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Abstract 

 

This paper introduces a novel probability distribution called the Sabur distribution (SD), 

characterized by two parameters. It offers a comprehensive analysis of this distribution, 

encompassing various properties such as moments, moment-generating functions, deviations from 

the mean and median, mode and median, Bonferroni and Lorenz curves, Renyi entropy, order 

statistics, hazard rate functions, and mean residual functions. Furthermore, the paper delves into 

the graphical representation of the probability density function, cumulative distribution function 

and hazard rate function to provide a visual understanding of their behavior. The distribution's 

parameters are estimated using the well-known method of maximum likelihood estimation. The 

paper also showcases the practical applicability of the Sabur distribution through real-world 

examples, underscoring its performance and relevance in various scenarios. 

 

Keywords: Moments, moment generating function, reliability measures, mean deviations, 

maximum likelihood function. 

 

Subject classification: 60E05, 62E15. 

 

1. Introduction 
 

Statistical distributions hold great importance in fields such as biomedicine, engineering, economics, 

and various scientific domains. Two widely recognized distributions, namely the exponential 

distribution and the gamma distribution, are often used as lifetime distributions for analyzing 

statistical data. Among these, the exponential distribution stands out due to its singular parameter 

and several intriguing statistical properties, notably its memory less property and constant hazard 

rate characteristic. In the realm of statistics, numerous extensions of these distributions have been 

developed to enhance their flexibility and applicability. One notable contribution to this literature is 

attributed to Lindley in [10]. He introduced a one-parameter lifetime distribution characterized by 

the following probability density function: 

𝑓(𝑦, 𝛽) =
𝛽2

(1 + 𝛽)
(1 + 𝑦)𝑒−𝛽𝑦    ; 𝑦 > 0 , 𝛽 > 0 

In recent years, researchers have made significant advancements in the study of the Lindley 

distribution and have proposed various one- and two-parameter distributions to model complex 

datasets effectively. A notable contribution was made by Ghitney et al. [8], who conducted an 

extensive study on the Lindley distribution. They demonstrated that the Lindley distribution 
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outperforms the exponential distribution when applied to modelling waiting times before bank 

customer service. Additionally, they highlighted that the contours of the hazard rate function for the 

Lindley distribution show an increasing trend, while the mean residual life function is a decreasing 

function of the random variable. Zakerzadeh and Dolati [16] and Nadarajah et al. [12] extended the 

Lindley distribution by introducing new parameters and evaluating the performance of these 

extended distributions using various datasets. Over the years, several authors have made 

contributions to modify the Lindley distribution. For instance, Merovci [11] introduced the 

transmuted Lindley distribution and discussed its various properties. Sharma et al. [14, 15] 

introduced the inverse of the Lindley distribution and examined its unique characteristics. Shanker 

et al. [13] developed a novel lifetime distribution called the Akash distribution, which demonstrated 

superior performance compared to both the exponential and Lindley distributions. Ahmad et al. [1] 

introduced the transmuted inverse Lindley distributions and conducted analyses of their properties, 

Ahmad et al [2, 3], Bhaumik, D. K. et al. [5], Flaih, A  et al. [6]. Each of these distributions comes with 

its own set of advantages and limitations when applied to analyzing complex data. 

In this paper, the authors aim to introduce a new two-parameter distribution that offers greater 

flexibility and improved results compared to existing distributions. The probability density function 

of this newly established two-parameter distribution is as follows 

𝑓(𝑦, 𝛼, 𝛽) =
𝛽2

𝛼𝛽+𝛽2+1
 (𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−𝛽𝑦   ; 𝑦 > 0, 𝛼, 𝛽 > 0                               (2.1) 

The proposed distribution is named as Sabur distribution which is a combination of two 

distributions, Exponential distribution having scale parameter 𝛽 and gamma distribution having 

shape parameter 3 with scale parameter 𝛽.With combining proportion as 
𝛽(𝛼+𝛽)

𝛼𝛽+𝛽2+1
 

                   𝑓(𝑦, 𝛼, 𝛽) = 𝜋𝜙1(𝑦, 𝛽) + (1 − 𝜋)𝜙2(𝑦, 𝛽)  

Where                         𝜋 =
𝛽(𝛼+𝛽)

𝛼𝛽+𝛽2+1
            

 𝜙1(𝑦, 𝛽) = 𝛽𝑒−𝛽𝑦 ,           𝜙2(𝑦, 3, 𝛽) =
𝛽3

2
𝑦2𝑒−𝛽𝑦                  

The cumulative distribution function of (1.1) is given as 

       𝐹(𝑦, 𝛼, 𝛽) = 1 − [1 +
𝛽2𝑦2+2𝛽𝑦

2(𝛼𝛽+𝛽2+1)
] 𝑒−𝛽𝑦 ; 𝑦 > 0, 𝛼, 𝛽 > 0                        (2.1) 

    

 
Fig 1: The graph of p.d.f of SD for different values of parameters. 
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Fig 2: The graph of c.d.f of SD for different values of parameters. 

