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Abstract

In this paper we introduce the Exponential-Pareto mixture distribution. This distribution is associated as
mixture of light and heavy-tailed data which arise in a wide class applications including risk analysis.
Characteristic function, failure rate function, mean excess, conditional excess distribution are derived.
It is proved that the limiting distribution of maxima among n values of rv’s with Exponential-Pareto
distribution has Frechet-type form. The maximal likelihood estimation of parameters is discussed. The
upper bound of uniform distance between Exponential-Pareto mixture and Pareto distributions is derived.
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1. Introduction

Finite mixture models are often used in the modelling time to failure of the systems in the
competing risk situations. The exponential, Weibull, lognormal and Pareto distributions occupy
a central role because of their demonstrated usefulness in the analysis of lifetime data and in
problems related to the modelling of ageing or failure processes. Finite mixtures are also useful
in medical and biology research, in artificial neural networks and robustness studies, income
analysis [1].

In lifetime data analysis, the population of lifetimes usually can be decomposed into sub-
populations. Moreover, The data may be actually generated by quite different distributions, in
particular, distributions with the so-called light or heavy tails. For example, an insurance portfolio
may include both many small (light) claims and also a few large (heavy) claims. Hence the claims
distribution can be modeled as a finite mixture distributions with different tail behavior. [2] In this
paper we propose to consider a mixture of exponential distribution and the Pareto distribution to
model such situations since the Pareto distribution relates to the class of long-tailed distributions,
while the exponential distribution is light-tailed.

The exponential distribution appeared suitable for modelling the lifetimes of various types of
manufactured items. The Pareto model is applied in many fields, for example, in income analysis,
in signal processing for simulation of X-band maritime surveillance radar clutter [3].

The mixtures of light and heavy-tailed distribution can be useful in the simulation of IoT
traffic, because, as it is known, the smart-home and smart-city environments can generate both
short and large-sized packets. These environments involve several sensors dedicated to specific
tasks, such as monitoring systems or collecting cyber-physical values (temperature, humidity,
etc.). Smart cameras generate continuous data flows with large-sized packets, while smart plugs
generate small-sized packets at a slow pace [4].

Various issues of the Exponential-Pareto mixture were considered by authors in the papers
[5, 6, 7] in relation to queueing systems.
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The main contribution of the paper is to introduce the Exponential-Pareto mixture distribution.
It is the two-component mixture of exponential and Pareto distributions, which is used to
approximate mixed data with light and heavy tails.

The paper is organized as follows. The moments and characterization function are derived
in Section 2. The subexponentiality of the distribution is proved in Section 2. In Section 4 we
discuss the properties of the conditional excess distribution. In Section 5 the extreme behavior
of the Exponential-Pareto mixture distribution is discussed. In Section 6 We apply the known
upper bound for Kullback-Leibler divergence between exponential and Pareto distributions
[3, 8] to derive the convergence of uniform distance between Exponential-Pareto mixture and
exponential distributions to zero as shape parameter goes to infinity. The estimation of parameters
by log-likelihood maximization is discussed in Section 7..

2. Definition and moments of Exponential-Pareto mixture distribution

Definition 1. We say that r.v. Z has an Exponential-Pareto mixture distribution if its distribution
function (df) has the following form:

FZ(x) = 1 − pe−λx − (1 − p)
(

x0

x0 + x

)α

, λ > 0, α > 0, x0 > 0, x ≥ 0, (1)

where 0 < p < 1 is mixing proportion.

Equation (1) shows that r.v. Z coincides with exponential distribution with the probability p,
and with Pareto distribution with the probability 1 − p.The above can be reformulated as follows.
Suppose that the random variables X, Y with distribution functions FX, FY, respectively, are
independent, and let I be indicator function independent of X, Y, taking value 1 with probability
p (value 0 with probability 1 − p). Then it is said that the variable

Z = I X + (1 − I)Y (2)

has two-component mixture distribution. If X has exponential distribution Exp(λ) and Y has Pareto
distribution Pareto(α, x0), then df of Z is given by (1).

The density function of Exponential-Pareto mixture distribution has form

fZ(x) = pλe−λx + (1 − p)
αxα

o
(x0 + x)α+1 .

and has the following limits

lim
x→∞

fZ(x) = 0;

lim
x→0

fZ(x) = pλ +
(1 − p)α

x0
.

