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Abstract

The differential entropy is a natural analog of the Shannon entropy for discrete distributions in respect to
absolutely continuous distributions (with density). In modern studies, many other kinds of entropy have
been introduced and analyzed, including various cumulative entropies, which are based not on the density
but on the (cumulative) distribution function of random variable. Such characteristics can be used, for
example, in computer vision, reliability theory, risk analysis, etc. We consider some generalizations of
cumulative entropy, for a wide class of entropy generators. We use the methods of probability theory,
calculus of variations and Cauchy–Bunyakovsky–Schwarz inequality. In the class of centered and
normalized random variables, exact and conditional bounds are found as well as the distributions on
which they are attained. By conditional bounds we understand bounds for one generalized cumulative
entropy given the value of another entropy (in the class of random variables with zero mean and unit
variance). This problem is analogous to the previously posed and partly solved problem on conditional
bounds for expectations of sample maxima when we know the expected maximum of a sample of another
size or expected maxima of two smaller samples.

Keywords: cumulativ e entr opy, exact bounds, conditional bounds, calculus of variations

1. Introduction

The differential entropy is a natural analog of the Shan non entr opy for discr ete distributions in
respect to absolutely continuous distributions [14, 6]. For a random variable X with probability
density function p(x), it is giv en by

H(X) = −
∫ +∞

−∞
p(x) ln p(x) dx.

For a giv en variance σ2, the dif ferential entr opy attains its maximum on Gaussian distributions
N (µ, σ2) [14, §20]; then

H(X) =
1 + ln(2πσ2)

2
.

In moder n studies, many other kinds of entr opy have been introduced and analyzed, in-
cluding various cumulative entropies, which are based not on the density but on the (cumulativ e)
distribution function. Such characteristics can be used, for example, in computer vision [13],
reliability theor y and risk analysis [4, 5], etc. Even medical applications have been noted [1].

In [13], for nonnegativ e random variables ther e w as introduced the cumulative residual entropy
(CRE)

E(X) = −
∫ +∞

0
F̄(x) ln F̄(x) dx,

RT&A, No 1 (77)
 Volume 19, March 2024

440

mailto:avlebed@yandex.ru


Alexe y V. Lebede v
EXACT AND CONDITIONAL BOUNDS

wher e F̄(x) = 1− F(x), F being the (cumulativ e) distribution function (CDF) of a random variable
X, and in [4] ther e w as introduced the cumulative entropy (CE)

CE(X) = −
∫ +∞

0
F(x) ln F(x) dx,

which w as after w ards also called the direct cumulativ e entr opy (in contrast to the residual one).
In such expr essions it is assumed that 0 ln 0 = 0.

It is clear that these functionals can be extended from nonnegativ e to arbitrar y random
variables by taking integrals over the entir e axis:

E(X) = −
∫ +∞

−∞
F̄(x) ln F̄(x) dx, CE(X) = −

∫ +∞

−∞
F(x) ln F(x) dx. (1)

In the general case, the integrals may both conv erge or div erge.
For these cumulativ e entr opies, ther e is symmetr y

E(X) = CE(−X). (2)

Note that cumulativ e entr opies (as well as the dif ferential entr opy) are traditionally written as
numerical characteristics of a random variable X, though they actually depend on its distribution
function F only.

In [3], repr esentations for E(X) and CE(X) through moments of order statistics (using the
power series expansion of the logarithm) have been obtained and upper bounds on these entr opies
were constructed assuming that X has mean µ and variance σ2 (taking into account classical
estimates for order statistics [7, 8]).

Namely , ther e were obtained the inequality [3, Theor em 1]

E(X) ≤
+∞

∑
n=1

σ

(n + 1)
√

2n + 1
≈ 1.21σ, (3)

which is also valid for CE(X) due to symmetr y (2), and the inequality [3, Theor em 3]

E(X) + CE(X) ≤
+∞

∑
n=1

σ
√

2
n
√

n + 1
≈ 3.09σ. (4)

Also, various classes of generalized cumulativ e entr opies have been consider ed [9, 10].
In particular , in [9] ther e were introduced the cumulative residual STM (Sharma–Taneja–Mittal)

entropy

SRα,β(X) =
1

β− α

∫ ∞

0
(F̄α(x)− F̄β(x)) dx, α, β > 0, α 6= β,

and the cumulative STM entropy

SPα,β(X) =
1

β− α

∫ ∞

0
(Fα(x)− Fβ(x)) dx, α, β > 0, α 6= β.

Clearly , they can also be extended from nonnegativ e to arbitrar y random variables:

SRα,β(X) =
1

β− α

∫ +∞

−∞
(F̄α(x)− F̄β(x)) dx,

SPα,β(X) =
1

β− α

∫ +∞

−∞
(Fα(x)− Fβ(x)) dx,

α, β > 0, α 6= β.

