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Abstract

In this paper, we first study doubly truncated (interval) Tsallis entropy and suggest doubly truncated
(interval) cumulative residual Tsallis entropy (ICRT), which is an extension of cumulative residual
Tsallis entropy (CRT) and the dynamic CRT defined by the aid of Sati and Gupta and of Kumar, re-
spectively. We investigate some properties and characterization of this measure, such as its relation with
doubly truncated Shannon entropy, mean residual (past) life, and hazard rate (or reversed hazard rate).
Also, the twin measure, doubly truncated (interval) cumulative past Tsallis entropy, is determined, and
some of its properties are studied. Moreover, their monotonicity and related aging classes of distributions
are expressed, and the upper (lower) bound for them is acquired. In the end, we propose four nonpara-
metric estimators and compare their performance by utilizing simulation data. Also, being based on the
best-proposed estimator, a real data set is additionally examined.

Keywords: Doubly truncated (inter val) Tsallis entr opy, Doubly truncated (inter val) cumula-
tive residual Tsallis entr opy (ICRT), Doubly truncated (inter val) cumulativ e past Tsallis entr opy
(ICPT), Hazar d rate, Reversed hazar d rate, Mean residual life, Mean past life, Nonparametric
estimators

1. Introduction

The notion of entr opy, later generali zed to infor mation theor y and statistical mechanics, w as
initially created by physicists in the area of equilibrium ther modynamics. The most famou s one
is due to [22], that pla ys an essential role in measuring the average uncertainty of a random
variable. Entr opy pla ys an important role in meas uring the index of dispersion, volatility , or
uncertainty related to a random variable X. Her e and during this paper , X is an absolutely con-
tinuous nonnegativ e random variable, with probability density function (pdf) f (x) and sur viv al
function F̄(x) = P(X > x). Then the average amount of uncertainty associated with the random
variable X as giv en by Shannon entr opy, is

H(X) = −
∫ ∞

0
f (x) ln f (x)dx.

Although, in certain situations, the Shannon entr opy is not suitable wher e some generalized
for ms are of importance. Several generalized entr opy measur es are accessible in literatur e, which
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have many huge properties consisting of smoothness, big dynamic range with respect to certain
conditions, and many othe rs, which lead them to greater flexibility in practice. One prevalent
generalization is the Tsallis entropy, introduced by [24], deter mined as a generalization of the
Boltzmann–Gibbs entr opy. Inside the studying of statistical mechanics, Tsallis entr opy giv es a
much broader vie w of how disor der emer ges in macr oscopic systems. For a continuous nonneg-
ativ e random variable X, Tsallis entr opy is deter mined as

Tα(X) =
1

α − 1

(
1 −

∫ ∞

0
f (x)αdx

)
, (1)

wher e 0 < α ̸= 1. Clearly , when α → 1, we have Tα(X) → H(X). Tsallis exploited its nonexten-
siv e featur es, and it has more and mor e extensiv e applic ations in science and technolog y. This
entr opy measur e is extra flexible because of the param eter α, and it increases the scope of ap-
plication. Tsallis entr opy preser ves many signific ant characteristics of Shannon entr opy except
for the additivity property . From the years 2000 on, an increasingly wide spectrum of natural,
artificial, and socially complicated systems were ide ntified that verify the predictions and con-
clusions deriv ed from this nonadditiv e entr opy. Extensiv e or nonextensiv e statistical mechanics
deriv e from the additivity or nonadditivity of the corresponding entr opy measur es. The Tsallis
entr opy is broadly utilized in physics to examine the distribution characterizing the movement
of cold atoms in dissipativ e optical lattices [9] and signal processing [23]. More properties and
applications of Tsallis entr opy have been mentioned in [24, 25].
Considering the measur es based on residual lifetime random variable, Xt = (X − t|X ≥ t) has
an essential role in many grounds, including reliability theor y, sur viv al analysis, and infor ma-
tion theor y. So, [10, 6] defined the residual Tsallis entr opy (RT) based on the random variable Xt
by

RT(X; t) =
1

α − 1

(
1 −

∫ ∞

t
(

f (x)
F̄(t)

)αdx
)

.

The expected uncertainty inv olv ed in the remaining lifetime of a component is measur ed ba-
sically by RT. It is clear that RT(X; 0) = Tα(X). Lately , [10, 4] introduced an entr opy-based
measur e of uncertainty in past lifetime distributions and denominated it past Tsallis entr opy
(PT). The uncertainty of the idle time of a component or system that is based on past lifetime
random variable X∗

t = (t − X|X ≤ t) is indicated by PT, and it is giv en by

PT(X; t) =
1

α − 1

(
1 −

∫ t

0
(

f (x)
F(t)

)αdx
)

,

and also, PT(X; ∞) = Tα(X).
Curr ently , many resear chers adv anced new measur es of uncertainty to overcome the limi-

tations of traditional entr opy measur es and increase the applicability of infor mation measur es
in div erse areas of science and engineering. With this motiv ation, [18] studied an alter nativ e
to Shannon dif ferential entropy. The cumulativ e residual entr opy (CRE) is obtained by replac-
ing the pdf f (x) in H(X) with the sur viv al function F̄(x) = P(X > x), giv en by H(X) =
−
∫ ∞

0 F̄(x) ln F̄(x)dx. The CRE is regar ded to be greater stable due to the fact that the distri-
bution function is greater regular than the pdf, and it owns mor e mathematical properties and
special applications. Also, it is easily computable, alw ays nonnegativ e, and its definition is valid
in both the continuous and discr ete cases. Additionally , the distribution exists despite the fact
that the pdf does now not.

In infor mation theor y, numer ous attempts have been made by resear chers, and an eminent
amount of work has been done from both theor etical and application points of vie w for studying
and extending the notion of CRE. Motiv ed by the extensiv e applicability of H(X), a cumulativ e
version of (1) studi ed by [19], is dete rmined as the cumulativ e Tsallis entr opy (CRT)

CRT(X) =
1

α − 1

(
1 −

∫ ∞

0
F̄(x)αdx

)
.
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Although [19] denoted that CRT(X) tends to CRE(X) when α → 1, wher e CRE(X) = −
∫ ∞

0 F̄(x) ln (F̄(x)dx,
defined by [18], but [16] sho wed with a counter example that it is not true. The cumulativ e past
Tsallis entropy (CPT) has also been introduced and studied by [16] as follo ws:

CPT(X) =
1

α − 1

(
1 −

∫ ∞

0
F(x)αdx

)
.

