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Abstract

In this article, we propose a new class of distributions defined by a quantile function, which is the sum
of the quantile functions of the Power and Weibull distributions. Various distributional properties and
reliability characteristics of the class are discussed. To examine the usefulness of the model, the model is
applied to a real life datasets. Parameters are estimated using maximum likelihood estimation technique.
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1. Introduction

In modelling and analysis of statistical data, probability distribution can be specified either
in terms of distribution function or by the quantile function. Quantile functions have several
interesting properties that are not shared by distributions, which makes it more convenient for
analysis. For example, the sum of two quantile functions is again a quantile function. For a
nonnegative random variable X with distribution function F(x), the quantile function Q(u) is
defined by Nair and Sankaran [7]

Q(u) = F−1(u) = in f {x : F(x) ≥ u}, 0 ≤ u ≤ 1 (1)

For every -∞ < x < ∞ and 0 < u < 1, we have

F(x) ≥ u if and only if Q(u) ≤ x.

Thus, if there exists an x such that F(x) = u, then F(Q(u)) = u and Q(u) is the smallest value of
x satisfying F(x) = u. Further, if F(x) is continuous and strictly increasing, Q(u) is the unique
value x such that F(x) = u, and so by solving the equation F(x) = u, we can find x in terms of u
which is the quantile function of X.

If f (x) is the probability function of X, then f (Q(u)) is called the density quantile function.
The derivative of Q(u),

q(u) = Q
′
(u),

is known as the quantile density function of X. If F(x) is right continuous and strictly increasing,
we have

F(Q(u)) = u (2)
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so that F(x) = u implies x = Q(u). When f(x) is the probability density function (PDF) of X; we
have from ( 2)

q(u) f (Q(u)) = 1 (3)

Quantile function has several properties that are not shared by distribution function. See Nair
and Sankaran [7] for details. For example, the sum of two quantile functions is again a quantile
function. Further, the product of two positive quantile functions is again a quantile function in
the nonnegative setup. There are explicit general distribution forms for the quantile function
of order statistics. It is easier to generate random numbers from the quantile function. A major
development in portraying quantile functions to model statistical data is given by Hastings et al.
[5], who introduced a family of distributions by a quantile function. This was refined later by
Tukey [13] to form a symmetric distribution, called the Tukey lambda distribution.

This model was generalized in different ways, referred as lambda distributions. These include
various forms of quantile functions discussed in Ramberg and Schmeiser [10], Ramberg [8],
Ramberg et al. [9] and Freimer et al. [1]. Govindarajulu [3] introduced a new quantile function by
taking the weighted sum of quantile functions of two power distributions. Hankin and Lee [4]
presented a new power - Pareto distribution by taking the product of power and Pareto quantile
functions. Van Staden and Loots [14] developed a four-parameter distribution, using a weighted
sum of the generalized Pareto and its reflection quantile functions. Sankaran et al. [12] developed
a new quantile function based on the sum of quantile functions of generalized Pareto and Weibull
quantile functions. Sankaran and Dileep [11] developed a new quantile function based on the
sum of quantile functions of half logistic and exponential geometric distributions.

The aim of the present work is to introduce a new quantile function that is useful in reliability
analysis. The proposed quantile function is derived by taking the sum of quantile functions
of power and Weibull distributions. The survival function and quantile function of power
distribution are respectively given by

F̄(x) = 1 −
(

x
α

)β

0 ≤ x ≤ α; α, β > 0

and
Q1(u) = αu

1
β 0 ≤ u ≤ 1, α, β > 0. (4)

The survival function and quantile function of Weibull distribution are respectively given by

F̄(x) = exp
[
−

(
x
σ

)λ]
x > 0; λ, σ > 0

and
Q2(u) = σ(−log(1 − u))

1
λ 0 ≤ u ≤ 1, α, λ > 0 (5)

We now propose a new class of distributions defined by a quantile function, which is the sum of
quantile functions of power and Weibull distributions.

2. Power–Weibull (PW) quantile function

Let X and Y be two nonnegative random variables with distribution functions F(x) and G(x)
with quantile functions Q1(u) and Q2(u), respectively. Then

Q(u) = Q1(u) + Q2(u), (6)

is also a quantile function. We now introduce a class of distributions given by the quantile
function,

Q(u) = αu
1
β + σ(−log(1 − u))

1
λ 0 ≤ u ≤ 1, α, β, σ, λ > 0 (7)
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Thus Q(u) is the sum of (4) and (5). It is named as Power–Weibull (PW) quantile function. The
quantile density function is obtained as

q(u) =
αu

1
β −1

β
+

σ(−log(1 − u))
1
λ −1

λ(1 − u)
. (8)

For the proposed class of distribution, the density function f (x) can be written in terms of the
distribution function as

f (x) =
βλ(1 − F(x))

αλ(1 − F(x))F(x)
1
β −1

+ σβ(−log
1
λ −1(1 − F(x)))

. (9)

For all values of the parameters, the density is strictly decreasing in x and it tends to zero as x →
∞.
The quantile function (7) represents a family of distributions with a variety of shapes for its
probability density function. Plots of the density function for different combinations of parameters
are shown in figure 1, 2 and 3.