In [10], for a broad class of generalized cumulativ e entr opies, optim al distributions (with
giv en means and variances) that maximize these entr opies (i.e., giv e their exact upper limits) have
been obtained by methods of calculus of variations; however, the corresponding maximum values
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of the entr opies have not been deriv ed. If they are deriv ed, for example, for E(X), CE(X), and
E(X) + CE(X), it tur ns out that these bounds are stronger than (3) and (4).

We will consider for simplicity the class of distributions with zer o mean and unit variance.
Follo wing [10], one can easily deduce that the maximum value of E(X) is 1 and the maximum is
attained at the shifted exponential distribution with the CDF

F(x) = 1− e−(x+1), x ≥ −1; (5)

the maximum value of CE(X) is the same, and it is attained at the distribution with the CDF

F(x) = ex−1, x ≤ 1; (6)

and the maximum value of E(X) + CE(X) is π/
√

3 ≈ 1.81, the maximum being attained at the
logistic distribution with the CDF

F(x) =
eπx/

√
3

eπx/
√

3 + 1
. (7)

Next we for mulate a simple statement that allo ws us to obtain an upper bound on the
generalized cumulativ e entr opy without deriving the corresponding optimal distribution; we will
demonstrate it by an example of the cumulativ e residual STM-entr opy.

Then we solv e a new problem about the range in which one generalized cumulativ e entr opy
of a random variable can lie provided that another entr opy of this random variable is known (for
random variables with zer o mean and unit variance). Besides the general theor em, we in detail
analyze the case of the relationship of the entr opies E(X) and CE(X).

This problem is analogo us to the previously posed and partly solv ed problem on conditional
bounds for expectation of sample maxima when we know the expected maximum of a sample
of another size [11] or the expected maxima of tw o smaller samples [12]. In this case, the
corresponding characteristics are also expr essed as integral functionals of the distribution function.

From the point of vie w of calculus of variations, the arising problems belong to the class of
isoperimetric problems and are solv ed by the method of Lagrange multipliers (Euler –Lagrange
equations).

2. Main Results

Consider the class CN of center ed and normalized random variables, i.e.,

CN = {X : EX = 0, VarX = 1}.

It is clear that for all the abo ve-mentioned entr opies, in order to establish bounds, it suf fices
to consi der random variables in this class. Indeed, let a random variable X have mean µ and
variance σ2; then it admits a repr esentation X = µ + σX0 with X0 ∈ CN, and it follo ws from
definition (1) that E(X) = σE(X0), and so on.

Introduce a notation for the generalized inv erse distribution function (also called the quantile
function)

x(u) = inf{x : F(x) ≥ u}, u ∈ [0, 1],

wher e F is the CDF of the random variable X. Then

X d
= x(U),

wher e U is unifor mly distributed on [0, 1], and the condition X ∈ CN is equiv alent to the
follo wing constraints on x(u):

EX =
∫ 1

0
x(u) du = 0, VarX =

∫ 1

0
x2(u) du = 1,

wher e the function x(u), u ∈ [0, 1], is nondecr easing and right continuous.
We will consider functions g (entropy generators) satisfying the follo wing conditions:
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(∗) g(u) is a nonnegativ e continuous conc ave function on [0, 1] which is piece wise smooth on
(0, 1), with g(0) = g(1) = 0, and such that

G =
∫ 1

0

(
g′(u)

)2 du < ∞.

Introduce generalized cumulativ e entr opies repr esented by the integral (if it conv erges)

Eg(X) =
∫ +∞

−∞
g(F̄(x)) dx, (8)

wher e F is the CDF of the random variable X.
Using integration by parts and the change of variables u = F(x), we can obtain the follo wing

repr esentations:

Eg(X) = −
∫ +∞

−∞
x dg(F̄(x)) =

∫ 1

0
x(u)g′(1− u) du =

∫ 1

0
g(1− u) dx(u),

which giv es a particular case of the generalized cumulativ e Φ-entropy

CEΦ(F) =
∫ 1

0
Φ(u) dx(u)

introduced in [10], with the only dif ference that in [10] it w as not requir ed that Φ(0) = Φ(1) = 0
(though it w as actually the case in all examples consider ed ther e).

Definition (8) also implies Eg(X) = σEg(X0), X0 = (X− µ)/ σ, σ > 0.
Proposition 1. Let g satisfy condition (∗); then

max
X∈CN

Eg(X) =
√

G.

The proposition follo ws from the fact that accor ding to [10, Theor em 1] this maximum is
attained at the distribution with the inv erse CDF

x(u) =
g′(1− u)√

G
, u ∈ [0, 1].