Figure 1 depicts cdf of Exponential-Pareto mixture distribution with parameters x0 = 0.5, λ =
2, p = 0.5 and varied α = 0.5; 1.5; 2.5.

Lemma 1. Let rv Z follow the Exponential-Pareto mixture distribution, then its characteristic
function is given by

ϕZ(t) =
λα

λ − ipt
e−i(1−p)tx0

∞

∑
k=0

(i(1 − p)tx0)
k

k!(α − k)
(3)

Proof. Substitute df (1) into the formula for characteristic function ϕX(t) of rv Z

ϕZ(t) = eit(pX + (1 − p)Y) = epitXe(1 − p)itY = ϕX(pt)ϕY((1 − p)t).
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Figure 1: Cumulative distribution function (cdf) of Exponential-Pareto distribution.

where the characteristic function of first component X is given by

ϕX(t) =
∞∫

0

eitxλe−λxdx =
λ

λ − it
.

The characteristic function of Pareto distribution can be calculated using the expansion of the
exponential function in a Taylor series in the vicinity of zero

ϕY(t) =

∞∫
0

eitxαxα
0(x0 + x)−α−1dx

= e−itx0

∞∫
x0

eitxxα
0 αx−α−1dx

= e−itx0 xα
0 α

∞∫
x0

∞

∑
k=0

(itx)k

k!
x−α−1dx

= e−itx0 xα
0 α

∞

∑
k=0

(it)k

k!

∞∫
x0

xk−α−1dx

= e−itx0 α
∞

∑
k=0

(itx0)
k

k!(α − k)
.

Hence, the characteristic function of Exponential-Pareto mixture distribution takes form
(3). ■

Lemma 2. Let rv Z follow the Exponential-Pareto mixture distribution, then its moments are
given by

EZk = Γ(1 + k)
( p

λ

)k
+

Γ(1 + k)xk
0(1 − p)k

Γ(α)

k−1

∑
j=0

(
p

x0λ(1 − p)

)j
Γ(α − k + j), α > k,
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where Γ(z) =
∞∫
0

tz−1e−tdt is Gamma function.

The proof obviously follows from the well-known relation between moments and characteri-
zation function

i−k dkϕZ(t)
dtk |t=0 = EZk,

In particular, the mean is

EZ =
p
λ
+

(1 − p)x0

α − 1
, α > 1,

the second moment is

EZ2 =
2p2

λ2 +
2p(1 − p)x0

λ(α − 1)
+

2(1 − p)2x2
0

(α − 1)(α − 2)
, α > 2,

and variance is

VarZ =
p2

λ2 +
(1 − p)2x2

0α

(α − 1)2(α − 2)
, α > 2.

Note that moments of order k exist only for α > k.

3. failure rate function and subexponentiality

Consider the equilibrium df Fe of rv Z with df (1)

Fe(x) =
1

EZ

x∫
0

FZ(t)dt = 1 − 1
EZ

(
pe−λx

λ
+

(1 − p)xα
0

(α − 1)(x0 + x)α−1

)
, (4)

where F(x) = 1 − F(x) is the tail of df F. We emphasize that expression (4) exists if parameter
α > 1.

We calculate the failure rate function of the Exponential-Pareto mixture distribution

r(x) :=
fZ(x)
FZ(x)

=
p λa(x) + (1 − p) α/(x0 + x)

p a(x) + (1 − p)
, (5)

where

a(x) = e−λx
(

1 +
x
x0

)α

. (6)

is an auxiliary function.
Note that

r(x) −→ 0 as x → ∞,

which is typical for long-tailed distributions. Recall that df FZ is long-tailed, if for each fixed x > 0
the following relation holds

lim
u→∞

P(X > u + x|X > u) = 1.

This asymptotic property means, that for each fixed x > 0, the random variable Z exceeds the
threshold x + u with probability approaching 1 as u increasing. Long-tailed distributions have
asymptotically decaying to zero failure rate functions (not necessary monotone) [9]. Below
we prove that Exponential-Pareto distribution belongs to a subclass of long-tailed distribution –
so-called subexponential distributions.

Note, that the failure rate function has the same limit as density function as x → 0,

rZ(x) −→ pλ + (1 − p)
α

x0
as x → 0.
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Provided that the following relation between the parameters of the mixture is satisfied
λ ≥ α/x0, failure rate function is bounded from above, rZ(x) ≤ λ.

