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Abstract

The sequential probability ratio test is a powerful statistical tool that is frequently employed for
hypothesis testing, parameter estimation, and statistical inference. The aspect of robustness is of
utmost importance when employing SPRTS in practical applications. Past studies have investigated
the robustness of SPRTS for specific distributions. We have developed SPRTS for a family of inverse
distributions that includes eleven distinct distributions. The primary objective of this study is to
investigate and evaluate the robustness of SPRTS under various conditions and distributions, focusing
on the parameters of the inverse distribution family. SPRTS efficacy is measured using OC and ASN
functions. This study comprehensively covers the construction and rigorous evaluation of SPRTS,
particularly in testing simple null hypotheses against simple alternative hypotheses. Additionally, we
investigate the robustness of SPRTS under various factors, including the presence of other parameters
and specified coefficients of variation. Conclusive results, graphic representations, tables, and acceptance
and rejection regions add clarity to the findings.

Keywords: Inverse Distributions Family, Sequential Probability Ratio Tests (SPRT), Operating
Characteristics (OC), Average Sample Number (ASN).

1. Introduction

Sequential Probability Ratio Tests (SPRT) are innovative methodologies that prove highly effective
for both hypothesis testing and parameter estimation in statistical inference. The foundational
work by [21] introduced the concept of SPRT for analyzing simple null hypotheses against simple
alternatives. To assess the effectiveness of SPRT, operating characteristic (OC) and average sample
number (ASN) functions were developed as performance measures. Sequential probability ratio
tests (SPRTS) have long been recognized as valuable tools for making efficient and prompt
decisions in various statistical applications. These tests play a crucial role in scenarios where
data are collected sequentially over time, and the goal is to make a conclusive determination
about a specific hypothesis. Robustness, which ensures the validity and reliability of these
tests under varying conditions, is an essential aspect to consider when employing SPRTS in
real-world situations. Multiple studies have scrutinized the robustness of SPRTS in disparate
scenarios, enhancing our understanding of their performance and versatility. For instance, [1]
examined Wald’s SPRT for Levy processes, while [3] explored the robustness of sequential testing
procedures for generalized life distributions. Other research, such as that by [6] studied the
robustness of sequential testing procedures for parameters of zero-truncated negative binomial,
binomial and Poisson distributions. Previous works have also assessed the robustness of SPRTS in
specific settings, such as [8], considered sequential life tests in the exponential case. [9] examined
the robustness of sequential probability ratio tests in the presence of nuisance parameters.[11]
evaluated exponential and Weibull test plans, whereas [12] concentrated on investigating the
robustness of the SPRT for a negative binomial distribution in cases where the shape parameter
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is not specified. Additionally, [13] investigated the robustness of the exponential SPRT when
failures from a Weibull distribution were transformed using a known shape parameter. Other
relevant research includes [17]discusses the performance analysis of the Sequential Probability
Ratio Test (SPRT) under various conditions and [14] explored robustifying the SPRT for a discrete
model under "contamination." In contrast, [15] analyzed the performance and robustness of
an SPRT for non-identically distributed observations. The robustness of SPRTS has also been
examined in the context of exponential life-testing procedures [18] and the scale parameter of
gamma and exponential distributions [19].[16] discusses the use of sequential probability ratio
tests (SPRTS) for the statistical analysis of simulation outputs generated by computers. The type I
and type II errors exponents of sequential probability ratio tests, when the actual distributions
differ from the test distributions analyzed by [2]. In light of these studies, this research aims to
investigate further and evaluate the robustness of sequential probability ratio tests under various
conditions and distributions. In this study, we aim to extend the existing research and contribute
to the robustness analysis of SPRTS for parameters of inverse distribution family suggested by
[7]. Our focus will be on thoroughly examining the robustness of these tests using OC and ASN
functions. We will develop and rigorously evaluate the SPRTS, with specific attention given
to their robustness about the OC and ASN functions. Sections 3 and 5 will cover the essential
elements of constructing and evaluating the SPRTS, including testing simple null hypotheses
against simple alternatives, sequential analyses of composite hypotheses, and comprehensively
examining their robustness. Section 4 shall analyze simple null hypotheses established on the
parameter γ, taking into account the presence of the illustrious δ. Furthermore, in Section 6, we
shall investigate comparable hypotheses founded on the parameter δ, factoring in the existence
of γ. In Section 7, we will further investigate the robustness of the SPRTS in the presence of
a specified coefficient of variation. Section 8 presents the regions of acceptance and rejection
deduced for the null hypothesis H0 compared to the alternative hypothesis H1. Finally, Section 9
will effectively explain the synthesized data and provide conclusive findings using a combination
of tables and graphics.
Through this comprehensive analysis, we aim to gain valuable insights into the robustness,
performance, and limitations of SPRTS in the inverse family of distributions.

