
Lalji Kumar, Pratima Singh Ghoshi, Shreyashi Saxena, Kajal Sharma

COMPARATIVE STUDY OF INVENTORY MODELLING 

A COMPARATIVE STUDY OF INVENTORY MODELLING: 

DETERMINISTIC OVER STOCHASTIC APPROACH  

Lalji Kumar, Pratima Singh Ghoshi, Shreyashi Saxena, Kajal Sharma 

• 
Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India – 470003 

 laljikumar07@gmail.com, pratimasingh04625@gmail.com, shreyashisaxena09@gmail.com,  

kajal100136@gmail.com  

Abstract 

This research study provides a comprehensive comparison of two critical approaches to inventory 

modelling- deterministic and stochastic. The deterministic model employs traditional optimization 

techniques to optimize complex systems, while the stochastic model leverages Particle Swarm 

Optimization (PSO) simulations to tackle the challenges posed by uncertain dynamics. This approach 

enables us to develop effective strategies for optimizing complex systems. After conducting sensitivity 

analyses, it was found that the deterministic model oversimplifies demand dynamics, whereas the 

stochastic model more adeptly captures market uncertainties. As a result, this study suggests that 

businesses adopt stochastic approaches to inventory management to better engage in adaptive 

decision-making, contingency planning, optimal resource allocation, risk mitigation, and realistic 

performance metrics. The research provides valuable insights for businesses seeking to navigate the 

complexities of modern supply chains. 

Keywords: Inventory, Deterioration, Stochastic optimization, Risk analysis, 

Particle swarm optimization (PSO). 

MSC Classification: 90B05, 90B30, 90B50, 91B70, 93E20 

I. Introduction

Inventory modelling plays an integral role in contemporary supply chain management. A 

comprehensive understanding of the relationship between inventory dynamics and market 

uncertainties is essential, prompting a comprehensive exploration of deterministic and stochastic 

approaches. This research delves into the core of this dichotomy, aiming to provide invaluable 

insights for businesses grappling with the challenges of unpredictable market conditions. In the 

global marketplace, businesses encounter continuous volatility and uncertainty. The traditional 

deterministic approach to inventory modelling, relying on fixed parameters and constant demand 

assumptions, has limitations in capturing the fluidity of real-world markets. A sudden surge in 

market trends or an unforeseen external event, such as a pandemic, can disrupt this equilibrium, 

leaving the inventory misaligned with actual demand. This mismatch results in potential revenue 

loss due to stockouts or excessive holding costs and underscores the urgency for a more adaptive 

and resilient approach. On the other hand, the stochastic paradigm acknowledges the inherent 

variability in market dynamics. In a world where demand fluctuations are normal, businesses cannot 

afford to disregard the impact of uncertainty on inventory management. For example, a 

manufacturing company that utilizes stochastic modelling may adjust its production levels 

dynamically based on probabilistic demand forecasts. This approach allows for real-time 
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responsiveness to market shifts, minimizing the risks associated with stockouts, excess inventory, 

and subsequent financial repercussions. 

To address this problem, a meticulous methodology has been crafted, leveraging both 

classical optimization techniques for deterministic modelling and Particle Swarm Optimization 

(PSO) simulations for the stochastic scenario. The deterministic approach involves traditional 

optimization algorithms, aiming to find the optimal solution based on fixed parameters. While this 

method is widely used, it often must account for the inherent uncertainties in dynamic markets. In 

contrast, the stochastic approach utilizes PSO, a nature-inspired optimization algorithm that mimics 

the social behavior of particles to search for optimal solutions in a multidimensional space. In the 

context of inventory modelling, PSO enables the exploration of diverse demand scenarios, 

considering the stochastic nature of the objective function. By simulating multiple scenarios, PSO 

provides a more realistic representation of the potential outcomes in uncertain market conditions. 

The application of PSO in stochastic modelling is particularly relevant when dealing with complex 

and dynamic objective functions influenced by stochastic variables, such as fluctuating demand 

patterns. This approach allows the model to adapt and evolve as market conditions change, 

providing decision-makers with a versatile tool for strategic inventory planning. 

This study holds significant importance as it has the potential to revolutionize the way 

businesses approach inventory management. It presents a paradigm shift from rigid and 

deterministic methods to adaptable and stochastic techniques. Given supply chains' growing 

interconnectedness and susceptibility to global disruptions, the need for a responsive and agile 

inventory modelling framework is increasingly crucial. From a managerial perspective, this study 

empowers decision-makers to make informed decisions amidst uncertainty. By highlighting the 

limitations of deterministic models and the benefits of stochastic approaches, it encourages 

managers to adopt adaptive strategies that align with the ever-evolving nature of modern markets. 

