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Havrda, Charvat, and Tsallis entropies of the inverse Rayleigh distribution are efficiently calculated. The 
maximum likelihood approach is used to get the estimators, as well as the approximate confidence interval. The 
mean squared errors, approximate confidence interval, and their related average length are computed. To 
illuminate the behavior of estimates across varying sample sizes, a comprehensive simulation study is conducted. 
The outcomes of the simulation study consistently reveal a downward trend in mean squared errors and average 
lengths as the sample size increases. Additionally, an interesting finding emerges as the censoring level 
diminishes. The entropy estimators progressively converge towards their true values. For practical 
demonstration, the effectiveness of the approach is showcased through the analysis of two real-world datasets. 
These applications underscore the real-world relevance of the methodology, further validating its utility in 
addressing complex scenarios involving censored data and inverse Rayleigh distributions. 
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In 2002, the Working Vacation (WV) queues were implemented as an extension of standard queueing models 
with vacations. During the vacation period in WV queues, the server provides service at a slower pace as opposed 
to the typical busy period.The objective of this survey is to provide a concise overview of the latest scholarly 
investigations on queueing models for WVs. The concept of a queue with WV has been implemented across 
various domains, encompassing computer systems, communication networks, production management, 
computer communication, manufacturing, and inventory systems. Additionally, it has been applied to network 
service, web service, file transfer service, and mail service. 

BAYESIAN ESTIMATION OF TOPP-LEONE LINDLEY (TLL) DISTRIBUTION PARAMETERS 
UNDER DIFFERENT LOSS FUNCTIONS USING LINDLEY APPROXIMATION .......................... 50 
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In this study, we present the Bayesian estimates of the unknown parameters of the Topp-Leone Lindley 
distribution using the maximum likelihood and Bayesian methods. In this study, the Bayes theorem was adopted 
for obtaining the posterior distribution of the shape parameter and scale parameter of the Topp-Leone Lindley 
distribution assuming the Jeffreys’ (non-informative) prior for the shape parameter and the Gamma (conjugate) 
prior for the scale parameter under three different loss functions namely: Square Error Loss Function, Linear 
Exponential Loss Function and Generalized Entropy Loss Function. The posterior distribution derived for both 
parameters are not solvable analytically, it requires a numerical approximation techniques to obtain the solution. 
The Lindley approximation techniques was adopted to obtain the parameters of interest. The loss function were 
used to derive the estimates of both parameters with an assumption that the both parameters are unknown and 
independent. To ascertain the accuracy of these estimators, the proposed Bayesian estimators under different loss 
functions are compared with the corresponding maximum likelihood estimator using a Monte Carlo simulation 
on the performance of these estimators according to the mean square error and BIAS based on simulated samples 
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simulated from the Topp-Leone Lindley distribution. It was also observed for any fixed value of the parameters, 
as sample size increases, the mean square errors of the Bayesian Estimates and maximum likelihood estimates 
decrease. Also, the maximum likelihood estimates and Bayesian estimates converge to the same value as the 
sample gets larger except for Generalized Entropy Loss Function.  
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AND APPLICATION TO REAL DATASETS ............................................................................................  65

Muhammad Umar Faruk, Alhaji Modu Isa, Aishatu Kaigama 

New parameters can be added to expand families of distribution for greater flexibility or to construct covariate 
models in several ways. In this study, a trigonometric-type distribution called Sine-Weibull distribution was 
developed by adopting the Weibull distribution as the baseline distribution and Sine-G Family as the generator 
to generate a flexible probability distribution without the need for extra parameters. The moment, moment 
generating function, entropy, and order statistics are some of the mathematical aspects of this distribution that 
were derived. The Maximum Likelihood approach was used to estimate the new distribution's parameters. Using 
actual datasets, the Sine-Weibull distribution's applicability was demonstrated.  

RECENT DEVELOPMENTS IN THE COMPUTATION OF THE ROCOF OF MULTI-STATE 
SYSTEMS AND ITS APPLICATIONS ........................................................................................................ 73 

Guglielmo D’Amico, Fulvio Gismondi 

This paper reviews several theoretical works on the computation of the Rate of Occurrence of Failure (ROCOF) 
for general multi-state random systems, focusing on recent generalizations. The discussion begins by defining 
the ROCOF for a Markov process and discussing the main results achieved in the literature, then moves towards 
the richer framework represented by semi-Markov systems. The paper discusses complications that arise when 
extending the ROCOF to higher orders so that a measure of the association of failures in time can be obtained. 
The work then analyzes possible modifications in terms of a conditional version of the ROCOF, which is of special 
interest in applications. The findings are illustrated by a numerical example from reliability, and the broad 
applicability is demonstrated by a discussion of different applications in other domains. 

STRIP-PLOT ANALYSIS FOR THE CONSTRUCTION 
OF COMPLETE TRIPARTITE AND CUBIC GRAPHS ............................................................................ 86 

V. Saranya, S. Kavitha

The Strip-Plot Design (SPD) is plays an important role in the complete block designs and also using the 
agricultural, medical and industry fields. SPD is best suited for a two-factor experiment that has more treatments 
than can be accommodated by a complete block design. In a SPD, one factor is assigned to the horizontal strip 
plot, one factor is assigned to the vertical – strip plot and one factor is interaction plot. Also, few experimental 
materials may be rare while other test items may be available in altering doses of other therapeutic factors, which 
may be expensive or time-consuming. One of the main features of SPD involves three types of experimental 
errors: row - strip plot error, coloum – strip plot error and interaction plot error. Experimenting across processing 
steps is essential for studying the interaction of factors where certain factors come from one step and others arrive 
from the other. The strip-plot design is a very efficient design for investigating multiple-step processes in terms 
of both resources and time. Strip-plot designs are economical when the factors are hard to change and the process 
under research has three discrete stages. When we want to study interactions between factors where some factors 
are from one step and other factors from another step, it is important to conduct experiments across processing 
steps. The approach is flexible because it can handle experimental design problems involving factors acting at 
different levels, unlike the existing method. Graphs are widely used representations of both natural and human-
made structures. Graph theory can be used to investigate "things that are connected to other things. “Fits nearly 

8



Table of Contents RT&A, No 1 (77) 
Volume 19, March 2024 

 

everywhere. Some tough problems become easier to solve when they are represented graphically. We reviewed the 
agricultural field yield of the strip-plot design and early work on the design of industrial strip-plot design in this 
paper. We have also described the model of strip-plot design. We, therefore, advise experimenters to ensure that 
their strip-plot designs contain a sufficient number of rows and columns so that valid statistical inference is 
possible. A bipartite graph is one in which the edges can be divided into two sets without going into sets. A 
complete bipartite graph is a bipartite graph that is completed. The complete tripartite graph in which the edges 
can be divided into three set without going into sets. The cubic graph is a graph in which all vertices have degree 
three. This paper describes the construction and Statistical Analysis of SPD using some particular types of graphs 
is discussed through numerical examples.  

A HYBRID APPROACH TO SINGLE ACCEPTANCE SAMPLING PLANS FOR LIFETIMES 
MODELED WITH THE EXPONENTIAL RAYLEIGH DISTRIBUTION  ............................................  100

Nandhini M, Radhika A, Jeslin J, Manigandan P 

This article explores into the examination of a novel compound distribution termed the "Exponential Rayleigh 
distribution" in the context of truncated life testing within a sampling plan. It introduces a hybrid single 
acceptance sampling plan tailored for truncated life testing scenarios where the item's lifespan adheres to the 
Exponential Rayleigh distribution. One of the primary segments within the domain of product quality control is 
referred to as “sampling inspection by variables”. This category encompasses procedures that involve the selection 
of multiple individual units based on measurements taken from a sample to assess a specific quality attribute 
under scrutiny. These plans, used to assess whether to accept or reject a submitted batch of items based on their 
observed lifetimes, are commonly known as reliability test plans. The article also outlines the development of a 
test plan to determine when to conclude the experiment given specific parameters like sample size, producer's 
risk, consumer's risk, and termination criteria. Sampling inspection, or reliability sampling, plays a pivotal role 
in maintaining product quality. It involves subjecting items to testing, collecting data on their lifespans, and 
making acceptance or rejection decisions based on the test results. When assessing an item's quality primarily 
based on its lifespan, which can be suitably described using a continuous probability distribution; such a plan is 
termed a "life test sampling plan." This article explores the application of the Exponential Rayleigh distribution 
within the realm of reliability sampling plans, emphasizing the utilization of hybrid censoring for life checks and 
median lifetime evaluations. This approach is leveraged to formulate reliability single sampling plans applicable 
to the Exponential Rayleigh distribution. The article utilizes binomial probabilities to compute the parameters of 
these sampling plans, aiming to strike a balance between protecting the interests of both the producer and the 
consumer while minimizing producer risks. The study involves calculating the specified median lifetime and 
determining design parameters like sample size and acceptance thresholds to meet predefined quality standards. 
The flexibility of the Exponential Rayleigh distribution in analyzing various types of lifetime data is highlighted, 
owing to its scale and shape parameters. To illustrate the concepts related to sampling strategies, a numerical 
example is provided in the sampling strategies section of the article.  

CHARACTERIZATION OF SOME CONTINUOUS DISTRIBUTIONS BY CONDITIONAL 
VARIANCE OF RECORD VALUES ............................................................................................................. 108 

Zaki Anwar, Mohd Faizan, Zakir Ali 

Characterization of a probability distribution gives a unique property enjoyed by that distribution. Various 
approaches are available in the literature to characterize distributions through record values. Many researchers 
have characterized Exponential, Pareto, and Power function distributions using moments, conditional 
expectation, and some other characteristics of record values. In this paper, we have characterized these three 
distributions through conditional variance of adjacent record values. The results have been verified using 
numerical computation. 
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Ambily Jose, Agnes Jerome, M. R. Irshad 

Considered is a three-station tandem queue with service times at stations 1, 2, and 3 are exponentially distributed 
with customers arriving according to the Poisson process at station 1. Given that the stationary distribution is 
the product of three independent geometric distributions with the intensity parameters, maximum likelihood 
estimators and Bayes estimators of the intensity parameters based on the number of customers present at different 
time periods are obtained. Furthermore, the minimal posterior risk and minimum Bayes risk of the estimators are 
computed. Also, a simulation study is conducted to evaluate the performance of the estimators obtained. 

