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Abstract 

In this work, a novel bounded three-parameter power Lomax distribution termed the unit power Lomax 

(UPLoD) is presented. The UPLoD is capable of handling data with left and right skewed shapes according 

to its probability density function. Additionally, according to the hazard rate function, the distribution may 

be used to analyse data containing J-shaped hazard rates. It is possible to determine some of the distribution's 

mathematical characteristics like moments, probability-weighted moments, incomplete moments, residual and 

reversed residual life, quantile function, stress strength model, and entropy (Rényi, Havrda and Charvát, 

Tsallis, and Arimoto) measures. The Cramér–von Mises, weighted least squares, maximum likelihood, 

Anderson–Darling, maximum product of spacing, and least squares approaches are among the conventional 

estimating techniques that are taken into account. The performance of the resulting estimates is compared 

using a Monte Carlo simulation based on some precision metrics. An actual data application is presented 

using water capacity data, and data about the Susquehanna River's maximum flood levels to show the 

importance of the new distribution compared to several other known distributions. 

Keywords: Unit Power Lomax distribution, Entropy measures, Parameter estimation, 

Goodness-of-fit test. 

1 Introduction 
The Lomax distribution (LoD), sometimes referred to as the Pareto II distribution, was first presented 

by Lomax [1] to model business failure data, but it has since been widely used in a wide range of 

applications. Harris [2] utilized the LoD for data on wealth and income, In the case of severely tailed data, 

Bryson [3] suggested employing it in place of the exponential distribution. Atkinson and Harrison [4] used 

it to model data on business failure. It was utilized in the biological sciences and even for modeling the 

distribution of server computer file sizes, as mentioned by Holland et al. [5]. The LoD has been used to 

model a variety of data that many writers have explored. 

Rady et al. [6] presented the power Lomax distribution (PLoD) as a generalization of the LoD that 

includes an additional shape parameter. The PLoD has been used in many applications and fields, like 
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those pertaining to biological sciences, engineering sciences, medical research, econometrics, and life 

testing. The PLoD's probability density function (PDF) is provided by: 

( ) ( ) ;

1
1 1 1; 1 0,f x x x x


    

− −
− − −= +  (1) 

where ( , , )   =  is the set of parameters, 0   and 0   are shape parameters and 0   is the scale 

parameter. The following defines the PLoD's cumulative distribution function (CDF) 

( ); 1 1 ; 0.
x

F x x







−
 

= − +  
 
 

(2) 

On the other hand, statistics professionals have recently become interested in the creation and the 

development of novel probability distributions that can provide models that fit datasets ranging from zero 

to one. To model proportions, percentages, and probabilities, bounded distributions are required. The 

study of datasets on (0, 1) regard to parametric or semi-parametric regression models is crucial in applied 

fields. Additionally, unit distributions add more flexibility over the course of the unit interval without 

changing the core distribution's properties. When modeling proportions that are typically seen in industry, 

medical applications, and risk analysis, unit distributions are an essential tool.  

Here are a few of the most significant unit distributions with varying numbers of parameters. The log 

Lindley distribution (Gómez-Déniz et al. [7]), unit-Gompertz distribution(UGoD) (Mazucheli et al. [8]), unit 

Lindley distribution (ULD) (Mazucheli et al. [9]), unit modified Burr-III distribution (Haq et al. [10]), unit 

generalized half normal distribution (Korkmaz [11]), unit-Weibull distribution (UWD) (Mazucheli et al. 

[12]), unit Gamma/Gompertz distribution (UG/GD) (Bantan et al. [13]), unit log logistic distribution (ULLD) 

Ribeiro-Reis [14]), unit Burr-XII distribution (UBXIID) (Korkmaz and Chesneau [15]), unit half-logistic 

geometric distribution (Ramadan et al. [16]), unit power-skew-normal distribution (Martínez-Flórez et al. 

[17]), unit exponentiated half logistic distribution (Hassan et al. [18]), unit Teissier distribution (Krishna et 

al. [19]), unit Xgamma distribution (Hashmi et al. [20]), unit-exponentiated Pareto distribution (UEPD) (Haj 

Ahmad et al. [21]), unit exponentiated Lomax (Fayomi et al. [22]), Kumaraswamy unit-Gompertz 

distribution (Akata et al. [23]), unit inverse exponentiated Weibull distribution  (Hassan and Alharbi [24]) 

and unit–power Burr X distribution (Fayomi et al. [25]).  

The main goal of this work is to present a new and adaptable probabilistic model for the PLoD with a 

domain (0,1). This model refers to the unit PLoD (UPLoD) that can be used to evaluate a wide range of data 

sets with values ranging from zero to one. The UPLoD is presented in light of the following details: 

a) To offer a new distribution that is specified on (0,1) to compete with the current bounded

distributions.

b) There are several possible forms for the density function: symmetric, unimodal, reversed J-shaped,

left- and right-skewed. Furthermore, J-shaped and rising hazard rate function (HF) plots of the

UPLoD are possible.

c) Statistical characteristics are given, including quantile function, stress strength (SS) reliability

model, moments, incomplete moments (IMs), probability-weighted moments (PWMs), residual

and inverted residual lives, and entropy measures.

d) The performance of parameter estimate for the UPLoD is assessed and compared using six

traditional estimation techniques: least squares (LS), weighted LS (WLS), maximum likelihood

(ML), maximum product spacing (MPS), Anderson-Darling (AD), and Cramer-von Mises (CvM).

e) To evaluate the validity of different estimates, simulation research is conducted. The Susquehanna

River's maximum flood level and water capacity data are used to evaluate the UPLoD's usefulness

to a number of alternative models.
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The structure of the article is as follows: A new bounded distribution is shown in Section 2. In Section 

3, the statistical characteristics of the UPLoD are covered. The model parameter estimators based on ML, 

LS, CvM, WLS, AD, and MPS methods are derived in Section 4. In order to make sense of the findings in 

Section 5, a simulation study is conducted. In Section 6, two real data sets are used to demonstrate the 

UPLoD's utility. Section 7 presents the conclusions. 