For example, a retail manager equipped with insights from stochastic modelling can proactively 

adjust inventory levels based on probabilistic demand forecasts, thereby minimizing the impact of 

unforeseen events such as stockouts or excess inventory. Furthermore, the study contributes to 

academic discourse by comparing deterministic and stochastic inventory modelling 

comprehensively. By contrasting classical optimization techniques with advanced optimization 

algorithms such as PSO, it provides a holistic understanding of the strengths and weaknesses of each 

approach. This nuanced understanding is essential for researchers and academicians seeking to 

advance the theoretical foundations of inventory management. The study's real-world applicability 

extends beyond conventional industries to emerging sectors like e-commerce, where demand 

patterns are subject to rapid and unpredictable changes. By highlighting the adaptability and 

effectiveness of stochastic modelling, the study provides a roadmap for businesses navigating the 

complexities of a digital economy. 

Altogether, this research aims to redefine the contours of inventory management, 

transcending the limitations of deterministic paradigms. By combining real-world context, 

meticulous methodologies, and a profound understanding of the problem at hand, this study aims 

to guide businesses in navigating the uncertainty of modern supply chains. 

II. Literature Review

The recent literature encompasses diverse studies, highlighting the ongoing debate between 

stochastic and deterministic approaches in various operations research and management domains. 

The work on crude oil price forecasting ([17]) emphasizes the advantages of their stochastic pruning 

DE-DL method and shows superior results compared to deterministic counterparts. Using a two-

stage stochastic programming model, [6] explores the ability of Industrial Symbiosis networks to 
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withstand fluctuations in demand, revealing their resilience. Adopting a stochastic perspective [2], 

this article demonstrates the efficacy of their modified particle swarm optimization algorithm within 

a rolling horizon framework for contributing to aggregate production planning under uncertainty. 

A two-stage stochastic programming model is presented for disaster preparedness [9], which 

considers uncertainties in emergency demand and road network congestion. Proposing a two-stage 

stochastic programming model, [14] advocates for smaller initial networks to adapt to future 

uncertainties in district cooling network design. A study on forecasting intermittent demand ([20]) 

uses genetic algorithms and particle swarm optimization, highlighting the stochastic nature of these 

optimization methods. 

Modelling the hot deformation ([16]) of multiphase steels requires advanced numerical 

models for deterministic and stochastic approaches. A stochastic inventory model that incorporates 

quadratic price-sensitive demand ([12]). The effects of different probability distributions are 

compared. Genetic Algorithms is advocated for optimizing inventory management, favoring their 

efficiency over traditional deterministic systems ([4]). In conversion processes, [11] explore 

homogeneous and heterogeneous scenarios, acknowledging the stochastic nature of optimal 

conversion timing, quantity, cost, and time considerations and optimizes using a metaheuristic 

algorithm. The collective findings suggest a growing preference for stochastic approaches, 

recognizing their ability to capture and address uncertainties inherent in real-world operational 

scenarios. The contributions to the comparative study between stochastic and deterministic 

approaches in inventory control ([4]), particularly in a pharmaceutical distribution setting. Their 

conceptual model, rooted in modern control theory, addresses practical supply chain constraints. 

The dynamic mathematical model considers multiple products, variable lead time, deterministic and 

stochastic demand, and various ordering policies. Objective functions maximize planned versus 

realized inventory levels and minimize stock-out situations. Real-life data validate the model, 

providing a comprehensive solution to pharmaceutical supply chain inventory challenges. 

Exploring the intricate relationship between inventory and demand, [19] proposes a logistic growth 

model for inventory-dependent demand rates. The study begins with a deterministic optimal control 

problem, optimizing the present value of total net profit over an infinite horizon. It then extends to 

the stochastic version, solving the associated Hamilton-Jacobi-Bellman equation and demonstrating 

optimal inventory levels in a stochastic context. A study ([3]) investigates how prices and production 

are jointly determined over multiple periods in the face of non-stationary stochastic demand. Their 

study considers limited production capacity and discretionary sales, comparing partial planning or 

delayed strategies. The analysis, incorporating deterministic approximations, provides insights into 

the effectiveness of delayed production versus delayed pricing, with heuristics achieving a high 

percentage of the corresponding optimal strategy. 

 A deterministic inventory model is presented for a single item with two storage facilities 

([10]). The model addresses linearly time-dependent demand over a fixed and finite time horizon. 

The model, applicable to scenarios like food grain production, offers a general solution through the 

gradient method, highlighting its versatility in products with periodic production and linearly 

increasing demand. Tackling the inventory control problem of nonstationary stochastic demand by 

incorporating a certainty-equivalent mixed integer linear programming model using the (R, S) policy 

([18]). The study provides numerical examples and demonstrates the model's application through a 

piecewise linear approximation to handle non-linear cost functions. The focus is on inventory 

planning in closed-loop supply chains ([8]), specifically in equipment-intensive service industries. 

