
Faryal Shabbir, Abdul Khalique 
GXED AND RELIABILITY ESTIMATION 

GENERALIZED X-EXPONENTIAL BATHTUB SHAPED 

FAILURE RATE DISTRIBUTION AND ESTIMATION 

OF RELIABILITY OF MULTICOMPONENT STRESS-

STRENGTH 

Faryal Shabbir, Abdul Khalique

• 

Department of Statistics National College  

of Business administration and Economics Lahore, Pakistan

faryalshab4@gmail.com 

a.khalique57@gmail.com

Abstract 

In an engineering setup, one is interested to know and determine the reliability of the system of 

different components.  These components are usually subjected to different kinds of stress, and the 

reliability of the components needs to be estimated under stress. In this paper, we aim to estimate the 

reliability of a multicomponent stress-strength model assuming that the components of the system 

are working independently with a common life distribution. The system follows a comparatively new 

distribution named as; Generalized X-Exponential bathtub failure rate distribution. This paper 

studies the usefulness of this distribution in terms of estimating the maximum likelihood estimate of 

the reliability parameter and its asymptotic confidence intervals. Paper uses methods of parametric 

estimation and reliability estimation. Results are computed using Monte Carlo simulation for small 

samples. Real data set is presented to evaluate the performance of Generalized X Exponential 

Distribution (GXED) reliability estimator. Findings show that with the usage of proposed 

distribution, estimator of reliability parameter fits very well to the real-world situations 

Key words: Generalized X -Exponential distribution, Multicomponent stress-

strength, Reliability, ML estimation, Average variance, Confidence intervals. 

I. Introduction

The X-Exponential distribution was introduced by Chacko [4], to add another model to the class of 

bathtub type failure rate distributions. When x is X-Exponential with parameters 𝞪 and 𝜆.  It has 

distribution function: 𝐹(𝑥) =  (1 − (1 + 𝜆𝑥2)𝑒(−𝜆𝑥))
𝛼

 with the corresponding density function:

𝑓(𝑥) = 𝛼𝑒−𝜆𝑥(𝜆2𝑥2 − 2𝜆𝑥 + 1)(1 − (1 + 𝜆𝑥2)𝑒(−𝜆𝑥))
𝑎−1

. Its properties and reliability applications

were studied by the author.  However, in order to get more flexibility to the model, Chacko and 

Deepthi [5] made a small change in the exponential part. The corresponding distribution is named 

as Generalized X-Exponential distribution. Basically, bathtub failure rate distribution’s curve 

illustrates three phases of a product’s life. First phase is known as early failure, next is a roughly 

prolonged intrinsic period and failure rate is approximately constant here. This stage is very 

important for reliability prediction of a product. And finally, there is a wear out failure phase, where 

failure rate increases. In the past several bathtub failure rate distributions have been studied by 

Kundu &Gupta, Srinivasa Rao [11] to carry out reliability testing by using single component stress 
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strength, as well as multi- component stress strength models. Since no substantial work has been 

done on reliability estimation of multicomponent stress strength by using a flexible distribution i.e., 

GXED, hence there was a need to study the reliability estimator of newly introduced Generalized X-

Exponential distribution having distribution function, 𝐹(𝑥) = (1 − (1 + 𝜆𝑥2)𝑒−𝜆(𝑥2+𝑥)
)

𝛼

, 𝑥 > 0, 𝜆 >

0 𝑎𝑛𝑑 𝛼 > 0.and the density function is:  

𝑓(𝑥) = 𝛼𝑒−𝜆(𝑥2+𝑥)
(𝜆(1 + 𝜆𝑥2)(2𝑥 + 1) − 2𝜆𝑥)((1 − (1 + 𝜆𝑥2)𝑒−𝜆(𝑥2+𝑥)

)
𝛼−1

;   𝛼 > 0, 𝜆 > 0 

(1) 

Failure rate=
𝛼𝑒−𝜆(𝑥2+𝑥)

(𝜆(1+𝜆𝑥2)(2𝑥+1)−2𝜆𝑥)((1−(1+𝜆𝑥2)𝑒−𝜆(𝑥2+𝑥)
)

𝛼−1

1−(1−(1+𝜆𝑥2)𝑒−𝜆(𝑥2+𝑥)
)

𝛼 ;     𝑥 > 0, 𝛼 > 0, 𝜆 > 0  

(2) 

The authors (Chacko and Deepthi) have investigated the properties and some reliability 

applications of the new model. Here we are interested in the reliability analysis of multicomponent 

system where the components are connected in parallel and function independently, with the same 

Generalized X -Exponential distribution GXED and stress too has the same distribution but with 

different parameters.    

