
G. Ayyappan, N. Arulmozhi
Analysis of M, MAP/PH1, PH2/1 Non-preemptive Priority Queueing model,...

Analysis of M, MAP/PH1, PH2/1 non-preemptive priority
Queueing model with Delayed working vacations,

immediate feedback,impatient customer, differentiate
breakdown and phase type repair

G. Ayyappan, N. Arulmozhi

•
Department of Mathematics,

Puducherry Technological University,
Puducherry, India.

Chennai 600005, India.
ayyappan@ptuniv.edu.in, arulmozhi.n@pec.edu,

Abstract

The arrival of high priority customers is governed by the Poisson process while that of low priority
customers is governed by the Markovian Arrival Process, and the service times are determined by a
distinct Phase-type distribution. When the service is finished and the system is empty, the server stays
idle for a random period (delay time). If a customer arrives within the delayed period, the server resumes
normal service to the customer immediately. Otherwise, at the end of the delayed period, the server will
take a working vacation and will instantly provide slow service to customers (high priority customers
only). The Matrix analytic method is used to investigate the system. We also discussed the steady-state
vector and busy period for our concept. The estimated and visually displayed performance measures of
the system
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1. Introduction

For the past two decades, the priority queue hypothesis has been used in communication
strategies. Because priority does not come under FCFO, it distinguishes it from a normal queue.
It is a special type of queue in which each customer is dealt with priority and served according
to its priority. There are two different types of priority service available in a queueing system:
preemptive and non-preemptive. Priority customers that arrive early will wait until the service is
finished while regular customers are serviced. This belongs under the non-preemptive priority
rule. In the event of a preemptive rule, high-priority consumers would frequently interrupt
low-priority service.

Ayyappan et al. [21] looked at M/M/1 for retrials, with negative arrival while using non-
preemptive priority service. Bhagat and Jain [5] described a multi-server, non-preemptive priority
service that is susceptible to failure and maintenance. According to Jeganathan et al. [9], the
inventory system and non-preemptive priority service for retrials have been discussed. Addition-
ally, discretionary priority service is utilized, taking into account both disciplines. Ayyappan and
Somasundaram [3] analyzed discretionary priority service for retrials used MX1, MX2/G1, G2/1.
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Krishnamoorthy and Divya [13] examined queueing models with MAP and PH distributions, as
well as working vacations under N-policy.

In many real-world queueing situations, the server can be seen working during its rest period
if necessary. Working vacation means that the server offers service at a lower rate throughout the
vacation period rather than entirely shutting down. In the past few decades have seen, queueing
systems with server working vacation, owing to similarities between telecommunication system,
manufacturing system, and computer system. Yang et al. [22] applied the spectral expansion
method to deal with a single server queueing model with delayed working vacations and working
breakdown: The author showed the steady-state probability vector, LST of sojourn time, and
expected sojourn time. After service completion, the server is idle when there are no customers in
the system for a certain amount of time (changeover time) (Pikkala et al. [19], Krishna Reddy and
Anitha [11]). The server begins offering service if customers access the system during changeover
time; if not, the server goes on vacation at the end of the changeover time.

After obtaining service from the server, customers may be satisfied or unsatisfied. Customers
who are satisfied with the system will leave, while those who are not satisfied will get feedback
right away. A single server model with starting failures, standby server, single vacation, delayed
repair, breakdown, immediate feedback, and impatient customers was extensively analyzed by
Ayyappan and Thilagavathy [1], who found the expected results for both the system size and
orbit size. In their 2008 study, Badamchi Zadeh and Shahkar [4] examined queuing systems that
included two phases of heterogeneous service, optional second service, and feedback for each
service. In contrast to the current study, when services are parallel, they had sequential services
during their studies. Afterward, performance measures for the Poisson arrival queuing system
and probability-generating functions are obtained under the assumption of exponential service
times. Ayyappan and Thilagavathy [2] explored closedown, breakdown and multiple vacation
used MAP/PH/1.

When the system is inactive or when a customer is being served, random failures can happen.
The terms "hard failure" and "soft failure" refer to two different kinds of system failure. Hard
failure’s typically takes a long period and needs the repairman’s actual presence. On the other
side, soft failure’s takes less time because the system may be recovered with a simple reboot.
Markovian queueing models with two different forms of server breakdown have already been
studied by Jain and Jain (2010) [7], Kalyanaraman (2019) [10], Krishna Kumar(2008)[12], Li (2013)
[16], and many others. Using the matrix geometric technique, stability conditions for a single
server infinite capacity Markovian queue were obtained. According to Janani [8], the final value
theorem of the Laplace transform is used to convert the transient state probabilities of the model
into steady-state probabilities.

When customers abandon the line because they have waited too long for service, they are
considered impatient customers. Kumar [14] investigated a non-Markovian queue with an
unreliable server that first provides an essential service and then one of the m optional services.
He has described the balking techniques as well as cost analysis for the objective of model
optimization. A single server queueing system with associated reneging, feedback, and balking
was investigated by Rakesh Kumar and Soodan [20]. We explored the time-dependent behavior of
the model using the Runge-Kutta method. Additionally, they discovered the average waiting
time and system size. In modeling, the arrival using a Markovian Arrival Process, a particular
type of Versatile Markovian Point Process was proposed by Neuts [18]. Lucantoni et al. [17], with
considerable VMPP as BMAP notational simplifications since it started in 1990. Due to its ability
to simulate a broad spectrum of real-world events, MAP is an effective point process in stochastic
modeling. Chakravarthy [6], describes two parameter matrices of m dimensions, let’s say D0 and
D1. Transitions in the MAP are determined by the generator matrix D = D0 + D1.
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2. Model Formulation

Within this part, our focus is on a system for queueing with a single server, utilizing non-
preemptive priority. Customers categorized as high priority (HP) arrive through a Poisson process
with rate denoted by λ2, while low priority (LP) customers arrive via a Markovian Arrival Process
represented by (D0, D1) of order m. The matrix D0 means no arrival LP customer, while the
matrix D1 depicts LP customer arrival. HP customers have a limited capacity of K size, while LP
customers have unlimited capacity. The fundamental arrival rate, denoted as λ1, is equivalent to
π1D1e, where π1 represents the stationary probability vector. A customer categorized as HP is
assumed to have a service time that follows a phase-type distribution with the notation (γ, U) of
order n, while an LP customer’s service time is assumed to follow a phase-type distribution with
the notation (γ′, U′) of order n′.