The planning approach is tactical, which is concerned with short-term decisions rather than long-

term strategy. Their mixed-integer programming model, addressing conflicting business objectives, 

is accompanied by a metaheuristic approach to solution. Experimental evaluations demonstrate the 

model's effectiveness, emphasizing the impact of cost weightings on different planning strategies. A 

stochastic inventory model is presented ([13]), considering price-dependent demand, probabilistic 
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lead time, and allowances for shortages in a finite time horizon. The study emphasizes the financial 

implications of advance payment on unit prices, deriving an expected average profit expression. 

Numerical examples and solution techniques, such as the generalized reduced gradient technique 

and stochastic search genetic algorithm, show the model's applicability and benefits. 

Inspired by these studies, the current research endeavors to conduct a comprehensive 

comparative analysis between deterministic and stochastic approaches in inventory management. 

The aim is to derive insights into each approach's trade-offs, advantages, and practical implications, 

contributing to the ongoing discourse in the field. 

III. Notations

The following notations are used in subsequent discussions, in accordance with usual tradition: 

Parameters 

𝐼(𝑡) : Instantaneous inventory level 

𝑎 : Demand potential  

𝑏 : Time dependent parameter 

𝑐 : Time sensitive parameter 

𝜃 : Constant deterioration rate per unit per unit of time 

𝑄 : Stock replenishment quantity 

ℎ𝑐 : Per unit holding cost  

𝐶𝑠 : Per unit shortage cost 

𝐶0 : Per unit purchasing cost 

Decision Variable 

𝑡′ : Stock ending time 

𝑇 : Inventory cycle time 

𝑝 : Per unit price 

𝜋(𝑇, 𝑡′, 𝑝): Total profit per cycle 

IV. Model Formulation with Deterministic Approach

Consider the initial stock size at time 𝑡 = 0 is 𝑄. As the business begins, the stock experiences 

depletion over time. The demand is price and time-dependent, expressed as 𝐷(𝑝, 𝑡) = 𝑎 − 𝑏𝑡 −

𝑐𝑝, where 𝑎, 𝑏, 𝑐 > 0. Here, 𝑎 represents the base demand, 𝑏 is time dependent parameter, and 𝑐 

reflects the price sensitivity parameter of demand. After the time 𝑡′ stock will be end and then 

shortage begins. It is assumed that the shortage is fully backlogged during stock out time till the 

time 𝑇. 

Based on this condition, the rate of the declining of the inventory level (𝐼(𝑡)), due to demand and 

per unit deterioration rate 𝜃, is given as:  

𝑑𝐼

𝑑𝑡
 =  {

−(𝑎 − 𝑏𝑡 − 𝑐 𝑝) − 𝛳 𝐼(𝑡),  0 ≤  𝑡 ≤  𝑡’ 

−(𝑎 − 𝑏𝑡 − 𝑐𝑝)  𝑡’ ≤  𝑡 ≤  𝑇
  (1) 

with the conditions 𝐼(𝑡’) =  0, 𝐼(0)  =  𝑄. 

Solving the differential equation we have, 
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𝐼(𝑡)  =  {

1

𝛳
[𝑒𝛳 𝑡′(𝑎 − 𝑏𝑡’ − 𝑐𝑝) − 𝑒𝛳𝑡(𝑎 − 𝑏𝑡 − 𝑐 𝑝)]  0 ≤  𝑡 ≤  𝑡’

(𝑎𝑡’ − 
𝑏𝑡′2

2
– 𝑐 𝑝 𝑡’) − (𝑎𝑡 −  

𝑏𝑡2

2
− 𝑐 𝑝 𝑡)  𝑡’ ≤  𝑡 ≤  𝑇

      (2) 

Based on these inventory equations, there are several costs associated with the profit function. The 

cost incurred in holding the products with per unit holding cost ℎ𝑐 is given as: 

𝑇𝐻𝐶 =  ℎ𝑐  ∫ 𝐼(𝑡)𝑑𝑡
𝑡′

0
             (3) 

Or, 

𝑇𝐻𝐶 =
1

2𝜃3 [ℎ (−2(𝑎 − 𝑐 𝑝)𝜃(1 − 𝑒𝑡′𝜃 + 𝑡′𝜃) + 𝑏(−2 + 𝑡′2𝜃2 + 𝑒𝑡’𝜃(2 − 2𝑡′𝜃) ))]       (4) 

Total shortage cost with per unit shortage cost 𝑐𝑠, during the stock-out period is given as:

𝑇𝑆𝐶 =  𝑐𝑠 ∫ 𝐼(𝑡)𝑑𝑡
𝑇

𝑡′                (5) 