 

2.  Statistical Properties 
 

In this section different properties of the Sabur distribution has been discussed such as moments, 

moment generating function, mode and median. 

 

2.1 Moments of Sabur Distribution 
 

Let us consider 𝑌 be a random variable follows the Sabur distribution then the 𝑟𝑡ℎ moment of the 

distribution denoted by 𝜇𝑟
′  is given as 

𝜇𝑟
′ = 𝐸(𝑌𝑟) = ∫ 𝑦𝑟𝑓(𝑦, 𝛼, 𝛽)𝑑𝑦                                                                                    

∞

0

 

= ∫ 𝑦𝑟
𝛽2

𝛼𝛽 + 𝛽2 + 1
 (𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−𝛽𝑦  𝑑𝑦

∞

0

          

             =
𝛽2

𝛼𝛽 + 𝛽2 + 1
∫ {(𝛼 + 𝛽)𝑦𝑟 +

𝛽

2
 𝑦𝑟+2} 𝑒−𝛽𝑦  𝑑𝑦                

∞

0

 

   =
𝛽2

𝛼𝛽 + 𝛽2 + 1
 [
(𝛼 + 𝛽)Γ(𝑟 + 1)

𝛽𝑟+1
+
Γ(𝑟 + 3)

2𝛽𝑟+2
]             

Substituting  𝑟 = 1,2,3,4 , we obtain first four moments of the distribution about origin.  

𝜇1
′ =

𝛼𝛽 + 𝛽2 + 3

𝛽(𝛼𝛽 + 𝛽2 + 1)
   , 𝜇2

′ =
2(𝛼𝛽 + 𝛽2 + 6)

𝛽2(𝛼𝛽 + 𝛽2 + 1)
                      

   𝜇3
′ =

6(𝛼𝛽 + 𝛽2 + 10)

𝛽3(𝛼𝛽 + 𝛽2 + 1)
  , 𝜇4

′ =
24(𝛼𝛽 + 𝛽2 + 15)

𝛽4(𝛼𝛽 + 𝛽2 + 1)
                    

Therefore, the mean and variance of Sabur distribution is given as   

𝜇 = 𝐸(𝑌) =
𝛼𝛽 + 𝛽2 + 3

𝛽(𝛼𝛽 + 𝛽2 + 1)
                                                     

The central moments of Sabur distribution can be obtained by using above raw moments 

𝜇2 = 𝜎
2 = 𝜇2

′ − (𝜇1
′ )2 =

𝛼2𝛽2 + 2𝛼𝛽3 + 8𝛼𝛽 + 𝛽4 + 8𝛽2 + 3

𝛽2(𝛼𝛽 + 𝛽2 + 1)2
    

𝜇3 =
2𝛽6 + 60𝛽4 + 6𝛼𝛽5 + 4𝛼2𝛽4 + 2𝛼(𝛼2 + 𝛼 + 59)𝛽3 + 2(30𝛼2 + 39)𝛽2 + 78𝛼𝛽 + 36

𝛽3(𝛼𝛽 + 𝛽2 + 1)3
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𝜇4  =
{
 

 
 9𝛽8 + 222𝛽6 − 24𝛼𝛽8 − 12𝛼𝛽7(4𝛼 + 3) − 6𝛼2𝛽6(4𝛼 − 13)

−6𝛼𝛽5(2𝛼2 − 33𝛼 − 95) + 𝛼2𝛽4(2𝛼2 + 24𝛼 + 894) + 𝛼𝛽3(534𝛼2 − 144𝛼 + 852)
       

+𝛽2(702𝛼 + 690) + 812𝛼𝛽 + 495 }
 

 

𝛽4(𝛼𝛽 + 𝛽2 + 1)4
   

Coefficient of variation (C.V)=
𝜎

𝜇1
′ =

√𝛼2𝛽2+2𝛼𝛽3+8𝛼𝛽+𝛽4+8𝛽2+3

𝛽(𝛼𝛽+𝛽2+1)(𝛼𝛽+𝛽2+3)
 

Coefficient of skewness (√𝛽1)=
𝜇3

(𝜇2)
3
2⁄
=

2𝛽6+60𝛽4+6𝛼𝛽5+4𝛼2𝛽4+2𝛼(𝛼2+𝛼+59)𝛽3+2(30𝛼2+39)𝛽2+78𝛼𝛽+36

(𝛼2𝛽2+2𝛼𝛽3+8𝛼𝛽+𝛽4+8𝛽2+3)
3
2⁄

 

