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Abstract 

In this study, a new three-parameter distribution is introduced by extending the two-parameter Alpha Power 

Inverse Rayleigh distribution using Marshall-Olkin G approach. The proposed Marshall-Olkin Generalized 

Alpha Power Inverse Rayleigh (MOAPIR) distribution generalizes the Marshall-Olkin Inverse Rayleigh, Alpha 

Power Inverse Rayleigh, and Inverse Rayleigh distribution. The characterization and statistical properties of the 

proposed distribution such as hazard rate function, reversed hazard rate function, quantiles, moments, and order 

statistics were derived. The estimation of the MOAPIR distribution parameters is derived using the maximum 

likelihood estimation method. The performance of the proposed distribution was compared with other competing 

distribution using two real-life data. The goodness of fit criteria and the distribution function curve showed that 

the proposed distribution provides a better fit than other competing distributions of the same family of heavily 

positive skewed distribution. 

Keywords: Marshall-Olkin G family, Alpha Power Inverse Rayleigh distribution, 

Skewed distribution, distribution function, Statistical properties. 

I. Introduction
Marshal-Olkin G method of generalization (MO-G) proposed by Marshall and Olkin [1] is often used 

to generate a new family of distributions. Using the cumulative distribution function (CDF) of any 

distribution of a random variable X, the cumulative function of the new family of distributions is 

obtained by 

���;�� =  ��	�
���
���	�   � > 0, � ∈ ℜ (1)

RT&A, No 1 (77)
 Volume 19, March 2024

564



I. O. Adegbite, K. S. Adekeye, O. L. Aako

MARSHAL-OLKIN ALPHA POWER INVERSE RAYLEIGH 

DISTRIBUTION: PROPERTIES, ESTIMATION AND APPLICATIONS 

where �  is the location parameter. 

Its corresponding probability density function (PDF) is 

���; �� =  
��	�[
���
���	�]�  � > 0, � ∈ ℜ (2) 

Many authors such as; Ghitany [2], Ghitany et al.[3], Alice and Jose [4], Okasha and Kayid 

[5], Okasha et al. [6], Salah et al. [7], Gui [8], Krishna et al. [9], Al-Saiari et al. [10], Mahdavi and 

Kundu [11], Javed et al. [12], Maxwell et al. [13], Okasha et al. [14], Okasha et al. [15], Haj Ahmad 

and Almetwally [16], Abdul-Hadi et al. [17], Klakattawi et al. [18], and Aako et al. [19] have used 

MO-G to extend some base distributions by adding parameters to a well-established family of 

distribution to generate a new distribution.   

This article proposes the generalization of APIR distribution proposed by Malik and Ahmad 

[20] based on the MO-G which we hereafter called the Marshall-Olkin Generalized Alpha Power

Inverse Rayleigh (MOAPIR) distribution. The special cases and the statistical properties of MOAPIR

were also presented. Furthermore, the method of maximum likelihood estimation was used to

estimate the parameters of the proposed distribution and two data sets were used to demonstrate

the performance of the proposed distribution in comparison with other competing distribution of

the same family of distributions.

2. The Proposed Distribution

Let ��, ��, … be a sequence of independent and identically distributed random variables from the

APIR distribution.  

The cdf and pdf of the APIR distribution are presented in (3) and (4), respectively. 

�������;  , �� = !"# $%� �!�   ,  � > 0,  ≠ 1, � > 0 ,  (3) 

�������;  , �� = ()�!!� �*	+ , $%� -# $%� ,  � > 0,  ≠ 1, � > 0  (4) 

where   ./0 � are shape and scale parameters, respectively.

We applied the MO-G to the APIR distribution by inserting (3) into (1) and inserting (4) into 

(2) to have the CDF and PDF respectively, of a new generated distribution called the MOAPIR

distribution.