Or, 

𝑇𝑆𝐶 = 𝑐𝑠 (−
𝑎𝑇2

2
+

1

2
𝑐 𝑝 𝑇2 +

𝑏 𝑇3

6
+ 𝑎 𝑇 𝑡′ − 𝑐 𝑝 𝑇 𝑡′ −

𝑎𝑡′2

2
+

1

2
𝑐 𝑝 𝑡′2 −

1

2
𝑏 𝑇 𝑡′2 +

𝑏 𝑡′3

3
 ) 

       (6) 

Total purchasing cost with per unit purchasing cost 𝐶0, is given as: 

𝑇𝑃𝐶 =  𝐶0𝑄,  𝑤ℎ𝑒𝑟𝑒 𝑄 =  𝐼(0)                 (7) 

Or, 

𝑇𝑃𝐶 =
1

2𝜃2 (𝑐 𝜃 (−𝑏 + (−𝑎 + 𝑐 𝑝)𝜃 + 𝑒𝑡’𝜃(𝑏 + (𝑎 − 𝑐 𝑝 − 𝑏𝑡’)𝜃  )))              (8) 

Total cost incurred in terms of deterioration is as follows: 

𝑇𝐷𝐶 =  𝑐𝑑𝛳 ∫ 𝐼(𝑡)𝑑𝑡
𝑡′

0
            (9) 

Or, 

𝑇𝐷𝐶 =
1

2𝜃3 (𝑐𝑑 (−2(𝑎 − 𝑐 𝑝)𝜃(1 − 𝑒𝑡′𝜃 + 𝑡′𝜃) + 𝑏(−2 + 𝑡′2𝜃2 + 2𝑒𝑡’𝜃(1 − 𝑡′𝜃) )))     (10)

Total revenue generated during the selling period is as follows: 

𝑇𝑅𝑉 =  𝑝 ∫ 𝐷(𝑡, 𝑝)𝑑𝑡
𝑇

0
              (11) 

Or, 

𝑇𝑅𝑉 = 𝑃 ((𝑎 − 𝑐 𝑝)𝑇 −
𝑏 𝑇2

2
)               (12) 

Combining these costs, we have formulated the profit function given as: 

𝜋(𝑡′, 𝑇, 𝑝) = 𝑇𝑅𝑉 − 𝑇𝐷𝐶 − 𝑇𝑃𝐶 − 𝑇𝑆𝐶 − 𝑇𝐻𝐶            (13) 

Or, 
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𝜋(𝑡′, 𝑇, 𝑝) =  𝑃 ((𝑎 − 𝑐 𝑝)𝑇 −
𝑏 𝑇2

2
)

−  
1

2𝜃3
(𝑐𝑑 (−2(𝑎 − 𝑐 𝑝)𝜃(1 − 𝑒𝑡′𝜃 + 𝑡′𝜃) + 𝑏(−2 + 𝑡′2𝜃2 + 2𝑒𝑡’𝜃(1 − 𝑡′𝜃) )))

−
1

2𝜃2
(𝑐 𝜃 (−𝑏 + (−𝑎 + 𝑐 𝑝)𝜃 + 𝑒𝑡’𝜃(𝑏 + (𝑎 − 𝑐 𝑝 − 𝑏𝑡’)𝜃  )))

−
1

2𝜃3
[ℎ𝑐 (−2(𝑎 − 𝑐 𝑝)𝜃(1 − 𝑒𝑡′𝜃 + 𝑡′𝜃) + 𝑏(−2 + 𝑡′2𝜃2 + 𝑒𝑡’𝜃(2 − 2𝑡′𝜃) ))]

−
1

2𝜃3
[ℎ𝑐 (−2(𝑎 − 𝑐 𝑝)𝜃(1 − 𝑒𝑡′𝜃 + 𝑡′𝜃) + 𝑏(−2 + 𝑡′2𝜃2 + 𝑒𝑡’𝜃(2 − 2𝑡′𝜃) ))]

(14) 

 For the optimization of this model, we have utilized the classical optimization approach given in 

the following theorem.  

Theorem 1: For the positive values parameters, the proposed profit function is concave with respect to the 

holding time 𝑡′ and replenish time 𝑇.  

Proof: Using the objective function, we have formulated the Hessian matrix, given as, 

𝐻 = [

𝜕2𝛱

𝜕𝑡′2

𝜕2𝛱

𝜕𝑡′𝜕𝑇

𝜕2𝛱

𝜕𝑡′𝜕𝑇

𝜕2𝛱

𝜕𝑇2

]          (15) 