Figure 1: Plot of the density function for various values of λ , σ and β
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3. Members of the family

The proposed family of distributions (7) includes several well-known distributions for various
values of the parameters.

Case 1. α = 0, σ > 0.
Q(u) = σ(−log(1 − u))

1
λ (10)

is the quantile function of the Weibull distribution, which contains the exponential distribu-
tion with mean σ for λ = 1 and the Rayleigh distribution when λ = 2.

Case 2. σ = 0, α > 0, β > 0.

Q(u) = αu
1
β (11)

is the quantile function of the power distribution.

Case 3. α = 0, λ = 1, σ > 0.

Q(u) = αlog
(

1 − pu
1 − u

)
(12)

which is quantile function of exponential geometric distribution with p = 0 and α = −σ.

We can derive some well-known distributions from the proposed model by making use of various
transformations described in Gilchrist [2].

Case 4. Consider the power u-transformation T(u) = u
1
θ with α = 0. Then,

Q(u) = σ(−log(1 − u
1
θ ))

1
λ (13)

is the quantile function of exponentiated Weibull distribution. If λ = 1,

Q(u) = σ(−log(1 − u
1
θ )) (14)

is the quantile function of generalized exponential distribution.

Case 5. By reciprocal transformation with σ=0 then,

Q(u) =
1

Q(1 − u)
= σ(1 − u)−

1
α (15)

which is the quantile function of Pareto distribution with σ = 1
α and α = β.

4. Distributional characteristics

The quantile based measures of the distributional characteristics like location, dispersion,
skewness, and kurtosis are popular in statistical analysis. These measures are also useful for
estimating parameters of the model by matching population characteristics with corresponding
sample characteristics. For the model (7), we have,

Median = Q(
1
2
) = α(0.5)

1
β + σ(log(2))

1
λ . (16)

The inter-quartile-range, IQR is obtained as,

IQR = Q(
3
4
)− Q(

1
4
)

= α[0.75
1
β − 0.25

1
β ] + σ[(log(4))

1
λ − (−log(0.75))

1
λ ]. (17)
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The Galton’s coefficient of skewness, S is given by,

S =
Q( 3

4 ) + Q( 1
4 )− 2Median

IQR

=
α[0.75

1
β + 0.25

1
β − 2(0.5)

1
β ] + σ[(log4)

1
λ + (−log0.75)

1
λ − 2(log2)

1
λ ]

α[0.75
1
β − 0.25

1
β ] + σ[(log4)

1
λ − (−log0.75)

1
λ ]

(18)

and the Moor’s coefficient of kurtosis,

T =
Q( 7

8 )− Q( 5
8 ) + Q( 3

8 )− Q( 1
8 )

IQR

=
α(7

1
β − 5

1
β + 3

1
β − 1)8

−1
β + σ[log

1
λ 8 − log

1
λ (8/3) + log

1
λ (8/5)− log

1
λ (8/7)]

α[0.75
1
β − 0.25

1
β ] + σ[(log4)

1
λ − (−log0.75)

1
λ ]

. (19)

5. L-moments

The L-moments are often found to be more desirable than the conventional moments in
describing the characteristics of the distributions as well as for inference. A unified theory and
a systematic study on L-moments have been presented by Hosking [6]. The L-moments have
generally lower sampling variances and are robust against outliers.
The rth L moment is given by

Lr =
∫ 1

0

r−1

∑
k=0

(−1)r−1−k
(

r − 1
k

)(
r − 1 + k

k

)
ukQ(u)du (20)

For the model (7), the first L moment L1 is the mean of the distribution.

