# SEQUENTIAL TESTING PROCEDURE FOR THE PARAMETERS OF INVERSE DISTRIBUTION FAMILY 

K. S. Chauhan ${ }^{1 *}$, A. Sharma ${ }^{2}$<br>-<br>1,2 Ram Lal Anand College, University of Delhi, New Delhi-110021<br>${ }^{1 *}$ kuldeepsinghchauhan.stat@rla.du.ac.in, ${ }^{2}$ anurag.stats@rla.du.ac.in


#### Abstract

The sequential probability ratio test is a powerful statistical tool that is frequently employed for hypothesis testing, parameter estimation, and statistical inference. The aspect of robustness is of utmost importance when employing SPRTS in practical applications. Past studies have investigated the robustness of SPRTS for specific distributions. We have developed SPRTS for a family of inverse distributions that includes eleven distinct distributions. The primary objective of this study is to investigate and evaluate the robustness of SPRTS under various conditions and distributions, focusing on the parameters of the inverse distribution family. SPRTS efficacy is measured using OC and ASN functions. This study comprehensively covers the construction and rigorous evaluation of SPRTS, particularly in testing simple null hypotheses against simple alternative hypotheses. Additionally, we investigate the robustness of SPRTS under various factors, including the presence of other parameters and specified coefficients of variation. Conclusive results, graphic representations, tables, and acceptance and rejection regions add clarity to the findings.


Keywords: Inverse Distributions Family, Sequential Probability Ratio Tests (SPRT), Operating Characteristics (OC), Average Sample Number (ASN).

## 1. Introduction

Sequential Probability Ratio Tests (SPRT) are innovative methodologies that prove highly effective for both hypothesis testing and parameter estimation in statistical inference. The foundational work by [21] introduced the concept of SPRT for analyzing simple null hypotheses against simple alternatives. To assess the effectiveness of SPRT, operating characteristic (OC) and average sample number (ASN) functions were developed as performance measures. Sequential probability ratio tests (SPRTS) have long been recognized as valuable tools for making efficient and prompt decisions in various statistical applications. These tests play a crucial role in scenarios where data are collected sequentially over time, and the goal is to make a conclusive determination about a specific hypothesis. Robustness, which ensures the validity and reliability of these tests under varying conditions, is an essential aspect to consider when employing SPRTS in real-world situations. Multiple studies have scrutinized the robustness of SPRTS in disparate scenarios, enhancing our understanding of their performance and versatility. For instance, [1] examined Wald's SPRT for Levy processes, while [3] explored the robustness of sequential testing procedures for generalized life distributions. Other research, such as that by [6] studied the robustness of sequential testing procedures for parameters of zero-truncated negative binomial, binomial and Poisson distributions. Previous works have also assessed the robustness of SPRTS in specific settings, such as [8], considered sequential life tests in the exponential case. [9] examined the robustness of sequential probability ratio tests in the presence of nuisance parameters. [11] evaluated exponential and Weibull test plans, whereas [12] concentrated on investigating the robustness of the SPRT for a negative binomial distribution in cases where the shape parameter
is not specified. Additionally, [13] investigated the robustness of the exponential SPRT when failures from a Weibull distribution were transformed using a known shape parameter. Other relevant research includes [17]discusses the performance analysis of the Sequential Probability Ratio Test (SPRT) under various conditions and [14] explored robustifying the SPRT for a discrete model under "contamination." In contrast, [15] analyzed the performance and robustness of an SPRT for non-identically distributed observations. The robustness of SPRTS has also been examined in the context of exponential life-testing procedures [18] and the scale parameter of gamma and exponential distributions [19].[16] discusses the use of sequential probability ratio tests (SPRTS) for the statistical analysis of simulation outputs generated by computers. The type I and type II errors exponents of sequential probability ratio tests, when the actual distributions differ from the test distributions analyzed by [2]. In light of these studies, this research aims to investigate further and evaluate the robustness of sequential probability ratio tests under various conditions and distributions. In this study, we aim to extend the existing research and contribute to the robustness analysis of SPRTS for parameters of inverse distribution family suggested by [7]. Our focus will be on thoroughly examining the robustness of these tests using OC and ASN functions. We will develop and rigorously evaluate the SPRTS, with specific attention given to their robustness about the OC and ASN functions. Sections 3 and 5 will cover the essential elements of constructing and evaluating the SPRTS, including testing simple null hypotheses against simple alternatives, sequential analyses of composite hypotheses, and comprehensively examining their robustness. Section 4 shall analyze simple null hypotheses established on the parameter $\gamma$, taking into account the presence of the illustrious $\delta$. Furthermore, in Section 6, we shall investigate comparable hypotheses founded on the parameter $\delta$, factoring in the existence of $\gamma$. In Section 7, we will further investigate the robustness of the SPRTS in the presence of a specified coefficient of variation. Section 8 presents the regions of acceptance and rejection deduced for the null hypothesis $H_{0}$ compared to the alternative hypothesis $H_{1}$. Finally, Section 9 will effectively explain the synthesized data and provide conclusive findings using a combination of tables and graphics.
Through this comprehensive analysis, we aim to gain valuable insights into the robustness, performance, and limitations of SPRTS in the inverse family of distributions.

## 2. Inverse Distributions Family

Suppose a random variable (rv) $x$ having p.d.f.

$$
\begin{array}{r}
f\left(x ; a^{-1}, \gamma, \delta, \underline{\theta}\right)=\frac{\gamma^{\delta} g^{\delta-1}\left(x^{-1} ; \underline{\theta}\right) g^{\prime}\left(x^{-1} ; \underline{\theta}\right)}{x^{2} \Gamma(\delta)} \exp \left(-\gamma g\left(x^{-1} ; \underline{\theta}\right)\right)  \tag{1}\\
0<x<a^{-1}, \quad \gamma>0, \delta>0
\end{array}
$$