[19] ga ve the dynamic version of cumulativ e residual Tsallis entr opy (DCRT), which is the CRT
of the residual random variable Xt and it is giv en by

DCRT(X; t) =
1

α − 1

(
1 −

∫ ∞

t
(

F̄(x)
F̄(t)

)αdx
)

,

and DCRT(X; 0) = CRT(X). Further mor e, [8] studied many properties of DCRT, and [16]
introduced the dynamic version of cumulativ e past Tsallis entr opy (DCPT) by

DCPT(X; t) =
1

α − 1

(
1 −

∫ t

0
(

F(x)
F(t)

)αdx
)

,

and DCPT(X; ∞) = CPT(X). Occasionally , in many conditions, we just possess infor mation
betw een tw o points. Thus, we have to look at the statistical me asur es (particularly in infor mation
theor y and reliability) under the case of doubly truncated random variables. For instance, in
reliability , if X indicates the lifetime of a unit, then the random variable Xt1 ,t2 = (X − t1|t1 ≤
X ≤ t2) is known as the doubly truncated residual lifetime. Note that the well-kno wn random
variable, Xt = (X − t|X ≥ t), is the particular case of Xt1 ,t2 when t2 tends to ∞. Also, doubly
truncated past lifetime is the random variable X∗

t1 ,t2
= (t2 − X|t1 ≤ X ≤ t2), which in the specific

case when t1 = 0, it is the past lifetime random variable X∗
t . Another generalization of Tsallis

entr opy is based on a doubly truncated (inter val) random variable [13], which reads as follo ws:

Tα(X; t1, t2) =
1

α − 1

(
1 −

∫ t2

t1
(

f (x)
F(t2)− F(t1)

)αdx
)

, (2)

wher e (t1, t2) ∈ D = {(t1, t2) : F(t1) < F(t2)} and Tα(X; 0, ∞) is the Tsallis entr opy Tα(X), and
Tα(X; t1, ∞) is the residual entr opy RT(X; t1) and also Tα(X; 0, t2) is the past entr opy PT(X; t2).
Also, w hen α → 1, we have Tα(X; t1, t2) → H(X; t1, t2) = −

∫ t2
t1

f (x)
F(t2)−F(t1)

ln( f (x)
F(t2)−F(t1)

).
The distribution function estimation is not only an inter esting problem by itself, but also it

emer ges naturally in actual problems of many scientific fields, consisting of seismology , hydrol-
ogy , envir onmental sciences, and so on. Curr ently , in those disciplines, numer ous methodologies
have appear ed for attacking statistical problems based on nonparam etric ideas. With this motiv a-
tion, the perfor mance of four nonparametric estimators of ICPT is compar ed, and also a real-life
data set is illustrated based on the best-pr oposed estimator .

In this paper , some properties of Tα(X; t1, t2) are introduced. Addition ally , we discuss the
doubly truncated (inter val) cumulativ e residual Tsallis entr opy (ICRT) and doubly truncated
(inter val) cumulativ e past Tsallis entr opy (ICPT), which can be general for ms of the preceding
findings. Some properties of ICRT and ICPT and their relationships with reliability measur es,
including hazar d rate (or reversed hazar d rate) and me an residual life (or mean past life), are
studied. Finally , we consider four empirical and ker nel-based estimators. Then, by using sim-
ulated data, we compar e the beha vior of the proposed estimators. In addition, a real data set
from envir onmental monitoring is studied.

2. Doubly truncated Tsallis entropy

In this section, we expr ess some properties and characterization results of Tα(X; t1, t2). First, for
the Tα(X; t1, t2), an upper inter val is acquir ed with respect to t2, for any fixed t1, in the next
theor em. [13] proved a result simil ar to the follo wing theor em, with respect to t1, for any fixed
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t2. Also, it should be noted that [11] introduced the generalized failur e rate (GFR) based on the
doubly truncated random variables by

h1(t1, t2) = lim
h→0+

[
P(t1 ≤ x ≤ t1 + h|t1 ≤ x ≤ t2)

h

]
=

f (t1)

F(t2)− F(t1)
(3)

and

h2(t1, t2) = lim
h→0−

[
P(t2 ≤ x ≤ t2 + h|t1 ≤ x ≤ t2)

h

]
=

f (t2)

F(t2)− F(t1)
, (4)

wher e their relationships with m(t1, t2) = E(X|t1 ≤ X ≤ t2) =
∫ t2

t1
x f (x)

F(t2)−F(t1)
dx for (t1, t2) ∈ D

are as follo ws:

h1(t1, t2) =

∂m(t1 ,t2)
∂t1

m(t1, t2)− t1
, (5)

h2(t1, t2) =

∂m(t1 ,t2)
∂t2

t2 − m(t1, t2)
. (6)

A lower (upper) bound for the ICRT(X; t1, t2) when increasing the ICRT property is acquir ed
in the next theor em, for 0 < α < 1(α > 1).

Theorem 1. The random variable X has increasing doubly truncated (inter val) Tsallis entr opy
property if and only if the follo wing inequalities are satisfied for all (t1, t2) ∈ D and 0 < α <
1(α > 1):

1
α − 1

1 − 1
α

 ∂m(t1 ,t2)
∂t2

t2 − m(t1, t2)

α−1
 ≤ (≥)Tα(X; t1, t2).

Proof. By dif ferentiating Tα(X; t1, t2) of the for m (2) with respect to t2, we have

∂Tα(X; t1 , t2)

∂t2
=

−1
α − 1

(
(

f (t2)

F(t2)− F(t1)
)α − α

f (t2)

F(t2)− F(t1)

∫ t2

t1

(
f (x)

F(t2)− F(t1)
)αdx

)
=

−1
α − 1

h2
α(t1 , t2) +

α

α − 1
h2(t1 , t2)(1 − (α − 1)Tα(X; t1 , t2))

= h2(t1 , t2)
−1

α − 1
h2

α−1(t1 , t2) +
α

α − 1
(1 − (α − 1)Tα(X; t1 , t2)).

So, after sui table substitution of equation (6) and simplifying the equation we have,

Tα(X; t1, t2) ≤ (≥)
1

α − 1
(1 − 1

α
(h2(t1, t2))

α−1),

the proof is complete. ■
We study the effect of increasing transfor mation on Tα(Y; t1, t2).

Lemma 1. Let X be a nonnegativ e continuous random variable with cumulativ e distrib ution
function (cdf) F, and take Y = ϕ(X), wher e ϕ(·) is a strictly increasing dif ferentiable functi on.
Then

Tα(Y; t1, t2) =
1

α − 1

(
1 −

∫ ϕ−1(t2)

max {0,ϕ−1(t1)}

(
f (x)

F(ϕ−1(t2))− F(ϕ−1(t1))

)α 1
(ϕ′(x))α−1 dx

)
.

If Z = aX + b, with a > 0 and b ≥ 0, so FaX+b(z) = FX(
z−b

a ), then

Tα(Z; t1, t2) =
aα−1 − 1

aα−1(α − 1)
+ (

aα−1 − 1
aα−1 )Tα(X;

t1 − b
a

,
t2 − b

a
).

Ther e are an identity and inequalities for doubly truncated (inter val) Tsallis entr opy based on
the assumptions of the follo wing proposition.
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Proposition 1. Let X be a random variable with support in [0, r] wher e r > 0 and symmetric
with respect to r

2 ; that is, F(x) = F̄(r − x) for 0 ≤ x ≤ r. Then

Tα(X; t1, t2) = Tα(X; r − t1, r − t2); 0 ≤ t1, t2 ≤ r.

Proof. We have

Tα(X; t1, t2) =
1

α − 1

(
1 −

∫ t2

t1
(

f (x)
F(t2)− F(t1)

)αdx
)

=
1

α − 1

(
1 −

∫ t2

t1
(

f (r − x)
F̄(r − t2)− F̄(r − t1)

)αdx
)

= − 1
α − 1

(
1 −

∫ r−t2

r−t1
(

f (y)
F(r − t1)− F(r − t2)

)αdy
)

=
1

α − 1

(
1 −

∫ r−t1

r−t2
(

f (y)
F(r − t1)− F(r − t2)

)αdy
)

= Tα(X; r − t1, r − t2).

