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Abstract 

 

The aim of the paper is to develop a new Huntsberger type shrinkage estimator for the entropy                

function of the exponential distribution. The present paper proposes a Huntsberger type shrinkage 

estimator for the entropy function of the  exponential distribution. This Huntsberger type shrinkage 

entropy estimator is based on test statistic, which eliminates arbitrariness of choice of shrinkage 

factor. For the developed estimator risk expressions under LINEX loss function and squared error 

loss function have been calculated. To assess the efficacy of the proposed estimator, numerical 

computations are performed, and graphical analysis is carried out for risk and relative risks for the 

proposed estimator. It is also compared with the existing best estimator for distinct degrees of 

asymmetry and different levels of significance. Based on the criteria of relative risk, it is found that 

the proposed Huntsberger type shrinkage estimator is better than the existing estimator for the 

entropy function of the exponential distribution for smaller values of level of significance and 

degrees of freedom. 

 

 

Keywords: Exponential distribution, entropy function, shrinkage estimation, 

progressive censoring type sample, LINEX loss function, squared error loss 

function. 

 

 

I. Introduction 
The Exponential distribution is widely used models in reliability and life-testing research. It has 

been extensively examined by researchers in terms of inferential issues and its application in these 

fields. Many academics have studied how to estimate exponential distribution’s parameters using 

both classical and Bayesian techniques. For example Bain [5], Chandrasekar et al. [8], Jaheen [12] 

and Ahmadi et al. [3], along with other references, have contributed to this body of knowledge. 

If f and F be the probability density function and the distribution function of the random variable 

X respectively, then by Shannon [18], entropy function is given as 

H(f) E[ log(f(X))]= −                                                                                                                                       (1) 

For sharply peaked distribution entropy is very low and is much higher when the probability 

is spread out. Many authors worked on the estimation entropy for different life distributions. 

Noteworthy work in this direction may be refereed from Lazo and Rathee [15], Misra et al. [16], 

Jeevanand and Abdul- Sathar [13] and Kayal and Kumar [14] etc. 
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Suppose the random variable X has the probability distribution f(x, ) where interest is to estimate 

entropy function as a function of  . According to Thomson [20], shrinkage estimation can be 

accomplished by altering the usual estimator of the unknown parameter  by bringing it closer to 

0
 . Researchers have addressed several shrinkage estimators for various parameters or parametric 

functions under various sorts of distributions in statistical literature. Huntsberger [11] introduced 

weighted shrinkage estimator of the form 

0
ˆ ˆ ˆ( ) (1 ( )) =   + −    , 

where (.), 0 (.) 1,     represents a weighted function specifying the degree of belief in 
0 .  

In this paper, we shall concentrate on obtaining a new Huntsberger type shrinkage estimation 

of entropy function under symmetric/asymmetric loss functions for progressive type-II censored 

sample, when the underlying distribution is assumed to follow an exponential distribution.  

The form of density we consider is 
x

1
f(x, ) e , x 0, 0

−
 =   


                                                                                                                      (2) 

Progressive censoring is indeed a useful scheme in the area of reliability and life time research.  

The number of authors including Cohen [9], Gibbons and Vance [10], Viveros and Balakrishan [22], 

Balakrishan and Aggarwala [6], Aggarwala [4], Adubisi and Adubisi [2], have contributed to the 

literature on inference problems related to progressive censoring for various probability 

distributions. 

 

I. Shrinkage Estimators of H (f) 
 

For exponential distribution with mean  , the entropy function can be calculated as 

H(f) 1 ln( )= +                                                                                                                                                  (3) 

Since H(f)  is linear function of ln( ) , estimating H(f)  is correspondent to estimating ln( )  . We 

shall write I( ) ln( ) =   so that H(f) 1 I( )= +  . We will now talk about estimation of I( ) .   

From the exponential distribution given in (2), Let 1:m:n 2:m:n m:m:nX ,X ,.......,X  be Type II progressive 

censored sample. The progressive censored sample’s joint density is then calculated (see 

balakrishan and Aggarwala [6])  

i

m
R

1:m:n 2:m:n m:m:n i:m:n i:m:n 1:m:n 2:m:n m:m:n

i 1

f(x , x ,......., x ) C f(x )(1 F(x )) , 0 x x ..... x ,
=

= −                 (4) 

where  

1 1 2 1 2 m 1C n(n R 1)(n R R 2).....(n R R ... R m 1)−= − − − − − − − − − − +  

Now substituting f and F in (4), we get 

m

i i:m:n
m i 1

1:m:n 2:m:n m:m:n 1:m:n 2:m:n m:m:n

(R 1)x
1

f(x , x ,......., x ) C( ) exp , 0 x x ..... x=

 
 +
 

= −     
  

 
 


