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Abstract

The present paper deals with a class of Lorentzian almost paracontact metric manifolds namely
Lorentzian para-Kenmotsu (briefly LP-Kenmotsu) manifolds. We study and have shown that a quasi-
conformally flat Lorentzian para-Kenmotsu manifold is locally isomorphic with a unit sphere Sn(1).
Further it is shown that an LP-Kenmotsu manifold which is φ-conharmonically flat is an η-Einstein
manifold with the zero scalar curvature. At the end, we have shown that a φ-projectively flat LP-
Kenmotsu manifold is an Einstein manifold with the scalar curvature r = n(n − 1).
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I. Introduction

In 1989, K. Matsumoto [3] introduced the notion of Lor entzian paracontact and in particular ,
Lor entzian para- Sasakian (briefly LP-Sasakian) manifolds. Later , these manifolds have been
widely studied by many geometers such as Matsumoto and Mihai [5], Mihai and Rosca [6],
Mihai, Shaikh and De [7], Venkatesha and Bage w adi [16], Venkatesha, Pradeep Kumar and Bage-
w adi [17, 18] and obtained several results of these manifolds.

In 1995, Sinha and Sai Prasad [14] defined a class of almost paracontact metric manifolds namely
para-Kenmotsu (briefly P-Kenmotsu) and Special Para-Kenmotsu (briefly SP- Kenmotsu ) mani-
folds in similar to P-Sasakian and SP- Sasakian manifolds. In 2018, Abdul Haseeb and Rajendra
Prasad defined a class of Lor entzian almost paracontact metric manifolds namely Lor entzian
para-Kenmotsu (briefly LP- Kenmotsu) manifolds [1]. As an extension, Rajendra Prasad et
al., [10] have studied φ-semisymmetric LP-Kenmotsu manifolds with a quarter -symmetric non-
metric conne ction admitting Ricci solitons.

On the other hand, In 1970, Pokhariy al and Mishra [9] introduced new tensor fields, called
the Weyl-pr ojectiv e cur vatur e tensor P(X, Y)Z of type (1, 3) and the tensor field E on a Rie-
mannian manifold. Further many geometers have studied the properties of these tens or fields
[2, 4, 8, 11, 12, 13, 15] as they pla y an important role in the theor y of projectiv e transfor mations
of connectio ns.
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The projectiv e cur vatur e tensor P (X, Y) Z, with respect to the Riemannian connection on a Rie-
mannian manifol d (Mn, g), is giv en by:

P(X, Y)Z = R(X, Y)Z +
1

n − 1
[g(X, Z)QY − g(Y, Z)QX],

wher e QX = (n − 1)X, and the Riemannian Christof fel cur vatur e tensor R of type (1, 3) is
giv en by:

R(X, Y)Z=∇X∇YZ−∇Y∇XZ−∇[X,Y]Z. (1)

Her e ∇ is said to be the Le vi-Civita connection.

In the present work, we study a class of LP-Kenmotsu manifolds and it is organized as follo ws.
Section 2 is equipped with some prerequisites about Lor entzian para-Kenmotsu manifolds. In
section 3, we study the quasi-confor mally flat Lor entzian para-Kenmotsu manifolds. Sections 4
and 5 respectiv ely deals with φ-conhar monically flat and φ-projectiv ely flat LP-Kenmotsu mani-
folds.

II. Preliminaries

An n-dimensional dif ferentiable manifold Mn admitting a (1, 1) tensor field ϕ, contra variant
vector field ξ, a 1-form η and the Lor entzian metric g (X, Y) satisfying

η (ξ) = −1, (2)

ϕ2X = X + η (X) ξ, (3)

g (ϕX, ϕY) = g (X, Y) + η (X) η (Y) , (4)

g (X, ξ) = η (X) , (5)

ϕξ = 0, η (ϕX) = 0, rank ϕ = n − 1; (6)

is called Lor entzian almost paracontact manifold [3].

