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Abstract

Considered is a three-station tandem queue with service times at stations 1, 2, and 3 are exponentially
distributed with customers arriving according to the Poisson process at station 1. Given that the station-
ary distribution is the product of three independent geometric distributions with the intensity parameters,
maximum likelihood estimators and Bayes estimators of the intensity parameters based on the number of
customers present at different time periods are obtained. Furthermore, the minimal posterior risk and
minimum Bayes risk of the estimators are computed. Also, a simulation study is conducted to evaluate
the performance of the estimators obtained.
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1. Introduction

Most works on queuing models are restricted to deriving the formulations for transient or
stationary (steady state) solutions and do not take into account the related statistical inference
issues. Some of the crucial tools to understanding any random phenomenon using stochastic
models are classical inference and Bayesian inference. The past has not paid much attention to
the analysis of queuing systems in all these directions. Standard parametric models are highly
suitable whenever the systems are completely observable in terms of their fundamental random
components, such as inter-arrival times and service times.
Estimation of the parameters associated with the queueing models are integral part of queuing
theory. Frequently, previous experiments or analyses of the inter-arrival time or service time
data have revealed some information about the parameters of the distributions of inter-arrival
time or service time. The Bayesian approach offers the framework for formally integrating prior
knowledge with the facts currently available.
Here are some of the queueing system research that have been done in the past where the estimate
of queueing parameters was done using both classical and Bayesian methods. Inter-arrival and
service times were used as the observed data in an empirical Bayesian framework by [9] to
estimate the parameters for various queueing systems. Based on the number of customers present
at various sampling time points, [5] computed an maximum likelihood estimator (MLE) and
Bayes estimator of traffic intensity in an M/M/1 queueing model. Regarding tandem queues with
dependent service time structures, [2] studied statistical inferential aspects. Using the classical
inference method, they modelled tandem queues and estimated the parameters. The statistical
analysis of a tandem queue with blocking was then undertaken by [3] and focused on a two
station tandem queue. Again, [1] investigated the Bayesian inference for a two station tandem
queue, calculated the traffic intensities for the two stations, and determined the confidence
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interval of the estimators. In the M/M/1 queue with bivariate priors, Bayes estimation has been
studied by [6]. Then [4] performed a simulation research applying the Markov Chain Monte
Carlo (MCMC) approach including the Metropolis-Hastings (M-H) algorithm and explored the
Bayesian inference of the Markovian queuing model with two heterogeneous servers.
This paper attempts a detailed study of a three station tandem queue with customers arriving
according to the Poisson process, with rate λ for service at station 1 and service times at station
1, station 2, and station 3 being exponentially distributed with service rates µ1, µ2 and µ3
respectively. The maximum likelihood and Bayes estimators of the intensity parameters ρ1, ρ2 and
ρ3 are computed using the number of customers present at various sampled time points under
the assumption that the stationary distribution is the product of three independent geometric
distributions with parameters ρ1, ρ2 and ρ3 accordingly. Additionally, the minimal Bayes risk of
the estimators and the minimum posterior risk related to Bayes estimators are derived.
This paper is structured as follows: Section 1 discussed an introduction to tandem queues as well
as some early research in this area. Section 2 explored the model, the system description, and the
inferential aspects of the model. Section 3 looked at the estimated number of customers in the
system and its implications. Section 4 examined the model using simulation. Finally, Section 5
contains the paper’s conclusions.

2. System description and steady state probability

Consider a simplified one channel queuing system consisting of three service stations as in the
figure 1. A customer that arrives for servicing must pass through station 1, station 2 and station 3

Figure 1: System configuration

before finishing the service. The model’s underlying assumptions are as follows:

1. Arrivals occur according to the Poisson distribution with mean rate λ at station 1.

2. Service times at station 1, station 2 and station 3 are exponentially distributed with service
rates µ1, µ2 and µ3 respectively.

3. A queue of infinite size is allowed in front of station 1 and station 2 but at most one customer
is permitted to wait between station 2 and station 3.

4. Each station is either free or busy.

5. If a customer in station i, i = 1, 2 completes their service before station (i + 1), i = 1, 2
becomes free, then it is said that station i, i = 1, 2 is blocked.