Upon completion of the service, if no customer is in the system, then the server will remain
inactive for a random duration. That time is referred to as the delayed period. The delayed
period follows an exponential distribution with parameter ω. when a customer arrives during
the delayed period, prompt resumption of regular service is initiated by the server. However, if
the delayed period ends and any customer does not arrive, the server will proceed on a working
vacation. The vacation period is generated by an exponentially distributed parameter η. HP
customers who arrive during this period will be served at a lower service rate and it is followed
by phase-type distribution with representation (γ, θU), where 0 < θ < 1. As such, the mean
service rate in normal mode is µ1 = [γ(−U)−1e]−1, and the vacation mode of service rate is θµ1.

After completion of service for HP customer during working vacation, if there exists no HP
customer awaiting service, then the server will doemant in vacation mode, irrespective of the
presence of LP customers in the system. After the expiration of the vacation clock during a WV,
the server shall revert to its normal working mode. At the end of vacation period, LP customers
shall be considered for service during no HP customer present in the system. The expected
service rate of an LP customer is denoted by µ2 = [γ′(−U′)−1e]−1.

The server is affected by soft failure(short time) during idle period and hard failure (long time)
during normal busy period (both HP and LP customers). The rates of soft and hard failure are
exponentially distributed with parameters ψ1 and ψ2. When a soft and hard failure happens, the
server repair process starts immediately. The customer who is receiving service at that point must
join the front of the waiting queue. If there are any customers in line when the repair is finished,
the server will start servicing them. Or else, the server remains idle and repair times follows a
phase-type distribution (α, T) of order l for soft failure, where T0 + Te = 0 and (α′, T′) of order
l′ for hard failure, where T

′0 + T′e = 0. The repair rate is indicated as τ1 = [α(−T)−1e]−1 and
τ2 = [α′(−T′)−1e]−1 respectively.

The arriving LP Customers may balk the system with probability b during working vacation
or join the system with probability (1 − b). After receiving normal service (both HP and Lp
customers), the satisfied customer leave the system with probability p1 and if the customer is not
satisfied with probability q1 then they will get feedback immediately.

3. The QBD process infinitesimal generation matrix

Notations

We will need the following notations:

• ⊗ -Kronecker product of two matrices of various dimensions resulting in a block matrix.
• ⊕ - Kronecker sum of two matrices of various dimensions resulting in a block matrix.
• Im stand for identity matrix of m x m order.
• e - a column vector of the suitable order. Each of its entries is one.
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• e0=e3m+2Knm+Kl′m+(K+1)lm.
• e1=eKmn+(K+1)n′m+(K+1)l′m+(K+1)lm+Kmn+m.
• N1(t): the total number of LP customers in the system at epoch t.
• N2(t): the total number of HP customers in the system at epoch t.
• J(t) represents the server’s status at epoch t.

As a result, the server is in one of the following states at any given time t:

J(t) =



0, idle during normal mode,
1, if the server is offering service to HP customers during normal mode,
2, if the server is offering service to LP customers during normal mode,
3, hard failure (during normal busy mode),
4, delay time,
5, soft failure (during idle),
6, busy(HP) in working vacation mode,
7, idle in working vacation mode.

• R(t) stands for the repair process considered by phases.
• K(t) stands for phases of the service.
• A(t)- The Markovian arrival process is considered in phases.
• Let Y={Y(t) : t ≥ 0}, where Y(t) = {N1(t), N2(t), J(t), R(t), K(t), A(t)} is a CTMC with state
space

Φ = ϕ(0)
∞⋃

i=1

ϕ(i). (1)

where

ϕ(0) ={(0, 0, 0, a) : 1 ≤ a ≤ m} ∪ {(0, r, 1, k1, a) : 1 ≤ r ≤ K, 1 ≤ k1 ≤ n, 1 ≤ a ≤ m}
∪ {(0, r, 3, k4, a) : 1 ≤ r ≤ K, 1 ≤ k4 ≤ l′, 1 ≤ a ≤ m} ∪ {(0, 0, 4, a) : 1 ≤ a ≤ m}
∪ {(0, 0, 5, k3, a) : 0 ≤ r ≤ K, 1 ≤ k3 ≤ l, 1 ≤ a ≤ m}
∪ {(0, 1, 6, k1, a) : 1 ≤ r ≤ K, 1 ≤ k1 ≤ n, 1 ≤ a ≤ m} ∪ {(0, 0, 7, a) : 1 ≤ a ≤ m},

and for i ≥ 1,

ϕ(i) ={(i, r, 1, k1, a) : 1 ≤ r ≤ K, 1 ≤ k1 ≤ n, 1 ≤ a ≤ m}
∪ {(i, r, 2, k2, a) : 0 ≤ r ≤ K, 1 ≤ k2 ≤ n′, 1 ≤ a ≤ m}
∪ {(i, r, 3, k4, a) : 0 ≤ r ≤ K, 1 ≤ k4 ≤ l′, 1 ≤ a ≤ m}
∪ {(i, r, 5, k3, a) : 0 ≤ r ≤ K, 1 ≤ k3 ≤ l, 1 ≤ a ≤ m}
∪ {(i, r, 6, k1, a) : 1 ≤ r ≤ K, 1 ≤ k1 ≤ n, 1 ≤ a ≤ m} ∪ {(i, 0, 7, a) : 1 ≤ a ≤ m}.

3.1. The Infinitesimal Generator Matrix

The quasi-birth–death process has the generator matrix Q given by

Q =


B00 B01 0 0 0 0 . . .
B10 A1 A0 0 0 0 . . .
0 A2 A1 A0 0 0 . . .
0 0 A2 A1 A0 0 . . .
...

...
...

. . . . . . . . . . . .

 (2)
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B00 =



B11
00 B12

00 0 0 B15
00 0 0

0 B22
00 B23

00 B24
00 0 0 0

0 B32
00 B33

00 0 0 0 0
0 B42

00 0 B44
00 0 0 B47

00
B51

00 B52
00 0 0 B55

00 0 0
0 B62

00 0 0 0 B66
00 B67

00
B71

00 0 0 0 0 B76
00 B77

00


,

where
B11

00 = D0 − (λ2 + ψ1)Im, B12
00 = e′1 ⊗ α ⊗ λ2 Im, B15

00 = e′1(K + 1)⊗ α ⊗ ψ1 Im,

B22
00 =



L1 L2 0 . . . 0 0
L3 L1 L2 . . . 0 0
0 L3 L1 . . . 0 0

. . . . . .
0 0 0 . . . L1 L2
0 0 0 . . . L3 L1 + L2


, B23

00 = IK ⊗ en ⊗ α′ ⊗ ψ2 Im, B24
00 = e1K ⊗ qU0 ⊗ Im,

where L1 = (U + pU0γ)⊕ D0 − (λ2 + ψ2)Inm, L2 = λ2 Inm, L3 = qU0γ ⊗ Im.

