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Abstract

A three-parameter distribution known as the Generalized Weibull (GW) or Exponentiated Weibull
distribution is studied in this work. We construct Baye’s estimators for the unknown parameters and
present reliability function using progressive type I interval censoring data. Two different loss functions,
namely, squared error loss and general entropy loss functions are applied to derive Baye’s estimators.
It is observed that there is no closed-form solution for Baye’s estimators as well as for MLE. Hence,
Lindley’s approximation procedure is applied to obtain Bayesian estimator of unknown parameters, and
Newton Rapson method is employed to obtain MLE’s numerically. The corresponding reliability function
is derived. Monte Carlo simulation is used to obtain MLE. Further, the performance of MLE and Bayes
estimators are compared in terms of their respective MSE and Relative errors. It is noted by numerical
computation that MLE’s performs better than Bayes estimators. In addition to this, Bayes estimators
obtained using Squared error loss function and general entropy loss function are compared. It is observed
through numerical computation that general entropy loss function is better in terms of MSE.

Keywords: Bayesian infer ence, Exponentiated Weibull distribution, Lindle y’s appr oximation,
Maximum likelihood function, Monte Carlo simulation, Relativ e error.

1. Introduction

When it comes to analyzing data and adapting it to practical situations, statistical distributions
are crucial. Weibull or Gamma distributions are typically emplo yed to fi the data in real-w orld
scenarios. In sur viv al analysis, the Gamma distribution has mor e major applications than all
other distributions. But the main dra wback of Gamma distribution is that the sur viv al function
cannot be obtained in closed for m unless the shape parameter is an integer . This makes Weibull
distribution mor e popular than Gamma distribution. Its sur viv al function and failur e rate are
simple and easy to analyze. And this distrib ution is easy to handle the censoring data because
of that, in recent years Weibull distribution is mor e popular in analyzing lifetime data. The
Exponentiated Weibull distribution (EW) or Generalized Weibull distribution, w as firs described
by [24] as a w ay to extend the Weibull family of tw o parameters by one mor e shape parameter .
This distribution yields better fit than classic models such as exponential, gamma, Weibull,
and log-nor mal distribution. Owing to its flexibilit in modeling a wide range of industrial
data, the EW distribution may be widely and efficientl ap plied in reliability applications. The
fundamental featur e of this family is that it supports bathtub-shaped as well as unimodal hazar d
rates, in addition to numer ous monotone hazar d rates. The applications of this distribution were
firs de veloped by [24]. Using fi e dif ferent classical failur e data sets obtained for the Bus-motor

RT&A, No 1 (77)
 Volume 19, March 2024

342

mailto:mahesh@nitc.ac.in,aswathichithra01@gmail.com


M. Kumar and K P Asw athi
EWD:BA YESIAN ESTIMA TION USING PROGRESSIVE TYPE I
INTER VAL CENSORING

system, [25] demonstrated the potential unfulness and flexibilit of EW distribution. It is a sub-
model of a generic class of exponentiated distributions suggested by [11]. Generalized Weibull
distribution w as used by [26] to model sur viv al data. The reliability and sur viv al functions of
this distribution were studied by [23]. Further statistical featur es and the importance of this
distribution are addr essed by [29] and [28]. The moments of the EW distribution were deter mined
by [8]. EW distribution w as compar ed on tw o-parameter Weibull and Gamma distributions in
[32] study with regar d to the failur e rate. Exponentiated Weibull family distributed lifetime
data obser ved under Type I progr essiv e inter val censoring with random remo vals were analyzed
by [6]. Bayesian estimate and prediction for the EW distribution using both infor mativ e and
non-infor mativ e priors w as examined by [21]. After fittin a Weibull distribution and an EW
distribution to the wind speed data and deter mining the mean and variance, [9] estimated the
parameter using the MLE me thod. The non-Ba yesian estimators methods for parameters of EW
distribution studied by [4].The discr ete case of EW distribution studied by [30]. The entr opy and
stress-str ength model of EW distribution studied by [3]. Numerical estimation of parameters of
EW distribution based on generalized progr essiv e hybrid censoring scheme studied by [10]. In
recent years, estimation of EW distribution under progr essiv e type II censor ed data studied by
[22].
The fundamental featur e of this family is that it supports bathtub-shaped as well as unimodal
hazar d rates, in addition to numer ous monotone hazar d rates. The EW distribution is define in
the follo wing w ay.
It has distribution function giv en by

F(x; α, β, λ) = (1 − e−(λx)β
)α, x > 0 and α, β, λ > 0 (1)

and ther efor e its probability density function is of the for m

f (x; α, β, λ) = αβλβx(β−1)e−(λx)β
((1 − e−(λx)β

)α−1) (2)

The corresponding reliability function is giv en by

R(x; α, λ) = 1 − (1 − e−(λx)β
)α (3)

and the hazar d rate is
h(x) =

f (x)
1 − F(x)

, x > 0 (4)

Note her e that, the shape parameters are α and β, and the scale parameter is λ.
Several well known distributions are particular cases of the EW distribution. For example, the
Exponential distribution is the case when α = 1and β = 1, the Weibull Distribution is define
with α = 1, Rayleigh Distribution with α = 1 and β = 2, β = 1 Generalized Exponential (GE)
Distribution studied by [12], [13], [15], [17] [18], [37] and [39]. β = 2 Two parameter Burr Type
X or Exponentiated Rayleigh(ER) or Generalized Rayleigh(GR) Distribution studied by [2], [36],
[16], [14], [43], [38], [5] and [27] among others. Fig.(1) and Fig.(2) repr esents the many for ms of
these distributions graphically .