In a Lor entzian almost paracontact manifold, we have

Φ(X, Y) = Φ(Y, X) where Φ(X, Y) = g(ϕX, Y). (7)

A Lor entzian almost paracontact manifold Mn is called Lor entzian para-Kenmotsu manifold if
[1]

(∇Xϕ)Y = −g (ϕX, Y) ξ − η (Y) ϕX, (8)

for any vector fields X and Y on Mn, and ∇ is the operator of covariant dif ferentiation with
respect to the Lor entzian metric g.

It can be easi ly seen that in a LP-Kenmotsu manifold Mn, the follo wing relations hold [1]:

∇Xξ = −ϕ2X = −X − η (X) ξ, (9)

(∇Xη)Y = −g (X, Y) ξ − η (X) η (Y) , (10)

for any vector fields X and Y on Mn.

Also, in an LP-Kenmotsu manifold, the follo wing relations hold [1]:

g(R(X, Y)Z, ξ) = η(R(X, Y)Z) = g(Y, Z)η(X)− g(X, Z)η(Y) (11)
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R(ξ, X)Y = g(X, Y)ξ − η(Y)X, (12)

R(X, Y)ξ = η(Y)X − η(X)Y, (13)

S(X, ξ) = (n − 1)η(X), (14)

S(ϕX, ϕY) = S(X, Y) + (n − 1)η(X)η(Y), (15)

S (X, Y) = ag (X, Y) + b η (X) η (Y) ; (16)

for any vector fields X, Y and Z, wher e R is the Riemannian cur vatur e tensor and S is the Ricci
tensor of Mn.

III. LP-Kenmotsu manifolds with C̃ (X, Y) Z = 0

The quasi-confor mal cur vatur e tensor C̃ is defined as

C̃(X, Y)Z=aR(X, Y)Z+b{S(Y, Z)X−S(X, Z)Y+g(Y, Z)QX

−g(X, Z)QY}− r
n

(
a

n−1
+2b

)
{g(Y, Z)X−g(X, Z)Y}

(17)

wher e a,b are constants such that ab ̸=0 and

S (Y, Z) =g (QY, Z) .

From (17), we get

R(X, Y)Z= − b
a{S(Y, Z)X−S(X, Z)Y+g(Y, Z)QX

−g(X, Z)QY}+ r
n
( a

n−1+2b
)
{g(Y, Z)X−g(X, Z)Y}. (18)

Taking Z=ξ in (18) and on using (5), (13), (14), we get

η(Y)X−η(X)Y= − b
a
{η(Y)QX−η(X)QY}

{
r

an

(
a

n−1
+2b

)
− b

a
(n−1)

}
{η(Y)X−η(X)Y}.

(19)
Taking Y=ξ and applying (2) we have

QX=
{ r

bn
( a

n−1+2b
)
−(n−1)− a

b
}

X
+
{ r

bn
( a

n−1+2b
)
− a

b−2(n−1)
}

η(X)ξ. (20)

Contracting (20), we get after a few steps

r=n(n−1). (21)

Using (21) in (20), we get
QX= (n−1)X. (22)

Finally , usi ng (22), we find from (18)

R(X, Y)Z=g(Y, Z)X−g(X, Z)Y.

Thus, we state

Theorem 3.1:A quasi-confor mally flat LP-Kenmotsu manifold is locally isometric with a unit
spher e Sn(1).
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IV. LP-Kenmotsu manifolds with φ-conharmonically flat curvature

tensor

The conhar monic cur vatur e tensor K is defined as

K (X, Y) Z=R (X, Y) Z− 1
n−2

[S (Y, Z) X−S (X, Z)Y+g (Y, Z) SX−g (X, Z) SY] .

A dif ferentiable manifold (Mn, g) , n> 3, satisfying the condition

φ2K(φX, φY)φZ= 0 (23)

is called φ-conhar monically flat.

In this secti on, we study LP-Kenmotsu manifolds with the condition (23).

Theorem 4.1:Let Mn be an n-dimensional, (n> 3),φ-conhar monically flat LP-Kenmotsu mani-
fold. Then Mn is an η-Einstein manifold with the zer o-scalar cur vatur e.