B32
00 = IK ⊗ T′0γ ⊗ Im, B33

00 =



L4 L5 0 . . . 0 0
0 L4 L5 . . . 0 0
0 0 L4 . . . 0 0

. . . . . .
0 0 0 . . . L4 L5
0 0 0 . . . 0 L4 + L5


,

where L4 = T′ ⊕ D0 − λ2 Il′m, L5 = λ2 Il′m.
B42

00 = e′1K ⊗ α ⊗ λ2 Im, B44
00 = D0 − (λ2 + ω)Im, B47

00 = ωIm, B51
00 = e1(K + 1)⊗ T0 ⊗ Im,

B52
00 =



0 0 0 . . . 0 0
T0γ ⊗ Im 0 0 . . . 0 0

0 T0γ ⊗ Im 0 . . . 0 0
0 0 T0γ ⊗ Im . . . 0 0

. . . . . .
0 0 0 . . . T0γ ⊗ Im 0
0 0 0 . . . 0 T0γ ⊗ Im


,

B55
00 =



L6 L7 0 . . . 0 0
0 L6 L7 . . . 0 0
0 0 L6 . . . 0 0

. . . . . .
0 0 0 . . . L6 L7
0 0 0 . . . 0 L6 + L7


, B66

00 =



L8 L9 0 . . . 0 0
L10 L8 L9 . . . 0 0
0 L10 L8 . . . 0 0

. . . . . .
0 0 0 . . . L8 L9
0 0 0 . . . L10 L8 + L9


,

where L6 = T ⊕ D0 − λ2 Ilm, L7 = λ2 Ilm, L8 = θU ⊕ (D0 + bD1) − (η + λ2)Inm, L9 = λ2 Inm,
L10 = θU′ ⊗ Im.
B62

00 = IK ⊗ en ⊗ ηγ ⊗ Im, B67
00 = e1K ⊗ θU0 ⊗ Im, B71

00 = η Im, B76
00 = e′1K ⊗ γ ⊗ λ2 Im,

B77
00 = (D0 + bD1)− (η + λ2)Im.

RT&A, No 4 (76) 
Volume 18, December 2023 

775



G. Ayyappan, N. Arulmozhi
Analysis of M, MAP/PH1, PH2/1 Non-preemptive Priority Queueing model,...

B01 =



0 B12
01 0 0 0 0

B21
01 0 0 0 0 0
0 0 B33

01 0 0 0
0 B42

01 0 0 0 0
0 0 0 B54

01 0 0
0 0 0 0 B65

01 0
0 0 0 0 00 B76

01


,

where
B12

01 = e′1(K + 1)⊗ γ′ ⊗ D1, B21
01 = IK ⊗ In ⊗ D1,

B33
01 =



0 Il′ ⊗ D1 0 0 . . . 0 0
0 0 Il′ ⊗ D1 0 . . . 0 0
0 0 0 Il′ ⊗ D1 . . . 0 0

. . . . . .
0 0 0 0 . . . Il′ ⊗ D1 0
0 0 0 0 . . . 0 Il′ ⊗ D1


, B42

01 = e′1(K + 1) ⊗ γ′ ⊗ D1,

B54
01 = IK+1 ⊗ Il ⊗ D1, B65

01 = IK ⊗ In ⊗ (1 − b)D1, B76
01 = (1 − b)D1.

B10 =



0 0 0 0 0 0 0
0 B22

10 0 B24
10 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 ,

where

B22
10 =



0 0 0 . . . 0 0
qU′0γ ⊗ Im 0 0 . . . 0 0

0 qU′0γ ⊗ Im 0 . . . 0 0
0 0 qU′0γ ⊗ Im . . . 0 0

. . . . . .
0 0 0 . . . qU′0γ ⊗ Im 0
0 0 0 . . . 0 qU′0γ ⊗ Im


,

B24
10 = e1(K + 1)⊗ qU′0 ⊗ Im.

B11 =



B11
11 B12

11 B13
11 0 0 0

0 B22
11 B23

11 0 0 0
B31

11 B32
11 B33

11 0 0 0
B41

11 B42
11 0 B44

11 0 0
B51

11 0 0 0 B55
11 B56

11
0 B62

11 0 0 B65
11 B66

11

 ,

where

B11
11 =



L1 L2 0 . . . 0 0
L3 L1 L2 . . . 0 0
0 L3 L1 . . . 0 0

. . . . . .
0 0 0 . . . L1 L2
0 0 0 . . . L3 L1 + L2


, B12

11 =



qU0γ′ ⊗ Im 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0

. . . . . .
0 0 0 . . . 0 0


,
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B13
11 =



0 en ⊗ ψ2α′ ⊗ Im 0 0 . . . 0 0
0 0 en ⊗ ψ2α′ ⊗ Im 0 . . . 0 0
0 0 0 en ⊗ ψ2α′ ⊗ Im . . . 0 0

. . . . . .
0 0 0 0 . . . en ⊗ ψ2α′ ⊗ Im 0
0 0 0 0 . . . 0 en ⊗ ψ2α′ ⊗ Im


,

B22
11 =



L11 L12 0 . . . 0 0
0 L11 L12 . . . 0 0
0 0 L11 . . . 0 0

. . . . . .
0 0 0 . . . L11 L12
0 0 0 . . . 0 L11 + L12


, B23

11 = IK+1 ⊗ e′n ⊗ ψ2α′ ⊗ Im,

where L11 = (U′ + pU′0γ1)⊕ D0 − (λ2 + ψ2)In′m, L12 = λ2 In′m.

