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Abstract 

This paper presents a comprehensive study of a series-parallel system comprising four interconnected 

subsystems: subsystem-1, subsystem-2, subsystem-3, and subsystem-4. Subsystem-1 stands as a single 

unit, subsystem-2 consists of three identical units in active parallel, subsystem-3 involves two identical 

units in series, while subsystem-4 incorporates two identical units in parallel. The system operates 

under good conditions, considering various failure rates and repair rates. The investigation employs 

Laplace transforms and Supplementary variable techniques to analyze the system's performance. Key 

reliability parameters, including Availability, Reliability, Mean Time to Failure (MTTF), Sensitivity, 

and Cost, are evaluated for specific values of failure and repair rates. The paper delves into the intricate 

analysis of a multi-unit series system, focusing on its reliability and performance evaluation. The study 

employs the Gumbel-Hougard Family Copula approach, a sophisticated and robust methodology to 

capture the interdependencies among system units. By utilizing this advanced technique, the paper 

provides a comprehensive understanding of the system's behavior under varying operating conditions. 

Various reliability and performance metrics, including Availability, Mean Time to Failure (MTTF), 

and Component Importance Measures, are thoroughly examined, offering valuable insights for 

optimizing the system's reliability and performance. The results are presented in a clear and visually 

appealing manner, utilizing tables and figures to aid in the comprehension of the findings. 

Keywords: Availability; Reliability; Sensitivity; Mean time to system failure 

(MTTF); Cost Analysis; 

 

I. Introduction 
 

System reliability refers to the extent to which it can be relied upon to function correctly. 

Additionally, it encompasses critical aspects such as system usage, maintenance, and strategies for 

enhancing effectiveness by reducing failure occurrences and minimizing maintenance costs. By 

improving reliability, the risk of harm to maintenance personnel is reduced, as machine failures can 

result in significant injuries, revenue losses, reduced production output, and increased maintenance 

expenses. A key objective of system reliability analysis is to identify vulnerable components and 

assess the potential impacts of their failures. 

The components of a serial or redundant system play a vital role in shaping its reliability and 

performance. The occurrence and nature of component failures within these systems significantly 

impact various key metrics, such as overall reliability, mean time to failure, dependability, 
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availability, and revenue generation. Consequently, it becomes crucial to identify and assess the 

most critical components with the highest reliability in terms of the aforementioned factors. In 

today's manufacturing industries, traditional production systems are no longer enough to ensure 

the continued existence and success of an organization. The focus on steady-state operations is 

insufficient; constant improvement in the reliability and performance of systems is now essential to 

meet the demands of enhanced productivity, adaptability, and the ever-changing competitive 

landscape. Systems engineering, improvement, and setup are increasingly driven by the 

consideration of performance as a crucial factor. Merely assuming that systems function properly is 

inadequate; their effectiveness is equally important. Numerous instances in domains like 

telecommunication systems, industrial, and manufacturing systems have shown that enhancing 

system reliability and performance can lead to significant savings in disaster mitigation, time, costs, 

labor, risks, and even human lives. Therefore, reliability and performance analysis surveys are 

conducted to evaluate existing or planned systems, explore different configurations, and strive for 

an optimum design setup. The ongoing pursuit of improved reliability and performance is vital for 

organizations seeking to thrive in today's dynamic industrial landscape. 

Numerous researchers have employed diverse methodologies to explore the performance and 

reliability of various systems, and their findings have demonstrated notable enhancements in 

operational efficiency. For instance, Teslyuk et al. (2021) proposed models for reliably assessing 

metrics related to testing the performance of local area networks. Additionally, Rotar et al. (2021) 

introduced a mathematical approach to determine the reliability of solar tracking systems by 

considering fault coverage aware metrics.  In the realm of reliability analysis for various network 

systems, several researchers have made significant contributions using diverse methodologies. Bisht 

et al. (2021) devised an algorithm to compute reliability metrics, component measures, and critical 

measures for communication networks. Arora et al. (2020) developed models specifically for 

determining reliability metrics in parallel systems with fault coverage. On the other hand, Bisht and 

Singh (2019a) focused on analyzing reliability metrics of complex networks using universal 

generating functions. In the context of distributed networks, Huang et al. (2020) introduced their 

models for reliability analysis. Furthermore, Bisht and Singh (2019b) employed Markov processes to 

analyze the reliability measures for enhancing transmission network systems. In a separate study, 

Bisht and Singh (2020) delved into the analysis of profit and reliability in transmission networks 

using artificial neural networks and Markov processes.These diverse approaches and methodologies 

have contributed to advancing the understanding of reliability and performance evaluation in 

various network systems, paving the way for more robust and efficient designs. 

 

The research landscape on reliability assessment for various systems has witnessed several 

significant studies employing different methodologies. Ye et al. (2020) conducted an investigation 

on the reliability of a repairable machine, exploring its behavior under shocks and degradation 

caused by low-quality feedstocks. Sharifi et al. (2019) tackled a redundancy allocation problem, 

aiming to optimize the reliability and cost of weighted-k-of-n parallel systems. They employed a 

combination of a universal generating function, a non-dominated sorting genetic algorithm, and a 

non-dominated ranked genetic algorithm to determine the reliability and cost of each subsystem. In 

the field of power systems, Jia et al. (2020) introduced a multi-state decision diagram method for 

evaluating system reliability. Their approach incorporated a multi-state performance sharing 

mechanism and warm standby units. Lin et al. (2021) contributed to the reliability modeling domain 

by establishing a copula-based Bayesian model. This model effectively captures the interdependence 

between components in parallel systems and allows for the estimation of system failure rates. 