2 Unit Power Lomax Distribution 
In this section, a new lifetime model called the UPLoD is introduced and investigated. The UPLoD is 

obtained by using the exponential function transformation in the form e XY −=  where X has the PLoD 

with density function (1), hence the UPLoD’s PDF is provided by: 

( ) ( ) ( )( )
1

1 1; ln 1 ln ;f y
y

y y
 

 


− −
− −= − + − 0 1;y  , , 0,    (3) 

where ( , , )   =  is the set of parameters, where   and   are shape parameters, while   is scale 

parameter. The CDF of the UPLoD is provided as follows: 
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The survival and HF of the UPLoD, for 0< y <1, are given, in that order, by
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Figure 1 represents the PDF plots of the UPLoD for selected parameter values. It shows that the UPLoD 

exhibits symmetric, unimodal, reversed J-shaped, left-skewed and right-skewed shapes. Also, the HF  plots 

of UPLoD for some values of parameters are increasing and J-shaped. 

Figure 1: Plots of the PDF and HF for the UPLoD 

The quantile function of a random variable Y has the UPLoD is obtained. The quantile function of the 

UPLoD, say y = Q(p) = F−1(p), where p~ uniform (0,1) can be obtained by inverting CDF (4) as follows: 

( )1 ln1 .yp





 
 
 

−
− −= +

Then, the quantile function of the UPLoD takes the following form 
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The first quantile (Q1) is obtained by setting p = 0.25 in (5); the median (Q2) is obtained by setting p = 0.5 in 

(5); and the third quantile (Q3) is obtained by setting p = 0.75 in (5). 

3 Some Statistical Properties 
In this section, some statistical properties of the UPLoD, including, the rth moment, PWMs, IMs, and 

moments of residual, some entropy measures, and SS reliability are derived. 

3.1 Moments & Some Measures 

Ordinary moments can be used to gain a large number of a UPLoD's significant properties and attributes. 

It is simple to extract the UPLoD's rth moment from PDF (3) in the manner that follows 

where 
( )

( )
!

h h

h
r

A
h




−
= and B(.,.) is the Beta function. Certain numerical values of mean ( 1  ),

variance ( 2 ), skewness ( 3 ), kurtosis ( 4 ) and coefficient of variation (CV) are mentioned in Table 1 for 

some selected parameter values. 
Table 1: Some moments measures of the UPLoD 

τ η κ 
1

  2 CV 3 4

1 

0.7 7 0.337 0.011 0.031 -0.113 3.317 

0.9 9 0.361 0.006 0.015 -0.049 3.709 

1.1 11 0.373 0.003 0.009 0.093 3.853 

2 

0.7 7 0.302 0.010 0.034 0.009 3.280 

0.9 9 0.333 0.006 0.016 0.022 3.684 

1.1 11 0.350 0.003 0.0095 0.137 3.859 

3 

0.7 7 0.283 0.009 0.035 0.084 3.285 

0.9 9 0.317 0.005 0.017 0.066 3.679 

1.1 11 0.337 0.003 0.0097 0.164 3.866 

Table 1 indicates that when the values of   and   rises while the value of   remain constant, the values 

of 2  and CV fall and the values of the other measures increase. It is therefore possible to draw the 

conclusion that, as the value of   rises for predetermined values of   and  , then the values of the mean 

and variance decrease, while the values of other measures increase. Thus, it can be claimed that the 

distribution is skewed to right and left, according to the values of skewness. Finally, according to values of 

4 in Table 1, the UPLoD is leptokurtic.

i. The probability-Weighted Moments
It was Greenwood et al. [26] who proposed the PWM. Estimators of parameters and the quantile function 

of the generalized distributions expressible in inverse form are derived using the PWM. Given two positive 

integers, s and r, the PWM of a random variable Y is defined as 

( )

,
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Using PDF (3) and CDF (4) in (6), the PWM of the UPLoD is derived as follows 
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ii. The incomplete Moments
Understanding a distribution's form as well as its mean is vital for the solutions to many important 

economic concerns. This is made clear throughout the study of econometrics (for instance, asymmetric error 

terms cannot continue to be produced by the widely held spherical distributions). The rth IM of the UPLoD 

is obtained as follows by utilizing PDF (3)  

( ) ( )( )
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= − + −
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where B(.,.,x) is incomplete Beta function.

 

iii. Residual and Reversed Residual Life’s

Residual life and reversed residual life random variables are often used in risk analysis. As a result, 

Balkema and De Haan [27] looked into some related statistical functions, including the survival function, 

mean, and variance. The residual life is defined as the interval between time t and the time of failure for 

the conditional random variable. The rth moment of the residual life, say Ir (t) is defined as follows: 

0 0

1 1
( ) ( ) ( ) ( ) ( ) .