Corollary 1. Let 1/ 2 < min{α, β} ≤ 1, α 6= β; then

max
X∈CN

SRα,β =

√
2αβ− α− β + 1

(2α− 1)(2β− 1)(α + β− 1)
, (9)

and the maximum is attained at the distribution with the inv erse CDF

x(u) =
α(1− u)α−1 − β(1− u)β−1

(β− α)
√

G
, u ∈ [0, 1]. (10)

In this case an optimal distribution F is not found explicitly , but it can be obtained, for example,
for α = 1 or β = 1, when all expr essions become simpler (this w as made in [10]).

Note that for min{α, β} > 1 the conca vity condition for g is violated, and for 0 < min{α, β} ≤
1/ 2 the entr opy SPα,β(X) may take infinitely large values on X ∈ CN (when the corresponding
integrals div erge).

Clearly , analogous statements hold as well for SPα,β, since SPα,β(X) = SRα,β(−X).

Theorem 1. Assume that g1 and g2 satisfy conditions (∗), the integrals

Gij =
∫ 1

0
g′i(u)g′j(u) du, 1 ≤ i, j ≤ 2,
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are introduced, and it is known that Eg2 (X) = t. Then for all X ∈ CN we have

Eg1 (X) ≤ 1
G22

(
G12t +

√
(G11G22 − G2

12)(G22 − t2)

)
, (11)

and this bound is tight if the function

x̃(u) = λ1g′1(1− u) + λ2g′2(1− u),

wher e

λ1 =

√
G22 − t2

G11G22 − G2
12

, λ2 =
t− λ1G12

G22
, (12)

is nondecr easing on (0, 1); then x̃(u) defines the distribution on which the bound is attained.

Note that by Proposition 1 we have E2
g2
(X) ≤ G22 , so the radicand is alw ays nonnegativ e. The

functions g′1(1− u) and g′2(1− u) are nondecr easing, and λ1 ≥ 0; however, the nondecr easing
condition for x̃(u) can be violated when λ2 < 0.

For the sequel, it would be conv enient to introduce the notation for the constant

p =
π2

6
− 1 ≈ 0.645.

Corollary 2. For all X ∈ CN we have

E(X) ≤ p CE(X) +
√
(1− p2)(1− CE2(X)), (13)

and this bound is tight if CE(X) ≥ p.

By symmetr y (2) of the entr opies, we also have

CE(X) ≤ p E(X) +
√
(1− p2)(1− E2(X)),

and this bound is tight if E(X) ≥ p. By inv erting the inequality , we can also obtain a lower bound

E(X) ≥ p CE(X)−
√
(1− p2)(1− CE2(X))

in the range CE(X) ≥
√

1− p2 ≈ 0.764 wher e this bound is nonnegativ e (but we cannot claim
that it is tight). Similarly , a lower bound for CE(X) can be found.

The question of what is the upper bound when x̃(u) is not nondecr easing remains open.
In this case we deal with a problem of not the calculus of variations but optimal contr ol (with
an additional condition x′(u) ≥ 0), which is much mor e complicated. One can also apply an
appr oach to establishing (not tight) bounds using special families of distributions, as w as done in
[11]. This appr oach is exploited in the proof of the follo wing theor em

Theorem 2. For any 0 < t < p we have

max
X∈CN, CE(X)=t

E(X) ≥
√

1− a
1 + a

(1− ln(1− a)),

wher e a is a unique solution on (0, 1) of the equation 1

− a(ln a− 1)− Li2(1− a) + 1√
1− a2

= t.

By symmetr y (2), an analogous estimate holds for CE(X) giv en E(X), whence one can obtain
a lower estimate for the maximum of E(X) giv en CE(X).

Figur e 1 repr esents plots of the obtained bounds for the entr opies E(X) and CE(X). In
bold, we highlight the inter val wher e the bound (13) is tight; the dotted line sho ws the bound
of Theor em 2. Points of the bound marked by the triangle, star, and circle correspond to the
distributions (5), (6), and (7). In the ranges CE(X) < p and E(X) < p, true bounds lie some wher e
in betw een the solid and dotted lines. Establishing them deser ves further inv estigation.

1Her e, Li m(z) = ∑∞
n=1 zn/ nm is the polylogarithm of order m.

RT&A, No 1 (77)
 Volume 19, March 2024

444



Alexe y V. Lebede v
EXACT AND CONDITIONAL BOUNDS

Figure 1: Plots of the bounds for the entropies E(X) and CE(X).

3. Proofs

Proof of Corollary 1. Let, for definiteness, α < β; then 1/ 2 < α ≤ 1. Put g(u) = (uα − uβ)/ (β−
α); then

g′(u) =
αuα−1 − βuβ−1

β− α
,

g′′(u) =
α(α− 1)uα−2 − β(β− 1)uβ−2

β− α
< 0, u ∈ (0, 1).

