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Abstract

This study investigates the time dependent behaviour of the single server queue with differentiated
working vacations. The model also takes into account the possibility of a disaster happening during
busy periods and working vacations, with the repair procedure starting right away. The time-dependent
probabilities of system size are described in terms of modified Bessel functions in the paper using explicit
equations that were generated using generating functions. Numeric instances have been added to support
the theoretical findings even more.
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1. Introduction

Many queueing systems allow servers to go offline when the system is empty for any period of
time. This random period of server absence, known as a server vacation, could indicate the server
can take a break or perform an additional task during this period. In 1975, Levy and Yechiali
first presented the vacation queuing model. Numerous researchers have worked on queues with
vacationing servers during the past few decades. Doshi [5], Takagi [19], Upadhyaya [23], Tian and
Zhang [20] and Ke et al. [9] have conducted comprehensive surveys on vacation queueing models,
considering various contexts. The queueing model can be applied to a variety of real-world
stochastic service systems since server vacations are especially advantageous for systems where
the server can use idle time for other activities. Recent research on vacation queueing models has
also been done by Sapkota [13] and Tian et al. [21]. The working vacation queue is the queue in
which the server serves customers at a rate that is lower than the busy time service rate. This kind
of technology has a wide range of practical applications, including the rate at which employees
perform their official work both in the office and at home. Servi and Finn [14] introduced the
M/M/1 queueing model with working vacations, where a customer isserved at a lower service
rate instead of stopping the service completely. M/M/1 queueing model with working vacation
and two types of server failure was discussed by Agrawal et al. [1]. Recently, Tian et al. (2021)
conducted an analysis of Markovian queues with Bernoulli interruptions and single working
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vacations. Recently, Kumar et al. [11] presented a transient analysis of working vacation queueing
system.

Differentiated vacations are one of the various types of queueing vacation types. In this case,
whenever the system becomes empty, the server initiates a type I vacation, which has a random
length. When a server returns from vacation and discovers there is no queue, a new type II
random vacation is started. When the server returns from either type I or type II vacations and
there are customers in the system, the server starts providing services to them right away and
continues doing so until there are no more users in it. The queueing model with differentiated
queueing vacations were initially proposed by Ibe and Isijola [6]. Since then, a number of scholars
have examined differentiated vacation queueing systems, including Suranga Sampath et al. [17],
Suranga Sampath and Jicheng [18], and Jain and Sigman [7]. Vijayashree and Janani [24] analyse
a single server differentiated working vacation queueing model’s transient behaviour. Recently, a
transient analysis of a single server differentiated queuing system is given by Azhagappan and
Deepa [3].

In computer systems, telecommunication networks, and other queueing systems, congestion
and blocking are frequently predicted using queuing theory and network analysis. Disasters
can happen as a result of unforeseen situations, and these systems are frequently prone to
unreliability. All jobs sitting in the buffer, including the one being processed by the server, are
lost when a calamity happens since the system is rendered inoperable. Towsley and Tripathi
[22] were the first to analyse queueing systems that were subject to disasters. This phenomenon
was examined by Chen et al. [4], who called it a "mass exodus". As part of their "stochastic
clearing" research, Artaljo and Gomez-Coral [2] examined queueing systems with catastrophes.
Single-server queueing systems with disasters have been the subject of transient analysis by
Kumar et al. [10], Sudhesh and Vairthiyanathan (2019), and Jain and Singh [8]. Recently, Sudhesh
et al. [15] gave the transient analysis of single server queue with disaster. We take into account an
M/M/1 queue with differentiated working vacations subject to system disaster and server repair.
In this sense, we have seen that the service rate is different, but arrival rate is same for all the
states.

The proposed queueing model is motivated real-time application with power-saving features
in a smart home automation system.The smart home automation system monitors various
sensors and devices within a home, controlling tasks such as lighting, temperature, security, and
appliances. It continuously processes sensor data and user commands to maintain an optimal and
comfortable environment. When no user commands are received and there are no sensor-triggered
events for a certain period, the system switches to an type I power save mode to conserve power.
In this state, non-essential components are turned off or put into low-power mode.After the type
I power save mode duration expires, the system periodically wakes up to check for any new user
commands or sensor-triggered events. If there are pending actions or events, it resumes normal
operation and executes the necessary tasks. If there are no pending commands or events, the
system enters a deeper power-saving state known as type II power saving mode. In this mode,
only essential components remain active to maintain basic system functionality and listen for
any incoming commands or events.The smart home automation system may be susceptible to
security attacks, such as unauthorized access, data breaches, or control manipulation. These
attacks can compromise the integrity and privacy of the system and disrupt its normal operation.
The repair process starts immediately.The power-saving features in this smart home automation
system help reduce energy consumption during periods of inactivity, contributing to energy
efficiency and cost savings. The security considerations highlight the importance of safeguarding
the system against potential attacks to protect the privacy, safety, and functionality of the smart
home environment.