Coefficient of kurtosis (𝛽2) =
𝜇4

(𝜇2)
2 
=

{

 9𝛽8+222𝛽6−24𝛼𝛽8−12𝛼𝛽7(4𝛼+3)−6𝛼2𝛽6(4𝛼−13)

−6𝛼𝛽5(2𝛼2−33𝛼−95)+𝛼2𝛽4(2𝛼2+24𝛼+894)+𝛼𝛽3(534𝛼2−144𝛼+852)
       

+𝛽2(702𝛼+690)+812𝛼𝛽+495

}

(𝛼2𝛽2+2𝛼𝛽3+8𝛼𝛽+𝛽4+8𝛽2+3)
 

Index of dispersion(𝛾) =
𝜎2

𝜇1
′ =

𝛼2𝛽2+2𝛼𝛽3+8𝛼𝛽+𝛽4+8𝛽2+3

𝛽(𝛼𝛽+𝛽2+1)(𝛼𝛽+𝛽2+3)
 

 

2.2. Moment Generating Function of Sabur Distribution 
 

Let us consider 𝑌 be a random variable follows the Sabur distribution then moment generating 

function of the distribution denoted by 𝑀𝑌(𝑡) is given as 

𝑀𝑌(𝑡) = 𝐸(𝑒
𝑡𝑦) = ∫ 𝑒𝑡𝑦𝑓(𝑦, 𝛼, 𝛽)𝑑𝑦                                                                                                

∞

0

 

=
𝛽2

𝛼𝛽 + 𝛽2 + 1
∫ (𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−(𝛽−𝑡)𝑦𝑑𝑦               

∞

0

 

=
𝛽2

𝛼𝛽 + 𝛽2 + 1
{
(𝛼 + 𝛽)

(𝛽 − 𝑡)
+

𝛽

(𝛽 − 𝑡)3
}                                  

    =
1

𝛼𝛽 + 𝛽2 + 1
{(𝛼𝛽 + 𝛽2)∑(

𝑡

𝛽
)
𝑘

+∑(
𝑘 + 2
𝑘

) (
𝑡

𝛽
)
𝑘

∞

𝑘=0

∞

𝑘=0

} 

=∑
2(𝛼𝛽 + 𝛽2) + (𝑘 + 1)(𝑘 + 2)

2(𝛼𝛽 + 𝛽2 + 1)

∞

𝑘=0

 (
𝑡

𝛽
)
𝑘

                         

 

2.3. Mode and Median of Sabur Distribution 
 

The value or number in a data set, which are occurring repeatedly may be termed as mode while 

median is the middle value or number in a data set arranged in ascending order. 

Taking logarithm to the pdf of Sabur distribution,we get 

           log 𝑓(𝑦, 𝛼, 𝛽) = 2 log 𝛽 − log(𝛼𝛽 + 𝛽2 + 1) + log (𝛼 + 𝛽 +
𝛽

2
𝑦2) − 𝛽𝑦 

Differentiate w.r.t 𝑦 ,we get 
𝜕 log 𝑓(𝑦, 𝛼, 𝛽)

𝜕𝑦
=

𝛽𝑦

(𝛼𝛽 + 𝛽2 + 1)
− 𝛽                                                                         

Equating  
𝜕 log𝑓(𝑦,𝛼,𝛽)

𝜕𝑦
= 0 , we get 

𝛽𝑦

(𝛼𝛽 + 𝛽2 + 1)
− 𝛽 = 0 ⇒  𝑦 =

1 ± √1 − 2𝛽(𝛼 + 𝛽)

𝛽
                                           

𝑀0 = 𝑦0 =
1 ± √1 − 2𝛽(𝛼 + 𝛽)

𝛽
                                         

Using the empirical formula, we obtain median as 

𝑀𝑒𝑑𝑖𝑎𝑛 =
1

3
 𝑀0 +

2

3
 𝜇                                                                           

=
1 ± √1 − 2𝛽(𝛼 + 𝛽)

3𝛽
+
2(𝛼𝛽 + 𝛽2 + 3)

3𝛽(𝛼𝛽 + 𝛽2 + 1)
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3. Reliability Measures 

 
Suppose Y be a continuous random variable with cdf (𝑦) , 𝑦 ≥ 0 .then its reliability function which 

is also called survival function is defined as 

𝑆(𝑦) = 𝑝𝑟(𝑌 > 𝑦) = ∫ 𝑓(𝑦)
∞

0

𝑑𝑦 = 1 − 𝐹(𝑦)        