L1 =
∫ 1

0
Q(u)du =

αβ

1 + β
+ σΓ(

1
λ
+ 1) (21)

The second L-moment for the family is obtained as

L2 =
∫ 1

0
(2u − 1)Q(u)du =

αβ

1 + 3β + 2β2 + σΓ(
1
λ
+ 1)(1 − 2−

1
λ ) (22)

which is twice the mean differences of the population.
The third and fourth L-moments are obtained as

L3 =
∫ 1

0
(6u2 − 6u + 1)Q(u)du

=
αβ

β + 1
− 6αβ2

1 + 5β + 6β2 + σΓ(
1
λ
+ 1)(1 − 32−

1
λ + 23−

1
λ ) (23)

and

L4 =
∫ 1

0
(20u3 − 30u2 + 12u − 1)Q(u)du

=
20αβ

1 + 4β
− 30αβ

1 + 3β
+

12αβ

1 + 2β
− αβ

1 + β
+ σΓ(

1
λ
+ 1)(1 − 321− 1

λ + 103−
1
λ − 54−

1
λ ) (24)

The L-coefficient of variation (τ2), analogous to the coefficient of variation based on ordinary
moments is given by,

τ2 =
L2

L1
=

αβ
1+3β+2β2 + σΓ( 1

λ + 1)(1 − 2−
1
λ )

αβ
1+β + σΓ( 1

λ + 1)
. (25)
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L-coefficient of skewness (τ3) for the PW quantile function is obtained as

τ3 =
L3

L2

=

αβ
β+1 −

6αβ2

1+5β+6β2 + σΓ( 1
λ + 1)(1 − 32−

1
λ + 23−

1
λ )

αβ
1+3β+2β2 + σΓ( 1

λ + 1)(1 − 2−
1
λ )

. (26)

L-coefficient of kurtosis (τ4) for the PW quantile function is obtained as

τ4 =
L4

L3

=

20αβ
1+4β − 30αβ

1+3β + 12αβ
1+2β − αβ

1+β + σΓ( 1
λ + 1)(1 − 321− 1

λ + 103−
1
λ − 54−

1
λ )

αβ
β+1 −

6αβ2

1+5β+6β2 + σΓ( 1
λ + 1)(1 − 32−

1
λ + 23−

1
λ )

. (27)

6. Order statistics

If Xr:n is the rth order statistic in a random sample of size n, then the density function of Xr:n
can be written as

fr(x) =
1

B(r, n − r + 1)
f (x)Fr−1(x)(1 − F(x))n−r (28)

From (9), we have

fr(x) =
1

B(r, n − r + 1)
βλFr−1(x)(1 − F(x))n−r+1

αλ(1 − F(x))F(x)
1
β −1

+ σβ(−log
1
λ −1(1 − F(x)))

. (29)

Hence,

µr:n = E(Xr:n) =
∫

x fr(x)dx

=
1

B(r, n − r + 1)

∫ ∞

0
x

βλFr−1(x)(1 − F(x))n−r+1

αλ(1 − F(x))F(x)
1
β −1

+ σβ(−log
1
λ −1(1 − F(x)))

dx. (30)

In quantile terms, we have

E(Xr:n) =
1

B(r, n − r + 1)

∫ 1

0
Q(u)

βλur−1(1 − u)n−r+1

αλ(1 − u)u
1
β −1

+ σβ(−log
1
λ −1(1 − u))

du. (31)

For the class of distributions (7), the first-order statistic X1:n has the quantile function

Q1(u) = Q(1 − (1 − u)
1
n )

= α[1 − (1 − u)
1
n ]

1
β + σ[−log(1 − u)

1
n ]

1
λ , (32)

and the nth order statistic Xn:n has the quantile function

Qn(u) = Q(u
1
n )

= αu
1

nβ + σ(−log(1 − u
1
n ))

1
λ . (33)
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7. Hazard quantile function

One of the basic concepts employed for modeling and analysis of lifetime data is the hazard
rate. In a quantile setup, Nair and Sankaran [7] defined the hazard quantile function, which is
equivalent to the hazard rate. The hazard quantile function H(u) is defined as

H(u) = h(Q(u))) = (1 − u)−1 f Q(u) = [(1 − u)q(u)]−1. (34)

Thus H(u) can be interpreted as the conditional probability of failure of a unit in the next small
interval of time given the survival of the unit until 100(1 − u)% point of the distribution. Note
that H(u) uniquely determines the distribution using the identity,

Q(u) =
∫ u

0

dp
(1 − p)H(p)

. (35)

The hazard quantile functions of Power and Weibull distribution is given by

H1(u) = βα−1(1 − u)−1u1− 1
β (36)

and
H2(u) = λσ−1(−log(1 − u))1− 1

λ . (37)

Since the proposed class of distributions is the sum of quantile functions of power and Weibull
quantile functions, (34) and (35) give

1
H(u)

=
1

H1(u)
+

1
H2(u)

(38)

where H(u),H1(u) and H2(u) are the hazard quantile functions of the proposed class of distribu-
tions, power, and Weibull quantile functions, respectively.