       (5) 

Then MLE of    can easily be obtained as 
m

i i:m:n
i 1

(R 1)x

ˆ
m

=

+

 =


                                                                                                                                       (6) 

Since I( )  is continous function of  , the MLE of I( )  is obtained by replacing   by its MLE ̂  in 

I( ) .  The MLE of entropy function for the exponential distribution is then  

872



 
Priyanka Sahni, Rajeev Kumar 
SHRINKAGE ENTROPY ESTIMAROR OF EXPONENTIAL DISTRIBUTION  

RT&A, No 4 (76) 
Volume 18, December 2023  

 

ˆ ˆH(f) 1 ln( )= +                                                                                                                                                  (7) 

We can demonstrate that the distribution of ̂  has  

m 1m
ˆmˆ exp( )

mˆ ˆf( ; ) , 0
(m)

− 
 −

    =   
  

                                                                                                         (8) 

 

A symmetric loss function treats underestimation and overestimation equally, penalizing both 

types of errors in the same manner. However, in certain situations, the consequences of 

underestimation and overestimation may not be the same. To address this issue, many authors 

have used and promoted the usage of ‘asymmetric’ loss functions, particularly when discussing 

claim settlements and other related topics. Prominent researchers such as Varian [19], Zellner [23], 

Basu and Ebrahimi [7], Adegoke et al. [1] have highlighted the convenience and superiority of 

using asymmetric loss functions in various scenarios.  

The loss function proposed by Varian [21] is defined as: 
aL( ) b(e a 1) = −  −                                                                                                                                       (9) 

where ˆ , = − b denotes scale parameter and a denotes shape parameter. When overestimation is 

more critical than underestimation then the positive value of a is used and for other cases, its 

negative value is used. 

In section 2, the shrinkage estimator is defined. The expressions for the risk(s) are provided in 

section 3. In Section 4, the Relative Risk(s) are determined. Finally, in section 5, the proposed 

estimator is compared with the best estimator available.  

 

II. Proposed Estimator 
 

Srivastava and Shah [19] have proposed a shrinkage estimator of scale parameter in exponential 

distribution. The key contribution of their estimator is the removal of arbitrariness in the choice of 

shrinkage factor ‘k’ by making it dependent on the test statistics. Sahni and Kumar [17] proposed a 

Huntsberger type shrinkage estimator for the entropy of the exponential distribution by taking ‘k’ 

dependent on the test statistic. There could be several other choice of ‘k’. Thus taking idea of the 

various choices of shrinkage factors and also with the help of sample and prior guess information a 

new Huntsberger type shrinkage entropy estimator for mean of exponential distribution can be 

proposed as follows:    

2 2

2 2
0 1 22 2 2

1 0 0 0

ˆ ˆ ˆ2m 2m 2mˆln( ) 1 ln( ) ; if
I ( )

ˆln( ) ; Otherwise

             + −           =            
 

                                                      (10) 

where k depends on the test statistic and is given as 

2

2
0

ˆ2m
k

 
 =
   

  and 2 2 2
2 1( ) =  − . 

 

III. Derivation of Risk(s) 

1. Risk of MLE, Î( )  

Risk of the estimator Î( )  with respect to LLF is defined as follows: 

LLF
ˆ ˆR (I( )) E(I( ) / LLF) =   
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                  ( )( ) ( )( )
0

ˆ ˆ ˆ ˆexp a ln( ) ln( ) a ln( ) ln( ) 1 f( ; )d( )



=  −  −  −  −     

                  

0

ˆ ˆ
ˆ ˆexp a ln( ) a ln( ) 1 f( ; )d( )

      
 = − −                  
  

Now, by using the transformation
ˆm

x


=


  and substituting in the integral above, we get 

LLF a

(m a)ˆR (I( )) a( (m) ln(m) 1)
m (m)

 +
 = −  − −


                                                                                              (11)                                                    

where            

d
(n)

dn(n)
(n)



 =


 

Also, under SELF, the risk of estimator €( )I   is obtained as 

 ( )
2

SELF
ˆ ˆR (I( )) E ln( ) ln( ) =  −   

                                   

( )
2

0

ˆ ˆ ˆln( ) ln( ) f( ; )d( )



=  −    
2

0

ˆ
ˆ ˆln( ) f( ; )d( )


 

=      
  

                                   
2 2G(0, , (log(x)) ) 2 ln(m) (m) (ln(m)) ,=  −  +

                                                      (12) 

where 

 

2

1

t

n 1 x

t

1 2

Wx e dx

G(t , t ,W)
(n)

− −

=



 and W is a function of x. 