Where, 

𝜕2𝜋

𝜕𝑡′2 =
1

6𝜃3 (3(𝑎 − 𝑐 𝑝)𝜃 (−2𝑒𝜃𝑡′
 ℎ𝑐  𝜃2 + 𝜃(2 𝑐𝑠 𝜃 − 2𝐶0 𝑒𝜃𝑡′

𝜃2 − 2 𝑐𝑑  𝑒𝜃𝑡′
𝜃2)) +

𝑏 (ℎ𝑐 (−6𝜃2 + 12 𝑒𝜃𝑡′
𝜃2 + 6𝑒𝜃𝑡′

𝜃2(−1 + 𝜃𝑡′)) − 𝜃(𝜃2(−8 𝑐 𝑠 (𝑇 − 𝑡′) + 2 𝑐 𝑠 (𝑇 + 𝑡′)) +

𝑐𝑑  (6 𝜃2 − 12 𝑒𝜃𝑡′
𝜃2 + 𝑒𝜃𝑡′

𝜃2(6 − 6𝜃𝑡′)) − 6𝑐0(2 𝑒𝜃𝑡′
𝜃2 + 𝑒𝜃𝑡′

𝜃2(−1 + 𝜃𝑡′) )))  ;

𝜕2 𝜋

𝜕𝑇𝜕𝑡′ =
𝜕2𝛱

𝜕𝑡′𝜕𝑇
= 0 ; 

and, 

𝜕2𝜋

𝜕𝑇2
=

1

6 𝜃3 (6 𝑐𝑠 (𝑎 − 𝑐 𝑝)𝜃3 − 𝑏 𝜃3(6 𝑝 + 4𝑐𝑠(𝑇 − 𝑡′) + 2 𝑐𝑠(𝑇 + 2𝑡′) ))

From the evaluation, we have, 
𝜕2𝜋

𝜕𝑡′2 ,
𝜕2𝜋

𝜕𝑇2 > 0, and  
𝜕2𝜋

𝜕𝑡′2 

𝜕2𝜋

𝜕𝑇2 −
𝜕2𝜋

𝜕𝑡′𝜕𝑇
< 0. 

Thus, the objective function is concave with respect to replenish time 𝑇 and 𝑡′. The figure 1 and 2, shows the 

concavity of the profit function plotted on the values provided in example 1.   

Figure 1: Concavity of the profit function with respect to replenish time 
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Figure 2: Concavity of the profit function with respect to replenish time and per unit selling price 

Theorem 2: For the optimal value of 𝑝, the objective function (eq. 14) is concave with respect to the selling 

price.  

Proof: From objective function eq. 14, we have 
𝜕𝜋(.)

𝜕𝑝
=  

1

2𝜃2 (𝑇(2𝑎 − 𝑏𝑇)𝜃2 + 2ℎ𝑐(−1 + ⅇ𝑡’𝜃 − 𝑡’𝜃) − 𝑐𝜃 (−2𝑐0(−1 + ⅇ𝑡’𝜃) + (4𝑝𝑇 + 𝑐𝑠(𝑇 − 𝑡’)2)𝜃 +

𝑐𝑑(2 − 2ⅇ𝑡’𝜃 + 2𝑡’𝜃)))                                                            (16)

Putting 
𝜕𝜋(.)

𝜕𝑝
= 0, we yield the optimal value of per unit selling price as, 

𝑝∗ = −
1

4𝑐𝑇𝜃2 (2𝑐 ℎ𝑐 − 2𝑐𝑒𝑡’𝜃ℎ𝑐 + 2𝑐𝑐0𝜃 + 2𝑐𝑐𝑑𝜃 − 2𝑐𝑐0𝑒𝑡’𝜃𝜃 − 2𝑐𝑐𝑑𝑒𝑡’𝜃𝜃 + 2ℎ𝑐𝑡’𝜃 − 2𝑎𝑇𝜃2

+ 𝑏𝑇2𝜃2 + 𝑐𝑐𝑠𝑇2𝜃2 + 2𝑐𝑐𝑑𝑡’𝜃2 − 2𝑐𝑐𝑠𝑇𝑡’𝜃2 + 𝑐 𝑐𝑠𝑡’2𝜃2)

Again differentiating eq. 14, we have, 
𝜕2𝜋(.)

𝜕𝑝2 =  −2 𝑐 𝑇           (17) 

Thus, for 𝑐 > 0, the proposed profit function is concave. The concavity of the profit function with respect to 

the price can also be seen in figure 3. 

 Figure 3: Concavity of the profit function with respect to per unit selling price 

Following an in-depth exploration of the deterministic approach, the subsequent section delves into 

the stochastic approach. This approach intricately considers and integrates uncertain factors 

associated with demand, acknowledging the dynamic and unpredictable nature of variables. In 
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contrast to the deterministic approach, which assumes a fixed and known demand, the stochastic 

approach takes into account the inherent variability and unpredictability in demand, providing a 

more comprehensive and realistic perspective in decision-making processes. 

