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Abstract 

Regression methods are used for the estimation and prediction in various fields of statistical study. It is a statistical 
method commonly used for determining the degree of relationship between a response and a number of explanatory 
variables. These explanatory variables may correlate each other and lead to multicollinearity. More than two predictor 
variables with high correlation show the existence of multicollinearity which results in the estimator having a high 
variance. Ordinary Least Square estimation fails to give a better regression estimator, when the model's presumptions 
are not met. This paper explores the various methods which can tolerate the problems of multicollinearity and outliers. 
This study compares different types of regression estimators such as Ordinary Least Square, Robust, Ridge, and Liu by 
computing various error values such as Mean Absolute Error, Root Mean Square Error, Mean Absolute Percentage 
Error and R2 under real environment that has both multicollinearity and outliers. To compare the fit of the 
aforementioned regression models, the Akaike Information Criterion was also calculated. According to the error measures 
and AIC this study concludes that the Liu regression estimator performs well when compared with the other estimation 
methods.  
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I. Introduction

OLS estimator is the commonly used method to predict the parameters of a regression model when 
all the assumptions of the model are satisfied. The problems that would be affected the results of 
this method are multicollinearity and outliers. Multicollinearity is the situation where the 
explanatory variables have highly interdependent. It will increase the error values and thus the 
estimator may unreliable. Hoerl and Kennard [1] develop a regression procedure to control 
multicollinearity. 

An outlier is a data observation that is unusual. It results the estimator to be not efficient 
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and changes the sign of the regression coefficients. Mendenhall and Sincich [7] give the definition of 
outlier as value with absolute standardized error greater than 3. Robust regression methods are 
usually used to obtain a better result when there are outliers. The main purpose of this paper is to 
compare different regression methods and identify the good one with better estimator in the 
presence of both multicollinearity and outlier. 

The rest of the paper is structured as follows. In section 2, various regression estimators like 
OLS, Robust regression, Ridge regression and Liu regression are explained briefly. The performance 
of these regression procedures is studied under real environments and the results are summarized 
in section 3 and conclusion of the study is presented in the last section.  

II. Regression Methods

Regression analysis is used to draw inferences from data when there is a connection between the 
response and the predictor variables, according to Draper and Smith [9]. These approaches in 
machine learning come in a variety of forms, and their use depends on the type of data being used. 
It is the primary method to solve the problems in machine learning using data modeling. This 
paper includes the methods OLS, Robust, Ridge and Liu with the comparison of error measures 
under different real datasets having the presence of both outliers and multicollinearity. Outliers are 
identified by the Cook’s distance procedure and the analysis has been carried out using R software.  

Ordinary Least Squares (OLS) 
Ordinary Least Squares (OLS) is a technique used to predict the dependent variable (y) 

with the help of a number of predictor variables (X). It is the popularly used and Best Linear 
Unbiased Estimator (BLUE) when all the suppositions of the classical regression model are 
satisfied [Aitken [3]]. The general model of an OLS method with k independent variables is given 
by 
 𝑦 = 𝑋𝛽 + 𝜀  (1) 

where 𝒚 is the (𝑚 × 1) vector of response variable, 𝑿 is a (𝑚 × 𝑘) matrix, 𝜷 is a (𝑘 × 1) vector of an 
unknown regression parameters and 𝜺 is a (𝑚 × 1) vector of residual term that is considered to be 
independently and identically distributed as normal with mean zero and fixed variance  𝜎 .  The 
OLS estimator for the unknown parameter is  

  𝛽 =  (𝑋 𝑋)  (𝑋 𝑦)  (2) 

The performance of  𝛽   will be statistically insignificant when multicollinearity exists between 
the explanatory variables.  

Robust Regression 
Robust regression is an alternative approach to the classical regression model, when the 

nature of the data deviates from the key assumptions. The goal of robust regression is to get 
beyond some of the drawbacks of conventional regression analysis. Under normal distribution 
with no outliers, this robust method should produce approximately the similar results as OLS.  In 
this section robust regression method like Least Trimmed Square (LTS), Least Median Square 
(LMS) and M were described. 

 Least Trimmed Square (LTS) 

Least Trimmed Square (LTS) is a robust regression method developed by Rousseeuw [11]. 
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This method has an objective function of the lowest trimmed of squared residuals as 

 ∑ 𝑟 (𝛽)                                                                                                                                                       (3) 

where  𝑟 (𝛽) ≤ ⋯ ≤  𝑟 (𝛽)  are the ordered residuals for 𝑖 = 1,2, … , 𝑛.  The number of 
observations that are not trimmed from the dataset is denoted by ℎ.  LTS minimizes the trimmed 
sum of these squared residuals. Its estimator is equal to the OLS estimator only when ℎ = 𝑛. The 
estimator  𝛽  is estimated by minimizing the sum of residuals over 𝛽 is given by 

 𝛽  = 𝑎𝑟𝑔min ∑ 𝑟 (𝛽)  (4) 

LTS can be calculated for 𝛼, the trimming proportion tending to 50%. It attains the maximum 
possible breakdown point at ℎ = 𝑛

2 + [(𝑝 + 1) 2⁄ ]. The computation of LTS estimator uses an
algorithm called FAST-LTS of Rousseeuw and Van Driessen [10]. 

