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Abstract

Generalizations of standard probability distributions is a thought-provoking concept in statistical literature
and was inspired by many researchers in recent days. This is because the addition of parameters may
increase the flexibility of the new models. Now a days various generalization techniques are available
in literature. In this work, we proposed a generalization of discrete hypo exponential distribution and
studied its various properties. A real data analysis is carried out and check the flexibility of the new model
by comparing it with other standard distributions. Two generalizations of the proposed distribution are
introduced.

Keywords: Discrete hypo exponential distribution, Estimation, Generalization, Moments, Stress-
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1. Introduction

Over the last few decades, there has been growing interest in adding supplementary parameters
to the baseline distributions to broaden generalized families of distributions. The addition of
parameters may increase the flexibility of the new models. So generalization of the standard dis-
tributions are attracted by many researchers and are prominent in recent days. In literature there
exists various generalization techniques and for a detailed review, see Tahir and Nadarajah[32].
These techniques resulted in the generalizations of various standard distributions. For details
see, Gupta and Kundu [14], Eugene et.al [11], Zografos and Balakrishnan [33], Gomez-Deniz
[13], Mahmoudi and Zakerzadeh [19], Cordeiro and Castro [4], Nadarajah [24], Nadarajah et.al
[26], Cordeiro et al. [5], Ristic and Balakrishnan [30], Lemonte et.al [17], Liyanage and Pararai
[18], Merovci and Elbatal [22], Merovci and Sharma [23], Nadarajah and Bakar [25], Ahmad and
Ghazal [1], Sulami [2] etc. Recently exponentiated family of distributions due to Lehman [16] has
got special attention and various standard distributions were generalized. The most prominent
distribution introduced in the 20th century is the exponentiated exponential distribution and
inspired by this many existing distributions were generalized and for details see, Pal et al. [28],
Nekoukhou and Bidram [27], Morshedy et al. [8], El-Bassiouny et al. [7], Morshedy et al.[10],
Morshedy et al. [9], Mashhadzadeh and Mirmostafaee [21] and Baharith and Alamoudi [3].
The layout of this article is in this way. In Section 2, we introduced exponentiated discrete hypo
exponential distribution and studied its various properties. In Section 3 the parameters of the
distribution is done through non linear maximization method. To evaluate the performance of the
nlm estimator a simulation study is done in Section 4. A real data analysis is done in Section 5.
In Section 6 some generalizations of the proposed distribution are introduced. Some concluding
remarks are recorded in Section 7.
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2. Exponentiated Discrete Hypo Exponential Distribution

Consider the discrete hypo exponential (DHE) distribution having model parameters ϕ1, ϕ2 > 0,
ϕ1 ̸= ϕ2 with the distribution function

F(x; ϕ1, ϕ2) =
ϕ2

ϕ2 − ϕ1
(1 − e−ϕ1x)− ϕ1

ϕ2 − ϕ1
(1 − e−ϕ2x) (1)

By inserting (1) into the resilience parameter family of distributions, the distribution function of
the resulting distribution is given by

G(x; ϕ1, ϕ2, α) = [F(x; ϕ1, ϕ2)]
α

=
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α
(2)

where
V(x; ϕ1, ϕ2, α) = [ϕ2(1 − e−ϕ1x)− ϕ1(1 − e−ϕ2x)]α (3)

We call such a random variable X, having distribution function (2), is an exponentiated DHE
distribution with parameters ϕ1, ϕ2 > 0, ϕ1 ̸= ϕ2, α > 0 and denote it as EDHE (ϕ1, ϕ2, α).
The probability mass function(pmf) of EDHE distribution is given by

P(X = x) = v(x; ϕ1, ϕ2, α)

=
V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α
; x = 0, 1, 2, .... (4)

The plots of pmf of EDHE distribution is given in Figure 1.

Figure 1: Plots of pmf of EDHE distribution

From Figure 1 it is understood that the EDHE distribution is unimodel. Since every log-
concave density is unimodel, it is also inferred that EDHE distribution is log-concave.
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2.1. Reliability characteristics

Survival function, S(x) = 1 − V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α
; x = 0, 1, 2..., and

hazard rate, r(x) =
V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α − V(x; ϕ1, ϕ2, α)

The plots of hazard rate of EDHE distribution is given in Figure 2.