2. Model description

In this research, a M/M/1 queuing model with differentiated working vacations and the
possibility of disastrous breakdown and repair is taken into account. These are the main
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presumptions that underlie this model:

1. Customer Arrivals: Customers arrive according to a Poisson process with a rate of λ.
Customers join a single waiting queue based on the sequence in which they arrive. The
capacity of the system is similarly predicated on an endless number of potential clients.

2. Service Process: A single server offers the service, and service times during a normal busy
period follow an exponential distribution with parameter µ.

3. Vacation Policy : The servers take a type I vacation after fully serving every customer in the
system. Once the servers have attended to at least a single customer, this vacation starts. If
the system is empty when the servers return after a vacation, a new random vacation of
type II is started. If there are still customers in the system when the server returns from
either a Type I or type II vacation, it begins serving them right away until the system is
completely empty once more.

4. The servers type I and type II vacation times follow exponential distributions, and their
vacation rates are indicated by the symbols θ and γ respectively.

5. Arriving customers are served at rates of µv1(µv2) during type-I (II) vacations.

6. Disastrous Breakdown and Repair: There is a chance that a disastrous breakdown will occur
when the servers are either away on working vacation or busy serving customers. The
breakdowns occurrence follows exponential distribution with a rate of α . When a server
fails, the repair procedure begins right away at a rate of β, enabling the servers to function
again as quickly as possible.

2.1. The Quasi-Birth-and-Death (QBD) process

At the time t the number of customers in the systems is consider as H(t) and let I(t) be the
servers state, where

I(t) =


0, the server is in busy
1, the server is in type-I vacation
2, the server is in type-II vacation
3, the server in disaster

Then X(t) = {H(t), I(t)}, is a Continuous time Markov chain with a state space denoted by Ω as
follows:
Ω = {{(i, j), i ≥ 0, j = 0, 1, 2, 3}.

3. Transient Analysis

Let Pn,j(t) be the time-dependent probability for the system to be in state j with n customers at
time t.

P
′
0,0(t) = −(λ + α)P0,0(t) + βP0,3(t) (1)

P
′
n,0(t) = −(λ + α + µ)Pn,0(t) + µPn+1,0(t) + γ1Pn,1(t) + γ2Pn,2(t) + βPn,3(t)

+ λPn−1,0 for n ≥ 1 (2)

P
′
0,1(t) = −(λ + α + γ1)P0,1(t) + µv1P1,1(t) + µP1,0(t) (3)

P
′
n,1(t) = −(λ + α + γ1 + µv1)Pn+1,1(t) + λPn−1,1(t) for n ≥ 1 (4)

P
′
0,2(t) = −(λ + α)P0,2(t) + γ1P0,1(t) + µv2P1,2(t) (5)

P
′
n,2(t) = −(λ + α + µv2 + γ2)Pn,2(t) + λPn−1,2(t) + µv2Pn+1,2(t) for n ≥ 1 (6)
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P
′
0,3(t) = −(λ + β)P0,3(t) + α

(
1 −

∞

∑
n=0

Pn,3(t)
)

(7)

P
′
n,3(t) = −(λ + β)Pn,3(t) + λPn−1,3(t) for n ≥ 1 (8)

We assume the initial condition as,
P0,1(0) = 1, P0,i(0) = 0 for i = 0, 2, 3,, Pn,i(0) = 0 for n ≥ 1, i = 0, 1, 2, 3,
Taking laplace on equations (1), (3), (5), (7), (8).