■

Example 1. If X is unifor mly distributed in [0, r], then for 0 ≤ t1, t2 ≤ r, we have Tα(X; t1, t2) =
1

α−1 (t2 − t1)
1−α, which is in agr eement with Proposition 1.

Proposition 2. Let X be a nonnegativ e and absolutely continuous random variable. Then for
α > 1(0 < α < 1), we have

1 − (t2 − t1)(≤)Tα(X; t1, t2) ≤ (t2 − t1)− 1. (7)

Proof. The upper bound and lower bound giv en in (7) can be obtai ned from the well-kno wn
inequality ln x ≤ x − 1, wher e x > 0. Let x = f (x)

F(t2)−F(t1)
. Then xα−1 > 0 for α > 1(0 < α < 1),

and by using H(X; t1, t2) ≤ (t2 − t1)− 1 [15], the proof is complete. ■

Proposition 3. Let X be a nonnegativ e and absolutely continuous random variable with cdf F(x)
and pdf f (x). If f (x) is decr easing in x, then for 0 < α < 1(α > 1),

1 − hα
1(t1, t2)(t2 − t1)

(α − 1)
≥ (≤)Tα(X; t1, t2) ≥ (≤)

1 − hα
2(t1, t2)(t2 − t1)

(α − 1)
,

wher e h1(t1, t2) and h2(t1, t2) are defined in (3) and (4).

Proof. Let f (x) be decr easing in x. Then for t1 ≤ x ≤ t2, we have

f (t1)

F(t2)− F(t1)
≥ f (x)

F(t2)− F(t1)
≥ f (t2)

F(t2)− F(t1)
.

So, ∫ t2

t1
(

f (t1)

F(t2)− F(t1)
)αdx ≥

∫ t2

t1
(

f (x)
F(t2)− F(t1)

)αdx ≥
∫ t2

t1
(

f (t2)

F(t2)− F(t1)
)αdx.

Then

1 − hα
1(t1, t2)(t2 − t1) ≤ 1 −

∫ t2

t1
(

f (x)
F(t2)− F(t1)

)αdx ≤ 1 − hα
2(t1, t2)(t2 − t1).

Thus for 0 < α < 1(α > 1), afte r some calculations, the proof is complete. ■

Example 2. Let X be a nonnegat ive and absolute ly cont inuous random variable w ith cdf F(x) =

1 − e−x and pdf f (x) = e−x. Then, Tα(X; t1, t2) = 1
(α−1)

(
1 −

1
α (e

−αt1−e−αt2 )

(et1−et2 )α

)
, for all α > 1(0 <

α < 1) and t1, t2(t1 < t2), which is in agr eement with Proposition 2 and Proposition 3.

For increasing function f (x), the above proposition can be similarly proved.
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3. Interval cumulative residual and past Tsallis entropy

Let X be an absolutely continuous random variable and let D = {(x, y) : F(x) < F(y)}. Then we
define the ICPT and ICRT functions, respectiv ely, as follo ws:

ICPT(X; t1, t2) =
1

α − 1

(
1 −

∫ t2

t1
(

F(x)
F(t2)− F(t1)

)αdx
)

(8)

and

ICRT(X; t1, t2) =
1

α − 1

(
1 −

∫ t2

t1
(

F̄(x)
F̄(t1)− F̄(t2)

)αdx
)

, (9)

wher e (t1, t2) ∈ D. It is clear that, ICRT(X; 0, ∞) is CRT(X), and ICRT(X; t1, ∞) is DCRt(X; t1).
Also, ICPT(X; 0, ∞) is CPT(X), and ICPE(X; 0, t2) is DCPT(X; t2). The applications of clas ses
of life distributions can be demonstrated in dif ferent areas, including reliability , engineering,
biological science, maintenance, and biometrics. Hence, statisticians and reliability analysts are
inter ested in modeling sur viv al infor mation and classifications of life distributions based on a
few aspects of aging. For instance , we refer the reader to [15, 1, 26]. So, the corresponding aging
classes are defined as follo ws.

Definition 1. Consider the random variable X.

• X is said to have decr easing interval cumulativ e residual Tsallis entr opy (DICRT) property
if and only if for any fixed t2, ICRT(X; t1, t2) is decr easing with respect to t1.

• X is said to have increasing inte rval cumulativ e past Tsallis entr opy (IICPT) property if and
only if for any fixed t1, ICPT(X; t1, t2) is increasing with respect to t2.

An upper bound for ICRT(X; t1, t2) with the decr easing (increasing) ICRT property is ac-
quir ed in the next theor ems.

Theorem 2. The random variable X has decr easing (increasing) ICRT property if and only if the
follo wing inequality is satisfied for all (t1, t2) ∈ D and 0 < α < 1(α > 1):

ICRT(X; t1, t2) ≤ (≥)
1

α − 1

1 − 1
α
(

F̄(t1)

f (t1)
)α

1 + ∂µ(t1 ,t2)
∂t1

µ(t1, t2)

α−1
 .

Proof. By dif ferentiating ICRT(X; t1, t2) of the for m (9) wi th respect to t1, we have

∂ICRT(X; t1, t2)

∂t1
=

1
α − 1

(
(

F̄(t1)

F̄(t1)− F̄(t2)
)α

−α
f (t1)

F̄(t1)− F̄(t2)

∫ t2

t1
(

F̄(x)
F̄(t1)− F̄(t2)

)αdx
)

=
1

α − 1
(

F̄(t1)

f (t1)
)αh1

α(t1, t2)

− α

α − 1
h1(t1, t2)(1 − (α − 1)ICRT(X; t1, t2)).

By the definition of the GFR in (3) and (4), their relationships wit h µ(t1, t2) = E(X − t1|t1 ≤ X ≤
t2) and µ∗(t1, t2) = E(t2 − X|t1 ≤ X ≤ t2) are, respectiv ely, as follo ws:

h1(t1, t2) =
1 + ∂µ(t1 ,t2)

∂t1

µ(t1, t2)
, (10)

h2(t1, t2) =
1 − ∂µ∗(t1 ,t2)

∂t2

µ(t1, t2)
. (11)
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So, after suitable substitution of Eqs. (10) and (11) and simplifying the equations, we have

ICRT(X; t1, t2) ≤ (≥)
1

α − 1

(
1 − 1

α
(

F̄(t1)

f (t1)
)α(h1(t1, t2))

α−1
)

.

■

Example 3. Let X be distributed uniformly on (0, β), β > 0, then it can be easily verified that,

ICRT(X; t1, t2) =
1

α − 1
(1 − (β − t1)

α+1 − (β − t2)
α+1

(t2 − t1)
α(1 + α)

),

µ(t1, t2) =
t2 − t1

2
.

the differentiation of ICRT with respect to t1 is negative for all (t1, t2) ∈ D, which shows that
the uniform distribution hasDICRT property and theorem2 is satisfied.

There exist no nonnegative random variables with increasing ICRT(I ICRT) over the domain
[0, ∞), indicated in the following theorem.

Theorem 3. If X is a nonnegative nondegenerate random variable, then ICRT(X; t1, t2) cannot
be an increasing function with respect to t1 for any real fixed t2.