Figure 2: Plots of hazard rate of EDHE distribution.

From Figure 2, it is evident that for various model parameters, the hazard rate functions can
be decreasing, increasing and increasing-decreasing, which makes the EDHE distribution more
flexible and can model different types of data sets such as count data, failure time data etc.

2.2. Moments

Let X ∼ EDHE(ϕ1, ϕ2, α), then for n ≥ 1,

E(Xn) =
∞

∑
x=0

xn
[

V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]
.

In particular

E(X) =
∞

∑
x=0

x
[

V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]
.

and

E(X2) =
∞

∑
x=0

x2
[

V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]
.

The expression for V(X) can be obtained using he relation

V(X) = E(X2)− [E(X)]2

2.3. Infinite Divisibility

According to Steutel and Van Harn [31], a necessary condition for infinite divisibility of a discrete
distribution Py is that P0 > 0. For EDHE distribution this condition is satisfied for all values of
the parameters. Hence it is infinitely divisible.

2.4. Theorem

If X follows an exponentiated hypo exponential distribution with parameters ϕ1 , ϕ2 and α then
the random variable W=[X] follows a exponentiated discrete hypo exponential distribution with
parameters ϕ1, ϕ2 and α .
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Proof:
Consider w=0, 1, 2,... then using Lemma1 of Krishna and Pundir (2009), we have

P(W ≥ w) = P([X] ≥ w)

= P(X ≥ w)

= 1 −
[

ϕ2(1 − e−ϕ1x)− ϕ1(1 − e−ϕ2x)

ϕ2 − ϕ1

]α

which is the survival function of EDHE distribution and hence the theorem.

2.5. Order Statistics

Order statistics are sample values placed in ascending order. It is a very useful concept in
statistical sciences. It has a far reaching applications especially in modeling auctions, car races,
insurance policies and estimating parameters of distributions etc.
Let X(1:n) ≤ X(2:n) ≤ X(3:n) ≤ ... ≤ X(n:n) represents the order statistics obtained from the i.i.d.
EDHE(ϕ1, ϕ2, α) distribution of size n. Then probability mass function of first order statistics is
given by

fX(1:n)
(x) =

[
1 − V(x − 1; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]n
−

[
1 − V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]n

and the distribution function is

FX(1:n)
(x) = 1 −

[
1 − V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]n
.

The probability mass function of nth order statistics is given by

fX(n:n)
(x) =

[
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]n
−

[
V(x − 1; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]n

and the distribution function is

FX(n:n)
(x) =

[
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]n

where V(x; ϕ1, ϕ2, α) is given by (3).

2.6. Entropy

The Shannon’s entropy of random variable X having probability mass function P(x) is given by

H(X) = E(−logP(x)).

For EDHE distribution, H(X) is obtained as

H(X) = −
∞

∑
x=0

[
V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]
log

[
V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]
.

Renyi’s entropy of order β > 0 (β ̸= 1) is

Hβ(p) =
1

1 − β
log

∞

∑
x=0

[
V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]β

.
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2.7. Stress-strength Analysis

Stress-strength analysis is a mechanism and a topic used in reliability engineering. When the
probability of stress exceeding the strength of an item, that item fails. Hence the expected
reliability (R) is calculated as

R = P(stress ≤ strength) =
∞

∑
x=0

fstress(x)Rstrength(x)

where the strength and stress are in the positive domain. When stress ∼ EDHE(ϕ1, ϕ2, α1) and
strength∼ EDHE(ϕ3, ϕ4, α2), the expected reliability is

R =
∞

∑
x=0

V(x + 1; ϕ1, ϕ2, α1)− V(x; ϕ1, ϕ2, α2)

(ϕ2 − ϕ1)α1

[
1 − V(x; ϕ3, ϕ4, α2)

(ϕ4 − ϕ3)α2

]
.

Tables 1-4 show the numerical values of R for different values of stress-strength parameters.