Additionally, Jia et al. (2021) presented a model for power systems that integrate warm standby and 

energy storage components. Their reliability assessment was calculated using the multi-valued 

decision diagram technique. These diverse research endeavors have enriched the understanding of 
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reliability assessment and paved the way for more robust and efficient designs across different 

systems and industries. 

The realm of reliability analysis has seen diverse studies that explore different methodologies and 

applications. Pundir et al. (2021) conducted an analysis of reliability metrics for a system comprising 

two non-identical cold standby units, considering different types of priors for unknown parameters. 

Kumar et al. (2019a) introduced a novel approach inspired by the hierarchical and fishing behavior 

of gray wolves (Canis lupus) to enhance the technical specifications of a Nuclear Power Plant's safety 

system's residual heat removal system (RHRS). In another study, Kumar et al. (2019b) utilized a 

multi-objective gray wolf optimizer algorithm to optimize the reliability-cost trade-off for a space 

capsule's life support system. Fuzzy reliability evaluation was the focus of Kumar et al.'s (2020) 

investigation, specifically for series, parallel, and linear consecutive k-out-of-n: F systems. Hesitant 

fuzzy sets, triangular fuzzy numbers, and the Weibull distribution were employed to obtain fuzzy 

reliability measures for different types of systems. Mellal and Zio (2020) proposed a new cuckoo 

optimization algorithm to address reliability redundancy allocation problems, specifically with a 

cold-standby strategy. This innovative approach holds promise for optimizing the reliability and 

performance of redundant systems. 

 

Numerous studies in the field of reliability engineering have shown that effective performance 

analysis can help to enhanced the reliability, avoid disasters and save time, money, or both. Xie et 

al. (2021) investigated and examined the performance of a safety system that is vulnerable to 

cascading failures that cause the appearance of further failures. In the paper, a unique technique for 

mitigating and preventing cascading failure is provided. Xie et al. (2019) suggested performance and 

an approximation approach for medium-frequency hazardous failures in safety instrumental 

systems prone to cascade failures. Yemane and Colledani (2019) offer a method for evaluating the 

performance of unstable manufacturing systems that takes into account unknown machine 

reliability predictions. Zhao et al. (2021) investigate and optimize the economic performance of a 

cold standby system susceptible to -shocks and imperfect repairs, proposing geometric process 

models to quantify the lifetime and repair time.  

Numerous researchers have previously presented copula methods in the field of reliability and 

performance analysis of systems by examining system performance under various conditions. To 

name a few, Rawal et al. (2022) have concentrated on the reliability assessment of multi-computer 

systems consisting of n clients and k-out-of-n: G operational scheme with copula repair policy in the 

ongoing reliability investigations. Sha (2021) conducted research on a copula approach to reliability 

analysis for hybrid systems. Through the copula repair approach, Sanusi et al. (2022) estimate the 

dependability metrics of automated teller machine using Gumbel Hougaaard family copula.Yusuf 

et al. (2022) focus on reliability assessment and estimation of multi-unit of serial system. Maihulla et 

al. (2021) used the Gumbel-Hougaard family Copula to model and assess the dependability and 

performance of solar photovoltaic systems. Yusuf and Sanusi (2023) present copula technique in 

assessing and estimating the reliability characteristics of automated teller machine system. Maihulla 

and Yusuf (2022) analyzed the reliability of solar PV system through copula techniques. Yusuf et al. 

(2021) carried out a study on reliability analysis of distributed systems utilizing copula technique. 

Singh et al. (2021) examine the performance of a multi-unit k-out-of-n: G system through copula 

linguistic scheme. Singh et al. (2022) suggest a copula linguistic technique for analyzing the 

performance and effectiveness of a redundant k-out-of-n: G system with multiple successive state 

degradation. Abubakar and Singh (2019) analyses the Performance assessment of an industrial 

system (African Textile Manufactures Ltd.) through copula linguistic approach. Maihulla et al. 

(2021) used the Gumbel-Hougaard family Copula to model and assess the dependability and 

performance of solar photovoltaic systems. 
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The researchers mentioned above have made remarkable contributions in enhancing the reliability 

and performance of complex repairable systems using various techniques. However, there is a need 

for a new model that offers substantiated and comprehensive evaluations. With this in mind, this 

present paper focuses on the reliability and performance analysis of a serial system comprising five 

components. The paper introduces a novel technique called the copula repair technique to analyze 

the optimization of reliability and performance in this serial system. The main objective is to predict 

the system's performance optimization by employing two repair strategies. When the system 

experiences partial failure, the general repair technique is applied to fix it. On the other hand, if the 

system encounters complete failure, the copula repair technique is employed to fully recover from 

the failure.In pursuit of these objectives, the paper develops expressions for availability, reliability, 

mean time to failure (MTTF), sensitivity, and cost function. Through numerical analysis, the 

behavior of availability, reliability, and cost function over time is determined. This comprehensive 

approach aims to shed light on the dynamics of the serial system's performance and reliability, 

providing valuable insights for its optimization. 