It w as disco vered that the EW family is a very versatile family that may be uti lized to describe
many sorts of ske wed lifetime data. In reliability analysis, censoring is quite prevalent. It occurs
when specifi failur e times for a subset of test units in an experiment are detected.
In industrial life testing and medical sur viv al analysis, very often the object of inter est is lost
or withdra wn befor e failur e or the object’s lifetime is only known within an inter val. Hence,
the obtained sample is called a censor ed sample (or an incomplete sample). The most common
censoring schemes are type-I censoring, type-II censoring and progr essiv e censoring. For type-I
censoring, life testing ends at a pre-scheduled time and for type-II censoring, life testing ends
whene ver the number of lifetimes is reached. In type-I and type-II censoring schemes, the tested
items are allo wed to be withdra wn only at the end-of-life testing. In the progr essiv e censoring
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Figure 1: Graph of EW distribution for different values of α, β and for fixed λ = 0.5

scheme, the tested items are allo wed to be withdra wn at some time befor e the end-of-life testing.
See [7] for mor e infor mation about progr essiv e censoring combined with type-I or type-II and
their applications. Using the concepts of progr essiv e censoring, type I censoring, and inter val
censoring, [1] de veloped progr essiv e type I inter val censoring. Combining progr essiv e censoring
and type-II censoring, [18] and [34] inv estigated Bayesian infer ence for Weibull distribution
and generalized exponential (GE) distribution, respectiv ely. It should be emphasized that in
many practical situations, unit lifetime is set on an inter val, ther efor e type I inter val censoring
is beneficia in these instances (see,[ 1]). It may be noted that in real-life situations, the lifetime
of units may not be recor ded precisely due to some reasons, such as technical problems, non-
availability of experimental resour ces or due to some unkno wn human errors, or some cost-sa ving
measur es emplo yed by the industr y. Thus such censor ed data generated can be used effectiv ely
in analyzing the reliability characteristics of well-kno wn distribution, such as the mor e general
class of distribution, namely , EW distribution, which gained lots of importance in recent times.
The importance of progr essiv e type-I inter val censoring in handling practical problem has been
studied by authors, namely , [6] and [19]. The concept of progr essiv e type-I inter val censoring to
the Weibull distribution and compar ed many dif ferent estimation methods for tw o parameters in
the Weibull distribution via simulation introduced by [31]. The recent study about progr essiv e
type I inter val censoring is On infer ence and design under progr essiv e type-I inter val censoring
scheme for inv erse Gaussian lifetime model by [40]. A Study on the experimental design for the
lifetime perfor mance index of Rayleigh lifetime distribution under progr essiv e type I inter val
censoring by [44]. Optimal design of accelerated life tests under progr essiv e type I inter val
censoring with random remo vals by [46], and experimental design for progr essiv e type I inter val
censoring on the lifetime perfor mance index of Chen lifetime distribution by [45].
All the works available in the literatur e aims at obtaining estimators of parameters of EW
distribution based upon, either data obtain from complete censoring or from type I censoring,
type II censoring, hybrid censoring, etc. No work in the literatur e addr esses the estimation of
parameters of EW distribution based upon progr essiv e type I inter val-censor ed data. Ther efor e we
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Figure 2: Graph of EW distribution for different values of α, β and for fixed λ = 1

consider in the next sections the deriv ation of MLE and Bayes estimators from data obtained via
progr essiv e type I inter val censoring for EW distribution. Section 2 provides a brief fundamental
requir ed for obtaining estimators based on censor ed data. Some simulation results and discussion
based upon the results obtained are presented in Section 3. The conclusion and futur e scope of
resear ch are giv en in Section 4.

2. Bayesian estimation using progressive type I interval censored data

In this section, we discuss the brief overvie w of the ter ms used in this paper and the procedur e of
obtaining Baye’s estimators for Parameters and reliability function of EW distribution.

2.1. Progr essiv e type I inter val censor ed data and the likelihood function

Statistical infer ence for exponential distributions using progr essiv e type I inter val censor ed data
and pioneer ed type I inter val censoring in a progr essiv e censoring scheme de veloped by [1].
Under progr essiv e type I inter val censoring, obser vations are only known within tw o successiv ely
pre-scheduled timeframes, and items may be allo wed to be deleted at pre-scheduled time points.
The progr essiv ely type I inter val censor ed sample may be generated in the follo wing manner:
Let n units be put on a life testing platfor m simultaneously at time t0 = 0 and under examination
at m pre-specifie time periods t1 < t2 < ... < tm wher e tm is the predeter mined time to end the
experiment. The number of failur es Xi within (ti−1, ti] is recor ded and Ri sur viving items are
randomly remo ved from the life testing at the ith inspection time, ti, for i = 1, 2, ..., m. Because the
number of sur viving items, Yi, is an random variable and the precise number of items remo ved at
time schedule ti should not be larger than Yi, Ri might be calculated by a pre-specifie per centage
of the remaining sur viving units at ti for giv en i = 1, 2, ..., m.
For example, giv en certain pre-specifie per centage values say, p1, p2, ..., pm−1 and pm = 1, Ri
can be deter mined by using Ri = f loor[piYi] at each inspection time ti, wher e f loor[x] yields
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x’s biggest integer . Ther efor e, a progr essiv e type-I inter val censor ed sample with size n, can be

denoted as D = (Xi, Ri, ti)m, i = 1, 2, ..., m. If Ri = 0, i = 1, 2, ..., m − 1 and Rm = n −
m
∑

i=1
Xi, then

the type-I inter val-censor ed sample gradually shrinks to the typical inter val-censor ed sample.
Giv en the progr essiv ely type-I censor ed data, D = (Xi, Ri, ti)m of size n, from a continuous
lifetime distribution with CDF F(t; κ), then the likelihood function is giv en as follo ws