2. Inverse Distributions Family

Suppose a random variable (rv) x having p.d.f.

f
(
x; a−1, γ, δ, θ

)
=

γδgδ−1(x−1;θ)g′(x−1;θ)
x2Γ(δ) exp

(
−γg

(
x−1; θ

))
;

0 < x < a−1, γ > 0, δ > 0.
(1)

Where, g
(
x−1; θ

)
, is a function of θ and x. Moreover, g

(
x−1; θ

)
real-valued, Strict decreasing the

function of x with g(∞; θ) = ∞ and g′
(
x−1; θ

)
stances for the derivative of g(x; θ) by x−1.

the equation (1) shows that the above distribution can be converted in the following distributions
as special cases: If g(x; θ) = x2, δ = k + 1(k ≥ 0),

(
k = −1

2

)
provide the inverse Half-normal

distribution and (k = 0) the inverse Rayleigh distribution. If g(x; θ) = log
(

1 + xb

vb

)
, b > 0, v >

0, δ = 1, provide the inverse log-logistic model. If g(x; θ) = log
(

1 + xb

vb

)
, b > 0, v = 1, δ > 1,

provide the inverse Burr distribution. If g(x; θ) = log
(

1 + xb

vb

)
, b = 1, v > 1, δ > 1, provide the

inverse Lomax distribution. If g(x; θ) = x2

2 , δ = h
2 (h > 0), it becomes inverse Chi-distribution. If

g(x; θ) = log
( x

a
)

and δ = 1, obtain inverse Pareto distribution. If g(x; θ) = xr exp(ax), r > 0, a >

0, δ = 1, obtain inverse modified Weibull distribution. If g(x; θ) = µx + vx2

2 , γ = δ = 1, obtain
inverse linear exponential distribution. If g(x; θ) = log x, obtain the inverse of the log-gamma
distribution. If g(x; θ) = xp, p > 0, δ > 0, obtained the inverse generalized gamma distribution.
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3. SPRT FOR EVALUATING THE HYPOTHESES OF γ

Let a series X1, X2, . . . from (1), assume one needs to assess the simple hypotheses H0 : γ = γ0 as
opposed to H1 : γ = γ1 (> γ0). The analysis of SPRT on behalf of H0, expressed in this manner

Zi = ln
{

f (Xi; a, γ1, δ, θ)

f (Xi; a, γ0, δ, θ)

}
= δ.ln

(
γ1

γ0

)
− g

(
x−1

i ; θ
)
(γ1 − γ0) (2)

Admit Ho if ∑n
i=1 Zi ≤ lnB, refuse H0 if ∑n

i=1 Zi ≥ ln A, or else, carry on sampling using the
value of (n + 1))th. If α and β belong to the interval (0, 1) and represent type I and type II errors
sequentially, the work by [21] provides definitions for A and B that are specified as

A ∼=
(1 − β)

α

and
B ∼=

β

(1 − α)

Where 0 < B < 1 < A
The OC function is almost specified as

L(γ) ∼=
(

At0 − 1
)

(At0 − Bt0)

Where t0 is the non-zero result for equation

E
(
etozi

)
= 1 (3)

Note 1: Use the statement that g
(
x−1; θ

)
follows gamma distribution

Using (1) with (3), we find (
γ1

γ0

)δto { t0 (γ1 − γ0) + γ

γ

}−δ

= 1

or,

γ =
t0 (γ1 − γ0)(

γ1
γ0

)t0 − 1
(4)