Table 1: Values of R for ϕ1 = 0.1, ϕ2 = 0.3, ϕ3 = 0.3, ϕ4 = 0.6 and different values of α1 and α2
α2

α1 0.2 0.6 1 1.5 2 2.5
0.2 0.5185 0.6342 0.6962 0.7409 0.7685 0.7874
0.6 0.1707 0.2952 0.3708 0.4319 0.4735 0.5040
1 0.0735 0.1588 0.2166 0.2676 0.3050 0.3338

1.5 0.0336 0.0834 0.1207 0.1564 0.1843 0.2068
2 0.0181 0.0479 0.0718 0.0960 0.1157 0.1321

Table 2: Values of R for ϕ1 = 0.3, ϕ2 = 0.5, ϕ3 = 0.6, ϕ4 = 0.8 and different values of α1 and α2
α2

α1 0.2 0.6 1 1.5 2 2.5
0.2 0.6338 0.7240 0.7777 0.8185 0.8441 0.8617
0.6 0.2799 0.4162 0.5027 0.5733 0.6210 0.6557
1 0.1430 0.2657 0.3487 0.4210 0.4730 0.5127

1.5 0.0753 0.1690 0.2373 0.3011 0.3499 0.3890
2 0.0469 0.1169 0.1712 0.2249 0.2680 0.3037

Table 3: Values of R for ϕ1 = 0.5, ϕ2 = 0.8, ϕ3 = 0.5, ϕ4 = 0.8 and different values of α1 and α2
α2

α1 0.2 0.6 1 1.5 2 2.5
0.2 0.7372 0.8258 0.8748 0.9092 0.9293 0.9421
0.6 0.4272 0.5967 0.6952 0.7686 0.8138 0.8442
1 0.2720 0.4598 0.5747 0.6649 0.7235 0.7646

1.5 0.1759 0.3550 0.4713 0.5685 0.6352 0.6838
2 0.1277 0.2886 0.3991 0.4962 0..5658 0.6183
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Table 4: Values of R for α1=α2 = 0.6, and different values of ϕ1, ϕ2, ϕ3, ϕ4
ϕ2 = ϕ4

ϕ1 = ϕ3 0.6 0.7 0.8 1 1.5
0.1 0.4940 0.4974 0.50000 0.5037 0.5091
0.2 0.5437 0.5470 0.54972 0.5540 0.5611
0.3 0.5627 0.5668 0.5704 0.5761 0.5863
0.4 0.5751 0.5803 0.5848 0.5923 0.6058
0.5 0.5850 0.5912 0.5967 0.6059 0.6226

From tables 1-3 it is clear that for fixed values of ϕ1, ϕ2, ϕ3, ϕ4 and α1 reliability increases as
α2 tends to infinity. But the reliability decreases with α1 tends to infinity for fixed values of ϕ1, ϕ2,
ϕ3, ϕ4 and α2 . Table 4 shows that reliability increases with increasing values of ϕ1, ϕ3 for fixed
values of ϕ2, ϕ4, α1 and α2. Also for fixed values of ϕ1, ϕ3, α1 and α2, reliability increases with
increasing values of ϕ2 , ϕ4.

2.8. Estimation

In this section we estimate the parameters ϕ1, ϕ2 and α of EDHE distribution using the method of
maximum likelihood. Let us take a random sampleX1, X2...Xn of size n from EDHE distribution.
Then the logarithm of likelihood function is

logL =
∞

∑
x=0

log
[

V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]
The maximum likelihood estimators of ϕ1, ϕ2 and α are obtained by solving the equations

∂logL
∂ϕ1

= 0,
∂logL
∂ϕ2

= 0,
∂logL

∂α
= 0.

But these equations cannot be solved analytically. So we use Non Linear Maximization (nlm)
method for estimating the parameters ϕ1, ϕ2 and α.