L(D | κ) ∝
m

∏
i=1

[F(ti; κ)− F(ti−1; κ)]Xi [1 − F(ti; κ)]Ri , (5)

wher e t0 = 0 and θ is the para meter vector. The mor e details of progr essiv e type I inter val
censoring can be seen in [33].
For the EW(α, λ, β) , the likelihood function (5) can be define in the follo wing manner:

L(D | α, λ, β) ∝
m

∏
i=1

[(1 − e−(λti)
β
)α − (1 − e−(λti−1)

β
)α]Xi [1 − (1 − e−(λti)

β
)α]Ri . (6)

The log-likelihood function is thus giv en by

l(α, λ, β) ∝
m

∑
i=1

Xiln[(1 − e−(λti)
β
)α − (1 − e−(λti−1)

β
)α] + Riln[1 − (1 − e−(λti)

β
)α]. (7)

2.2. Maximum likelihood function

In this section, we discuss the Maximum likelihood estimation to estimate unkno wn parameters
α, λ, β, and the reliability function R(t) for EW distribution define in (1) using the numerical
method.
By setting the deriv ativ es of the log likelihood function with respectiv e to α, λ or β to zer o, the
MLEs of α, λ and β are the solutions to the follo wing likelihood equations

m

∑
i=1

[
Xi

(
∂Fi
∂α − ∂Fi−1

∂α

Fi − Fi−1

)]
=

m

∑
i=1

[
Ri

(
∂Fi
∂α

1 − Fi

)]
m

∑
i=1

[
Xi

(
∂Fi
∂λ − ∂Fi−1

∂λ

Fi − Fi−1

)]
=

m

∑
i=1

[
Ri

(
∂Fi
∂λ

1 − Fi

)]

and

m

∑
i=1

Xi

 ∂Fi
∂β − ∂Fi−1

∂β

Fi − Fi−1

 =
m

∑
i=1

Ri

 ∂Fi
∂β

1 − Fi


Ther e is no closed for m of the solution to the abo ve equations and numerical methods can be
used to obtain the MLEs from the abo ve likelihood equations. Since ther e is no closed for m of the
MLE, Ne wton-Raphson method is introduced as follo ws for findin the MLEs of α, λ and β.
One of the most used methods for optimization in statistics is the Ne wton-Raphson method(or
Ne wton™s rule). Assume that l only inv olv es a one-dimensional parameter and that ϑ is our
curr ent best guess on the maximum of l(ϑ). l(ϑ) can be appr oximated by emplo ying a Taylor
series expansion around ϑ. Hence we have

lϑ(ϑ) = l(ϑ) + l′(ϑ)(ϑ − ϑ) +
1
2

l′′(ϑ)(ϑ − ϑ)2.
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When ϑ is close to ϑ, the dif ference l(ϑ)− l(ϑ)(ϑ) is small. The maximum value of l(ϑ)(ϑ) is closer
to the maximum value of l(ϑ) than l(ϑ).
The gradient of l(ϑ)(ϑ) at ϑ is

l
′
(ϑ)(ϑ) = l′(ϑ) + l′′(ϑ)(ϑ − ϑ)

and the Hessian or second deriv ativ e is

l
′′
(ϑ)(ϑ) = l′′(ϑ).

At the point ϑ, l(ϑ) and l(ϑ)(ϑ) have equal firs and second deriv ativ es. In the case of log likelihood
function Hessian is same as the minus of obser ved infor mation evaluated at ϑ = ϑ, l′′(ϑ) = −J(ϑ).
In the optimum point of the appr oximation, l(ϑ)(ϑ) has a gradient equal to zer o, giving the
follo wing equation:

l′′(ϑ)(ϑ − ϑ) = −l′(ϑ).

Solving with respect to ϑ, we get

ϑ = ϑ − l′(ϑ)
l′′(ϑ)

.

This giv es a procedur e for optimizing l(ϑ)(ϑ). An iterativ e procedur e for optimizing l(ϑ) is giv en
by

ϑ(s+1) = ϑ(s) − l′(ϑ(s))

l′′(ϑ(s))

which is the Ne wton-Raphson Method. The procedur e is run until ther e is no significan dif ference
betw een ϑ(s) and ϑ(s+1).
When l(ϑ) is a log likelihood function, this algorithm can be written as

ϑ(s+1) = ϑ(s) − s(ϑ(s))

J(ϑ(s))

wher e s(ϑ) is the scor e function while J(ϑ) is the obser ved infor mation matrix.

2.3. Bayesian Estimation

In this section, we discuss the Bayesian technique to estimate unkno wn parameters α, λ, β, and
the reliability function R(t) using the Squar ed error loss and general entr opy loss functions.
Assume that all parameters, namely , α, λ and β of EW distributions are unkno wn and independent.
We addr ess the problem of constructing Baye’s estimators for these parameters. We assume
non-infor mativ e priors for α and β, and conjugate prior for λ. The reason for choosing these prior
for ms is duo to their simplicity of in obtaining mathematically treatable posterior distributions.
We obser ve that such priors are successfully applied by many authors, namely , [ [33] and [35]].
The follo wing equations giv e respectiv e definition of prior densities.