Proof. First note that, using lHopitals rule, we have

lim
t1→t2

ICRT(X; t1, t2) = lim
t1→t2

1
α − 1

(
1 −

∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)αdx

)

=
1

α − 1

1 − lim
t1→t2

∫ t2
t1

(F̄(x))αdx

(F̄(t1)− F̄(t2))
α


=

1
α − 1

(
1 − lim

t1→t2

(F̄(t1))
α

α f (t1)(F(t2)− F(t1))
α−1

)
= −∞.

Now, on the contrary, suppose that ICRT(X; t1, t2) is increasing in t1. Then for all t1 ≤ t2,
ICRT(X; t1, t2) ≤ ICRT(X; t2, t2) = −∞, which contradicts with the fact that ICRT(X; t1, t2) ∈ ℜ
for all (t1, t2) ∈ D. ■
In the following proposition, we obtain a lower bound, according to µ(X) =

∫ ∞
x

F(x)
F(t) dt, for

E(µ(X)|t1 ≤ X ≤ t2).

Proposition 4. Suppose that F is an absolutely continuous distribution function with ICRT(X; t1, t2) <
∞. Then, for 0 < α < 1

E(µ(X)|t1 ≤ X ≤ t2) ≥ (α − 1)ICRT(X; t1, t2)− 1.

Proof. By using E(µ(X)|t1 ≤ X ≤ t2) ≥ ICRE(X; t1, t2) [5], we have∫ t2

t1

F̄(x)
F̄(t1)− F̄(t2)

log(
F̄(x)

F̄(t1)− F̄(t2)
)dx

≤
∫ t2

t1

F̄(x)
F̄(t1)− F̄(t2)

(
(

F̄(x)
F̄(t1)− F̄(t2)

)− 1
)

dx

≤
∫ t2

t1

(
(

F̄(x)
F̄(t1)− F̄(t2)

)− 1
)

dx

≤
∫ t2

t1

(
(

F̄(x)
F̄(t1)− F̄(t2)

)α − 1
)

dx

=
∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)α − (t2 − t1)dx.
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Then

−
∫ t2

t1

F̄(x)
F̄(t1)− F̄(t2)

log(
F̄(x)

F̄(t1)− F̄(t2)
)dx

≥ −
∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)α + (t2 − t1)dx

≥ −
∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)αdx

= (α − 1)ICRT(X; t1, t2)− 1.

■
The following theorem tries to clarify the problem, achieving when the interval entropy

uniquely appoints the distribution function.

Theorem 4. Let X be a nonnegative and continuous random variable and let ICRT(X; t1, t2) be
increasing with respect to t1 and decreasing with respect to t2. Then ICRT(X; t1, t2) uniquely
determines F(x).

Proof. By differentiating ICRT(X; t1, t2) with respect to tj(j = 1, 2), we have

∂ICRT(X; t1, t2)

∂t2
=

1
α − 1

(
−(

F̄(t2)

F̄(t1)− F̄(t2)
)α

+α
f (t2)

F̄(t1)− F̄(t2)

∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)αdx

)
=

−1
α − 1

(
F̄(t2)

f (t2)
)αh2

α(t1, t2)

+
α

α − 1
h2(t1, t2)(1 − (α − 1)ICRT(X; t1, t2))

= −h2(t1, t2)

(
1

α − 1
(

F̄(t2)

f (t2)
)αh2

α−1(t1, t2)

− α

α − 1
(1 − (α − 1)ICRT(X; t1, t2))

)
,

and

∂ICRT(X; t1, t2)

∂t1
=

1
α − 1

(
(

F̄(t1)

F̄(t1)− F̄(t2)
)α

−α
f (t1)

F̄(t1)− F̄(t2)

∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)αdx

)
=

1
α − 1

(
F̄(t1)

f (t1)
)αh1

α(t1, t2)

− α

α − 1
h1(t1, t2)(1 − (α − 1)ICRT(X; t1, t2))

= h1(t1, t2)

(
1

α − 1
(

F̄(t1)

f (t1)
)αh1

α−1(t1, t2)

− α

α − 1
(1 − (α − 1)ICRT(X; t1, t2))

)
.

Thus, for fixed t2 and arbitrary t1, h1(t1, t2) is a positive solution to the following equation:

g(xt2) = xt2

(
1

α − 1
(

F̄(t1)

F̄(t1)
)αxt2

α−1 − α

α − 1
(1 − (α − 1)ICRT(X; t1, t2))

)
(12)

−∂ICRT(X; t1, t2)

∂t1
.
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Similarly, for fixed t1 and arbitrary t2, we have h2(t1, t2) as a positive solution to the following
equation:

γ(yt1) = yt1

(
1

α − 1
(

F̄(t2)

F̄(t2)
)αyt1

α−1 − α

α − 1
(1 − (α − 1)ICRT(X; t1, t2))

)
(13)

+
∂ICRT(X; t1, t2)

∂t2
.

By differentiating g and γ with respect to xt2 and yt1 , we get

∂g(xt2)

∂xt2

=
α

α − 1

(
(

F̄(t1)

f (t1)
)αxt2

α−1 − (1 − (α − 1)ICRT(X; t1, t2))

)
,

and

∂γ(yt1)

∂yt1

=
α

α − 1

(
(

F̄(t2)

f (t2)
)αyt1

α−1 − (1 − (α − 1)ICRT(X; t1, t2))

)
.

Furthermore, the second-order derivatives of g and γ with respect to xt2 and yt1 are α( F̄(t1)
f (t1)

)αxt2
α−2 >

0 and α( F̄(t2)
f (t2)

)αyt1
α−2 > 0, respectively. Then the functions g and γ are minimized at points xt2 =(

(1 − (α − 1)ICRT(X; t1, t2))(
f (t1)
F̄(t1)

)
α) 1

α−1
and yt1 =

(
(1 − (α − 1)ICRT(X; t1, t2))(

f (t2)
F̄(t2)

)
α) 1

α−1
, re-

spectively. In addition,

g(0) = −∂ICRT(X; t1, t2)

∂t1
< 0, g(∞) = ∞,

and

γ(0) = −∂ICRT(X; t1, t2)

∂t2
< 0, γ(∞) = ∞.

So, both functions g and γ first decrease and then increase with respect to xt2 and yt1 , respec-
tively, which conclude that equations (12) and (13) have unique roots h1(t1, t2) and h2(t1, t2), re-
spectively. Now, ICRT(X; t1, t2) uniquely determines GFRs and the distribution function, with
attention to Remark 3.1 [14]. ■
Similar to Theorems 2, 3, and 4 and Proposition 4, we have the following results:

• The random variable X has decreasing (increasing) ICRT property if and only if the follow-
ing inequality is satisfied for all (t1, t2) ∈ D and 0 < α < 1(α > 1):

ICPT(X; t1, t2) ≤ (≥)
1

α − 1

1 − 1
α
(

F̄(t2)

f (t2)
)α

1 − ∂µ∗(t1,t2)
∂t2

µ(t1, t2)

α−1
 .

• If X is a nonnegative nondegenerate random variable, then ICPT(X; t1, t2) cannot be a
decreasing function with respect to t2 for any real fixed t1.

• Suppose that F is an absolutely continuous distribution function with ICPT(X; t1, t2) < ∞,
then

E(µ∗(X)|t1 ≤ X ≤ t2) ≥ (α − 1)ICPT(X; t1, t2)− 1.