V. Model Formulation with Stochastic Approach

Let consider the general form where the demand 𝐷(𝑝, 𝑡), is the function of price and time, and 𝑓(𝑝) 

is the probability distribution function over price. To be more specific, consider the pre-defined 

relation of the demand and uncertain factor, i.e., 𝐷(𝑝, 𝑡) = 𝑎 − 𝑏 𝑡 − 𝑐 𝑝 + 𝜖, where 𝑏 and 𝑐 are time 

dependent and price sensitive parameters, and 𝜖 can be determined with the specific distribution, 

such as uniform, normal etc. depends on the characteristic of the demand fluctuations.  

For choosing specific 𝜖, follows the normal distribution with mean 𝜇, and standard deviation 𝜎,  the 

𝜖~𝑁(0, 𝜎2), the pdf for the stochastic demand can be experessed as  

𝑓(𝑝) = 𝑒
−

(𝐷(𝑝,𝑡)−𝜇)2

2 𝜎2       (18) 

The uniform distribution is characterized by the constant probability density within a specific range. 

Consider the price range as [𝑝𝑚𝑎𝑥 , 𝑝𝑚𝑖𝑛  ]. In this case the probability distributon over this range will 

be as follows: 

𝐹(𝑝)  =
1

𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛
 (19) 

Therefore, we can express the demand with uniform distribution as 𝐷(𝑝, 𝑡) = 𝑎 − 𝑏 𝑡 − 𝑐𝑝 + 𝜖 

 where 𝜖 ~ 𝑈 (𝑝𝑚𝑖𝑛 , 𝑝𝑚𝑎𝑥). 

Taking these stochastic demand values and the inventory equation (1, 2), we have reworked for all 

the costs using these equations:  

Expected holding cost with per unit holding cost ℎ𝑐 is as follows: 

𝐸𝐻𝐶 =  𝐸 (∫ (ℎ𝑐 [∫ 𝐼(𝑡)𝑑𝑡
𝑡′

0
])

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝)          (20) 

Expected shortage cost with per unit shortage cost 𝐶𝑠 is as follows: 

𝐸𝑆𝐶 =  𝐸 (∫ (𝑐𝑠 [∫ 𝐼(𝑡)𝑑𝑡
𝑇

𝑡′ ])
𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝)          (21) 

Expected shortage cost with per unit shortage cost 𝐶𝑠 is as follows: 

𝐸𝑃𝐶 =  𝐸 (∫ 𝐶0𝑄
𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
 𝑓(𝑝)𝑑𝑝)            (22) 

Expected deteriorating cost with per unit deterioration cost 𝐶𝑠 is as follows: 

𝐸𝐷𝐶 =  𝐸 (∫ (𝑐𝑑𝛳 ∫ 𝐼(𝑡)𝑑𝑡
𝑡′

0
)

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝)            (23) 

Expected revenue is as follows: 

𝐸𝑅𝑉 = E ( ∫ (𝑝 ∫ 𝐷(𝑡, 𝑝)𝑑𝑡
𝑇

0
)

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝)           (24) 

Combining all the above cost, the profit function governs as: 

𝜋(𝑡′, 𝑇, 𝑝) = 𝐸𝑅𝑉 − 𝐸𝐻𝐶 − 𝐸𝑆𝐶 − 𝐸𝑃𝐶 − 𝐸𝐷𝐶               (25) 

Or, 
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𝜋(𝑡′, 𝑇, 𝑝) = 𝐸 (∫ (𝑝 ∫ 𝐷(𝑡, 𝑝)𝑑𝑡
𝑇

0
)

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝) − 𝐸 (∫ (ℎ𝑐 [∫ 𝐼(𝑡)𝑑𝑡

𝑡′

0
])

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝) −

𝐸 (∫ (𝑐𝑠 [∫ 𝐼(𝑡)𝑑𝑡
𝑇

𝑡′ ])
𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝)  − 𝐸 (∫ 𝐶0𝑄

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
 𝑓(𝑝)𝑑𝑝) − 𝐸 (∫ (𝑐𝑑𝛳 ∫ 𝐼(𝑡)𝑑𝑡

𝑡′

0
)

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝) 

(26) 

subject to the conditions 𝑐0 ≤ 𝑝,   𝑝𝑚𝑖𝑛 ≤ 𝑝∗ ≤ 𝑝𝑚𝑎𝑥 ,  and t’ < 𝑇.

As the objective function is probabilistic, we have utilized Particle Swarm Optimization 

(PSO) to maximize the profit function. PSO is advantageous in optimization processes and excels in 

navigating complex solution spaces by simulating the social behavior of particles. PSO facilitates 

swift convergence to optimal outcomes by continuously adapting individual positions guided by 

personal and global best solutions. This collaborative, swarm-based approach is particularly 

effective in tackling intricate profit optimization challenges, especially when confronted with 

uncertainties such as stochastic demand. The algorithm's capacity to balance exploration and 

exploitation makes it an adaptable and powerful tool, contributing to improved decision-making in 

scenarios where traditional optimization methods may fall short. Here is the algorithm (Algorithm 

1), inspired by [11] that optimizes the profit function effectively. 

