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Abstract

The process capability index is an important tool used in quality control and process improvement.
Generally, the index is estimated under the assumption of a normal distribution, although some other
distributions are also recommended in the literature. This paper instead considers a three-parameter
Weibull distribution and obtains an estimate of the process capability index under the Bayesian framework.
Bayesian development is based on the use of non-informative priors and the posterior sample-based
inferences are drawn using an important Markov Chain Monte Carlo technique, namely, the Gibbs
sampler algorithm. Finally, a numerical illustration based on two real datasets is provided.
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1. Introduction

With the advancement of technology, there is an ever-increasing demand for high-quality products
and services. Smart manufacturing process employing various advanced technologies facilitate
automation, enhance productivity, improve maintenance and monitoring and reduce scope of
human error. However, associated software products need to be examined for quality assurance.

The quality and reliability of the product can be assessed through various statistical tools,
among which, process capability index (PCI) has been found propitious by the manufacturers
as it is useful in assisting decision-making and boosting efforts in process performance. PCI is
a measuring tool for accurately analysing the potential of a process and its performance. For
quality control engineers, it is extremely important since it quantifies the relationship between the
process’s actual performance and the product’s predetermined parameters. The index ascertains
whether the process meets the defined manufacturing prerequisites. In this regard many capability
indices have been developed so far (see, for example, [31], [11], [14] and [5]). The first index put
forward in the literature was Cp, which simply calculates the span of the specifications relative
to the six-sigma spread in the process (see [31]). As per this index, the process mean is centred
between the lower and the upper specification limits. One of the major issues with this index is
that it does not take into account the location of the process mean relative to the specifications.
Moreover, if the process is not centred on the specification region, it would be possible to have a
substantial percentage of the products with characteristics outside the specification limit although
Cp may be high. In order to overcome this problem, [11] introduced another capability index, Cpk,
which takes process centring into account in addition to the spread of the specifications relative
to the six-sigma spread in the process. In other words, it measures the distance between the
specification limits closest to the average from the quality characteristic of interest. Mathematically,
Cp and Cpk can be defined as
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Cp =
USL − LSL

6σp
, (1)

Cpk = min(Cpu, Cpl), (2)

where

Cpu =
USL − µp

3σp
, (3)

Cpl =
µp − LSL

3σp
, (4)

USL and LSL are the upper and lower specification limits, respectively, µp denotes the process
mean and σp represents the process standard deviation.

Both of these PCIs are defined under two important assumptions, that is, the process is under
statistical control and the quality characteristic of the process of interest is normally distributed
(see [31]). Perhaps, because of these assumptions, a bulk of literature is available on the estimation
of PCIs under the assumption of normality (see, for example, [1], [2], [13] and [23]). However,
industrial processes are often not normally distributed and, for such scenarios, the values of
conventional PCIs may be absurd and possibly misrepresent the quality of the product. For
example, one may refer to [10], [27] and [24] for a systematic and detailed coverage. In order to
remove this discrepancy, [3] proposed the quantile-based measure to estimate the capability index
for non-normal distributions, which is given as under.

Cpk = min

(
USL − M
Up − M

,
M − LSL
M − Lp

)
, (5)

where Up, Lp and M are the 99.865th, 0.135th, and 50th percentiles of the target distribution,
respectively, USL and LSL indicate upper and lower specification limits. A value of Cpk < 1 is
unfavourable and indicates that the process is incapable, whereas, a value of 1 ≤ Cpk ≤ 1.33
indicates that the process is barely capable and Cpk ≥ 1.33 shows that the process is capable to
meet the consumers’ requirements.

Besides normality assumption, several developments can be seen in literature on non-normal
assumptions as well. [3], [14], [17], [16], [22], [12], [9], [26] and [20] are some of the important
among other references where capability indices are estimated under the assumption of non-
normal distributions. A thorough literature review on the estimation of PCIs for non-normal
datasets reveals that most of the developments are done using classical framework and only a
few of them considered Bayesian approach for estimating capability index. Further, in statistical
process control, most of the datasets lie at a particular location, generally far from zero, and,
therefore, it becomes imperative to assess capability index by considering a model which has a
location parameter even if one is dealing with non-normal data. To the best of our knowledge,
there is no reference in the literature that entertains a non-normal model with location parameter
for estimating the capability index. To bridge this gap, this paper considers a three-parameter
Weibull distribution for estimating the capability index and performs a Bayes analysis of the
distribution.