If X is a random variable from MOAPIR distribution, we shall denote as  �~234567� , 8, ��.
The CDF of MOAPIR is  

�:;������� =
⎩⎪⎨
⎪⎧ !"#�%#��


�!�����
�@!"#�%#�#AB ,  � > 0,  ≠ 1, � > 0, � > 0 
0, = 1

 (5) 

and the corresponding PDF of MOAPIR distribution is 

RT&A, No 1 (77)
 Volume 19, March 2024

565



I. O. Adegbite, K. S. Adekeye, O. L. Aako

MARSHAL-OLKIN ALPHA POWER INVERSE RAYLEIGH 

DISTRIBUTION: PROPERTIES, ESTIMATION AND APPLICATIONS 

�:;������� =  
⎩⎪⎨
⎪⎧�!���*
 CDE�!�	#+-#�%#�!"#�%#�

F�!��
���
�@!"#�%#� �BG�  � > 0,  ≠ 1, � > 0, � > 0
0, = 1

 (6) 

To have a useful linear representation of the pdf of the proposed distribution, we used the 

generalized binomial expansion (GBE) in (7) and the power series in (8) 

�1 − I�� = ∑ �K + 1�I�, |I| < 1,OPQR  (7) 

 S = ∑ �log� ��WIW�WQR   (8) 

Applying the concept of GBE and power series in (7) and (8) into (6) if (α >0 and α≠ 1), then 

we have  

�:;������;  , �, �� = ∑ ∑ ∑ XP,Y,W2��[ + 1��\,�W����	#� ,OWQRPYQR�PQR   (9) 

 where 

XP,Y,W =
⎩⎪⎨
⎪⎧�−1�Y ]PY^ �K + 1� �
��_�PY���`�CDE�!��`aA


_aA�!��_aA�W���! ,  � > 1 
�−1�Y ]PY^ �K + 1� ��
�_�Y���`�CDE�!��`aA


_aA�!��_aA�W���! ,       0 < � < 1 
 (10) 

For some selected values of the parameters of MOAPIR, the cumulative distribution 

function and probability distribution function curves are presented in Figure 1. This is to show 

patterns of the behaviour of the parameters of the proposed distribution. 
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Figure 1: Plots of the PDF and CDF of MOPAIR distribution for selected values of the parameters 

Figure 1 shows that MOAPIR is a skewed and unimodal distribution, in addition, the CDF values 

lies between 0 and 1 is an indication that MOAPIR has a true PDF. 

2.1    Sub-models of MOAPIR Distribution 
To show that the proposed MOAPIR distribution is a generalisation distribution of family of 

distributions, we varied the value of the parameters of the distribution.  

If we substitute α =1 in (6), then the expression will become 

�:;����; �, 8� =  28��\,�	#�
c� + �1 − ��,�	#�d�  � > 0, � > 0, � > 0

which is the pdf of the Marshall-Olkin Inverse Rayleigh (MOIR). 

Similarly, if  θ =1, then the expression in (6) will become 

�����e��;  , �� = fg�  − 1 28�\ , *	� -# $%�  � > 0,  ≠ 1, � > 0 

which is the pdf of the Alpha Power Inverse Rayleigh (APIR) distribution proposed by Malik and  

Ahmad [20]. Also, when α = θ = 1, (6) will be reduced to the pdf of Inverse Rayleigh (IR) distribution 

proposed by Srinivasa, et al. [21] which is given by 

�����; 8� = 28�\ ,��
	�  �, 8 > 0 

Thus, the proposed MOAPIR has been proven to be a generalization distribution of the APIR 

family of distributions. 

2.2 Reliability Analysis 
2.2.1  Survival Function 

The survival function of MOAPIR distribution denoted by RMOAPIR(x) is derived using the expression 

presented in (11) 

RT&A, No 1 (77)
 Volume 19, March 2024

567



I. O. Adegbite, K. S. Adekeye, O. L. Aako 

MARSHAL-OLKIN ALPHA POWER INVERSE RAYLEIGH 

DISTRIBUTION: PROPERTIES, ESTIMATION AND APPLICATIONS 7hijklm�x� = �̅��� = 1 H ����  (11) 

Substituting G(x) in (5) into (11), we have the Survival function of MOAPIR to be 

7:;������� �
⎩⎪⎨
⎪⎧ pqr�!"#�%#�#As


�!�����
�@!"#�%#� �B ,       � � 0,  & 1, � � 0, � � 0
0,                                                     � 1

 (12) 

2.2.2 Hazard Rate Function (HRF) 

Let X be a random variable with pdf, ���� and cdf, ����, then the hazard rate function (HRF) is

derived by solving  
��	���	�. 

Thus, if X is a MOAPIR random variable, then the HRF of the random variable X denoted 

by ℎ:;������� is

ℎ:;�������   �
⎩⎪⎨
⎪⎧ �p���u CDE�p�	#+-#�%#�!"#�%#�#A

F
�!�����
�@!"#�%#� �BG@�!"#�%#� #AB   � � 0,  & 1
0, � 1

 (13) 

where � � 0, � � 0.