Where, $g\left(x^{-1} ; \underline{\theta}\right)$, is a function of $\underline{\theta}$ and x . Moreover, $g\left(x^{-1} ; \underline{\theta}\right)$ real-valued, Strict decreasing the function of $x$ with $g(\infty ; \underline{\theta})=\infty$ and $g^{\prime}\left(x^{-1} ; \underline{\theta}\right)$ stances for the derivative of $g(x ; \underline{\theta})$ by $x^{-1}$. the equation (1) shows that the above distribution can be converted in the following distributions as special cases: If $g(x ; \underline{\theta})=x^{2}, \delta=k+1(k \geq 0),\left(k=\frac{-1}{2}\right)$ provide the inverse Half-normal distribution and $(\mathrm{k}=0)$ the inverse Rayleigh distribution. If $g(x ; \underline{\theta})=\log \left(1+\frac{x^{b}}{v^{b}}\right), b>0, v>$ $0, \delta=1$, provide the inverse log-logistic model. If $g(x ; \underline{\theta})=\log \left(1+\frac{x^{b}}{v^{b}}\right), b>0, v=1, \delta>1$, provide the inverse Burr distribution. If $g(x ; \underline{\theta})=\log \left(1+\frac{x^{b}}{v^{b}}\right), b=1, v>1, \delta>1$, provide the inverse Lomax distribution. If $g(x ; \underline{\theta})=\frac{x^{2}}{2}, \delta=\frac{h}{2}(h>0)$, it becomes inverse Chi-distribution. If $g(x ; \underline{\theta})=\log \left(\frac{x}{a}\right)$ and $\delta=1$, obtain inverse Pareto distribution. If $g(x ; \underline{\theta})=x^{r} \exp (a x), r>0, a>$ $0, \delta=1$, obtain inverse modified Weibull distribution. If $g(x ; \underline{\theta})=\mu x+\frac{v x^{2}}{2}, \gamma=\delta=1$, obtain inverse linear exponential distribution. If $g(x ; \underline{\theta})=\log x$, obtain the inverse of the log-gamma distribution. If $g(x ; \underline{\theta})=x^{p}, p>0, \delta>0$, obtained the inverse generalized gamma distribution.

## 3. SPRT FOR EVALUATING THE HYPOTHESES OF $\gamma$

Let a series $X_{1}, X_{2}, \ldots$ from (1), assume one needs to assess the simple hypotheses $H_{0}: \gamma=\gamma_{0}$ as opposed to $H_{1}: \gamma=\gamma_{1}\left(>\gamma_{0}\right)$. The analysis of SPRT on behalf of $H_{0}$, expressed in this manner

$$
\begin{equation*}
Z_{i}=\ln \left\{\frac{f\left(X_{i} ; a, \gamma_{1}, \delta, \underline{\theta}\right)}{f\left(X_{i} ; a, \gamma_{0}, \delta, \underline{\theta}\right)}\right\}=\delta \cdot \ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)-g\left(x_{i}^{-1} ; \underline{\theta}\right)\left(\gamma_{1}-\gamma_{0}\right) \tag{2}
\end{equation*}
$$

Admit $H_{0}$ if $\sum_{i=1}^{n} Z_{i} \leq \ln B$, refuse $H_{0}$ if $\sum_{i=1}^{n} Z_{i} \geq \ln A$, or else, carry on sampling using the value of $(n+1))^{\text {th }}$. If $\alpha$ and $\beta$ belong to the interval $(0,1)$ and represent type I and type II errors sequentially, the work by [21] provides definitions for $A$ and $B$ that are specified as

$$
A \cong \frac{(1-\beta)}{\alpha}
$$

and

$$
B \cong \frac{\beta}{(1-\alpha)}
$$

Where $0<B<1<A$
The OC function is almost specified as

$$
L(\gamma) \cong \frac{\left(A^{t_{0}}-1\right)}{\left(A^{t_{0}}-B^{t_{0}}\right)}
$$

Where $t_{0}$ is the non-zero result for equation

$$
\begin{equation*}
E\left(e^{t_{0} z_{i}}\right)=1 \tag{3}
\end{equation*}
$$

Note 1: Use the statement that $g\left(x^{-1} ; \theta\right)$ follows gamma distribution
Using (1) with (3), we find

$$
\left(\frac{\gamma_{1}}{\gamma_{0}}\right)^{\delta t_{0}}\left\{\frac{t_{0}\left(\gamma_{1}-\gamma_{0}\right)+\gamma}{\gamma}\right\}^{-\delta}=1
$$

or,

$$
\begin{equation*}
\gamma=\frac{t_{0}\left(\gamma_{1}-\gamma_{0}\right)}{\left(\frac{\gamma_{1}}{\gamma_{0}}\right)^{t_{0}}-1} \tag{4}
\end{equation*}
$$

To find the values of OC and ASN functions, evaluate (4) as

$$
\begin{equation*}
t_{0} \ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)=\ln \left[1+t_{0}\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)\right] \tag{5}
\end{equation*}
$$

By utilizing the natural logarithm function of $(1+x)$, which is defined for $1<x<1$, in (5).we can achieve the desired outcome from (6).

$$
\begin{equation*}
\left\{\frac{1}{3}\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)^{3}\right\} t_{0}^{2}-\left\{\frac{1}{2}\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)^{2}\right\} t_{0}+\left\{\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)-\ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)\right\}=0 \tag{6}
\end{equation*}
$$

Using (2), provides that

$$
\begin{equation*}
E\left(Z_{i} \mid \gamma\right)=\delta\left[\ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)-\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)\right] \tag{7}
\end{equation*}
$$

Using (7), we get, the ASN function

$$
\begin{equation*}
E(N \mid \gamma) \cong \frac{L(\gamma) \ln B+\{1-L(\gamma)\} \ln A}{\delta\left[\ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)-\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)\right]} \tag{8}
\end{equation*}
$$

Using (8) the ASN function for $H_{0}$ along with $H_{1}$ specified as

$$
E_{0}(N) \cong \frac{(1-\alpha) \ln B+\alpha \ln A}{\delta\left[\ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)-\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)\right]}
$$

and

$$
E_{1}(N) \cong \frac{\beta \ln B+(1-\beta) \ln A}{\delta\left[\ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)-\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)\right]}
$$

## 4. SPRT FOR EVALUATING THE HYPOTHESES OF $\gamma$ ALTHOUGH $\delta$ IS CHANGING

Using section (3), The maximum value of ASN gets on behalf of $\gamma=\widetilde{\gamma}$ where $\widetilde{\gamma}$ is getting from $E\left(Z_{i} \mid \gamma\right)=0$ and the maximum value is specified as

$$
\begin{equation*}
E_{\widetilde{\gamma}}(N) \cong-\frac{(\ln A * \ln B)}{E\left(z_{i}^{2} \mid \widetilde{\gamma}\right)} \tag{9}
\end{equation*}
$$

Also

$$
\begin{equation*}
\widetilde{\gamma}=\left\{\frac{\gamma_{1}-\gamma_{0}}{\ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)}\right\} \tag{10}
\end{equation*}
$$