π1(α) =
1
α

, α > 0 (8)

π2(λ) =
ba

Γ(a)
λa−1e−bλ, λ > 0, a, b > 0 (9)
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and
π3(β) =

1
β

, β > 0 (10)

respectiv ely wher e Γ(.) is the gamma function.
We consider tw o dif ferent for m of loss functions in estimating the parameters of EW density . The
firs one is a symmetric loss function, the squar ed error loss function(SEL), which is giv en by

L1(ζ, ζ̂) = (ζ̂ − ζ)2, (11)

wher e ζ̂ is the estimate of parameter ζ. Then the Bayesian estimate of any function q = q(α, λ, β)
is obtained by considering follo wing equation

q̂ = E(q | D) =

∫
α

∫
λ

∫
β q(α, λ, β)l(α, λ, β)π1(α)π2(λ)π3(β)dαdλdβ∫

α

∫
λ

∫
β l(α, λ, β)π1(α)π2(λ)π3(β)dαdλdβ

(12)

The second loss function, is the generalization of the Entr opy loss used by several authors ([41]
and [42]). The General Entr opy loss(GEL) is defin as:

L2(ζ, ζ̂) ∝

(
ζ̂

ζ

)c

− c log
ζ̂

ζ
− 1, (13)

wher e ζ̂ is an estimate of parameter ζ. It may be noted that when c > 0, a positiv e error causes
mor e serious consequences than a negativ e error. On the other hand, when c < 0, a negativ e error
causes mor e serious consequences than a positiv e error. Then the Bayesian estimator of q(α, λ, β)
under this general entr opy loss function is

q̂GEL = [E(q−c)]−
1
c , (14)

provided that E(q−c) exists and is finite It can be sho wn that, when c = 1 , the Bayes estimate
(12) coincides with the Bayes estimate under the weighted squar ed-err or loss function. Similarly ,
when c = −1 the Bayes estimate (14) coincides with the Bayes estimate under squar ed error
loss function. The equations (12) and (14) cannot be solv ed for obtaining closed for m solutions.
Hence, we resort to well known Lindle y appr oximation [20] procedur e to evaluate the ratio of
integrals inv olv ed in (12) and (14). Note that the Lindle y appr oximation procedur e is successiv ely
emplo yed by authors, such as [18] to obtain Bayesian estimators. Next, the Bayesian posterior
expection function of a parameter vector η, say h(η) is obtained by using the follo wing equation

ĥB = E(h(η) | D) =

∫
η h(η)l(η)π(η)dη∫

η l(η)π(η)dη
, (15)

Recall that in the abo ve expr ession l(η) denotes log likelyhood function, π(η) denotes prior
density and D denotes the data obtained using progr essiv e type I inter val censoring.
By [20], if n, the sample size is suf ficientl large, every ratio of the integral of the for m,

ĥ = E[v(η1, η2, η3)]

=

∫
η1 ,η2 ,η3

v(η1, η2, η3)el(η1 ,η2 ,η3)+G(η1 ,η2 ,η3)d(η1, η2, η3)∫
η1 ,η2 ,η3

el(η1 ,η2 ,η3)+G(η1 ,η2 ,η3)d(η1, η2, η3)

wher e
v(η) = v(η1, η2, η3) is a function of η1, η2 or η3 only,
l(η1, η2, η3) is log of likelihood function,
and G(η1, η2, η3) is log joint prior of η1, η2 and η3,
can be evaluated as

ĥ = v(η̂1, η̂2, η̂3) + (v1a1 + v2a2 + v3a3 + a4 + a5) +
1
2
[A(v1σ11 + v2σ12 + v3σ13) +

B(v1σ21 + v2σ22 + v3σ23) + C(v1σ31 + v2σ32 + v3σ33)]
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wher e
η̂1, η̂2 and η̂3 are the MLE of η1, η2 and η3 respectiv ely.

ai = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1, 2, 3,
a4 = v12σ12 + v13σ13 + v23σ23 ,

a5 =
1
2
(v11σ11 + v22σ22 + v33σ33),

A = σ11 l111 + 2σ12 l121 + 2σ13 l131 + 2σ23 l231 + σ22 l221 + σ33 l331 ,
B = σ11 l112 + 2σ12 l122 + 2σ13 l132 + 2σ23 l232 + σ22 l222 + σ33 l332 ,
C = σ11 l113 + 2σ12 l123 + 2σ13 l133 + 2σ23 l233 + σ22 l223 + σ33 l333

and subscripts 1,2,3 on the right-hand sides refer to η1, η2, η3 respectiv ely and,

ρi =
∂ρ

∂ηi
, vi =

∂v(η1, η2, η3)

∂ηi
, i = 1, 2, 3,

vij =
∂2v(η1, η2, η3)

∂ηi∂ηj
, i, j = 1, 2, 3,

lij =
∂2l(η1, η2, η3)

∂ηi∂ηj
, i, j = 1, 2, 3, (16)

lijk =
∂3l(η1, η2, η3)