To find the values of OC and ASN functions, evaluate (4) as

t0 ln
(

γ1

γ0

)
= ln

[
1 + t0

(
γ1 − γ0

γ

)]
(5)

By utilizing the natural logarithm function of (1 + x), which is defined for 1 < x < 1, in (5).we
can achieve the desired outcome from (6).{

1
3

(
γ1 − γ0

γ

)3
}

t2
0 −

{
1
2

(
γ1 − γ0

γ

)2
}

t0 +

{(
γ1 − γ0

γ

)
− ln

(
γ1

γ0

)}
= 0 (6)

Using (2), provides that

E (Zi | γ) = δ

[
ln

(
γ1

γ0

)
−

(
γ1 − γ0

γ

)]
(7)

Using (7), we get, the ASN function

E(N | γ) ∼=
L(γ)ln B + {1 − L(γ)}ln A

δ
[
ln

(
γ1
γ0

)
−

(
γ1−γ0

γ

)] (8)
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Using (8) the ASN function for H0 along with H1 specified as

E0(N) ∼=
(1 − α)ln B + α ln A

δ
[
ln

(
γ1
γ0

)
−

(
γ1−γ0

γ

)]
and

E1(N) ∼=
β ln B + (1 − β)ln A

δ
[
ln

(
γ1
γ0

)
−

(
γ1−γ0

γ

)]
4. SPRT FOR EVALUATING THE HYPOTHESES OF γ ALTHOUGH δ IS

CHANGING

Using section (3), The maximum value of ASN gets on behalf of γ = γ̃ where γ̃ is getting from
E (Zi | γ) = 0 and the maximum value is specified as

Eγ̃(N) ∼= − (ln A ∗ ln B)
E
(
z2

i | γ̃
) (9)

Also

γ̃ =

γ1 − γ0

ln
(

γ1
γ0

)
 (10)

Also, using (7) we get

E
(

Z2
i | γ̃

)
= δ

[
ln

(
γ1

γ0

)
−

(
γ1 − γ0

γ

)]2
+

(γ1 − γ0)
2 δ

γ̃2 (11)

Utilizing (9) and (11), we find that

Eγ̃(N) ∼=
−(ln A ∗ ln B){

δln
(

γ1
γ0

)
− (γ1−γ0)δ

γ̃

}2
+ (γ1−γ0)

2δ
γ̃2

Assuming that there has been a modification to the parameter δ and that (1) has transformed
into f (x; a, γ, d, θ), this can be attained by replacing δ with d. To analyze the robustness of SPRT,
suggest t0 as the result of the equation∫ a−1

0

{
f (xi; a, γ1, δ, θ)

f (xi; a, γo, δ, θ)

}t0

f (xi; a, γ, d, θ) dxi = 1 (12)

We achieve from (12) and put ϕ1 =
(

δ
d

)
(

γ1

γo

)δt0 γd

Γ(d)

∫ a−1

0
exp

[
−{(γ1 − γ0) t0 + γ} g

(
x−1

i ; θ
)] gd−1

(
x−1

i ; θ
)

g
′
(

x−1
i ; θ

)
x2

i
dxi = 1,

or,

(γ1 − γ0)
t0

γ
+ 1 =

(
γ1

γo

) δt0
d

or,

γ =
(γ1 − γ0) t0(

γ1
γ0

)ϕ1t0 − 1
(13)

To find the values of OC functions, evaluate (13) as

ϕ1t0 ln
(

γ1

γ0

)
= ln

[
1 + t0

(
γ1 − γ0

γ

)]
(14)
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Equation (14), Solve as (5) and find the roots of t0 from (15){
1
3

(
γ1 − γ0

γ

)3
}

t2
0 −

{
1
2

(
γ1 − γ0

γ

)2
}

t0 +

{(
γ1 − γ0

γ

)
− ϕ1 ln

(
γ1

γ0

)}
= 0 (15)

where ϕ1 =
(

δ
d

)
. The ASN function coincides with (8)