For the PW quantile function (7), we have

H(u) =
1

β−1α(1 − u)u
1
β −1

+ λ−1σ(−log(1 − u))
1
λ −1

(39)

with H(0) = ∞ and H(1) = 0. Plots of hazard quantile function for different values of parameters
are given in figure (2).
The shape of the hazard function is determined by the derivative of H(u), which is obtained as

H
′
(u) =

β−1αu
1
β −1

[1 + ( 1
u − 1)(1 − 1

β )] + λ−1σ(1 − 1
λ )(1 − u)−1(−log(1 − u))

1
λ −2

[β−1α(1 − u)u
1
β −1

+ λ−1σ(−log(1 − u))
1
λ −1]2

. (40)

Since [β−1α(1− u)u
1
β −1

+ λ−1σ(−log(1− u))
1
λ −1]2 > 0. For all values of the parameters, the sign

of H
′
(u) depends only on

g(u) = β−1αu
1
β −1

[1 + (
1
u
− 1)(1 − 1

β
)] + λ−1σ(1 − 1

λ
)(1 − u)−1(−log(1 − u))

1
λ −2. (41)

The parameters α, σ being always > 0 do not affect the sign of the two terms in g(u). Now we
consider the following cases.

Case 1. o < β < 1 and o < λ < 1.
g(u) < 0 and distribution has an decreasing hazard rate (DHR).

Case 2. β = 1 and λ = 1.
g(u) = α and distribution has an increasing hazard rate (IHR).
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Figure 2: Plots of hazard quantile function
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Case 3. β = 1 and λ > 1.
g(u) > 0 and distribution has an increasing hazard rate (IHR).

Case 4. β > 1 and λ = 1.
The first term in g(u) is positive and second term is zero, so that g(u) > 0 and distribution
has an increasing hazard rate (IHR).

Case 5. β > 1 and λ > 1.
The first and second term in g(u) is positive, so that g(u) > 0 and distribution has an
increasing hazard rate (IHR).

Case 6. β = 1, 0 < λ < 1.
Distribution has an decreasing hazard rate (DHR).

Case 7. o < β < 1 and λ = 1.
H(u) attains a minimum at u0 = 1 − β and therefore H(u) is bathtub shaped.

For the remaining cases, ( o < β < 1, λ > 1) and (β > 1, 0 < λ < 1), one term in g(u) is positive
and the other is negative so that g(u) can be zero. From (40) and(41) we obtain the first derivative
of H(u),

H
′
(u) =

g(u)

[β−1α(1 − u)u
1
β −1

+ λ−1σ(−log(1 − u))
1
λ −1]2

. (42)

For further analysis, we take the second derivative of H(u), the sign of H
′′
(u) depends on,

g
′
(u)

(
β−1α(1 − u)u

1
β −1

+ λ−1σ(−log(1 − u))
1
λ −1

)2

+ 2g(u)
(

β−1α(1 − u)u
1
β −1

+λ−1σ(−log(1 − u))
1
λ −1

)
g(u).

Let u0 be the solution of the equation g(u) = 0. Then the sign of H
′′
(u) at u0 depends on g

′
(u0).

Since u0 is a solution of g(u) = 0.

g
′
(u) = β−1α(

1
β
− 1)u

1
β −2

(
1 + (

1
u
− 1)(1 − 1

β
) + u−1

)
+ λ−1σ(

1
λ
− 1)(1 − u)−2

(−log(1 − u))
1
λ −2

(
1 − (

1
λ
− 2)(−log(1 − u))−1

)
.

Then,

g
′
(u0) = β−1α(

1
β
− 1)u

1
β −2
0

(
1 + (

1
u0

− 1)(1 − 1
β
) + u−1

0

)
+ λ−1σ(

1
λ
− 1)(1 − u0)

−2

(−log(1 − u0))
1
λ −2

(
1 − (

1
λ
− 2)(−log(1 − u0))

−1
)

. (43)

Case 8. 0 < β < 1 and λ > 1.
H(u) has an increasing hazard rate (IHR).

Case 9. β > 1 and 0 < λ < 1.
H(u) has an upside-down bathtub-shaped hazard quantile function.

The patterns of H(u) for various parameter values are summarized in table 1.
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Table 1: Behavior of the hazard quantile function for different regions of parameter space.

