/10.18187/pjsor.v18i4.4149

[25] Sapkota, L. P. and Kumar, V. (2023). Half Cauchy Generalized Rayleigh Distribution: Theory
and Application. South East Asian J. of Mathematics and Mathematical Sciences, 19(1), 335-
360.

[26] Wickham, H., and Grolemund, G. (2017). R for data science: Import, tidy, transform, visu-
alize, and model data. O’Reilly Media, Inc.

RT&A, No 4 (76) 
Volume 18, December 2023 

590