 

2. Risk of Shrinkage Estimator 1I ( )  

Risk of the estimator 1I ( )  with respect to LLF is defined as follows: 

         LLF 1 1R (I ( )) E(I ( ) / LLF) =   

                             
2

1

2 2
r 02 2

0 0

2 2r
02 2

0 0

ˆ ˆ2m 2mˆexp(a(( ) ln( ) (1 ( ) ) ln( ) ln( )))

ˆ ˆf( ; )d
ˆ ˆ2m 2mˆa(( ) ln( ) (1 ( ) ) ln( ) ln( )) 1

  
 + −  −  

    
=    

  −  + −  −  −
     

  

                             

( )

( )
1

2

0

r

r

ˆ ˆ ˆ ˆexp(a(ln( ) ln( ))) a(ln( ) ln( )) 1 f( ; )d

ˆ ˆ ˆ ˆexp(a(ln( ) ln( ))) a(ln( ) ln( )) 1 f( ; )d



+  −  −  −  −   

−  −  −  −  −   





 

where 1r  and 2r  are the boundaries of the acceptance region of a test of the hypothesis 0 0H :  =   

against the alternative 1 0H :   . Define
2 2

0 1 0 2
1 2r ,r ,

2m 2m

   
= =   where 2 2

1 2and   are respectively 

lower and upper th percentile values of the chi-square distribution with 2m degrees of freedom. 

Again, letting 
ˆm

x


=


  and solving the integrals in the expression for LLF we get                                        
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LLF 1 1 2 3 2 12 2

2 1 2 1a a

4am(m 1)log(m )ˆR (I ( )) I I I I(r ',m 2) I(r ',m 2) aG(0, ,ln(x))
( )

(a m) (a m)
I(r ',a m) I(r ',a m) a ln(m ) I(r ',m) I(r ',m) a ln m 1,

(m) m (m) m

 
+ 

  = + + + + − + −  


 +  +
   − + − + + −  − + −   

 
            (13)                                                                                                                                            

 

where 
2

2 22

1

4at
r ' ( ) t m 1

a
1

r '

t e t
I dt,

m (m)

 − − 
=   

  


2

1

r '
t m 1

2 2 2
r '

4am(m 1) e t
I (log t) dt

(m 2)( )

− +− +
=

 +
  and 

2

1

r '
t m 1

3

r '

e t
I a(log t) dt

(m)

− −

=


 

where 
2 2

01 2
1 2

2 2
r ' , r ' ,

 
= =  =

  
 and I(x, n) is the cumulative distribution function of gamma 

distribution given as 

n 1 t

0

t e dt

I(x,n)
(n)



− −

=




 Under SELF, risk of the estimator 1I ( )  is defined as follows:

 ( )
2

SELF 1 1R (I ( )) E I ( ) ln( ) =  −   

                      =
2

1

2r

2 2
02 2

0 0r

ˆ ˆ2m 2mˆ ˆ ˆ( ) ln( ) (1 ( ) ) ln( ) ln( ) f( ; )d
  
  + −  −    
     
  

                      + ( ) ( )
2

1

r
2 2

0 r

ˆ ˆ ˆ ˆ ˆ ˆln( ) ln( ) f( ; )d ln( ) ln( ) f( ; )d



 −    −  −       

Again by using the transformation 
ˆm

x


=


 and substituting in the integrals above, we get 

( )2 2
SELF 1 4 5 6 2 1 1 2R (I ( )) I I I (ln ) (ln m) I(r ',m) I(r ',m) 2(ln m)G(r ',r ,(ln x))  = + + +  − − + 

( ) ( )( )2

1 2 2 12 4

8m(m 1)(ln m )(ln )
2ln m G(0, ,(ln x)) G r ', r ', ln x I(r ',(m 2)) I(r ',(m 2))

+  
 −  − − + − + 

 
 

2
2 2

2 14 8

16m(m 1)(m 2)(m 3)(lnm )
I(r ',(m 4)) I(r ',(m 4)) G(0, ,(lnx) ) (lnm) ,

+ + + 
 + + − + +  + 

 
           (14)       

where

 

2

1

r '
t m 3

2
4 4 8

r '

16 (m 4) e t
I (ln t) dt,

(m 4)(m)

− + +
=

 +  


2

1

r '
t m 3

5 4 8
r '

32ln(m ) (m 4) e t
I (ln t) dt

(m 4)(m)

− +  +
= −

 +  
  and 

2

1

r '
t m 1

6 2 4
r '

8ln( ) (m 2) e t
I (ln t) dt

(m 2)(m)

− +  +
=

 +  
  

IV. Relative Risk(s) 

 
To investigate the properties of the proposed estimator under LLF and SELF, we can compare the 

relative risks of the estimator with the MLE Î( )  . 