Let pn1,n2,n3(t) be the probability that there are n1 customers in station 1, n2 customers in station
2 and n3 customers in station 3 at time t (in queue or in system). In the steady state it can be
shown that,

pn1,n2,n3(t) = ρn1
1 (1 − ρ1)ρ

n2
2 (1 − ρ2)ρ

n3
3 (1 − ρ3), n1, n2 = 0, 1, 2, 3, ... & n3 = 0, 1,

where, ρi =
λ
µi

, i = 1, 2, & 3 and steady state results exist provided ρi < 1.
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2.1. Classical Inference

The likelihood function of the number of customers present at n different time points t1, t2, t3, ..., tn
is given by

l((ρ1, ρ2, ρ3)|((x1, y1, z1), ..., (xn, yn, zn))) = ρ
∑n

i=1 xi
1 (1 − ρ1)

nρ
∑n

i=1 yi
2 (1 − ρ2)

nρ
∑n

i=1 zi
3 (1 − ρ3)

n. (1)

Taking logarithms and differentiating the log-likelihood function of (1) with respect to ρ1, ρ2 and
ρ3 and equating to zero, we get the MLEs of ρ1, ρ2, ρ3 and are given by

ρ̂1 =
∑n

i=1 xi

n + ∑n
i=1 xi

, ρ̂2 =
∑n

i=1 yi

n + ∑n
i=1 yi

and ρ̂3 =
∑n

i=1 zi

n + ∑n
i=1 zi

.

In other words,

ρ̂1 =
T1

n + T1
, ρ̂2 =

T2

n + T2
and ρ̂3 =

T3

n + T3
,

where,

T1 =
n

∑
i=1

xi ∼ NB(n, 1 − ρ1), T2 =
n

∑
i=1

yi ∼ NB(n, 1 − ρ2) and T3 =
n

∑
i=1

zi ∼ NB(n, 1 − ρ3)

and T1, T2 and T3 are independent (see, [8]). Clearly, the probability mass functions (pmfs) of T1,
T2 and T3 are given by

P[T1 = t1] =

(
t1 + n − 1

n − 1

)
(1 − ρ1)

nρt1
1 ,

P[T2 = t2] =

(
t2 + n − 1

n − 1

)
(1 − ρ2)

nρt2
2 and

P[T3 = t3] =

(
t3 + n − 1

n − 1

)
(1 − ρ3)

nρt3
3 ,

where, t1 = 0, 1, 2, .., t2 = 0, 1, 2, .. and t3 = 0, 1, 2, ... It can be shown that

E(T1) =
n2ρ1

1 − ρ1
, E(T2) =

n2ρ2

1 − ρ2
and E(T3) =

n2ρ3

1 − ρ3
.

Also

Var(T1) =
n2ρ1

(1 − ρ1)2 , Var(T2) =
n2ρ2

(1 − ρ2)2 and Var(T3) =
n2ρ3

(1 − ρ3)2 .

Since ρ̂1, ρ̂2 and ρ̂3 are one to one functions of T1,T2 and T3 respectively, it is clear that ρ̂1, ρ̂2 and
ρ̂3 assume the values t1

n+t1
, t2

n+t2
and t3

n+t3
respectively with t1,t2,t3 = 0, 1, 2, 3, · · · Further, the joint

pmf of ρ̂1, ρ̂2 and ρ̂3 is given by

P[ρ̂1 = u, ρ̂2 = v, ρ̂3 = w] = P
[

t1

n + t1
= u,

t2

n + t2
= v,

t3

n + t3
= w

]
= P

[
t1 =

nu
1 − u

]
P
[

t2 =
nv

1 − v

]
P
[

t3 =
nw

1 − w

]
=

( nu
1−u + n − 1

n − 1

)
(1 − ρ1)

nρ
nu

1−u
1

( nv
1−v + n − 1

n − 1

)
(1 − ρ2)

nρ
nv

1−v
2

×
( nw

1−w + n − 1
n − 1

)
(1 − ρ3)

nρ
nw

1−w
3 .

In the next section, Bayes estimators of ρ1, ρ2 and ρ3 and their Bayes risks are found.
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2.2. Bayesian Inference

The number of customers present at various sampled time points is used to determine the Bayes
estimators of ρ1, ρ2 and ρ3 as well as their Bayes risks. The natural conjugate prior density for
(ρ1, ρ2, ρ3) is taken to be the product of three independent Beta distributions of first kind with the
parameters (m1, n1), (m2, n2) and (m3, n3), respectively. As a result, we suppose that (ρ1, ρ2, ρ3)
has a prior distribution that is the product of three separate Beta distributions of the first kind,
each with the parameters (m1, n1), (m2, n2) and (m3, n3). That is,

