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Abstract

This paper introduces the two-parameter q-Rayleigh distribution, a powerful extension of the classical
Rayleigh model for analysing real-world data. Compared to the Rayleigh, the q-Rayleigh incorporates a
novel pathway parameter q, offering greater flexibility in capturing diverse data patterns. We delve into
the mathematical properties of the q-Rayleigh, including its hazard rate function and quantile function,
and explore parameter estimation through maximum likelihood methods. We demonstrate its superior
fit compared to the widely-used Rayleigh distribution for real-world data. Moreover, we explore its
application in reliability analysis. This comprehensive study makes the q-Rayleigh a compelling choice for
modelling data exhibiting gradual transitions and enhanced flexibility.
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1. Introduction

The Rayleigh distribution, originally introduced by Rayleigh [13], is a notable probability dis-
tribution that serves as a specialized model and a modified variant of the Weibull distribution.
Widely applicable across diverse disciplines, including medicine, engineering, finance, astronomy,
and physics, the Rayleigh distribution has garnered significance due to its versatile utility in
modelling various phenomena. Its pivotal role has led to extensive research, resulting in the
proposal of several extensions by numerous scholars. Noteworthy examples include the truncated
Rayleigh distribution, explored by Khalaf and Al-Kadim [8], and the Rayleigh Gamma-Gompertz
distribution, investigated by Al-Noor and Asri [4]. Additionally, Rahman [12] introduced the
Cubic Transformed Inverse Rayleigh distribution, and Adnan et al. [1] developed the Weibull
Lindley Rayleigh distribution. These extensions and modifications reflect the adaptability and
applicability of the Rayleigh distribution in different contexts. The probability density function
(pdf) and cumulative distribution function (cdf) of the Rayleigh distribution are given respectively,
by

f (x; σ) =
x

σ2 e−
x2

2σ2 ; σ > 0, x ⩾ 0 (1)

F(x; σ) =1 − e−
x2

2σ2 ; σ > 0, x ⩾ 0 (2)

The q-distribution, a concept integral to mathematical physics and probability theory, exhibits
a broader generality compared to classical distributions. Originating from the pioneering work
of Tsallis [19], the landscape of probability distributions has expanded significantly through
the introduction of q-type distributions. This extension involves incorporating the q Tsallis
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parameter, setting the stage for an extensive body of research on this topic. A notable array of
q-type distributions has emerged as a result, showcasing the versatility of this concept. Notable
examples include the q-exponential distributions proposed by Amari and Ohara [3], q-Gaussian
distributions elucidated by Sato [16], and the q-Gamma distribution investigated by Zhang et al.
[20]. Additionally, q-Weibull distributions have been introduced by researchers such as Picoli et
al. [10]. These q-type distributions represent a rich and diverse set of mathematical formulations,
contributing to the enhanced understanding and modelling of complex phenomena in various
scientific disciplines. The cornerstone of q-type distributions is the q-exponential function:

expq(x) =

{
[1 + (1 − q)x]

1
1−q , 1 + (1 − q)x > 0

0 otherwise
(3)

This function introduces a parameter q, that bestows a remarkable degree of adaptability in
shaping the distribution, empowering it to effectively model non-trivial data patterns that often
elude conventional approaches. Building upon this foundation, we introduce the q-Rayleigh
distribution, a q-analogue poised to potentially expand the scope of modelling possibilities for
intricate data relationships.

Recently, Gül [6] introduced the q-Rayleigh distribution for the case of q < 1 and discussed
the estimation of unknown parameters through maximum likelihood and least squares methods.
In this paper, we extend the exploration of mathematical properties to two cases: q < 1 and
1 < q < 2. The analysis encompasses the survival function, hazard rate function, quantile function,
limiting behaviour, and moments of the distribution. Furthermore, we delve into intriguing
results concerning extreme value properties associated with the q-Rayleigh distribution. We
employ the maximum likelihood estimator for parameter estimation in this new distribution.
To assess its performance, we compare the q-Rayleigh distribution with the standard Rayleigh
distribution using diverse real-life time data sets.