P̂0,0(s) =
β

(s + λ + α)
P̂0,3(s) (9)

P̂0,1(s) =
1

s + λ + α + γ1
+

µv1

s + λ + α + γ1
P̂1,1(s) +

µ

(s + λ + α + γ1)
P̂1,0(s) (10)

P̂0,2(s) =
γ1

s + λ + α
P̂0,1(s) +

µv2

(s + λ + α)
P̂1,2(s) (11)

P̂0,3(s) =
α

s(s + λ + β)
− α

(s + λ + β)

∞

∑
n=0

P̂n,3(s) (12)

P̂n,3(s) =
λ

(s + λ + β)
P̂n−1,3(s) (13)

The above equation (13) recursively yields

P̂n,3(s) =
λn

(s + λ + β)n P̂0,3(s) for n ≥ 1 (14)

Define

Q1(z, t) =
∞
∑

n=0
Pn,1(t)zn then

∂Q1(z, t)
∂t

=
∞
∑

n=0
P

′
n,1(t)z

n

Multiplying the equations (3) and (4) by the appropriate powers of z and summing over n ≥ 1 we
obtain,

∂Q1(z, t)
∂t

+

(
(λ + α + γ1 + µv1)−

(
µv1

z
+ λz

))
Q1(z, t) = µv1P0,1(t)−

µv1

z
P0,1(t)

+ µP1,0(t)

Upon integrating the above linear differential equation with respect to t, we get

Q1(z, t) =
∫ t

0

(
µv1P0,1(t) +

µv2

z
P0,1(t) + µP0,1(t)

)
(e−(λ+α+γ1+µv1)(t−y)

× e((µv1/z)+λz)(t−y))dy (15)

If ai = 2
√

λµvi and bi =
√

λ/µvi then e(µvi/z+λz)t =
∞
∑
−∞

(biz)n In(ait) for i = 1, 2 where In(ait) is a

bessel funtion of order n. Using that fact in equation (15) and comparing the terms coeffients of
zn for n = 1, 2, 3, ...

Pn,1(t) =
∫ t

0

((
µv1P0,1(t) + µP1,0(t)

)
bn

1 In(.)e−k1(t−y)
)

dy

+
∫ t

0

(
µv1P1,0(t)bn+1

1 In+1(.)e−k1(t−y)
)

dy (16)

Equating the coeffients of z−n for n = 1, 2, ... and applying I−n(.) = In(.) we get

0 =
∫ t

0

((
µv1P0,1(t) + µP1,0(t)

)
b−n

1 In(.)e−k1(t−y)
)

dy

+
∫ t

0

(
µv1P1,0(t)b−n+1

1 I−n+1(.)e−k1(t−y)
)

dy (17)
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where k1 = λ + α + γ1 + µv1 and In(.) = In(a(t − y))

Multiply equation (17) by b2n
1 and subtract from equation (16)

Pn,1(t) =
∫ t

0

(
µv1P0,1(t)bn+1

1
[
In−1(.)− In+1(.)

]
e−k1(t−y)

)
dy

Taking laplace transform on both sides

P̂n,1(s) = 2µv1
bn+1

1
a1

ˆψ(s)
n

P̂0,1(s) for n ≥ 0 (18)

In similar way using the equations (5), (6) we get

P̂n,2(s) = 2µv2
bn+1

2
a2

ˆψ(s)
n

P̂0,2(s) for n ≥ 0 (19)

Define

Q3(z, t) =
∞
∑

n=0
Pn,0(t)zn then

∂Q3(z, t)
∂t

=
∞
∑

n=0
P

′
n,0(t)z

n

Multiplying the equations (1) and (2) by the appropriate powers of z and summing over n ≥ 0 we
obtain,

∂Q3(z, t)
∂t

+

(
(λ + α + µ)−

(
µ

z
+ λz

))
Q3(z, t) = µP0,0(t)−

µ

z
P0,0(t) + µP1,0(t)

+ γ1

∞

∑
n=1

Pn,1(t)zn + γ2

∞

∑
n=1

Pn,2(t) + β
∞

∑
n=0

Pn,3(t)zn (20)

If a3 = 2
√

λµ and bi =
√

λ/µ then e(µ/z+λz)t =
∞
∑
−∞

(b3z)n In(a3t) where In(a3t) is a bessel

funtion of order n. Using that fact in equation (20) and comparing the terms coeffients of zn for
n = 1, 2, 3, ...