II. State Description, Notation, and assumptions 

State descriptions  

S0 At the outset, the system is in an optimal operational state, where units B2, B3, and D2 are 

in hot standby mode, while units A1, B1, C1, C2, and D1 are actively functioning. 

S1 At this point, the system experiences a complete failure as subsystem 1 malfunctions. 

S2 At this moment, the system encounters a partial failure with units B3 and D2 in hot 

standby mode, units A1, B2, C1, C2, and D1 in working mode, and unit B1 undergoing repair. 

S3 At this point, the system experiences a complete failure as unit C1 malfunctions. 

S4 At this moment, the system faces a complete failure as unit C2 malfunctions. 

S5 At this point, the system encounters a partial failure with units B2 and B3 in hot standby 

mode, units A1, B1, C1, C2, and D2 in working mode, and unit D1 undergoing repair. 

S6 At this moment, the system experiences a partial failure with unit D2 in hot standby mode, 

units A1, B3, C1, C2, and D1 in working mode, and units B1 and B2 undergoing repair. 

S7 At this point, the system encounters a partial failure with unit B3 in hot standby mode, 

units A1, B2, C1, C2, and D2 in working mode, and units B1 and D1 undergoing repair.. 

S8 At this moment, the system experiences a complete failure as all the units in subsystem 2 

malfunction. 

S9 At this point, the system encounters a complete failure as all the units in subsystem 4 

malfunction. 

3.2 Notations 

• t  Stands for Time variable on a time scale. 

• s  Stands for Laplace transform variable for all expressions. 

• 𝜆1 Stands for Failure rate of the unit in the subsystem 1. 

• 𝜆2 Stands for Failure rate of any unit in subsystem 2. 

• 𝜆3 Stands for Failure rate of the unit 𝐶1 in subsystem 3. 
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• 𝜆4 Stands for Failure rate of the unit 𝐶2 in subsystem 3. 

• 𝜆5 Stands for Failure rate of any unit in subsystem 4. 

• 𝜙(𝑥)   Stands for Repair rates of the unit of subsystem 1. 

• 𝜙(𝑦) Stands for Repair rate of units in the subsystem 2. 

• 𝜙(𝑧)  Stands for Repair rate of the unit 𝐶1 in the subsystem 3. 

• 𝜙(𝑚)  Stands for Repair rate of the unit 𝐶2 in the subsystem 3. 

• 𝜙(𝑛)  Stands for Repair rate of units in the subsystem 4. 

• 𝑃𝑖(𝑡) Stands for the probability that the system is in 𝑆𝑖 state at instants for i = 0 to 9. 

• �̅�(𝑠) Stands for Laplace transformation of the state transition probability P(t). 

• 𝑃1(𝑥, 𝑡) Stands for the probability that a system is in state 𝑆1 the system is running under 

repair and elapse repair time is (x, t) with repair variable x and time variable t. 

• 𝐸𝑝(𝑡)  Stands for Expected profit during the time interval [0, t). 

• 𝐾1, 𝐾2  Stands for Revenue and service cost per unit time respectively. 

• 𝑃𝑖(𝑦, 𝑡) Stands for Probability that the system is in state 𝑆𝑖 for i=2, 6, 8, and the system is 

running under repair and elapse repair time is (y, t), with repair variable y and time 

variable t. 

• 𝑃3(𝑧, 𝑡) Stands for the probability that a system is in state 𝑆3 the system is running under 

repair and elapse repair time is (z, t) with repair variable z and time variable t. 

• 𝑃4(𝑚, 𝑡) Stands for the probability that a system is in state 𝑆4 the system is running under 

repair and elapse repair time is (m, t) with repair variable m and time variable t. 

• 𝑃𝑖(𝑛, 𝑡) Stands for Probability that the system is in state 𝑆𝑖 for i=5, 7, 9, and the system is 

running under repair and elapse repair time is (n, t), with repair variable n and time 

variable t. 

 

1.3 Assumptions 

• At the beginning, all the subsystems are in an ideal working mode 

• One unit in subsystem 1, 2, 4 and all units in subsystem 3 are necessary for the system to 

be in operative mode 

• All failure rates are unvarying and considered to undergo exponential distribution 

• The repairs undergo a general distribution. 

• It is considered that a repaired system performs like a new system and no damage seen 

during repair. 

• Immediately the failed unit gets repaired, it is ready to undergo the task. 

 

 

 

 

 

 

 

Figure 1 Reliability Block Diagram of the System 
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Figure 2 State Transition diagram of Model 

III. Formulation of the Mathematical Model 

With regards to the probability and continuity arguments, the train set of difference differential 

equations are lump together with the present mathematical model. 