τ(ρ|(m1, n1), (m2, n2), (m3, n3)) =
1

β(m1, n1)β(m2, n2)β(m3, n3)
ρm1−1

1 (1 − ρ1)
n1−1ρm2−1

2

× (1 − ρ2)
n2−1ρm3−1

3 (1 − ρ3)
n3−1,

where 0 < ρ1, ρ2, ρ3 < 1, ρ = (ρ1, ρ2, ρ3), m′ = (m1, n1), n′ = (m2, n2) and p′ = (m3, n3).
The marginal probability density function (pdf) of T = (T1, T2, T3) = (∑n

i=1 xi, ∑n
i=1 yi, ∑n

i=1 zi),
which is called the predictive pdf and is given by

f ∗(t) =
∫ 1

0

∫ 1

0

∫ 1

0
f (t1, t2, t3; ρ1, ρ2, ρ3).τ(ρ|(m′, n′, p′))dρ1.dρ2.dρ3

=
∫ 1

0

∫ 1

0

∫ 1

0
P[T1 = t1].P[T2 = t2].P[T3 = t3]τ(ρ|(m′, n′, p′))dρ1.dρ2.dρ3

=
β(t1 + m1, n + n1).β(t2 + m2, n + n2).β(t3 + m3, n + n3)

β(m1, n1).β(m2, n2).β(m3, n3)
Π3

i=1

(
ti + n − 1

n − 1

)
.

Hence the posterior distribution of ρ = (ρ1, ρ2, ρ3) is given by

q(ρ|(x, y, z)) =
f (t1, t2, t3; ρ)τ(ρ|(m′, n′, p′))∫ 1

0 f (t1, t2, t3; ρ)τ(ρ|(m′, n′, p′))dρ

=
1

β(t1 + m1, n + n1)
ρ
(t1+m1)−1
1 (1 − ρ1)

(n+n1)−1

× 1
β(t2 + m2, n + n2)

ρ
(t2+m2)−1
2 (1 − ρ2)

(n+n2)−1

× 1
β(t3 + m3, n + n3)

ρ
(t3+m3)−1
3 (1 − ρ3)

(n+n3)−1, 0 < ρ1, ρ2, ρ3 < 1.

It should be pointed out that the posterior distribution of ρ = (ρ1, ρ2, ρ3) is the result of the
pdfs of three independent Beta distributions of first-kind with the parameters (t1 + m1, n + n1),
(t2 + m2, n + n2) and (t3 + m3, n + n3), respectively. Therefore, under the squared error loss, the
Bayes estimator of ρ = (ρ1, ρ2, ρ3) is given by

E[ρ|(x, y, z)] =
∫ 1

0

∫ 1

0

∫ 1

0
ρ1.ρ2.ρ3.q(ρ|(x, y, z))dρ

=
t1 + m1

t1 + m1 + n + n1

t2 + m2

t2 + m2 + n + n2

t3 + m3

t3 + m3 + n + n3
.

Furthermore, the minimum posterior risk related to this Bayes estimator is provided by

Vp[ρ̂
B|(x, y, z)] = diag(E[ρ̂1 − ρ1]

2, E[ρ̂2 − ρ2]
2, E[ρ̂3 − ρ3]

2),

where

E[ρ̂1 − ρ1]
2 =

∫ 1

0

∫ 1

0

∫ 1

0
[ρ̂1 − ρ1]

2q(ρ|(x, y, z))dρ1dρ2dρ3

=
[n1(n1 + 1) + n]t2

1 + n(n − 2m1n1)t1 + [m1(m1 + 1)n2]

(n + t1)2(t1 + m1 + n + n1)(t1 + m1 + n + n1 + 1)
,
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E[ρ̂2 − ρ2]
2 =

[n2(n2 + 1) + n]t2
2 + n(n − 2m2n2)t2 + [m2(m2 + 1)n2]

(n + t2)2(t2 + m2 + n + n2)(t2 + m2 + n + n2 + 1)
and

E[ρ̂3 − ρ3]
2 =

[n3(n3 + 1) + n]t2
3 + n(n − 2m3n3)t3 + [m3(m3 + 1)n2]

(n + t3)2(t3 + m3 + n + n3)(t3 + m3 + n + n3 + 1)
.