B31
11 =



0 0 0 . . . 0 0
T′0γ ⊗ Im 0 0 . . . 0 0

0 T′0γ ⊗ Im 0 . . . 0 0
0 0 T′0γ ⊗ Im . . . 0 0

. . . . . .
0 0 0 . . . T′0γ ⊗ Im 0
0 0 0 . . . 0 T′0γ ⊗ Im


,

B32
11 =



T′0γ′ ⊗ Im 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0

. . . . . .
0 0 0 . . . 0 0


, B33

11 =



L4 L5 0 . . . 0 0
0 L4 L5 . . . 0 0
0 0 L4 . . . 0 0

. . . . . .
0 0 0 . . . L4 L5
0 0 0 . . . 0 L4 + L5


,

B41
11 =



0 0 0 . . . 0 0
T0γ ⊗ Im 0 0 . . . 0 0

0 T0γ ⊗ Im 0 . . . 0 0
0 0 T0γ ⊗ Im . . . 0 0

. . . . . .
0 0 0 . . . T0γ ⊗ Im 0
0 0 0 . . . 0 T0γ ⊗ Im


,

B42
11 =



T0γ′ ⊗ Im 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0

. . . . . .
0 0 0 . . . 0 0


, B44

11 =



L6 L7 0 . . . 0 0
0 L6 L7 . . . 0 0
0 0 L6 . . . 0 0

. . . . . .
0 0 0 . . . L6 L7
0 0 0 . . . 0 L6 + L7


,

B51
11 = IK ⊗ en ⊗ ηγ ⊗ Im,
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B55
11 =



L8 L9 0 . . . 0 0
L10 L8 L9 . . . 0 0
0 L10 L8 . . . 0 0

. . . . . .
0 0 0 . . . L8 L9
0 0 0 . . . L10 L8 + L9


, B56

11 = e1K ⊗ θU0 ⊗ Im,

B62
11 = e′1(K + 1)⊗ ηγ′ ⊗ Im, B65

11 = e′1(K)⊗ α ⊗ λ2 Im, B66
11 = (D0 + bD1)− (η + λ2)Im.

B12 =



B11
12 0 0 0 0 0
0 B22

12 0 0 0 0
0 0 B33

12 0 0 0
0 0 0 B44

12 0 0
0 0 0 0 B55

12 0
0 0 0 0 0 B66

12

 ,

where
B11

12 = IK ⊗ In ⊗ D1, B22
12 = IK+1 ⊗ In′ ⊗ D1, B33

12 = IK+1 ⊗ Il′ ⊗ D1,
B44

12 = IK+1 ⊗ Il ⊗ D1, B55
12 = IK ⊗ In ⊗ (1 − b)D1, B66

12 = (1 − b)D1,

B21 =



0 0 0 0 0 0
B21

21 0 B23
21 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

where

B21
21 =



0 0 0 . . . 0 0
qU′0γ ⊗ Im 0 0 . . . 0 0

0 qU′0γ ⊗ Im 0 . . . 0 0
0 0 qU′0γ ⊗ Im . . . 0 0

. . . . . .
0 0 0 . . . qU′0γ ⊗ Im 0
0 0 0 . . . 0 qU′0γ ⊗ Im


,

B23
21 =



qU′0γ′ ⊗ Im 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0

. . . . . .
0 0 0 . . . 0 0


.

4. Analysis of Stability Condition

We examined our model under the assumption that the system is stable.

4.1. Condition for Stability

Let A = A0 + A1 + A2 be the square matrix of order Kmn + (K + 1)n′m + (K + 1)l′m +
(K + 1)lm + Kmn + m and it is an infinitesimal generator matrix is an irreducible. Let χ indicate
the steady-state probability vector of A satisfying χA = 0 and χe = 1. The vector χ is partitioned
by
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χ = (χ0, χ1, χ2, χ3, χ4, χ5)=(χ00, χ01, . . . , χ0K−1, χ0K, χ11, χ12, . . . , χ1K−1, χ1K, χ20, χ21, . . . , χ2K−1, χ2K,
χ30, χ31, . . . , χ3K−1, χ3K, χ40, χ41, . . . , χ4K−1, χ4K, χ50, χ51, . . . , χ5K−1, χ5K), where χ0 is of dimen-
sion Kmn, χ1 is of dimension (K + 1)n′m, χ2 is of dimension (K + 1)l′m, χ3 is of dimension
(K + 1)lm, χ4 is of dimension Kmn and χ5 is of dimension m. The probability vector χ is calcu-
lated by solving the following equations:

χ00[(U + pU0γ)⊗ Im − (λ2 + η)Inm] + χ01(qU0γ ⊗ Im) + χ11(qU′0γ ⊗ Im)

+ χ21(T′0γ ⊗ Im) + χ31(T0γ ⊗ Im) + χ40(en ⊗ ηγ ⊗ Im) = 0.

χ0j−1(λ2 Inm) + χ0j[(U + pU0γ)⊗ Im − (λ2 + η)Inm] + χ0j+1(qU0γ ⊗ Im) + χ1j+1(qU′0γ ⊗ Im)

+ χ2j+1(T′0γ ⊗ Im) + χ3j+1(T0γ ⊗ Im) + χ4j(en ⊗ ηγ ⊗ Im) = 0, f or 1 ≤ j ≤ K − 1.

χ0K−1(λ2 Inm) + χ0K[(U + pU0γ)⊗ Im − η Inm] + χ4K(en ⊗ ηγ ⊗ Im) = 0.

χ00(qU0γ′ ⊗ Im) + χ10[(U′ + pU′0γ′)⊗ Im − (λ2 + ψ2)In′m] + χ20(T′0γ′ ⊗ Im) + χ30(T0γ′ ⊗ Im)

+ χ50(ηγ′ ⊗ Im) = 0.

χ1j−1(λ2 In′m) + χ1j[(U′ + pU′0γ′)⊗ Im − (λ2 + ψ2)In′m] + χ5j(ηγ′ ⊗ Im) = 0, f or 1 ≤ j ≤ K − 1.

χ1L−1(λ2 In′m) + χ1L[(U′ + pU′0γ′)⊗ Im] = 0.

χ10[((e′n ⊗ ψ2α′) + qU′0γ′)⊗ Im] + χ20(T′ ⊗ Im − λ2 Il′m) = 0.

χ0j−1[en ⊗ ψ2α′ ⊗ Im] + χ1j[e′n ⊗ ψ2α′ ⊗ Im] + χ2j−1(λ2 Il′m) + χ2j(T′ ⊗ Im − λ2 Il′m) = 0,

f or 1 ≤ j ≤ K − 1.

χ0K[en ⊗ ψ2α′ ⊗ Im] + χ1K[e′n ⊗ ψ2α′ ⊗ Im] + χ2K−1(λ2 Il′m) + χ2K(T′ ⊗ Im) = 0.