The Weibull distribution is an important distribution that has received enough attention in
the field of reliability and quality control. Its versatility stems from the fact that it incorporates
increasing, decreasing and stable hazard rates for different values of its shape parameter (see
[18] and [15], etc). The literature on the analysis of Weibull distribution has considered both
two-parameter and three-parameter form of model where the former model is defined without a
threshold parameter. The two-parameter Weibull distribution is comparatively easier to deal with
as compared to three-parameter model form and, therefore, the literature on both classical and
Bayes analysis of two-parameter Weibull distribution is available in bulk (see, for example, [19],
[28], [15], [25], among others). On the other hand, the three-parameter Weibull distribution is
much richer because of the involvement of a threshold parameter although its analysis is slightly
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more challenging due to sometime unusual behaviour of the likelihood function, especially
when the shape parameter is less than unity (see also [30] and [32]). As a result, this model is
comparatively less entertained in the literature. [30], [32] and [28] are some of the important
references among others where this form of the model is explored.

As mentioned, this paper is an attempt to provide Bayes analysis of the three-parameter
Weibull distribution with ultimate objective of finding the estimate of PCI. The entire development
is done using non-informative priors for the model parameters. It is seen that the resulting
posterior is analytically intractable to draw exact posterior based inferences and, therefore, the
paper utilizes an important Markov Chain Monte Carlo (MCMC) procedure, namely the Gibbs
sampler algorithm, to simulate posterior samples and draw the sample based inferences including
those of PCI. Finally, the proposed methodology is numerically illustrated on the basis of two
real datasets from a juice manufacturing company.

The plan of the paper is as follows. The next section briefly describes the three-parameter
Weibull model and its Bayesian formulation. Section 3 provides numerical illustration based on
two real datasets. Finally, a brief conclusion is provided in the last section.

2. Model Formulation

2.1. Likelihood function

The probability density function (pdf) of the three-parameter Weibull distribution is

f (x|θ, β, µ) =
β

θ

(
x − µ

θ

)β−1

exp

[
−
( x − µ

θ

)β
]

, x > µ; θ, β, µ > 0 (6)

where θ, β and µ are the scale, shape and location parameters, respectively. The distribution
exhibits increasing hazard rate for β > 1, decreasing hazard rate for β < 1 and, for β = 1, the
distribution reduces to two-parameter exponential model possessing constant hazard rate. Let us
use the notation W(θ, β, µ) to denote the three-parameter Weibull distribution given in (6). The
reliability function and the hazard function of W(θ, β, µ) at time t are, respectively, given by

R(t) = exp

[
−
( t − µ

θ

)β
]

, (7)

and

h(t) =
β

θ

( t − µ

θ

)β−1
. (8)

Similarly, the expressions for Up, Lp and M for the model W(θ, β, µ) can be written as

Up = θ[2.86967]
1
β + µ, (9)

Lp = θ[0.00058]
1
β + µ, (10)

and
M = θ[ln 2]

1
β + µ, (11)

respectively.
Let us now assume that an experiment consisting of n units is being conducted and let x =

(xi; i = 1, 2, ..., n) be the resulting observations. Then, the likelihood function for the dataset x can
be expressed as

L(x|θ, β, µ) =

(
β

θ

)n n

∏
i=1

(
xi − µ

θ

)β−1

exp

[
−

n

∑
i=1

(
xi − µ

θ

)n]
. (12)
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2.2. Bayesian formulation

To conduct Bayesian analysis, it is essential to specify prior distribution for the parameters of
the entertained model. Several types of priors are proposed in the literature for the Weibull
parameters. The paper, however, considers joint non-informative prior as suggested by [32] and
the same is given as

g(θ, β, µ) ∝
1

θβ
. (13)