CONTINUOUS BUTTER MAKING PRODUCTION SYSTEM ............................................................. 122  

Upasana Sharma, Drishti 

In the dairy plant, an investigation into the machine that makes butter was subjected to a reliability study in 
relation to the seasonal demand. In the process of expanding the butter churner into a machine that can make 
butter continuously, a more reliable operational model was devised. Both the models and the data acquired with 
MATLAB have been subjected to availability and reliability testing and analysis. In addition, the graphical 
analysis was carried out with the help of Code Blocks and Excel. A comparison of the two models was then covered 
as the final topic. It was discovered that (a) the extended model was superior to the current model, (b) the failure 
rate of the existing line increased, which implies that a new machine needs to be added to the line to share the 
load, which results in improved production, and (c) the failure rate of the extended model was lower than the 
failure rate of the existing model. (c) in order to maximise profits while simultaneously minimising losses The 
effectiveness of the system ought to be enhanced by performing routine maintenance during both the summer and 
the winter. 

STREAMLINING PRODUCT DEPLOYMENT: ENHANCING EFFICIENCY THROUGH 
KITTING PROCESSES ................................................................................................................................... 140 

G. Ayyappan, S. Sankeetha

Considering a single server with two queues that is prone to unreliability. The server offers a kitting process and 
performs necessary checks and rectifications when required. The arrival of items follows a Markovian arrival 
process, while the service is distributed based on a phase type distribution. The incoming products may exhibit 
issues such as poor quality or defects. If either of the queues is empty, the server is unable to provide the requested 
service and remains inactive. Furthermore, if all queues are empty, the server goes into a vacation mode. 
Breakdowns, repairs, instances of customers leaving without service (reneging), and vacation periods are all 
modeled using an exponential distribution. To gain insights into the performance of the queueing model, various 
performance metrics are analyzed and represented through 2D and 3D graphs. 

ON SOME PROPERTIES AND APPLICATIONS OF THE TYPE II HALF -LOGISTIC 
EXPONENTIATED FRECHET DISTRIBUTION  .....................................................................................  160

Olalekan Akanji Bello, Sani Ibrahim Doguwa, Abukakar Yahaya, Haruna Mohammed Jibril 

As the dimensions of available data for analysis continues to grow rapidly, it becomes imperative to develop new 
probability distributions that can more accurately represent various phenomena. In this research paper, we 
introduce a novel continuous probability distribution known as the Type II Half-Logistic Exponentiated Frechet 
Distribution, characterized by four positive parameters. This distribution expands upon the traditional Frechet 
distribution by introducing two additional parameters. We derive a significant density representation for this 
distribution. Furthermore, we delve into several statistical and mathematical properties associated with the Type 

10

RELIABILITY MODELING OF A BUTTER CHURNER AND  



Table of Contents RT&A, No 1 (77) 
Volume 19, March 2024 

 

II Half-Logistic Exponentiated Frechet distribution. This includes explicit expressions for key metrics such as the 
quantile function, probability weighted moments, moments, moments generating function, reliability function, 
hazard function, and order statistics. To estimate the model parameters effectively, we employ a maximum 
likelihood estimation technique and present the results of a simulation study. Our research underscores the 
superiority of this new distribution by applying it to two real-world datasets. Notably, the findings demonstrate 
that the Type II Half-Logistic Exponentiated Frechet distribution outperforms other considered distributions in 
fitting the two real datasets.  

AVAILABILITY OPTIMIZATION OF A PAINT MANUFACTURING PLANT USING GREY 
WOLF OPTIMIZATION: A METAHEURISTIC APPROACH  .............................................................. 175 

Ashish Kumar, Vijay Singh Maan, Monika Saini 

The primary objective of present research work is to evaluate and improve the performance and availability of the 
paint manufacturing plant. Paint manufacturing plant consists of five subsystem naming mixer, grinder, 
thinner, labelling, and filling unit. Among them labelling and filling unit have two machines in parallel 
configuration and both are working simultaneously. All failure and repair rates are distributed exponentially. 
Markov birth-death process is utilized to model the dynamic behavior of the system and its sub-components, 
enabling a quantitative analysis of system availability. Grey wolf optimization (GWO), a swarm-based 
optimization technique is used to optimize the availability of the system. Moreover, the research conducts a 
thorough comparison between the outcomes derived from the Markov birth-death process and the GWO 
technique. By harnessing the power of GWO, the study aims to further enhance the plant's overall performance. 

DESIGNING AND EVALUATION OF SKIP-LOT SAMPLING PLAN OF TYPE SkSP-T WITH 
SINGLE SAMPLING PLAN AS REFERENCE PLAN UNDER THE CONDITION OF 
INTERVENED POISSON DISTRIBUTION  .............................................................................................. 183 

S. Suganya, K. Pradeepa Veerakumari

This paper describes the scheming technique of new system of skip lot sampling plan of type SkSP-T with Single 
Sampling Plan as Reference plan under the condition of Intervened Poisson Distribution. The designing 
methodology includes the evaluation of Acceptable Quality Level, Limiting Quality Level, Operating Ratio, and 
Operating Characteristic curves. Tables are simulated by changing various parametric values of SkSP-T, SSP 
and IPD and operating characteristic curves are drawn by using R language.  

EJAZ DISTRIBUTION A NEW TWO PARAMETRIC DISTRIBUTION FOR MODELLING 
DATA  .......................................................................................................................................................... 191 

Aijaz Ahmad, M. A. Lone, Aafaq. A. Rather 

This paper introduces a novel probability distribution known as the Ejaz distribution (ED), which is characterized 
by two parameters. The study offers a comprehensive analysis of this distribution, including an examination of 
key properties such as moments, moment-generating functions, order statistics, and reliability functions. 
Additionally, the paper explores the graphical representation of essential functions like the probability density 
function, cumulative distribution function, and hazard rate function, enhancing our visual understanding of 
their behavior. The distribution’s parameters are estimated using the widely accepted method of maximum 
likelihood estimation. Through real-world examples, the paper highlights the practical applicability of the Ejaz 
distribution, demonstrating its performance and relevance in diverse scenarios. 
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RELIABILITY INVESTIGATION OF THE SPIRULINA PRODUCTION PLANT USING 
GUMBEL-HOUGAARD FAMILY COPULA  ............................................................................................. 202 

Priya Chaudhary, Shikha Bansal 

This study examines the consistency metrics used to evaluate the durability of a spirulina production plant, 
which consists of seven subsystems: cultivation pond, paddlewheel, filter unit, washing unit, spray dryer, ribbon 
blender, and packaging. By studying the spirulina firm, we can repair it by discovering future failures. We can 
increase spirulina production so that untimely failure can be prevented and production can be increased. There 
are two types of system failures: partial and total. While a full failure renders the system incapable of operating, 
a partial failure is thought to degrade the system. In contrast, repair rates follow two different types of 
distributions: an ordinary and an exponential distribution. The system in a partially failed or degraded condition 
is thought to be repaired using general time distribution. In contrast, fully failed systems are thought to be fixed 
using the Gumbel-Hougaard family copula distribution. Using the supplementary variable approach, the system 
is examined. A Chapmen-Kolmogorov differential equation is created and solved by applying the Gumbel-
Haugaard family Copula approach, employing the schematic representation of the system's state. supplementary 
variable approaches are applied to develop and resolve the differential equations related to transition diagrams, 
which are significant to this research. Reliability, availability, profitability, and MTTF are the critical 
performance metrics for the spirulina production plant. Moreover, sensitivity analysis is carried out for MTTF.  

EFFICIENT FRAMEWORK OF SECURITY FOR INTERNET OF THINGS  .......................................  217

Dr. Mihir Mehta, Dr. Kajal Patel, Dr. Komal Anadkat 

IoT security represents a highly compelling subject of research at present. The absence of a viable security solution 
for IoT applications could render them ineffective across various domains such as healthcare, smart homes, 
inventory management, smart agriculture, and more. Within the IoT architecture, security services like 
Confidentiality, Integrity, and Authentication play pivotal roles. In our research, we have concentrated on the 
Authentication service, which is fundamental for distinguishing users and devices unequivocally within a 
network. Authentication serves as the initial and crucial step in establishing secure communications among 
diverse IoT devices and users within the network. A compromised Authentication service could open the door for 
unauthorized users or devices to infiltrate the network, potentially leading to harmful activities like Masquerade 
attacks, Man-in-the-Middle (MITM) attacks, and Replay attacks. Currently, Authentication stands as a widely 
adopted and essential method for granting access to devices within IoT networks. Our contribution involves the 
development of a Multi-factor IoT Authentication Model, leveraging two key parameters: Device Context 
Information and Dynamic Key-based authentication. Our proposed approach begins by verifying the origin of 
information. If the origin is deemed valid, our model proceeds to validate the identity of the device. In the event 
of an intruder attempting to manipulate the device's origin from its predefined context to an alternative location, 
our system can swiftly detect this deviation, thereby enabling the rejection of communication requests from 
compromised devices. Following the verification of context information, we initiate mutual authentication 
between the IoT device and the server, employing the Challenge-response model. As a result of this second step, 
individual Session keys are generated at both the device and server sides, facilitating secure communication 
within a specific time window.  