The rest of the paper is organised as follows. Section 2 introduces the novel q-Rayleigh
distribution, providing a comprehensive exploration of its specific cases. Section 3 delves into the
mathematical and statistical properties of this distribution, elucidating its asymptotic behaviours.
Section 4, meticulously elucidates the method of maximum likelihood estimation. In Section 5,
we employ the newly proposed model on two distinct datasets concerning the treatment of head
and neck cancer patients with radiation plus chemotherapy, as well as COVID-19 mortality rates
data from Italy. A comparative analysis with the q-Rayleigh and Rayleigh models is conducted,
affirming the superior fit of the q-Rayleigh model. The conclusive Section brings together the
findings, summarizing the key insights and implications derived from the exploration of the
innovative q-Rayleigh distribution.

2. The q-Rayleigh distribution

2.1. Distributional characteristics

The pdf of the q-Rayleigh distribution is defined as

fq(x) = (2 − q)
x

σ2 expq

[
− x2

2σ2

]
, x > 0 (4)

where σ > 0 and q < 2 are shape parameters, and η > 0 is a scale parameter.
By introducing β = σ−2 and using expq(x) in equation (3), the pdf of the q-Rayleigh distribu-

tion, for x > 0 and for q < 1, can be rewritten as

fq(x) = (2 − q)βx
[

1 − (1 − q)
βx2

2

] 1
1−q

, q < 1 and x ∈
[

0,
(

β

2
(1 − q)

)−1/2
]

(5)
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For x > 0 and q > 1, the pdf of the q-Rayleigh distribution is expressed as:

fq(x) = (2 − q)βx
[

1 + (q − 1)
βx2

2

]− 1
q−1

, 1 < q < 2 and x ∈ [0,+∞) (6)

The cumulative distribution function (cdf) of the q-Rayleigh distribution, when q < 1 is defined as

Fq(x) = 1 −
[

1 − (1 − q)
βx2

2

] 2−q
1−q

(7)

If 1 < q < 2, the cdf function of the q-Rayleigh distribution, formulated as follows:

Fq(x) = 1 −
[

1 + (q − 1)
βx2

2

] q−2
q−1

(8)

2.2. Survival function

In the context of the q-Rayleigh distribution, the survival function (sf), denoted by S(x), represents
the probability that an individual or entity survives beyond time t. Its mathematical expression is
as follows

S(x) = P(X > t) = 1 − F(x)

Sq(x) =
[

1 − (1 − q)
βx2

2

] 2−q
1−q

, for q < 1,

Sq(x) =
[

1 + (q − 1)
βx2

2

] 2−q
1−q

, for 1 < q < 2

2.3. Hazard function

The concept of risk within the context of survival analysis is characterized by the hazard rate
function (hrf), h(x). This function measures the immediate risk of an event (e.g., death) for an
individual who has survived until that time. Its formal representation is as follows

h(x) = P(X > t) =
f (x)
S(x)

The hrf of q-Rayleigh distribution for q < 1 is defined as

hq(x) =
(2 − q)βx

1 − (1 − q) βx2

2

In the case of 1 < q < 2, the hrf of q-Rayleigh distribution is characterized by

hq(x) =
(2 − q)βx

1 + (q − 1) βx2

2

2.4. Cumulative hazard function

The probability of an event occurring before a given time is quantified by the cumulative hazard
function (chf), presented below

H(x) = − ln(1 − F(x))

The chf for the q-Rayleigh distribution, with q < 1, is expressed as follows

Hq(x) =
2 − q
q − 1

ln
[

1 − (1 − q)
βx2

2

]
.
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For the case where 1 < q < 2, the chf of the q-Rayleigh distribution is given by

Hq(x) =
2 − q
q − 1

ln
[

1 + (q − 1)
βx2

2

]