Let the random samples 𝑌, 𝑋1,𝑋2,𝑋3, … . . 𝑋𝐾 be independent, G(y) be the continuous 

distribution function of Y, and F(x) be the common distribution function of𝑌, 𝑋1,𝑋2,𝑋3, … . . 𝑋𝐾 .The 

reliability in a multi component stress-strength model developed by Bhattacharyya and Johnson [2] 

is given by. 

𝑅𝑠,𝑘=P [at least s of the 𝑋1,𝑋2,𝑋3, … . . 𝑋𝐾exceed Y]

= ∑ (
𝑘
𝑖

)
𝑘

𝑖=𝑠
∫ [1 − 𝐹(𝑦)]𝑖+∞

−∞
[𝐹(𝑦)𝑘−𝑖]𝑑𝐺(𝑦)  

(3) 

Where𝑋1,𝑋2,𝑋3, … . . 𝑋𝐾identically and independently distributed (iid) are with common 

distribution function F(x) and subjected to random stress Y. The probability in (3) is called 

‘Reliability in a multicomponent stress –strength model’ Bhattacharyya and Johnson [2]. The 

survival probabilities of single component stress- strength version was considered by several 

authors for different distributions. Some of them are: Enis and Geisser [9], Downtown [8], Awad and 

Gharraf [1], McCool [18], Hanagal [12], Nandi and Aich [19], Surles and Padgett [27], Kundu and 

Gupta [15,16], Raqab et al. [26] and Kundu and Raqab [17]. More over Kotz & Pensky [14] studied 

the generalizations of stress strength model. 

Reliability in a multicomponent stress-strength model was developed by Bhattacharyya and 

Johnson [2]. Pandey & Burhan [21] computed the estimation of reliability for a multicomponent 

model using Burr distribution. Zimmer et al [29] studied the reliability analysis for Burr X11 

distribution. Estimation of reliability in models with correlated stress and strength has been studied 

by Balakrishnan &Lai [3]. Rao and Kantam [24] studied the estimation of reliability in a 

multicomponent stress- strength model for logistic distribution, Rao [23] also developed the 

procedure for the estimation of reliability in multicomponent stress-strength model based on 

Generalized exponential distribution. Ghitany et al. [10] studied the estimation of reliability of 

multicomponent model using Power Lindley distribution. Burr-X11 distribution for parametric and 

reliability estimation in a multicomponent stress-strength environment has been analyzed by Rao et 

al. [25]. Dey, S. et al [6] considered Bayesian and non-Bayesian estimation of multicomponent stress-

strength reliability using Kumaraswami distribution.  
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Dey, Raheem & Mukherjee [7] derived the form of stress-strength reliability parameter for 

transmuted Rayleigh distribution. Hassan [13] developed the procedure for the estimation of stress-

strength model using Lindley distribution. Estimation on Reliability in a multicomponent Stress-

strength model with Power Lindley distribution is carried out by Abbas Pak et al [22]. Similarly, a 

recent study has been conducted on the estimation of stress strength reliability for Akash 

distribution by Akhila. K. Varghese & V. M. Chacko [28].  