Therefore, E[Vp(ρ̂B|(x, y, z))] gives a minimum Bayes risk of ρ̂B = (ρ̂1
B, ρ̂2

B, ρ̂3
B) with respect to the

marginal distribution h(x, y, z) of (x, y, z), where (x, y, z) = (x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn) is
derived as follows:
The marginal distribution h(x, y, z) of (x, y, z) is given by

h(x, y, z) =
∫ 1

0

∫ 1

0

∫ 1

0
L(ρ|(x, y, z)).τ(ρ|(m′, n′, p′))dρ1.dρ2.dρ3

=
β(m1 + t1, n + n1)β(m2 + t2, n + n2)β(m3 + t3, n + n3)

β(m1, n1)β(m2, n2)β(m3, n3)

resulting in the minimum Bayes risk factor

rτ,ρ̂B = E[Vp(ρ̂
B|(x, y, z))] = E[diag(E[ρ̂1 − ρ1]

2, E[ρ̂2 − ρ2]
2, E[ρ̂3 − ρ3]

2)].

3. Expected number of customers in the system

The expected number of customers in the system is defined by

Ls =
∞

∑
n1=0

∞

∑
n2=0

1

∑
n3=0

(n1 + n2 + n3)pn1,n2,n3(t)

=
∞

∑
n1=0

∞

∑
n2=0

1

∑
n3=0

(n1 + n2 + n3)ρ
n1
1 (1 − ρ1)ρ

n2
2 (1 − ρ2)ρ

n3
3 (1 − ρ3)

= (1 − ρ1)(1 − ρ2)(1 − ρ3)
∞

∑
n1=0

∞

∑
n2=0

1

∑
n3=0

(n1 + n2 + n3)ρ
n1
1 ρn2

2 ρn3
3

=
ρ1

1 − ρ1
+

ρ2

1 − ρ2
+

ρ3

1 − ρ3
.

Therefore,

Ls = λ

[
1

(µ1 − λ)
+

1
(µ2 − λ)

+
1

(µ3 − λ)

]
. (2)

In the next section, we obtain a 100(1 − α)% asymptotic confidence interval for the expected
number of customers in the system.

3.1. Maximum Likelihood Estimator for the expected number of customers in
the system

Given an exponential inter-arrival time population with the parameter λ, let X1, X2, ..., Xn be
a random sample of size n. Let Yi1, Yi2, ..., Yin represent a random sample of size n taken from
a population of service times with an exponential distribution and parameter µi, i = 1, 2, 3.
Therefore, it is clear that

E[X̄] =
1
λ

, E[Ȳi] =
1
µi

, i = 1, 2, 3.

Here X̄ and Ȳi, i = 1, 2, 3, respectively represents sample means for inter-arrival times and service
times. It can be shown that X̄ and Ȳi, i = 1, 2, 3 are, respectively, the MLEs of 1

λ and 1
µi

, i = 1, 2, 3.
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Let θ1 = 1
µ1

, θ2 = 1
µ2

, θ3 = 1
µ3

and θ4 = 1
λ . Then the the expected number of customers in the system

given in (2) reduces to

Ls =
θ1

(θ4 − θ1)
+

θ2

(θ4 − θ2)
+

θ3

(θ4 − θ3)
.

Therefore, using the invariance property of the MLE, the MLE of Ls is given by

L̂s =
Ȳ1

X̄ − Ȳ1
+

Ȳ2

X̄ − Ȳ2
+

Ȳ3

X̄ − Ȳ3
.

It should be noticed that L̂s is a real valued function that is also differentiable in Ȳ1, Ȳ2, Ȳ3 and X̄.

3.2. CAN estimator for expected number of customers

By applying the multivariate central limit theorem, we have

√
n [(Ȳ1, Ȳ2, Ȳ3, X̄)− (θ1, θ2, θ3, θ4)]

d−→ N(0, Σ) as n −→ ∞.

The dispersion matrix Σ = ((σij)) is given by Σ = diag(θ2
1 , θ2

2 , θ2
3 , θ2

4). Again from [7], we have

√
n(L̂s − Ls)

d−→ N(0, σ2(θ)) as n −→ ∞,

where θ = (θ1, θ2, θ3, θ4) and

σ2(θ) =
3

∑
i=1

(
∂Ls

∂θi

)2
σii = θ2

4

(
θ2

1
(θ4 − θ1)4 +

θ2
2

(θ4 − θ2)4 +
θ2

3
(θ4 − θ3)4

)
. (3)

Hence it is concluded that, L̂s is a CAN estimator of Ls.

3.3. Confidence interval for expected number of customers

Let σ2(θ̂) be the estimator of σ2(θ) obtained by replacing θ by a consistent estimator θ̂, namely
θ̂ = (Ȳ1, Ȳ2, Ȳ3, X̄). Let σ̂2 = σ2(θ̂). Since σ2(θ) is a continuous function of θ, σ̂2 is a consistent
estimator of σ2(θ) (see, [8]), we have

σ̂2 p−→ σ2(θ) as n −→ ∞.