Therefore, the survival function is given  

                     S(y, α, β) = 1 − F(y, α, β) =  [1 +
β2y2+2βy

2(αβ+β2+1)
] e−βy     (3.1) 

The hazard function of a random variable 𝑦 is given as  

 𝐻(𝑦, 𝛼, 𝛽) =
𝑓(𝑦, 𝛼, 𝛽)

𝑆(𝑦, 𝛼, 𝛽)
                                                                                     (3.2) 

Using equation (1.1) and equation (3.1) in (3.2), we get 

H(y, α, β) =
2β2 (α + β +

β
2
y2)

[β2y2 + 2βy + 2(αβ + β2 + 1)]
                                                      

Also, the reverse hazard function denoted as ℎ𝑟(𝑦, 𝛼, 𝛽) can be obtained as 

   hr(y, α, β) =
f(y, α, β)

F(y, α, β)
                                                                                                 (3.3) 

Using (1.1) and (1.2) in equation (3.3), we get 

           hr(y, α) =
2β2 (α + β +

β
2
y2) e−βy

2(αβ + β2 + 1) − [β2y2 + 2βy + 2(αβ + β2 + 1)]e−βy 
                        

    

 

  
Fig 3: The graph of hazard rate function of SD for different values of parameters. 

 

The mean residual function denoted by𝑚(𝑦), and is defined as 

𝑚(𝑦) =
1

1 − 𝐹(𝑦)
 ∫ 1 − 𝐹(𝑧)

∞

𝑦

𝑑𝑧                                                                      

Therefore, the mean residual function of Sabur distribution is given by 

𝑚(𝑦) =
𝛽2𝑦2 + 4𝑦𝛽 + 2(𝛼𝛽 + 𝛽2 + 3)

𝛽[𝛽2𝑦2 + 2𝑦𝛽 + 2(𝛼𝛽 + 𝛽2 + 1)]
                                                 

We observe that        𝐻(0) = 𝑓(0) =
𝛼𝛽2

𝛼𝛽+𝛽2+1
  and 𝑚(0) = 𝜇 =

𝛼𝛽+𝛽2+3

𝛽(𝛼𝛽+𝛽2+1)
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4. Order Statistics of Sabur Distribution 
 

Let us consider 𝑌1, 𝑌2…𝑌𝑛 be random sample of sample size n from sabur distribution with pdf (1.1) 

and cdf (1.2).Then the pdf of 𝑘𝑡ℎ order statistics is given by 

𝑓𝑌(𝑘)(𝑦) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
 [𝐹(𝑦)]𝑘−1 [1 − 𝐹(𝑦)]𝑛−𝑘 𝑓(𝑦)      , 𝑘 = 1,2,3, … . , 𝑛    (4.1) 

Now substituting the equation (1.1) and (1.2) in equation (4.1), we obtain the 𝑘𝑡ℎ order statistics as 

𝑓𝑌(𝑘)(𝑦) =
𝑛! 𝛽2 (𝛼 + 𝛽 +

𝛽
2
𝑦2) 𝑒−𝛽𝑦          

(𝑘 − 1)! (𝑛 − 𝑘)! (𝛼𝛽 + 𝛽2 + 1)
 {1 − [1 +

𝛽2𝑦2 + 2𝛽𝑦

2(𝛼𝛽 + 𝛽2 + 1)
] 𝑒−𝛽𝑦}

𝑘−1

 

                                              {[1 +
𝛽2𝑦2 + 2𝛽𝑦

2(𝛼𝛽 + 𝛽2 + 1)
] 𝑒−𝛽𝑦}

𝑛−𝑘

                                           (4.2) 

 

The pdf of first order statistics 𝑌1 is given as 

𝑓𝑌(1)(𝑦) =
𝑛𝛽2 (𝛼 + 𝛽 +

𝛽
2
𝑦2) 𝑒−𝛽𝑦

(𝛼𝛽 + 𝛽2 + 1)
{[1 +

𝛽2𝑦2 + 2𝛽𝑦

2(𝛼𝛽 + 𝛽2 + 1)
] 𝑒−𝛽𝑦}

𝑛−1

                      

And the pdf of 𝑛𝑡ℎ order statistics 𝑌𝑛 is given as 

𝑓𝑌(𝑛)(𝑦) =
𝑛𝛽2 (𝛼 + 𝛽 +

𝛽
2
𝑦2) 𝑒−𝛽𝑦

(𝛼𝛽 + 𝛽2 + 1)
 {1 − [1 +

𝛽2𝑦2 + 2𝛽𝑦

2(𝛼𝛽 + 𝛽2 + 1)
] 𝑒−𝛽𝑦}

𝑛−1

              

 