• Let X be a nonnegative and continuous random variable and let ICPT(X; t1, t2) be increas-
ing with respect to t1 and decreasing with respect to t2. Then ICPT(X; t1, t2) uniquely
determines F(x).

Example 4. Let X be distributed uniformly on (0, β), β > 0, then it can be easily verified that,

ICPT(X; t1, t2) =
1

α − 1
(1 − t2

α+1 − t1
α+1

(t2 − t1)
α(1 + α)

),
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µ∗(t1, t2) =
t2 − t1

2
.

As the ICPT is increasing with respect to t2, X has I ICPT properties.

As in Lemma 1, the following theorem is proved by the same approach.

Lemma 2. Let X be a nonnegative continuous random variable with cdf F, and take Y = ϕ(X),
where ϕ(·) is a strictly increasing differentiable function. Then

ICRT(Y; t1, t2) =
1

α − 1

(
1 −

∫ ϕ−1(t2)

max{0,ϕ−1(t1)}

(
F̄(x)

F̄(ϕ−1(t1))− F̄(ϕ−1(t2))

)α

ϕ′(x)dx

)
.

Proposition 5. If Z = aX + b, with a > 0 and b ≥ 0, so F̄aX+b(z) = F̄X(
z−b

a ), then

ICRT(Z; t1, t2) =
1 − a
α − 1

+ aICRT(X;
t1 − b

a
,

t2 − b
a

).

There is an identity for doubly truncated (interval) CRT in the following theorem.

Theorem 5. Let X be a random variable with support in [0, r] and symmetric with respect to r
2 ,

that is, F̄(x) = F(r − x) for 0 ≤ x ≤ r. Then

ICRT(X; t1, t2) = ICPT(X; r − t2, r − t1), 0 ≤ t1, t2 ≤ r.

Proof. The theorem is proved by the following equation:

ICRT(X; t1, t2) =
1

α − 1

(
1 −

∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)αdx

)
=

1
α − 1

(
1 −

∫ t2

t1

(
F(r − x)

F(r − t1)− F(r − t2)
)αdx

)
= − 1

α − 1

(
1 −

∫ r−t2

r−t1

(
F(y)

F(r − t1)− F(r − t2)
)αdy

)
=

1
α − 1

(
1 −

∫ r−t1

r−t2

(
F(y)

F(r − t1)− F(r − t2)
)αdy

)
= ICPT(X; r − t2, r − t1).

■

Example 5. If X is uniformly distributed in [0, r], then for 0 ≤ t1, t2 ≤ r, we have ICRT(X; t1, t2) =

ICPT(X; r − t2, r − t1) =
1

α−1 (1 −
(r−t1)

α+1−(r−t2)
α+1

(t2−t1)
α(1+α)

), which is in agreement with Theorem 5.

Similar to Lemma 2, Proposition 5, and Theorem 5, we have the following results:
• Let X be a nonnegative continuous random variable with cdf F, and take Y = ϕ(X), where

ϕ(·) is a strictly increasing differentiable function. Then

ICPT(Y; t1, t2) =
1

α − 1

(
1 −

∫ ϕ−1(t2)

max{0,ϕ−1(t1)}

(
F(x)

F(ϕ−1(t2))− F(ϕ−1(t1))

)α

ϕ′(x)dx

)
.

• If Z = aX + b, with a > 0 and b ≥ 0, so FaX+b(z) = FX(
z−b

a ), then

ICPT(Z; t1, t2) =
1 − a
α − 1

+ aICPT(X;
t1 − b

a
,

t2 − b
a

).

• Let X be a random variable with support in [0, r] and symmetric with respect to r
2 , that is,

F(x) = F̄(r − x) for 0 ≤ x ≤ r. Then

ICPT(X; t1, t2) = ICRT(X; r − t2, r − t1); 0 ≤ t1, t2 ≤ r.
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Example 6. If X is unifor mly distr ibuted in [0, r], for 0 ≤ t1, t2 ≤ r, we have ICPT(X; t1, t2) =

ICRT(X; r − t2, r − t1) =
1

α−1 (1 − t2
α+1−t1

α+1

(t2−t1)
α(1+α)

), which is in agr eement with Remark4 (part 1).

Let X and Y be tw o random variables. Also, the distribution function and density function of
X are indicated by F(t) and f (t) and those of Y are denoted by G(t) and g(t), separately . Now
we compar e the tw o random variables X and Y based on doubly truncated (inter val) cumulativ e
residual and past Tsallis entr opy. So, we first need the follo wing definitions, which can be seen
in [20]

Definition 2. X is said to be less than or equal to Y in usual stochastic ordering, if f (x)
g(x) is

decr easing in x > 0. We write X
lr
≤Y.

Definition 3. X is said to be less than or equal to Y in likelihood ratio ordering, if F̄(x) ≤ Ḡ(x) ,

for all x > 0. We write X
st
≤Y.

Na varro and Rubio(2011) expr essed that The tw o random variables X and Y satisfy X
lr
≤Y if,

and only if, [X − t1|t1 ≤ X ≤ t2] ≤st [Y − t1|t1 ≤ Y ≤ t2], whenever(t1 < t2). Also, we compar e
tw o random variables X and Y based on the properties of (inter val) CRT and (inter val) CPT in
likelihood ratio ordering.

Theorem 6. Let X and Y be tw o nonnegativ e absolutely continuous random variables with sur -
viv al functions F̄(x) and Ḡ(x), respectiv ely. If X ≤(≥)lrY for all t1, t2 ≥ 0, then ICRT(X; t1, t2) ≤
(≥)ICRT(Y; t1, t2), for 0 < α < 1; other wise for α > 1, ICRT(X; t1, t2) ≥ (≤)ICRT(Y; t1, t2).

Proof. The assumption X ≤(≥)lrY implies that

F̄Xt1,t2
≤ (≥) ḠXt1,t2

,

(
F̄(x)

F̄(t1)− F̄(t2)
)α ≤ (≥) (

Ḡ(x)
Ḡ(t1)− Ḡ(t2)

)α,

1 −
∫ t2

t1
(

F̄(x)
F̄(t1)− F̄(t2)

)αdx ≥ (≤) 1 −
∫ t2

t1
(

Ḡ(x)
Ḡ(t1)− Ḡ(t2)

)αdx.

For α > 1, we have

1
α − 1

(
1 −

∫ t2

t1
(

F̄(x)
F̄(t1)− F̄(t2)

)αdx
)

≥ (≤)
1

α − 1

(
1 −

∫ t2

t1
(

Ḡ(x)
Ḡ(t1)− Ḡ(t2)

)αdx
)

,

ICRT(X; t1, t2) ≥ (≤) ICRT(Y; t1, t2).

For 0 < α < 1, it follo ws that

1
α − 1

(
1 −

∫ t2

t1
(

F̄(x)
F̄(t1)− F̄(t2)

)αdx
)

≤ (≥)
1

α − 1

(
1 −

∫ t2

t1
(

Ḡ(x)
Ḡ(t1)− Ḡ(t2)

)αdx
)

,

ICRT(X; t1, t2) ≤ (≥)ICRT(Y; t1, t2).