Pn,0(t) =
∫ t

0

((
µP0,1(t)− µP1,0(t)

)
bn

3 In(.)e−k3(t−y)
)

dy −
∫ t

0

(
µP0,0(t)bn+1

3 In+1(.)

× e−k3(t−y)
)

dy +
∫ t

0

(
γ1

∞

∑
m=1

(
γ1Pm,1(t)zm + γ2Pn,2(t)zm

+ βPm,3(s)
)
bn−m

3 In−m(.)e−k3(t−y)
)

dy (21)

Equating the coeffients of z−n for n = 1, 2, ... and applying

0 =
∫ t

0

((
µP0,1(t)− µP1,0(t)

)
b−n

3 In(.)e−k3(t−y)
)

dy −
∫ t

0

(
µP0,0(t)b−n+1

3 I−n+1(.)

× e−k3(t−y)
)

dy +
∫ t

0

(
γ1

∞

∑
m=1

(
γ1Pm,1(t)zm + γ2Pn,2(t)zm

+ βPm,3(s)
)
b−(n+m)

3 In+m(.)e−k3(t−y)
)

dy (22)

Multiply equation (22) by b2n
1 and subtract from equation (21)

Pn,0(t) =
∫ t

0

(
µP0,0(t)bn+1

3
[
In−1(.)− In+1(.)

]
e−k3(t−y)

)
dy +

∫ t

0

(
γ1

∞

∑
m=1

(
γ1Pm,1(t)zm

+ γ2Pn,2(t)zm + βPm,3(s)
)
bn−m

3
[
In−m(.)− In+m(.)

]
e−k3(t−y)

)
dy
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Taking laplace transform on both sides

P̂n,0(s) =
1√

ω2
3 − a2

3

[ ∞

∑
m=1

(
γ1P̂m,1(s) + γ2P̂m,2(s)

)
+

∞

∑
m=0

βP̂m,3(s)
]

+ 2µ
bn+1

3
a3

ˆψ(s)
n

P̂0,0(s) for n ≥ 0 (23)

substitute n = 1 in (18) and (19)

P̂1,1(s) = 2µv1b2
1

ˆψ(s)
s

a1
P̂0,1(s) (24)

P̂1,2(s) = 2µv2b2
2

ˆψ(s)
s

a2
P̂0,2(s) (25)

Substitute (24) and (25) in P̂0,1(s)

P̂0,1(s) =
1

(s + λ + α + γ1)

[
1 + 2µ2

v1b2
1

ˆψ(s)
a2

P̂0,1(s) + µP̂1,0(s)
]

P̂0,1(s) =
[ ∞

∑
j=0

(
2µ2

v1b2
1

ˆψ(s)
(s + λ + α + γ1)a1

)j] 1
(s + λ + α + γ1)

+

[ ∞

∑
j=0

(
2µ2

v1b2
1

ˆψ(s)
(s + λ + α + γ1)a1

)j]
µ

(s + λ + α + γ1)
P̂1,0(s)

P̂0,1(s) = Â1(s) + Â1(s)µP̂1,0(s) (26)

Substitue (25) and (26) in P̂0,2(s)

P̂0,2(s) =
γ1

(s + λ + α)
Â1(s) +

γ2

(s + λ + α)
Â2(s)P̂1,0(s) +

2µ2
v2b2

2
(s + λ + α)a2

ψ̂(s)P̂0,2(s)

P̂0,2(t) =
[ ∞

∑
j=0

2µ2
v2b2

2
(s + λ + α)a2

ψ̂(s)
]j

γ1

(s + λ + α)
Â1(s)

+

[ ∞

∑
j=0

2µ2
v2b2

2
(s + λ + α)a2

ψ̂(s)
]j

γ2

(s + λ + α)
Â2(s)P̂1,0(s)

P̂0,2(s) = γ1 Â2(s) + γ2 Â2(s)P̂1,0(s) (27)

Substitue (26) and (27) in (18) and (19)

P̂n,1(s) = 2µv1bn+1
1

ψ̂(s)n

a1

(
Â1(s) + µÂ1(s)P̂1,0(s)

)
(28)

P̂n,2(s) = 2µv2bn+1
2

ψ̂(s)n

a2

(
γ1 Â2(s) + γ2 Â2(s)P̂1,0(s)

)
(29)

Substitute (14), (28), (29) in (23)

P̂n,0(s) =
1√

ω2
3 − a2

3

[ ∞

∑
m=1

(
2γ1µv1bm+1

1
ψ̂(s)

a1

(
Â1(s) + µÂ1(s)P̂1,0(s)

)
+ 2γ2µv2bm+1

2
ψ̂(s)

a2

(
γ1 Â2(s) + γ2 Â2(s)P̂1,0(s)