∂ηi∂ηj∂ηk
, i, j, k = 1, 2, 3, (17)

and σij is the (i, j)th element of the inv erse of the matrix
{

lij
}

, which is giv en by

I(α, λ, β) =


− ∂2 l

∂α2 − ∂2 l
∂α∂λ − ∂2 l

∂α∂β

− ∂2 l
∂λ∂α − ∂2 l

∂λ2 − ∂2 l
∂λ∂β

− ∂2 l
∂α∂β − ∂2 l

∂β∂λ − ∂2 l
∂β2


Now by equations, (8), (9) and (10), by using independence of α, λ, β, the joint prior distribution
of ther e three parameters is giv en by

π(α, λ, β) =
baλa−1e−bλ

βαΓ(a)
, α, λ, β > 0, a, b > 0. (18)

Let

ρ = ln π(α, λ, β)

= a ln b + (a − 1) ln λ − bλ − ln β − ln α − ln Γ(a). (19)

Differentiating (19) with respect to α, λ, β respectiv ely, we have

ρ1 = − 1
α

, ρ2 =
a − 1

λ
− b, ρ3 = − 1

β
.

Obser ve that while perfor ming progr essiv e type I inter val censoring, ther e are ’m’ pre-specifie
time periods, say, t1 < t2 < ... < tm, wher e tm is pre-specifie stopping time of experiment. Now
let us defin the pdf for EW distribution for 1 ≤ i ≤ m as Fi = (1 − e−(λx)β

)α i = 1, 2, 3, ..., m.
Now from the expr ession (5) we have

l ∝
m

∑
i=1

{Xi ln[Fi − Fi−1] + Ri ln[1 − Fi]}
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Then,

l1 =
m

∑
i=1

[
Xi

(
∂Fi
∂α − ∂Fi−1

∂α

Fi − Fi−1

)
− Ri

(
∂Fi
∂α

1 − Fi

)]

l2 =
m

∑
i=1

[
Xi

(
∂Fi
∂λ − ∂Fi−1

∂λ

Fi − Fi−1

)
− Ri

(
∂Fi
∂λ

1 − Fi

)]

l3 =
m

∑
i=1

Xi

 ∂Fi
∂β − ∂Fi−1

∂β

Fi − Fi−1

− Ri

 ∂Fi
∂β

1 − Fi


From equation (16), the values of lij, (i, j = 1, 2, 3) can be obtained as follo ws

l11 =
m

∑
i=1

Xi

 (Fi − Fi−1)
(

∂2 Fi
∂α2 − ∂2 Fi−1

∂α2

)
−
(

∂Fi
∂α − ∂Fi−1

∂α

)2

(Fi − Fi−1)
2


−Ri

 (1 − Fi)
∂2 Fi
∂α2 +

(
∂Fi
∂α

)2

(1 − Fi)
2


 ,

l12 =
m

∑
i=1

Xi

 (Fi − Fi−1)
(

∂2 Fi
∂α∂λ − ∂2 Fi−1

∂α∂λ

)
−
(

∂Fi
∂α − ∂Fi−1

∂α

) (
∂Fi
∂λ − ∂Fi−1

∂λ

)
(Fi − Fi−1)

2


−Ri

 (1 − Fi)
∂2 Fi
∂αλ +

(
∂Fi
∂α

) (
∂Fi
∂λ

)
(1 − Fi)

2


= l21 ,

l13 =
m

∑
i=1

Xi

 (Fi − Fi−1)
(

∂2 Fi
∂α∂β − ∂2 Fi−1

∂α∂β

)
−
(

∂Fi
∂α − ∂Fi−1

∂α

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)

2


−Ri

 (1 − Fi)
∂2 Fi
∂αβ +

(
∂Fi
∂α

) (
∂Fi
∂β

)
(1 − Fi)

2


= l31 ,

l22 =
m

∑
i=1

Xi

 (Fi − Fi−1)
(

∂2 Fi
∂λ2 − ∂2 Fi−1

∂λ2

)
−
(

∂Fi
∂λ − ∂Fi−1

∂λ

)2

(Fi − Fi−1)
2


−Ri

 (1 − Fi)
∂2 Fi
∂λ2 +

(
∂Fi
∂λ

)2

(1 − Fi)
2


 ,

l23 =
m

∑
i=1

Xi

 (Fi − Fi−1)
(

∂2 Fi
∂λ∂β − ∂2 Fi−1

∂λ∂β

)
−
(

∂Fi
∂λ − ∂Fi−1

∂λ

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)

2


−Ri

 (1 − Fi)
∂2 Fi
∂λβ +

(
∂Fi
∂λ

) (
∂Fi
∂β

)
(1 − Fi)

2


= l32 ,
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l33 =
m

∑
i=1

Xi

 (Fi − Fi−1)
(

∂2 Fi
∂β2 − ∂2 Fi−1

∂β2

)
−
(

∂Fi
∂β − ∂Fi−1

∂β

)2

(Fi − Fi−1)
2


−Ri

 (1 − Fi)
∂2 Fi
∂β2 +

(
∂Fi
∂β

)2

(1 − Fi)
2


 .