(
𝜕

𝜕𝑡
+ 𝜆1 + 3𝜆2 + 𝜆3 + 𝜆4 + 2𝜆5) 𝑝0(𝑡) = ∫ 𝜙(𝑦)𝑝2(𝑦, 𝑡)𝑑𝑦

∞

0
+ ∫ 𝜇0(𝑧)𝑝3(𝑧, 𝑡)𝑑𝑧

∞

0
+

∫ 𝜇0(𝑚)𝑝4(𝑚, 𝑡)𝑑𝑚
∞

0
+ ∫ 𝜙(𝑛)𝑝5(𝑛, 𝑡)𝑑𝑛

∞

0
+ ∫ 𝜇0(𝑥)𝑝1(𝑥, 𝑡)𝑑𝑥

∞

0
+ ∫ 𝜇0(𝑦)𝑝8(𝑦, 𝑡)𝑑𝑦

∞

0
+

∫ 𝜇0(𝑛)𝑝9(𝑛, 𝑡)𝑑𝑛
∞

0
                                                                         (1) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜇0(𝑥)) 𝑝1(𝑥, 𝑡) = 0                                                                                                     (2) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜆1 + 2𝜆2 + 𝜆3 + 𝜆4 + 2𝜆5 + 𝜙(𝑦)) 𝑝2(𝑦, 𝑡) = 0            (3) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
+ 𝜇0(𝑧)) 𝑝3(𝑧, 𝑡) = 0                            (4) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑚
+ 𝜇0(𝑚)) 𝑝4(𝑚, 𝑡) = 0                         (5) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑛
+ 𝜆5 + 𝜙(𝑛)) 𝑝5(𝑛, 𝑡) = 0           (6) 

2𝜆5 
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𝜙(𝑦) 

𝜙(𝑦) 

2𝜆2 

S8 
P8(y,t) S9 

P9(n,t
) 

S1 
P1(x,t) 

S0 
P0(t) 

S3 
P3(z,t) 

S4 
P4(m,t) 

     S5 
P5(n,t
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(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜆2 + 𝜙(𝑦)) 𝑝6(𝑦, 𝑡) = 0                                                                                            (7) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑛
+ 𝜆5 + 𝜙(𝑛)) 𝑝7(𝑛, 𝑡) = 0                                                                                            (8) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜇0(𝑦)) 𝑝8(𝑦, 𝑡) = 0                                                                                                   (9) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑛
+ 𝜇0(𝑛)) 𝑝9(𝑛, 𝑡) = 0                                                                                                  (10) 

Boundary Conditions 

𝑝1(0, 𝑡) = 𝜆1𝑝0(𝑡) + 𝜆1𝑝2(0, 𝑡)                                                                                                 (11) 

𝑝2(0, 𝑡) = 3𝜆2𝑝0(𝑡)                                                                                                                    (12) 

𝑝3(0, 𝑡) = 𝜆3𝑝0(𝑡) + 𝜆3𝑝2(0, 𝑡)                                                                                                 (13) 

𝑝4(0, 𝑡) = 𝜆4𝑝0(𝑡) + 𝜆4𝑝2(0, 𝑡)                                                                                                (14) 

𝑝5(0, 𝑡) = 2𝜆5𝑝0(𝑡)                                                                                                                   (15) 

𝑝6(0, 𝑡) = 2𝜆2𝑝2(0, 𝑡)                                                                                                               (16) 

𝑝7(0, 𝑡) = 2𝜆5𝑝2(0, 𝑡)                                                                                                               (17) 

𝑝8(0, 𝑡) = 𝜆2𝑝6(0, 𝑡)                                                                                                                 (18) 

𝑝9(0, 𝑡) = 𝜆5𝑝5(0, 𝑡) + 𝜆5𝑝7(0, 𝑡)                                                                                            (19) 

Solution of the Model:  

Using Laplace transformation of equations on (1) to (10) together with the initial condition, P0 (0) 

=1, one can attain.  

(𝑠 + 𝜆1 + 3𝜆2 + 𝜆3 + 𝜆4 + 2𝜆5)𝑝0̅̅ ̅(𝑠) = 1 + ∫ 𝜇0(𝑥)𝑝1̅̅̅(𝑥, 𝑠)𝑑𝑥
∞

0
+ ∫ 𝜙(𝑦)𝑝2̅̅ ̅(𝑦, 𝑠)𝑑𝑦

∞

0
+

∫ 𝜇0(𝑧)𝑝3̅̅ ̅(𝑧, 𝑠)𝑑𝑧
∞

0
+ ∫ 𝜇0(𝑚)𝑝4̅̅ ̅(𝑚, 𝑠)𝑑𝑚

∞

0
+ ∫ 𝜙(𝑛)𝑝5̅̅ ̅(𝑛, 𝑠)𝑑𝑛

∞

0
+ ∫ 𝜇0(𝑦)𝑝8̅̅ ̅(𝑦, 𝑠)𝑑𝑦

∞

0
+

∫ 𝜇0(𝑛)𝑝9̅̅ ̅(𝑛, 𝑠)𝑑𝑛
∞

0
                                                                                                                (20) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜇0(𝑥)) 𝑝1̅̅̅(𝑥, 𝑠) = 0                                                                                                (21) 

(𝑠 +
𝜕

𝜕𝑦
+ 𝜆1 + 2𝜆2 + 𝜆3 + 𝜆4 + 2𝜆5 + 𝜙(𝑦)) 𝑝2̅̅ ̅(𝑦, 𝑠) = 0                                                 (22) 

(𝑠 +
𝜕

𝜕𝑧
+ 𝜇0(𝑧)) 𝑝3̅̅ ̅(𝑧, 𝑠) = 0                                                                                                 (23) 

(𝑠 +
𝜕

𝜕𝑚
+ 𝜇0(𝑚)) 𝑝4̅̅ ̅(𝑚, 𝑠) = 0                                                                                             (24) 