The aim of this paper is to estimate the reliability in a multi component stress-strength model 

based on ,X Y being two independent random variables, where X~GXED, (𝛼1, 𝜆) and 

Y~GXED (𝛼2, 𝜆). We use parametric estimation and estimation reliability. Suppose a system with k 

identical components, functions if at least s (1 ≤ 𝑠 ≤ 𝑘) components operate simultaneously. In its 

operating environment, the system is subjected to stress Y which is a random variable with 

distribution function G (.). The strengths of the components, that is the minimum stresses causing 

failure, are independently and identically distributed random variables with distribution function 

F(.).The reliability of the system can be obtained by (3). An attempt has been made here to study the 

estimation of reliability in a multicomponent stress-strength model with reference to two parameter 

GXED.  

The remainder of the paper is organized as follows. In section 2, research methodology and 

procedure for expression of 𝑅𝑠,𝑘. The asymptotic distribution and confidence interval of (3) are 

calculated using MLE. The results of small sample comparisons derived from Monte Carlo 

simulations and analysis of real data sets are described in section 3. Findings are discussed in section 

4. 

2. Maximum Likelihood Estimator of 𝑅𝑠,𝑘

  Let X~GXED (𝛼1, 𝜆) and Y~GXED (𝛼2, 𝜆) be independently distributed with unknown shape 

parameters (𝛼2, 𝜆)while common scale parameter𝜆. Using (3) the reliability in multicomponent 

stress-strength for two- parameter GXED distribution is as follows: 

𝑅𝑠,𝑘 = ∑ (
𝑘
𝑖

)

𝑘

𝑖=𝑠

∫ [1 − 𝐹(𝑦)]𝑖

+∞

0

[𝐹(𝑦)𝑘−𝑖]𝑑𝐺(𝑦) 

𝐹(𝑦) = (1 − (1 + 𝜆𝑥2)𝑒−𝜆(𝑥2+𝑥)
)

𝛼

;  𝑥 > 0, 𝛼 > 0, 𝜆 > 0 

1 − 𝐹(𝑦) = 1 − (1 − (1 + 𝜆𝑥2)𝑒−𝜆(𝑥2+𝑥))
𝛼

𝑑𝐺(𝑦) = 𝛼𝑒
−𝜆(𝑦2+𝑦)

(𝜆(1 + 𝜆𝑦2)(2𝑦 + 1) − 2𝜆𝑦)((1 − (1 + 𝜆𝑦2)𝑒−𝜆(𝑦2+𝑦)
)

𝛼−1

 𝑑𝑦 

 𝑅𝑠,𝑘 = ∑ (
𝑘
𝑖

)
𝑘

𝑖=𝑠
 𝜈 ∫ (1 − 𝑡)𝑖1

0
𝑡𝑘−1+𝑣−1𝑑𝑡 

where 𝑡 = 1 − (1 − (1 + 𝜆𝑥2)𝑒−𝜆(𝑦2+𝑦))
𝛼

 𝑎𝑛𝑑 𝑣 =
𝛼2

𝛼1

 After simplification we get 

𝑅𝑠,𝑘 = ∑ (
𝑘
𝑖

)
𝑘

𝑖=𝑠
 𝑣𝐵(𝑖 + 1, 𝑘 − 𝑖 + 𝑣)   (4) 

The probability in (4) is termed reliability in a multicomponent stress-strength model. It is 

important to mention here that MLE of 𝑅𝑠,𝑘depends on that of 𝛼1& 𝛼2.  Hence, we need to calculate 

MLE of the latter to derive that of the former. Similarly, to find the MLE of 𝛼1& 𝛼2and we need to 
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find the MLE of 𝜆 as well. Here we assume that 𝑋1,𝑋2, 𝑋3 … … 𝑋𝑛 is a random sample from GXED 

(𝛼1, 𝜆) and 𝑌1, 𝑌,2 𝑌3, … … . 𝑌𝑚 is a random sample from GXED (𝛼2, 𝜆). 