Algorithm 1: Algorithm to maximize the profit function using PSO. 

Input: Parametric values, objective function, constraints. 

Output: Global best values for 𝑡′. 𝑇, and 𝑝. 

1. Define module 1 taking argument (𝜇, 𝜎)

2. Evaluate the 𝜖 using desired probability distribution from eq. 18

3. Return 𝜖

4. Define module 2 taking the distribution function for desired probability distribution calling module 1, and

objective function and return the value of objective function

5. Initialize the parameters associated with PSO and identify the decision variables

6. Initialize the maximum number of iterations for PSO

7. Initialize the random position and velocities

8. for i=1, 2,…, maximum iterations do

9. Evaluate the fitness for each particle by calling module 2

10. Identify the global best position for each particle

11. Update the particle’s position and velocity equations

12. Check the convergence criteria for each iteration and find the global best value among them

13. If maximum value found from existing value, replace the value and set new position

14. Plot the iteration and function’s value

15. end for

16. Return the optimal decision variables and corresponding maximum profit based on the best particle's

position.

Utilizing the above algorithm, the following plot (figure 4) illustrates the global convergence of the 

profit function with respect to their decision variables.  
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Figure 4: Iterative convergence of the probabilistic profit function 

Now, in further section we will generalize the result difference for both the approaches, i.e., 

deterministic over stochastic and will find the superiority of the approaches through the numerical 

simulations.  

VI. Results
Effective inventory management is a critical aspect of supply chain optimization. Two primary 

approaches have been developed to address uncertainties: deterministic and stochastic. Each of 

these approaches offers distinct strategies for handling uncertainties in inventory management. In 

this study, we aim to explore the dynamics of both approaches by utilizing numerical formulations 

to visualize their impact on demand and profitability. The findings of this study will provide 

valuable insights for improving inventory management practices, which can ultimately contribute 

to the overall efficiency of the supply chain.  Example 1 illustrates the deterministic method, which 

relies on known variables and minimizes uncertainties. In the following example, we compare the 

outcomes of a stochastic approach to a deterministic one. This exploration aims to understand better 

how different methods influence inventory management and decision-making for businesses 

seeking stability and precision in stock management. 

Example 1: Consider a scenario where demand stability is critical and uncertainties are minimized through a 

deterministic approach. We assume a fixed potential demand of 150 units and factors like price sensitivity 

parameter (𝑐) = 0.1 and time sensitivity parameter (𝑏) = 0.1 to tackle the optimization process. We 

considered holding costs (ℎ) = $2 per unit per unit of time, shortage costs (𝑐𝑠) is $2 per unit of time, 

purchasing costs (𝑐0) is 10 per unit, deteriorating rate (𝜃) = 0.001 per unit per unit of time and deterioration 

cost (𝑐𝑑) = $0.1.  

The analysis finds insightful metrics: the optimal replenishment time is 𝑡′ is 1.69719 units, a shortage duration 

of 0.29951 units, a streamlined inventory cycle time (𝑇)  =  1.9967 units, the optimal selling price per unit 

(𝑝)  =  $78.01, the optimal profit is $10318.  
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Figure 5: Demand under the uncertainty 

The data set from example 1 has been utilized to formulate numerical results for the stochastic 

approach to compare results better. Using Figures 5 and 6, we have illustrated the disparities 

between deterministic and stochastic models and their implications for managerial decision-making 

in uncertain situations. 

 In the initial exploration, Figure 5 captures the essence of demand dynamics under 

deterministic and stochastic circumstances. The deterministic line, depicted by a dotted black line, 

represents a scenario where demand is predictable and follows a predefined pattern. In contrast, 

stochastic scenarios introduce variability, depicted through fluctuating demand graphs under 

various distributions. The numerical formulation of demand incorporates distributions such as 

normal, uniform, triangular, and exponential, simulating market conditions with different levels of 

unpredictability. This formulation allows us to visually notice how demand evolves when subject to 
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varying degrees of uncertainty. The result is a series of demand scenarios that reflect the potential 

variability inherent in real-world markets. 

Figure 6: Profit under the uncertainty 

The profit formulation integrates normal, uniform, triangular, and exponential distributions to 

simulate the impact of unpredictable market dynamics on profitability. The accompanying mean 

profit lines offer a glimpse into the expected profitability under stochastic conditions. Here, the 

interplay between deterministic and stochastic trends becomes apparent, illustrating how market 

uncertainties can significantly affect overall profitability. 
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The numerical exploration provides a foundation for understanding the managerial 

implications of deterministic and stochastic models in uncertain environments. The deterministic 

approach, while straightforward and easy to implement, may need to be revised when faced with 

the unpredictable nature of real-world markets. The illustrated figures provide evidence that 

deterministic models have the potential to oversimplify demand and profit scenarios, thereby 

leading to erroneous decisions. In contrast, the stochastic models offer a more nuanced perspective, 

acknowledging and embracing uncertainty. This acknowledgement is crucial for managerial 

decision-making in unpredictable environments. Managers armed with stochastic insights can 

anticipate a spectrum of possible outcomes and strategically plan for contingencies. The superiority 

of stochastic models logically unfolds through the comparison of deterministic and stochastic trends. 