(𝑠 +
𝜕

𝜕𝑛
+ 𝜆5 + 𝜙(𝑛)) 𝑝5̅̅ ̅(𝑛, 𝑠) = 0                                                                                         (25) 
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(𝑠 +
𝜕

𝜕𝑦
+ 𝜆2 + 𝜙(𝑦)) 𝑝6̅̅ ̅(𝑦, 𝑠) = 0                                                                                         (26) 

(𝑠 +
𝜕

𝜕𝑛
+ 𝜆5 + 𝜙(𝑛)) 𝑝7̅̅ ̅(𝑛, 𝑠) = 0                                                                                         (27) 

(𝑠 +
𝜕

𝜕𝑦
+ 𝜇0(𝑦)) 𝑝8̅̅ ̅(𝑦, 𝑠) = 0                                                                                                (28) 

(𝑠 +
𝜕

𝜕𝑛
+ 𝜇0(𝑛)) 𝑝9̅̅ ̅(𝑛, 𝑠) = 0                                                                                                (29) 

Laplace transform of boundary conditions 

𝑝1̅̅̅(0, 𝑠) = 𝜆1𝑝0̅̅ ̅(𝑠) + 𝜆1𝑝2̅̅ ̅(0, 𝑠)                                                                                             (30) 

𝑝2̅̅ ̅(0, 𝑠) = 3𝜆2𝑝0̅̅ ̅(𝑠)                                                                                                                (31) 

𝑝3̅̅ ̅(0, 𝑠) = 𝜆3𝑝0̅̅ ̅(𝑠) + 𝜆3𝑝2̅̅ ̅(0, 𝑠)                                                                                             (32) 

𝑝4̅̅ ̅(0, 𝑠) = 𝜆4𝑝0̅̅ ̅(𝑠) + 𝜆4𝑝2̅̅ ̅(0, 𝑠)                                                                                             (33) 

𝑝5̅̅ ̅(0, 𝑠) = 2𝜆5𝑝0̅̅ ̅(𝑠)                                                                                                                (34) 

𝑝6̅̅ ̅(0, 𝑠) = 2𝜆2𝑝2̅̅ ̅(0, 𝑠)                                                                                                            (35) 

𝑝7̅̅ ̅(0, 𝑠) = 2𝜆5𝑝2̅̅ ̅(0, 𝑠)                                                                                                            (36) 

𝑝8̅̅ ̅(0, 𝑠) = 𝜆2𝑝6̅̅ ̅(0, 𝑠)                                                                                                              (37) 

𝑝9̅̅ ̅(0, 𝑠) = 𝜆5𝑝5̅̅ ̅(0, 𝑠) + 𝜆5𝑝7̅̅ ̅(0, 𝑠)                                                                                         (38) 

Solving (20) to (29), together with equations (30) to (38) one may attain;          

𝑃0
̅̅ ̅(𝑠) =

1

𝐷(𝑠)
          (39) 

𝑃1̅(𝑠) =
(𝜆1+3𝜆1𝜆2)

𝐷(𝑠)
 {

1−�̅�𝜇0(𝑠)

𝑠
}                                                                                                   (40) 

𝑃2
̅̅ ̅(𝑠) =

3𝜆2

𝐷(𝑠)
{

1−�̅�𝜙(𝑠+𝜆1+2𝜆2+𝜆3+𝜆4+2𝜆5)

𝑠+𝜆1+2𝜆2+𝜆3+𝜆4+2𝜆5
}                                                                                 (41) 

𝑃3
̅̅ ̅(𝑠)

=(𝜆3+3𝜆2𝜆3)

𝐷(𝑠)
{

1−�̅�𝜇0(𝑠)

𝑠
}                                                                                                       (42) 

𝑃4̅(𝑠) =
(𝜆4+3𝜆2𝜆4)

𝐷(𝑠)
{

1−�̅�𝜇0(𝑠)

𝑠
}                                                                                                     (43) 

𝑃5
̅̅ ̅(𝑠) =

2𝜆5

𝐷(𝑠)
{

1−�̅�𝜙(𝑠+𝜆5)

𝑠+𝜆5
}                                                                                                          (44) 

𝑃6
̅̅ ̅(𝑠) =

6𝜆2
2

𝐷(𝑠)
{

1−�̅�𝜙(𝑠+𝜆2)

𝑠+𝜆2
}                                                                                                          (45) 

𝑃7
̅̅ ̅(𝑠) =

2𝜆2𝜆5

𝐷(𝑠)
{

1−�̅�𝜙(𝑠+𝜆5)

𝑠+𝜆5
}                                                                                                        (46) 
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𝑃8
̅̅ ̅(𝑠) =

6𝜆2
3

𝐷(𝑠)
{

1−�̅�𝜇0(𝑠)

𝑠
}                                                                                                               (47) 

𝑃9̅(𝑠) =
(2𝜆5

2+2𝜆2𝜆5
2)

𝐷(𝑠)
{

1−�̅�𝜇0(𝑠)

𝑠
}                                                                                                 (48) 

Where 𝐷(𝑠) =  𝑠 + 𝜆1 + 3𝜆2 + 𝜆3 + 𝜆4 + 2𝜆5 − {(𝜆1 + 3𝜆1𝜆2){𝑆�̅�0
(𝑠)} + 3𝜆2{𝑆�̅�(𝑠 + 𝜆1 + 2𝜆2 + 𝜆3 +