( ) ( )

r r
r nr n

r
n nt t

r
I t y t f y dy t y f y dy

S t S t n

 
−

= =

 
− − 

 
= =   (7) 

Additionally, by combining PDF (3) into (7), the rth moment of residual life of the UPLoD can be obtained 

as follows: 

11 1
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After some manipulation, Ir (t) takes the following form 
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Further, the rth moment of reversed residual life of the UPLoD is derived as follows: 
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which is the incomplete beta function, and takes the following form 
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3.2 Some Entropy measures 

In research on reliability and risk assessment, entropy measures are essential. It has been used in many 

biological applications and in the physical and medical domains. Entropy measures how much the 

uncertainty associated with a random variable Y's distribution fluctuates. Some entropy measures of the 

UPLoD as Rényi, Havrda and Charvat, Tsallis and Arimoto are obtained here. 

The Rényi entropy, of order 0 and 1,    for the UPLoD is defined by: 

( ) .
1

log
1

f yR dy
 



−

 
 

−   

=  (8) 

The Rényi entropy of the UPLoD is obtained by using PDF (3) in (8) as follows: 
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Hence, the Rényi entropy of the UPLoD takes the following form 
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Shannon's entropy was extended by Havrda and Charvát [28]. Havrda and Charvat (HC) of the UPLoD is 

obtained from PDF (3) as follows 

.

1
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Using the same procedure in Rényi entropy, then, the UPLoD's HC entropy has the following structure. 
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Tsallis [29] proposed an extension of Shannon's entropy. Tsallis entropy of the UPLoD is acquired as 

follows from PDF (3) 
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By the similar way used above, hence the UPLoD's Tsallis entropy has the following structure 
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An alternative entropy metric with comparable qualities to the Shannon entropy measure was proposed 

by Arimoto [30] and named the Arimoto's entropy. The following is how to derive Arimoto's entropy of 

the UPLoD from PDF (3). 
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In the same vein used above, the UPLoD's Arimoto’s entropy has the following structure 
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Certain numerical values of some entropy measures of the UPLoD are mentioned in Table 2 for some 

predetermined values of the parameters. 
Table 2: A selection of entropy measures of the UPLoD 

 τ η κ R T HC A

0.3 

0.5 

0.5 1 -0.1550 -0.1469 0.2675 0.1301 

2 2 -0.1168 -0.1122 0.2043 0.1023 

5 3 -0.5033 -0.4242 0.7724 0.2961 

7 4 -0.6937 -0.5495 1.0006 0.3436 

9 5 -0.8420 -0.6362 1.1584 0.3685 

11 6 -0.9676 -0.7029 1.2799 0.3837 

0.5 

0.5 1 -0.3397 -0.3125 0.5334 0.2880 

2 2 -0.1780 -0.1703 0.2908 0.1631 

5 3 -0.6263 -0.5377 0.9179 0.4654 

7 4 -0.8295 -0.6790 1.1591 0.5637 

9 5 -0.9916 -0.7818 1.3347 0.6290 

11 6 -1.1300 -0.8633 1.4737 0.6770 

0.8 

0.5 1 -1.1101 -0.9955 1.5380 0.9694 

2 2 -0.2502 -0.2440 0.3770 0.2425 

5 3 -0.7354 -0.6839 1.0566 0.6718 

7 4 -0.9504 -0.8655 1.3372 0.8459 

9 5 -1.1235 -1.0062 1.5546 0.9795 

11 6 -1.2709 -1.1222 1.7339 1.0888 

Table 2 indicates that when the values of   increases while the value of , , ,    remain constant the values 

of the T  and R decrease and values of the other measures increase. Consequently, it can be deduced that 

when the value of   and   grow for constant values of   and  , then the values of the T  and R  fall 

and values of the other measures rise. 
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3.3 Stress-Strength Reliability 

The SS model, say R = P [ Y< X], where X is the strength and Y is the stress of the system, is widely used in 

several fields such as engineering, statistics, and biostatistics. A few real-world examples include buildings, 

the deterioration of rocket engines, the aging of concrete pressure vessels, and the fatigue failure of aircraft 

structures.  For more applications and examples (see [31-33]). Assume that X be the system's strength and 

Y stress, where X and Y are independent random variables having UPLoD 1( , , )    and UPLoD 2( , , ),    

respectively, then the SS reliability is given as follows 

( ) ( )( ) ( ) ( )( )
1 11 11 11 122 1

0 0

ln 1 ln ln 1 ln .

y

y x

x x y y dx dy
x y

R


    
 

 

−− −
− −− −

= =

−
− + − − + −=  

Hence, the stress strength of the UPLoD takes the following form 

1

1 2
.

( )
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+

4 Parameter Estimation 
In this section, six different estimation methods for estimating model parameters are presented. These 

methods are ML, LS, WLS, CvM, AD and MPS. 

4.1 Maximum Likelihood Estimator 

The estimation of the UPLoD parameters is deemed using the ML method. Let y1, y2…ym be a random 

sample of size m from the UPLoD, the log-likelihood function, pointed by ln M  , is given by
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1 1
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An alternative to previous equation, we obtain the ML equations as below: 

1

ln 1
1 ( ln ) ,

m

r
r

M m
y 

  



=

  
   

= − + −

2
1

ln ( 1)
,

( ln )

m

r r

M m

y 



   



−
=

 − +
= +

 − +


and 

( )1 1

( 1 ln( ln )ln
ln( ln )

1 ( ln )

)
.

m m
r

r
r r r

yM
y

y

m




 



−
= =

+ −
− −

 + −
= +  

By numerically solving ln 0,M   =  ln 0,M   = and ln 0,M   = based on optimization 

algorithm as optim using R program, the ML estimates (MLEs) of , ,   and   are produced. 