Also, using (7) we get

$$
\begin{equation*}
E\left(Z_{i}^{2} \mid \widetilde{\gamma}\right)=\delta\left[\ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)-\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)\right]^{2}+\frac{\left(\gamma_{1}-\gamma_{0}\right)^{2} \delta}{\widetilde{\gamma}^{2}} \tag{11}
\end{equation*}
$$

Utilizing (9) and (11), we find that

$$
E_{\widetilde{\gamma}}(N) \cong \frac{-(\ln A * \ln B)}{\left\{\delta \ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)-\frac{\left(\gamma_{1}-\gamma_{0}\right) \delta}{\tilde{\gamma}}\right\}^{2}+\frac{\left(\gamma_{1}-\gamma_{0}\right)^{2} \delta}{\widetilde{\gamma}^{2}}}
$$

Assuming that there has been a modification to the parameter $\delta$ and that (1) has transformed into $f(x ; a, \gamma, d, \theta)$, this can be attained by replacing $\delta$ with $d$. To analyze the robustness of SPRT, suggest $t_{0}$ as the result of the equation

$$
\begin{equation*}
\int_{0}^{a^{-1}}\left\{\frac{f\left(x_{i} ; a, \gamma_{1}, \delta, \theta\right)}{f\left(x_{i} ; a, \gamma_{0}, \delta, \underline{\theta}\right)}\right\}^{t_{0}} f\left(x_{i} ; a, \gamma, d, \underline{\theta}\right) d x_{i}=1 \tag{12}
\end{equation*}
$$

We achieve from (12) and put $\phi_{1}=\left(\frac{\delta}{d}\right)$

$$
\left(\frac{\gamma_{1}}{\gamma_{0}}\right)^{\delta t_{0}} \frac{\gamma^{d}}{\Gamma(d)} \int_{0}^{a^{-1}} \exp \left[-\left\{\left(\gamma_{1}-\gamma_{0}\right) t_{0}+\gamma\right\} g\left(x_{i}^{-1} ; \underline{\theta}\right)\right] \frac{g^{d-1}\left(x_{i}^{-1} ; \theta\right) g^{\prime}\left(x_{i}^{-1} ; \underline{\theta}\right)}{x_{i}^{2}} d x_{i}=1
$$

or,

$$
\left(\gamma_{1}-\gamma_{0}\right) \frac{t_{0}}{\gamma}+1=\left(\frac{\gamma_{1}}{\gamma_{0}}\right)^{\frac{\delta t_{0}}{d}}
$$

or,

$$
\begin{equation*}
\gamma=\frac{\left(\gamma_{1}-\gamma_{0}\right) t_{0}}{\left(\frac{\gamma_{1}}{\gamma_{0}}\right)^{\phi_{1} t_{0}}-1} \tag{13}
\end{equation*}
$$

To find the values of OC functions, evaluate (13) as

$$
\begin{equation*}
\phi_{1} t_{0} \ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)=\ln \left[1+t_{0}\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)\right] \tag{14}
\end{equation*}
$$

Equation (14), Solve as (5) and find the roots of $t_{0}$ from (15)

$$
\begin{equation*}
\left\{\frac{1}{3}\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)^{3}\right\} t_{0}^{2}-\left\{\frac{1}{2}\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)^{2}\right\} t_{0}+\left\{\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)-\phi_{1} \ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)\right\}=0 \tag{15}
\end{equation*}
$$

where $\phi_{1}=\left(\frac{\delta}{d}\right)$. The ASN function coincides with (8)

$$
\begin{equation*}
E\left(Z_{i} \mid \gamma\right)=\phi_{1}\left[\ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)-\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)\right] \tag{16}
\end{equation*}
$$

## 5. SPRT FOR EVALUATING THE HYPOTHESES OF $\delta$

Suppose taking a sequence $X_{1}, X_{2}, \ldots$ from (1) are independently and identically distributed. To analyze the simple null hypotheses in contradiction of the simple alternative hypotheses when $\gamma$ is identified. $H_{0}: \delta=\delta_{0}$ as opposed to $H_{1}: \delta=\delta_{1}\left(>\delta_{0}\right)$.
We suggest the resulting SPRT

$$
\begin{equation*}
Z_{i}=\left(\delta_{1}-\delta_{0}\right) \ln \gamma+\left(\delta_{1}-\delta_{0}\right) \ln \left\{g\left(x_{i}^{-1} ; \theta\right)\right\}+\ln \left(\frac{\Gamma\left(\delta_{0}\right)}{\Gamma\left(\delta_{1}\right)}\right) \tag{17}
\end{equation*}
$$

Admit $H_{0}$ on the $n^{\text {th }}$ step, if

$$
\begin{equation*}
\sum_{i=1}^{n} \ln \left\{g\left(x_{i}^{-1} ; \underline{\theta}\right)\right\} \leq\left\{\ln B-n\left(\delta_{1}-\delta_{0}\right) \ln \gamma-n \ln \left(\frac{\Gamma\left(\delta_{0}\right)}{\Gamma\left(\delta_{1}\right)}\right)\right\} /\left(\delta_{1}-\delta_{0}\right) \tag{18}
\end{equation*}
$$

Reject $H_{0}$ if

$$
\begin{equation*}
\sum_{i=1}^{n} \ln \left\{g\left(x_{i}^{-1} ; \underline{\theta}\right)\right\} \geq\left\{\ln A-n\left(\delta_{1}-\delta_{0}\right) \ln \gamma-n \ln \left(\frac{\Gamma\left(\delta_{0}\right)}{\Gamma\left(\delta_{1}\right)}\right)\right\} /\left(\delta_{1}-\delta_{0}\right) \tag{19}
\end{equation*}
$$

Then using the $(n+1)^{\text {th }}$ value carry on sampling if

$$
\begin{array}{r}
\frac{\left\{\ln B-n\left(\delta_{1}-\delta_{0}\right) \ln \gamma-n \ln \left(\frac{\Gamma\left(\delta_{0}\right)}{\Gamma\left(\delta_{1}\right)}\right)\right\}}{\left(\delta_{1}-\delta_{0}\right)}<\sum_{i=1}^{n} \ln \left\{g\left(x_{i}^{-1} ; \underline{\theta}\right)\right\}<  \tag{20}\\
\frac{\left\{\ln A-n\left(\delta_{1}-\delta_{0}\right) \ln \gamma-n \ln \left(\frac{\Gamma\left(\delta_{0}\right)}{\Gamma\left(\delta_{1}\right)}\right)\right\}}{\left(\delta_{1}-\delta_{0}\right)}
\end{array}
$$