5. Renyi Entropy 
 

If 𝑌 is a continuous random variable having probability density function 𝑓(𝑦, 𝛼, 𝛽), then Renyi 

entropy is defined as 

                                          𝑇𝑅(𝛿) =
1

1−𝛿
 𝑙𝑜𝑔{∫ 𝑓𝛿(𝑦)𝑑𝑦

∞

0
}     

         where 𝛿 > 0 and δ ≠ 1 

Thus, the Renyi entropy for Sabur distribution (1.1) , is given as 

 𝑇𝑅(𝛿) =
1

1 − 𝛿
 𝑙𝑜𝑔 {∫ [

𝛽2

𝛼𝛽 + 𝛽2 + 1
(𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−𝛽𝑦]

𝛿

𝑑𝑦
∞

0

}                            

=
1

1 − 𝛿
 𝑙𝑜𝑔 {

𝛽2𝛿(𝛼 + 𝛽)𝛿

(𝛼𝛽 + 𝛽2 + 1)𝛿
∫ (1 +

𝛽

2(𝛼 + 𝛽)
𝑦2)

𝛿

𝑒−𝛽𝛿𝑦𝑑𝑦
∞

0

}    

=
1

1 − 𝛿
 𝑙𝑜𝑔 {

𝛽2𝛿(𝛼 + 𝛽)𝛿

(𝛼𝛽 + 𝛽2 + 1)𝛿
∫ ∑(

𝛿
𝑟
) (

𝛽

2(𝛼 + 𝛽)
𝑦2)

𝑟

𝑒−𝛽𝛿𝑦𝑑𝑦

∞

𝑟=0

∞

0

} 

 =
1

1 − 𝛿
 𝑙𝑜𝑔 {∑(

𝛿
𝑟
)
𝛽2𝛿+𝑟(𝛼 + 𝛽)𝛿−𝑟

2𝑟(𝛼𝛽 + 𝛽2 + 1)𝛿
∫ 𝑦2𝑟𝑒−𝛽𝛿𝑦𝑑𝑦
∞

0

∞

𝑟=0

}                     

=
1

1 − 𝛿
 𝑙𝑜𝑔 {∑(

𝛿
𝑟
)
𝛽2𝛿+𝑟 (𝛼 + 𝛽)𝛿−𝑟

2𝑟(𝛼𝛽 + 𝛽2 + 1)𝛿
 
Γ(2𝑟 + 1)

(𝛽𝛿)2𝑟+1

∞

𝑟=0

}                              

=
1

1 − 𝛿
 𝑙𝑜𝑔 {∑(

𝛿
𝑟
)
𝛽2𝛿−(𝑟+1) (𝛼 + 𝛽)𝛿−𝑟

2𝑟−1(𝛼𝛽 + 𝛽2 + 1)𝛿
 
r Γ(2𝑟)

𝛿2𝑟+1

∞

𝑟=0

}                             

 

6. Mean Deviation from Mean of Sabur Distribution 
 

The quantity of scattering in a population is evidently measured to some extent by the totality of the 

deviations. Let 𝑌 be a random variable from Sabur distribution with mean 𝜇 then the mean deviation 

from mean is defined as. 

𝐷(𝜇) = 𝐸(|𝑌 − 𝜇|) = ∫ |𝑌 − 𝜇| 𝑓(𝑦) 𝑑𝑦                                                                            
∞

0
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               = ∫ (𝜇 − 𝑦) 𝑓(𝑦)
𝜇

0

𝑑𝑦 + ∫ (𝑦 − 𝜇)
∞

𝜇

𝑓(𝑦)𝑑𝑦                                                                    

             =  𝜇 ∫ 𝑓(𝑦)
𝜇

0

𝑑𝑦 − ∫ 𝑦 𝑓(𝑦)
𝜇

0

𝑑𝑦 + ∫ 𝑦𝑓(𝑦)
∞

𝜇

𝑑𝑦 − ∫ 𝜇𝑓(𝑦)
∞

𝜇

𝑑𝑦                               

 = 𝜇𝐹(𝜇) − ∫ 𝑦 𝑓(𝑦)
𝜇

0

𝑑𝑦 − 𝜇[1 − 𝐹(𝜇)] + ∫ 𝑦𝑓(𝑦)
∞

𝜇

𝑑𝑥                                   

= 2𝜇𝐹(𝜇) − 2∫ 𝑦𝑓(𝑦)
𝜇

0
𝑑𝑦                                                                                                        (6.1) 

Now  

∫ 𝑦𝑓(𝑦)
𝜇

0

𝑑𝑦 =  
𝛽2

𝛼𝛽 + 𝛽2 + 1
 ∫ 𝑦 (𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−𝛽𝑦 𝑑𝑦

𝜇

0

                                           