χ30(T ⊗ Im − λ2 Ilm) = 0,

χ3j−1(λ2 Ilm) + χ3j(T ⊗ Im − λ2 Ilm) = 0, f or 1 ≤ j ≤ K − 1.

χ3K−1(λ2 Ilm) + χ3K(T ⊗ Im) = 0.

χ40[θU ⊗ Im − (η + λ2)Inm] + χ41(θU′ ⊗ Im) + χ50(α ⊗ λ2 Im) = 0.

χ4j−1(λ2 Inm) + χ4j[θU ⊗ Im − (η + λ2)Inm] + χ4j+1(θU′ ⊗ Im) + χ5j(α ⊗ λ2 Im) = 0,

f or 1 ≤ j ≤ K − 1.

χ4K−1(λ2 Inm) + χ4K[θU ⊗ Im − η Inm] + χ5K(α ⊗ λ2 Im) = 0.

χ4K−1(e1K ⊗ θU0 ⊗ Im)− χ5K(η + λ2)Im = 0.

Subject to normalizing condition

K

∑
r=1

χ0renm +
K

∑
r=0

χ1ren′m +
K

∑
r=0

χ2rel′m +
K

∑
r=0

χ3relm +
K

∑
r=1

χ4renm + χ50em = 1.

The stability condition χA0e < χA2e is obtained after some algebraic simplification, which turns
out to be

K

∑
r=1

χ0r(en ⊗ D1em) +
K

∑
r=0

χ1r(en′ ⊗ D1em) +
K

∑
r=0

χ2r(el′ ⊗ D1em) +
K

∑
r=0

χ3r(el ⊗ D1em)

+
K

∑
r=1

χ4r(en ⊗ (1 − b)D1em) + χ50(1 − b)D1em <
K

∑
r=0

χ1r(qU′0 ⊗ em).

4.2. The Stationary Probability Vector

Let y be the stationary probability vector of the infinitesimal generator Q of the process {Y(t):
t ≥ 0}. The subdivision of y by level as, y = (y0, y1, y2, ...), where y0 is of dimension (3m+ 2Knm+
Kl′m + (K + 1)lm) for i = 0 and y1, y2, ... are of dimension Kmn + (K + 1)n′m + (K + 1)l′m + (K +
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1)lm + Kmn + m for i ≥ 1. As y is a stationary probability vector satisfies the relation yQ = 0 and
ye = 1. Furthermore, while the stability criterion is satisfied, the equation gives the various levels.

yj = y1Rj−1, j ≥ 2 (3)

where R is the smallest non-negative solution of the quadratic equation

R2 A2 + RA1 + A0 = 0

and satisfies the relation RA2e = A0e and the vector y0, y1 are obtained with the help of succeeding
equations:

y0B00 + y1B10 = 0, (4)

y0B01 + y1[A1 + RA2] = 0, (5)

subject to normalizing condition

y0e0 + y1[I − R]−1e1 = 1. (6)

As a result, we can compute matrix R using Logarithmic reduction algorithm in Latouche and
Ramaswami[15] and the vector y by using the special structure of something like the coefficient
matrices.

5. Busy Period Analysis

• In a single-server queueing demonstration, the word busy period is characterized as the length
of time between the entry of a customer into the void system and the first time from that point
that the system size reaches zero. As, the first passage epoch to level zero, starting from level one.
It is the first return time of level zero, taken after by a least one visit to a few other levels, which
is the analog of the busy cycle.

• We have to present an outline of the fundamental period to analyze the busy period. when the
QBD process is taken into thought the first passage time from level i to i − 1, where i ≥ 2.

• It is worth pointing out that for each level i, i ≥ 2, there are (3m + 3nm + lm) states. The state
(i, j) of level i signifies the jth state of level i when the states are sorted alphabetically.

• Let Gjj′(u, y) represent the conditional probability that the QBD process, starting at time
t = 0 in the state (i, j) and keep track of the time until the first visit to the level (i − 1) but not
later than time y. We can modify after exactly u transitions to the left and enter the state (i, j′),
t = 0.

Let the joint transform matrix

Gjj′(z, s) =
∞

∑
u=1

zu
∫ ∞

0
e−sydGjj′(u, y) ; |z| ≤ 1, Re(s) ≥ 0, (7)

and put the matrix G(z, s) = Gjj′(z, s). Specifically, computed the matrix G(z, s) satisfy the
equation,

G(z, s) = z(SI − A1)
−1 A2 + (SI − A1)

−1 A0G
2
(z, s). (8)

The matrix G = Gjj′ = G(1, 0) is concerned with negating the boundary states during the first
passage times. knowing the rate matrix R allows us to use the below result to find the matrix G

G = −(A1 + RA2)
−1 A2. (9)
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The matrix G can be found with the assistance of the Logarithmic reduction algorithm [15]. We
find the matrix with the succeeding equation

G
(1,0)

(z, s) = z(sI − A1)
−1B10 + (sI − A1)

−1 A0G(z, s)G(1,0)
(z, s) (10)

G
(0,0)

(z, s) = (sI − B00)
−1B01G

(1,0)
(z, s). (11)

Thus, the moments that obey are calculated using the matrices G, G
(0,0)

(1, 0) and G
(1,0)

(1, 0) are
stochastic at z = 1 and s = 0. We can find the moments as follows:

F⃗1 = − ∂

∂s
G(z, s)e = −[A1 + A0(I + G)]−1e, (12)

F⃗2 =
∂

∂z
G(z, s)e = −[A1 + A0(I + G)]−1 A2e, (13)

F⃗ (1,0)
1 = − ∂

∂s
G
(1,0)

(z, s)e = −[A1 + A0G]
−1(A0F⃗1 + e), (14)

F⃗ (1,0)
2 =

∂

∂z
G
(1,0)

(z, s)e = −[A1 + A0G]
−1(A0F⃗2 + B10e), (15)

F⃗ (0,0)
1 = − ∂

∂s
G

0,0
(z, s)e = −B−1

00 [B01F⃗
(1,0)
1 + e], (16)

F⃗ (0,0)
2 =

∂

∂z
G
(0,0)

(z, s)e = −B−1
00 [B01F⃗

(1,0)
2 ]. (17)

6. System Performance Measures

• Expected number of LP customers in the system
ELP = ∑∞

i=1 iyie.
• Probability that the server is idle

Pidle = ∑m
a=1 y000a.