𝜆4 + 2𝜆5)} + (𝜆3 + 3𝜆2𝜆3){𝑆�̅�0
(𝑠)} + (𝜆4 + 3𝜆2𝜆4){𝑆�̅�0

(𝑠)} + 2𝜆5{𝑆�̅�(𝑠 + 𝜆5)} + 6𝜆2
3{𝑆�̅�0

(𝑠)} + (2𝜆5
2 +

2𝜆2𝜆5
2){𝑆�̅�0

(𝑠)}} 

The Laplace transformations of the state transition probabilities that the system is in operative 

condition and failed condition at any time is as follows: 

𝑃𝑢𝑝
̅̅ ̅̅ (𝑠) = 𝑃0

̅̅ ̅(𝑠) + 𝑃2
̅̅ ̅(𝑠) + 𝑃5

̅̅ ̅(𝑠) + 𝑃6
̅̅ ̅(𝑠) + 𝑃7

̅̅ ̅(𝑠)  

𝑃𝑢𝑝
̅̅ ̅̅ (𝑠) = 𝑃0

̅̅ ̅(𝑠) (1 + 3𝜆2 {
1−�̅�𝜙(𝑠+𝜆1+2𝜆2+𝜆3+𝜆4+2𝜆5)

𝑠+𝜆1+2𝜆2+𝜆3+𝜆4+2𝜆5
} + 2𝜆5 {

1−�̅�𝜙(𝑠+𝜆5)

𝑠+𝜆5
} + 6𝜆2

2 {
1−�̅�𝜙(𝑠+𝜆2)

𝑠+𝜆2
} +

2𝜆2𝜆5 {
1−�̅�𝜙(𝑠+𝜆5)

𝑠+𝜆5
} )          (49) 

�̅�𝑑𝑜𝑤𝑛(𝑠) = 1 − �̅�𝑢𝑝(𝑠)  

 

IV. Analytical Computations 

Availability Analysis 

Applying 𝑆�̅�(𝑠) =
𝜙

𝑠+𝜙
, 𝑆�̅�0

(𝑠) =
𝜇0

𝑠+𝜇0
, 

1−�̅�𝜙(𝑠)

𝑠
=

1

𝑠+𝜙
, 

1−�̅�𝜇0
(𝑠)

𝑠
=

1

𝑠+𝜇0
 and considering the values of 

different parameters as  𝜆1 = 0.01, 𝜆2 = 0.02, 𝜆3 = 0.03, 𝜆4 = 0.04, 𝜆5 = 0.05, 𝜙 = 𝜇0 = 1  in (49), 

then with the inverse Laplace transform, the availability may be, obtained as: 

�̅�𝑢𝑝(𝑡) = 0.03439655083𝑒−2.816787262𝑡 − 0.01746442940𝑒−1.293636565𝑡 −

0.002630732952𝑒−1.113039421𝑡 + 0.9862252387𝑒−0.004836752497𝑡 − 0.0005266271282𝑒−1.020000000𝑡  

          (50) 

For different values of time variable t= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, units of time, different values of 

Pup(t) with the help of (50) may be attained as shown in Table 1 and Figure 3. 

 
Table1. Variation of Availability with respect to time 

Time 0 1 2 3 4 5 6 7 8 9 

Availability 1.0000 0.9772 0.9752 0.9715 0.9672 0.9626 0.9580 0.9534 0.9488 0.9442 
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Figure 3 Availability as function of time 

 

 Reliability Analysis 

Using all repair rates, 𝜙, 𝜇0, in equation (49) to zero and for same values of failure rates as 

𝜆1 = 0.01, 𝜆2 = 0.02, 𝜆3 = 0.03, 𝜆4 = 0.04, 𝜆5 = 0.05 And then computing inverse Laplace transform, 

the reliability for the system may be expressed as; 

𝑅(𝑡) = 3. 𝑒−0.2200000000𝑡 + 0.5368421053𝑒−0.05000000000𝑡 − 2.547751196𝑒−0.2400000000𝑡 +

0.01090909091𝑒−0.02000000000𝑡             (51) 

For, different values of time t= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.., units of time, different values of Reliability 

may be attained as seen in Table 2 and graphical display in Figure 4. 
Table 2.  Computation of reliability for different values of time 

Time 0 1 2 3 4 5 6 7 8 9 

Reliability 1.0000 0.9248 0.8518 0.7828 0.7184 0.6592 0.6052 0.5561 0.5118 0.4718 

 

 

 
Figure 4 Reliability as function of Time 

 

Mean Time to Failure (MTTF) Analysis 

Mean time to failure (MTTF) analysis is an important tool in system reliability theory. It provides a 

measure of the expected time between failures of a system or component, and is often used to assess 

the reliability and performance of various systems, including mechanical, electrical, and software 
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systems. MTTF analysis plays a crucial role in system reliability theory. It provides a quantitative 

measure of a system's expected performance, which can be used to guide design improvements, 

maintenance activities, and safety procedures. 

There are several reasons why MTTF analysis is important and necessary in system reliability theory: 

1. Predictive Maintenance: MTTF analysis allows us to predict when a system or component is likely 

to fail. This information can be used to schedule maintenance activities and prevent costly and 

unexpected downtime. 