After solving the integral, we get 

∫ 𝑦𝑓(𝑦)
𝜇

0

𝑑𝑦 = 𝜇 − {
𝜇3𝛽3 + 3𝜇2𝛽2 + 6𝜇𝛽 + 𝛽(𝛼 + 𝛽)(𝜇𝛽 + 1) + 6

2𝛽(𝛼𝛽 + 𝛽2 + 1)
} 𝑒−𝛽𝜇       (6.2) 

Now substituting equation (6.2) in equation (6.1), we get 

𝐷(𝜇) =
{𝜇2𝛽2 + 6𝜇𝛽 + 𝛽2(1 − 𝜇𝛼 − 𝜇𝛽) + 𝛽(𝛼 − 2𝜇) + 6}

𝛽(𝛼𝛽 + 𝛽2 + 1)
 𝑒−𝛽𝜇     

 

7. Mean Deviation from Median of Sabur Distribution 
  

Let 𝑌 be a random variable from Sabur distribution with median 𝑀 then the mean deviation from 

median is defined as. 

𝐷(𝑀) = 𝐸(|𝑌 −𝑀|) = ∫ (𝑀 − 𝑦)
𝑀

0

𝑑𝑦 + ∫ (𝑦 − 𝑀)
∞

𝑀

𝑑𝑦                                                                          

        = 𝑀𝐹(𝑀) − ∫ 𝑦𝑓(𝑥)
𝑀

0

𝑑𝑦 − 𝑀[1 − 𝐹(𝑀)] + ∫ 𝑦𝑓(𝑦)𝑑𝑦            
∞

𝑀

 

                               = 𝜇 − 2∫ 𝑦𝑓(𝑦)
𝑀

0

𝑑𝑦                                                                                            (7.1) 

Now  

 ∫ 𝑦𝑓(𝑦)
𝑀

0

𝑑𝑦 =   
𝛽2

𝛼𝛽 + 𝛽2 + 1
 ∫ 𝑦 (𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−𝛽𝑦 𝑑𝑦

𝑀

0

                                                  

After solving the integral, we get 

∫ 𝑦𝑓(𝑦)
𝑀

0

𝑑𝑦 = 𝜇 − {
𝑀3𝛽3 + 3𝑀2𝛽2 + 6𝑀𝛽 + 𝛽(𝑀 + 𝛽)(𝑀𝛽 + 1) + 6

2𝛽(𝛼𝛽 + 𝛽2 + 1)
} 𝑒−𝛽𝑀   (7.2)   

Now substituting equation (7.2) in equation (7.1), we get 

𝐷(𝑀) = {
𝑀3𝛽3 + 3𝑀2𝛽2 + 6𝑀𝛽 + 𝛽(𝑀 + 𝛽)(𝑀𝛽 + 1) + 6

𝛽(𝛼𝛽 + 𝛽2 + 1)
} 𝑒−𝛽𝑀 − 𝜇   

 

8. Bonferroni and Lorenz Curves 
 

In economics the relation between poverty and economy is well studied by using Bonferroni and 

Lorenz curves. Besides that these curves have been used in different fields such as reliability, 

insurance and biomedicine.  

The Bonferroni curve, 𝐵(𝑠)is given as. 

                  𝐵(𝑠) =
1

𝑠𝜇
∫ 𝑦 𝑓(𝑦)
𝑡

0

𝑑𝑦                                                                                              (8.1)  

Or 

                      𝐵(𝑠) =
1

𝑠𝜇
∫ 𝐹−1(𝑦)𝑑𝑦                                                                                                             
𝑠

0

 

And Lorenz curve, 𝐿(𝑠) is given as. 
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      𝐿(𝑠) =
1

𝜇
∫ 𝑦𝑓(𝑦)
𝑡

0

𝑑𝑦                                                                                     (8.2) 

Or  

𝐿(𝑠) =
1

𝜇
∫ 𝐹−1(𝑦)
𝑠

0

𝑑𝑦                                                                                    

Where 𝐸(𝑋) = 𝜇 and 𝑡 = 𝐹−1(𝑠). 