To verify the monotonicity of the failure rate function we calculate its derivative

drZ(x)
dx

= −(1 − p)
pa(x)(rX(x)− rY(x))2 + r2

Y(x)/α(pa(x) + (1 − p))
(pa(x) + (1 − p))2 < 0,

Since drZ(x)
dx is negative for all x, then rZ(x) decreases monotonically and, therefore, the Exponential-

Pareto distribution belongs to the class of distributions with decreasing failure rate functions.
The following lemma states that the distribution (1) and the equilibrium distribution (4) are

both belong to the class of so-called subexponential distributions. Recall that df FZ is called
subexponential [9] if

lim
x→∞

F∗n
Z (x)

nFZ(x)
= 1 for all n ≥ 2,

where F∗n
Z (x) is the tail of n-convolution of the distribution FZ(x) with itself.

To verify that the Exponential-Pareto mixture distribution FZ and the corresponding equi-
librium distribution Fe (with parameter α > 1) both belong to the class of the subexponential
distributions, it is enough [9] to verify that FZ belongs to a special subclass S∗ of the subexponen-
tial distributions.

Lemma 3. The Exponential-Pareto mixture distribution with df defined by expression (1) (with
parameter α > 1) belongs to a special subclass S∗ of the subexponential distributions.

Proof. One of the following criteria for df to belong S∗ can be applied [9].

1. If
lim sup

x→∞
xr(x) < ∞, (7)

then FZ ∈ S∗.

2. Suppose that
lim

x→∞
r(x) = 0. (8)

Then

FZ ∈ S∗ ⇐⇒ lim
x→∞

x∫
0

eyr(x)FZ(y)dy = EZ. (9)

It is easy to check that for Exponential-Pareto mixture distribution

r(x) −→ 0 as x → ∞ and xr(x) −→ α as x → ∞.

Moreover,
x∫

0

eyr(x)B(y)dy = − pe−y(λ−r(x))

λ − r(x)

∣∣∣∣x

0
+ (1 − p)

(x0r(x))α

r(x)
e−x0r(x) ·

· [γ(−α + 1, x0r(x) + xr(x))− γ(−α + 1, x0r(x))] −→

−→ p
λ
+

(1 − p)x0

α − 1
= EZ as x → ∞

since
γ(−α + 1, x0r(x) + xr(x)) −→ γ(−α, α) as x → ∞

and

γ(−α + 1, x0r(x)) ∼ (xr(x))−α+1

−α + 1
as x → ∞,

where γ(α, x) =
∫ x

0 yα−1e−ydy is the lower incomplete gamma function.
Hence conditions (7)-(9) are satisfied and Exponential-Pareto distribution belongs to subclass

S∗. ■
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4. Conditional Excess Distribution

In this section we consider conditional excess distribution of Exponential-Pareto mixture distribu-
tion.

On the event {Z > u}, define the excess Zu := Z − u, which has the conditional excess
distribution over the threshold u [10]

P(Zu ≤ x) = P(Z − u ≤ x|Z > u), u ≥ 0, x ≥ 0. (10)

Let Xu, Yu be conditional excesses of rv’s X and Y with conditional excess distributions
defined by (10), relatively. In the case of Exponential-Pareto mixture distribution expression for
the tail of conditional excess distribution becomes

FZu(x) =
FZ(x + u)

FZ(u)
=

pe−λ(x + u) + (1 − p)
( x0

x0 + x + u
)α

pe−λu + (1 − p)
( x0

x0 + u
)α .

Note that rv Zu is not a mixture of rv’s Xu and Yu, namely Zu ̸= IXu + (1 − I)Yu.
The expected value of conditional excess is given by the mean excess function, defined as [10]

eZ(u) = EZu =

∞∫
0

FZ(x + u)
FZ(u)

dx =

∞∫
u

FZ(x)dx

FZ(u)

=

∞∫
u
(pe−λx + (1 − p)xα

0(x0 + x)−α)dx

pe−λx + (1 − p)xα
0(x0 + x)−α

=
pe−λu(α − 1)(x0 + u)α + λ(1 − p)xα

0(x0 + u)
λp(α − 1)(x0 + u)αe−λu + λ(1 − p)(α − 1)xα

0
. α > 1.

Note that the mean excess function is an increasing function, eZ(u) → ∞ as u → ∞. The
Failure rate function of Zu is given by

rZu(x) =
p rXu(x)a(x + u) + (1 − p) rYu(x + u)

p a(x + u) + (1 − p)
= rZ(x + u), (11)

where a(x) is defined by expression (6).
Now we derive the condition on the parameters of the Exponential-Pareto mixture distribution

that guarantees the mixture to be bounded by its components in terms of the failure rate ordering.
To prove it we need the following lemma.