The $O C$ function, $A$ and $B$ same as previously.

$$
\begin{equation*}
L(\delta) \cong \frac{\left(A^{t_{0}}-1\right)}{\left(A^{t_{0}}-B^{t_{0}}\right)} \tag{21}
\end{equation*}
$$

Here $t_{o}$ is the positive as well as negative but not zero

$$
\begin{equation*}
E\left\{e^{t_{o} Z_{i}}\right\}=1 \tag{22}
\end{equation*}
$$

Using Note 1 with (22), we get

$$
\begin{equation*}
\left\{\frac{\Gamma\left(t_{0}\left(\delta_{1}-\delta_{0}\right)+\delta\right)}{\Gamma(\delta)}\right\}=\left(\frac{\Gamma\left(\delta_{1}\right)}{\Gamma\left(\delta_{0}\right)}\right)^{t_{0}} . \tag{23}
\end{equation*}
$$

Taking the logarithm of both sides of (23), with $\ln (1+x) ;-1<x<1$

$$
\begin{equation*}
\ln \Gamma(x)=\ln \sqrt{2 \pi}-x+\left(x-\frac{1}{2}\right) \ln x \tag{24}
\end{equation*}
$$

By using the equation (24) of approximation, we get

$$
\begin{align*}
\frac{t_{0}^{2}}{6}\left(\frac{\delta_{1}-\delta_{0}}{\delta}\right)^{3}(\delta+1)-\frac{t_{0}}{4}\left(\frac{\delta_{1}-\delta_{0}}{\delta}\right)^{2}(2 \delta+1)- & \left(\delta_{0}-\frac{1}{2}\right) \ln \delta_{0}+\left(\delta_{1}-\frac{1}{2}\right) \ln \delta_{1}  \tag{25}\\
& -\left(1+\ln \delta-\frac{1}{2 \delta}\right)\left(\delta_{1}-\delta_{0}\right)=0
\end{align*}
$$

Simplifying terms up to the third degree in $t_{0}$, we get the roots of $t_{0}$ from (25).

$$
\begin{equation*}
E\left\{\ln \left(g\left(X_{i}^{-1} ; \theta\right)\right)\right\}=\frac{\gamma^{\delta}}{\Gamma(\delta)} \int_{0}^{\infty}(\ln x) x^{\delta-1} e^{-\gamma x} d x \tag{26}
\end{equation*}
$$

We achieved, using [10], that

$$
\begin{equation*}
E\left\{\ln \left(g\left(X_{i}^{-1} ; \theta\right)\right)\right\}=\{\psi(\delta)-\ln \gamma\} \tag{27}
\end{equation*}
$$

And $\psi(\delta)$ is specified as

$$
\psi(\delta)=\frac{d}{d(\delta)} \ln \Gamma(\delta)
$$

Using (7) and (26), we find

$$
\begin{equation*}
E\left(Z_{i} \mid \delta\right)=\left[\ln \left\{\Gamma\left(\delta_{0}\right)\right\}-\ln \left\{\Gamma\left(\delta_{1}\right)\right\}\right]+\left(\delta_{1}-\delta_{0}\right) \psi(\delta) \tag{28}
\end{equation*}
$$

The ASN function for $H_{o}$ and $H_{1}$ using (22) and (27) are specified as

$$
\begin{equation*}
E_{0}(N) \cong \frac{(1-\alpha) \ln B+\alpha \ln A}{\left\{\ln \left(\Gamma\left(\delta_{0}\right)\right)-\ln \left(\Gamma\left(\delta_{1}\right)\right)\right\}+\left(\delta_{1}-\delta_{0}\right) \psi(\delta)} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{1}(N) \cong \frac{\beta \ln B+(1-\beta) \ln A}{\left\{\ln \left(\Gamma\left(\delta_{0}\right)\right)-\ln \left(\Gamma\left(\delta_{1}\right)\right)\right\}+\left(\delta_{1}-\delta_{0}\right) \psi(\delta)} \tag{30}
\end{equation*}
$$

## 6. SPRT FOR EVALUATING THE HYPOTHESES OF $\delta$ ALTHOUGH $\gamma$ IS CHANGING

Using Section (5), The greatest value of ASN attained for $\delta=\widetilde{\delta}$, where $\widetilde{\delta}$ is the result of $E\left(Z_{i} \mid \delta\right)=0$

$$
\psi(\widetilde{\delta})=\frac{\left\{\ln \Gamma\left(\delta_{1}\right)-\ln \Gamma\left(\delta_{0}\right)\right\}}{\left(\delta_{1}-\delta_{0}\right)}
$$

This gives the highest worth as

$$
E_{\delta}(N) \cong-\frac{(\ln A * \ln B)}{E\left(Z_{i}^{2} \mid \widehat{\delta}\right)}
$$

Using (17) and [10], we get

$$
E\left(Z_{i}^{2} \mid \widetilde{\delta}\right)=\left\{\ln \left(\Gamma\left(\delta_{0}\right) / \Gamma\left(\delta_{1}\right)\right)\right\}^{2}+\left(\delta_{1}-\delta_{0}\right)^{2}\left\{(\psi(\widetilde{\delta}))^{2}+\widetilde{\xi}(2, \widetilde{\delta}-1)\right\}
$$

Where $\xi(z, q)$ is specified as

$$
\xi(z, q)=\sum_{n=0}^{\infty}\left(\frac{1}{(q+n)^{2}}\right)
$$

Where $t_{0}$ is the solution of the equation

$$
\begin{equation*}
\int_{0}^{a^{-1}}\left\{\frac{f\left(x_{i} ; a, \gamma, \delta_{1}, \underline{\theta}\right)}{f\left(x_{i} ; a, \gamma, \delta_{0} \underline{\theta}\right)}\right\}^{t_{0}} f\left(x_{i} ; a, \eta, \delta, \underline{\theta}\right) d x_{i}=1 . \tag{31}
\end{equation*}
$$