■

Theorem 7. Let X and Y be tw o nonnegativ e absolutely continu ous random variables with cdfs

F(x) and G(x), respectiv ely. If X
st
≤Y for all t1, t2 ≥ 0, then ICPT(X; t1, t2) ≥ ICPT(Y; t1, t2), for

0 < α < 1; other wise for α > 1, ICPT(X; t1, t2) ≤ ICPT(Y; t1, t2).
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Proof. The assumption that X
st
≤Y implies that

FXt1,t2
≥ GXt1,t2

,

(
F(x)

F(t2)− F(t1)
)α ≥ (

G(x)
G(t2)− G(t1)

)α,

1 −
∫ t2

t1
(

F(x)
F(t2)− F(t1)

)αdx ≤ 1 −
∫ t2

t1
(

G(x)
G(t2)− G(t1)

)αdx.

for α > 1, we have

1
α − 1

(
1 −

∫ t2

t1
(

F(x)
F(t2)− F(t1)

)αdx
)

≤ 1
α − 1

(
1 −

∫ t2

t1
(

G(x)
G(t2)− G(t1)

)αdx
)

,

ICPT(X; t1, t2) ≤ ICPT(Y; t1, t2).

For 0 < α < 1, it follo ws that

1
α − 1

(
1 −

∫ t2

t1
(

F(x)
F(t2)− F(t1)

)αdx
)

≥ 1
α − 1

(
1 −

∫ t2

t1
(

G(x)
G(t2)− G(t1)

)αdx
)

,

ICPT(X; t1, t2) ≥ ICPT(Y; t1, t2).

■

Example 7. Let

F̄(x) =

{
( x0

x )
β1 , x > x0,

1, x ≤ x0,
and

Ḡ(x) =

{
( x0

x )
β2 , x > x0,

1, x ≤ x0.

That is, X and Y have Par eto distributions with parameters β1 and β2, respectiv ely. If β1 ≥ β2

and 0 < β1, β2 ≤ 1
α , hence X

lr
≤Y for α > 1, then ICRT(X; t1, t2) ≥ ICRT(Y; t1, t2). Also, the

assumptions of the theor em hold, and ther efor e [X − t1|t1 ≤ X ≤ t2] ≤st [Y − t1|t1 ≤ Y ≤
t2], whenever(t1 < t2).

4. Empirical estimation of ICPT

By utilizing various empirical estimators of the cdf, we suggest four non-parametric estimators
ICPT(X; t1, t2) and also compar e the implementation of the proposed estimators. For an actual-
life fact set, we study the monotonicity of ICPT based totally on its ker nel-smoothed estimator .

First, we introduce four nonparametric estimators, by mentioning the name ICPT1(X; t1, t2),
ICPT2(X; t1, t2), ICPT3(X; t1, t2) and ICPT4(X; t1, t2), of ICPT through utilizing empirical dis-
tribution function, mean empirical distribution function, median empirical distribution function,
and ker nel-smoothed function and their implementation by the Monte–Carlo simulation. Let
X1, X2, . . . , Xn be an independent and identically distributed random sample dra wn from a pop-
ulation having distribution function F(x) and sur viv al function F̄(x). Now, the first nonparamet-
ric estimator of ICPT1(X; t1, t2) may be written as

ICPT1(X; t1, t2) =
1

α − 1

(
1 −

∫ t2

t1
(

F(1)
n (x)

F(1)
n (t2)− F(1)

n (t1)
)αdx

)
,

for 0 < α ̸= 1, wher e F(1)
n (x) = 1

n ∑n
i=1 I(Xi ≤ x), x ∈ R, is the empirical distribution function

and
I(Xi ≤ x) =

{
1 i f X ≤ x,
0 otherwise,
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is the indicator function of the event X ≤ x. Let X(1), X(2), . . . , X(n) be the order statistics of ran-
dom sample. Noting the sample values ly ing betw een t1 and t2 so that t1 ≤ x(j), x(j+1), . . . , x(k) ≤
t2, then

ICPT1(X; t1, t2) =
1

α − 1

(
1 −

k

∑
i=j

∫ x(i+1)

x(i)
(

F(1)
n (x)

F(1)
n (t2)− F(1)

n (t1)
)αdx

)

=
1

α − 1

(
1 − 1

(F(1)
n (t2)− F(1)

n (t1))α

k

∑
i=j

∫ x(i+1)

x(i)
(F(1)

n (x))αdx

)

=
1

α − 1

(
1 − 1

(F(1)
n (t2)− F(1)

n (t1))α

k

∑
i=j

(x(i) − x(i+1))(F(1)
n (x))α

)
. (14)

The second estimator of ICPT2(X; t1, t2) can be acquir ed by replacing mean empirical distribu-
tion function F(2)

n (x) in (14)as

ICPT2(X; t1, t2) =
1

α − 1

(
1 − 1

(F(2)
n (t2)− F(2)

n (t1))α

k

∑
i=j

(x(i) − x(i+1))(F(2)
n (x))α

)
, (15)

wher e the mean empirical distribution function is defined as

F(2)
n (x) =

1
n + 1

n

∑
i=1

I(Xi ≤ x), x ∈ R.

The third nonparametric estimator of ICPT3(X; t1, t2) can be achie ved by utilizing median em-
pirical distribution function in (14) as follo ws:

ICPT3(X; t1, t2) =
1

α − 1

(
1 − 1

(F(3)
n (t2)− F()

n (t1))α

k

∑
i=j

(x(i) − x(i+1))(F(3)
n (x))α

)
, (16)

wher e F(3)
n (x) = ∑n

i=1
I(Xi≤x)−0.3

n+0.4 , x ∈ R, is the median empirical distribution function.

The fourth estimator can be defined by utilizing Ker nel-smoothed estimator F(4)
n (x) of the

distribution function in (14) as follo ws:

ICPT4(X; t1, t2) =
1

α − 1

(
1 − 1

(F(4)
n (t2)− F()

n (t1))α

k

∑
i=j

(x(i) − x(i+1))(F(4)
n (x))α

)
, (17)

wher e F(4)
n (x), the ker nel-smoothed estimator of distribution function, is defined as

F(4)
n (x) =

1
n

n

∑
i=1

L(
x − Xi

h
),

wher e L is a distribution function of positiv e ker nel K, that is, L(u) =
∫ −∞

u K(t)dt and h is the
bandwidth of parameter . Now, we utilize the normal ker nel function K(u) = 1√

π
exp ( u2

2 ).

5. Simulation

It is widely recognized that the smoothed estimator has a better perfor mance compar ed to
a nonsmoothed estimator . To demonstrate the effectiv eness of the empirical and ker nel es-
timators, a Monte–Carlo simulation examination is accomplished. The estimated values are
computed based on 1000 simulations from Exp(0.5) (exponential distribution) each of size
n(n = 30, 35, 40, 50, 60) for dif ferent truncation limits and α = 0.2; 3.5. Bias and mean squar e
error (MSE) are also calcul ated. In Tables 1 and 2, we present the exact value, bias, and the
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MSE of the proposed estimators of ICPT. The MSE of the estimators corresponding to trunca-
tion limit (0.2, 4) and for α = 0.2, 3.5 is also displa yed in Figur e 1 for increasing sample size.