The pattern of the survival function and hazard rate function of the proposed distribution 

for various selected values of the distribution parameters are presented in Figure 2 

Figure 2: The Survival Function and Hazard Rate Function Curves of MOAPIR distribution 
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2.2.3 Reversed Hazard Rate Function 

The reversed hazard rate (RHR) function of a random variable X from MOAPIR ( ,�, �) distribution

denoted as  v:;������� is derived to be:

v:;������� =
⎩⎪⎨
⎪⎧ �p���u CDE�p�	#+-#�%#�!"#�%#�

F
�!�����
�@!"#�%#� �BG@!"#�%#� �B � > 0,  ≠ 1 
0, = 1

 (14) 

where � � 0, � > 0
Figure 3 represents the RHRF curves for the MOAPIR ( , �, 8) distribution for selected

values of the distribution parameters 

Figure 3: RHRF Curve of the MOAPIR distribution for some selected parameters values. 

2.3 Statistical Properties 
In this section, we derived the statistical properties of the MOAPIR distribution. The properties 

derived are quantiles, median, mean, variance, order statistics, and range. 

2.3.1 Quantiles 

Quantiles explain how many values in a distribution are above or below a certain limit and define 

special part of a data set. The quantile of any distribution of a random variable X is given by solving 

the expression in (15) 

�w�xy � z, 0 < z < 1  (15) 

The qth quantile function is obtained by solving (16) 

 z = !"#�%#� �

�!�����
�@!"#�%#� �B  (16) 

Hence, 

x{ � G��q� � ~�u log r CDE�p�
CDE]Aa���#A��Aa��#A�� ^s�A�

 (17) 

Using (17), we obtained the median, skewness, and kurtosis by determining the quantile of the 

MOAPIR distribution. 
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To obtain the First Quantile, substituting q = 0.25 in (17), then we obtained 

xR.�� � G��0.25�    = ~�u log r CDE�p�
CDE]�.��a�.�����.��a�.��� ^s�A�

 (18) 

For the Median = Q2 = P50, we use q = 0.50 in (17) and obtained 

Median = �R.� = G��0.5� = ~�u log r CDE�p�
CDE]Aa��Aa� ^s�A�

 (19) 

For the Third Quantile = Q3 = P75, we use q = 0.75 in (17) and obtained 

Q\ � xR.�� � G��0.75�    = ~�u log r CDE�p�
CDE]�.��a�.�����.��a�.��� ^s�A�

 (20) 

Using (18), (19) and (20), the Skewness (�P) and Kurtosis (�:;����� of the MOAPIR distribution were

obtained respectively as  

�P:;���� = �#A�R.�����#A�R.����#A�R.����#A�R.����#A�R.���   (21) 

and 

�:;���� = �#A�R.�����#A�R.�����#A�R.\�����#A�R.�����#A�R.����#A�R.���  (22) 

2.3.2 Moments  

Let X be a random variable that has MOAPIR ( , � , �� distribution, the rth moments of X is defined

as �[��] = � ������0�OR  (23) 

= � �� �!���*
 CDE�!�	#+-#�%#�!"#�%#�
F�!��
���
�@!"#�%#� �BG�  0�OR  (24) 

Using linear expressions of �:;������� in (9) and (10), we have

�[��] = � �� ∑ ∑ ∑ XP,Y,W2��[ + 1��\OWQRPYQR�PQR  0�OR  (25) 

= ∑ ∑ ∑ XP,Y,Ww�[ + 1��y��� ]1 − ��^OWQRPYQR�PQR   (26) 

From (25) and (26), the mean and variance of a random variable X from MOAPIR 

distribution are: 

�[�] = ∑ ∑ ∑ XP,Y,Ww�[ + 1��yA�� ]��^ OWQRPYQR�PQR  (27) 

and 

���� � ∑ ∑ ∑ XP,Y,Ww�[ + 1��yOWQRPYQR�PQR − @� ]��^ ∑ ∑ ∑ XP,Y,Ww�[ + 1��yA�OWQRPYQR�PQR B�
 (28) 

2.3.3  Order statistics 

The pdf of the ith order statistics Xi: n of a random sample ��, ��,  … , ��  is
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From (29), the pdf of the ith order statistics Xi: n of MOAPIR distribution is obtained to be 