4.2  Least Squares & Weighted Least Squares 

Let y1, y2,…,ym be a random sample of size m from the UPLoD. Suppose that y(1) <y(2)<…< y(m) denotes the 

corresponding ordered sample. Minimizing the sum squares error yields the LS and WLS estimators of the 

unknown parameters of the UPLoD. 
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Alternatively, the LS estimates (LSEs) of , , ,   can be obtained by setting 1r =  in (9). Similarly, the WLS 

estimates (WLSEs) of unknown parameters are obtained from (9) by putting 
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estimates can also be obtained by solving the following non-liner equations using an optimization 
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4.3 Maximum Product Spacing 

The ML approach can be replaced by the MPS method, which approaches the Kullback-Leibler information 

metric. Although ML estimation is the most popular and extensively used approach, it does not work well 

in some situations involving big samples and complex continuous distributions. The spacing between the 

values of the CDF at consecutive data points is the foundation of the MPS approach. The MPS has been 

used in several applications such as pure mathematics, statistics, hydrology, econometrics, magnetic 

resonance imaging and others. Let Y(1) <Y(2)<…< Y(m) be the ordered statistics from the distribution with 

sample size m, and y(1) <y(2)<…< y(m) be the ordered observed values. Cheng and Amin [34] introduced the 

MPS method serving as an alternative to the ML method.  

Let y(1) <y(2)<…< y(m) are ordered random samples from the UPLoD having CDF(4). The uniform spacings 

can be defined as follows, based on a size m random sample from the UPLoD. 

( ) ( ) ( )( ) ( 1) , 1,2,..., 1r r rD F y F y r m  −= − = + , 
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where, ( ) ( )(0) ( 1)0, 1mF y F y += = and ( )
1

1

1
m

r
r

D 
+

=

= . 

The MPS estimate (MPSE) for the UPLoD is given by maximizing the geometric mean of the spacings 
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The MPSE of , ,   and  are obtained by solving the following non-liner equations technique 
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where ( )( | )k ry  , k =1, 2 and 3 are given in Equation (10). Also, ( 1)( | )k ry − , k =1, 2 and 3 are given 

in (10) by replacing (r) with (r−1). 

4.4 Cramer-von Mises & Anderson-Dalring Estimators 

The CvM  estimates (CvMEs) and AD estimates (ADEs) of set parameters of ( , , ),   =  are obtained by 

minimizing the following functions:  
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with respect to ,   and .  

5 Numerical Study 
In this section, a numerical analysis was conducted to assess and compare the performance of the 

estimates with regard to their relative absolute biases (RAB), chosen parameter values and mean squared 

errors (MSEs) for different sample sizes. The following steps provide a description of the numerical 

techniques: 

Step 1: A random sample is created from the UPLoD by using the inverse transformation (5) with sample 

sizes 𝑚 = (50, 75, 100, 125, 150, and 175). 

Step 2: Some parameter values are selected as, Set1: ( 2, 0.8, 0.05),  = = = Set2:

( 2.5, 0.8, 0.05),  = = = Set3: ( 3, 0.67, 0.05),  = = = Set4: ( 3.5, 0.67, 0.05),  = = = Set5:

( 3, 0.8, 0.05),  = = = and Set 6: ( 3.5, 0.8, 0.05).  = = =  

Step 3: Obtain the parameter estimates of , ,   using the provided estimation methods for the selected

sample sizes. 
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Step 4: Steps 1 through 4 are repeated 1000 times for each sample size and the chosen parameter values. 

Then, the MSEs and RABs of different estimates of , ,   are computed. The MSEs and RABs have the

following formulas 
1000

1

ˆ1
( )

1000
k k

kk

RAB
 




=

−
=  , ( )

1000
2

1

1
ˆ( ) .

1000 k k
k

MSE   
=

= −

Step 5: The numerical results of the simulation study are listed in Tables (3−8). 

The findings obtained regarding the behavior of the estimated parameters from the UPLoD are as follows: 

1. The RABs of all estimates decrease with increasing sample sizes based on different estimation techniques

(see Tables (3–8)).

2. The MSEs for the   estimate increase as value of   increases and the MSEs for the   estimate decrease as

the value of   increases, for all estimation methods (see Tables 3, 7 and 8).

3. From Tables 5 and 7 it is observed that the RAB of   estimate generally increase and the RAB of   

estimate generally decrease when   increases for all estimation methods.

4. From Tables 4 and 8 it is observed that the RAB of ,   estimates generally constant when   increases for

all estimation methods.

5. The RAB of   estimate generally decreases when  and   increase.

6. For all selected sets of parameters, the MSEs of all estimates based on various approaches decrease as

sample size grows (see Figures 2 and 3).

Figure 2: The MSEs of the LSE and WLSE for the UPLoD for all values of m 

Figure 3: The MSEs of ADE and MPSE for the UPLoD for all values of m 

7. It can be seen from Figure 4 that the MSE of   estimates from AD and WLS methods gets the least

value followed by the ML method compared to other methods for set 3 and set 4.
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Figure 4: The MSEs for different  estimates of the UPLoD for all m values 

8. For sets 2 and 6, the MSE of   estimates based on the AD and WLS techniques yields the lowest

values, followed by the ML approach in comparison to other methods (see Figure (5)).