M/M/∞ QUEUE WITH IMPATIENT CUSTOMERS ................................................................................. 228 

Gulab Singh Bura 

In this paper we proposed an M/M/∞ queue with impatient customers. Generally, customers are impatient due 
to long waits in queue but in this work, we consider the case when customers are not impatient due to long waits 
but they are impatient due to the poor quality of service. We model and analyze this queueing system by using 
continued fraction technique and obtained the probability mass function of the customers present in the system 
in time dependent form. Also, we calculate the average queue size. Finally, some graphical representations are 
given to illustrate the model. 
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REGULARITY OF ALTERNATE QUADRA SUBMERGING POLAR FUZZY GRAPH AND ITS 
APPLICATION ................................................................................................................................................. 238 

Anthoni Amali A, J. Jesintha Rosline 

Fuzzy soft sets and graphs are invented to solve uncertain problems in the field of Applied mathematics. It is a 
general mathematical tool introduced with many parameters to model the vagueness of the changing world. The 
insight learning of the AQSP fuzzy soft graphs paved the way to discover the extension of the AQSP fuzzy soft 
graph. In this research article we introduce the Regularity of AQSP fuzzy soft graph with definitions, theorems, 
properties, and real-life applications. The aim of this invention is mainly to obtain the parametric values in 
submerging level of confidence [-0.5, 0.5] [-1,1]. The scope of this new AQSP fuzzy soft graph is to solve the 
imprecise problems in the field of Mathematical Engineering, Bio Mathematics, Economics, Medical Science, 
Artificial Intelligence and Machine learning. The regularity of AQSP fuzzy soft graph is combined with the 
concepts of regular, totally regular, and perfectly regular. The application of this new graph is developed for 
governing of the women safety vehicle network in different spots with membership submerging values. The future 
extension can be applied in Approximate reasoning, Mathematical psychology, Decision making for medical 
diagnosis. 

STATISTICAL ANALYSIS OF SPLIT-PLOT DESIGN USING SPECIAL TYPE OF GRAPHS  .....  254

V. Saranya, S. Kavitha, M. Pachamuthu, S. Vijayan

When all experimental runs cannot be done under homogeneous conditions, blocking can be utilized to increase 
the power for testing treatment effects. In many real-life environments, there is at least one factor that is hard to 
change, leading to a split-plot structure. This paper demonstrates how to generate certain graphs using main-
plot and sub-plot analyses, as well as providing a catalog. As a result, during situations where the candidate set 
is too huge to be tractable, the design of split-plot experiments becomes computationally feasible. The designs 
were considered ideal because they were capable and efficient in estimating the fixed effects of the suitable 
statistical model given the split-plot design structure. The Split-Plot Design (SPD) is the complete block design 
which plays an important role in the fields of agriculture, medicine, and industries. This SPD is specifically 
suited for a two-factor experiment that has more treatments than can be accommodated by a complete block design. 
In an SPD, one factor is assigned to the main- plot. The assigned first factor is called the main - plot factor. The 
main- plot is then divided into subplots and the second factor is called the sub - plot factor. SPD is most used for 
(i) few experimental materials may be rare while the other experimental materials may be available in large
quantity, (ii) the levels of one or more treatment factor or easy to change and the alteration of levels of other
treatment factors are costly or time-consuming. Given the extensive study done in graph theory, it has developed
to be a very broad subject in mathematics. Graphs are important because they are a visual way of expressing
information. A graph shows data that is equivalent to many words. A graph can convey information that is
difficult to express in words. A bipartite graph is a type of graph in which the entire graph may be divided into
two bipartite sets, with edges connecting vertices in one set to vertices in the other. Vertex coloring is the
procedure of assigning labels or colors to each vertex in a graph. The data set was also manually analyzed to
validate the software-analyzed outcomes. R gave the same results as the manual analysis, showing that they were
both correct. R is mainly command-based. The proposed approach is demonstrated using agricultural and
industrial examples.

INFERENCE ON THE TIME-DEPENDENT STRESS-STRENGTH RELIABILITY MODELS 
BASED ON FINITE MIXTURE MODELS .................................................................................................. 268 

Krishnendu K., Annie Sabitha Paul, Drisya M., Joby K. Jose 

Time-dependent stress-strength reliability engages with the chance of survival for systems with dynamic strength 
and/or dynamic stress. When a system is allowed to run continuously, each run will cause a change in the 
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strength of the system. The repeated occurrence of stress on the system over each run will affect the survival 
capacity of the system. In this paper, we consider the distribution of time taken for the completion of a run by the 
system follows gamma and the stress or strength of the system follows a finite mixture of lifetime probability 
models. Here we consider two cases in which the first case deals with stress and strength following a finite mixture 
of Weibull distribution and in the second case the stress and strength is assumed to follow a finite mixture of the 
power-transformed half-logistic distribution. Moreover, the strength of the system is assumed to decrease by a 
constant and the stress acting on the system is assumed to increase by a constant over each run. We obtained the 
expression of the stress-strength reliability function and explained the ML and Bayesian methods for the 
estimation of the reliability at various time points. 

DUAL EXPONENTIAL RATIO ESTIMATOR IN PRESENCE OF NON-RESPONSE ...................... 285 

Rafia Jan, T. R. Jan and Faizan Danish 

The manuscript under consideration delves into a comprehensive exploration of the dual exponential ratio 
estimator, particularly in the context of non-response scenarios. In the following discourse, we will embark on an 
intricate journey through this research, emphasizing the pivotal aspects and findings that unravel the significance 
of this estimator in the realm of statistical estimation. The crux of this investigation revolves around evaluating 
the Mean Squared Error (MSE) and the Predictive Relative Efficiency (PRE) of the dual exponential ratio 
estimator. These two performance metrics serve as essential benchmarks for assessing the accuracy and 
effectiveness of the estimator. Notably, they play a crucial role in determining the estimator's suitability for 
practical applications, especially in situations where non-response is prevalent. To begin our exploration, it is 
imperative to understand the fundamental concept of the dual exponential ratio estimator. This estimator is a 
statistical tool employed in situations where traditional estimators may falter due to non-response, a phenomenon 
frequently encountered in surveys and data collection. It leverages a dual exponential model to address this 
challenge, making it a valuable addition to the toolkit of statisticians and researchers. The manuscript embarks 
on a rigorous theoretical analysis of the dual exponential ratio estimator's MSE and PRE. Through a series of 
mathematical derivations and proofs, the authors elucidate the underlying principles governing its performance. 
This theoretical foundation is crucial, as it not only establishes a solid framework for evaluating the estimator but 
also provides insights into its behavior under different conditions. However, theory alone can only take us so far. 
To validate the theoretical findings and assess the estimator's practical utility, numerical experiments are 
conducted. These experiments involve simulations and real-world data scenarios, allowing the authors to draw 
comparisons between the dual exponential ratio estimator and traditional estimators. The numerical results serve 
as a bridge between theory and application, offering empirical evidence of the estimator's prowess. In essence, 
this manuscript fills a critical gap in the field of statistical estimation by thoroughly investigating the dual 
exponential ratio estimator's performance in the presence of non-response. By juxtaposing its MSE and PRE 
with those of traditional estimators, it provides valuable insights into the potential advantages of adopting this 
novel approach. Moreover, the combination of rigorous theory and practical validation ensures that the findings 
are both intellectually sound and operationally relevant. The dual exponential ratio estimator, as explored and 
analyzed within these pages, emerges as a promising solution, backed by both theoretical rigor and empirical 
support. This research contributes not only to the theoretical foundations of statistics but also to its real-world 
applications, underscoring the estimator's potential to enhance the accuracy and reliability of estimation in the 
face of non-response complexities. 

PROCESS CAPABILITY ANALYSIS FOR NON NORMAL DATA BASED ON BOX-COX 
TRANSFORMATION THROUGH TESTS OF GOODNESS OF FIT  .................................................. 297 

J. Krishnan, R. Vijayaraghavan

Process capability analysis is an effective and efficient tool for quality assurance. When the distribution of the 
underlying quality characteristics is not normal, modifications of the basic process capability indices are required. 
Literature in process control provides avenues to resolve the issue of non-normality and data transformation is 
one of the approaches frequently applied in practice. Primarily the Box – Cox transformation (BCT) is employed 
to transform the non normal data into normal data which originally utilizes the method of maximum likelihood 
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estimation (MLE) to find the single transformation parameter λ. There are alternative methods to estimate the 
optimal parametric value λ using goodness of fit tests rather using MLE method. In order to bring improved 
estimates, this paper makes a fresh attempt to estimate process capability analysis (PCA) using transformed data 
through different goodness of fit tests. The simulation study uses variety of asymmetric behaviors from a Weibull 
distribution generating a random sample of 100 data points to find the best goodness of fit test for better process 
capability estimates that are compared to the standard of six sigma results for non-normal data. Final result 
shows that Shapiro-Wilk's (SW) and Artificial Covariate (AC) methods are performing well when compared to 
the method of MLE. Minitab software and R programming language were utilized for data simulation and 
analysis.  

THE USE OF EXPERIMENTAL MODELLING IN THE PREDICTION OF PRODUCT 
RELIABILITY  ...................................................................................................................................................  310

Alena Breznická, Pavol Mikuš 

When designing new systems and components, it is very important to correctly determine the degree and ability 
of the joint to withstand stress and load. Every new product that is intended for the market must meet the 
requirements for high safety and reliability during the entire life cycle. The presented article deals with the 
possibility of modelling the ability to withstand such a load, the principle of the interference method was used in 
the experimental modelling. The interference theory of reliability is based on the analysis of regularities and 
properties of two random variables that characterize reliability. Among these elementary properties from the point 
of view of reliability assessment, we can successfully use dependability and lifetime analysis. It originates from 
the concept of "safe life", which is deterministic, based on determining and respecting the values of reliability 
factors. The described approach assumes that a malfunction or a faulty function occurs when the strength limit 
of the object is exceeded, i.e., ability to withstand stress.  