Obviously, the parameter µ is assigned a constant prior over the positive real space.
The updated belief in the form of posterior distribution can be obtained by combining the

prior distribution as specified in (13) with the likelihood function given in (12) via Bayes theorem.
The joint posterior up to proportionality can, therefore, be written as

p(θ, β, µ|x) ∝
βn−1

θnβ+1

n

∏
i=1

(xi − µ)β−1exp

[
−

n

∑
i=1

( xi − µ

θ

)β
]

; θ > 0, β > 0, µ < min(x). (14)

Obviously, the posterior given in (14) is analytically intractable and, therefore, one has to
proceed with some approximation or simulation based alternative approaches for drawing
the desired inferences from the posterior. As mentioned, this paper considers Gibbs sampler
algorithm, an important MCMC procedure, because of its straightforwardness and ease of
implementation. The algorithm requires specification of low-dimensional full conditionals for
simulating the high dimensional posterior where both full conditionals and the posterior need to
be specified up to proportionality only. The algorithm starts with the appropriately chosen initial
values for the variates and then simulates the full conditionals one by one in a cyclic fashion with
most recent available values for all the given variates at every stage. Obviously, the appropriately
chosen initial values are updated after the first cycle of iteration from all the full conditionals. The
process is continued for a large number of cycles until some systematic pattern of convergence
is achieved among the generating variates. Moreover, it can be easily seen that the posterior
(14) results in three one-dimensional full conditionals corresponding to θ, β and µ and these full
conditionals can be easily simulated resulting in an easy implementation of the Gibbs sampler
algorithm. For further details on the algorithm, one can refer to [7], [6] and [32], among others.

Coming on to the full conditionals derived from (14), it can be seen that the full conditional
for θ happens to be the kernel of gamma distribution after appropriate transformation and,
hence, θ can be easily generated from a gamma generating routine (see [4]). The full conditional
of β can be seen to be log concave and, therefore, β can be simulated using adaptive rejection
sampling procedure (see [8]). The generation of µ from its full conditional is based on the rejection

algorithm using the envelope density g1(µ|β, x1) =

(
β

xβ
1

)
(x1 − µ)(β−1); x1 > µ, where x1 is

minimum of (xi; i = 1, 2, ..., n) (see [32] for further details).

3. Numerical Illustration

For numerical illustration of the proposed formulation, the paper considers two real datasets on
the weights (in grams) of thirty juice packs of grape and strawberry flavours. In the discussion
that follows, the dataset on weights of juice packs of grape flavour is referred to as the Data1
whereas that of strawberry flavour is referred to as the Data2. The two datasets are presented
in Table 1 and these are actually collected to assess the process of filling powdered juice bags.
The two datasets were first reported by [21] where the authors analysed the datasets under the
assumption of normal distribution and evaluated Cpk by considering the specification limits
as: LSL= 18.0 and USL= 22.0. These specification limits were specified in accordance with the
guidelines provided by the National Institute of Metrology, Quality and Technology (INMETRO),
the Brazilian organisation responsible for the quality control.
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Before proceeding with the analysis of datasets, let us plot the control charts with the
specification limits of 18.0 and 22.0. The control charts are presented in Figure 1 where the red
line corresponds to Data1 and the blue line corresponds to Data2. Moreover, the specification
limits 18.0 and 22.0 suggest that the process must hover around the mean of these specification
limits although the Figure 1 clearly suggests that the process is not centred around its mean. In
fact, there are certain values that lie outside the provided range, which ultimately suggest that
the process is out of control.

Table 1: Data on weights (in grams) of juice packs

Data1
21.011 20.635 21.732 21.333 20.587
20.587 21.784 21.088 20.997 21.100
22.155 21.116 20.707 20.413 20.822
20.883 20.930 20.908 20.897 20.486
20.935 21.867 20.814 20.795 21.520
20.537 21.438 20.621 20.975 20.919

Data2
22.572 21.376 20.768 21.833 19.970
21.583 21.813 22.025 20.892 20.241
21.816 21.232 21.730 20.529 21.435
21.106 20.519 21.263 20.684 21.233
19.624 21.150 20.962 21.024 20.316
21.942 21.495 20.819 20.973 21.115

Figure 1: Control chart for the two datasets.