E (Zi | γ) = ϕ1

[
ln

(
γ1

γ0

)
−

(
γ1 − γ0

γ

)]
(16)

5. SPRT FOR EVALUATING THE HYPOTHESES OF δ

Suppose taking a sequence X1, X2, . . . from (1) are independently and identically distributed. To
analyze the simple null hypotheses in contradiction of the simple alternative hypotheses when γ
is identified. H0 : δ = δ0 as opposed to H1 : δ = δ1 (> δ0).
We suggest the resulting SPRT

Zi = (δ1 − δ0) ln γ + (δ1 − δ0) ln
{

g
(

x−1
i ; θ

)}
+ ln

(
Γ (δ0)

Γ (δ1)

)
(17)

Admit H0 on the nth step, if

n

∑
i=1

ln
{

g
(

x−1
i ; θ

)}
≤

{
ln B − n (δ1 − δ0) ln γ − n ln

(
Γ (δo)

Γ (δ1)

)}
/ (δ1 − δo) (18)

Reject H0 if

n

∑
i=1

ln
{

g
(

x−1
i ; θ

)}
≥

{
ln A − n (δ1 − δ0) ln γ − n ln

(
Γ (δ0)

Γ (δ1)

)}
/ (δ1 − δo) (19)

Then using the (n + 1)th value carry on sampling if{
ln B − n (δ1 − δ0) ln γ − n ln

(
Γ(δ0)
Γ(δ1)

)}
(δ1 − δ0)

<
n

∑
i=1

ln
{

g
(

x−1
i ; θ

)}
<{

ln A − n (δ1 − δ0) ln γ − n ln
(

Γ(δ0)
Γ(δ1)

)}
(δ1 − δ0)

(20)

The OC function, A and B same as previously.

L(δ) ∼=
(

At0 − 1
)

(At0 − Bt0)
(21)

Here to is the positive as well as negative but not zero

E
{

etoZi
}
= 1. (22)

Using Note 1 with (22), we get{
Γ (t0 (δ1 − δ0) + δ)

Γ(δ)

}
=

(
Γ (δ1)

Γ (δ0)

)t0

. (23)

Taking the logarithm of both sides of (23), with ln(1 + x);−1 < x < 1

ln Γ(x) = ln
√

2π − x +

(
x − 1

2

)
ln x (24)
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By using the equation (24) of approximation, we get

t0
2

6

(
δ1 − δ0

δ

)3
(δ + 1)− t0

4

(
δ1 − δ0

δ

)2
(2δ + 1)−

(
δ0 −

1
2

)
ln δ0 +

(
δ1 −

1
2

)
ln δ1

−
(

1 + ln δ − 1
2δ

)
(δ1 − δ0) = 0

(25)

Simplifying terms up to the third degree in t0, we get the roots of t0 from (25).

E
{

ln(g
(

X−1
i ; θ

)
)
}
=

γδ

Γ(δ)

∫ ∞

0
(ln x)xδ−1e−γxdx (26)

We achieved, using [10], that

E
{

ln(g
(

X−1
i ; θ

)
)
}
= {ψ(δ)− lnγ}, (27)

And ψ(δ) is specified as

ψ(δ) =
d

d(δ)
lnΓ(δ)

Using (7) and (26), we find

E (Zi | δ) = [ln {Γ (δo)} − ln {Γ (δ1)}] + (δ1 − δ0)ψ(δ) (28)

The ASN function for Ho and H1 using (22) and (27) are specified as

E0(N) ∼=
(1 − α)ln B + α ln A

{ln (Γ (δ0))− ln (Γ (δ1))}+ (δ1 − δ0)ψ (δ)
(29)

and

E1(N) ∼=
β ln B + (1 − β)ln A

{ln (Γ (δ0))− ln (Γ (δ1))}+ (δ1 − δ0)ψ (δ)
(30)

6. SPRT FOR EVALUATING THE HYPOTHESES OF δ ALTHOUGH γ IS
CHANGING

Using Section (5), The greatest value of ASN attained for δ = δ̃, where δ̃ is the result of
E (Zi | δ) = 0

ψ(δ̃) =
{lnΓ (δ1)− lnΓ (δ0)}

(δ1 − δ0)