Lemma 4. Let rX , rY be the failure rates of FX , FY, respectively. Then if

sup
x≥0

rX(x) < ∞ and inf
x≥0

rY(x) > 0 (12)

and
sup
x≥0

rX(x) ≤ inf
x≥0

rY(x), (13)

then
X ≥

r
Y,

where notation X ≥
r

Y means that X is more than Y in failure rate, i.e. rX(x) ≤ rY(x) for all x.
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Theorem 1. Let rv Z have Exponential-Pareto mixture distribution with df defined by (1). If the
following inequality holds

α

x0
≤ λ, (14)

then

X ≤
r

Z ≤
r

Y, (15)

Xu ≤
r

Zu ≤
r

Yu, (16)

eX(u) ≤ eZ(u) ≤ eY(u) (17)

Proof. To prove the theorem, it suffices to find conditions under which the relations

rY(x) ≤ rZ(x) ≤ rX(x), (18)

are satisfied. From lemma 4 for this it is sufficient that the following relation be satisfied:

rY(x) ≤ sup
x≥0

rY(x) = rY(0) =
α

x0
≤ rX(x) = λ. (19)

Inequality (19) can be rewrite in form (14) whence it follows (15).
From statement 2.1 in [11] it follows that if rv’s are ordered in failure rate, then their conditional

excesses are ordered in failure rate too, that proves the statement (16).
Now we calculate the mean excess functions for rv’s X and Y. Easy to check, that for

exponential distribution mean excess function is equal to mathematical expectation, eX(u) =
EX = 1/λ. For Pareto distribution we have

eY(u) =
x0 + u
α − 1

.

Obviously, if the condition of the theorem (14) is fulfilled, then inequality

λ ≥ α

x0
≥ α − 1

x0 + u

holds and
1
λ
≤

pe−λu(α − 1)(x0 + u)α + λ(1 − p)xα
0(x0 + u)

λp(α − 1)(x0 + u)αe−λu + λ(1 − p)(α − 1)xα
0
≤ x0 + u

α − 1
,

that proves the relation (17) of the theorem. ■
Figure 2 demonstrates the failure rate functions of rv’s X, Y, Z, where λ = 1, α = 0.5, x0 = 0.6.

It can be seen from the graph that, for the given parameters, the failure rate functions are ordered
in accordance with the relation (18), hence it follows from Theorem 1 that rv’s are ordered in
accordance with (17).

Figure 3 shows mean excess functions of rv’s X, Y, Z with λ = 5, α = 2.1, x0 = 0.5, p = 0.5. It
can be seen from the graph that, for the given parameters, these functions are ordered as in (17).

5. Extreme behavior of the Exponential-Pareto distribution

Let {Xn, n ≥ 1} be a family of the independent and identically distributed (iid) rv’s with a
distribution function F. Then the distribution of Mn = max(X1, . . . , Xn) satisfies P(Mn ≤ x) =
Fn(x).

Suppose there exists a sequence of real constants bn, an > 0, n ≥ 1 such that

lim
n→∞

P((Mn − bn)/an ≤ x) = G(x), n → ∞, (20)

for every continuity point x of G, and G a nondegenerate distribution function. Then G(x) is
one of the three types of extreme value distributions: Gumbel, Frechet or reversed Weibull [12].
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Figure 2: The failure rate function of distributions Exp(1), Pareto(0.5; 0.6) and mixture Exp − Pareto(1; 0.5; 0.6; p)
with different mixing proportions p.

Figure 3: Mean excess functions of distributions Exp(5), Pareto(2.1; 0.5) and mixture Exp− Pareto(5; 2.1; 0.5; 0.5).

The class of extreme value distributions (which combines all three types) is Gη(cx + d) with real
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c > 0, d, where

Gη(x) =


e−(1 + ηx)−1/η

, η ̸= 0, 1 + ηx > 0;

e−e−x
, η = 0.

It is easy to check that the first component of Exponential-Pareto mixture distribution is in the
maximum domain of attraction (MDA) of the Gumbel law, while the second is in MDA of the
Frechet law.