• Probability that the server busy with HP customers
PHbusy = ∑∞

i=0 ∑K
r=1 ∑n

k1=1 ∑m
a=1 yir1k1a

• Probability that the server is on hard failure
PHF = ∑K

r=1 ∑l′
k4=1 ∑m

a=1 y0r3k4a + ∑∞
i=1 ∑K

r=0 ∑l′
k4=1 ∑m

a=1 yir3k4a
• Probability that the server is Delay time to go for vacation

PDT = ∑m
a=1 y004a

• Probability that the server is busy during working vacation
PBWV = ∑∞

i=0 ∑K
r=0 ∑n

k1=1 ∑m
a=1 yir6k1a

7. Numerical Implementation

To compute numerical outcomes, we have employed distinct MAP representations for the arrival
process in a manner that ensures their mean values are 1, as recommended by Chakravarthy [6].

Erlang of order 2 (ERL-A):

D0 =

[
−2 2
0 −2

]
, D1 =

[
0 0
2 0

]
.

Exponential (EXP-A):
D0 = [−1], D1 = [1].

Hyper exponential (HYP-A):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.710 0.190
0.171 0.019

]
.
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MAP-Negative Correlation (MAP-NC-A):

D0 =

 −1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

 , D1 =

 0 0 0
0.01002 0 0.99241
223.539 0 2.258

 .

MAP-Positive Correlation (MAP-PC-A):

D0 =

 −1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

 , D1 =

 0 0 0
0.99241 0 0.01002
2.258 0 223.539

 .

Let us consider PH-distributions for the service and repair process as follows:

Erlang of order 2 (ERL-S):

γ = γ′ = [1, 0], U = U′ =

[
−2 2
0 −2

]
.

Erlang of order 2 (ERL-R):

α = α′ = [1, 0], T = T′ =

[
−2 2
0 −2

]
.

Exponential (EXP-S):
γ = γ′ = [1], U = U′ = [−1].

Exponential (EXP-R):
α = α′ = [1], T = T′ = [−1].

Hyper exponential (HYP-S):

γ = γ′ = [0.8, 0.2], U = U′ =

[
−2.8 0

0 −0.28

]
.

Hyper exponential (HYP-R):

α = α′ = [0.8, 0.2], T = T′ =

[
−2.8 0

0 −0.28

]
.

7.1. Illustration 1

We have examined the consequence of the hard failure rate ψ2 against the Expected number of LP
customers in the system(ELP) in the following tables 1 - 3. Fix µ1 = 20, µ2 = 15, K = 5, λ1 = 1,
λ2 = 1.5, η = 8, ω = 0.5, ψ1 = 0.5, τ1 = 2, τ2 = 6, θ = 0.6, b = 0.7, p1 = 0.3, q1 = 0.7 such that
the system is stable.

• As the hard failure rate (ψ2) increases, the variety of arrangements of arrival and service
times than the corresponding ELP also increases.

• Observe the arrival times, ELP increases highly in MAP − PC − A and increases much
slower in ERL − A than all other arrival times.

7.2. Illustration 2

We investigated the impact of the vacation rate (η) against the probability of the server being
idle (Pidle) in the following tables 4 - 6. Fix µ1 = 20, µ2 = 15, K = 5, λ1 = 1, λ2 = 1.5, ω = 0.5,
ψ1 = 0.5, ψ2 = 1, τ1 = 2, τ2 = 6, θ = 0.6, b = 0.7, p1 = 0.3, q1 = 0.7 such that the system is stable.

• As the vacation rate (η) increases, the variety of arrangements of arrival and service times
than the corresponding Pidle also increases.

• While comparing to EXP − S and HYP − S, Pidle increases more rapidly for ERL − S.
Similarly, Pidle increases slowly for HYP − S.
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7.3. Illustration 3

We analyze the effect of the repair rate (τ2) on the probability of the server being busy for HP
customer (PHbusy) in the following tables 7 - 9. Fix µ1 = 16, µ2 = 15, K = 5, λ1 = 1, λ2 = 1.5,
η = 8, ω = 0.5, ψ1 = 0.5, ψ2 = 1, τ1 = 2, θ = 0.6, b = 0.7, p = 0.3, q = 0.7 such that the system is
stable.

• While maximizing the repair rate (τ2), PHbusy minimizes for various possible arrangements
of arrival and service times.

• When correlating the distinct arrival times, PHbusy decreases more quickly in the case of
MAP − PC − A whereas slowly in ERL − A. Similarly, considering the service times, PHbusy
decreases gradually in ERL − S and highly in HYP − S.

7.4. Illustration 4

To determine the existence of the service rate of HP customer (µ2) versus the expected system
size for LP customer (ELP) in Figures 1 - 5. Fix µ2 = 15, K = 5, λ1 = 1, λ2 = 1.5, η = 8, ω = 0.5,
ψ1 = 0.5, ψ2 = 1, τ1 = 2, τ2 = 6, θ = 0.6, b = 0.7, p1 = 0.3, q1 = 0.7 such that the system remains
stable.

A quick observation from Figures 1 - 5, ELP decreases while increasing the service rate of
HP customers for all combinations of arrival and service time groupings. Due to the availability
of the HP service rate in the system, the customers will get service successfully which leads to
ELP decreases. However, ELP decreases slowly for ERL − A with the combination of ERL − S
whereas slowly in HYP − S. Likewise, ELP decreases highly for HYP − A in HYP − S whereas
slowly in ERL − S.

7.5. Illustration 5

To see the features of both the HP service rate (µ1) and repair rate of hard failure (τ2) on the
expected number of LP customers in the system (ELP) in the Figures 6 - 10. Fix µ2 = 15, K = 5,
λ1 = 1, λ2 = 1.5, η = 8, ω = 0.5, ψ1 = 0.5, ψ2 = 1, τ1 = 2, θ = 0.6, b = 0.7, p = 0.3, q = 0.7 such
that stability condition is satisfied.