Similarly , from equation (17), the values for lijk(i, j, k = 1, 2, 3) can be obtained.
Now we proceed to obtain Bayes estimators of the parameters α, λ, β of EW distribution function,
and the reliability function R(t) under squar ed error loss function. Recall that v(α̂s, λ̂s, β̂s) denotes
a function MLE’s for α, λ, β. Hence we present her e the Bayes estimators of α, λ, β and R(t) via
follo wing equations:

• v(α̂, λ̂, β̂) = α̂ then

α̂s = α̂ − 1
α̂

σ11 +
a − 1 − bλ̂

λ̂
σ12 −

1
β̂

σ13 +
1
2
[Aσ11 + Bσ21 + Cσ31 ] , (20)

• v(α̂, λ̂, β̂) = λ̂ then

λ̂s = λ̂ − 1
α̂

σ21 +
a − 1 − bλ̂

λ̂
σ22 −

1
β̂

σ23 +
1
2
[Aσ12 + Bσ22 + Cσ32 ] , (21)

• v(α̂, λ̂, β̂) = β̂ then

β̂s = β̂ − 1
α̂

σ31 +
a − 1 − bλ̂

λ̂
σ32 −

1
β̂

σ33 +
1
2
[Aσ13 + Bσ23 + Cσ33 ] , (22)

• v(α̂, λ̂, β̂) = ˆR(x) then

R̂s = R̂ + (R̂1a1 + R̂2a2 + R̂3a3 + a4 + a5) +
1
2
[
A(R̂1σ11 + R̂2σ12 + R̂3σ13)

+B(R̂1σ21 + R̂2σ22 + R̂3σ23) + C(R̂1σ31 + R̂2σ32 + R̂3σ33)
]

,
(23)

wher e,

R̂1 =
∂R̂
∂α̂

= −
(

1 − e−(λ̂x)β̂
)α̂

log
(

1 − e−(λ̂x)β̂
)

,

R̂2 =
∂R̂
∂λ̂

= α̂β̂x
(
−e−(λ̂x)β̂

)(
λ̂x
)β̂−1(1 − e−(λ̂x)β̂

)α̂−1
,

R̂3 =
∂R̂
∂β̂

= α̂
(
−e−(λ̂x)β̂

)(
λ̂x
)β̂ log

(
λ̂x
) (

1 − e−(λ̂x)β̂
)α̂−1

.

Next, we present Baye’s estimators using GEL function. Let α̂g, λ̂g, β̂g and R̂g denote Baye’s
estimators of α, λ, β and R(t) respectiv ely. The follo wing steps, for various choice of v(α̂, λ̂, β̂)
Bayes estimators for α, λ, β and R(t) respectiv ely,
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• v(α̂, λ̂, β̂) = α̂−c then

α̂g = α̂−c − cα̂−(c+1)
(
− 1

α̂
σ11 +

(
a − 1

λ̂
− b
)

σ12 −
1
β̂

σ13

)
(24)

+
1
2

(
c(c + 1)α̂−(c+2)σ11

)
− cα̂−(c+1)

2
[Aσ11 + Bσ21 + Cσ31 ]

• v(α̂, λ̂, β̂) = λ̂−c then

λ̂g = λ̂−c − cλ̂−(c+1)
(
− 1

α̂
σ21 +

(
a − 1

λ̂
− b
)

σ22 −
1
β̂

σ23

)
(25)

+
1
2

(
c(c + 1)λ̂−(c+2)σ22

)
− cλ̂−(c+1)

2
[Aσ12 + Bσ22 + Cσ32 ]

• v(α̂, λ̂, β̂) = β̂−c then

β̂g = β̂−c − cβ̂−(c+1)
(
− 1

α̂
σ31 +

(
a − 1

λ̂
− b
)

σ32 −
1
β̂

σ33

)
(26)

+
1
2

(
c(c + 1)β̂−(c+2)σ33

)
− cβ̂−(c+1)

2
[Aσ13 + Bσ23 + Cσ33 ]

• v(α̂, λ̂, β̂) = R̂−c then

R̂g = R̂−c + (R̂1a1 + R̂2a2 + R̂3a3 + a4 + a5) +
1
2
[
A(R̂1σ11 + R̂2σ12 + R̂3σ13)

+B(R̂1σ21 + R̂2σ22 + R̂3σ23) + C(R̂1σ31 + R̂2σ32 + R̂3σ33)
]

,
(27)

wher e

R̂i =
∂R̂
∂η̂i

, i = 1, 2, 3 and (η̂1, η̂2, ˆη3) = (α̂, λ̂, β̂).

Obser ve that all equations define abo ve depends upon MLEs of α, λ and β. The detailed
procedur e for obtaining MLE is discussed in Section 2.2. Moreover, these MLEs don’t have closed
for m studies. Note that we resorted to using Ne wton Raphson method for solving equations
for obtaining MLEs numerically . Then next Section present the simulation study to obtain Bayes
estimators for various parameters of EW distribution and the reliability function R(t).

3. Simulation

In this Section, The results obtained in previous section, are illustrated by means of simulation.
The data simulated by using R programming language are used to obtain Baye’s estimators
of parameters of EW distribution, namely , α, λ, β and R(t). Further , the perfor mance of these
estimators are studied by computing their respectiv e mean squar e error and standar d de viation.
The follo wing subsection will describe the details of simulation procedur e.

3.1. Simulation Algorithm

Let us assume that prior distribution for α ∼ U(0, 1), λ ∼ Gamma(a, b) and β ∼ U(0, 1) are
chosen at random.