For given 0 ≤ τ ≤ ∞ and a sequence {un, n ≥ 1} of real numbers the following are equivalent
[10]

nF(un) → τ as n → ∞ (21)

and
P(Mn ≤ un) → e−τ as n → ∞. (22)

If condition (20) is satisfied, then convergence (22) is preserved for any linear normalizing
sequence un(x) = anx + bn, n ≥ 1 and expression (22) becomes

P(Mn ≤ un(x)) → τ(x),

where a concrete form of the function τ(x) depends on the type of the limiting distribution.

Theorem 2. Let the sequence of independent rv’s X1, . . . , Xn have Exponential-Pareto mixture
distribution with df defined by (1). Define Mn = max(X1, . . . , Xn) is maxima among n values of
sequence. Then (Mn − bn)/an ∈ MDA(Φα), where

an = x0n1/α, bn = −x0. (23)

Proof. First we find τ(x) substituting un(x) = x0n1/α x − x0 into the relation (21):

nF(un(x)) = n
[

pe−λun(x) +
(1 − p)xα

0
(x0 + un(x))α

]
= n

[
pe−λun(x) +

(1 − p)xα
0

(x0 n1/α x))α

]
=

n(1 − p)x−α

n

[
p n e−λun(x)xα

1 − p
+ 1

]
−→ (1 − p)x−α

since un(x) → ∞ and n e−λun(x) → 0 as n → ∞. In accordance with (22) we get the following
asymptotic distribution:

P(Mn ≤ un(x)) → e−(1−p)x−α
as n → ∞, (24)

that is Frechet distribution. ■

6. Uniform distance and Kullback-Leibler divergence

The uniform distance between two distributions FX and FY [13],

∆(FX , FY) = sup
x

|FX(x)− FY(x)|, (25)

is a widely used probability metric in sensitivity analysis [14].
It follows from the Pinsker-Csiszar Inequality [3] that uniform distance is bounded by Kullback-

Leibler divergence, namely
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∆(FX , FY) ≤
√

2DKL(X||Y), (26)

where

DKL(X||Y) =
∞∫

0

fX(x) log
(

fX(x)
fY(x)

)
dx (27)

is Kullback-Leibler divergence.
It is shown in [3] that the minimum divergence between Exponential and Pareto distribution

is reached at λ = α−1
x0

and

DKL(Y||X)min ≤ 1
α(α − 1).

(28)

Figure 4: Cumulative distribution functions of Exponential, Pareto and Exponential-Pareto distributions with different
α, λ, and x0 = 1, p = 0.5

Clearly if the Kullback-Leibler divergence is close to zero, the uniform distance inherits this
and thus implies that Exponential and Pareto distribution are close. We apply this to estimate the
uniform distance between the Exponential-Pareto mixture and the Pareto distributions (for case
α > 1).
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∆(FZ, FY) = sup
x

|pFX(x) + (1 − p)FY(x)− FY(x)| = sup
x

|pFX(x)− pFY(x)|

= p∆(FX , FY) ≤ p
√

2DKL(Y||X) ≤
√

2p√
α(α − 1)

. (29)

The last inequality demonstrates the convergence rate of ∆(FZ, FY) to zero as α → ∞. We will get
the same effect by approximating Pareto distribution via Exponential distribution as α → ∞ [3].
Let

λ =
α + oα(1)

x0
, (30)

where oα(1) → 0 as α → ∞, then

FY(x) = lim
α→∞

(
1 +

λx
α(1 + oα(1))

)−α

= e−λx = FX(x). (31)

The discussions above allow us to formulate the following lemma about approximation mixture
by Exponential distribution for large α.

Lemma 5. Let df FZ(x) has form (1), then

FZ(x) → FX(x) as α → ∞, for all x ≥ 0,

where FX(x) = 1 − e−λx, x ≥ 0.

Figure 4 demonstrates results of Exponential, Pareto and Exponential-Pareto mixture dis-
tributions with x0 = 1, p = 0.5, a) α = 1.5, λ = 2.5, b) α = 2.5, λ = 3.5, c) α = 10, λ = 11, d)
α = 30, λ = 31 for n = 1000 sample size. As expected, Kolmogorov-Smirnov test confirms that
data sets from Exponential-Pareto mixture and Pareto distributions are homogeneous only for the
case d) α = 30. The uniform distance ∆(FZ, FY) is 0.79, 0.34, 0.074, 0.012, for cases a)-d), relatively.

The upper bound for uniform distance
√

2p√
α(α−1)

defined by relation (29) is 0.81, 0.36, 0.074, 0.023,

relatively.