We obtain

G =
∫ 1

0

(
αuα−1 − βuβ−1

β− α

)2

du

=
1

(β− α)2

∫ 1

0
(α2u2α−2 − 2αβuα+β−2 + β2u2β−2) du

=
1

(β− α)2

{
α2

2α− 1
− 2αβ

α + β− 1
+

β2

2β− 1

}
=

2αβ− α− β + 1
(2α− 1)(2β− 1)(α + β− 1)

(14)

and equations (9) and (10).
Proof of Theorem 1. By considering the Lagrangian

L =
∫ 1

0

(
λ1x(u)g′1(1− u) + λ2x(u)g′2(1− u) + λ3x(u) + λ4x2(u)

)
du,

we obtain the Euler –Lagrange equation

λ1g′1(1− u) + λ2g′2(1− u) + λ3 + 2λ4x(u) = 0,

wher e we may without loss of generality takee λ4 = −1/ 2.
Thus, we will seek for a function

x̃(u) = λ1g′1(1− u) + λ2g′2(1− u) + λ3

satisfying the conditions∫ 1

0
x̃(u) du = 0,

∫ 1

0
x̃2(u) du = 1,

∫ 1

0
x̃(u)g′2(1− u) du = t.
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The first condition, taking into account that gi(0) = gi(1) = 0, i = 1, 2, giv es λ3 = 0; the
second and third yield a system of equations{

G11λ2
1 + 2G12λ1λ2 + G22λ2

2 = 1,
G12λ1 + G22λ2 = t;

by solving this system with respect to λ1 and λ2, we obtain (12).
Next, for any function x(u) corresponding to X ∈ CN, by the Cauchy–Buny ako vsky–S chw arz

inequality we obtain

∫ 1

0
x(u)x̃(u) du = λ1 Eg1 (X) + λ2t ≤

(∫ 1

0
x2(u) du

)1/ 2 (∫ 1

0
x̃2(u) du

)1/ 2
= 1, (15)

whence

Eg1 (X) ≤ 1− λ2t
λ1

=
G22 − (t− λ1G12)t

λ1G22
=

λ1G12t + G22 − t2

λ1G22

=
1

G22

(
G12t +

√
(G11G22 − G2

12)(G22 − t2)

)
.

If x̃(u) is nondecr easing and thus corresponds to some distribution, then with x(u) = x̃(u)
inequality (15) tur ns into equality , and the bound is attained.

Proof of Corollary 2. We apply Theor em 1 in the case of g1(u) = −u ln u and g2(u) =
−(1− u) ln(1− u); then, as we have alr eady obtained, G11 = G22 = 1, and we find

G12 = −
∫ 1

0
(ln u + 1)(ln(1− u) + 1) du = p;

plugging this into (11), we obtain (13). In this case we have

x̃(u) = λ1(−(ln(1− u) + 1)) + λ2(ln u + 1),

wher e

λ1 =

√
1− t2

1− p2 , λ2 = t− pλ1.

A necessar y and suf ficient condition for x̃(u) to be nondecr easing on (0, 1) is λ2 ≥ 0, which
happens to be equiv alent to the inequality t ≥ p.

Proof of Theorem 2. Consider a family of random variables X0
a , a ∈ [0, 1), whose distribution

is a mixtur e of zer o (with probability a) and the standar d exponential distribution (with probability
1− a). Then the inv erse CDFs take the for m

x0
a(u) =

0, 0 ≤ u < a;

− ln
1− u
1− a

, a ≤ u < 1.

We have

EX0
a = 1− a, E(X0

a)
2 = 2(1− a), VarX0

a = 2(1− a)− (1− a)2 = 1− a2.

Put

Xa =
X0

a − EX0
a√

VarX0
a

.

Then Xa ∈ CN, a ∈ [0, 1); X0 has distribution (5); and Xa
d−→ 0 as a→ 1− 0.

RT&A, No 1 (77)
 Volume 19, March 2024

446



Alexe y V. Lebede v
EXACT AND CONDITIONAL BOUNDS

Compute the corresponding entr opies for 0 < a < 1:

E(Xa) =
E(X0

a)√
1− a2

= − 1√
1− a2

∫ 1

a
ln

1− u
1− a

(ln(1− u) + 1) du

=
(1− a)(1− ln(1− a))√

1− a2
=

√
1− a
1 + a

(1− ln(1− a)),

CE(Xa) =
CE(X0

a)√
1− a2

=
1√

1− a2

∫ 1

a
ln

1− u
1− a

(ln u + 1) du

= − a(ln a− 1)− Li2(1− a) + 1√
1− a2

,

and CE(Xa) strictly decr eases in the inter val 0 < a < 1.
Thus, from the values of the entr opies on the family Xa, a ∈ (0, 1), we can obtain the estimate

of Theor em 2.
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