It is obvious that in nearly all cases ICPT4(X; t1, t2) (17) perfor ms w ay better with less MSE
than the other estimators as deter mined in (14) (15) and (16). Further ,for α = 0.2, ICPT1(X; t1, t2)
produces better result than ICPT3(X; t1, t2), while ICPT2(X; t1, t2) yields poor estimates as MSE
is higher in comparison with the other estimators of ICPT. Also, for α = 3.5, it can be seen that
ther e is a slight dif ference betw een the first, second and third estimators and The fourth estimator
is significantly better estimator . It is expected, one can depict from Tables 1 and 2 that ICPT as a
measur e of uncertainty declines for a shrinking inter val. Generally , we can conclude that ker nel
smoothed estimator giv es better estimates of ICPT than the other proposed estimators in ter ms
of MSE. Also, the values of MSE of the proposed estimators are reduced by increasing sample
size, which is caused by dependence of the MSE of the empirical estimators to the sample size.

It is obvious that, in nearly , all cases ICPT4(X; t1, t2) defined by (17) perfor m a w ay better
with less MSE than the other estimators, as deter mined in (14), (15), and (16). Further mor e, for
α = 0.2, ICPT1(X; t1, t2) produces a better result than ICPT3(X; t1, t2), while ICPT2(X; t1, t2)
yields poor estimates as the MSE is higher in comparison with the other estimators of ICPT.
Also, for α = 3.5, it can be seen that ther e is a slig ht dif ference betw een the first, second and
third estimators and The fourth estimator is significantly better estimator . It is expected that one
can depict from Tables 1 and 2 that ICPT, as a measur e of uncertainty , declines for a shrinking
inter val. Generally , we can conclude that the ker nel-smoothed estimator giv es better estimates
of ICPT than the other proposed estimators in ter ms of the MSE. Also, the values of MSE of the
proposed estimators are reduced by increasing sample size, which is caused by the dependence
of the MSE of the empirical estimators on the sample size.

Table 1: Bias and MSE of ICPT1(X; t1 , t2), ICPT2(X; t1 , t2), ICPT3(X; t1 , t2) and ICPT4(X; t1 , t2) for α = 3.5 and different truncation limits
(n = 30, 35, 40, 50, 60).

α = 3.5 ICPT1(X; t1, t2) ICPT2(X; t1, t2) ICPT3(X; t1, t2) ICPT4(X; t1, t2)
(t1, t2) n Exact value Bias1/ MSE1 Bias2/ MSE2 Bias3/ MSE3 Bias4/ MSE4

30 0.54832/0.325730 0.49378/0.28433 0.51636/ 0.30243 0.20438/0.17744
35 0.549833/0.32429 0.50497/0.28408 0.52796/ 0.30195 0.23830/0.16294

(0.1,4.5) 40 -0.50468 0.55001/0.32373 0.50943/ 0.28386 0.52995/0.29999 0.28788/0.16066
50 0.55571/0.32236 0.51445/0.28234 0.53018/0.29798 0.35550/0.17280
60 0.55720/0.32132 0.52253/ 0.28551 0.53218/0.29726 0.38246/0.17472
30 0.52237/0.33138 0.43733/0.27303 0.47260/0.29833 0.14750/0.25057
35 0.53415/0.32091 0.45608/0.26707 0.48867/0.28337 0.22450/0.21577

(0.2,4) 40 -0.53930 0.53631/0.31804 0.47334/0.26538 0.49120/0.27857 0.26394/0.20544
50 0.53835/0.31399 0.48180/0.26242 0.49168/0.27427 0.32690/0.19580
60 0.54001/ 0.31037 0.48255/ 0.25854 0.49838/0.27144 0.36282/0.17503
30 0.66016/0.59085 0.58444/0.46060 0.60264/0.49963 0.28883/0.38595
35 0.67913/0.52852 0.60971/0.44713 0.61856/0.46831 0.37049/0.37528

(0.3,3.9) 40 -0.71898 0.68008/ 0.50869 0.61383/ 0.43901 0.63064/0.45793 0.42447/0.34087
50 0.68175/0.49875 0.62145/ 0.43391 0.64163/0.45061 0.49303/0.33731
60 0.68447/0.49486 0.62355/0.42886 0.64253/0.44791 53037/0.33580

The nonparametric estimators of the distribution function are occasionally consider ed as
plotting positions because they supply the ordinate values in plotting the distribution function.
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Table 2: Bias and MSE of ICPT1(X; t1 , t2), ICPT2(X; t1 , t2), ICPT3(X; t1 , t2) and ICPT4(X; t1 , t2) for α = 0.2 and different truncation limits
(n = 30, 35, 40, 50, 60).

α = 0.2 ICPT1(X; t1, t2) ICPT2(X; t1, t2) ICPT3(X; t1, t2) ICPT4(X; t1, t2)
(t1, t2) n Exact value Bias1/ MSE1 Bias2/ MSE2 Bias3/ MSE3 Bias4/ MSE4

30 0.01443/0.62585 0.20562/0.85397 0.15292/0.84328 0.31217/0.46912
35 -0.08361/ 0.40997 0.10770/0.63329 0.03216/0.50496 0.19145/0.31041

(0.1,4.5) 40 3.81827 -0.13264/0.38650 0.01795/0.46097 0.00052/0.41305 0.12438/0.27354
50 -0.2265/0.21496 -0.12186/0.27259 -0.16442/0.23459 0.00011/0.15006
60 -0.26605/0.17343 -0.19538/0.20058 -0.20950/0.18536 -0.10140/0.11435
30 0.0668/ 0.45989 0.21781/0.60482 0.13608/ 0.55571 0.33128/0.50470
35 -0.02364/0.25232 0.091067/0.42669 0.07336/0.3542 0.17299/0.21602

(0.2,4) 40 3.19537 -0.04258/0.23084 0.02478/0.31252 0.00027/0.26733 0.11015/0.19296
50 -0.14634/ 0.12285 -0.05928/0.15386 -0.07653/0.13229 0.01410/0.11127
60 -0.15977/0.09937 -0.10696/0.13898 -0.14774/0.10505 -0.053750/0.07863
30 0.06254/0.52412 0.15421/0.42303 0.10033/0.45151 0.21734/0.35308
35 0.03341/0.27368 0.04638/ 0.23737 0.03507/0.26058 0.14486/0.22552

(0.3,3.9) 40 3.04031 -0.09178/0.21888 0.02148/0.15290 0.01607/0.18283 0.07261/0.20835
50 -0.15733/0.17706 -0.10894/0.11774 -0.11561/0.13794 0.04314/0.09471
60 -0.18802/0.10640 -0.15383/0.09217 -0.15181/0.10345 -0.10009/0.07318

Figure 1: Graphical showing of the MSE of four estimators. Sample size for fixed truncation limit (0.2, 4). (I) Plot of
the MSE for fixed truncation limit (0.2, 4) and α = 0.2 and (II) Plot of the MSE for fixed truncation limit
(0.2, 4) and α = 3.5.