 Least Median Square (LMS) 
The Least Median Square (LMS) estimator was suggested by Rousseeuw [15]. Being a 

robust regression technique, the least median of squares method is not sensitive to outliers or other 
breaches of the normal model's assumption. In this method the sum is replaced by median in the 
method of least squares. Here the parameters are estimated by reducing the median of the squared 
residuals. The least median square estimator can be given by 
 𝛽  = 𝑎𝑟𝑔 min  𝑟 (𝛽)                                                                                                                               (5) 

where  𝑟 (𝛽) is a median. LMS is robust due to its breakdown value of 50%. 

 M Estimator (M) 
M-estimators and their asymptotic properties were introduced by Huber [5]. Here the M

stands for "maximum likelihood type". This method laid the foundation for the growth of the other 
robust methods in the context of regression estimators.  M-estimation attempts to reduce the 
squared residuals 𝑟  in OLS by another function of these 𝑟  

min ∑ 𝜌(𝑟 )  (6) 

𝜌(𝑟 ) is introduced for reducing the effect of outliers, where 𝜌 is a  definite positive, symmetric 
function with zero as its unique minimum. An algorithm was developed by Susanti et al. [16] for 
computing the M estimator.  

Ridge Regression (RR) 
Ridge Regression (RR) developed by Hoerl and Kennard [1] to give a reliable regression 

estimates even in the presence of multicollinearity. It produces an estimator that is biased and will 
be associated with the constant k that is used to reduce the bias. Hoerl et al. [2] find out a formula 
for the calculation of an optimal ridge constant k such that  
𝑘 =

∑
 (7) 

where 𝑝 denotes the number of predictor variables, 𝜎  is the estimated variance and 𝛼  is a 
conventional OLS regression parameter. Ridge regression depends on this constant 𝑘 and will give 
a biased estimator as given below. 

   𝛽  = (𝑋 𝑋 + 𝑘𝐼 )  (𝑋 𝑦) (8)
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Liu Regression (LR) 
Liu Regression (LR) is used to deal with datasets having multicollinearity. It was proposed 

by Liu [6]. It forms a new class of biased estimators called Liu estimators. These estimators are 
depending upon a biasing parameter 𝑑 called the Liu parameter which lies between 0 and 1. The 
estimator of Liu regression is given by 

𝛽  = (𝑋 𝑋 + 𝐼  )  (𝑋 𝑦 +𝑑 𝛽 )  (9) 

where 0 ≤ 𝑑 ≤ 1, 𝐼  is the identity matrix of order 𝑝 × 𝑝 and  𝛽  is the OLS estimator. 𝛽  is the 
Liu estimator named by Akdeniz and Kaciranlar [4]. The 𝑑 value with the minimum Mean Square 
Error (MSE) gives an efficient estimator. The R package liureg developed by Muhammad 
Imdadullah et al. [8] provides the tools for the computation of the estimator and the biasing 
parameter. 

III. Experimental Results

Table 1: Computed error measures and AIC under various regression methods (Acetylene Data) 

 Regression Methods 

Errors  OLS  LTS  LMS      M  RR       LR 

MAPE  0.284  0.195  0.194  0.262  0.210  0.195 

MAE  0.008  0.009 
 RMSE  0.009  0.016 
 R2 0.900  0.711 
 AIC  93.24  383.09 

 0.009  0.007  0.034  0.007 
 0.016  0.008  0.044  0.009 
 0.728  0.918  0.990  0.992 

 331.99   183.86    42.10     42.09 

 Table 2: Computed error measures and AIC under various regression methods (Prostate Cancer Data) 

 (.)Without outlier 

 Regression Methods 

Errors  OLS  LTS  LMS  M  RR  LR 

MAPE  2.33  2.51 
 (2.17)  (2.27) 

 2.59  2.34  2.23  2.21 
 (2.62)  (2.32)  (2.11)  (2.10) 

MAE  0.56  0.64 
 (0.48)  (0.97) 

RMSE  0.68  0.86 
 (0.58)  (1.32) 

R2 0.66  0.46 
 (0.73)  (0.70) 

AIC  219.54  91.35 

 0.69  0.56  0.56  0.55 
 (0.93)  (0.90)  (0.47)  (0.47) 

 0.97  0.68  0.68  0.67 
 (1.30)  (1.25)  (0.58)  (0.57) 

 0.31  0.66  0.67  0.67 
 (0.67)  (0.70)  (0.73)      (0.74) 

 117.08  62.51  62.99  60.29 
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Table 3: Computed error measures and AIC under various regression methods (Hald Data) 