2.5. Graphical Study of q-Rayleigh distribution under various functions

Driven by a desire to understand the nuanced behaviour of the q-Rayleigh distribution, we
embark on a detailed exploration of its key functions (pdf, cdf, sf, and hrf) across a range of
parameter values. By meticulously analysing the illustrative figures presented below, we uncover
fascinating insights into how varying parameters sculpt the behaviour of this versatile distribution.
Complementing our theoretical exploration, we presented illustrative figures to visually depict
the distribution’s characteristics, enhancing accessibility and understanding.
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((e)) Graph of the sf of the q-Rayleigh distribution
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Figure 1: Graphical representation of the key functions of the q-Rayleigh distribution: q < 1
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tion when all the parameters are changed
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Figure 2: Graphical representation of the key functions of the q-Rayleigh distribution: 1 < q < 2

Figures 1 and 2 showcase the graphical representation of the key functions of the q-Rayleigh
distribution for cases where q < 1 and 1 < q < 2, respectively. Examining the probability
density function graphs (1(a), 1(b), 7(a),and 7(b)), it becomes evident that the distribution exhibits
skewness and a high degree of adaptability to diverse parameter values.

In Figures 1(c), 1(d), 2(c) and 2(d), we observe cumulative density plots that serve to validate
the distribution’s suitability as a probability distribution. Additionally, Figures 1(e) and 2(e)
portray the survival function, revealing distinct patterns of fast and slow decreases. The hazard
rate function graphs (1(f), 2(f)) further contribute to the distribution’s versatility, showcasing a
range of shapes including increasing, decreasing, and constant. This variability allows for the
effective fitting of datasets with diverse forms, a characteristic that the q-Rayleigh distribution
adeptly demonstrates. In essence, our exploration underscores the distribution’s capability to
accommodate different data sets, making it a valuable tool in statistical analysis.
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3. Properties

This section delves into the mathematical and statistical characteristics of the q-Rayleigh distribu-
tion.

3.1. Limiting Behaviour

Lemma 1. As the parameter q approaches 1, the pdf of the q-Rayleigh distribution, (denoted as
fq(x)), converges to the standard Rayleigh distribution.

Proof. For q < 1, the limiting pdf for q = 1 is

lim
q→1

fq(x) =βx lim
q→1


[

1 − (1 − q)
βx2

2

] −1
(1−q)βx2/2


−βx2/2

=βx exp
(
− βx2

2

)
a Rayleigh pdf.

The established proof methodology can be directly applied to the range 1 < q < 2, yielding
an analogous conclusion. ■

3.2. Quantile Function

The quantile function of X, denoted as Q(u) and defined as Q(u) = F−1(u), can be derived by
inversely solving equations (7) and (8) as follows

Qq(x) =
[

2
β(1 − q)

(
1 − (1 − u)

1−q
2−q

)] 1
2

, for q < 1,

Qq(x) =
[

2
β(q − 1)

(
−1 + (u − 1)

1−q
2−q

)] 1
2

, for 1 < q < 2

3.3. Moments

This section presents the moment function for the q-Rayleigh distribution, where moments serve
as quantitative indicators associated with the function’s shape. The moments of the q-Rayleigh
distribution can be derived as follows:

E(Xs) =
∫ +∞

0
xs fq(x)dx

If q < 1,

E(Xs) =
∫ ( β

2 (1−q)
)−1/2

0
xs(2 − q)βx

[
1 − (1 − q)

βx2

2

] 1
1−q

dx

=
2 − q

(1 − q)1+s/2

(
2
β

)s/2
B
(

1 + s
1 − q

, 1 +
s
2

)
where,

B(p, q) =
∫ 1

0
tp−1(1 − t)q−1 dt =

∫ +∞

0

tp−1

(1 + t)p+q dt
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denotes the beta function. It follows that the mean and variance of the q-Rayleigh random variable
when q < 1 are