2. Design Improvement: MTTF analysis can be used to identify weaknesses in a system's design or 

components, and guide design improvements to increase reliability. 

3. Cost-Effective: MTTF analysis can help companies identify the most cost-effective approach to 

maintaining and repairing their systems. By prioritizing maintenance activities based on the 

expected MTTF, companies can optimize their maintenance budget and reduce overall costs. 

4. Safety: MTTF analysis is crucial for ensuring the safety of critical systems, such as those used in 

aviation, healthcare, and nuclear power. By understanding the expected failure rate of these systems, 

we can design appropriate safety protocols and procedures. 

 

Making all repairs to zero in equation (49), and then considering limit as s tends to zero, the MTTF 

may be expressed as: 

𝑀𝑇𝑇𝐹 = lim
𝑠→0

𝑃𝑢𝑝
̅̅ ̅̅ (𝑠) =

1

𝜆1+3𝜆2+𝜆3+𝜆4+2𝜆5
(3 + 6𝜆2 +

3𝜆2

𝜆1+2𝜆2+𝜆3+𝜆4+2𝜆5
)        (52) 

Setting 𝜆2 = 0.02, 𝜆3 = 0.03, 𝜆4 = 0.04, 𝜆5 = 0.05 and varying 𝜆1 one by one respectively as 

0.01, 0.02, 0.03, 0.04, 005, 0.06, 0.07, 0.08, 0.09, 𝜆1 = 0.01, 𝜆3 = 0.03, 𝜆4 = 0.04, 𝜆5 = 0.05 and varying 

𝜆2 one by one respectively as 0.01, 0.02, 0.03, 0.04, 005, 0.06, 0.07, 0.08, 0.09, 𝜆1 = 0.01, 𝜆2 = 0.02, 𝜆4 =

0.04, 𝜆5 = 0.05 and varying 𝜆3 one by one respectively as 

0.01, 0.02, 0.03, 0.04, 005, 0.06, 0.07, 0.08, 0.09, 𝜆1 = 0.01, 𝜆2 = 0.02, 𝜆3 = 0.03, 𝜆5 = 0.05 and varying 

𝜆4 one by one respectively as 0.01, 0.02, 0.03, 0.04, 005, 0.06, 0.07, 0.08, 0.09, and 𝜆1 = 0.01, 𝜆2 =

0.02, 𝜆3 = 0.03, 𝜆4 = 0.04 and varying 𝜆5 one by one respectively as 

0.01, 0.02, 0.03, 0.04, 005, 0.06, 0.07, 0.08, 0.09 in (52), the variation of MTTF with respect to failure 

rates may be attained as seen in Table 3 and corresponding Figure 5 

 

 
                 Table 3. Computation of MTTF corresponding to the various values of failure rates 

Failure 

rate 

MTTF 𝝀𝟏 MTTF 𝝀𝟐 MTTF 𝝀𝟑 MTTF 𝝀𝟒 MTTF 𝝀𝟓 

0.01 13.7576 15.0476 15.0909 15.8596 21.2857 

0.02 13.1757 13.7576 14.3934 15.0909 18.7222 

0.03 12.641 12.7037 13.7578 14.3934 16.7111 

0.04 12.1481 11.8256 13.1757 13.7576 15.0909 

0.05 11.6923 11.0823 12.641 13.1757 13.7576 

0.06 11.2695 10.4444 12.1481 12.641 12.641 

0.07 10.8762 9.891 11.6923 12.1481 11.6923 

0.08 10.5095 9.4062 11.2695 11.6923 10.8762 

0.09 10.1667 8.9778 10.8762 11.2695 10.1667 
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Figure 5 MTTF as function of Failure rate 

 

Sensitivity Analysis corresponding to (MTTF) 

Sensitivity analysis is an important tool in system reliability theory, as it can help identify critical 

components, optimize maintenance schedules, quantify uncertainty, and assess risk. Sensitivity 

analysis is an essential tool in system reliability theory for evaluating the impact of uncertainty and 

variability in the inputs of a system on the outputs. It involves varying the values of the inputs within 

a range and analyzing the corresponding changes in the outputs to determine how sensitive the 

outputs are to the inputs. Sensitivity analysis can help in several ways: 

1. Identifying critical components: Sensitivity analysis can help identify the most critical components 

in a system, those whose failure has the most significant impact on the system's overall reliability. 

By varying the parameters associated with each component, sensitivity analysis can help determine 

which components are most sensitive to changes in their input values. 

2. Optimal maintenance: Sensitivity analysis can also be used to determine the optimal maintenance 

schedule for a system. By varying the maintenance parameters and observing the corresponding 

changes in the system's reliability, it is possible to determine the maintenance schedule that 

maximizes the system's reliability while minimizing maintenance costs. 

3. Uncertainty quantification: Sensitivity analysis can help quantify the uncertainty associated with a 

system's reliability estimates. By varying the input parameters and observing the corresponding 

changes in the output, it is possible to determine the range of variability in the system's reliability 

estimates. 

4. Risk assessment: Sensitivity analysis can be used for risk assessment by identifying the most critical 

inputs in a system and quantifying their impact on the system's reliability. This information can be 

used to assess the risk associated with different scenarios and identify strategies to mitigate the risk. 