��:���� = ������!����! ∑ ∑ ∑ XPA,YA,Y��\,*	#� �� �YA�����PA Y��,*	#���PAY�QR��YAQR�PAQR  (30) 

 where 

XPA,   YA,   Y� = �−1�YA�Y� @/ − ��� B @� + K� − 1�� B Γ�n + k� + 1�k�! �� − 1�PA
�����PA

2.3.4 Range of MOAPIR 

Let ����, ����, ��\�, … , ����,  be the order statistics from the sample  ��, ��, �\, … , �� of size n from a

random variable that is of MOAPIR distribution, then the distribution of the range of the random 

variable X, R(x) can be obtained  by solving 7��� = ��:���� − ��:����
Using (30), the range of MOAPIR random variable is derived to be  

7��� =  ������! �∑ ∑ XPA,Y��\,*	#� ���PAY��,*	#���PA�Y�QROPAQR −
 ∑ ∑ ∑ XPA,YA,Y��\,*	#� ���YA�����PAY��,*	#��PAY�QR��YAQR�PAQR   (31) 

2.4. Estimation of Parameters of MOAPIR Distribution 

The parameters of the proposed distribution were derived using the maximum likelihood estimation 

approach. Let X1, ..., Xn be a random sample of size n from MOAPIR distribution, then the likelihood 

function of the MOAPIR distribution, ¡��/ , 8, �� is

¡��/ , 8, �� = ∏ ����� = �!��¤�CDE�!��¤u¤�¤q¤-#�∑ ¥¦¤¦§A !∑ "#�%¨#�¤¦§A ∏ ©¦#+¤¦§A
∏ ~�!��
���
�r!"#�%¨#� �s��¤¦§A

��Q�  (32) 

 By taking logarithm of the likelihood function, we have 

ℓ��/ , 8, �� = /fg�w� − 1� log� � 2��y −  �∑ ��� + log� ���Q� ∑ ,�	¨#�  −«¬Q� 3 ∑ log�x¬�«�Q� H 2 ∑ log F� H 1�� + �1 − �� @ -#�%¨#� − 1  BG��Q�  (33) 

To obtain the MLEs of α, � and �, we differentiate the expression in (33) with respect to α, � and �.

Thus, we have  

®ℓ®! = �!� + �! CDE�!� + �! ∑ ,�	¨#���Q� − 2 ∑ 
���
�-#�%¨#�!"#�%¨#� �
�!��
���
�r!"#�%¨#��s

��Q�  (34) 

®ℓ®� = �* − ∑ ������ − log� � ∑ ���,�	¨#� − 2 ∑ ��q� CDE�p�	¨#�-#�%¨#�!"#�%¨#�
�!��
���
�r!"#�%¨#� �s

«¬Q���Q�  (35) 

and 

®ℓ®
 = �
 − 2 ∑ !!"#�%¨#�
�!��
���
�r!"#�%¨#��s

���       (36)
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 Solving (34), (35) and (36) by equating them to zero, we have 

�!� + �! CDE�!� + �! ∑ ,�	¨#���Q� H 2 ∑ 
���
�-#�%¨#�!"#�%¨#��
�!��
���
�r!"#�%¨#� �s � 0 ��Q�  (37) 

�* − ∑ ������ − log� � ∑ ���,�	¨#� − 2 ∑ ��q� CDE�p�	¨#�-#�%¨#�!"#�%¨#�
�!��
���
�r!"#�%¨#��s = 0 «¬Q���Q�  (38) 

and 

�
 − 2 ∑ !!"#�%¨#�
�!��
���
�r!"#�%¨#� �s = 0���   (39) 

The MLE of  , 8 and � can not be obtained by solving (37), (38), and (39) analytically. Hence

the Newton-Raphson iterative method would be used to accomplish the task of estimating the 

parameters. 

3.Determination of Flexibility of the Proposed Distribution

To access the flexibility of the proposed distribution, the MOAPIR distribution is compared with 

three competing distributions by using two real life data sets. The distributions considered in this 

study are the Marshall Olkin Alpha Power Inverse Exponential (MOAPIE), Alpha Power Inverse 

Rayleigh (APIR), and Inverse Rayleigh (IR) distributions.  

Data Set I is on life of fatigue fracture of Kevlar 373/epoxy that are subjected to constant 

pressure at the 90% stress level until all had failed (Ogunde et al. [22]) and Data Set II is on the relief 

times of twenty patients receiving an analgesic as reported by Gross and Clark [23]. 