E(X) =
2 − q

(1 − q)1+1/2

(
2
β

)1/2
B
(

2
1 − q

,
3
2

)
Var(X) =

2(2 − q)
(1 − q)β

[
B
(

3
1 − q

, 2
)
− 2 − q

(1 − q)3/2 B2
(

2
1 − q

,
3
2

)]
If 1 < q < 2,

E(Xs) =
∫ +∞

0
xs(2 − q)βx

[
1 + (q − 1)

βx2

2

]− 1
q−1

dx

=
2 − q

(q − 1)1+s/2

(
2
β

)s/2
B
(

1
q − 1

− s
2
− 1,

s
2
+ 1
)

provided
1

q − 1
− s

2
> 1. Consequently, the mean and variance of the q-Rayleigh random variable

can be expressed as follows

E(X) =
2 − q

(q − 1)1+1/2

(
2
β

)1/2
B
(

1
q − 1

− 3
2

,
3
2

)
Var(X) =

2(2 − q)
(q − 1)β

[
B
(

1
q − 1

− 2, 2
)
− 2 − q

(q − 1)3/2 B2
(

1
q − 1

− 3
2

,
3
2

)]

3.4. Extreme value properties

Theorem 1. Let {Xi, i = 1, ..., n} be independent and identically distributed random variables
(r.v.) following the q-Rayleigh distribution, then U = min

1⩽i⩽n
Xi has also the same distributional

form.

Proof. For q < 1 the survival function is Sq(x) =
[

1 − (1 − q)
βx2

2

] 2−q
1−q

. Then,

Sq(x) = P
[

min
1⩽i⩽n

Xi > x
]

=
n

∏
i=1

P [Xi > x]

=
n

∏
i=1

[
1 − (1 − q)

βx2

2

] 2−q
1−q

=

[
1 − (1 − q)

βx2

2

]n 2−q
1−q

−→ e−n βx2
2 as q −→ 1

For 1 < q < 2 the survival function is Sq(x) =
[

1 + (q − 1)
βx2

2

] 2−q
1−q

. Then,

Sq(x) =
[

1 + (q − 1)
βx2

2

]−n 2−q
q−1

−→ e−n βx2
2 as q −→ 1

■

Theorem 2. Let {Xi, i = 1, ..., n} be independent and identically distributed random variables
(r.v.) following the q-Rayleigh distribution, then V = max

1⩽i⩽n
Xi has also the same distributional

form.
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Proof. For q < 1 the cdf is Fq(x) = 1 −
[

1 − (1 − q)
βx2

2

] 2−q
1−q

. Then,

Fq(x) = P
[

max
1⩽i⩽n

Xi ⩽ x
]

=
n

∏
i=1

P [Xi ⩽ x]

=
n

∏
i=1

1 −
[

1 − (1 − q)
βx2

2

] 2−q
1−q

=

1 −
[

1 − (1 − q)
βx2

2

] 2−q
1−q

n

−→
[

1 − e−
βx2

2

]n
as q −→ 1

Similarly for 1 < q < 2 the cdf of V is

Fq(x) =

1 −
[

1 + (q − 1)
βx2

2

] q−2
q−1

n

−→
[

1 − e−
βx2

2

]n
as q −→ 1

■

4. Estimation of Parameters

This section explores the estimation of the unknown parameters in the q-Rayleigh distribution
through the application of the maximum likelihood estimation method (MLE).

Let x1, x2, . . . , xn represent a random sample obtained from the q-Rayleigh distribution. The
subsequent expression outlines the logarithm of the likelihood function corresponding to the pdf
represented in equation (5) for q < 1 is

ln L = n ln(2 − q) + n ln β +
n

∑
i=1

ln (xi) +
1

1 − q

n

∑
i=1

ln

(
1 − (1 − q)

βx2
i

2

)
(9)

The maximum likelihood estimates of the parameters (q, β) are found by taking a partial derivative
of ln L with respect to q and β, equating the derivatives to zero, and evaluating them at q̂, β̂