A STUDY ON PARTIALLY ACCELERATED LIFE TEST MODEL FOR GENERALIZED 
INVERSE RAYLEIGH DISTRIBUTION UNDER ADAPTIVE TYPE-II PROGRESSIVE HYBRID 
CENSORING .................................................................................................................................................... 320 

Intekhab Alam, Trapty Agarwal, Awakash Mishra, Aanchal Gaba 

Modeling and examination of lifetime phenomena are the main aspects of statistical work in a wide variety of 
scientific and industrial areas. The area of lifetime information analysis has developed and extended quickly with 
respect to methodology, theory, and fields of applications. The point and interval maximum-likelihood estimations 
of generalized inverse Rayleigh distribution (GIRD) parameters and the acceleration factor are considered in this 
work. The estimation procedure is carried out for a partially accelerated step-stress model under adaptive Type-
II progressive hybrid censored data. The biases and the mean square errors of the maximum-likelihood estimators 
are computed to assess their performances in the occurrence of censoring developed in this study through a Monte 
Carlo simulation study. 

EFFECT OF CLASSICAL AND ROBUST REGRESSION ESTIMATORS IN THE CONTEXT OF 
HIGHDIMENSIONAL DATA WITH MULTICOLLINEARITY AND OUTLIERS ........................... 335 

Muthukrishnan R, Karthika Ramakrishnan 

Regression methods are used for the estimation and prediction in various fields of statistical study. It is a 
statistical method commonly used for determining the degree of relationship between a response and a number of 
explanatory variables. These explanatory variables may correlate each other and lead to multicollinearity. More 
than two predictor variables with high correlation show the existence of multicollinearity which results in the 
estimator having a high variance. Ordinary Least Square estimation fails to give a better regression estimator, 
when the model's presumptions are not met. This paper explores the various methods which can tolerate the 
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problems of multicollinearity and outliers. This study compares different types of regression estimators such as 
Ordinary Least Square, Robust, Ridge, and Liu by computing various error values such as Mean Absolute Error, 
Root Mean Square Error, Mean Absolute Percentage Error and R2 under real environment that has both 
multicollinearity and outliers. To compare the fit of the aforementioned regression models, the Akaike Information 
Criterion was also calculated. According to the error measures and AIC this study concludes that the Liu 
regression estimator performs well when compared with the other estimation methods. 

EXPONENTIATED WEIBULL DISTRIBUTION: BAYESIAN ESTIMATION USING 
PROGRESSIVE TYPE I INTERVAL CENSORING .................................................................................. 342 

M. Kumar, K P Aswathi

A three-parameter distribution known as the Generalized Weibull (GW) or Exponentiated Weibull distribution 
is studied in this work. We construct Baye’s estimators for the unknown parameters and present reliability 
function using progressive type I interval censoring data. Two different loss functions, namely, squared error 
loss and general entropy loss functions are applied to derive Baye’s estimators. It is observed that there is no 
closed-form solution for Baye’s estimators as well as for MLE. Hence, Lindley’s approximation procedure is 
applied to obtain Bayesian estimator of unknown parameters, and Newton Rapson method is employed to obtain 
MLE’s numerically. The corresponding reliability function is derived. Monte Carlo simulation is used to obtain 
MLE. Further, the performance of MLE and Bayes estimators are compared in terms of their respective MSE and 
Relative errors. It is noted by numerical computation that MLE’s performs better than Bayes estimators. In 
addition to this, Bayes estimators obtained using Squared error loss function and general entropy loss function 
are compared. It is observed through numerical computation that general entropy loss function is better in terms 
of MSE. 

METHODS FOR ENSURING AND PROVING FUNCTIONAL SAFETY OF AUTOMATIC 
TRAIN OPERATION SYSTEMS ..................................................................................................................  360

I.B. Shubinsky, E.N. Rozenberg, H. Schäbe

The paper examines the specificity of artificial intelligence-based automatic train operation systems. Justifying 
the functional safety (FS) of such systems is quite difficult. The paper proposes a process for proving the functional 
safety of intelligent systems. A hybrid control system for a shunting locomotive was developed and analysed. It 
combines machine vision (MV), train protection devices and manual control by a driver. A model is presented 
that allows examining the functional safety of a locomotive control system layer by layer, i.e., evaluating the time 
to safety degradation depending on the component failure and subsequent requirement of bringing the locomotive 
to a complete stop. This allows to improve the FS of the shunting locomotive control system with machine vision 
from SIL 2 to SIL 3 and maintaining it during sufficiently long periods of time (over a quarter of the mean time 
to system failure). The mean time of faultless operation of a locomotive control system until it has to be brought 
to a complete stop for safety reasons can be increased three times. A general approach is proposed to design the 
functional safety of automatic train operation systems. It is based on the division of the information processing 
process into two subprocesses, i.e., internal intelligent information processing onboard the locomotive for the 
purpose of decision-making regarding track vacancy and communication of initial visual information to the 
operating driver for decision-making. The division of this process must be combined with redundant machine 
vision facilities, regular comparison of the outputs of the onboard and fixed machine vision facilities, redundant 
comparison outputs, smoothing of the outputs in the process of locomotive movement. 
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SENSITIVITY AND PROFITABILITY ANALYSIS 
OF TWO-UNITS AMMONIA/UREA PLANT ............................................................................................ 376 

Sara Salim A Oraimi, Syed Mohd Rizwan, Kajal Sachdeva 

This paper presents a reliability modelling of a two-unit ammonia/urea plant. Real maintenance data of the 
production plant have been used for this purpose. Four types of failure were noted: process, electrical, mechanical 
and instrumental failures. Both ammonia/urea formation units work in parallel and do not fail simultaneously. 
Various reliability indices of the plant, such as availability, busy period for repair, and expected number of repairs 
for each type of failure, have been obtained. Markov processes and regenerative point techniques are used for 
analysis. Profit analysis for the plant is also done, along with a graphical representation of various parameters. 
Finally, sensitivity analysis is carried out to see the impact of varied parameters on the profit function of the 
plant. 

STUDIES ON A NEW MANPOWER MODEL WITH NONHOMOGENEOUS POISSON 
RECRUITMENT, PROMOTION AND LEAVING PROCESSES ........................................................... 387 

K. Suryanarayana Rao, K. Srinivasa Rao

For proper utilization of manpower in any organization manpower modeling is needed. This paper addresses the 
two graded manpower model with non-stationary recruitment, promotion and leaving processes. Here it is 
assumed that the recruitment process in the first grade follows a NHP process which is further assumed that the 
promotion and leaving processes are also NHP processes. Using the difference-differential equations, the joint 
p.g.f of the number of employees in the organization at any time ‘t’ is derived. The characteristics of the model
such as the average number of employees in each grade, the average waiting time of an employee in each grade,
the variance of the number of employees in each grade and the C.V of an employee in each grade are derived
explicitly. The sensitivity analysis of the model with respect to the changes in parameter is also studied through
numerical illustration. The comparative study between homogeneous Poisson recruitment and NHP recruitment
is also discussed. This model also improves some of the earlier models as particular cases.

THE ROLE OF RECORD VALUES IN STATISTICAL INFERENCE: A REVIEW ARTICLE  ......... 406 

Mahmoud A. Selim Alsanea 

The record values data have received the attention of researchers in statistics for over seven decades. Through 
these decades the records have played a significant and widely utilized role for statistical inference in parameter 
estimation, predicting future values, hypothesis tests, as well as stress-strength tests, and characterizing 
distributions. In this paper, the types of record values, some distributional properties, and statistical inferences 
of record values and their applications are reviewed. The purpose of this paper is to shed light on the role of record 
values in statistical inference. Therefore, we will examine this issue from two perspectives, the first perspective 
being estimation and the second perspective being prediction. These are through some of the most important 
lifetime distributions are Exponential, Weibull, Gumbel, Geometric, Pareto, Generalized exponential, Rayleigh, 
Lomax, and Nadarajah-Haghighi distributions. I hope that the findings of this paper will be useful for researchers 
in various fields and lead to further enhancement of research in record values theory and its applications.  

APPLICATION OF THE FUZZY-SET THEORY TO ASSESS THE KNOWLEDGE OF 
ELECTRIC POWER INDUSTRY SPECIALISTS  ......................................................................................  424

V.Kh. Nasibov R.R. Alizade I.Y. Mastaliyev A.M. Ramazanli

In most cases, the assessment of the knowledge of electric power industry workers is carried out according to a 
test scheme, where the correct answer is selected from the list of answers. All questions have the same difficulty 
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and only the single correct answer gives a certain score. The article developed a universal model for assessing the 
knowledge of electric power industry workers, where using the theory of fuzzy logic and fuzzy inference, both the 
complexity of questions and the possibility of a partial correct answer are taken into account.  

A CRITICAL LITERATURE REVIEW AND FUTURE PERSPECTIVE OF RAM APPROACHES 
FOR COMPLEX SYSTEMS IN VARIOUS PROCESS INDUSTRIES  .................................................. 431 

Mausoof Sheikh, Dr. P.C. Tewari 

In the industrial systems there is a requirement that systems should work efficiently for long time. System 
performance is an important aspect for failure free operation but in real practice complete failure free operation 
of any production system is seldom possible. Detailed critical literature review for the past thirty-three years of 
Reliability, Maintainability and Availability (RAM) approaches has been carried out which can help to improve 
performance of Complex systems. Review of some papers provided the detailed information about past and current 
scenario of RAM practices in research field and industries. Different RAM tools and techniques extracted from 
the review may be helpful in qualitative and quantitative analysis of the complex systems. In this paper, author 
tried to focus on some major aspects of RAM approaches.  