We achieve this using (17) and (31),

$$
\gamma^{\left(\delta_{1}-\delta_{0}\right) t_{0}}\left\{\frac{\Gamma\left(\delta_{0}\right)}{\Gamma\left(\delta_{1}\right)}\right\}^{t_{0}} \frac{\eta^{\delta}}{\Gamma(\delta)} \int_{0}^{a^{-1}} \frac{g^{\left(\delta_{1}-\delta_{0}\right) h+\delta-1}\left(x_{i}^{-1} ; \theta\right) g^{\prime}\left(x_{i}^{-1}: \theta\right) \exp \left(-\eta g\left(x_{i}^{-1}: \underline{\theta}\right)\right) d x_{i}}{x_{i}^{2}}=1
$$

or,

$$
\begin{equation*}
\phi_{2}\left(\delta_{1}-\delta_{0}\right) t_{0}\left\{\frac{\Gamma\left(\delta_{0}\right)}{\Gamma\left(\delta_{1}\right)}\right\}^{t_{0}} \frac{\Gamma\left(\left(\delta_{1}-\delta_{0}\right) t_{0}+\delta\right)}{\Gamma(\delta)}=1 \tag{32}
\end{equation*}
$$

Where $\phi_{2}=\frac{\gamma}{\eta}$.
By applying the logarithm function to both sides of the equation (32), and employing the approximation (24), the solutions for the variable $t_{0}$ are obtained from the following equation,

$$
\begin{array}{r}
\frac{t_{0}^{2}}{6}\left(\frac{\delta_{1}-\delta_{0}}{\delta}\right)^{3}(\delta+1)-\frac{t_{0}}{4}\left(\frac{\delta_{1}-\delta_{0}}{\delta}\right)^{2}(2 \delta+1)-\left(\delta_{0}-\frac{1}{2}\right) \ln \delta_{0}+\left(\delta_{1}-\frac{1}{2}\right) \ln \delta_{1}  \tag{33}\\
-\left(\delta_{1}-\delta_{0}\right) \ln \phi_{2}-\left(1+\ln \delta-\frac{1}{2 \delta}\right)\left(\delta_{1}-\delta_{0}\right)=0
\end{array}
$$

The ASN function coincides with (8),

$$
\begin{equation*}
E\left(Z_{i} \mid \delta\right)=\ln \left\{\frac{\Gamma\left(\delta_{0}\right)}{\Gamma\left(\delta_{1}\right)}\right\}+\left(\delta_{1}-\delta_{0}\right) \Gamma(\delta)+\left(\delta_{1}-\delta_{0}\right) \ln \phi_{2} \tag{34}
\end{equation*}
$$

## 7. SPRT ROBUSTNESS FOR $\gamma$ WITH INDICATED COEFFICIENT OF VARIATION

If $g(x ; \underline{\theta})=\frac{x^{2}}{2}, \delta=\frac{h}{2}(h>0)$ in (1), the values of $\mu=\frac{h}{h-2}, \quad$ for $h>2$ and $\sigma^{2}=\frac{2 h^{2}}{(h-2)^{2}(h-4)}, \quad$ for $h>$ 4. Then, the coefficient of variation (CV)

$$
\begin{equation*}
C=\sqrt{\frac{2}{(h-4)}} \tag{35}
\end{equation*}
$$

Assume that the value of the coefficient of variation alters from to $c$ to $c^{*}$, then $\delta$ becomes

$$
\begin{equation*}
\delta^{*}=\frac{1}{C^{* 2}}+2 \tag{36}
\end{equation*}
$$

The OC function is

$$
\begin{equation*}
\psi_{1} t_{0} \ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)=\ln \left[1+t_{0}\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)\right] \tag{37}
\end{equation*}
$$

Solve (37) as (5) up to the third degree in $t_{0}$ and find the roots of $t_{0}$ from (39)

$$
\begin{equation*}
\left\{\frac{1}{3}\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)^{3}\right\} t_{0}^{2}-\left\{\frac{1}{2}\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)^{2}\right\} t_{0}+\left\{\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)-\psi_{1} \ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)\right\}=0 \tag{38}
\end{equation*}
$$

where $\psi_{1}=\left(\frac{\delta}{\delta^{*}}\right)$.
The ASN function coincides with (8)

$$
\begin{equation*}
E\left(Z_{i} \mid \gamma\right)=\psi_{1}\left[\ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)-\left(\frac{\gamma_{1}-\gamma_{0}}{\gamma}\right)\right] \tag{39}
\end{equation*}
$$

## 8. ACCEPTANCE AND REJECTION REGION

we need to assess the simple hypotheses $H_{0}: \gamma=\gamma_{0}$ as opposed to $H_{1}: \gamma=\gamma_{1}\left(>\gamma_{0}\right)$ having preassigned $0<\alpha$ and $\beta<1$ then $Z_{i}$ is

$$
\begin{equation*}
Z_{i}=\delta \cdot \ln \left(\frac{\gamma_{1}}{\gamma_{0}}\right)-g\left(x_{i}^{-1} ; \underline{\theta}\right)\left(\gamma_{1}-\gamma_{0}\right) \tag{40}
\end{equation*}
$$

Define, $Z(N)=\sum_{i=1}^{n} X_{i}$ and $N=$ initial integer $n(\geq 1)$, so that the inequality is defined as $Z(N) \leq c_{1}+d n$ or $Z(N) \geq c_{2}+d n$ valid among the parameters.

$$
c_{1}=\frac{\ln B}{\left(\gamma_{1}-\gamma_{0}\right)}, c_{2}=\frac{\ln A}{\left(\gamma_{1}-\gamma_{0}\right)} \text { and } d=\frac{\delta \ln \left(\frac{\gamma_{0}}{\gamma_{1}}\right)}{\left(\gamma_{1}-\gamma_{0}\right)}
$$

## 9. RESULT AND DISCUSSION

Table 1: $H_{0}: \gamma_{0}=22, H_{1}: \gamma_{1}=26 \quad H_{0}: \delta_{0}=22, H_{1}: \delta_{1}=26$