∂ ln L
∂q

=− n
2 − q

+
1

(1 − q)2

n

∑
i=1

ln

(
1 − (1 − q)

βx2
i

2

)
+

1
1 − q

n

∑
i=1

βx2
i

2 − (1 − q)βx2
i

∂ ln L
∂β

=
n
β
−

n

∑
i=1

x2
i

2 − (1 − q)βx2
i

In the range where 1 < q < 2, the log-likelihood corresponding to the pdf in equation (6) takes
the form

ln L = n ln(2 − q) + n ln β +
n

∑
i=1

ln(xi)−
1

q − 1

n

∑
i=1

ln

(
1 + (q − 1)

βx2
i

2

)
(10)

Upon differentiating the log-likelihood function in terms of the parameters q and β, one obtains
the following expressions:

∂ ln L
∂q

=− n
2 − q

+
1

(q − 1)2

n

∑
i=1

ln

(
1 + (q − 1)

βx2
i

2

)
− 1

q − 1

n

∑
i=1

βx2
i

2 + (q − 1)βx2
i

∂ ln L
∂β

=
n
β
−

n

∑
i=1

x2
i

2 + (q − 1)βx2
i
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The partial derivatives of the log-likelihood function with respect to q and β are non-linear in both
cases (q < 1 and 1 < q < 2). This non-linearity poses a challenge for directly finding closed-form
solutions for the MLEs of q and β. While closed-form solutions involve expressing the estimates
as explicit mathematical expressions in terms of the data, numerical optimization methods often
involve iterative algorithms to find approximate solutions.

max ln L

s.t. q < 2,

β > 0, (11)

Despite theoretical challenges in rigorously proving the uniqueness of the solution to optimization
problem (11), empirical evidence suggests a strong case for its singularity. Employing a specific
optimization algorithm across a wide range of initial parameter values consistently yielded
convergence to the same solution, demonstrating remarkable robustness and providing compelling
support for uniqueness in practical applications. While a formal proof remains elusive, this
robust empirical evidence bolsters the validity of the solution for practical applications within
this domain.

5. Application to real life data

In this section, we have employed various sets of real-life failure time data to demonstrate the
appropriateness of the q-Rayleigh distribution. Additionally, we have conducted a comparative
analysis with the conventional Rayleigh distribution, highlighting the advantages and nuances
of our proposed model. This exploration not only showcases the versatility of the q-Rayleigh
distribution but also provides valuable insights into its performance in comparison to the widely
accepted standard Rayleigh distribution.

To assess the flexibility of the proposed distribution, we utilized several model selection
criteria, such as -log-likelihood (-LL), Kolmogorov–Smirnov (KS) statistics, and associated p-
values. The analyses were carried out using Matlab software. It is important to note that a
superior distribution is identified by smaller values of -LL and KS statistics. Additionally, a
more favourable distribution, particularly in terms of p-values, is characterized by a significance
level that aligns with the chosen threshold (<0.005), further contributing to the comprehensive
evaluation of the proposed distribution’s fit to the data.

Dataset 1: In medical research, the assessment and comparison of treatment regimens are
commonplace. A deeper comprehension of cancer genetics has broadened the spectrum of
treatment options for various cancers falling under the umbrella of head and neck cancers,
including those affecting the oral cavity, throat, larynx, para-nasal sinuses, and salivary glands.
The three primary types of cancer treatments encompass primary, adjuvant, and palliative
approaches. Within these categories, diverse treatment regimens such as surgery, radiation,
chemotherapy, hormone therapy, immune therapy, and targeted drug therapy are employed.

Efron [5] conducted a randomized clinical trial comparing two treatment arms for head and
neck cancer patients: radiation therapy alone (Arm A) and radiation plus chemotherapy (Arm B).
The study recorded survival times (in days) for 51 patients in Arm A and 44 patients in Arm B. In
this investigation, we specifically focus on the data from Arm B, examining the appropriateness
of fitting the data to the q-Rayleigh distribution. The results are subsequently juxtaposed with
those obtained using the standard Rayleigh distribution for a comprehensive evaluation.