This gives the highest worth as

Eδ(N) ∼= − (ln A ∗ ln B)

E
(

Z2
i | δ̂

)
Using (17) and [10], we get

E
(

Z2
i | δ̃

)
= {ln (Γ (δ0) /Γ (δ1))}2 + (δ1 − δ0)

2
{
(ψ(δ̃))2 + ξ(2, δ̃ − 1)

}
Where ξ(z, q) is specified as

ξ(z, q) =
∞

∑
n=0

(
1

(q + n)2

)
Where t0 is the solution of the equation

∫ a−1

0

{
f (xi; a, γ, δ1, θ)

f (xi; a, γ, δ0θ)

}t0

f (xi; a, η, δ, θ) dxi = 1. (31)
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We achieve this using (17) and (31),

γ(δ1−δ0)t0

{
Γ (δ0)

Γ (δ1)

}t0 ηδ

Γ(δ)

∫ a−1

0

g(δ1−δ0)h+δ−1
(

x−1
i ; θ

)
g
′
(

x−1
i : θ

)
exp

(
−ηg

(
x−1

i : θ
))

dxi

x2
i

= 1

or,

ϕ2
(δ1−δ0)t0

{
Γ (δ0)

Γ (δ1)

}t0 Γ ((δ1 − δ0) t0 + δ)

Γ(δ)
= 1 (32)

Where ϕ2 = γ
η .

By applying the logarithm function to both sides of the equation (32), and employing the
approximation (24), the solutions for the variable t0 are obtained from the following equation,

t0
2

6

(
δ1 − δ0

δ

)3
(δ + 1)− t0

4

(
δ1 − δ0

δ

)2
(2δ + 1)−

(
δ0 −

1
2

)
ln δ0 +

(
δ1 −

1
2

)
ln δ1

− (δ1 − δ0) ln ϕ2 −
(

1 + ln δ − 1
2δ

)
(δ1 − δ0) = 0

(33)

The ASN function coincides with (8),

E (Zi | δ) = ln
{

Γ (δ0)

Γ (δ1)

}
+ (δ1 − δ0) Γ(δ) + (δ1 − δ0) ln ϕ2. (34)

7. SPRT ROBUSTNESS FOR γ WITH INDICATED COEFFICIENT OF
VARIATION

If g(x; θ) = x2

2 , δ = h
2 (h > 0) in (1), the values of µ = h

h−2 , for h > 2 and σ2 = 2h2

(h−2)2(h−4) , for h >

4. Then, the coefficient of variation (CV)

C =

√
2

(h − 4)
(35)

Assume that the value of the coefficient of variation alters from to c to c∗, then δ becomes

δ∗ =
1

C∗2 + 2 (36)

The OC function is

ψ1t0 ln
(

γ1

γ0

)
= ln

[
1 + t0

(
γ1 − γ0

γ

)]
(37)

Solve (37) as (5) up to the third degree in t0 and find the roots of t0 from (39){
1
3

(
γ1 − γ0

γ

)3
}

t2
0 −

{
1
2

(
γ1 − γ0

γ

)2
}

t0 +

{(
γ1 − γ0

γ

)
− ψ1 ln

(
γ1

γ0

)}
= 0 (38)

where ψ1 =
(

δ
δ∗

)
.

The ASN function coincides with (8)

E (Zi | γ) = ψ1

[
ln

(
γ1

γ0

)
−

(
γ1 − γ0

γ

)]
(39)
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8. ACCEPTANCE AND REJECTION REGION

we need to assess the simple hypotheses H0 : γ = γ0 as opposed to H1 : γ = γ1 (> γ0) having
preassigned 0 < α and β < 1 then Zi is

Zi = δ.ln
(

γ1

γ0

)
− g

(
x−1

i ; θ
)
(γ1 − γ0) (40)

Define, Z(N) = ∑n
i=1 Xi and N = initial integer n(≥ 1), so that the inequality is defined as

Z(N) ≤ c1 + dn or Z(N) ≥ c2 + dn valid among the parameters.