Observation in Figures 6 - 10, we increase the values of both the HP service rate and repair
rate of hard failure, then ELP decreases with various arrival groupings. Due to the HP customer
increase in the service rate, ELP decreases likewise increase the repair rate of hard failure decrease
in the ELP. Let’s look at the arrival times, ELP decreases slowly for ERL − A and decreases fastly
for MAP − PC − A.
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Table 1: Hard Failure rate (ψ2) vs ELP - ERL-S

ψ2 ERL − A EXP − A HYP − A NC − A PC − A

1 0.163936 0.206320 0.293281 0.330092 20.674732

1.2 0.172609 0.217533 0.312405 0.342647 21.257457

1.4 0.181624 0.229181 0.332498 0.355637 21.857954

1.6 0.190997 0.241285 0.353617 0.369083 22.477042

1.8 0.200747 0.253867 0.375822 0.383009 23.115590

2 0.210893 0.266951 0.399180 0.397438 23.774519

2.2 0.221454 0.280563 0.423761 0.412394 24.454807

2.4 0.232454 0.294730 0.449638 0.427907 25.157494

2.6 0.243915 0.309480 0.476893 0.444003 25.883685

Table 2: Hard Failure rate (ψ2) vs ELP - EXP-S

ψ2 ERL − A EXP − A HYP − A NC − A PC − A

1 0.174277 0.217929 0.311487 0.340494 20.533617

1.2 0.182994 0.229005 0.330339 0.352724 21.059251

1.4 0.191976 0.240406 0.349917 0.365273 21.596139

1.6 0.201232 0.252143 0.370253 0.378153 22.144696

1.8 0.210771 0.264230 0.391379 0.391377 22.705353

2 0.220605 0.276679 0.413329 0.404958 23.278556

2.2 0.230744 0.289502 0.436138 0.418908 23.864775

2.4 0.241200 0.302715 0.459844 0.433243 24.464498

2.6 0.251986 0.316331 0.484485 0.447976 25.078233

Table 3: Hard Failure rate (ψ2) vs ELP - HYP-S

ψ2 ERL − A EXP − A HYP − A NC − A PC − A

1 0.233555 0.282009 0.402324 0.416602 19.623165

1.2 0.240760 0.290404 0.415758 0.425489 19.866887

1.4 0.247923 0.298753 0.429141 0.434323 20.109536

1.6 0.255059 0.307070 0.442498 0.443121 20.351499

1.8 0.262179 0.315369 0.455850 0.451895 20.593109

2 0.269292 0.323660 0.469217 0.460658 20.834659

2.2 0.276407 0.331955 0.482615 0.469419 21.076406

2.4 0.283532 0.340261 0.496061 0.478189 21.318580

2.6 0.290674 0.348587 0.509566 0.486975 21.561381
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Table 4: Vacation rate (η) vs Pidle - ERL-S

η ERL − A EXP − A HYP − A NC − A PC − A

5 0.082706 0.088338 0.098335 0.092979 0.094606

6 0.084704 0.090362 0.100285 0.094971 0.096400

7 0.086239 0.091918 0.101790 0.096500 0.097789

8 0.087467 0.093162 0.102999 0.097723 0.098910

9 0.088478 0.094188 0.103999 0.098732 0.099840

10 0.089331 0.095053 0.104845 0.099583 0.100629

11 0.090063 0.095797 0.105573 0.100315 0.101311

12 0.090700 0.096444 0.106210 0.100952 0.101907

13 0.091261 0.097015 0.106772 0.101514 0.102435

Table 5: Vacation rate (η) vs Pidle - EXP-S

η ERL − A EXP − A HYP − A NC − A PC − A

5 0.084405 0.090174 0.100258 0.095251 0.096557

6 0.086462 0.092258 0.102267 0.097311 0.098407

7 0.088037 0.093853 0.103811 0.098887 0.099835

8 0.089292 0.095124 0.105045 0.100142 0.100980

9 0.090321 0.096167 0.106061 0.101172 0.101925

10 0.091185 0.097042 0.106916 0.102036 0.102722

11 0.091922 0.097789 0.107648 0.102775 0.103407

12 0.092561 0.098437 0.108283 0.103415 0.104002

13 0.093121 0.099006 0.108842 0.103977 0.104527

Table 6: Vacation rate (η) vs Pidle - HYP-S

η ERL − A EXP − A HYP − A NC − A PC − A

5 0.090101 0.096426 0.106953 0.102570 0.103410

6 0.092254 0.098602 0.109047 0.104734 0.105339

7 0.093876 0.100237 0.110625 0.106360 0.106796

8 0.095147 0.101518 0.111863 0.107631 0.107942

9 0.096173 0.102552 0.112863 0.108656 0.108870

10 0.097022 0.103406 0.113691 0.109503 0.109639

11 0.097737 0.104125 0.114389 0.110217 0.110290

12 0.098349 0.104741 0.114987 0.110827 0.110848

13 0.098880 0.105275 0.115507 0.111356 0.111333
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Table 7: Repair rate (τ2) vs PHbusy - ERL-S

τ2 ERL − A EXP − A HYP − A NC − A PC − A

5 0.105099 0.105226 0.105427 0.105573 0.105653

6 0.105061 0.105172 0.105341 0.105479 0.105548

7 0.105034 0.105135 0.105284 0.105412 0.105472

8 0.105014 0.105107 0.105243 0.105362 0.105416

9 0.104998 0.105086 0.105213 0.105323 0.105373

10 0.104986 0.105070 0.105190 0.105292 0.105339

11 0.104976 0.105056 0.105171 0.105267 0.105311

12 0.104968 0.105045 0.105156 0.105246 0.105288

13 0.104961 0.105036 0.105143 0.105228 0.105268

Table 8: Repair rate (τ2) vs PHbusy - EXP-S

τ2 ERL − A EXP − A HYP − A NC − A PC − A

5 0.103623 0.103745 0.103941 0.104090 0.104179

6 0.103590 0.103698 0.103864 0.104004 0.104081

7 0.103565 0.103663 0.103811 0.103941 0.104009

8 0.103545 0.103637 0.103772 0.103892 0.103954

9 0.103530 0.103616 0.103742 0.103854 0.103911

10 0.103518 0.103600 0.103719 0.103824 0.103876

11 0.103509 0.103587 0.103701 0.103798 0.103848

12 0.103500 0.103576 0.103685 0.103778 0.103824

13 0.103493 0.103567 0.103673 0.103760 0.103805

Table 9: Repair rate (τ2) vs PHbusy - HYP-S

τ2 ERL − A EXP − A HYP − A NC − A PC − A

5 0.095098 0.095149 0.095235 0.095317 0.095365

6 0.095158 0.095216 0.095310 0.095423 0.095481

7 0.095182 0.095241 0.095332 0.095455 0.095514

8 0.095191 0.095247 0.095335 0.095458 0.095515

9 0.095192 0.095247 0.095329 0.095449 0.095503

10 0.095190 0.095243 0.095321 0.095436 0.095487

11 0.095187 0.095238 0.095313 0.095422 0.095470

12 0.095183 0.095232 0.095304 0.095408 0.095453

13 0.095180 0.095227 0.095296 0.095394 0.095438
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Figure 1: High priority service rate vs. ELP
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Figure 2: High priority service rate vs. ELP
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Figure 3: High priority service rate vs. ELP
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Figure 4: High priority service rate vs. ELP
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Figure 5: High priority service rate vs. ELP Figure 6: HP service (µ1) and Repair(HF) (τ2) rates
vs. ELP - ERL-S
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Figure 7: HP service (µ1) and Repair(HF) (τ2) rates
vs. ELP - ERL-S