 The loglikelihood function LLF of these samples is expressed as: 

𝐿(𝛼1, 𝛼2, 𝜆)  =  𝑚ln𝛼1  +  𝑛ln𝛼2  −  (𝑚  +  𝑛)𝜆(𝑥𝑖
2  +  𝑥𝑖   +  𝑦𝑗

2  +  𝑦𝑗)   +

𝑚 ln ∑(𝜆(1 + 𝜆𝑥𝑖
2)(2𝑥𝑖   +  1) − 2𝜆𝑥𝑖  )

+ (𝛼1  −  1)∑(ln(1 − (1 + 𝜆𝑥𝑖
2)𝑒−𝜆(𝑥2 +𝑥)))   + 𝑛 ln ∑(𝜆(1 + 𝜆𝑦𝑗

2)(2𝑦𝑗 + 1) − 2𝜆𝑦𝑗)

+ (𝛼2 − 1)∑(ln(1 − (1 + 𝜆𝑦𝑖
2)𝑒−𝜆(𝑦2 +𝑦)))

(5) 

Thus, the MLE of 𝜆 is the solution of 

𝜕𝑙𝑜𝑔𝐿(𝛼1,𝛼2,𝜆)

𝜕𝜆
=  0  ⇒   − 𝛴𝑖=1

𝑚 (𝑥𝑖
2 + 𝑥𝑖)  + 𝛴𝑖=1

𝑚
((2𝑥𝑖+1)(1+2𝜆𝑥𝑖

2)−2𝑥𝑖)

(𝜆(1+𝜆𝑥𝑖
2)(2𝑥𝑖+1)−2𝜆𝑥𝑖)

+ (𝛼1 −

1)𝛴𝑖=1
𝑚 (1+𝜆𝑥𝑖

2)𝑒−𝜆(𝑥𝑖
2+𝑥𝑖)(𝑥𝑖

2+𝑥𝑖)−𝑒−𝜆(𝑥𝑖
2+𝑥𝑖)𝑥𝑖

2

(1−(1+𝜆𝑥𝑖
2)𝑒

−𝜆(𝑥𝑖
2+𝑥𝑖)

− 𝛴𝑗=1
𝑛 (𝑦𝑗

2 + 𝑦𝑗)

+𝛴𝑗=1
𝑛

((2𝑦𝑗+1)(1+2𝜆𝑦𝑗
2)−2𝑦𝑗)

(𝜆(1+𝜆𝑦𝑗
2)(2𝑦𝑗+1)−2𝜆𝑦𝑗)

+ (𝛼2 − 1)𝛴𝑗=1
𝑛

(1+𝜆𝑦𝑗
2)𝑒

−𝜆(𝑦𝑗
2+𝑦𝑗)

(𝑦𝑗
2+𝑦𝑗)−𝑒

−𝜆(𝑦𝑗
2+𝑦𝑗)

𝑦𝑗
2

(1−(1+𝜆𝑦𝑗
2)𝑒

−𝜆(𝑦𝑗
2+𝑦𝑗)

)

= 0 

(6) 

Similarly, the MLE of 𝛼1 can be obtained as the solution of 

𝜕𝑙𝑜𝑔𝐿(𝛼1,𝛼2,𝜆)

𝜕𝛼1
=  0   ⇒

𝑚

𝛼1
+ 𝛴𝑖=1

𝑚 log (1 − (1 + 𝜆𝑥𝑖
2)𝑒−𝜆(𝑥𝑖

2+𝑥𝑖)) = 0

(7) 

Also, for 𝛼2 

𝜕𝑙𝑜𝑔𝐿(𝛼1,𝛼2,𝜆)

𝜕𝛼2
=  0   ⇒

𝑛

𝛼2
+ 𝛴𝑗=1

𝑛 log (1 − (1 + 𝜆𝑦𝑗
2)𝑒−𝜆(𝑦𝑗

2+𝑦𝑗)
) = 0

(8) 

From (7) and (8) we obtain: 

𝛼1
^(𝜆) =

−𝑚

𝛴𝑖=1
𝑚 log(1−(1+𝜆𝑥𝑖

2)𝑒
−𝜆(𝑥𝑖

2+𝑥𝑖)
)

𝑎𝑛𝑑 𝛼2
^(𝜆) =

−𝑛

𝛴𝑖=1
𝑛 log(1−(1+𝜆𝑥𝑖

2)𝑒
−𝜆(𝑦𝑖

2+𝑦𝑖)
)

(9) 

Putting the values of 𝛼1
^(𝜆) 𝑎𝑛𝑑 𝛼2

^(𝜆)into equation (6), we got a function of 𝜆 which is nonlinear.