No. Parameter region Shape of hazard quantile function

1 o < β < 1 and o < λ < 1 DHR
2 β = 1 and λ = 1 IHR
3 β = 1 and λ > 1 IHR
4 β > 1 and λ = 1 IHR
5 β > 1 and λ > 1 IHR
6 β = 1, 0 < λ < 1 DHR
7 o < β < 1 and λ = 1 Bathtub
8 o < β < 1 and λ > 1 IHR
9 β > 1 and 0 < λ < 1 Upside-down Bathtub

8. Mean residual quantile function

Another concept used in reliability is that of residual life Xt = (X − t|X > t) with survival
function

F̄t(x) = F̄(t + x)/F̄(t), x ≥ 0, o < t < T.

The mean residual life function is then

m(t) = E(Xt) = [F̄(t)]−1
∫ ∞

t
F̄(x)dx.

Accordingly, the mean residual quantile function is defined by Nair and Sankaran [7] as

M(u) = mQ(u) = (1 − u)−1
∫ 1

u
(Q(t)− Q(u))dt (44)

which is the average remaining life beyond the 100(1 − u)% point of the distribution. For the
class of distributions (7), M(u) has the form

M(u) =
α(1 − u

1
β +1

)

(1 − u)( 1
β + 1)

− αu
1
β + σ(1 − u)−1Γ

( 1
λ
+ 1,−log(1 − u)

)
− σ(−log(1 − u))

1
λ . (45)

9. Residual variance quantile function

The quantile form of variance residual function, the residual variance quantile function is defined
as

V(u) = (1 − u)−1
∫ 1

u
Q2(p)dp − (M(u) + Q(u))2. (46)

In the above equation, the variance residual life function is obtained by letting Q(u) = x.
Nair and Sankaran [7] derived the relationship between M(u) and V(u) as

M2(u) = V(u)− (1 − u)V
′
(u) (47)

or

V(u) = (1 − u)−1
∫ 1

u
M2(p)dp. (48)

Since M(u) characterizes the distribution, from above equations it follows that V(u) also charac-
terizes the distribution.
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For the PW qantile function, residual variance quantile function is

V(u) =
1

1 − u

{
βα2(1 − u

2+β
β )

2 + β
+ σ2Γ(

2
λ
+ 1,−log(1 − u)) + 2ασ

∫ 1

u
p1/β

(−log(1 − p))1/λdp

}
−

{
α(1 − u

1
β +1

)

(1 − u)(1/β + 1)
+ σ(1 − u)−1Γ(

1
λ
+ 1,

− log(1 − u))

}2

(49)

10. Reversed hazard quantile function

The reversed hazard quantile function [8] is defined by

A(u) =
1

uq(u)
(50)

and it determines the distribution through the formula

Q(u) =
∫ u

0

1
pA(p)

dp. (51)

For power-Weibull distribution,

A(u) =
[αu

1
β

β
+

σu(−log(1 − u))
1
λ −1

λ(1 − u)

]−1
. (52)

11. Data Analysis

There are different methods for the estimation of parameters of the quantile function. The method
of percentiles, method of L-moments, method of minimum absolute deviation, method of least
squares, and method of maximum likelihood are commonly used techniques. To estimate the
parameters of (7), we use the method of maximum likelihood estimation procedure.

To illustrate the application of the proposed class of distributions we consider a real data
set reported in Zimmer et al. [15]. The data consist of times to first failure of 20 electric carts
used for internal transportation and delivery in a manufacturing company. The estimates of the
parameters are obtained using R software as,

α̂ = 0.421, β̂ = 2.088, σ̂ = 0.027 and λ̂ = 0.312.

To examine the adequacy of the model, we use chi-squared goodness of fit. The test gives the
p-value 0.082. This indicates the adequacy of proposed model for the given data set.

12. Summary and Conclusion

In this paper, we introduced a class of distributions (7), which is the sum of the quantile function
of the power and Weibull distributions known as Power-Weibull (PW) quantile function and its
graphical representation of density function is included. We have identified several well-known
distributions which are either the members of the proposed class of distributions and also through
suitable transformations such as Weibull distribution, power distribution, generalized exponential
distribution, etc. Various distributional characteristics and L-moments are discussed. The hazard
quantile function and its shape in various parameter region are analysed. Increasing, decreasing,

RT&A, No 4 (76) 
Volume 18, December 2023 

623



Jeena and Sonitta
PW Quantile function and It’s reliability Analysis

bathtub and upside-down bathtub hazard quantile function are obtained. Mean residual quantile
function of PW quantile function was studied. Finally PW model is applied to a real life data set,
and parameters are estimated by using maximum likelihood estimation procedure and model
adequacy is checked by chi-squared goodness of fit test using the R software.

There are several properties and extensions for the PW quantile function not considered in this
article, such as parameter estimation using L-moments, stochastic orderings and generalization of
PW quantile function.
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