))
+

∞

∑
m=0

βλm

(s + λ + β)m P̂0,3(s)

]

×X̂3(s) + 2
µbn+1

3
a3

ψ̂(s)n β

(s + λ + α)
P̂0,3(s) (30)
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Substitute n = 1 in the above equation

P̂1,0(s) =
1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
Â1(s) + 2γ2µv2bm+1

2
ψ̂m(s)

a2
γ1 Â2(s)

]
X̂3(s)

+
1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
Â2(s) + 2γ2µv2bm+1

2
ψ̂m(s)

a2
γ2 Â2(s)

]

× X̂3(s)P̂1,0(s) +
∞

∑
m=0

βλm

(s + λ + β)m P̂0,3(s)

]
X̂3(s)

+ 2
µb2

3
a3

ψ̂(s)
β

(s + λ + α)
P̂0,3(s)

P̂1,0(s) =
[ ∞

∑
j=0

(
1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
µÂ1(s) + 2γ2µv2bm+1

2
ψ̂m(s)

a2
γ2

× Â2(s)
]

X̂3(s)
)j][ 1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
Â1(s) + 2γ2µv2bm+1

2

× ψ̂m(s)
a2

γ1 Â2(s)
]

X̂3(s) +
( ∞

∑
m=0

βλm

(s + λ + β)m X̂3(s) + 2
µb2

3
a3

ψ̂(s)

× β

(s + λ + α)

)
P̂0,3(s)

]
P̂1,0(s) = Â3(s)P̂0,3(s) + Â4(s) (31)

where,

A1(s) =
[ ∞

∑
j=0

(
2µ2

v1b2
1

ˆψ(s)
(s + λ + α + γ1)a1

)j] 1
(s + λ + α + γ1)

A2(s) =
[ ∞

∑
j=0

2µ2
v2b2

2
(s + λ + α)a2

ψ̂(s)
]j 1
(s + λ + α)

A3(s) =
[ ∞

∑
j=0

(
1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
µÂ1(s) + 2γ2µv2bm+1

2

× ψ̂m(s)
a2

γ2 Â2(s)
]

X̂3(s)
)j][ 1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
Â1(s)

+ 2γ2µv2bm+1
2

ψ̂m(s)
a2

γ1 Â2(s)
]

X̂3(s)

A4(s) =
[ ∞

∑
j=0

(
1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
µÂ1(s) + 2γ2µv2bm+1

2
ψ̂m(s)

a2
γ2

× Â2(s)
]

X̂3(s)
)j]( ∞

∑
m=0

βλm

(s + λ + β)m X̂3(s) + 2
µb2

3
a3

ψ̂(s)
β

(s + λ + α)

)
X̂3(s) = bn−m

3
[
In−m(.)− In+m(.)

]
e−k3(t−y)
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Substitute (31) in (30)

P̂n,0(s) =
[

1√
ω2

3 − a2
3

[ ∞

∑
m=1

(
2γ1µv1bm+1

1
ψ̂(s)m

a1

)
µÂ1(s)Â3(s)

+

(
2γ2µv2bm+1

2
ψ̂(s)m

a2

)
γ2 Â2(s)Â3(s)

]
X̂3(s)

+
∞

∑
m=0

βλm

(s + λ + β)m + 2µ
bn+1

3
a3

ψ̂n(t)
β

(s + λ + α)

]
P̂0,3(s)

+

[
1√

ω2
3 − a2

3

∞

∑
m=1

(
2γ1µv1bm+1

1
ψ̂(s)m

a1

(
Â1(s) + µÂ1(s)Â4(s)

)
+ 2γ2µv2bm+1

2
ψ̂(s)m

a2

(
γ1 Â2(s) + γ2 Â2 Â4(s)

))]
X̂3(s) (32)

Substitute (31) in (28) and (29)

P̂n,1(s) = 2µv1bn+1
1

ψ̂(s)
a1

[
Â1(s) + µÂ1(s)Â4(s) + µÂ1(s)Â3(s)P̂0,3(s)

]
(33)

P̂n,2(s) = 2µv2bn+1
2

ψ̂(s)
a2

[
γ1 Â2(s) + γ2 Â2(s)Â4(s) + γ2 Â2(s)Â6(s)P̂0,3(s)

]
(34)

Inverting (14), (32)-(34)

Pn,5(t) =
λntn−1

(n − 1)!
e−(λ+β)t ∗ P0,3(t) for n ≥ 1 (35)