37 84 92 94 112 119 127 130 133 140 146
155 159 169 173 179 194 195 209 249 281 319
339 432 469 519 528 547 613 633 725 759 817
1092 1245 1331 1557 1771 1776 1897 2023 2146 2297

Table 1: Database of Arm B (Sample size 44).
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Model
Estimated Parameters Model Selection

q̂ β̂ -LL KS p-value
q-Rayleigh 1.6462 38.8526 37.1631 0.10769 0.033834
Rayleigh - 1.9505 69.9683 0.50856 1.8308 ×10−6

Table 2: Estimates of fitted distribution for Arm B data.

Table 2 outlines estimates for fitted distributions of Arm B data, comparing the q-Rayleigh and
Rayleigh models. The negative log-likelihood values, are substantially lower for the q-Rayleigh
model than for the Rayleigh model, suggesting superior fit for the former. Additionally, the KS
statistic is smaller for the q-Rayleigh model compared to the Rayleigh model, reinforcing the
notion that the former provides a more accurate representation of the data. The associated p-value
for the KS statistic is also notably smaller for the q-Rayleigh model, underscoring its statistical
significance in capturing the observed data distribution.
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Figure 3: Convergence of Newton-Raphson Method for Parameters Estimations q (a) and β (b) for Arm B
data.

Figure 3 illustrates the convergence of the Newton-Raphson method for parameter estimations
of q and β. The convergence is achieved within 31 iterations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Empirical cdf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
it
te

d
 q

-R
a
y
le

ig
h
 c

d
f

((a))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Empirical cdf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
it
te

d
 R

a
y
le

ig
h
 c

d
f

((b))

Figure 4: PP plot for fitted q-Rayleigh (a) and Rayleigh (b) for Arm B data.
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Figure 4 represents the Probability-Probability (PP) plot for fitted q-Rayleigh (a) and Rayleigh
distribution. the PP plot for the q-Rayleigh model provides a more accurate representation of
the data which implies that the former is considered better than that of the Rayleigh model.
A visually superior alignment of points along the line in the PP plot for the q-Rayleigh model
compared to the Rayleigh model indicates that the former better captures the distributional
characteristics of the data, reinforcing the notion that the q-Rayleigh model is a more suitable fit
for the observed dataset.
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Figure 5: Empirical, Rayleigh, and q-Rayleigh cdf’s for Arm B data.

In Figure 5, the cdf’s of the Empirical, Rayleigh, and q-Rayleigh models are presented. A
superior fit for the q-Rayleigh model is suggested when examining these cdf’s, signifying its
enhanced capability to accurately represent the observed data in comparison to the conventional
Rayleigh model. This might be evidenced by a closer alignment of the q-Rayleigh cdf to the
empirical cdf, suggesting that the additional parameter q improves the model’s ability to capture
the nuances in the data distribution.

Dataset 2: Authentic data pertaining to COVID-19 mortality rates in Italy is utilized to
assess the goodness of fit of the q-Rayleigh distribution. The dataset spans a period of 59 days,
commencing from February 27 to April 27, 2020, capturing the temporal evolution of mortality
rates during this critical period. The detailed information, including date-specific mortality rates,
is organized and presented in Table 4, forming the basis for conducting a rigorous statistical
analysis to evaluate the appropriateness of the q-Rayleigh distribution in modelling the observed
COVID-19 mortality trends in Italy.
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4.571 7.201 3.606 8.479 11.410 8.961 10.919 10.908 6.503 18.474 11.010 17.337
16.561 13.226 15.137 8.697 15.787 13.333 11.822 14.242 11.273 14.330 16.046 11.950
10.282 11.775 10.138 9.037 12.396 10.644 8.646 8.905 8.906 7.407 7.445 7.214
6.194 4.640 5.452 5.073 4.416 4.859 4.408 4.639 3.148 4.040 4.253 4.011
3.564 3.827 3.134 2.780 2.881 3.341 2.686 2.814 2.508 2.450 1.518

Table 3: COVID-19 Data in Italy from February 27 to April 27, 2020.