`ℎ(𝜆) = 𝜆     (10) 

𝛴𝑖=1
𝑚 4𝜆𝜒𝑖

3 + 2𝜆𝑥𝑖
2 + 1

2𝜆𝑥𝑖
2 + 2𝑥𝑖

2 + 1
+ 𝛴𝑗=1

𝑛 4𝜆𝑦𝑗
3 + 2𝜆𝑦𝑗

2 + 1

2𝜆𝑦𝑗
2 + 2𝑦𝑗

2 + 1

𝛴𝑖=1
𝑚 (𝑥𝑖

2 + 𝑥𝑖) + 𝛴𝑗=1
𝑛 (𝑦𝑗

2 + 𝑦𝑗) +
𝑚

∑ 𝑙𝑜𝑔𝑚
𝑖=1 (1 − (1 + 𝜆𝑥𝑖

2)𝑒−𝜆(𝑥𝑖
2+𝑥𝑖))

𝛴𝑖=1
𝑚 𝑥𝑖(1 + 𝜆𝑥𝑖

3 + 𝜆𝑥𝑖
2). 𝑒−𝜆(𝑥𝑖

2+𝑥𝑖))

(1 − (1 + 𝜆𝑥𝑖
2)𝑒−𝜆(𝑥𝑖

2+𝑥𝑖))

+
𝑛

∑ 𝑙𝑜𝑔𝑛
𝑗=1 (1 − (1 + 𝜆𝑦𝑗

2)𝑒−𝜆(𝑦𝑗
2+𝑦𝑗)

)
𝛴𝑗=1

𝑛
𝑦𝑗(1 + 𝜆𝑦𝑗

3 + 𝜆𝑦𝑗
2). 𝑒−𝜆(𝑦𝑖

2+𝑦𝑗)

(1 − (1 + 𝜆𝑦𝑗
2)𝑒−𝜆(𝑦𝑗

2+𝑦𝑗)
)

+
𝑛

∑ 𝑙𝑜𝑔𝑛
𝑗=1 (1−(1+𝜆𝑥𝑖

2)𝑒
−𝜆(𝑥𝑖

2+𝑥𝑖)
)

𝛴𝑖=1
𝑚 𝑥𝑖(1+𝜆𝑥𝑖

3+𝜆𝑥𝑖
2).𝑒

−𝜆(𝑥𝑖
2+𝑥𝑖)

)

(1−(1+𝜆𝑥𝑖
2)𝑒

−𝜆(𝑥𝑖
2+𝑥𝑖)

)

    (11) 

Here 𝜆^is a fixed-point solution of nonlinear equation (10). It can be obtained using a simple iterative 

procedure: 
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  ℎ𝜆(𝑗) = 𝜆(𝑗 + 1)  (12) 

Where 𝜆𝑗  is the 𝑗𝑡ℎ iteration of 𝜆^.During the simulation process, when the difference between 𝜆𝑗 and

𝜆(𝑗 + 1) becomes sufficiently small; then we stop the iterative process. Once we obtain 
^ , the 

parameters 𝛼1
^ 𝑎𝑛𝑑 𝛼2

^can be obtained from (9) as respectively. To obtain the asymptotic confidence

interval for 𝑅𝑠,𝑘 we proceed as follows. 

2.1 Asymptotic Variance and Confidence Intervals 

𝑉(𝛼1
^) = [𝐸(−𝜕2𝐿/𝜕𝛼1

2)]−1 =
𝛼1

2

𝑚
𝑎𝑛𝑑  𝑉(𝛼2

^) = [𝐸(−𝜕2𝐿/𝜕𝛼2
2)]−1 =

𝛼2
2

𝑛
  (13) 

The asymptotic variance AV of an estimate of 𝑅𝑠,𝑘 which is a function of two independent statistics 

𝛼1
^, 𝛼2

^ is established by Rao (1973):

𝐴𝑉(𝑅𝑠,𝑘
^ ) = 𝑉(𝛼1

^)(
𝜕𝑅𝑠,𝑘

𝜕𝛼1
)2 + 𝑉(𝛼2

^)(
𝜕𝑅𝑠,𝑘

𝜕𝛼2
)2          (14) 

Thus from (14), asymptotic variance in 𝑅𝑠,𝑘can be obtained for GXED. 