If the random variable U follo ws a unifor m distribution in (0, 1), then X =
[
− 1

λ log
(

1 − U
1
α

)] 1
β

follo ws the GW(α, λ, β). Next, progr essiv e type-I inter val censor ed sampling data, D = (Xi, Ri, ti)m,
of the GW(α, λ, β), are generated as follo ws. First, the random variables, U1, U2, ..., Un, n ≤ m, are
generated from U(0, 1), and then GW(α, λ, β) data t′1, t′2, ..., t′k, ..., t′n are calculated by inv erting
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t′k =
[
− 1

λ log
(

1 − U
1
α
k

)] 1
β

. Now,the number , Xi, of failur es within (t(i−1), ti] are generated and

Ri sur viving items are randomly remo ved from the testing based on the pre-specifie inspection
times t1 < ... < tm and the pre-specifie per centage p = (p1, p2, ..., pm−1, 1), respectiv ely. The
specifi steps are as giv en belo w.(see, Aggar w ala [?])

• Set X0 = 0 and R0 = 0 and for i = 1, 2, ..., m

• Xi | Xi−1, ..., X0, R(i−1), ..., R0 ∼ rbinom
(

n − ∑
j−1
i=1
(
Xj + Rj

)
,

Fi−F(i−1)
1−F(i−1)

)
• Ri | Xi, ..., X0, R(i−1), ..., R0 = f loor

[
pi ∗

(
n − ∑i

j=1 Xj − ∑i−1
j=1 Rj

)]
wher e rbinom( n,p) generates a random variable from the binomial distribution with parame-

ters n and p.

3.2. Example

Let the priors α ∼ U(0, 1), λ ∼ Gamma(1, 2) and β ∼ U(0, 1) and a set of parameters α,λ and
β are generated from these distributions. Let us assume that values for α = 0.4650936, λ =
0.09790184, β = 0.2090737 and R(t; α, λ, β)t=1 = 0.1592157 are selected from this set as true
values. Let us assume that m=8.Then, the randomly generated data are chosen from the Unifor m
distribution U(0,1) as follo ws:

U=(0.8716594, 0.6916711, 0.3129649, 0.3065460, 0.7183383, 0.3928726, 0.4819814, 0.6090094)

To generate the inspection time set of the gradually type-I inter val censor ed sample by appling

t′k =
[
− 1

λ log
(

1 − U
1
α
k

)] 1
β

is giv en by,

T=(0.4273016, 0.5336827, 6.341113, 10.02617, 63.84012, 108.4094, 223.2485, 595.9245)

To create distinct progr essiv e type-I inter val censor ed samples, four group sample sizes n=10,15,20,25,30,35,40,45
and fi e pre-specifie per centages p: p(1) and p(2) are consider ed, wher e

p(1) = (0, 0, 0, 0, 0, 0, 0, 1), p(2) = (0.1, 0, 0, 0, 0, 0, 0, 1)

In Tables 1 and 2, for specifie p(1) and p(2) in progr essiv e type I inter val censoring, relativ e
error (Re) and mean squar e error (MSE) of Bayesian estimators under SEL function (BS) and
Linex Loss function (BL) with c = 0.5, are per mited. Note that Re is giv en by

Re =
| ĝ − g |

g

and MSE is giv en by

MSE =
1
n

n

∑
i=1

(ĝi − gi)
2,

wher e ĝ denote the MLEs or Bayesian estimates of g.

After an extensiv e study of the results thus obtained, conclusions are dra wn regar ding the
beha vior of the errors of estimators, which are summarized belo w graphically(see Figur e 3- Figur e
14) .
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Table 1: RE and MSE of the Example for fixed p = p(1)

RE MSE

Item n α̂ λ̂ β̂ R̂ α̂ λ̂ β̂ R̂

MLE 10 0.9149 0.7544 0.2869 0.7365 0.0902 0.0098 0.0023 0.0154
15 0.9703 0.0017 0.3649 0.9462 0.0231 0.0000 0.0027 0.0076
20 0.9341 0.1479 0.3482 0.8148 0.0536 0.0002 0.0029 0.0097
25 0.0909 0.8181 0909 0.1052 0.0000 0.1202 0.0005 0.0007
30 0.5389 0.1793 0.5890 0.6659 0.0004 0.0022 0.0098 0.0161
35 0.9808 0.1949 0.3735 0.9434 0.1066 0.0000 0.0102 0.0114
40 0.4328 0.3296 0.6769 0.6602 0.0024 0.0061 0.0113 0.0176
45 0.9366 0.0389 0.3552 0.9200 0.0833 0.0000 0.0085 0.0047

Bs 10 0.5954 0.5185 0.8065 0.5529 0.0382 0.2128 0.0179 0.0087
15 1.0388 0.2083 1.2265 0.2629 0.0265 0.0336 0.3157 0.0589
20 0.8271 1.2446 1.7592 0.5632 0.0420 0.0123 0.3435 0.0047
25 0.4623 0.7895 0.4622 0.8032 0.0162 0.1044 1.2557 0.0381
30 0.1860 0.2859 0.0094 0.0636 0.0000 0.5612 0.0000 0.0002
35 0.6569 1.4812 0.2202 0.0294 0.0478 0.0007 0.0262 0.0000
40 0.3758 0.6661 0.2903 0.0621 0.0000 0.0244 0.0021 0.0002
45 0.0828 0.4764 1,5272 0.1365 0.0007 0.0000 0.1572 0.0001

Bg 10 0.1253 1.7028 1.1261 0.5510 0.0017 0.0498 0.0349 0.0086
15 0.3227 0.3916 1.4387 0.2632 0.0026 0.1188 0.0434 0.0591
20 0.0519 1.9679 1.2674 0.5606 0.0002 0.0699 0.0390 0.0046
25 1.1834 0.2332 0.4580 0.2034 0.1062 0.0091 0.0123 0.2439
30 0.0138 0.3522 0.7898 0.7545 0.0000 0.0084 0.0343 0.0207
35 0.7894 1.8737 0.3078 0.2895 0.0690 0.0005 0.0069 0.0000
40 1.1188 0.4942 1.2519 1.3603 0.0161 0.0137 0.0386 0.0745
45 0.0184 0.4489 0.3615 0.1628 0.0000 0.0000 0.0088 0.0001