Now  

∫ 𝑦𝑓(𝑦)
𝑡

0

𝑑𝑦 = 𝜇 − {
𝑡3𝛽3 + 3𝑡2𝛽2 + 6𝑡𝛽 + 𝛽(𝛼 + 𝛽)(𝑡𝛽 + 1) + 6

2𝛽(𝛼𝛽 + 𝛽2 + 1)
} 𝑒−𝛽𝑡      (8.3) 

Substituting equation (8.3) in equations (8.1) and (8.2), we get 

     𝐵(𝑠) =
1

𝑠
[1 − {

𝑡3𝛽3 + 3𝑡2𝛽2 + 6𝑡𝛽 + 𝛽(𝛼 + 𝛽)(𝑡𝛽 + 1) + 6

2𝛽(𝛼𝛽 + 𝛽2 + 1)𝜇
} 𝑒−𝛽𝑡] 

And  

    𝐿(𝑠) =  [1 − {
𝑡3𝛽3 + 3𝑡2𝛽2 + 6𝑡𝛽 + 𝛽(𝛼 + 𝛽)(𝑡𝛽 + 1) + 6

2𝛽(𝛼𝛽 + 𝛽2 + 1)𝜇
} 𝑒−𝛽𝑡] 

 

9. Estimation of Parameters of Sabur Distribution 
 

Suppose 𝑌1, 𝑌2, 𝑌3, … 𝑌𝑛be random samples of size n from Sabur distribution. Then the likelihood 

function of Sabur distribution is given as. 

 𝑙 =∏𝑓(𝑦𝑖 , 𝛼. 𝛽)

𝑛

𝑖=1

                                                                                   

             =∏{
𝛽2

𝛼𝛽 + 𝛽2 + 1
(𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−𝛽𝑦 }                                       

𝑛

𝑖=1

 

        = (
𝛽2

𝛼𝛽 + 𝛽2 + 1
)

𝑛

∏(𝛼 + 𝛽 +
𝛽

2
𝑦𝑖
2) 𝑒−𝛽∑ 𝑦𝑖

𝑛
𝑖=1                       

𝑛

𝑖=1

 

The log likelihood function is given by 

log 𝑙 = 2𝑛 log 𝛽 − 𝑛 log(𝛼𝛽 + 𝛽2 + 1) +∑log (𝛼 + 𝛽 +
𝛽

2
𝑦𝑖
2) − 𝛽∑𝑦𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

Now, differentiating partially w. r. t parameters 𝛼 and 𝛽 respectively we get 

𝜕 log 𝑙

𝜕𝛼
=

−𝑛𝛽

𝛼𝛽 + 𝛽2 + 1
+∑

1

𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2

𝑛

𝑖=1

                                                   

𝜕 log 𝑙

𝜕𝛽
=
2𝑛

𝛽
−

𝑛(𝛼 + 2𝛽)

𝛼𝛽 + 𝛽2 + 1
+∑

(1 +
𝑦𝑖
2

2
)

𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2

𝑛

𝑖=1

−∑𝑦𝑖

𝑛

𝑖=1

                        

Now solving  
𝜕 log 𝑙

𝜕𝛼
= 0 ,

𝜕 log 𝑙

𝜕𝛽
= 0, we get 

−𝑛𝛽

𝛼𝛽 + 𝛽2 + 1
+∑

1

𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2

𝑛

𝑖=1

= 0                                                                  (9.1) 

Also  

2𝑛

𝛽
−

𝑛(𝛼 + 2𝛽)

𝛼𝛽 + 𝛽2 + 1
+∑

(1 +
𝑦𝑖
2

2
)

𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2

𝑛

𝑖=1

− 𝑛𝑦̅ = 0                        (9.2) 

It is obvious that equations (9.1) and (9.2), are not in closed form, hence cannot be solved analytically 

for 𝛼 and   . In order to find the value of 𝛼 and 𝛽 it is imperative to apply iterative methods. The MLE 

of the parameters denoted as 𝜃̂(𝛼,̂ 𝛽̂) of 𝜃(𝛼, 𝛽) can be obtained by using Newton-Raphson method, 

bisection method, secant method etc. 

Since the MLE of 𝜃̂ follows asymptotically normal distribution which is given as 
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                                    √𝑛(𝜃̂ − 𝜃) → 𝑁(0, 𝐼−1(𝜃))                                                       (9.3) 

Where 𝐼−1(𝜃) is the limiting variance – covariance matrix of 𝜃̂ and 𝐼(𝜃) is a 2 × 2 Fisher information 

matrix I,e 

𝐼(𝜃) = −
1

𝑛

[
 
 
 
 𝐸 (

𝜕2 log 𝑙

𝜕2𝛼
) 𝐸 (

𝜕2 log 𝑙

𝜕𝛼 𝜕𝛽
)

𝐸 (
𝜕2 log 𝑙

𝜕𝛽 𝜕𝛼
) 𝐸 (

𝜕2 log 𝑙

𝜕2𝛽
)
]
 
 
 
 

                                                   

Where  

𝜕2 log 𝑙

𝜕2𝛼
=

𝑛𝛽2

(𝛼𝛽 + 𝛽2 + 1)2
−∑

1

(𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2)
2

𝑛

𝑖=1

                                          