We obtain 𝑅𝑠,𝑘 and their derivatives for (s, k) = (1, 3) and (2, 4) separately: 

𝑅1,3
^ =

3𝑣2 + 9𝑣 + 6

(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)
𝑎𝑛𝑑 𝑅2,4

^ =
12(𝑣2 + 3𝑣 + 2)

(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)(𝑣 + 4)

𝜕𝑅1,3
^

𝜕𝛼1

=
3𝑣(𝑣4 + 6𝑣3 + 13𝑣2 + 12𝑣 + 4)

𝛼1[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)]2

𝜕𝑅1,3
^

𝜕𝛼2

=
−3𝑣(𝑣4 + 6𝑣3 + 13𝑣2 + 12𝑣 + 4)

𝛼1[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)]2

𝜕𝑅2,4
^

𝜕𝛼1

=
12𝑣(2𝑣5 + 19𝑣4 + 68𝑣3 + 115𝑣2 + 92𝑣 + 28)

𝛼1[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)(𝑣 + 4)]2
 𝑎𝑛𝑑 

𝜕𝑅2,4
^

𝜕𝛼2

=
−12(2𝑣5 + 19𝑣4 + 68𝑣3 + 115𝑣2 + 92𝑣 + 28)

𝛼1[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)(𝑣 + 4)]2

Therefore as  𝑛 → ∞  𝑎𝑛𝑑 𝑚 → ∞, (𝑅𝑠,𝑘
^ − 𝑅𝑠𝑘)/𝐴𝑉(𝑅𝑠,𝑘

^ ) N (0,1)

𝐴𝑉(𝑅1,3
^ ) =

9𝑣2(𝑣4 + 6𝑣3 + 13𝑣2 + 12𝑣 + 4)2(1/𝑚 + 1/𝑛)

[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)]4

𝑎𝑛𝑑 𝐴𝑉 (𝑅2,4
^ ) =

144𝑣2(2𝑣5 + 19𝑣4 + 68𝑣3 + 115𝑣2 + 92𝑣 + 28)2(1/𝑚 + 1/𝑛)

[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)(𝑣 + 4)]4

 

Where 𝑅𝑠,𝑘
^ +̅ 1.96√𝐴𝑉(𝑅𝑠,𝑘)is the asymptotic 95%confidence interval (C.I) of system

reliability 𝑅𝑠,𝑘 and asymptotic 95% C.I for 𝑅1,3 is given by: 

𝑅1,3
^ ∓ 1.96

3𝑣(𝑣4 + 6𝑣3 + 13𝑣2 + 12𝑣 + 4)√1/𝑚 + 1/𝑛

[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)]2

 and the asymptotic 95% confidence interval (C.I) for 𝑅2,4 is given by: 

𝑅2,4
^ ∓ 1.96

12𝑣(2𝑣5 + 19𝑣4 + 68𝑣3 + 115𝑣2 + 92𝑣 + 28)√1/𝑚 + 1/𝑛

[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)(𝑣 + 4)]2

3. Simulation Study

3.1 Results 
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5000 random samples are generated each of size 10(5)30 from stress and strength populations for 

different values of 𝛼1 𝑎𝑛𝑑 𝛼2: (2.0,2.5), (2.0,3.0), (2.0,3.5), (3.0,2.0), (3.0,2.5), (3.0,3.0). The MLE of scale 

parameter 𝜆 is estimated by the iterative method and using 𝜆 the shape parameters 𝛼1 and 𝛼2 are 

estimated from eq (8).  