Figure 8: HP service (µ1) and Repair(HF) (τ2) rates
vs. ELP - ERL-S

Figure 9: HP service (µ1) and Repair(HF) (τ2) rates
vs. ELP - ERL-S

Figure 10: HP service (µ1) and Repair(HF) (τ2)
rates vs. ELP - ERL-S

8. Conclusion

This paper contributes by employing the Matrix analytic method to compute the stationary
distribution of the number of customers in the M, MAP/PH1, PH2/1 queueing system with de-
layed working vacations under non-preemptive priority. We discussed some system performance
measures using steady-state probabilities and also calculated busy period analysis. We used
numerical examples to show how different system parameters affect performance measures.

RT&A, No 4 (76) 
Volume 18, December 2023 

788



G. Ayyappan, N. Arulmozhi
Analysis of M, MAP/PH1, PH2/1 Non-preemptive Priority Queueing model,...

References

[1] Ayyappan, G. and Thilagavathy, K. (2021). Analysis of MAP/PH/1 queueing model with
immediate feedback, starting failures, single vacation, standby server, delayed repair, break-
down and impatient customers, International Journal of Mathematics in Operational Research,
19(3):269-301.

[2] Ayyappan, G. and Thilagavathy, K. (2021). Analysis of MAP/PH/1 Queueing model with
Setup, Closedown, Multiple Vacations, Standby Server, Breakdown, Repair and Reneging,
Reliability: Theory and Applications, 15(2):104–143.

[3] Ayyappan, G. and Somasundaram, B. (2019). Analysis of two-stage MX1 , MX2 /G1, G2/1
retrial G-queue with discretionary priority services, working breakdown, Bernoulli vacation,
preferred and impatient units, Applications and Applied Mathematics: An International Journal,
14(2):640-671.

[4] Badamchi Zadeh, A. and Shahkar, G. H. (2008). A Two Phases Queue System with Bernoulli
Feedback and Bernoulli Schedule Server Vacation, International Journal of Information and
Management Sciences, 19:329–338.

[5] Bhagat, A. and Jain, M. (2020). Retrial queue with multiple repairs, multiple services, and
non-preemptive priority, OPSEARCH, 57(3):1-28.

[6] Chakravarthy, S.R. (2011). Markovian arrival processes, Wiley Encyclopedia of Operation
Research and Management Science.

[7] Jain, M. and Jain, A (2010). Working vacation queueing model with multiple types of server
breakdowns, Applied Mathematical Modelling, 34:1-13.

[8] Janani, B. (2022).Transient Analysis of Differentiated Breakdown Model, Applied Mathematics
and Computation, 417: p.126779.

[9] Jeganathan, K., Anbazhagan, N. and Kathiresan, J. (2013). A Retrial Inventory System with
Non-Preemptive Priority Service, International Journal of Information and Management Sciences,
24(1):57-77.

[10] Kalyanaraman, R. and Sundaramoorthy, A. (2019). A Markovian working vacation queue
with server state-dependent arrival rate and with partial breakdown, International Journal of
Recent Technology and Engineering, 7:664-668.

[11] Krishna Reddy, G. V., and Anitha, R. (1998). Markovian bulk service queue with delayed
vacations, Computers and Operations Research, 25(12):1159–1166.

[12] Krishna Kumar, B., Rukmani, R., Thanikachalam, A., and Kanakasabapathi, V. (2008).
Performance analysis of retrial queue with server subject to two types of breakdowns and
repairs, Operations Research, 18(2):521-559.

[13] Krishnamoorthy, A. and Divya, V.(2020). (M, MAP)/(PH, PH)/1 Queue with Non-preemptive
Priority and Working Vacation Under N-Policy, Journal of the Indian Society for Probability and
Statistics, 21(1): 69-122

[14] Kumar, B. (2018). An unreliable bulk queueing model with optional services, Bernoulli
vacation schedule and balking, International Journal of Mathematics in Operational Research,
12(3):293-316.

[15] Latouche, G., and Ramaswami, V. (1993). A Logarithmic Reduction Algorithm for Quasi-
Birth-Death Processes, Journal of Applied Probability, 30:650-674.

[16] Li, L., Wang, J., and Zhang, F. (2013). Equilibrium customer strategies in Markovian queues
with partial breakdowns, Computers and Industrial Engineering, 66:751–757.

[17] Lucantoni, D.M., Meier-Hellstern, K.S., and Neuts, M.F. (1990). A single server queue with
server vacations and a class of non-renewal arrival processes, Advances in Applied Probability,
22:676-705.

[18] Neuts, M. F. (1979). A Versatile Markovian Point Process, Journal of Applied Probability,
16:764-779.

[19] Pikkala, V. L. and Vepada, S. (2014). Analysis of general input state-dependent working
vacation queue with changeover time, ISRN Computational Mathematics, 8, Article ID 248704.
https://doi.org/10.1155/2014/248704.

RT&A, No 4 (76) 
Volume 18, December 2023 

789



G. Ayyappan, N. Arulmozhi
Analysis of M, MAP/PH1, PH2/1 Non-preemptive Priority Queueing model,...

[20] Rakesh Kumar and Soodan, B.S. (2019). Transient Numerical Analysis of a Queueing
Model with Correlated Reneging, Balking, and Feedbac,. Reliability: Theory and Applications,
14(4):46-54.

[21] Subramanian, A.M.G., Ayyappan, G. and Sekar, G. (2009). M/M/1 Retrial queueing system
with negative arrival under non-preemptive priority service, Journal of Fundamental Sciences,
5(2):129-145.

[22] Yang, D.-Y., Chen, Y.-H. and Wu, C.-H. (2021). Sojourn times in a Markovian queue with
working breakdowns and delayed working vacations. Computers and Industrial Engineering
156(107239):1-13.

RT&A, No 4 (76) 
Volume 18, December 2023 

790