3. Simulation Study

In this section, we use Monte-Carlo simulation method to illustrate the performance of the nlm
estimator of the parameters ϕ1 and ϕ2 and α. We generate 5000 random samples of sizes n=20, 30,
75 and 100 from the HE(ϕ1, ϕ2) distribution for some true values of the parameter set (ϕ1, ϕ2) =
(15,18), (15,21), (16,18) and (16,21). We discretize the generated data and find out 5000 estimates
of ϕ1 and ϕ2 and α using (4)for each sample sizes. The estimate of the parameter, average bias
and mean square error of the estimate (MSE) are computed and it is given in Table 5 to Table 12.

Table 5: Values of estimates, average bias and average MSE for ϕ1=15 and different values of, ϕ2, α and n=20.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
15 18 0.4 14.5668 -0.4331 0.1876 17.8307 -0.1693 0.0287 0.3775 -0.0224 0.00005

0.8 14.4120 -0.5879 0.3457 17.7375 -0.2624 0.0689 0.7133 -0.0866 0.0075
15 21 0.4 14.8996 -0.1003 0.0101 20.3668 -0.6331 0.4009 0.3370 -0.0629 0.004

0.8 14.3655 -0.6344 0.4025 20.6269 -0.3730 0.1392 0.6763 -0.1236 0.0153

Table 6: Values of estimates, average bias and average MSE for ϕ1=15 and different values of ϕ2, α and n=30.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
15 18 0.4 14.5689 -0.4310 0.1858 17.8316 -0.1683 0.0283 0.3807 -0.0192 0.00004

0.8 14.5509 -0.4490 0.2016 17.5699 -0.4300 0.185 0.7356 -0.0643 0.0041
15 21 0.4 14.9042 -0.0957 0.0092 20.6514 -0.3485 0.1215 0.3487 -0.0512 0.0026

0.8 14.5340 -0.4659 0.2171 20.6291 -0.3708 0.1375 0.6883 -0.1116 0.0125
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Table 7: Values of estimates, average bias and average MSE for ϕ1=15 and different values of ϕ2, α and n=75.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
15 18 0.4 14.6128 -0.3871 0.1499 17.8372 -0.1627 0.0265 0.4090 0.0099 0.00001

0.8 14.4120 -0.5879 0.3457 17.7375 -0.2624 0.0689 0.7133 -0.0866 0.0075
15 21 0.4 14.9614 -0.0380 0.0014 20.8440 -0.1550 0.0241 0.3502 -0.0497 0.0024

0.8 14.6453 -0.3546 0.1258 20.6317 -0.3683 0.1356 0.6979 -0.1020 0.0104

Table 8: Values of estimates, average bias and average MSE for ϕ1=15 and different values of ϕ2, α and n=100.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
15 18 0.4 14.6154 -0.3845 0.1478 17.8376 -0.1623 0.0263 0.4089 0.0089 0.00001

0.8 14.7504 -0.2494 0.0622 17.8349 -0.2494 0.0273 0.7988 -0.0011 0.0000
15 21 0.4 15.0249 0.0249 0.00006 20.8483 -0.1516 0.0230 0.37770 -0.0226 0.00005

0.8 15.0320 0.0320 0.0010 20.65213 -0.3478 0.1210 0.7445 -0.0554 0.0031

Table 9: Values of estimates, average bias and average MSE for ϕ1=16 and different values of ϕ2, α and n=20.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
16 18 0.4 15.4568 -0.5431 0.2950 17.8664 -0.1335 0.0178 0.3409 -0.0590 0.0035

0.8 15.6653 -0.3346 0.1120 17.4611 -0.5388 0.2903 0.6452 -0.1547 0.0240
16 21 0.4 15.1495 -0.8504 0.7233 20.4267 -0.5732 0.3286 0.3003 -0.0996 0.0099

0.8 15.7852 -0.2147 0.0461 20.4893 -0.5101 0.2603 0.6690 -0.1309 0.0172

Table 10: Values of estimates, average bias and average MSE for ϕ1=16 and different values of ϕ2, α and n=30.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
16 18 0.4 15.4593 -0.5406 0.2923 17.8662 -0.1337 0.0179 0.3452 -0.0547 0.0030

0.8 15.8042 -0.1957 0.0383 17.4674 -0.5325 0.2836 0.6708 -0.1291 0.0167
16 21 0.4 15.1507 -0.8492 0.7212 20.4282 -0.5717 0.3269 0.3008 -0.0991 0.0098