These ML estimators of 𝛼1 𝑎𝑛𝑑 𝛼2are then substituted in   to obtain the multicomponent 

reliability for (s, k) = (1,3) and (2,4). The average bias and average MSE of reliability estimate over 

5000 replications are presented in Table 1 and Table 2. Average length of confidence interval and 

coverage probability of the simulated 95% CIs of 𝑅𝑠,𝑘 are given in Table 3 and Table 4. The true 

values of reliability in multicomponent stress -strength with given combinations of 𝛼1
^, 𝛼2

^ for (s, k) =

(1,3) are 0.7058824, 0.6666667, 0.6315789, 0.8181074, 0.7826768, 0.75, 0.7142857 and for (s, k) = (2,4) are 

0.5378151, 0.4848485, 0.4393593, 0.7011849, 0.6477772, 0.6, 0.5494505. 

Here it is seen that the true value of reliability in multicomponent stress-strength decreases 

as 𝛼2 is increased for a fixed value of 𝛼1,whereas reliability in multicomponent stress-strength also 

decreases as 𝛼1is increased for a fixed value of𝛼2 . Thus, the true value of reliability increases 

as 𝜐 decreases and vice versa.  

Table 1: Average bias of the simulated estimates of  𝑅𝑠,𝑘(𝛼1, 𝛼2) 

Results of Table 1 and Table 2 depicts that average bias and MSE decrease as sample size 

increases for both the cases of estimation of reliability. Bias is negative in all the combinations of 

parameters in both situations of (s, k). This shows the consistency of MSE. Also, absolute bias 

increases as 𝛼1increases for a fixed value of 𝛼2.While MSE decreases as  𝛼1 increases for a fixed value 

of 𝛼2 for both the cases of (s, k). Also, for fixed 𝛼1 and increasing 𝛼2 MSE increases for same sample. 

Table 2: Average MSE of the simulated estimates of 𝑅𝑠,𝑘(𝛼1, 𝛼2) 

s, k n, m 2.0,2.5 2.0,3.0 2.0,3.5 3.0,2.0 3.0,2.5 3.0,3.0 

1,3 10,10 .008420 .008347 .0105324 .005115 .005915 .010999 

15,15 .005872 .006666 .0071572 .002870 .004008 .008089 

20,20. .0049068 .004907 .0054370 .002320 .003011 .006478 

25,25 .0036479 .004291 .0045213 .001871 .002486 .005984 

30,30 .002805 .003195 .0037037 .001478 .002033 .005489 

2,4 10,10 .015654 .0154285 .0165471 .010602 .012716 .014210 

15,15 .010693 .010985 .0111963 .004762 .008500 .009423 

20,20. .0075629 .008428 .008489 .004305 .006470 .007210 

25,25 .006857 .006696 .0069927 .004016 .004969 .005663 

30,30 .005238 .005696 .0052105 .003354 .004067 .005053 

s, k n, m    2.0,2.5    2.0,3.0    2.0,3.5    3.0,2.0   3.0,2.5   3.0,3.0 

1,3 10,10 -.006581 -.0016484 -.007107 -.010848 -.017399 -.061099 

15,15 -.006425 -.0041552 -.003801 -.005277 -.005233 -.056924 

20,20 -.005644 -.0009021 -.002751 -.003377 -.003877 -.055159 

25,25 -.004301 -.0035697 -.002016 -.003189 -.003199 -.055473 

30,30 -.003075 -.0032642 -.001574 -.003726 -.002866 -.055240 

2,4 10,10 -.003129 -.0009622 0.000633 -.011485 -.007666 -.008216 

15,15 -.005138 -.0022865 -.001908 -.003719 -.008930 -.005695 

20,20 0.000287 0.0005562 -.000367 -.006453 -005077 -.004446 

25,25 -.000917 -.0003678 -.001444 -.001709 -.004725 -.005074 

30,30 -.000523 -.0020488 -.003957 -.002097 -.004196 -.003842 
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Table 3: Average Length of the simulated 95% confidence intervals of  𝑅𝑠,𝑘(𝛼1, 𝛼2) 

Table 3 and Table 4 findings show that as the sample size increases, length of CI also 

decreases and coverage probability in most the cases crossing 0.95 and for few it is 0.98, which shows 

the performance of CI using Generalized X- Exponential Distribution GXED is excellent and it covers 

most of the cases. Among the parameters, it is observed that length of CI increases for fixed value of 

 𝛼1 for (1,3) while for fixed value of 𝛼2 length of CI decreases.