EXACT AND CONDITIONAL BOUNDS FOR GENERALIZED CUMULATIVE ENTROPY ........  440

Alexey V. Lebedev 

The differential entropy is a natural analog of the Shannon entropy for discrete distributions in respect to 
absolutely continuous distributions (with density). In modern studies, many other kinds of entropy have been 
introduced and analyzed, including various cumulative entropies, which are based not on the density but on the 
(cumulative) distribution function of random variable. Such characteristics can be used, for example, in computer 
vision, reliability theory, risk analysis, etc. We consider some generalizations of cumulative entropy, for a wide 
class of entropy generators. We use the methods of probability theory, calculus of variations and Cauchy-
Bunyakovsky-Schwarz inequality. In the class of centered and normalized random variables, exact and 
conditional bounds are found as well as the distributions on which they are attained. By conditional bounds we 
understand bounds for one generalized cumulative entropy given the value of another entropy (in the class of 
random variables with zero mean and unit variance). This problem is analogous to the previously posed and 
partly solved problem on conditional bounds for expectations of sample maxima when we know the expected 
maximum of a sample of another size or expected maxima of two smaller samples. 

SOME PROPERTIES OF TSALLIS ENTROPY BASED ON A DOUBLY TRUNCATED 
(INTERVAL) RANDOM VARIABLE ........................................................................................................... 448 

S. Jalayeria, G.R. Mohtashami Borzadarana, M. Khorashadizadehb

In this paper, we first study doubly truncated (interval) Tsallis entropy and suggest doubly truncated (interval) 
cumulative residual Tsallis entropy (ICRT), which is an extension of cumulative residual Tsallis entropy (CRT) 
and the dynamic CRT defined by the aid of Sati and Gupta and of Kumar, respectively. We investigate some 
properties and characterization of this measure, such as its relation with doubly truncated Shannon entropy, 
mean residual (past) life, and hazard rate (or reversed hazard rate). Also, the twin measure, doubly truncated 
(interval) cumulative past Tsallis entropy, is determined, and some of its properties are studied. Moreover, their 
monotonicity and related aging classes of distributions are expressed, and the upper (lower) bound for them is 
acquired. In the end, we propose four nonparametric estimators and compare their performance by utilizing 
simulation data. Also, being based on the best-proposed estimator, a real data set is additionally examined. 
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GENERALIZED X-EXPONENTIAL BATHTUB SHAPED FAILURE RATE DISTRIBUTION 
AND ESTIMATION OF RELIABILITY OF MULTICOMPONENT STRESS-STRENGTH  ............  465

Faryal Shabbir, Abdul Khalique 

In an engineering setup, one is interested to know and determine the reliability of the system of different 
components. These components are usually subjected to different kinds of stress, and the reliability of the 
components needs to be estimated under stress. In this paper, we aim to estimate the reliability of a 
multicomponent stress-strength model assuming that the components of the system are working independently 
with a common life distribution. The system follows a comparatively new distribution named as; Generalized X-
Exponential bathtub failure rate distribution. This paper studies the usefulness of this distribution in terms of 
estimating the maximum likelihood estimate of the reliability parameter and its asymptotic confidence intervals. 
Paper uses methods of parametric estimation and reliability estimation. Results are computed using Monte Carlo 
simulation for small samples. Real data set is presented to evaluate the performance of Generalized X Exponential 
Distribution (GXED) reliability estimator. Findings show that with the usage of proposed distribution, estimator 
of reliability parameter fits very well to the real-world situations  

DEVELOPMENT OF AN INTEGRATED SAFETY SISTEM FOR PRODUCTION FACILITIES: 
THE PROBLEM STATEMENT AND THE PROPOSED SOLUTION  .................................................. 474 

Evgeny Gvozdev 

The article focuses on explosion and fire hazards at production facilities of enterprises where flammable liquids 
and gases, categorized by explosion and fire risks, are processed, handled, transported, and stored. The goal to be 
attained and the tasks to be solved towards this end are formulated in the article. Consolidated areas of knowledge, 
accumulating results of research into risk assessment within systems of integrated safety implemented at 
production facilities, are considered by the author. A model for development of a novel set of research and 
methodological instruments (methods, techniques, software and hardware) is presented for its further practical 
application. The problem of developing integrated safety systems for industrial facilities, posing explosion and 
fire hazards, as well as the solution, are presented by the author for the first time. The novelty of the solution lies 
in the computation of validity of the practical application of a novel set of research and methodological 
instruments. A reduction in damage from accidents and fires at production facilities is demonstrated. Ultimately, 
the socio-economic problem of reducing damage from accidents and fires is solved not only by Russian production 
facilities, but also by government agencies, including the EMERCOM of Russia (Ministry of the Russian 
Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters), Ministry of 
Labor and Social Protection of Russia, and Federal Environmental, Industrial and Nuclear Supervision Service 
of Russia.  

TRANSIENT AND METAHEURISTIC COST SCRUTINY OF MX/G(A, B)/1 RETRIAL QUEUE 
WITH RANDOM FAILURE UNDER EXTENDED BERNOULLI VACATION WITH 
IMPATIENT CUSTOMERS ........................................................................................................................... 488 

Rani R, Indhira K 

The transient and metaheuristic cost analysis of a MX/G(a, b)/1 retrial queue with random failure during an 
extended Bernoulli vacation with impatient clients is covered in this study. Any batch that arrives and discovers 
the server is busy, down, or on vacation joins an orbit. In the alternative, only one new customer from the group 
joins the service right away, while the others join the orbit. After providing each service, the server either waits 
to serve the following customer with probability (1 − θ) or goes on vacation with probability θ. It has been found 
that these systems express steady-state solutions and are dependent on time probability generating functions in 
consideration of their Laplace transforms. We also discuss a few exceptional and particular instances. After that, 
the impact of different parameters on the system’s effectiveness is evaluated. We are also talking about ANFIS. 
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Additional approaches employed in this study to swiftly determine the system’s optimum cost include genetic 
algorithms (GA), artificial bee colonies (ABC), and particle swarm optimization (PSO). We also examined the 
graph-based convergence of several optimization algorithms. 

REPORTING METHODOLOGY AND ALGORITHM OF MODES OF COMPLEX ENERGY 
SYSTEMS WITH PHASE COORDINATES  .............................................................................................. 510 

Huseyngulu Guliyev, Famil Ibrahimov 

A mathematical model, algorithm and program have been developed to study any types of complex asymmetric 
steady-state modes and transient processes of a multi-machine power system with a renewable energy source in 
phase coordinates, the results of which can be used in the operational control of power system operating modes 
with any type of emergency automation. The developed methodology and software package can also be used in 
industry to check the possibility of long-term operation in the considered asymmetrical mode from the point of 
view of the operating conditions of the system generators and electrical receivers, to determine the need to use 
baluns, to select their parameters and installation locations, to ensure the efficiency of asymmetrical modes , as 
well as for conducting various tests and analyzing accidents that have occurred.  

BAYES ESTIMATION OF CAPABILITY INDEX USING THREE-PARAMETER WEIBULL 
DISTRIBUTION ............................................................................................................................................... 523 

Sonam Gubreley, Ankita Gupta, Satyanshu K. Upadhyay 

The process capability index is an important tool used in quality control and process improvement. Generally, 
the index is estimated under the assumption of a normal distribution, although some other distributions are also 
recommended in the literature. This paper instead considers a three-parameter Weibull distribution and obtains 
an estimate of the process capability index under the Bayesian framework. Bayesian development is based on the 
use of non-informative priors and the posterior sample-based inferences are drawn using an important Markov 
chain Monte Carlo technique, namely, the Gibbs sampler algorithm. Finally, a numerical illustration based on 
two real datasets is provided. 

A NEW ALGORITHM TO SOLVE MULTI-OBJECTIVE TRANSPORTATION PROBLEM 
WITH GENERALIZED TRAPEZOIDAL FUZZY NUMBERS ................................................................ 531 

Ramakant Sharma, Sohan Lal Tyagi 

Transportation Problem is a specific type of linear programming problem (LPP). Today, in the real world, the 
decision maker handles the multi-objectives at the same time. Fuzzy Concepts are used in LPP to handle the 
uncertainty and vagueness of data. This paper presents a new algorithm to solve a special type of fuzzy 
transportation problem (FTP) with the generalized trapezoidal fuzzy numbers (GTpFN) in which the decision 
maker is not certain about the exact value of transportation charge and the availabilities and requirements are 
the real numbers. In this Proposed Algorithm first, the fuzzy multi-objective transportation problem (FMOTP) 
is converted into a Crisp multi-objective transportation problem (MOTP) by the Proposed ranking function, and 
then the Crisp MOTP is transformed into a single objective transportation problem using the sum of objective 
functions values. The proposed algorithm gives an efficient compromise solution of FMOTP. To elaborate the 
proposed algorithm, one numerical example is solved. 
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USE OF THERMAL IMAGING METHOD OF CONTROL FOR INSPECTION OF BUILDING 
STRUCTURES FOR TIGHTNESS  ...............................................................................................................  544

Sofia Skachkova, Anton Avgutsevichs 

In any industry related to the construction of buildings and structures we have heard about the need to assess 
the technical condition of various objects to assess and analyze the risks associated with the possible collapse of 
buildings (structures), loss of life and high costs to eliminate these consequences. Since many objects fail over 
time, and in general to determine the wear and tear and the possible term of further safe operation, it is necessary 
to conduct a technical survey. The article describes the principle of operation of thermal imaging devices for 
determining the reliability of building structures in residential premises, and also raises problems, the solution 
of which can simplify the use of thermal imaging devices in the inspection of buildings and structures and reduce 
the economic costs of damage compensation in case of timely detection and elimination of any defects.  