c1 =
ln B

(γ1 − γ0)
, c2 =

ln A
(γ1 − γ0)

and d =
δ ln

(
γ0
γ1

)
(γ1 − γ0)

9. RESULT AND DISCUSSION

Table 1: H0 : γ0 = 22, H1 : γ1 = 26 H0 : δ0 = 22, H1 : δ1 = 26

γ L(γ) E[N] δ L(δ) E[N]

22.0 0.997848 396.3 22.0 0.997500 16.82
22.2 0.995846 442.9 22.2 0.995382 18.70
22.4 0.992101 499.5 22.4 0.991517 20.98
22.6 0.985191 568.6 22.6 0.984524 23.77
22.8 0.972657 653.2 22.8 0.972019 27.16
23.0 0.950427 755.6 23.0 0.950054 31.27
23.2 0.912296 875.9 23.2 0.912590 36.08
23.4 0.850178 1008.3 23.4 0.851663 41.38
23.6 0.756664 1136.4 23.6 0.759744 46.52
23.8 0.631008 1232.9 23.8 0.635534 50.40
24.0 0.485370 1268.9 24.0 0.490420 51.83
24.2 0.342685 1233.2 24.2 0.347054 50.32
24.4 0.224024 1140.9 24.4 0.227029 46.47
24.6 0.138008 1021.1 24.6 0.139693 41.46
24.8 0.081636 898.8 24.8 0.082409 36.35
25.0 0.047077 788.0 25.0 0.047344 31.74
25.2 0.026743 693.5 25.2 0.026777 27.81
25.4 0.015062 615.1 25.4 0.015011 24.55
25.6 0.008442 550.6 25.6 0.008374 21.88
25.8 0.004719 497.5 25.8 0.004660 19.69
26.0 0.002634 453.5 26.0 0.002590 17.87

Figure 1: OC and ASN Curve for section 3.
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Figure 2: OC and ASN Curve for section 5.

I. The values denoted by the OC and ASN functions for sections 3 and 5 under α = β = 0.05,
corresponding to the parameters γ and δ can be found in Table 1, while the visuals representing
these values are illustrated in Figures 1 and 2. The table mentioned above and curves yield
outcomes that are deemed acceptable.

Table 2: OC and ASN Functions for section 4, under α = β = 0.05, where H0 : γ0 = 22, H1 : γ1 = 26

ϕ1 = 0.95 ϕ1 = 0.98 ϕ1 = 1 ϕ1 = 1.02 ϕ1 = 1.05

γ L(γ) E[N] L(γ) E[N] L(γ) E[N] L(γ) E[N] L(γ) E[N]

22.0 0.999977 256.109 0.999593 325.533 0.997848 396.275 0.990174 501.269 0.925563 760.351
22.2 0.999949 275.377 0.999182 357.072 0.995846 442.881 0.981647 572.664 0.871228 878.478
22.4 0.999891 297.332 0.998388 394.382 0.992101 499.451 0.966278 659.846 0.787253 998.243
22.6 0.999773 322.565 0.996875 439.007 0.985191 568.593 0.939285 764.602 0.670219 1097.251
22.8 0.999539 351.837 0.994031 492.942 0.972657 653.184 0.893689 885.460 0.528271 1148.101
23.0 0.999084 386.143 0.988758 558.689 0.950427 755.616 0.821178 1013.745 0.382212 1134.421
23.2 0.998208 426.784 0.979124 639.166 0.912296 875.930 0.715853 1129.741 0.255118 1063.405
23.4 0.996548 475.461 0.961857 737.241 0.850178 1008.278 0.581040 1204.816 0.159600 959.524
23.6 0.993440 534.365 0.931752 854.390 0.756664 1136.436 0.433599 1215.202 0.095382 847.741
23.8 0.987698 606.223 0.881433 987.837 0.631008 1232.898 0.297492 1159.170 0.055358 743.688
24.0 0.977243 694.173 0.802653 1126.039 0.485370 1268.878 0.190055 1058.028 0.031567 653.709
24.2 0.958580 801.169 0.690763 1245.161 0.342685 1233.182 0.115203 939.908 0.017819 578.588
24.4 0.926211 928.388 0.551685 1313.657 0.224024 1140.910 0.067448 825.361 0.010001 516.709
24.6 0.872518 1071.916 0.404611 1309.361 0.138008 1021.076 0.038658 724.251 0.005595 465.802
24.8 0.789395 1217.829 0.273264 1236.136 0.081636 898.796 0.021884 639.054 0.003124 423.701
25.0 0.673200 1339.075 0.172445 1120.253 0.047077 788.025 0.012302 568.673 0.001742 388.586
25.2 0.531691 1402.143 0.103641 991.440 0.026743 693.530 0.006888 510.809 0.000971 359.005
25.4 0.385428 1386.471 0.060349 869.573 0.015062 615.103 0.003848 463.075 0.000540 333.831
25.6 0.257639 1300.211 0.034475 763.352 0.008442 550.600 0.002147 423.395 0.000301 312.195
25.8 0.161310 1173.099 0.019477 674.378 0.004719 497.491 0.001197 390.091 0.000167 293.426
26.0 0.096429 1035.896 0.010936 601.031 0.002634 453.477 0.000666 361.853 0.000093 277.004