The relative risk of 1I ( )  under LLF compared to Î( ) is 

LLF
LLF 1

LLF 1

ˆR (I( ))
RR (I ( ))

R (I ( ))


 =


 

875



 
Priyanka Sahni, Rajeev Kumar 
SHRINKAGE ENTROPY ESTIMAROR OF EXPONENTIAL DISTRIBUTION  

RT&A, No 4 (76) 
Volume 18, December 2023  

 

Additionally, under SELF, the relative risk of 1I ( )  w.r.t. Î( )    

SELF
SELF 1

SELF 1

ˆR (I( ))
RR (I ( ))

R (I ( ))


 =


 

 

V. Numerical Computations And Graphical Analysis 

We observe that the expressions LLF 1RR (I ( )) , SELF 1RR (I ( ))  depend on m, a,  and  . To show 

the performance of this considered estimator under LLF and SELF, we have taken some values of 

these constants as given in Sahni and Kumar [17], i.e. a= -1,-2,-3, 1, 2, 3, m= 5, 8,   = 0.01, 0.05,   = 

0.2(0.2)1.6. 

Tables I and Table II and Figures 1 to 9 present the behaviour of relative risks of the estimators 

w.r.t   for varing values of m and a. 

i. For m 5, 1%=  =  and for all values of ‘a’ (+ve as well as -ve), 1I ( ) yield better results than the 

conventional estimator for the whole scale of  .  

ii. Further if we switch  to 5%, the same type of behaviour comes under notice for RR. However, 

the magnitude of relative risk values was smaller as compared to 1% =  values. 

iii. We have also taken 10% =  in order to explore the pattern at a higher level of significance and 

it is found that 1I ( )  still gives the better results as compared to the conventional estimator but the 

magnitude of RR values become lower but even then it remains mostly above unity. 

iv. After comparing these relative risk values, a lower value i.e. 1% =  is preferred. Similarly, 

when varing the value of ‘m’, higher relative risk values were obtained for m 5=  compared to 

other values of m as 8, 10 and 12. Thus, a smaller ‘m’ is advised. Higher RR shows better control 

over risk. Therefore, we can conclude that selecting appropriate values of ‘a’ and ‘  ’ will result in 

a higher gain in terms of performance of 1I ( ).  

Table 1: Relative risk of estimator 1I ( )  under LLF 
 

 

0.01 =                                                                                           

    m     a    0.2   0.4   0.6    0.8    1   1.2   1.4   1.6 

 

 

 

    5 

   -1 0.8691 0.8752 1.4756 3.3650 5.0900 3.1115 1.7132 1.0904 

   -2 0.8377 0.9944 1.8405 3.6257 4.0222 2.6767 1.7404 1.2428 

   -3 0.8736 1.2787 2.1754 2.7952 2.4724 1.9211 1.5151 1.2499 

    1 0.9372 0.8379 1.1346 2.2949 4.3252 2.9016 1.3766 0.7639 

    2  0.9577 0.8565 1.0623 1.9232 3.5375 2.6712 1.2620 0.6679 

    3 0.9719 0.8839 1.0193 1.6401 2.8481 2.4762 1.2146 0.6180 

 

 

 

    8 

   -1 1.0069 0.8980 1.0572 2.1134 3.9030 2.4284 1.2104 0.7311 

   -2 0.9973 0.9040 1.2027 2.5358 4.0023 2.4178 1.3193 0.8545 

   -3 0.9767 0.9473 1.4398 2.9114 3.5163 2.2076 1.3708 0.9713 

    1 1.0087 0.9249 0.9117 1.5052 2.9003 2.1365 0.9868 0.5372 

    2  1.0071 0.9420 0.8762 1.2987 2.3910 1.9649 0.9106 0.4742 

    3 1.0054 0.9573 0.8546 1.1334 1.9524 1.8058 0.8639 0.4319 

 

 

 

   11 

   -1 1.0187 1.0611 0.9111 1.4573 2.8868 2.0297 0.9805 0.5833 

   -2 1.0267 1.0523 0.9918 1.7352 3.2296 2.0971 1.0709 0.6729 

   -3 1.0372 1.0475 1.1122 2.0790 3.3339 2.0673 1.1487 0.7707 

    1 1.0093 1.0687 0.8137 1.0657 2.0586 1.7619 0.8195 0.4447 

    2  1.0066 1.0655 0.7829 0.9228 1.6948 1.6147 0.7613 0.3962 

    3 1.0048 1.0588 0.76 0.8022 1.3789 1.4688 0.7199 0.36 
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0.05 =  