| $\gamma$ | $L(\gamma)$ | $E[N]$ | $\delta$ | $L(\delta)$ | $E[N]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 22.0 | 0.997848 | 396.3 | 22.0 | 0.997500 | 16.82 |
| 22.2 | 0.995846 | 442.9 | 22.2 | 0.995382 | 18.70 |
| 22.4 | 0.992101 | 499.5 | 22.4 | 0.991517 | 20.98 |
| 22.6 | 0.985191 | 568.6 | 22.6 | 0.984524 | 23.77 |
| 22.8 | 0.972657 | 653.2 | 22.8 | 0.972019 | 27.16 |
| 23.0 | 0.950427 | 755.6 | 23.0 | 0.950054 | 31.27 |
| 23.2 | 0.912296 | 875.9 | 23.2 | 0.912590 | 36.08 |
| 23.4 | 0.850178 | 1008.3 | 23.4 | 0.851663 | 41.38 |
| 23.6 | 0.756664 | 1136.4 | 23.6 | 0.759744 | 46.52 |
| 23.8 | 0.631008 | 1232.9 | 23.8 | 0.635534 | 50.40 |
| 24.0 | 0.485370 | 1268.9 | 24.0 | 0.490420 | 51.83 |
| 24.2 | 0.342685 | 1233.2 | 24.2 | 0.347054 | 50.32 |
| 24.4 | 0.224024 | 1140.9 | 24.4 | 0.227029 | 46.47 |
| 24.6 | 0.138008 | 1021.1 | 24.6 | 0.139693 | 41.46 |
| 24.8 | 0.081636 | 898.8 | 24.8 | 0.082409 | 36.35 |
| 25.0 | 0.047077 | 788.0 | 25.0 | 0.047344 | 31.74 |
| 25.2 | 0.026743 | 693.5 | 25.2 | 0.026777 | 27.81 |
| 25.4 | 0.015062 | 615.1 | 25.4 | 0.015011 | 24.55 |
| 25.6 | 0.008442 | 550.6 | 25.6 | 0.008374 | 21.88 |
| 25.8 | 0.004719 | 497.5 | 25.8 | 0.004660 | 19.69 |
| 26.0 | 0.002634 | 453.5 | 26.0 | 0.002590 | 17.87 |



Figure 1: OC and ASN Curve for section 3.


Figure 2: OC and ASN Curve for section 5.
I. The values denoted by the OC and ASN functions for sections 3 and 5 under $\alpha=\beta=0.05$, corresponding to the parameters $\gamma$ and $\delta$ can be found in Table 1, while the visuals representing these values are illustrated in Figures 1 and 2. The table mentioned above and curves yield outcomes that are deemed acceptable.

Table 2: OC and ASN Functions for section 4, under $\alpha=\beta=0.05$, where $H_{0}: \gamma_{0}=22, H_{1}: \gamma_{1}=26$

| $\phi_{1}=0.95$ |  |  | $\phi_{1}=0.98$ |  | $\phi_{1}=1$ |  | $\phi_{1}=1.02$ |  | $\phi_{1}=1.05$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $L(\gamma)$ | $E[N]$ |
|  | 99977 | 256.109 | 0.999593 | 325.533 | 0.997848 | 396.275 | 0.990174 | 501.269 | 0.925563 | 760.351 |
|  | 99949 | 275.377 | 0.999182 | 357.072 | 0.995846 | 442.881 | 0.981647 | 57 | 0.871228 | 8 |
|  | 99891 | 297.332 | 0.998388 | 394.382 | 0.992101 | 499.451 | 0.966278 | 659.846 | 0.787253 | 43 |
|  | 999773 | 322.565 | 0.996875 | 439.007 | 0.985191 | 568.593 | 0.939285 | 764.602 | 0.670 | 51 |
| 22.8 | . 999539 | 351.837 | 0.994031 | 492.942 | 0.972657 | 653.184 | 0.893689 | 885.460 | 0.528 | 01 |
| 23. | 999084 | 386.143 | 0.988758 | 558.689 | 0.950427 | 755.616 | 0.82 | 1013.745 | 382 | 421 |
| 23.2 | 998208 | 426.784 | 0.979124 | 639.166 | 0.912296 | 875.930 | 0.7 | 129.7 | 0.25 | 063.405 |
| 23.4 | 996548 | 475.461 | 0.961857 | 737.241 | 0.85 | 1008.278 | 0.581040 | 204.81 | 0.59600 | 959.524 |
|  | 993440 | 534.365 | 0.931752 | 854.390 | 0.75666 | 136 | 0.43359 | 215.2 | 0.095382 | 847.741 |
| 23.8 | 987698 | 606.223 | 0.881433 | 987.837 | 0.6310 | 1232 | 0.297 | 159. | 0.055358 | 743.688 |
| 24.0 | 977243 | 694.173 | 0.802653 | 26. | . 4853 | 1268.8 | 0.190055 | 558 | 0.031567 | 653.709 |
| 24.2 | 958580 | 801.169 | 0.69076 | 4, | . 34268 | 1233.18 | 0.115203 | 939.908 | 0.017819 | 578.588 |
| 24.4 | 926211 | 928.388 | 0.551 | , | 0.22402 | 140.91 | 0.067448 | 825.361 | 0.010001 | 516.709 |
|  | . 872518 | 71 | . 4046 | 09 | 3800 | 02 | 0.038658 | 724.251 | 0.005595 | 465.802 |
| 24.8 | . 789395 | 17 | 27326 | 仡 | 0.081636 | 898.796 | 0.021884 | 639.054 | 0.003124 | 423.701 |
| 25.0 | 673200 | 39.07 | 172 | 20.2 | 0.047077 | 788.025 | 0.012302 | 568.673 | 0.001742 | 388.586 |
| 25.2 | 531691 | 402.14 | 0.103641 | 991.440 | 0.026743 | 693.530 | 0.006888 | 510.809 | 0.000971 | 359.005 |
|  | 385428 | 386.47 | 0.060349 | 869.573 | 0.015062 | 615.103 | 0.003848 | 463.075 | 0.000540 | 333.831 |
|  | 257639 | 300.2 | 0.034475 | 763.352 | 0.008442 | 550.600 | 0.002147 | 423.395 | 0.000301 | 312.195 |
| 25.8 | 161310 | 73. | 0.019477 | 674.378 | 0.004719 | 497.491 | 0.001197 | 390.091 | 0.000167 | 293.426 |
| 26.0 | 0.096429 | 1035.8 | 0.010936 | 601.031 | 0.002634 | 453.477 | 0.000666 | 361.853 | 0.000093 | 277.004 |

II. Figure 3 illustrates the numerical values of the OC and ASN curves extracted from Table 2, corresponding to different $\phi_{1}$ values. When $\phi_{1}<1\left(\phi_{1}>1\right)$, the OC curve shifts either towards the right or left direction, while the ASN curve shifts towards the upper right or lower left direction. Both curves demonstrate that the SPRT exhibits a high degree of sensitivity towards alterations in $\delta$.


Figure 3: OC and ASN Curve for section 4.