ON THE CHARACTERIZATION AND APPLICATIONS OF A THREE-PARAMETER 
IMPROVED WEIBULL-WEIBULL DISTRIBUTION ...............................................................................  551

A. S. Mohammed, B. Abba, I. Abdullahi, Y. Zakari, A. I. Ishaq 

Parametric modeling of complex lifetime data characterized with nonmonotone hazard rate (NMHR) has in 
recent years attract the interest of many researchers and practitioners. The three-parameter improved Weibull-
Weibull distribution introduced in 2022 has demonstrated a better NMHR modeling potential in the analysis of 
several failure times identified with bathtub hazard rate (BHR). In this study, we present the characterization, 
properties and two data sets’ applications of the distribution. Various properties of the distribution obtained, 
include moment generating function, moments, skewness, kurtosis, and some types of entropy. Numerical results 
for mean, variance, skewness, and kurtosis are computed using simulation studies. Estimation of the distribution 
parameters is performed using the method of maximum likelihood, and the estimation method is assessed by 
Monte Carlo simulation experiments. The two illustrations further ascertain the capability of the model for 
modeling lifetime data from different scientific investigation areas. 

MARSHAL-OLKIN ALPHA POWER INVERSE RAYLEIGH DISTRIBUTION: PROPERTIES, 
ESTIMATION AND APPLICATIONS  ....................................................................................................... 564 

Ismaila Olawale Adegbite, Kayode Samuel Adekeye, Olubisi Lawrence Aako 

In this study, a new three-parameter distribution is introduced by extending the two-parameter Alpha Power 
Inverse Rayleigh distribution using Marshall-Olkin G approach. The proposed Marshall-Olkin Generalized 
Alpha Power Inverse Rayleigh (MOAPIR) distribution generalizes the Marshall-Olkin Inverse Rayleigh, Alpha 
Power Inverse Rayleigh, and Inverse Rayleigh distribution. The characterization and statistical properties of the 
proposed distribution such as hazard rate function, reversed hazard rate function, quantiles, moments, and order 
statistics were derived. The estimation of the MOAPIR distribution parameters is derived using the maximum 
likelihood estimation method. The performance of the proposed distribution was compared with other competing 
distribution using two real-life data. The goodness of fit criteria and the distribution function curve showed that 
the proposed distribution provides a better fit than other competing distributions of the same family of heavily 
positive skewed distribution. 
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ON DIFFERENT CLASSICAL ESTIMATION APPROACHES FOR TYPE I HALF LOGISTIC-
TOPP-LEONE- EXPONENTIAL DISTRIBUTION  ...................................................................................  577

Akeem Ajibola Adepoju, Sauta S. Abdulkadir, Danjuma Jibasen 

This paper aims to propose six methods of parameter estimation in order to examine the behavior of the new Type 
I Half Logistic Topp-leone Exponential distribution. The methods taking into consideration are Maximum 
Likelihood, Anderson Darling, Least Squares, Cramer von Mises, Maximum Product of Spacing, and Weighted 
Least Squares Methods. The results show that all the methods are consistent, since the estimates approach the 
true value of the parameters for all the methods. The bias, mean square error and mean relative estimates decay 
as the sample size is raised. The estimates of the six methods obtained for the model, indicated that MPS estimates 
is the closest to the true value of the parameters across the low, moderate and high sample sizes, invariable, the 
MPS produces the least biasness. Buttress more, the MPS produces the least MSE all through and remain the 
best estimator for low, moderate and high sample size of the model. Conclusively, MPS is the most consistent 
among the estimators for the model.  

ON THE Q-RAYLEIGH DISTRIBUTION AND ITS APPLICATIONS ................................................ 588 

Ibrahim Sadok 

This paper introduces the two-parameter q-Rayleigh distribution, a powerful extension of the classical Rayleigh 
model for analysing real-world data. Compared to the Rayleigh, the q-Rayleigh incorporates a novel pathway 
parameter q, offering greater flexibility in capturing diverse data patterns. We delve into the mathematical 
properties of the q-Rayleigh, including its hazard rate function and quantile function, and explore parameter 
estimation through maximum likelihood methods. We demonstrate its superior fit compared to the widely-used 
Rayleigh distribution for real-world data. Moreover, we explore its application in reliability analysis. This 
comprehensive study makes the q-Rayleigh a compelling choice for modelling data exhibiting gradual transitions 
and enhanced flexibility. 

MI-K-MEAN ALGORITHM: A NEW APPROACH FOR FINANCIAL RISK ANALYSIS WITH
MISSING DATA IMPUTATION IN BIG DATA  ..................................................................................... 603 

Ravindra Kumar, Diwakar Shukla, Kamlesh Kumar Pandey, Sagar, M.P.,India , Sagar, M.P., India, 
Amarkantak, M.P., India  

The data mining is a tool of searching information from the data warehouse. Several mining algorithms exist in 
literature, one of the most common is the usual K-mean procedure. This generates centroids after every round of 
iteration. It is assumed that sample data is completely cleaned and noise free before the start of execution of the 
usual K-mean algorithm. If α% values are missing in sample data then after cleaning only (100-α) % values are 
available for the execution of the usual K-mean algorithm. Such bears a loss of information that affects the 
decision. This paper considers this problem and resolves such issue by replacing the missing data through imputed 
values calculated by the available values, called Mean Imputation (MI). It helps in financial risk analysis quite a 
lot because of risk prediction being taken on a larger sample (cleaned and imputed both). Several imputation 
procedures are available in literature. This paper considers the financial risk data as sample where the missing 
values of sample are imputed by the usual Mean-Imputation (MI) method and then on complete sample. Proposed 
MI-K-mean strategy is compared with no imputation usual procedure and found more efficient over the four-
evaluation criterion of cluster formation while applying on risk data analysis.
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A TYPE I HALF LOGISTIC TOPP-LEONE INVERSE LOMAX DISTRIBUTION 
WITH APPLICATIONS IN SKINFOLDS ANALYSIS.............................................................................  618

Akeem Ajibola Adepoju, Sauta S. Abdulkadir, Danjuma Jibasen, Jamiu S. Olumoh

This paper proposed a novel distribution parameterized by four parameters. This is achieved by compounding the 
potentials properties of the Type I half logistic topp-leone generalized distribution family with the properties of 
the inverse lomax distribution to form the novel Type I half logistic topp-leone inverse lomax distribution. The 
novel distribution is potentially capable of extending classical inverse lomax distribution. The potentiality of the 
shape of the probability density function of the novel distribution is worth recognizing since it produces right 
skewed, approximately normal, left skewed and a reverted J-shaped. Decreasing life failure shape is also observed. 
Distinctive features of the novel distribution such as moments, entropy, moment generating function, reliability 
and hazard function were derived. The estimation method explored in this study is maximum likelihood 
estimation. It is adopted to estimate the novel distribution unknown parameters. Real life data set was adopted to 
investigate the potentiality and applicability of the novel model. The type I half logistic topp-leone inverse lomax 
distribution outperform the recent models 

OPERATION OF HVAC, ENERGY BUILDINGS AND MACHINERIES ........................................... 631 

M. S. Patil, G.M. Malwatkar

In Heating, Ventilation, and Air Conditioning (HVAC) systems, faults can be occurred due to various reasons 
such as drift deviation, valve/fan failure, water clogging, air filter obstruction, temperature sensor failure and so 
on. Similarly in electrical machineries faults can be occurred due to multiple causes such as phase reversal, over 
or under voltage, starter open/short circuit, bearing problems, insulation breakdown, overloading, thermal 
unbalance, environmental as well as other technical issues. The faults analysis at various stages of electrical 
systems are critically important for reliable operation of the system. In view of reliability and safety operations of 
modern sophisticated electrical systems, faults analysis and its diagnosis are necessary to avoid unaccountable 
losses. The faults at various stages, its causes, methods of detection and diagnosis, fault classifications are 
included in this work. The comment on effectiveness methods of detection of fault and diagnosis are included for 
electrical systems. In the industries, systems are incorporated with monitoring capacity for detection of faults at 
easy and early stage. This paper mainly focused on advancements in fault detection and diagnosis (FDD) methods 
with short review of various recent methods. This includes system information representation, methods of FDD, 
description of faults, fault classification, and decision actions related to maintenance, providing a systematic 
overview of the current state of FDD. Furthermore, the paper underscores the pivotal roles of FDD in electrical 
systems, emphasizing its effectiveness in identifying faulty states and taking pre-emptive actions against 
potential failures or accidents. The discussion extends to developments of current research in FDD approaches 
for electrical machineries with system monitoring, accompanied by short review of diverse and valuable FDD 
methodologies. The study concludes by addressing comments on recent trends, future directions, challenges, and 
prospective solutions in the hybrid and dynamic landscape of FDD. 

M/M/C QUEUE WITH MULTIPLE WORKING VACATIONS AND SINGLE WORKING 
VACATION UNDER ENCOURAGED ARRIVAL WITH IMPATIENT CUSTOMERS ................... 650 

Prakati P, Julia Rose Mary K 

This paper demonstrates an M/M/C queuing model with Multiple working vacations and also single working 
vacation under encouraged arrival with impatient customers. The queuing model with the servers adopting 
multiple working vacation policy and single working vacation are determined separately and it is observed that 
the servers during working vacation(s) will be serving the customers at a slower service rate when compared 
during regular busy period. In addition to the above conditions, if there is a rapid increase in the customers’ 
arrival i.e, if encouraged arrival occurs and due to this sudden growth of the queue, there may be a impatience in 
the behaviour of the customer. With these considerations, an M/M/C Queuing model is analysed with two 
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vacation policies separately by applying PGF method and thus the performance measures for an M/M/C Queue 
with Multiple Working Vacations and Single Working Vacation under Encouraged arrival with impatient 
customers are evaluated. 