By Slutsky’s theorem (see, [8]) (Xn
d−→ x, Yn

p−→ b =⇒ Xn
Yn

d−→ x
b , b ̸=0), we have

√
n
(

L̂s − Ls

σ̂

)
d−→ N(0, 1) as n −→ ∞.

That is,

Pr
[
−k α

2
<

√
n
(

L̂s − Ls

σ̂

)
< k α

2

]
= (1 − α),

where k α
2

is obtained from the standard normal table. Hence, 100(1 − α)% asymptotic confi-

dence interval for Ls is given by
(

L̂s ± k α
2

σ̂√
n

)
, where σ̂ is obtained from the equation given in

equation(3) by replacing θ1, θ2 and θ3 by the corresponding MLEs Ȳ1, Ȳ2, Ȳ3 and X̄ respectively.
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4. Computational considerations

The Bayes estimator of model parameters of three-station tandem queue with one customer being
allowed to wait in the last station using an MCMC (see, [10]) simulation method as is as follows:
1. Defining the likelihood function: The likelihood function is a probability distribution that
describes the probability of observing the data given the model parameters. In a queuing model
it would be the probability of observing the number of customers in each station, the waiting
time, and the service time given the model parameters (such as arrival rate, service rate and
observation time).
2. Defining the prior distribution: The prior distribution is a probability distribution that describes
the probability distribution of the model parameters before observing the data. In a queuing
model it would be the probability of the arrival rate, service rate and observation time.
3. Defining the posterior distribution: The posterior distribution is the probability distribution of
the model parameters given the data. It is calculated by multiplying the likelihood function and
the prior distribution.
4. Specify the starting values for the MCMC chain: Choose some initial values for the model
parameters that we want to estimate.
5. Run the MCMC simulation: Use an MCMC algorithm such as the M-H algorithm to generate a
large number of samples from the posterior distribution.
6. Extract the samples from the MCMC chain: Retrieve the samples generated by the MCMC
algorithm for each model parameters.
7. Calculate the posterior mean and standard deviation: Compute the mean and standard
deviation of the samples for each model parameter. These will be the Bayes estimates of the
model parameters.
8. Validate the estimates: Compare the Bayes estimates with the true values of the model parame-
ters (if they are known) or with the estimates obtained using other methods, such as maximum
likelihood estimation or method of moments.
9. Assess the convergence of the chain: Check if the chain has converged or not using methods
such as trace plots, Gelman-Rubin diagnostic, or effective sample size.

4.1. Simulation

The initial values given for simulation are :
ρ1 = 0.3, ρ2 = 0.4, ρ3 = 0.7, m1 = 5, m2 = 6, m3 = 7, n1 = 10, n2 = 9, n3 = 8.

Table 1: Table 1: Table of MSE and Bias for different sample sizes.

Sample Size Estimates MSE Bias

500 0.2677 0.08643 0.17954
0.3575 0.00374 0.07256
0.6794 0.05953 0.09211

1000 0.2730 0.00789 0.00623
0.3823 0.00043 0.00058
0.6847 0.00312 0.00085

2000 0.2877 0.000036 0.00032
0.3956 0.000023 0.000082
0.7148 0.000016 0.00028

5000 0.3062 0.000006 0.000022
0.4341 0.000004 0.000039
0.7232 0.000003 0.000009
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From the table 1 it is clear that when sample size increases, the Mean Square Error (MSE) and
Bias are decreasing and tending to zero, indicating that the validity of the estimators obtained.

4.2. Histograms for simulation range

The histogram of the simulation range for the traffic intensities ρ1, ρ2 and ρ3 is plotted. The Y
axis measures the frequency and the X axis shows the range of values that the corresponding
traffic intensity takes with respect to the initial value. From the figure 2, figure 3 and figure 4, it
is clear that the simulation results have taken a normal curve shape.

Figure 2: Histogram 1

Figure 3: Histogram 2

Figure 4: Histogram 3
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5. Conclusions

In this study, we used the MLE and Bayesian techniques to estimate the traffic intensity for a
three-station tandem queue where only one customer was permitted to wait between the last
two stations. The Bayes estimators of ρ1, ρ2 and ρ3 were obtained using the beta prior, and the
minimal Bayes risk was calculated. We also estimated the expected customers for the system.
Then, using Slutsky’s theorem, the confidence interval for the expected number of customers
was determined. A three-station tandem queue was simulated using MCMC to obtain a Bayes
estimators, and the performance of the estimators are verified through a broad simulation study.
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