Figure 5: The MSEs of different   estimates of the UPLoD for all values of m 

Table 3: MSEs and RABs of different estimates for η = , κ =, τ = 

m 
ML MP LS WLS AD CvM 

MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB 

50 

η 0.425 0.074 0.586 0.129 0.369 0.046 0.0339 0.004 0.333 0.059 0.402 0.073 

κ 1.872 0.436 2.803 0.607 2.635 0.476 2.226 0.443 1.777 0.408 3.206 0.545 

τ 0.001 1.276 0.002 1.303 0.001 1.362 0.002 1.449 0.001 1.36 0.001 1.226 

75 

η 0.227 0.049 0.291 0.085 0.259 0.045 0.216 0.039 0.212 0.048 0.272 0.64 

κ 0.81 0.252 1.507 0.363 2.286 0.433 0.641 0.216 0.911 0.228 2.466 0.419 

τ 0.0009 1.067 0.0009 1.025 0.001 1.188 0.001 1.014 0.001 0.944 0.001 1.15 

100 

η 0.144 0.034 0.171 0.06 0.184 0.035 0.146 0.028 0.14 0.035 0.197 0.049 

κ 0.481 0.172 0.658 0.243 1.363 0.287 0.368 0.151 0.268 0.125 1.349 0.294 

τ 0.0007 0.845 0.0007 0.827 0.0011 1.093 0.0008 0.905 0.0007 0.792 0.0011 1.031 

125 

η 0.109 0.029 0.125 0.049 0.153 0.031 0.114 0.024 0.109 0.03 0.159 0.043 

κ 0.171 0.108 0.367 0.169 0.779 0.214 0.23 0.115 0.179 0.095 0.781 0.223 

τ 0.0005 0.673 0.0005 0.671 0.0009 0.971 0.0006 0.742 0.0005 0.654 0.0009 0.923 

150 

η 0.087 0.021 0.099 0.039 0.127 0.025 0.093 0.019 0.089 0.023 0.133 0.034 

κ 0.38 0.112 0.286 0.145 0.368 0.159 0.172 0.097 0.149 0.084 0.376 0.166 

τ 0.0003 0.552 0.0004 0.544 0.0009 0.947 0.0004 0.617 0.0003 0.526 0.0008 0.905 

175 

η 0.073 0.019 0.083 0.033 0.109 0.023 0.079 0.018 0.078 0.021 0.114 0.031 

κ 0.13 0.077 0.153 0.108 0.281 0.117 0.123 0.068 0.107 0.061 0.264 0.12 

τ 0.0003 0.455 0.0003 0.439 0.0006 0.728 0.0003 0.492 0.0003 0.432 0.0006 0.713 
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Table 4: MSEs and RABs of different estimates for η = , κ =, τ = 