Figure 3: Relative Error of MLE for p(1) Figure 4: Relative Error of Bs for p(1)
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Table 2: RE and MSE of the Example for fixed p = p(2)

RE MSE

Item n α̂ λ̂ β̂ R̂ α̂ λ̂ β̂ R̂

MLE 10 0.9009 0.3422 0.3621 0.7676 0.0837 0.0003 0.0066 0.0098
15 0.9481 0.3285 0.3743 0.8974 0.0134 0.0004 0.0003 0.0070
20 0.9152 0.4706 0.2872 0.7947 0.0629 0.0172 0.0014 0.0081
25 0.9561 0.0317 0.3609 0.8741 0.0663 0.0000 0.0016 0.0085
30 0.6986 0.4347 0.8745 0.7925 0.0252 0.0160 0.0822 0.0247
35 0.9852 0.9342 0.6004 0.8572 0.0715 0.0013 0.0333 0.0127
40 0.9431 0.3594 0.2985 0.8779 0.0284 0.0033 0.0007 0.0073
45 0.9467 0.6701 0.2837 0.8926 0.0244 0.0007 0.0014 0.0059

Bs 10 0.0605 0.4409 0.3096 1.2529 0.0004 0.0005 0.0048 0.0262
15 1.9421 0.1121 1.5398 1.9250 0.0563 0.0000 0.0249 0,0744
20 0.1961 0.0578 0.4542 0.7478 0.0029 0.0003 0.0035 0.0072
25 0.5377 0.2024 0.4913 0.2352 0.0210 0.0338 0.0030 0.0006
30 0.3550 0.0855 0.6875 0.1301 0.0065 0.0999 0.0508 0.0006
35 1.5559 1.5346 0.5596 1.3814 0.1783 0.3580 0.0289 0.0330
40 0.512 0.7987 0.4375 1.0897 0.0084 0.0165 0.1403 0.0413
45 0.4568 0.8569 0.1748 1.8877 0.0057 0.0314 0.0005 0.0265

Bg 10 0.0173 0.4638 0.5745 1.2778 0.0000 0.0005 0.0166 0.0272
15 0.7190 1.6573 1.0796 1.1535 0.0077 0.0840 0.0086 0.0403
20 0.1677 0.2676 1.7243 0.7769 0.0021 0.0056 0.0501 0.0078
25 0.1207 0.3234 1.1491 0.2385 0.0011 0.0729 0.0582 0.0006
30 0.5552 0.2137 0.0639 0.2737 0.0159 0.0038 0.0004 0.0000
35 1.2341 1.1229 0.1248 1.3814 0.1122 0.1917 0.0014 0.0329
40 0.4512 1.2013 0.3081 1.3114 0.0065 0.0372 0.0712 0.0466
45 0.5546 2.6507 1.6666 1.9275 0.0083 0.0978 0.0488 0.0276

Figure 5: Relative Error of Bg for p(1) Figure 6: Mean Squared Error of MLE for p(1)
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Figure 7: Mean Squared Error of Bs for p(1) Figure 8: Mean Squared Error of Bg for p(1)

Figure 9: Relative Error of MLE for p(2) Figure 10: Relative Error of Bs for p(2)

Figure 11: Relative Error of Bg for p(2) Figure 12: Mean Squared Error of MLE for p(2)
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Figure 13: Mean Squared Error of Bs for p(2) Figure 14: Mean Squared Error of Bg for p(2)

4. Conclusion

In this article, the perfor mance of the proposed Bayes estimators has been compar ed to the
maximum likelihood estimator of the EWD(α, λ, β) under the progr essiv e type-I inter val censoring
based on the squar ed error loss function and general entr opy loss function using Lindle y’s
appr oximation. The simulation result indicates that this appr oach is better suited for small sample
sizes. MLE is the best choice when compar ed to Bayesian estimators. From Table 1, it is obser ved
that the general entr opy loss function in Bayesian estimation is better as compar ed to the squar ed
error loss function in ter ms of MSE. From Table 2, it is noted that the squar ed error loss function
in Bayesian estimation is better as compar ed to the general entr opy loss function in ter ms of MSE.
It can be seen from Figur es 4, 5, 10 and 11 that the RE of Bayes estimators sho w fluctuatio trend,
and one can not see continuously decr easing or increasing trend for RE.
It is obser ved in practice, especially while modeling lifetime of electr onic products, this three-
parameter EW distribution describes the lifetime in the best possible w ay as compar ed to
commonly used lifetime distributions such as Exponential distribution or Weibull distribution.
Moreover, practically progr essiv e type I inter val censoring is the most conv enient w ay of obtaining
data of lifetimes as compar ed to traditional censoring schemes such as type I or type II or hybrid
censoring. Further , the results obtained in this paper can be used for applications in the fiel of
economics or analysis of clinical data in the medical field
The results obtained in this paper use the appr oximation process such as Lindle y appr oximation
to obtain Bayes estimators of parameters of EW distribution. As futur e scope of resear ch an
analytical solution for deriving Bayes estimators can be consider ed by using suitable choice of
prior distributions.
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