In Figure 5, the deterministic line represents a singular path, unable to capture the diverse and 

fluctuating nature of market demand. The stochastic demand scenarios, on the other hand, reflect 

the inherent variability in market dynamics, allowing for a more comprehensive understanding. 

Figure 6 reinforces this logic by illustrating the rigid nature of deterministic profit trends 

contrasted with the dynamic and adaptable nature of stochastic profitability. The mean profit lines 

in stochastic scenarios serve as beacons, guiding managers toward a more informed and resilient 

decision-making process. In uncertain environments, where market conditions are subject to change, 

the deterministic approach may lead to missed opportunities or unexpected challenges. Stochastic 

models, by accommodating variability, empower managers to make decisions that align with the 

complex reality of supply and demand fluctuations. The numerical exploration of deterministic and 

stochastic models in inventory management provides valuable insights for managerial decision-

making. The visual representations in Figures 5 and 6 underscore the limitations of deterministic 

approaches in handling uncertainties compared to stochastic models' more adaptable and realistic 

nature. Managerial implications highlight the importance of embracing uncertainty and leveraging 

stochastic insights to navigate unpredictable market conditions effectively. The logical illustration 

of the superiority of stochastic models emphasizes their capacity to capture the dynamic nature of 

demand and profitability, offering a strategic advantage in decision-making. 

As businesses operate in an increasingly complex and uncertain global landscape, adopting 

stochastic models becomes imperative for those seeking resilience, adaptability, and optimized 

decision outcomes. The numerical results presented here guide managers, encouraging them to 

explore and implement stochastic approaches in their quest for effective and agile inventory 

management strategies. 

VII. Conclusion

The study conducted a comparative study between deterministic and stochastic approaches in 

inventory modelling. The deterministic model was subjected to classical optimization techniques, 

while the stochastic optimizations were addressed using particle swarm optimization (PSO). The 

analysis presented above sheds light on the intricacies and implications of these approaches, 

unveiling valuable insights for inventory management strategies when dealing with uncertainty. 

The sensitivity analyses conducted on deterministic and stochastic models emphasize the 

significance of acknowledging uncertainty in inventory dynamics. The deterministic paradigm 

assumes that demand and other parameters remain constant, resulting in robust predictability. 

However, this approach needs to be more balanced with the complex nature of real-world markets 

and may lead to suboptimal decision-making. On the other hand, the stochastic model, which 

embraces variability in demand, offers a more realistic depiction of market dynamics. There are 

several insights into this study are given below: 

1. Stochastic modelling enables managers to make adaptive decisions and respond to changing

market conditions in real time. By contrast, deterministic methods may need to pay more

attention to the dynamic nature of demand, putting businesses at a disadvantage.
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2. Stochastic modelling captures a wide range of potential outcomes, making it an effective

tool for robust contingency planning. Managers can anticipate and plan for uncertainties,

reducing the impact of unexpected disruptions on inventory management.

3. Sensitivity analyses have demonstrated the superiority of the stochastic model in optimizing

resource allocation. This helps managers efficiently use resources, minimize holding costs,

and increase profitability.

4. By quantifying uncertainties, the stochastic model becomes a powerful tool for risk

mitigation. Managers can use it to implement proactive risk management strategies,

ensuring resilience in the face of unforeseen market fluctuations.

5. The stochastic model provides more realistic performance metrics, enabling managers to

evaluate inventory management strategies against dynamic market conditions. This

provides a comprehensive understanding of operational effectiveness.

The following are some potential avenues for extending this work, which may help to develop 

further and advance the research: 

1. Integrate machine learning algorithms for a data-driven approach.

2. Incorporate multi-objective optimization techniques.

3. Incorporate real-time market feedback to enhance accuracy.

4. Explore cross-functional collaboration between inventory management and other business

units.

5. Investigate the potential of leveraging blockchain for improved inventory visibility and risk

management.

This research emphasizes the differences between deterministic and stochastic inventory modelling 

and offers practical suggestions for managerial decision-making. Businesses dealing with modern 

supply chains' complex and uncertain landscape would benefit from implementing stochastic 

approaches, particularly when combined with advanced optimization methods like PSO. The 

identified managerial implications and proposed future extensions pave the way for a more 

adaptive, resilient, and technologically advanced approach to inventory management. 
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