Table 3: OC and ASN Functions for section 6 , under $\alpha=\beta=0.05$ where $H_{0}: H_{0}: \delta_{0}=22, H_{1}: \delta_{1}=26$

|  | $\phi_{2}=0.95$ |  | $\phi_{2}=0.99$ |  | $\phi_{2}=1$ |  | $\phi_{2}=1.02$ |  | $\phi_{2}=1.05$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\delta$ | $L(\delta)$ | $E[N]$ |
| 22.0 | 0.999949 | 12.805 | 0.998800 | 16.277 | 0.997500 | 16.821 | 0.989824 | 25.063 | 0.930141 | 38.018 |
| 22.2 | 0.999903 | 13.769 | 0.997769 | 17.854 | 0.995382 | 18.704 | 0.981471 | 28.633 | 0.879707 | 43.924 |
| 22.4 | 0.999816 | 14.867 | 0.995875 | 19.719 | 0.991517 | 20.984 | 0.966597 | 32.992 | 0.800964 | 49.912 |
| 22.6 | 0.999653 | 16.128 | 0.992418 | 21.950 | 0.984524 | 23.765 | 0.940663 | 38.230 | 0.689215 | 54.863 |
| 22.8 | 0.999350 | 17.592 | 0.986152 | 24.647 | 0.972019 | 27.161 | 0.896956 | 44.273 | 0.550252 | 57.405 |
| 23.0 | 0.998787 | 19.307 | 0.974920 | 27.934 | 0.950054 | 31.265 | 0.827248 | 50.687 | 0.403178 | 56.721 |
| 23.2 | 0.997751 | 21.339 | 0.955114 | 31.958 | 0.912590 | 36.081 | 0.725144 | 56.487 | 0.271799 | 53.170 |
| 23.4 | 0.995848 | 23.773 | 0.921109 | 36.862 | 0.851663 | 41.381 | 0.592699 | 60.241 | 0.171045 | 47.976 |
| 23.6 | 0.992379 | 26.718 | 0.865216 | 42.719 | 0.759744 | 46.521 | 0.445466 | 60.760 | 0.102434 | 42.387 |
| 23.8 | 0.986097 | 30.311 | 0.779487 | 49.392 | 0.635534 | 50.398 | 0.307359 | 57.959 | 0.059402 | 37.184 |
| 24.0 | 0.974842 | 34.709 | 0.660892 | 56.302 | 0.490420 | 51.829 | 0.196953 | 52.901 | 0.033783 | 32.685 |
| 24.2 | 0.955006 | 40.058 | 0.518186 | 62.258 | 0.347054 | 50.320 | 0.119421 | 46.995 | 0.018999 | 28.929 |
| 24.4 | 0.920963 | 46.419 | 0.372612 | 65.683 | 0.227029 | 46.466 | 0.069790 | 41.268 | 0.010619 | 25.835 |
| 24.6 | 0.865024 | 53.596 | 0.247071 | 65.468 | 0.139693 | 41.460 | 0.039871 | 36.213 | 0.005915 | 23.290 |
| 24.8 | 0.779245 | 60.891 | 0.153542 | 61.807 | 0.082409 | 36.355 | 0.022479 | 31.953 | 0.003290 | 21.185 |
| 25.0 | 0.660606 | 66.954 | 0.091170 | 56.013 | 0.047344 | 31.737 | 0.012580 | 28.434 | 0.001828 | 19.429 |
| 25.2 | 0.517881 | 70.107 | 0.052585 | 49.572 | 0.026777 | 27.807 | 0.007012 | 25.540 | 0.001015 | 17.950 |
| 25.4 | 0.372321 | 69.324 | 0.029808 | 43.479 | 0.015011 | 24.553 | 0.003901 | 23.154 | 0.000564 | 16.692 |
| 25.6 | 0.246826 | 65.011 | 0.016731 | 38.168 | 0.008374 | 21.882 | 0.002167 | 21.170 | 0.000313 | 15.610 |
| 25.8 | 0.153354 | 58.655 | 0.009340 | 33.719 | 0.004660 | 19.688 | 0.001204 | 19.505 | 0.000174 | 14.671 |
| 26.0 | 0.091038 | 51.795 | 0.005199 | 30.052 | 0.002590 | 17.872 | 0.000669 | 18.093 | 0.000097 | 13.850 |




Figure 4: OC and ASN Curve for section 6.
III. Figure 4 portrays the values of the operational characteristic (OC) and average sample num-
ber (ASN) curves derived from Table 3 across various magnitudes of $\phi_{2}$. When $\phi_{2}<1\left(\phi_{2}>1\right)$, the OC curve experiences a rightward (leftward) shift, while the ASN curve undergoes an upward rightward (downward leftward) shift. Both curves demonstrate the considerable sensitivity of the sequential probability ratio test (SPRT) to parameter $\gamma$ alterations.
IV. Figure 5 illustrates the plotted values of the OC and ASN curves obtained from Table 4 while considering different values of ' $\psi^{\prime}$. When $\psi<1(\psi>1)$ is taken into account, the OC curve experiences a shift towards the right (left), while the ASN curve shifts upwards (downwards) towards the right. It is evident from both curves that the SPRT demonstrates a considerable level of sensitivity towards variations in ' $\psi$ '.

Table 4: OC and ASN Functions for section 7, under $\alpha=\beta=0.05$ where $H_{0}: H_{0}: \gamma_{0}=22, H_{1}: \gamma_{1}=26$