Table 4: Average Coverage Probability of simulated 95% confidence intervals of 𝑅𝑠,𝑘(𝛼1, 𝛼2) 

s, k    n, m    2.0,2.5      2.0,3.0     2.0,3.5    3.0,2.0    3.0,2.5    3.0,3.0 

1,3 10,10 .891333 .968000 .936667 .910667 .969333 .987333 

15,15 .972667 .944444 .880000 .950000 .925084 .905333 

20,20. .905333 .980810 .914000 ..968667 .912052 .956667 

25,25 .951333 .912300 .949333 .969333 .946000 .966667 

30,30 .953815 .965333 .926000 .952667 .896360 .936667 

2,4 10,10 .964667 .957333 .9743178 .984000 .934667 .966677 

15,15 .962667 .966600 .953000 .970000 .942000 .967333 

20,20. .963333 .955746 .952667 .969425 .954000 .953333 

25,25 .946000 .936667 .953333 .983333 .970883 .948007 

30,30 .902000 .946666 .937333 .956000 .960667 .960667 

3.2 Data Analysis 

In this section, we will deal with two real data sets, will show how reliability in a multicomponent 

stress-strength model can be applied for GXED. Both data sets were discussed by Zimmer et al. 

(1998) and Lio et al. (2010) for Burr-X11 reliability analysis. They showed that Burr-X11 distribution 

fits quite well. For both the data sets, here we are using GXED. 

(X):0.19 ,0.78, 0.96, 0.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71 

and 72.89 

(Y):0.9, 1.5, 2.3, 3.2, 3.9, 5.0, 6.2, 7.5, 8.3, 10.4, 11.1, 12.6, 15.0, 16.3, 19.3, 22.6, 

24.8, 31.5 And 53.0. Iterative procedure was used to calculate the value of 𝜆 using (8) and then 

𝛼1 𝑎𝑛𝑑 𝛼2  were obtained by substituting the MLE of 𝜆 in (10). 

The final estimates of 𝛼1  = 0.844798 , 𝛼2  = 1.551717 and 𝜆 = 0.04642891. Based on these 

estimates the MLE of 𝑅1,3  turned out to be 0.620246 and 95% CI (.4704636, .770028) while for 𝑅2,4, 

came out to be 0.4250596; CI (.2752773,0.5748419). 

s, k n, m   2.0,2.5   2.0,3.0   2.0,3.5   3.0,2.0   3.0,2.5   3.0,3.0 

1,3 10,10 .350894 .378572 .390008 .263240 .299103 .322061 

15,15 .290262 .311732 .323802 .214849 .242167 0.26764 

20,20. .253883 .272129 .323815 .186494 .210426 .230430 

25,25 .228945 .243448 .254189 .166324 .188198 .206166 

30,30 .208672 .223215 .232022 .150368 .170951 .189016 

2,4 10,10 .475256 .483035 .485837 .392269 .428761 .453479 

15,15 .395910 .404009 .405260 .322269 .351963 .373558 

20,20. .346274 .357539 .354290 .280074 .308866 .327652 

25,25 .309512 .318022 .318480 .250861 .275602 .291288 

30,30 .285038 .291335 .292680 .230350 .252819 .269990 
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4. Discussion

In this paper, we analyzed the behavior of Generalized X-Exponential Distribution (GXED) in 

calculating the multicomponent stress-strength reliability estimates. We also calculated 95% CI & 

coverage probability for reliability estimates and results were excellent. Coverage probability 

touched up to 0.98, which shows GXED estimates, very accurately. 

The simulation results indicated that average bias and MSE decreased as the sample size 

increased for both the cases of 𝑅𝑠,𝑘.The real data sets also revealed GXED fits very well and provides 

quite close results. Hence, GXED can be used readily to calculate the reliability in a multicomponent 

stress- strength environment. 
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