6. Real data

In this part, an actual life data set is examined to illustrate the applicability and usefulness of the
best-pr oposed estimator of ICPT in actual status. For this pur pose, we have taken into account
the data set vinyl chloride acquir ed from clean upgradient groundw ater monitoring wells [2].
Vinyl chloride is an organic compound that is unstable . In envir onmental inv estigations, this
aspect is of extraor dinar y significance due to the fact that it is both anthr opogenic and carcino-
genic. Nonetheless, in lots of backgr ound monitoring wells, low levels of this component are
deter mined. This compound low surface detections in clean upgradient backgr ound monitoring
wells is because of cross pollution from air or gas or the analytic system itself . The data set is
provided as follo ws. Data Set (g/ l) : 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4,
2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2 has been fitted
with exponential distribution by [21]. They acclaimed that this data set follo ws Exp(0.5320814 )
(exponential distribution). To examine the beha vior of the ICPT, we have calculated estimated
values of ICPT4(X; t1, t2) by means of the use of its best-pr oposed estimator for dif ferent trunca-
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tion limits and α = 0.2, 3.5 as sho wn in Table 3. It has been deter mined that the estimated values
are decr easing in t1 and increasing in t2 for α = 0.2, 3.5. So, by increasing (decr easing) the fourth
estimator of ICPT(doubly truncated CPT), the amount of the dispersion of vinyl chloride ob-
tained from clean upgradient groundw ater monitoring wells increases (decr eases). As expected
for 0 < α = 1, ICPT is an increasing functi on of the inter val. It is worth noting that this result is
accor ding to the monotonicity of ICPT(X; t1, t2) for Exp(0.5320814 ) and α = 0.3, 1.5.

Table 3: Kernel estimates of ICPT4(X; t1 , t2)) for the Vinyl chloride data for different truncation limits (t1 , t2) and = 0.2; 3.5.

α\(t1, t2) (0.4,2.9) (0.6,2.9) (08,2.9) (1,2.9) (0.2,1.8) (0.2,2) (0.2,2.4) (0.2,2.8)
0.2 2.035697 1.84515 1.658554 1.47661 1.108958 1.073237 1.576643 1.94168
3.5 -0.419520 -0.508537 -0.641847 -0.919710 -1.837256 -1.312966 -0.754232 -0.437168

7. Conclusion

In infor mation theor y and also in reliability , ther e are several uncertainty measur es that pla y
a central role. In this paper , we first studied the notion of doubly truncated (inter val) Tsallis
entr opy and suggested the doubly truncated (inter val) cumulativ e residual Tsallis entr opy (ICRT)
and dou bly trun cated (interval) cumulativ e past Tsallis entr opy (ICPT) whose some of their
properties and their relations with hazar d rate (reversed hazar d rate) and mean residual (past)
life were studied. Also, we introduced ordering classes for ICRT and ICPT and ga ve some
characterization. In the end, we have proposed four nonparametric estimators and compar ed
their perfor manc e by utilizing simulation data. Also, based on the best-pr oposed estimator , an
actual data set w as additionally examined.

References

[1] Barlo w R.E. and Proschan F. Statistical theor y of reliability and life testing: probability
models, Florida State Univ Tallahassee,(1975).

[2] Bhaumik, D. K., Kapur , K., and Gibbons, R. D. (2009). Testing parameters of a gamma
distribution for small samples. Technometrics, 51(3):326–334.

[3] Ebrahimi, N. (1996). How to measur e uncertainty in the residual life time distribution.
Sankhy: The Indian Journal of Statistics, Series A, 48–56.

[4] Gupta, R. D. and Nanda, A. K. (2002). α- and β-entropies and relativ e entr opies of distribu-
tions. Journal of Statistical Theory and Applications, 1(3):177–190.

[5] Khorashadizadeh, M., Rezaei Roknabadi, A. H. and Mohtashami Borzadaran, G. R. (2013).
Doubly truncated (inter val) cumulativ e residual and past entr opy. Statistics & Probability
Letters, 83(5):1464–1471.

[6] Kumar , V. and Taneja, H. C. (2011). A generalized entr opy-based residual lifetime distribu-
tions. International Journal of Biomathematics, 4(02):171–184.

[7] Kundu, C. and Singh, S. (2020). On generalized inter val entropy. Communications in
Statistics-Theory and Methods, 49(8):1989–2007.

[8] Kumar , V. (2017). Characterization results based on dynamic Tsallis cumulativ e residual
entr opy. Communications in Statistics-Theory and Methods, 46(17):8343–8354.

[9] Lutz, E. (2003). Anomalous dif fusion and Tsallis statistics in an optical lattice. Physical
Review A, 67(5):051402.

[10] Nanda, A. K. and Paul, P. (2006). Some results on generalized residual entr opy. Information
Sciences, 176(1):27–47.

[11] Na varro, J. and Ruiz, J. M. (1996). Failur e-rate functions for doubly-truncated random
variables. IEEE Transactions on Reliability, 45(4):685–690.

[12] Na varro, J., and Rubio, R. (2011). A note on necessar y and suf ficient conditions for
ordering properties of coher ent systems with exchangeable components. Naval Research
Logistics (NRL), 58(5):478-489.

RT&A, No 1 (77)
 Volume 19, March 2024

463



S. Jala yeri, G.R. Mohtashami Borzadaran, M. Khorashadizadeh
SOME PROPER TIES OF TSALLIS ENTROPY

[13] Nourbakhsh M. and Yari G. Doubly truncated generalized entr opy, In Proceedings of the
1st Inter national Electr onic Confer ence Confer ence on Entr opy and its Applications, 3-21
November 2014,

[14] Misagh, F. (2012). Some Properties of Inter val Entr opy Function and their Applications.
World Applied Sciences Journal, 20(12):1666–1671.

[15] Moharana, R. and Kayal, S. (2020). Properties of Shannon Entr opy for Double Trun-
cated Random Variables and its Applications. Journal of Statistical Theory and Applications,
19(2):261–273.

[16] Mohamed, M. S. (2020). On Cumulativ e Tsallis Entr opy and Its Dynamic Past Version.
Indian Journal of Pure and Applied Mathematics, 51(4):1903–1917.

[17] Moharana, R. and Kayal, S. (2019). On shift-dependent generalize d entr opies for doubly
truncated random variable. Journal of Statistics and Management Systems, 22(5):923–942.

[18] Rao, M., Chen, Y., Vemuri, B. C. and Wang, F. (2004). Cumulativ e residual entr opy: a new
measur e of infor mation. IEEE Transactions on Information Theory, 50(6):1220–1228.

[19] Sati, M. M. and Gupta, N. (2015). Some characterization results on dynamic cumulativ e
residual Tsallis entr opy. Journal of Probability and Statistics, 8 pages, 287–294.

[20] Shaked M. and Shanthikumar J.G. (Eds.). Stochastic orders, Ne w York, NY: Springer Ne w
York, 2007.

[21] Shanker , R., Hagos, F., and Sujatha, S. (2015). On modeling of Lifetimes data using
exponential and Lindle y distribut ions. Biometrics & Biostatistics International Journal, 2(5):1–
9.

[22] Shannon, C. E. (1948). A mathematical theor y of communication. The Bell System Technical
Journal, 27(3):379–423.

[23] Tong, S., Bezerianos, A., Paul, J., Zhu, Y. and Thakor , N. (2002). Nonextensiv e entr opy
measur e of EEG follo wing brain injur y from cardiac arrest. Physica A: Statistical Mechanics
and its Applications, 305(3-4):619–628.

[24] Tsallis, C. (1988). Possible generalizati on of Boltzmann-Gibbs statistics. Journal of Statistical
Physics, 52(1):479–487.

[25] Tsallis, C. and Brigatti, E. (2004). Nonextensiv e statistical mechanics: A brief introduction.
Continuum Mechanics and Thermodynamics, 16(3):223–235.

[26] Zacks S. Introduction to Reliability Analysis Probability Models and Methods, Springer -
Verlag, Ne w York, 1992.

RT&A, No 1 (77)
 Volume 19, March 2024

464