 (.)Without outlier 

The experimental studies were carried out under real environments to study and compare the 
performance of the various regression procedures and thus obtained results were discussed in this 
section. The numerical studies have been conducted by considering three different case studies 
under real datasets in which the first data has the presence of multicollinearity and no outliers. The 
second one has a presence of moderate multicollinearity and outliers. And the third dataset has the 
presence of high multicollinearity and outliers. The outliers in the real data sets were detected and 
removed by using cook’s distance, Cook [12] and the analysis has been carried out using R 
software. The presence and absence of multicollinearity has been identified by computing Variance 
Inflation Factors (VIF). The overall impact of the regressors' dependencies on each term's variance 
is measured by the VIF for each term in the model. VIF is 1 indicates that there are no correlation 
between the variables. Moderate correlation is indicated by a VIF between 1 and 5. VIF more than 
5 is an indication of high multicollinearity between the variables. The error measures under OLS, 
LTS, LMS, M, RR and LR estimators were calculated by considering with and without outliers and 
are summarized in tables.  

The Acetylene data set contains the percentage of n-heptane that is converted to acetylene, 
together with three independent variables. These are typical data from a chemical process, and a 
full quadratic response surface in each of the three regressors is sometimes regarded as a suitable 
preliminary model. It has 16 observations and 4 variables in which conversion of n-Heptane to 
Acetylene (y) is considered as the dependent variable and Reactor Temperature (X1), Ratio of H2 
to n- Heptane (X2), Contact Time (X3) are taken as the independent variables. Cook’s distance is 
used to check the presence of outliers in the dataset and there are none to be found. The VIF 
measures are higher than 10 and hence the dataset has high multicollinearity. The computed error 
measures and AIC value under various estimators of the dataset are given in Table 1. 

The second data come from a study that looked at how males undergoing radial 
prostatectomy correlated their level of prostate-specific antigen with several clinical measures. The 
data is available in the R-package “lasso2”. It has 97 observations, and there are seven independent 

 Regression Methods 

Errors  OLS  LTS  LMS  M  RR  LR 

MAPE  0.04  0.04 
 (0.01)  (0.01) 

 0.12  0.03  0.03  0.03 
 (0.02)  (0.01)  (0.01)  (0.01) 

MAE  0.78  0.91 
 (0.96)  (0.89) 

RMSE  0.96  1.51 
 (1.29)  (1.64) 

R2 0.996  0.991 
 (0.99)  (0.99) 

AIC  47.67  39.69 

 3.89  0.75  0.81  0.75 
 (2.53)  (0.85)  (0.95)  (0.90) 

 6.43  0.97  0.99  0.95 
 (3.70)  (1.28)  (1.32)     (1.25) 

 0.841  0.996  0.996  0.997 
 (0.93)  (0.99)  (0.99)    (0.99) 

 46.95  22.19  10.13  6.72 
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variables namely lweight (log of prostate weight), age, lbph (log of benign prostatic hyperplasia 
amount), svi (seminal vesicle invasion), lcp (log of capsular penetration), gleason (Gleason score), 
lpsa (log of prostate specific antigen) and one dependent variable lcavol (log of cancer volume). 
Seven outliers are found in this dataset and eliminated using Cook's distance. Since the VIFs of the 
independent variables are in between 1 and 5, there is an indication of moderate multicollinearity. 
The error measures and AIC calculated under different estimators are shown in Table 2. 

Woods et al [17] was introduced the Hald or Portland Cement Data. It has been 
extensively analysed by Hald (1952), Hamaker (1962) and Kaciranlar et al (1999). This data frame 
contains 13 observations with four independent variables. They are tricalcium aluminate (X1), 
tricalcium silicate (X2), tetracalcium aluminoferrite (X3) and β-dicalcium silicate (X4). The response 
variable Y is the evolved heat after 180 days in a cement mix. Since the Variance Inflation Factors 
(VIF) of this Hald data set was greater than 10, the explanatory variables are highly correlated. As 
a result, the dataset has high multicollinearity. Also this data set has three outliers, which are 
found and eliminated by using Cook's distance. The computed error measures and AIC under 
various estimators are given in Table 3. 

The results from Table 1, Table 2 and Table 3 demonstrate that the error levels for various 
estimators differ from one another, with LR having the lowest of all these. Also the AIC value of 
LR is minimum compared to the other estimators. Thus, for a dataset having high multicollinearity 
and outliers, the Liu (LR) regression estimator is more effective than the other estimators.        

IV. Conclusion
Statistical learning techniques play a vital role in almost all the field of research study. Regression 
analysis is one of the statistical learning techniques. In general, the commonly used linear 
regression procedure will not be sufficient to build a regression model when data deviates from 
the modelling assumptions. Hence, there is a need of alternatives to build a good model for the 
given dataset. This paper explores various regression procedures such as OLS, Robust, Ridge and 
Liu.  Further, evaluates their performance on different real datasets by considering the problems of 
multicollinearity and outliers by computing various error measures along with AIC value.  On the 
basis of error and AIC values, the study concluded that the Liu regression procedure gives a better 
estimator for modelling the data when the dataset having multicollinearity and/or outliers. 
Further, this regression procedure can be beneficial to researchers, who work on machine learning 
techniques by considering the factors such as multicollinearity, outliers and high dimensionality.  
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