II. Figure 3 illustrates the numerical values of the OC and ASN curves extracted from Table 2,
corresponding to different ϕ1 values. When ϕ1 < 1(ϕ1 > 1), the OC curve shifts either towards
the right or left direction, while the ASN curve shifts towards the upper right or lower left
direction. Both curves demonstrate that the SPRT exhibits a high degree of sensitivity towards
alterations in δ.
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Figure 3: OC and ASN Curve for section 4.

Table 3: OC and ASN Functions for section 6, under α = β = 0.05 where H0 : H0 : δ0 = 22, H1 : δ1 = 26

ϕ2 = 0.95 ϕ2 = 0.99 ϕ2 = 1 ϕ2 = 1.02 ϕ2 = 1.05

δ L(δ) E[N] L(δ) E[N] L(δ) E[N] L(δ) E[N] L(δ) E[N]

22.0 0.999949 12.805 0.998800 16.277 0.997500 16.821 0.989824 25.063 0.930141 38.018
22.2 0.999903 13.769 0.997769 17.854 0.995382 18.704 0.981471 28.633 0.879707 43.924
22.4 0.999816 14.867 0.995875 19.719 0.991517 20.984 0.966597 32.992 0.800964 49.912
22.6 0.999653 16.128 0.992418 21.950 0.984524 23.765 0.940663 38.230 0.689215 54.863
22.8 0.999350 17.592 0.986152 24.647 0.972019 27.161 0.896956 44.273 0.550252 57.405
23.0 0.998787 19.307 0.974920 27.934 0.950054 31.265 0.827248 50.687 0.403178 56.721
23.2 0.997751 21.339 0.955114 31.958 0.912590 36.081 0.725144 56.487 0.271799 53.170
23.4 0.995848 23.773 0.921109 36.862 0.851663 41.381 0.592699 60.241 0.171045 47.976
23.6 0.992379 26.718 0.865216 42.719 0.759744 46.521 0.445466 60.760 0.102434 42.387
23.8 0.986097 30.311 0.779487 49.392 0.635534 50.398 0.307359 57.959 0.059402 37.184
24.0 0.974842 34.709 0.660892 56.302 0.490420 51.829 0.196953 52.901 0.033783 32.685
24.2 0.955006 40.058 0.518186 62.258 0.347054 50.320 0.119421 46.995 0.018999 28.929
24.4 0.920963 46.419 0.372612 65.683 0.227029 46.466 0.069790 41.268 0.010619 25.835
24.6 0.865024 53.596 0.247071 65.468 0.139693 41.460 0.039871 36.213 0.005915 23.290
24.8 0.779245 60.891 0.153542 61.807 0.082409 36.355 0.022479 31.953 0.003290 21.185
25.0 0.660606 66.954 0.091170 56.013 0.047344 31.737 0.012580 28.434 0.001828 19.429
25.2 0.517881 70.107 0.052585 49.572 0.026777 27.807 0.007012 25.540 0.001015 17.950
25.4 0.372321 69.324 0.029808 43.479 0.015011 24.553 0.003901 23.154 0.000564 16.692
25.6 0.246826 65.011 0.016731 38.168 0.008374 21.882 0.002167 21.170 0.000313 15.610
25.8 0.153354 58.655 0.009340 33.719 0.004660 19.688 0.001204 19.505 0.000174 14.671
26.0 0.091038 51.795 0.005199 30.052 0.002590 17.872 0.000669 18.093 0.000097 13.850

Figure 4: OC and ASN Curve for section 6.