 

 

 

    5 

   -1 1.0199 1.1053 1.4350 2.0083 2.1672 1.6757 1.1896 0.8884 

   -2 1.0424 1.2268 1.6473 2.0502 1.9381 1.5303 1.1891 0.9676 

   -3 1.1248 1.4121 1.6966 1.7260 1.5322 1.3070 1.1320 1.0110 

    1 1.0110 1.0230 1.1380 1.5109 1.8990 1.6317 1.0834 0.7190 

    2  1.0084 1.0128 1.0600 1.2972 1.6186 1.5025 1.0252 0.6601 

    3 1.0060 1.0084 1.0108 1.1343 1.3559 1.3457 0.9790 0.6262 

 

 

 

    8 

   -1 1.0342 1.1634 1.1458 1.4046 1.7189 1.4285 0.9832 0.7179 

   -2 1.0519 1.1999 1.2771 1.6149 1.7994 1.4232 1.0246 0.7930 

   -3 1.0808 1.2642 1.4479 1.7602 1.7307 1.3597 1.0488 0.8670 

    1 1.0158 1.1184 0.9860 1.0348 1.3173 1.2794 0.8806 0.5906 

    2  1.0111 1.0987 0.9389 0.8979 1.0998 1.1502 0.8300 0.5442 

    3 1.0078 1.0794 0.9064 0.7884 0.9040 1.0001 0.7804 0.5101 

 

 

 

   11 

   -1 1.0134 1.2545 1.0347 1.0059 1.3095 1.2578 0.8958 0.6649 

   -2 1.0219 1.2928 1.1210 1.1756 1.4639 1.2951 0.9356 0.7257 

   -3 1.0371 1.3347 1.2319 1.36 1.5541 1.2935 0.9693 0.7898 

    1 1.0056 1.1827 0.9107 0.7387 0.9443 1.0796 0.8089 0.5627 

    2  1.0039 1.1499 0.8650 0.6358 0.7728 0.9503 0.7631 0.5232 

    3 1.0028 1.12 0.8277 0.5483 0.6191 0.8031 0.7127 0.4911 

Table 2: Relative risk of estimator 1I ( )  under SELF 

α=0.01 
                                                                        

   m     0.2    0.4    0.6    0.8    1    1.2    1.4    1.6 

   5 0.9076 0.8377 1.2584 2.7861 5.0209 3.1094 1.5457 0.9090 

   8 1.0094 0.9085 0.9679 1.7697 3.4465 2.3068 1.0904 0.6229 

  11 1.0131 1.0673 0.8548 1.2395 2.4663 1.9064 0.8938 0.5068 

α=0.05  

   5 1.0140 1.0478 1.2579 1.7682 2.1238 1.7027 1.1452 0.7987 

   8 1.0231 1.1390 1.0523 1.2039 1.5375 1.3767 0.9329 0.6491 

  11 1.0085 1.2178 0.9664 0.8608 1.1278 1.1841 0,8531 0.6102 

α=0.1  

   5 1.0384 1.1420 1.2480 1.4216 1.4917 1.2946 1.0070 0.7862 

   8 1.0206 1.2009 1.0874 1.0031 1.0871 1.0675 0.8857 0.7147 

  11 1.0059 1.2144 1.0072 0.7265 0.7954 0.9163 0.8559 0.7344 

 

5.1. Graphs of Relative Risk for 1I ( )  under LLF 

 

Figure 1: For α=0.01 
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Figure 2: For α=0.05 

 

 

 
Figure 3: For α=0.1 

 

 

 
Figure 4: For m=5 
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Figure 5: For m=8 

 

 
 

Figure 6: For α=0.01 

 

5.2. Graphs of Relative Risk for 1I ( )  under SELF 

 
Figure 7: For α=0.01 
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Figure 8: For m=5 

 

 
Figure 9: For m=11 

 

VI. Conclusion 

 
In this paper, a new Huntsberger type shrinkage entropy estimator for Exponential distribution 

have been proposed and its properties have been examined under different loss functions. On the 

basis of relative risk, it is found that the proposed estimator gives better results for smaller values 

of degrees of freedom and level of significance. And it is also concluded that the proposed 

estimator gives better results than the estimator proposed by Sahni and Kumar [17], when the 

estimated value is close to the actual value. 
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