m 
ML MP LS WLS AD CvM 

MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB 

50 

η 0.742 0.079 1.09 0.14 0.784 0.064 0.638 0.052 0.606 0.066 0.86 0.095 

κ 1.883 0.45 2.249 0.563 1.941 0.419 1.297 0.369 1.209 0.362 2.36 0.47 

τ 0.026 1.082 0.031 1.189 0.03 1.205 0.027 1.127 0.027 1.139 0.03 1.151 

75 

η 0.385 0.053 0.497 0.09 0.491 0.054 0.376 0.042 0.352 0.049 0.529 0.074 

κ 0.495 0.215 1.342 0.356 1.43 0.326 0.738 0.217 0.695 0.211 1.421 0.336 

τ 0.018 0.084 0.018 0.807 0.018 0.84 0.017 0.794 0.017 0.763 0.019 0.826 

100 

η 0.226 0.034 0.267 0.06 0.317 0.038 0.232 0.029 0.222 0.036 0.328 0.052 

κ 0.479 0.172 0.716 0.246 1.309 0.279 0.368 0.151 0.268 0.125 1.242 0.282 

τ 0.011 0.621 0.012 0.632 0.015 0.738 0.012 0.623 0.011 0.577 0.015 0.715 

125 

η 0.176 0.031 0.204 0.052 0.266 0.035 0.183 0.025 0.176 0.031 0.28 0.046 

κ 0.279 0.113 0.235 0.148 0.461 0.179 0.174 0.103 0.141 0.087 0.49 0.189 

τ 0.007 0.447 0.008 0.485 0.015 0.722 0.009 0.524 0.008 0.444 0.015 0.702 

150 

η 0.139 0.022 0.161 0.041 0.216 0.027 0.15 0.019 0.144 0.024 0.224 0.036 

κ 0.194 0.097 0.189 0.127 0.264 0.14 0.133 0.088 0.118 0.077 0.274 0.147 

τ 0.006 0.386 0.006 0.389 0.011 0.619 0.007 0.44 0.006 0.388 0.011 0.584 

175 

η 0.118 0.019 0.134 0.035 0.18 0.025 0.127 0.018 0.124 0.022 0.186 0.033 

κ 0.097 0.07 0.115 0.096 0.195 0.102 0.096 0.062 0.086 0.056 0.199 0.107 

τ 0.005 0.311 0.005 0.318 0.008 0.469 0.005 0.327 0.004 0.293 0.008 0.456 

Table 5: MSEs and RABs of different estimates for η = , κ =, τ = 

m 
ML MP LS WLS AD CvM 

MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB 

50 

η 1.187 0.089 1.661 0.154 0.959 0.051 0.873 0.048 0.851 0.064 1.065 0.082 

κ 0.726 0.325 0.905 0.427 1.201 0.416 1.566 0.431 0.549 0.288 1.306 0.443 

τ 0.002 1.393 0.002 1.355 0.002 1.497 0.002 1.509 0.001 1.386 0.002 1.438 

75 

η 0.607 0.059 0.802 0.103 0.671 0.051 0.552 0.043 0.536 0.05 0.712 0.071 

κ 0.328 0.174 0.402 0.237 0.699 0.279 0.301 0.169 0.237 0.152 0.797 0.304 

τ 0.0009 1.009 0.0009 0.902 0.001 1.154 0.0009 1.075 0.0008 0.938 0.001 1.088 

100 

η 0.379 0.042 0.463 0.074 0.474 0.039 0.367 0.031 0.358 0.039 0.501 0.054 

κ 0.136 0.112 0.152 0.141 0.267 0.161 0.131 0.104 0.104 0.089 0.285 0.173 

τ 0.0006 0.776 0.0006 0.691 0.0009 0.995 0.0007 0.842 0.0006 0.757 0.0009 0.943 

125 

η 0.282 0.035 0.334 0.06 0.394 0.036 0.287 0.027 0.275 0.032 0.413 0.047 

κ 0.09 0.08 0.099 0.104 0.195 0.131 0.086 0.079 0.076 0.069 0.202 0.139 

τ 0.0005 0.62 0.0004 0.569 0.0009 0.962 0.0006 0.723 0.0005 0.626 0.0009 0.936 

150 

η 0.221 0.026 0.26 0.047 0.319 0.028 0.234 0.021 0.225 0.025 0.336 0.038 

κ 0.073 0.072 0.082 0.092 0.119 0.104 0.069 0.069 0.063 0.062 0.123 0.109 

τ 0.0003 0.494 0.0003 0.462 0.0007 0.831 0.0004 0.579 0.0003 0.511 0.0006 0.795 

175 

η 0.186 0.022 0.216 0.041 0.279 0.027 0.198 0.019 0.194 0.023 0.288 0.034 

κ 0.049 0.053 0.057 0.069 0.088 0.074 0.051 0.048 0.047 0.045 0.089 0.079 

τ 0.0003 0.428 0.0003 0.388 0.0005 0.676 0.0003 0.478 0.0003 0.437 0.0005 0.647 
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Table 6: MSEs and RABs of different estimates for η = , κ =, τ = 