 

Sensitivity in MTTF of the system may be calculated through the partial differentiation of MTTF 

with respect to the failure rates of the system. By executing the set of parameters as 𝜆1 = 0.01, 𝜆2 =

0.02, 𝜆3 = 0.03, 𝜆4 = 0.04, 𝜆5 = 0.05 in the partial differentiation of MTTF, one may obtain the MTTF 

sensitivity as seen in Table 4 and corresponding graphs seen in Figure 6 

 
                Table 4 MTTF sensitivity as function of time 

Failure 

rate 

( )

1

MTTF


 

( )

2

MTTF


 

( )

3

MTTF


 

( )

4

MTTF


 

( )

5

MTTF


 

0.01 -60.7668 -143.537 -73.1405 -80.7985 -291.581 

0.02 -55.7272 -115.978 -66.5235 -73.1405 -225.386 

0.03 -51.2903 -95.7819 -60.7668 -66.5235 -179.457 
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0.04 -47.3635 -80.5049 -55.7272 -60.7668 -146.281 

0.05 -43.8715 -68.6513 -51.2902 -55.7272 -121.534 

0.06 -40.7523 -59.2593 -47.365 -51.2903 -102.581 

0.07 -37.9546 -51.6858 -43.8715 -47.3635 -87.7430 

0.08 -35.4357 -45.4864 -40.7523 -43.8715 -75.9093 

0.09 -33.1598 -40.3457 -37.9546 -40.7523 -66.3194 

 

 
Figure 6 MTTF Sensitivity with respect to time 

 Cost Analysis 

Conceding that the service facility be all the time available, then expected profit during the interval 

[0, t) of the system may be attained by the formula. 

𝐸𝑃(𝑡) = 𝐾1 ∫ 𝑃𝑢𝑝(𝑡)𝑑𝑡
𝑡

0
− 𝐾2𝑡        (53) 

For the same set of a parameter of (49), one may attain (53). Therefore 

𝐸𝑃(𝑡) = 𝐾1(−0.01221127037𝑒−2.816787262𝑡 + 0.01350025956𝑒−1.293636565𝑡 +
0.002363557752𝑒−1.113039421𝑡 − 203.9023579𝑒−0.004836752497𝑡 + 0.0005163011061𝑒−1.020000000𝑡 +

203.898) − 𝐾2𝑡      (54) 

Setting 𝐾1 = 1and 𝐾2 =  0.6, 0.5, 0.4, 0.3, 0.2 and 0.1 respectively and varying t =0, 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10. Units of time, the results for expected profit may be attained as seen in Figure 7. 

 

 
Table 5. Expected profit as function of time 

Time(t) K2=0.6 K2=0.5 K2=0.4 K2=0.3 K2=0.2 K2=0.1 

0 0 0 0 0 0 0 

1 0.3834 0.4834 0.5835 0.6834 0.7834 0.8834 

2 0.7599 0.9599 1.1599 1.3599 1.5599 1.7599 

3 1.1333 1.4333 1.7333 2.0333 2.3333 2.6333 

4 1.5027 1.9027 2.3027 2.7027 3.1027 3.5027 

5 1.8677 2.3677 2.8677 3.3677 3.8677 4.3677 

6 2.2280 2.8280 3.4280 4.0280 4.6280 5.2280 

7 2.5837 3.2835 3.9837 4.6837 5.3837 6.0837 

8 2.9348 3.7348 4.5348 5.3348 6.1348 6.9348 
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9 3.2813 4.1813 5.0813 5.9813 6.8813 7.7813 

 

 
Figure 7 Expected profit as function of time 

 

V. Discussion and Concluding Remark 

The study aims to investigate and understand the behavior of the complex repairable system under 

different values of failure and repair rates. Figures 3 and 4 illustrate how the availability of the 

system changes over time with fixed failure rates at different values. When the failure rates are 

relatively low (e.g., 𝜆1 = 0.01, 𝜆2 = 0.02, 𝜆3 = 0.03, 𝜆4 = 0.04, 𝜆5 = 0.05,), both the availability and 

reliability of the system decrease gradually, while the probability of failure increases with time until 

it eventually stabilizes at zero after a sufficiently long period. By analyzing the graphical 

representation of the model, it becomes evident that the future behavior of the complex system can 

be reliably predicted for any given set of parametric values. Furthermore, from the observations in 

Table 3 and Table 4, it is evident that providing repair is more desirable for the system's performance 

compared to replacement, given the other parameters are held constant. Figure 5 presents the mean-

time-to-failure (MTTF) of the system concerning variations in failure rates (. The reciprocal 

relationship between MTTF and failure rates indicates that these rates significantly influence the 

system's performance. The sensitivity analysis, as depicted in Figure 4, highlights how the system's 

sensitivity varies with changes in parameter values. In terms of profit analysis, the study considers 

a fixed revenue cost per unit (K1=1) and varying service costs (K2= 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1). 

Figure 7 shows that as the service cost increases, the expected profit decreases. 

In conclusion, this comprehensive investigation sheds light on the behavior of the complex 

repairable system under different conditions and parameter values. It provides valuable insights 

into the system's reliability, availability, MTTF, sensitivity, and profit optimization, offering practical 

guidance for decision-making and system performance enhancement. 
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