Proof: Assume that (Mn, g) , n> 3, is a φ-confor mally flat LP-Kenmotsu manifold. It can be
easily seen that φ2K(φX, φY)φZ= 0 holds if and only if

g(K(φX, φY)φZ, φW) = 0,

for any X, Y, Z, W∈χ (Mn).

g(R(φX, φY)φZ, φW) = 1
n−2 [g(φY, φZ)S(φX, φW)−g(φX, φZ)S(φY, φW)

+g(φX, φW)S(φY, φZ)−g(φY, φW)S(φX, φZ)].
(24)

We suppose that {e1, . . . ,en−1, ξ} is a local orthonor mal basis of vector fields in Mn. By using the
fact that {φe1, . . . ,φe2n, ξ} is also a local orthonor mal basis, if we put X=W=ei in (23) and sum
up with respect to i, then

∑n−1
i=1 g (R (φei, φY) φZ, φei) =

1
n−2 ∑n−1

i=1 [g(φY, φZ)S (φei, φei)
−g (φei, φZ) S (φY, φei) +g (φei, φei) S(φY, φZ)−g (φY, φei) S (φei, φZ)] ,

(25)

wher e
n−1

∑
i=1

g (R (φei, φY) φZ, φei) =S (φY, φZ) +g (φY, φZ) , (26)

n−1

∑
i=1

S (φei, φei) =r+n−1, (27)

n−1

∑
i=1

g (φei, φZ) S (φY, φei) =S(φY, φZ), (28)

n−1

∑
i=1

g (φei, φei) =n+1. (29)

So, by the use of (26)-(29) the equation (25) tur ns into

−S(φY, φZ) = (r+1)g(φY, φZ). (30)

Then by using (4) and (15), from equation (30) we get

S(Y, Z) = −(r+1)g(Y, Z)− (n+r)η(Y)η(Z), (31)

which giv es us, from (16), Mn is an η-Einstein manifold. Hence on contracti ng (31) we obtain
nr= 0, which implies the scalar cur vatur e r= 0, which proves the theor em.
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V. LP-Kenmotsu manifolds with φ-projectively flat curvature tensor

A dif ferentiable manifold (Mn, g) , n> 3, satisfying the condition

φ2P(φX, φY)φZ= 0 (32)

is called φ-projectiv ely flat, wher e P (X, Y) Z is the Weyl-pr ojectiv e cur vatur e tensor of (Mn, g).

Theorem 5.1: Let Mn be an n-dimensional, (n> 3), φ-projectiv ely flat LP-Kenmotsu manifold.
Then Mn is an Einstein manifold with the scalar cur vatur e r=n(n−1).

Proof:It can be easily seen that φ2P(φX, φY)φZ= 0 holds if and

g(P(φX, φY)φZ, φW) = 0,

for any X, Y, Z, W∈χ (Mn).

g(R(φX, φY)φZ, φW) =
1

n−2
[g(φY, φZ)S(φX, φW)−g(φX, φZ)S(φY, φW). (33)

By choosing {e1, . . . ,en−1, ξ} as a local orthonor mal basis of vector fields in Mn and using the fact
that {φe1, . . . ,φe2n, ξ} as a local orthonor mal basis, on putting X=W=ei in (33) and summing up
with respect to i, we have

n−1

∑
i=1

g (R (φei, φY) φZ, φei) =
1

n−2

n−1

∑
i=1

[g(φY, φZ)S (φei, φei)−g (φei, φZ) S (φY, φei)] . (34)

Ther efor e, by using (26)-(29) into (34) we get

nS (φY, φZ) =rg (φY, φZ) .

Hence by vi rtue of (4) and (15) we obtain

S(Y, Z) =
r
n

g(Y, Z)+
( r

n
−(n−1)

)
η(Y)η(Z). (35)

Ther efor e from (35), by contraction, we obtain

r=n(n−1). (36)

Then by substituting (36) into (35) we get

S (Y, Z) = (n−1) g (Y, Z) ,

which implies Mn is an Einstein manifold with the scalar cur vatur e r= n(n−1).
This completes the proof of the theor em.
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