Model
Estimated Parameters Model Selection

q̂ β̂ -LL KS p-value
q-Rayleigh 0.91949 3.0717 18.7225 0.14996 0.0068288
Rayleigh - 3.6895 18.7643 0.7544 1.2615 ×10−22

Table 4: Estimates of fitted distribution for COVID-19 data.

Table 4 compares two distribution models applied to COVID-19 data: the q-Rayleigh and Rayleigh
distributions. The q-Rayleigh model exhibits a lower negative log-likelihood value and a smaller
KS statistic compared to the Rayleigh model. Additionally, the q-Rayleigh model has a notably
lower p-value, indicating a better fit to the observed COVID-19 data. These collective indicators
of model performance suggest the superiority of the q-Rayleigh distribution in capturing the
underlying distribution of the COVID-19 dataset during the specified period.
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Figure 6: Convergence of Newton-Raphson Method for Parameters Estimations q (a) and β (b) for
COVID-19 data.

Figure 6 demonstrates the convergence of the Newton-Raphson method in estimating the
parameters q and β. The convergence is successfully attained after 34 iterations.
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Figure 7: PP plot for fitted q-Rayleigh (a) and Rayleigh (b) for COVID-19 data.

Figure 7 displays the PP plots illustrating the fitted q-Rayleigh and Rayleigh distributions
concerning COVID-19 data. The PP plots provide a compelling visual diagnosis. The q-Rayleigh’s
points align closely with the diagonal, indicating a superior fit and capturing the nuances of the
observed distribution. Conversely, the Rayleigh’s deviations highlight potential inaccuracies in
its representation. This comparative analysis, therefore, underscores the q-Rayleigh’s superior
efficacy in describing the intricacies of COVID-19 data.
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Figure 8: Empirical, Rayleigh, and q-Rayleigh cdf’s for COVID-19 data.

Figure 8 offers a compelling insight into the process of selecting models for COVID-19 data
analysis. The empirical cdf serves as the reference, with the q-Rayleigh model demonstrating
a remarkable level of fidelity. Its curve closely follows the trajectory of the observed data,
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contrasting with the Rayleigh model’s comparatively less precise fit. Consequently, the q-Rayleigh
model emerges as the preferred choice, providing a more accurate and insightful representation
of the pandemic’s patterns.

6. Conclusion

In this research paper, we have introduced a novel category of two-parameter distributions
termed as the "q-Rayleigh distribution". This distribution is formulated by utilizing the Rayleigh
distribution as the foundational distribution and incorporating the q-exponential function as the
generator function. To evaluate the characteristics of the model, we derived survival, hazard,
and cumulative hazard functions for the q-Rayleigh distribution, analysing them graphically.
Additionally, we explored extreme value properties.

The graphical examination of the q-Rayleigh distribution, employing various functions with
diverse parameter values, demonstrated that the proposed distribution exhibits favourable
properties in terms of its density function. We applied mathematical and statistical properties to
assess the q-Rayleigh distribution, confirming its adherence to the aforementioned characteristics.
The parameters of the q-Rayleigh distribution were estimated through the maximum likelihood
estimation method.

To validate the goodness of fit, we employed the KS test, p-value and PP plot. Additionally,
we conducted a comparison by examining the empirical cdf against those of the q-Rayleigh and
Rayleigh distributions. Furthermore, we applied the q-Rayleigh distribution to cancer mortalities
and COVID-19 data. The proposed distribution outperformed other distributions based on model
selection criteria. In light of these findings, the q-Rayleigh distribution emerges as more adaptable
and flexible in fitting real-life failure time data. We anticipate that this proposed distribution will
find broader applications across diverse research domains, including reliability analysis, medical
engineering, economics, and beyond.
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