7. Parameters estimation

In this section we discuss the estimating the parameters of Exponential-Pareto mixture distribution
by the method of moments and via maximization of log-likelihood function.

The method of moments gives the following estimates of the parameters α and λ, expressed
in terms of the parameter x0:

α =
2(1 − p)2x2

0 − 2(1 − p)x0Z
S2

Z − (Z)2
+ 1;

λ =
2p(1 − p)x0 − 2pZ

2(1 − p)x0 − Z2
,

where Z – sample mean, Z2 – sample second moment, S2
Z – sample variance of random sample

x!, . . . , xn from Exponential-Pareto mixture distribution. As x0, it is possible to choose the first
order statistic of random sample x!, . . . , xn.

Let x = (x1, . . . , xk) be a realization of rv with Exponential-Pareto mixture distribution. Then
likelihood function can be written as

L(x, λ, x0, α) =
n

∏
k=1

(pλe−λxk + (1 − p)αxα
0(x0 + xk)

−α−1).
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The log likelihood function is given by

l(x, λ, x0, α) =
n

∑
k=1

log(pλe−λxk + (1 − p)αxα
0(x0 + xk)

−α−1),

hence, the derivatives satisfy the following equations

∂l
∂λ

= −pλ
n

∑
k=1

xk
yk

e−λxk ;

∂l
∂x0

= (1 − p)αxα−1
0

n

∑
k=1

x0 + αxk
yk(x0 + xk)α+2 ;

∂l
∂α

= (1 − p)xα
0(1 − α log(1 + 1/α))

n

∑
k=1

1
yk(x0 + xk)1+α

;

∂l
∂p

= λ
n

∑
k=1

e−λxk

yk
− αxα

0

n

∑
k=1

1
yk(x0 + xk)1+α

,

where yk = pλe−λxk + (1 − p)αxα
0(x0 + xk)

−α−1.
Setting the last equations equal to zero, the numerical maximum likelihood estimates of

α, x0, λ can be obtained by standard numerical methods like Newton Raphson method. The EM
algorithm can be applied for iterative calculation of maximum likelihood estimates. Denote

gk1 =
p1 fX(xk|λ)

p1 fX(xk|λ) + p2 fY(xk|x0, α)
, gk2 =

p2 fY(xk|x0, α)

p1 fX(xk|λ) + p2 fY(xk|x0, α)
,

where p1 = p, p2 = 1 − p. Then maximization by parameters of

n

∑
k=1

(gk1(log p1 + log fX(xk|λ)) + gk2(log p2 + log fY(xk|x0, α)) → max

leads to the following relations

pj =
n

∑
k=1

gkj/n, j = 1, 2,

λ =

n
∑

k=1
gk1

n
∑

k=1
gk1xk

,

α =

n
∑

k=1
gk2

n
∑

k=1
gk2 log(zk/x0)

,

where zk = xk + x0 and parameter x0 can be obtained from the equality

n
∑

k=1
gk2

n
∑

k=1
gk2/zk

=

n
∑

k=1
gk2

n
∑

k=1
gk2 log(zk/x0)

.

Table 1 demonstrates the results of identification of the distribution’s parameters of the request
processing time for web server ’dots.center’ for different sample size of data. The web server
processes industrial Internet data related to fuel consumption and operation of vessel equipment.
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Parameters of Exponential-Pareto distribution

sample size 102 103 104 105 106

p 0.500 0.450 0.425 0.245 0.207

α 3.37 2.43 2.62 2.48 2.28

x0 0.41 0.40 0.36 0.38 0.36

λ 6.45 6.71 6.67 6.70 6.47

MSE 0.070 0.037 0.017 0.240 0.370

Table 1: The parameters of Exponential-Pareto distribution for the of the request processing time.

8. Conclusion

In this paper we introduced the Exponential-Pareto mixture distribution. Characteristic function,
failure rate function, mean excess, conditional excess distribution are derived. It is proved that this
distribution belong to the subexponential distributions. Under condition on parameters λ ≥ α/x0
Exponential, Exponential-Pareto mixture and Pareto distributions are ordered in failure rate, as
well as conditional excesses and mean excesses. It is proved that the limiting distribution of
maxima among n values of rv’s with Exponential-Pareto distribution has Frechet-type form. The
upper bound of uniform distance between Exponential-Pareto mixture and Pareto distributions is
derived. The maximal likelihood estimates for parameters are given.
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