III. Figure 4 portrays the values of the operational characteristic (OC) and average sample num-
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ber (ASN) curves derived from Table 3 across various magnitudes of ϕ2. When ϕ2 < 1(ϕ2 > 1),
the OC curve experiences a rightward (leftward) shift, while the ASN curve undergoes an upward
rightward (downward leftward) shift. Both curves demonstrate the considerable sensitivity of the
sequential probability ratio test (SPRT) to parameter γ alterations.
IV. Figure 5 illustrates the plotted values of the OC and ASN curves obtained from Table 4 while
considering different values of ’ψ’. When ψ < 1(ψ > 1) is taken into account, the OC curve
experiences a shift towards the right (left), while the ASN curve shifts upwards (downwards)
towards the right. It is evident from both curves that the SPRT demonstrates a considerable level
of sensitivity towards variations in ’ψ’.

Table 4: OC and ASN Functions for section 7, under α = β = 0.05 where H0 : H0 : γ0 = 22, H1 : γ1 = 26

ψ = 0.96 ψ = 1 ψ = 1.04

γ L(γ) E[N] L(γ) E[N] L(γ) E[N]

22.0 0.999936 275.746 0.997848 396.275 0.960659 658.849
22.2 0.999864 298.188 0.995846 442.881 0.929568 764.064
22.4 0.999719 324.055 0.992101 499.451 0.877735 883.456
22.6 0.999432 354.157 0.985191 568.593 0.796964 1006.162
22.8 0.998873 389.555 0.972657 653.184 0.683060 1110.363
23.0 0.997803 431.636 0.950427 755.616 0.542805 1168.026
23.2 0.995782 482.209 0.912296 875.930 0.396046 1160.562
23.4 0.992010 543.586 0.850178 1008.278 0.266293 1092.897
23.6 0.985068 618.594 0.756664 1136.436 0.167506 988.999
23.8 0.972493 710.346 0.631008 1232.898 0.100472 874.913
24.0 0.950216 821.423 0.485370 1268.878 0.058441 767.625
24.2 0.912031 951.852 0.342685 1233.182 0.033369 674.376
24.4 0.849857 1095.264 0.224024 1140.910 0.018849 596.352
24.6 0.756289 1234.025 0.138008 1021.076 0.010583 532.042
24.8 0.630591 1338.272 0.081636 898.796 0.005922 479.150
25.0 0.484941 1376.797 0.047077 788.025 0.003307 435.440
25.2 0.342284 1337.532 0.026743 693.530 0.001844 399.016
25.4 0.223688 1236.956 0.015062 615.103 0.001028 368.364
25.6 0.137752 1106.603 0.008442 550.600 0.000572 342.305
25.8 0.081457 973.726 0.004719 497.491 0.000318 319.929
26.0 0.046959 853.432 0.002634 453.477 0.000177 300.536

Figure 5: OC and ASN Curve for section 7.

V. The acceptance and rejection zones for the null hypothesis H0, with H0 : γ0 = 22 and the
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alternative hypothesis H0 : γ0 = 26. Both the α and β significance levels are set to 0.05, and
the degrees of freedom δ are set to 2. The values of the constants c1, c2, and d are -287.0828,
287.0828, and -27.90466, respectively. As a result, if the observed value Z(n) is less than or
equal to −27.90466N + 287.0828, we accept the null hypothesis H0, and we accept the alternative
hypothesis H1 if Z(n) is higher than or equal to −27.90466N − 287.0828. In the intermediate
stages, the sampling procedure continues.

Figure 6: The Acceptance and Rejection zones for H0
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