| $\psi=0.96$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $L(\gamma)$ | $E[N]$ | $L(\gamma)$ | $E[N]$ | $L(\gamma)$ | $E[N]$ |  |
| $\gamma$ | $L(\gamma)$ | $\psi=1$ |  | $\psi=1.04$ |  |  |
| 22.0 | 0.999936 | 275.746 | 0.997848 | 396.275 | 0.960659 | 658.849 |
| 22.2 | 0.999864 | 298.188 | 0.995846 | 442.881 | 0.929568 | 764.064 |
| 22.4 | 0.999719 | 324.055 | 0.992101 | 499.451 | 0.877735 | 883.456 |
| 22.6 | 0.999432 | 354.157 | 0.985191 | 568.593 | 0.796964 | 1006.162 |
| 22.8 | 0.998873 | 389.555 | 0.972657 | 653.184 | 0.683060 | 1110.363 |
| 23.0 | 0.997803 | 431.636 | 0.950427 | 755.616 | 0.542805 | 1168.026 |
| 23.2 | 0.995782 | 482.209 | 0.912296 | 875.930 | 0.396046 | 1160.562 |
| 23.4 | 0.992010 | 543.586 | 0.850178 | 1008.278 | 0.266293 | 1092.897 |
| 23.6 | 0.985068 | 618.594 | 0.756664 | 1136.436 | 0.167506 | 988.999 |
| 23.8 | 0.972493 | 710.346 | 0.631008 | 1232.898 | 0.100472 | 874.913 |
| 24.0 | 0.950216 | 821.423 | 0.485370 | 1268.878 | 0.058441 | 767.625 |
| 24.2 | 0.912031 | 951.852 | 0.342685 | 1233.182 | 0.033369 | 674.376 |
| 24.4 | 0.849857 | 1095.264 | 0.224024 | 1140.910 | 0.018849 | 596.352 |
| 24.6 | 0.756289 | 1234.025 | 0.138008 | 1021.076 | 0.010583 | 532.042 |
| 24.8 | 0.630591 | 1338.272 | 0.081636 | 898.796 | 0.005922 | 479.150 |
| 25.0 | 0.484941 | 1376.797 | 0.047077 | 788.025 | 0.003307 | 435.440 |
| 25.2 | 0.342284 | 1337.532 | 0.026743 | 693.530 | 0.001844 | 399.016 |
| 25.4 | 0.223688 | 1236.956 | 0.015062 | 615.103 | 0.001028 | 368.364 |
| 25.6 | 0.137752 | 1106.603 | 0.008442 | 550.600 | 0.000572 | 342.305 |
| 25.8 | 0.081457 | 973.726 | 0.004719 | 497.491 | 0.000318 | 319.929 |
| 26.0 | 0.046959 | 853.432 | 0.002634 | 453.477 | 0.000177 | 300.536 |




Figure 5: OC and ASN Curve for section 7.
V. The acceptance and rejection zones for the null hypothesis $H_{0}$, with $H_{0}: \gamma_{0}=22$ and the
alternative hypothesis $H_{0}: \gamma_{0}=26$. Both the $\alpha$ and $\beta$ significance levels are set to 0.05 , and the degrees of freedom $\delta$ are set to 2 . The values of the constants $c_{1}, c_{2}$, and $d$ are -287.0828 , 287.0828, and -27.90466, respectively. As a result, if the observed value $Z(n)$ is less than or equal to $-27.90466 N+287.0828$, we accept the null hypothesis $H_{0}$, and we accept the alternative hypothesis $H_{1}$ if $Z(n)$ is higher than or equal to $-27.90466 N-287.0828$. In the intermediate stages, the sampling procedure continues.


Figure 6: The Acceptance and Rejection zones for $\mathrm{H}_{0}$

## References

[1] Buonaguidi, B. and Muliere, P.(2013). On the Wald's Sequential Probability Ratio Test for Levy Processes. Sequential Analysis, 32(3), 267-287.
[2] Boroumand, P. and Guillen i Fabregas, A. (2021). Error exponent sensitivity of sequential probability ratio testing. IEEE International Symposium on Information Theory (ISIT), 184"189.
[3] Chaturvedi, A., Tiwari, N. and Tomer, S.K. (2002). Robustness of the sequential testing procedures for the generalized life distributions. Brazilian Journal of Probability and Statistics, 16, 7"24.
[4] Chaturvedi, A., Chauhan, K., and Alam, M. W. (2009). Estimation of the reliability function for a family of lifetime distributions under type I and type II censorings. Journal of reliability and statistical studies, 11-30.
[5] Chaudhary, A. and Chauhan, K. (2009). Estimation and testing procedures for the reliability function of Weibull distribution under type I and type II censoring. Journal of statistics sciences, 1(2), 121-136.
[6] Chaturvedi, A, Chauhan, K., Alam, M. W. (2013). Robustness of the sequential testing procedures for the parameters of zero-truncated negative binomial, binomial, and Poisson distributions. Journal of the Indian Statistical Association, 51(2), 313-328.
[7] Chauhan, K. S. (2022). Estimation and testing procedures of $\mathrm{P}(\mathrm{Y}<\mathrm{X})$ for the inverse distributions family under type-II censoring. Reliability. Reliability: Theory Applications, 17(3 (69)), 328-339.
[8] Epstein, B. and Sobel, M. (1955). Sequential life test in exponential case. The Annals of Mathematical Statistics, 26, 82-93.
[9] Eger, K.and Tsoy, E.B. (2008). Robustness of sequential probability ratio tests in case of nuisance parameters. Third International Forum on Strategic Technologies, 266-270.
[10] Gradshteyn, I. S. and Ryzhik, I. M. (2007). Tables of Integrals Series and Products, Academic Press, New York.
[11] Harter, H.L. and Moore, A.H. (1976). An Evaluation of Exponential and Weibull Test Plans. IEEE Transactions on Reliability, 25(2), 100-104.
[12] Hubbard, D. J. and Allen, O.B. (1991). Robustness of the SPRT for a negative binomial to misspecification of the dispersion parameter. Biometrics, 47(2), 419-427.
[13] Hauck, D. J. and Keats, J.B. (1997). Robustness of the exponential sequential probability ratio test (SPRT), when Weibull distributed failures are transformed using a known' shape parameter. Microelectronics Reliability, 37(12), 1835-1840.
[14] Kharin, A. Y. (2016). On Robustifying of the Sequential Probability Ratio Test for a Discrete Model under "Contaminations". Austrian Journal of Statistics, 31(4), 267-277.
[15] Kharin, A. Y.and That Tu, T. (2018). Performance analysis and robustness evaluation of a sequential probability ratio test for non-identically distributed observations. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 54(2), 179-192.
[16] Kleijnen, J. P. C. and Shi, W.(2021). Sequential probability ratio tests: conservative and robust. SIMULATION, 97(1), 33-43.
[17] Liu, Y.and Li, X. R. (2013). Performance Analysis of Sequential Probability Ratio Test. Sequential Analysis, 32(4), 469-497.
[18] Montage, E. R., and Singaurwalla, N. D. (1985). Robustness of the Sequential Exponential Life-Testing Procedures. Jour. Amer. Statist. Assoc., 80, 715-719.
[19] Pandit, P. V. and Gudaganavar, N. V. (2010). On Robustness of a Sequential Test for Scale Parameter of Gamma and Exponential Distributions. Applied Mathematics-Journal of Chinese Universities Series B, 01, 274-278.
[20] Raghavachari, M. (1965). Operating Characteristic and Expected Sample Size of a Sequential Probability Ratio Test for the Simple Exponential Distribution. Calcutta Statistical Association Bulletin, 14, 65-73.
[21] Wald, A. (1947). Sequential Analysis. John Wiley and Sons, New York.