BEHAVIORAL ANALYSIS AND MAINTENANCE DECISIONS OF WOOD INDUSTRIAL 
SUBSYSTEM USING STOCHASTIC PETRI NETS SIMULATION MODELING ............................ 663 

Urvashi, Shikha Bansal 

This study aims to optimize the productivity of the plywood manufacturing system within the wood industry. A 
Petri nets simulation-based technique has been used to evaluate the availability analysis of the plywood 
manufacturing system. A Petri nets model is created to represent the modeling of the plywood system. The model 
is subsequently simulated using the licensed program Petri Nets (PN) GRIF 2023.7. This simulation is used to 
evaluate the performance of the system. In the PN simulation model, timed transitions are fired based on the 
failure and repair rate of the system. Immediate transitions, on the other hand, have their own guard function for 
firing which is coded using a logical AND-OR gate. This study also assesses the impact of the repairman on the 
system’s availability. The system’s availability is optimized by increasing the number of repairmen. However, 
once a specific number of repairmen is reached, the system’s availability remains constant. This research is highly 
valuable for determining the optimal number of maintenance staff needed for the wood industrial system. 

PREDICTIVE MAINTENANCE SCHEME FOR PHASED MISSION SYSTEMS .............................. 675

Preeti Wanti Srivastava, Satya Rani 

In both industrial and military fields, many systems are phase mission systems (PMSs) which execute mission 
composed of different phases in sequence. The structure, failure behaviour, and working condition of such a 
system may change from phase to phase. Maintenance actions comprising corrective and preventive maintenance 
schemes studied in the literature are aimed at retaining the maintained system in a proper condition and 
improving its availability and extending its life. The present paper deals with finding optimal periodic inspection 
time using multi-objective criteria comprising objectives of minimizing expected maintenance cost incurred due 
to predictive, breakdown and periodic maintenance of a PMS, and maximizing its expected residual lifetime. The 
predictive maintenance is condition-based preventive maintenance that anticipates system failures in order to 
plan timely interventions on the system and hence improve its performance. The dependency is modelled using 
Gumbel-Haugaard copula. An aircraft flight PMS comprising Taxiing phase, Take-Off phase, Cruising phase 
and Landing phase has been used to illustrate the method developed. 

PROFIT ANALYSIS OF REPAIRABLE JUICE PLANT  ........................................................................... 688 

Rahul, Mohit Yadav, Hemant Kumar 

Juice is a non-fermented beverage that is obtained by squeezing fruits to increase immunity. Generally, juice 
contains calcium, vitamin, iron, etc. to give the refresh tests. There are multiple steps to store the juice at large 
levels such as storing, grinding pasteurization, etc. In this paper, the performance and reliability measures of a 
juice plant are discussed. The juice plant has three distinct units. Unit A has washing and storage tank, unit B 
has grinding, blending, evaporation and pasteurization, and unit C has bottling, labeling and packing units. If 
any unit partially fails then the system works to a limited extent. A technician is always available to repair the 
failed unit. The system fails when one unit completely fails. In this paper, the failure time and repair time follow 
general distributions. The regenerative point graphical technique is used to explore the reliability measures.  
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A LITERATURE REVIEW ON DEVELOPMENT OF QUEUEING NETWORKS  ............................. 696 

V. Narmadha, P. Rajendran

This study conducts a quantitative research survey on the development of queueing networks over years. 
Development is a process of gradual change that takes place over many years, during which a theory slowly 
progress and attain a good state. Queueing theory has been through many developments which made its existence 
inevitable in every field. Queueing networks can be considered as a collection of nodes, where each node stands 
for a service facility. It has been proved to be a powerful and versatile tool for modelling facilities in manufacturing 
units and telecommunication networks. This paper presents the development in Queueing networks and its types 
over years. This paper's main objective is to give all the analysts and researchers the knowledge about the 
evolution that happened in Queueing networks over years.  

MODELING AND ANALYSIS OF SINE POWER RAYLEIGH DISTRIBUTION: PROPERTIES 
AND APPLICATIONS .................................................................................................................................... 703 

Aadil Ahmad Mir, S.P.Ahmad 

In this manuscript, a new probability model named as Sine Power Rayleigh distribution (SPRD) is proposed 
using a Sine-G function as generator. Various statistical properties of this new distribution were investigated, 
including the survival function, hazard function, reverse hazard rate, cumulative hazard function, mills ratio, 
quantile function, moments, moment generating function, conditional moments, entropy, and order statistics. 
The parameters of the proposed distribution were estimated using the method of maximum likelihood estimation. 
To assess the model’s versatility and applicability, we conduct analyses on two real life data sets. The outcomes 
affirm the superior performance of the newly proposed model SPRD as compared to existing models. 

NEW DISCRETE DISTRIBUTON FOR ZERO-INFLATED COUNT DATA ...................................... 717 

Peer Bilal Ahmad, Mohammad Kafeel Wani 

Over-dispersed models are commonly utilized when the variation is more than what the model actually predicts. 
Since one of the reasons for over-dispersion is the large number of zeros, we employ zero-inflated models instead 
of more traditional ones to handle this observed occurrence. We present a zero-inflated version of a discrete 
distribution that was developed in 2021 in our research. Significant statistical characteristics of the suggested 
model have been identified, such as moments, the over-dispersion feature, generating functions, and related 
measures, among others. We have carried the parametric estimation using the maximum likelihood estimate. 
Maximum likelihood estimates are checked for usefulness in a simulation exercise. We evaluated the applicability 
of our developed model using three real-world data sets, 

STOCHASTIC OPTIMIZATION AND RELIABILITY ANALYSIS OF MUSHROOM PLANT  .... 729 

Shakuntla Singla, Sonia, Poonam Panwar 

In the present paper the reliability model for availability analysis of mushroom plant is developed in three sub-
units like water pump, winter cold standby unit A.C., and packing machine. We assume a doctor of mushroom 
and workers are available who examines and repairs the elements as when we need. A mathematical model of the 
system is developed by using all these considerations. MTSF, Availability, server of busy period and expected 
number of servers visit of mushroom plant are determined with the assistance of RPGT. Graphs and tables are 
draw to depict the behavior of various parameters such as MTSF, Availability, server of busy period and expected 
number of servers visits and the effect of various parameters of the plant is analyzed when repair and failure rate 
both are vary and also when one of them is constant  
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NUMERICAL INVESTIGATION OF RETRIAL QUEUEING INVENTORY SYSTEM WITH A 
CONSTANT RETRIAL RATE, WORKING VACATION, FLUSH OUT, COLLISION AND 
IMPATIENT CUSTOMERS ........................................................................................................................... 744 

G. Ayyappan, N. Arulmozhi

The retrial queueing inventory system with working vacation, flush out, balking, breakdown, and repair, as well 
as a constant retrial rate and orbital client collision are all examined in this study. We made the assumption that 
customers arrive through a Markovian arrival process and that they would get phase-type services from the 
server. The inventory is replenished using a (s, S) and (s,Q) strategy, and it is expected that the replenishment 
time will follow an exponential distribution. If there are zero inventory items, no customers in the orbit, or both, 
the server will go into working vacation mode. When a customer retries an orbit while the server is serving 
arriving customers, the orbital customer may collide with the arriving customer during that retry, in which case 
both of them will be shifted back into orbit; otherwise, the orbital customer may avoid colliding with the arriving 
customer and may rejoin the orbit for another retry. The number of customers in the orbit and the inventory level 
may be found in the steady state. A cost analysis is produced along with the establishment of various important 
performance measures. Moreover, some numerical examples are provided to clarify our mathematical notion. 

ON φ-CONHARMONICALLY FLAT LORENTZIAN PARA-KENMOTSU MANIFOLDS ............ 764 

I. V. Venkateswara Rao, S. Sunitha Devi, K. L. Sai Prasad

The present paper deals with a class of Lorentzian almost paracontact metric manifolds namely Lorentzian para-
Kenmotsu (briefly LP-Kenmotsu) manifolds. We study and have shown that a quasiconformally flat Lorentzian 
para-Kenmotsu manifold is locally isomorphic with a unit sphere Sn(1). Further it is shown that an LP-Kenmotsu 
manifold which is φ-conharmonically flat is an η-Einstein manifold with the zero scalar curvature. At the end, 
we have shown that a φ-projectively flat LPKenmotsu manifold is an Einstein manifold with the scalar curvature 
r = n(n − 1). 

DATA ANALYSIS AND CLASSICAL ESTIMATION METHODS OF THE BOUNDED POWER 
LOMAX DISTRIBUTION  ............................................................................................................................. 770 

Amal S. Hassan, Asma M. Khalil, Heba F. Nagy 

In this work, a novel bounded three-parameter power Lomax distribution termed the unit power Lomax (UPLoD) 
is presented. The UPLoD is capable of handling data with left and right skewed shapes according to its probability 
density function. Additionally, according to the hazard rate function, the distribution may be used to analyse 
data containing J-shaped hazard rates. It is possible to determine some of the distribution's mathematical 
characteristics like moments, probability-weighted moments, incomplete moments, residual and reversed residual 
life, quantile function, stress strength model, and entropy (Rényi, Havrda and Charvát, Tsallis, and Arimoto) 
measures. The Cramér–von Mises, weighted least squares, maximum likelihood, Anderson–Darling, maximum 
product of spacing, and least squares approaches are among the conventional estimating techniques that are taken 
into account. The performance of the resulting estimates is compared using a Monte Carlo simulation based on 
some precision metrics. An actual data application is presented using water capacity data, and data about the 
Susquehanna River's maximum flood levels to show the importance of the new distribution compared to several 
other known distributions.  
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LIMIT CYCLES OF LENGTH TWO IN THE RIKKER MODEL AND THEIR APPLICATION IN 
FISHING  ..........................................................................................................................................................  790

Gurami Tsitsiashvili, Tatyana Shatilina, Marina Osipova, Tatyana Radchenkova 

The paper investigates the limit cycle of length two in the Rikker model. It is established that the dependence of 
the ratio of the maximum value of the cycle to the minimum depends monotonously and almost linearly on the 
growth coefficient of the Rikker model. Models of the parity shift of the limit cycle of length two are constructed, 
which is provided by a simultaneous sharp decrease/increase in the growth coefficient. On the example of the 
Amur salmon in 1994 It is shown that a decrease in the growth coefficient, leading to a shift in the parity of the 
cycle of length two, is accompanied by a low temperature during the life cycle of pink salmon, when the pink 
salmon population is in a state of spawn and when the young are rolling. 