m 
ML MP LS WLS AD CvM 

MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB 

50 

η 1.589 0.089 2.271 0.153 1.31 0.052 1.182 0.048 1.168 0.068 1.412 0.079 

κ 0.729 0.325 0.904 0.426 1.623 0.464 1.493 0.418 0.549 0.288 1.674 0.487 

τ 0.002 1.393 0.002 1.353 0.002 1.498 0.002 1.509 0.001 1.386 0.002 1.438 

75 

η 0.84 0.06 1.106 0.103 0.909 0.051 0.761 0.043 0.725 0.052 0.966 0.07 

κ 0.328 0.174 0.403 0.237 0.62 0.27 0.301 0.168 0.237 0.152 0.775 0.302 

τ 0.0009 1.009 0.0008 0.903 0.001 1.153 0.0009 1.075 0.0009 0.957 0.001 1.088 

100 

η 0.516 0.042 0.629 0.074 0.647 0.039 0.506 0.031 0.482 0.038 0.686 0.055 

κ 0.136 0.112 0.152 0.141 0.424 0.179 0.131 0.104 0.104 0.089 0.385 0.187 

τ 0.0006 0.775 0.0006 0.692 0.0009 0.996 0.0007 0.842 0.0006 0.757 0.0009 0.943 

125 

η 0.383 0.035 0.454 0.06 0.528 0.036 0.389 0.027 0.376 0.033 0.56 0.047 

κ 0.09 0.08 0.099 0.104 0.195 0.131 0.086 0.079 0.076 0.069 0.202 0.139 

τ 0.0005 0.62 0.0005 0.588 0.0009 0.963 0.0006 0.723 0.0005 0.626 0.0009 0.936 

150 

η 0.302 0.026 0.354 0.047 0.436 0.028 0.319 0.021 0.307 0.025 0.462 0.038 

κ 0.073 0.072 0.082 0.092 0.119 0.104 0.069 0.069 0.063 0.062 0.123 0.109 

τ 0.0003 0.494 0.0003 0.462 0.0007 0.831 0.0004 0.579 0.0003 0.511 0.0006 0.795 

175 

η 0.254 0.023 0.293 0.041 0.374 0.026 0.269 0.019 0.264 0.023 0.394 0.034 

κ 0.049 0.053 0.057 0.069 0.087 0.074 0.051 0.048 0.047 0.045 0.089 0.079 

τ 0.0003 0.428 0.0003 0.388 0.0005 0.676 0.0003 0.478 0.0003 0.437 0.0005 0.647 

Table 7: MSEs and RABs of different estimates for η = , κ =, τ = 

m 
ML MP LS WLS AD CvM 

MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB 

50 

η 1.074 0.079 1.617 0.141 1.122 0.064 0.914 0.052 0.861 0.066 1.24 0.095 

κ 1.885 0.451 2.241 0.563 1.9 0.411 1.296 0.369 0.899 0.453 2.247 0.471 

τ 0.026 1.082 0.031 1.189 0.03 1.204 0.027 1.127 0.098 1.046 0.0301 1.151 

75 

η 0.549 0.052 0.707 0.089 0.712 0.054 0.546 0.042 0.499 0.049 0.747 0.073 

κ 0.495 0.215 1.345 0.356 1.429 0.326 0.739 0.217 0.695 0.211 1.438 0.339 

τ 0.018 0.84 0.018 0.807 0.018 0.84 0.017 0.794 0.017 0.763 0.019 0.837 

100 

η 0.337 0.036 0.402 0.063 0.471 0.039 0.344 0.029 0.329 0.036 0.498 0.054 

κ 0.282 0.148 0.416 0.209 0.857 0.24 0.374 0.146 0.205 0.113 0.77 0.241 

τ 0.011 0.615 0.01 0.579 0.014 0.701 0.011 0.604 0.01 0.55 0.014 0.678 

125 

η 0.253 0.031 0.293 0.051 0.384 0.035 0.264 0.025 0.253 0.031 0.404 0.046 

κ 0.279 0.113 0.235 0.148 0.461 0.179 0.174 0.103 0.141 0.087 0.491 0.189 

τ 0.007 0.447 0.009 0.504 0.015 0.722 0.009 0.524 0.008 0.444 0.015 0.603 

150 

η 0.201 0.002 0.231 0.041 0.31 0.027 0.216 0.019 0.208 0.024 0.328 0.037 

κ 0.194 0.097 0.188 0.128 0.264 0.14 0.133 0.088 0.118 0.077 0.274 0.147 

τ 0.006 0.386 0.006 0.39 0.011 0.619 0.007 0.44 0.006 0.388 0.011 0.584 

175 

η 0.169 0.019 0.193 0.035 0.259 0.025 0.183 0.018 0.179 0.022 0.269 0.033 

κ 0.097 0.07 0.115 0.096 0.195 0.102 0.096 0.062 0.086 0.056 0.199 0.107 

τ 0.005 0.311 0.005 0.318 0.008 0.469 0.004 0.327 0.004 0.293 0.008 0.456 
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Table 8: MSEs and RABs of different estimates for η = , κ =, τ = 

m 
ML MP LS WLS AD CvM 

MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB 

50 

η 1.462 0.079 2.179 0.141 1.521 0.064 1.233 0.051 1.164 0.065 1.698 0.095 

κ 1.888 0.451 2.242 0.563 1.958 0.42 1.297 0.369 1.215 0.362 2.245 0.471 

τ 0.026 1.082 0.029 1.171 0.03 1.205 0.027 1.127 0.027 1.139 0.03 1.151 

75 

η 0.745 0.052 0.969 0.089 0.984 0.055 0.739 0.042 0.696 0.05 1.028 0.073 

κ 0.495 0.215 1.347 0.356 1.432 0.326 0.733 0.216 0.695 0.221 1.433 0.339 

τ 0.018 0.84 0.018 0.807 0.018 0.84 0.017 0.794 0.017 0.762 0.0195 0.837 

100 

η 0.459 0.036 0.547 0.063 0.638 0.039 0.468 0.029 0.447 0.036 0.681 0.054 

κ 0.282 0.148 0.414 0.209 0.858 0.241 0.375 0.146 0.205 0.113 0.769 0.241 

τ 0.011 0.616 0.01 0.58 0.014 0.701 0.011 0.604 0.01 0.55 0.014 0.678 

125 

η 0.344 0.031 0.399 0.052 0.517 0.034 0.359 0.025 0.346 0.031 0.538 0.046 

κ 0.279 0.113 0.237 0.148 0.461 0.179 0.174 0.103 0.141 0.087 0.49 0.189 

τ 0.007 0.447 0.008 0.485 0.015 0.722 0.009 0.524 0.008 0.444 0.014 0.602 

150 

η 0.274 0.022 0.315 0.041 0.415 0.027 0.294 0.019 0.282 0.024 0.438 0.036 

κ 0.194 0.097 0.188 0.182 0.264 0.14 0.133 0.088 0.118 0.077 0.274 0.147 

τ 0.006 0.386 0.006 0.39 0.011 0.619 0.007 0.44 0.006 0.388 0.011 0.584 

175 

η 0.231 0.019 0.262 0.035 0.354 0.025 0.248 0.018 0.244 0.022 0.368 0.033 

κ 0.097 0.07 0.115 0.096 0.195 0.102 0.096 0.062 0.087 0.056 0.199 0.107 

τ 0.005 0.311 0.005 0.318 0.008 0.469 0.005 0.327 0.004 0.293 0.008 0.456 

6 Applications to Real Data 
In this section, a data analysis is provided in order to examine the goodness-of-fit of the UPLoD when 

compared to some other models, namely UWD, ULD, UGoD, ULLD, UBXIID, UG/GD, Kumaraswamy 

distribution (KumD) (Kumaraswamy [35]) and Toppe-Leone distribution (TLD) (Nadarajah and Kotz [36]). 

i. First Data Set
The first real data set represents 20 observations of comprised water capacity month-wise from the Shasta 

reservoir in California in the month of February from 1991-2010. Hashmi et al. [20] provided the dataset. 

The following are the data details 

0.0833 0.0833 0.1167 0.1167 0.1167 0.15 0.1833 0.2167 0.2167 

0.25 0.25 0.25 0.25 0.2833 0.3167 0.35 0.3833 0.4167 

0.4167 0.45 0.4833 0.4833 0.7167 0.7167 0.75 0.75 0.85 

0.9167 

Some of the data's values can be summarized as follows: Q1 =0.208, Q2 =0.300, Q3 =0.483, mean=0.377, 

3 0.765, =  and 4 2.421. =  The MLEs and standard errors (SEs) for all models are given in Table 9. The 

measures of fit statistic using the maximized log-likelihood (-2logL), Akaike information criterion (E1), 

Bayesian information criterion (E2), the correct Akaike information criterion (E3), Hannan-Quinn 

information criterion (E4), the Kolmogorov Smirnov (KS) statistic values along with P-value, CvM test 

(CvMT) and AD test (ADT) are calculated in Table 9. The model with minimum values for -2logL, E1, E2, E3 

and E4 can be selected as the model that best fits the data. 
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Table 9: MLEs and SEs of all model parameters for the first data 

Models 

UBXIID UG/GD UPLoD UWD KumD TLD 


SE 

1.765 

(0.254) 

28.097 

(8.125) 

3.833 

(0.427) 

1.57 

(0.248) 
 ــــــ ـ ــــــ ـ



SE 
5.856 

(1.549) 

0.168 

(0.069) 

0.589 

(0.165) 

4.207 

(1.12) 