0.8 15.8184 -0.1815 0.0330 20.4918 -0.5081 0.2583 0.7341 -0.0658 0.0043

Table 11: Values of estimates, average bias and average MSE for ϕ1=16 and different values of ϕ2, α and n=75.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
16 18 0.4 15.4822 -0.5177 0.2681 17.8708 -0.1291 0.0167 0.3791 -0.0208 0.00004

0.8 15.8212 -0.1787 0.0319 17.5036 -0.4963 0.2463 0.7450 -0.0549 0.0030
16 21 0.4 15.1631 -0.8368 0.7002 20.4289 -0.5710 0.3261 0.3171 -0.08281 0.0069

0.8 15.9054 -0.0945 0.0089 20.5039 -0.4961 0.2461 0.7946 0.0053 0.0012

Table 12: Values of estimates, average bias and average MSE for ϕ1=16 and different values of ϕ2, α and n=100.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
16 18 0.4 15.4951 -0.5048 0.2548 17.8731 -0.1268 0.0161 0.3989 -0.0010 0.0000

0.8 15.9119 -0.0880 0.0078 17.9695 -0.0304 0.00009 0.7942 -0.0057 0.0000
16 21 0.4 15.1645 -0.8354 0.6979 20.4290 -0.5710 0.3261 0.3183 -0.0816 0.0067

0.8 15.9066 -0.0933 0.0087 20.5044 -0.4956 0.2456 0.8010 0.0010 0.0000

From tables 5-12, it is clear that as sample size increases, the average bias and average MSE
becomes very small for different choices of the values of the parameters. This indicates the
consistency of the estimators.

4. Real Data Analysis

For studying the efficiency of EDHE distribution we consider the data set used by Krishna and
Pundir [15] and it represents the total number of carious teeth among the four deciduous molars
in a sample of 100 children 10 and 11 years of old. The data are given in Table 13.

Table 13: Observed data

X 0 1 2 3 4
f 64 17 10 6 3

Figure 3 shows the observed data.
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Figure 3: Observed data.

We fit the EDHE distribution using the empirical data set and the embeded figure is given in
Figure 4.

Figure 4: Embeded figure.

In order to assess the suitability of the proposed model, we use chi-square test of goodness
of fit. Also, we compare the EDHE distribution with discrete Lindley (DL) distribution discrete
Pareto (DP) distribution and the values of Log-likelihood, AIC, BIC are computed and is shown
in Table 14.

Table 14: MLE’s, Chi-square value, -Log-likelihood value, AIC values, BIC values and P values for the observed data.

Distribution estimators Chi-square -LL AIC BIC p
fitted value value value value
DLD θ̂ = 0.275 6.637 113.68 229.36 229.36 0.036
DPD β̂ = 0.1837 3.226 116.83 235.66 235.66 0.199

EDHED ϕ̂1 = 0.9824779 1.2611 111.54 229.08 229.08 0.8679
ϕ̂2 = 0.9824794

α̂ = 0.3346

From Table 14, it is inferred that the EDHE distribution is a better fit than discrete Lindley
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and discrete Pareto distributions.

5. Generalizations

5.1. Transmuted exponentiated discrete hypo exponential (TEDHE) distribution

Many transmuted distributions are proposed and studied in literature. For details see Rahman et
al. [29] and Dey et al. [6]. In this section we present a generalization of (4) called the transmuted
exponentiated discrete hypo exponential distribution. A random variable X is said to have
transmuted distribution if its distribution function and probability mass functions are respectively
given by

F(x) = G(x)[1 + β − βG(x)]; ∥β| ≤ 1 (5)

and
P(X = x) = g(x)[1 + β − 2βG(x)] (6)

where G(x), g(x) are the distribution function and probability mass function of the baseline
distribution. Also if β = 0, we will get the baseline distribution. By using equations (5) and (6),
the distribution function and probability mass function of the TEDHE distribution is obtained as

F(x; ϕ1, ϕ2, α, β) =
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

[
1 + β − β

(
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

)]
(7)

and

f (x; ϕ1, ϕ2, α, β) =
V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

[
1 + β − 2β

(
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

)]
(8)

The plot of pmf of TEDHE distribution is given in Figure 5.