𝜕2 log 𝑙

𝜕2𝛽
=
−2𝑛

𝛽2
+
𝑛(𝛼2 + 2𝛽2 + 2𝛼𝛽)

𝛼𝛽 + 𝛽2 + 1
 −∑

(1 +
𝑦𝑖
2

2
)
2

(𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2)
2

𝑛

𝑖=1

                 

𝜕2 log 𝑙

𝜕𝛼𝜕𝛽
=
𝜕2 log 𝑙

𝜕𝛽𝜕𝛼
=

𝑛(𝛽2 − 1)

𝛼𝛽 + 𝛽2 + 1
−∑

(1 +
𝑦𝑖
2

2
)

𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2

𝑛

𝑖=1

                                

Hence the approximate 100(1 − 𝜓)% confidence interval for 𝛼 and 𝛽 are respectively given by  

𝛼̂ ± 𝑧𝜓
2

√𝐼𝛼𝛼
−1(𝜃̂)   , 𝛽̂ ± 𝑧𝜓

2
√𝐼𝛽𝛽

−1(𝜃̂)                        

Where 𝑧𝜓
2

 is the 𝜓𝑡ℎ denotes percentile the standard distribution 

 

10.  Application 
 

In this section, the importance and flexibility of the formulated distribution is illustrated by using 

a real life data set.  And the distribution is compared with Lindley distribution (LD), Shanker 

Distribution (SHD), Exponential distribution (ED), inverse Lindley distribution (ILD) and 

Nadarajah-Haghighi distribution (HD). In order to compare the two distribution models, we 

consider the criteria like AIC (Akaike information criterion), CAIC (corrected Akaike information 

criterion) and BIC (Bayesian information criterion. The better distribution corresponds to lesser 

AIC, CAIC and BIC values. 

 

Data: The data set is the strength data of glass of the aircraft window reported by Fuller et al [7]. The 

data are  

18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.50, 25.52, 25.80, 26.69, 26.77, 26.78, 27.05, 27.67, 

29.90, 31.11, 33.20, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 

45.381. 

 

From above Table 1, it has been observed that the Sabur distribution have the lesser AIC, CAIC, 

-logL and BIC values. Hence we can conclude that Sabur distribution leads to a better fit as 

compared to Lindley distribution (LD), Shanker Distribution (SHD), Exponential distribution 

(ED), inverse Lindley distribution (ILD) and Nadarajah-Haghighi distribution (HD) 
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Table 1:  MLE’s, - ln L, AIC, CAIC and BIC of the fitted distributions of data sets 

Model Parameter 

Estimates 

S.E -log L AIC CAIC BIC 

Sabur  

Distribution 

𝜶 = 𝟎. 𝟑𝟓𝟎𝟏 

 
𝜷 = 𝟎. 𝟎𝟗𝟔𝟕 

𝜶 = 𝟎. 𝟎𝟏𝟐𝟒 
 
𝜷 = 𝟎. 𝟎𝟎𝟖𝟎 

120.44 244.89 245.32 247.76 

LD 𝛼 = 0.0630 

 

𝛼 = 0.0412 

 
127.0 256.0 256.1 257.4 

SD 𝛼 = 0.0647 

 

𝛼 = 0.0475 

 
126.15 254.3 254.5 255.8 

ED 𝛼 = 0.0355 

 

𝛼 = 0.1507 

 
137.25 276.7 276.8 277.9 

ILD 𝛼 = 30.153 𝛼 = 5.2523 

 
137.24 276.49 276.63 277.92 

NHD  𝛼 = 0.0026 

 
𝛽 = 0.0008 

𝛼 = 9.8991 

 
𝛽 = 3.2255 

128.59 261.19 264.06 261.62 

 

. 

11. Concluding Remarks 
 

In this paper, we introduce a new two-parameter lifetime distribution called the "Sabur distribution. 

We explore various mathematical properties of this distribution, including its shape, moments, 

hazard rate, mean residual life functions, mean deviations, and order statistics. Additionally, we 

derive expressions for the Bonferroni and Lorenz curves as well as the Renyi entropy measure for 

the proposed distribution. Furthermore, we discuss the method of maximum likelihood estimation 

for estimating the distribution's parameter. To demonstrate the practical utility and superiority of 

the Sabur distribution over existing alternatives such as the Shanker, Nadarajah-Haghighi, 

exponential, Lindley, and inverse Lindley distributions, we perform goodness-of-fit tests using 

criteria like the Akaike Information Criterion (AIC), Consistent Akaike Information Criterion 

(CAIC), and Bayesian Information Criterion (BIC) on real lifetime datasets. 
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