Pn,0(t) =
[

I0(t)
( ∞

∑
m=1

2γ1µv1
bm+1

1
a1

ψ(t)m ∗ µA1(t) ∗ A3(t) + 2γ2µv2
bm+1

2
a2

ψ(t)m

∗ γ2 A2(t) ∗ A3(t)
)
∗ X3(t) +

∞

∑
m=0

λmtm−1

(m − 1)!
e−(λ+β)t + 2µ

bn+1
3
a3

ψ(t) ∗ βe−(λ+β)t
]

∗ P0,3(t) +
[

I0(t)
( ∞

∑
m=1

2γ1µv1
bm+1

1
a1

ψ(t)m ∗
(
µA1(t) + µA1(t) ∗ A4(t)

)
+ 2γ2µv2

bm+1
2
a2

ψ(t)m ∗
(
γ1 A2 + γ2 A2(t) ∗ A4(t)

))
∗ X3(t)

]
for n ≥ 0 (36)

Pn,1(t) = 2µv1
bn+1

1
a1

ψ(t)
[
A1(t) + µA1(t) ∗ A4(t) + µA1(t) ∗ A3(t)P0,3(t)

]
for n ≥ 0 (37)

Pn,2(t) = 2µv2
bn+1

2
a2

ψ(t)
[
γ1 A2(t) + γ2 A2(t) ∗ A4(t) + γ2 A2(t) ∗ A4(t)P0,3(t)

]
for n ≥ 0 (38)

Here all the probabilities are purely expressed in terms of P0,3(t). Using (12) we can find P0,3(t)
in the following manner

P̂0,3(s) =
[ ∞

∑
j=0

−
(

α

(s + λ + α + β)

∞

∑
n=1

λn

(s + λ + β)n

)j][
α

s(s + λ + α + β)

]
(39)
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Inverting the above

P0,3(t) =
[ ∞

∑
j=0

αe−(λ+α+β)t ∗
∞

∑
n=1

λntn−1e−(λ+β)t

(n − 1)!

]
∗
[

δ(t) ∗ αe−(λ+α+β)t
]

(40)

4. Numerical Analysis

In this section, graphs show the system’s transient probabilities in various states, including busy
state, type-I and type-II vacation states, as well as disaster state. Additionally, the system’s mean
is recorded over time. The following parameter values were used to generate the graphs: λ = 2,
µ = 3, µv1 = 0.8, µv2 = 0.7, α = 0.6 and β = 0.5. Figure 2 dipicts the behaviour of the transient
probability of busy period against time t for different values of n. The probability curves start at 0
and converge to a steady state over time, as shown by this graph. Figure 3 displays the behaviour
of transient probabilities during the type-I vacation period, demonstrating that all probability
curves begin at 0 and progressively rise to a certain extent as t rises before stabilising.

Figure 4 exhibits the graph of type-II vacation period transient probability over time t. The
probability curves in that graph start at 0 and move towards a steady state over time. Furthermore,
it is clear that a type-I vacation has a higher probability of having more customers than a type-II
vacation does at any given time instance t. This discrepancy results from the servers in type-II
vacation mode quickly switching to busy mode after the vacation is over, whereas type-I vacation
takes a longer period of time. As a result, during type-II vacation, customers do not need to wait
for additional processing time.

The behaviour of Pn,3(t) appears in Figure 5, where all probability curves initially start at
0 and gradually grow to some extent as t increases, finally reaching a steady state. The mean
behaviour for various disaster and repair rate values is shown in Figures 6 and 7. According to
these data, an increase in repair rate results in an increase in the mean size. Similar to this, a rise
in the disaster rate causes a fall in the mean size.
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5. Conclusion and Future work

In this study, a single server queueing system with multiple differentiated vacation, disaster,
and repair periods was investigated. The modified Bessel function of the first kind was used
to derive the time-dependent probability of the system size. The proposed model’s numerical
results indicate that the time-dependent probabilities eventually reach their respective steady-state
probabilities.

By taking into account multi-server differentiated vacation queueing systems with disaster and
repair, future research can build on this study. Analysing such systems would provide us with a
more complete understanding of their performance and behaviour. It would also be advantageous
to investigate stochastic decomposition for this model since it can provide insightful information
about the dynamics of the system and aid in improving performance. These avenues of inquiry
will advance queueing theory as a whole and improve our comprehension of intricate queueing
systems in real-world situations.
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