Figure 5: Plot of pmf of TEDHE distribution.

The survival function and hazard rate functions are given by the expressions

S(x) = 1 − V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

[
1 + β − β

(
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

)]
and

h(x) =

V(x+1;ϕ1,ϕ2,α)−V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α

[
1 + β − 2β

(
V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α

)]
1 − V(x;ϕ1,ϕ2,α)

(ϕ2−ϕ1)α

[
1 + β − β

(
V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α

)]
The hazard plots of TEDHE distribution is given in Figure 6.
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Figure 6: Plot of hazard function of TEDHE distribution.

From Figure 6, it is understood that for different model parameters, the hazard rate function
can be decreasing, increasing and increasing-decreasing, which makes the TEDHE distribution
more flexible and can model different types of data sets.

5.2. Marshall-Olkin exponentiated discrete hypo exponential (MOEDHE)
distribution

Marshall and Olkin [20] introduced a new method for adding a parameter θ(> 0) to the baseline
distribution in order to generalize it. Using this method many generalized distributions are
proposed and for a detailed review see Gillariose et al. [12]. If F(x) is the survival function of a
distribution, then, by Marshall-Olkin method, another survival function G(x) is obtained as

G(x, θ) =
θF(x)

1 − (1 − θ)F(x)
;−∞ < X < ∞, θ > 0.

The corresponding distribution function, probability mass function and hazard rate is obtained as

G(x, θ) =
F(x)

1 − (1 − θ)F(x)
g(x, θ) = G(x, θ)− G(x − 1, θ)

=
θ f (x)

[1 − (1 − θ)F(x)][1 − (1 − θ)F(x − 1)]

h(x) =
g(x)
G(x)

.

where f(x) is the probability mass function corresponding to the distribution function F(x).
Using Marshall-Olkin method the survival function of MOEDHE distribution is

G(x, θ) =
θ(1 − V(x;ϕ1,ϕ2,α)

(ϕ2−ϕ1)α )

1 − [(1 − θ)(1 − V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α )]

.

The corresponding distribution function, probability mass function and hazard rate are respec-
tively given by

G(x, θ) =

V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α

1 − [(1 − θ)(1 − V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α )]

g(x, θ) =
θ

V(x+1;ϕ1,ϕ2,α)−V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α

(1 − [(1 − θ)(1 − V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α )])(1 − [(1 − θ)(1 − V(x−1;ϕ1,ϕ2,α)

(ϕ2−ϕ1)α )])

and

h(x) =

V(x+1;ϕ1,ϕ2,α)−V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α

(1 − [(1 − θ)(1 − V(x−1;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α )])(1 − V(x;ϕ1,ϕ2,α)

(ϕ2−ϕ1)α )
.
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The plot of probability mass function of MOEDHE distribution is given in Figure 7.

Figure 7: Plot of pmf of MOEDHE distribution.

The hazard plots are given in Figure 8.

Figure 8: Hazard plots of MOEDHE distribution.

Figure 8 shows different shapes of hazard rate functions and so we can conclude that the
MOEDHE distribution is a flexible model in modeling different types of data sets.

6. Summary

Recently, there has been thriving interest in developing new families of distributions by adding one
or more additional parameters to the baseline distributions. The existence of various generalization
techniques were attracted by many researchers and using one among them we proposed and
studied a new distribution called exponentiated discrete hypo exponential distribution. Various
distributional and structural properties of this distribution are studied. Also stress-strength
analysis is carried out. To evaluate the performance of the nlm estimator, we conducted a
simulation study and found that the nlm estimator is consistent. A real data application is
carried out and inferred that our proposed distribution is better model than discrete Lindley and
discrete Pareto distribution. Two generalizations of the proposed distribution namely transmuted
exponentiated discrete hypo exponential distribution and Marshall-Olkin exponentiated discrete
hypo exponential distribution are introduced.
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