The summary statistics of the two datasets are presented in Table 1 and the density plot of 

the datasets along with the empirical density plots of the considered distributions are presented in 

Figures 4.   

Table 1: Summary Statistics of Datasets 

Data set Min Q1 Median Q3 Mean Variance Max Skewness Kurtosis 

I (n=76) 0.0251 0.0905 1.7361 2.2960 1.9590 2.4774 9.0960 1.9406 4.9474 

II (n=20) 1.10 1.475 1.7 2.05 1.90 0.4958 4.10 1.5924 2.3465 
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Figure 4: Density Plot of Datasets I and II With MOAPIRD and other competing Distributions. 

3.1 Parameter Estimation and Goodness of Fit Test 

Four criteria, namely, the log-likelihood values (-LL), Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC) and Hannan-Quinn information criterion (HQIC) are used to select the 

best fitted model to the two data sets under consideration. The model with minimum value of each 

of the four criteria is adjudged as the best fit for the datasets under study. The estimated values of 

the parameters of the four distributions and the goodness of fit criteria are presented in Table 2. 
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Table 2: Estimated parameters and Criteria for goodness of fit 

Parameters - LL AIC BIC HQIC 

Data set Distribution α λ θ

I 

MOAPIR 

MOAPIE 

APIR 

IR 

7.652 

1253 

6883 

- 

0.001136 

0.2375 

0.0293 

0.1406 

853.4 

0.5040 

- 

- 

124.84 

139.90 

6007.67 

211.48 

255.69 

285.80 

12019.33 

424.96 

262.67 

292.79 

12024.0 

427.29 

258.5 

288.6 

12021.2 

425.89 

II 

MOAPIR 

MOAPIE 

APIR 

IR 

51.84 

1.114 

1 

- 

7.5567 

10.80 

1.801 

1.1749 

0.0071 

0.0017 

- 

- 

15.51 

15.65 

694.52 

28.27 

37.02 

37.29 

1393.05 

58.54 

40.01 

40.27 

1395.03 

59.54 

37.6 

37.86 

1393.43 

58.73 

* the bold number represents the smallest value for each criterion.

4.Discussion

The cumulative distribution function and probability density function of the proposed MOAPIR 

distribution were given in (5) and (6) respectively. Figure 1 illustrates the shape of the distribution 

when its parameters were varied and it was clear that the distribution is a positively heavily skewed, 

unimodal and a true distribution function. The survival function curve reflected that higher value 

of λ, ( λ>0.4) will destruct the expected shape of the hazard function. Similarly, it is crystal clear that 

the value of θ has no significant effect on the shape of the hazard function (see Figure 2). However, 

it was observed that variations in the values of the parameters significantly affect the pattern of the 

hazard rate function and the reversed hazard rate function (see Figure 2 and 3).  Further analysis 

shows that  � and 8 have no significant effects on the skewness and kurtosis of the distribution but

have influence on the mean, median and variance of the distribution. The summary statistics in Table 

1 shows that the two data sets are heavily positively skewed data. Furthermore, the density plot in 

Figure 4 for both data sets indicated that the two data sets are heavily positively skewed. The fitted 

distributions as shown in Figure 4, reflected that the proposed MOAPIR is a more suitable 

distribution than all other competing distributions considered in this study. The results from the 

performance indices namely, -LL, AIC, BIC and HQIC confirmed that the proposed MOAPIR best 

fit the two data sets considered in this paper than the MOAPIE, APIR and IR distributions.  

5.Conclusion

In this paper, a new distribution called Marshall Olkin Alpha Power Inverse Rayleigh (MOAPIR) 

distribution was introduced. The pdf and cdf of the distribution were derived and some of its 

properties, such as hazard rate function, reversed hazard rate function, quantiles, moments, and 

order statistics were studied. The parameters of the proposed distribution were estimated using the 

Maximum likelihood estimation method. To access the flexibility of the proposed MOAPIR 

distribution with three competing distributions of the same family, namely the MOAPIE, APIR and 

IR distributions, two data sets were used. The results showed that the proposed MOAPIR 

distribution has minimum value of -LL, AIC, BIC and HQIC, and then, adjudged to be the best fit 

for the two data sets considered in this study. Therefore, the proposed distribution provides a better 

fit than other competing distributions of the same family of heavily positively skewed distribution. 

Hence, for a heavily positive skewed data, the MOAPIR is a good distribution model to be 

used for further analysis.  
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