Further, before carrying out the Bayes analysis of the considered datasets, let us check the
compatibility of two datasets with the assumed model (6). The compatibility was examined based
on Kolmogorov-Smirnov (KS) test statistic which was evaluated using maximum likelihood (ML)
estimates of the model parameters. It may be noted that the ML estimates for θ, β and µ were
found to be 0.693, 1.475 and 20.391, respectively, for Data1 and 2.635, 4.244 and 18.737, respectively,
for Data2. Finally, for Data1, the KS statistic was found to be 0.110 with the corresponding p-
value as 0.860 while for Data2, the KS statistic was 0.066 with the corresponding p-value as 0.998.
Obviously, the two datasets provide good compatibility with the model W(θ, β, µ).

For performing the Bayes analysis, the Gibbs sampler algorithm was implemented on the
posterior (14) as per details given in subsection 2.2. Convergence monitoring was done using
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ergodic averages, obtained separately for each of the three variates, using a single long run of the
iterating chain. It was found that 50K iterations were good enough for getting stationarity be-
haviour of the ergodic averages. Once the convergence was assessed, equally spaced observations
at a gap of 10 were chosen to make auto correlation negligibly small. In this way, a posterior
sample of size 1K was taken from the marginal posterior of each of θ, β and µ (see also [29] and
[32]). Once the samples of θ, β and µ are obtained, the same can be used in (9)-(11) by substitution
to get the corresponding samples of size 1K from the posterior of each of Up, Lp and M. Finally,
the samples of Up, Lp and M so obtained can be used to get the posterior samples of size 1K
corresponding to Cpk given in (5).

Table 2: Estimated posterior summaries for θ, β, µ and Cpk

Estimated Posterior Summaries
Datasets Parameters Mean Median Mode 0.95 HPDI

Data1

θ 0.701 0.700 0.698 0.587 0.816
β 1.493 1.490 1.483 1.215 1.794
µ 20.384 20.386 20.391 20.350 20.412

Cpk 1.227 1.221 1.211 0.931 1.532

Data2

θ 2.663 2.589 2.439 1.770 3.725
β 4.259 4.139 3.901 2.522 6.242
µ 18.706 18.780 18.928 17.715 19.561

Cpk 0.870 0.869 0.867 0.695 1.053

Table 2 provides a few important posterior based summaries of different posterior charac-
teristics corresponding to various entertained model parameters, each estimated on the basis
of corresponding 1K posterior samples. These summaries are shown in the form of estimated
posterior mean, median, mode and the highest posterior density intervals with 0.95 coverage
probability (0.95 HPDI) for each of the two datasets. It can be observed from Table 2 that the
estimated posterior mean, median and mode corresponding to each parameter for both the
datasets are quite close to each other, implying that the posterior distributions are approximately
symmetric. Furthermore, the width of 0.95 HPDIs for all the parameters are quite small indicating
less variability in the estimated values of the parameters and, hence, ensuring the consistency of
the estimated values. An important finding presented in Table 2 is that 1 ≤ Cpk ≤ 1.33 for Data1,
indicating that the process is barely capable whereas for Data2 Cpk < 1 implying that the process
is incapable and requires further improvement. A similar conclusion was drawn on the basis of
control charts shown in Figure 1.

4. Conclusion

Technological advancements have typically led to an expansion of the industry, wherein the need
for high-quality goods and services is reinforced by a competitive environment. From this vantage
point, industries that deal with manufacturing are always susceptible to manufacturing process
failures leading to the products that may not meet the desired specifications. The manufacturing
sector has made extensive use of PCIs, providing a numerical gauge of a process’s ability to
produce goods that satisfy the factory-set quality standards. In estimating PCIs, more often the
assumption is made that the data are generated randomly using a normal model. Nonetheless,
asymmetric data are found in many circumstances. This paper has successfully demonstrated
the utility of the three-parameter Weibull model in estimating the aforesaid index. Further, the
Bayesian methodology developed in the paper is also found to offer the intended inferences in
a routine manner. The inferential results show that the process pertaining to Data1 is barely
capable while that of Data2 is incapable to offer the desired quality assurance.
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