4.489 

(2.041) 
 ــــــ ـ



SE ــــــ ـ 
63.538 

(67.518) 

0.003 

(0.002) 
 ــــــ ـ

6.347 

(1.558) 

0.867 

(1.938) 

Table 10: The statistical measures for the first data 

Measures 
Models 

UBXIID UG/GD UPLoD UWD KumD TLD 

-2log L -11.744 -15.366 -16.272 -10.957 -13.475 -11.587

E1 -19.488 -24.732 -26.543 -17.914 -22.949 -21.175

E2 -17.497 -21.744 -23.556 -15.922 -20.958 -20.179

E3 -18.783 -24.149 -25.043 -17.208 -22.244 -20.953

E4 -19.099 -24.149 -25.96 -17.525 -22.561 -20.981

KS 0.225 0.192 0.1504 0.242 0.221 0.255 

P-value 0.224 0.399 0.701 0.1638 0.245 0.124 

CvMT 0.295 0.174 0.105 0.332 0.241 0.313 

ADT 1.701 1.081 0.726 1.874 1.425 1.786 

The results show that the UPLoD provides a significantly more suited compared to the other five 

models. The left panel of Figure 6 shows that the box plots is left-skewed. Also, the right panel of Figure 6 

shows that the total time on test (TTT) plot is concave; that is, TTT plot was obtained and compared the 

hazard line, which is an increasing function. Figure 7 shows the probability-probability (PP) plots, also 

referred to as "parametric plots," and the CDF line empirically (red) utilizing the projected CDF line (black) 

of the UPLoD of monthly water capacity from the Shasta reservoir in California for the month of February 

from 1991 to 2010 to illustrate the empirical findings reported in Table 10. 

Figure 6: Boxplot and TTT plots of the UPLoD for the first data 
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Figure 7: The CDF plot with line empirically, fitted PDF and PP plots for the first data 

ii. Second Data Set
The second data set represents 20 observations of the maximum flood level (in millions of cubic feet per 

second) for the Susquehanna River at Harrisburg, Pennsylvania. The data set was taken from Mazucheli et 

al. [8]. The data are as below: 

0.26 0.27 0.3 0.32 0.32 0.34 0.38 0.38 0.39 0.4 

0.41 0.42 0.42 0.42 0.45 0.48 0.49 0.61 0.65 0.74 

Here's a summary of some of the data's values: Q1 =0.335, Q2 =0.405, Q3 =0.458, mean=0.423, 3 1.07, =  and

4 3.66. =  The MLEs and SEs for all models are given in Table 11. The measures of fit are calculated in 

Table 12. The model with minimum values for the proposed measures can be chosen as the best model to 

fit the data. 
Table 11: MLEs and SEs of all model parameters for the second data 

Models 

UBXIID ULLD UG/GD UPLoD KumD TLD 


SE 

1.646 

(0.37) 

5.274 

(1.023) 

4.021 

(1.134) 

3.967 

(0.741) 

12.005 

(5.474) 
 ــــــ ـ



SE 
4.848 

(0.918) 
 ــــــ ـ

2.019 

(1.859) 

27.109 

(70.70) 

3.377 

(0.604) 
 ــــــ ـ



SE ــــــ ـ 
0.894 

(0.064) 

76.349 

(48.889) 

25.757 

(68.84) 
 ــــــ ـ

2.241 

(0.501) 

Table 12: The statistical measures for the second data 

Measures 
Models 

UBXIID ULLD UG/GD UPLoD KumD TLD 

-2log L -14.747 -13.853 -15.162 -16.100 -12.973 -7.381

E1 -25.494 -23.707 -24.324 -26.200 -21.241 -12.763

E2 -23.102 -21.715 -21.337 -23.213 -21.241 -11.767

E3 -24.608 -23.007 -22.824 -24.700 -21.132 -12.541

E4 -25.105 -23.318 -23.741 -25.617 -21.558 -12.568

KS 0.1882 0.1604 0.204 0.147 0.2175 0.3409 

P-value 0.4777 0.6823 0.374 0.781 0.3005 0.0191 

CvMT 0.0930 0.1197 0.061 0.059 0.1673 0.1195 

ADT 0.5765 0.7323 0.29 0.353 0.9747 0.7111 

The results show that the UPLoD provides a significantly more suited compared to the other five 

models. The left panel of Figure 8 shows that the box plots is right skewed. Also, the right panel of Figure 

8 shows that the TTT plot is concave. Figure 9 illustrates the empirical finding given in Table 12 by showing 
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the PP plots, and the CDF line empirically (red) utilizing the projected CDF line (black), for the UPLoD of 

the maximum flood level cubic feet per for the Susquehanna River. 

Figure 8: Boxplot and TTT plot of the UPLoD for the second data 

Figure 9: The CDF plot with line empirically, fitted PDF and PP plots employing the second data 

7 Conclusion 
We offer a new bounded distribution in this study, which we term the unit power Lomax distribution, 

as an alternative to several new bounded distributions. The UPLoD captures several kinds of density and 

hazard functions. Moments, incomplete moments, PWM, residual and inverted residual lives, quantile 

function, and entropy measurements are some of the mathematical characteristics of the proposed UPLoD. 

Some metrics of entropy have also been determined. The unknown parameters of the proposed UPLoD are 

estimated using the ML, LS, CvM, WLS, AD, and MPS techniques. The asymptotic behaviour of the 

parameter estimates for the UPLoD was investigated using a simulated study. The findings of the 

simulation indicate that the WLS and AD approaches are better than the others. Two real-data examples 

demonstrate that the UPLoD outperforms all competitors in fitting this type of data set.  
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