INFERENCE ON THE INVERSE POWER BURR-HATKE DISTRIBUTION UNDER TYPE II 
CENSORING  ................................................................................................................................................... 796 

Pavitra Kumari, Vinay Kumar 

There are many real-life situations, where data require probability distribution function which have decreasing 
or upside-down bathtub (UBT) shaped failure rate function. The inverse power burr hatke distribution consists 
both decreasing and UBT shaped failure rate functions. Here, we address the different estimation methods of the 
parameter and reliability characteristics of the inverse Pareto distribution from both classical and Bayesian 
approaches. We consider classical estimation procedures to estimate the unknown parameter of inverse power 
burr-hatke distribution, such as maximum likelihood. Also, we consider Bayesian estimation using squared error 
loss function based joint priors. The Monte Carlo simulations are performed to compare the performances of the 
obtained estimators in mean square error sense. Finally, the flexibility of the proposed distribution is illustrated 
empirically using one real-life datasets. The analyzed data shows that the introduced distribution provides a 
superior fit than some important competing distributions such as the Weibull, inverse Pareto and Burr-Hatke 
distributions.  

A COMPARATIVE STUDY OF INVENTORY MODELLING: DETERMINISTIC OVER 
STOCHASTIC APPROACH  ......................................................................................................................... 804 

Lalji Kumar, Pratima Singh Ghoshi, Shreyashi Saxena, Kajal Sharma 

This research study provides a comprehensive comparison of two critical approaches to inventory modelling- 
deterministic and stochastic. The deterministic model employs traditional optimization techniques to optimize 
complex systems, while the stochastic model leverages Particle Swarm Optimization (PSO) simulations to tackle 
the challenges posed by uncertain dynamics. This approach enables us to develop effective strategies for 
optimizing complex systems. After conducting sensitivity analyses, it was found that the deterministic model 
oversimplifies demand dynamics, whereas the stochastic model more adeptly captures market uncertainties. As a 
result, this study suggests that businesses adopt stochastic approaches to inventory management to better engage 
in adaptive decision-making, contingency planning, optimal resource allocation, risk mitigation, and realistic 
performance metrics. The research provides valuable insights for businesses seeking to navigate the complexities 
of modern supply chains.  
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SEQUENTIAL TESTING PROCEDURE FOR THE PARAMETERS OF INVERSE 
DISTRIBUTION FAMILY .............................................................................................................................. 819 

K. S. Chauhan, A. Sharma 

The sequential probability ratio test is a powerful statistical tool that is frequently employed for hypothesis 
testing, parameter estimation, and statistical inference. The aspect of robustness is of utmost importance when 
employing SPRTS in practical applications. Past studies have investigated the robustness of SPRTS for specific 
distributions. We have developed SPRTS for a family of inverse distributions that includes eleven distinct 
distributions. The primary objective of this study is to investigate and evaluate the robustness of SPRTS under 
various conditions and distributions, focusing 
on the parameters of the inverse distribution family. SPRTS efficacy is measured using OC and ASN functions. 
This study comprehensively covers the construction and rigorous evaluation of SPRTS, particularly in testing 
simple null hypotheses against simple alternative hypotheses. Additionally, we investigate the robustness of 
SPRTS under various factors, including the presence of other parameters and specified coefficients of variation. 
Conclusive results, graphic representations, tables, and acceptance and rejection regions add clarity to the 
findings. 

CONFIDENCE INTERVAL USING MAXIMUM LIKELIHOOD ESTIMATION FOR THE 
PARAMETERS OF POISSON TYPE RAYLEIGH CLASS MODEL ...................................................... 832 

Rajesh Singh, Preeti A. Badge, Pritee Singh 

In this research paper, confidence interval using maximum likelihood estimation is obtained for Poisson type 
Rayleigh class for the parameters. The failure intensity function, mean time to failure function and likelihood 
function for the parameter is derived. Confidence interval has been obtained for the parameters using maximum 
likelihood estimation. To study the performance of proposed Confidence interval, average length and coverage 
probability are calculated by using Monte Carlo simulation technique. From the obtained intervals, it is 
concluded that Confidence interval for the parameters perform better for appropriate choice of execution time and 
certain values of parameters. 
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Abstract

The inverse Rayleigh distribution finds widespread applications within life testing and reliability
research. Particularly, it proves invaluable in scenarios involving multiple censored data points. In
this context, the Renyi, Havrda, Charvat, and Tsallis entropies of the inverse Rayleigh distribution are
efficiently calculated. The maximum likelihood approach is used to get the estimators, as well as the
approximate confidence interval. The mean squared errors, approximate confidence interval, and their
related average length are computed. To illuminate the behavior of estimates across varying sample sizes,
a comprehensive simulation study is conducted. The outcomes of the simulation study consistently reveal
a downward trend in mean squared errors and average lengths as the sample size increases. Additionally,
an interesting finding emerges as the censoring level diminishes. The entropy estimators progressively
converge towards their true values. For practical demonstration, the effectiveness of the approach is
showcased through the analysis of two real-world datasets. These applications underscore the real-world
relevance of the methodology, further validating its utility in addressing complex scenarios involving
censored data and inverse Rayleigh distributions.

Keywords: inverse Rayleigh distribution, Renyi entropy, Havrda and Charvat entropy, Tsallis
entropy, multiple censored.

1. Introduction

The concept of entropy measurement is essential in many fields, including statistics, economics,
and physical, chemical, and biological phenomena. The concept of entropy was first proposed
as a thermodynamic state variable in classical thermodynamics, and it is based on principles
from probability theory and mathematical statistics. Although the term information theory does
not have a precise meaning, it can be considered of as the study of problems involving any
probabilistic system. Entropy is referred to as the amount of information found in the sample.
One of the most important aspects of statistics is the study of probability distributions. Every
probability distribution contains some element of uncertainty. Entropy is a phenomenon that
can be utilised to provide a quantitative estimate of uncertainty. Entropy is also a measure of
disorder or randomness in a probabilistic system having a large number of random states with
equal probability, and is zero when the system is in a specified state with no uncertainty. In other
terms, a random variable’s entropy is a measure of the amount of information required to explain
a random variable on average. Shannon [13] established the concept of entropy as a measure of
information. Here, we focus our attention on three entropy measures- the Renyi [11], Havrad
and Chavrat [7], Tsallis entropies [15]. The Renyi entropy [11] comes from information theory,
whereas the Tsallis entropy [15] comes from statistical physics, and both have a wide range of
applications in their respective fields. These three entropy measures are defined, accordingly, for
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an arbitrary variable X with the Probability Density Function (PDF) f(x;φ), where φ denotes the
corresponding parameters.

Rδ(X; φ) =
1

1 − δ
log
[∫ ∞

−∞
f (x; φ)δdx

]
(1)

where δ ̸=1 and δ > 0, and

HCδ(X; φ) =
1

21−δ − 1

[∫ ∞

−∞
f (x; φ)δdx − 1

]
(2)

where δ ̸=1 and δ > 0, and

Tδ(X; φ) =
1

δ − 1

[
1 −

∫ ∞

−∞
f (x; φ)δdx

]
(3)

where δ ̸=1 and δ > 0,

Lord Rayleigh [12] initially proposed the Rayleigh distribution in relation to an acoustic problem.
Since then, a great deal of work has been done in numerous domains of science and technology
to improve this distribution. The Rayleigh distribution’s hazard function is an increasing function
of time, which is an important property. If the random variable Y has a Rayleigh distribution,
the random variable X = 1

Y has an inverse Rayleigh distribution (IRD). Trayer [14] proposed the
Inverse Rayleigh distribution (IRD). The IRD is used in a variety of applications, including as life
tests and reliability studies. A random variable X is said to have inverse Rayleigh distribution if
its PDF and CDF has the following form:

f (x; σ) =
2σ2

x3 exp
[
−
(σ

x

)2
]

; x > 0, σ > 0 (4)

F(x; σ) = exp
[
−
(σ

x

)2
]

; x > 0, σ > 0 (5)

Wong and Chan [17] explored the entropy of ordered sequences and the order statistic. The
entropy of upper record values was studied by Baratpour et al. [4], whereas the entropy of
lower record values was proposed by Morabbi and Razmkhah [?]. Abo-Eleneen [1] discussed the
entropy of progressively censored samples, Cho et al. [5] estimated the entropy for the Rayleigh
distribution via doubly-generalized Type II hybrid censored samples using maximum likelihood
and Bayes estimators, and Hassan and Zaky [6] investigated point and interval estimation of
the Shannon entropy for the for the inverse Weibull distribution under multiple censored data.
Bantan et al. [3] used multiple censored data to derive the Renyi and q-entropy for the inverse
Lomax distribution. To measure the Lomax distribution’s dynamic cumulative residual Renyi
entropy, Al-Babtain et.al [2] explored the Bayesian and non-Bayesian techniques.

However, the estimation of entropy measures for the inverse Rayleigh distribution (IR), such as
the Renyi, Havrad, and Chavrat, Tsallis entropies, still an unresolved subject . The problem is
examined in the context of multiple censored data in this study, which fills the gap. This is a
common scenario in which many censoring levels are logically present, as it is in many situations
for life assessment and survival analysis. Renyi, Havrad and Chavrat, Tsallis entropies are derived
in our study after analysing the maximum likelihood estimator of σ . A comprehensive numerical
analysis is carried out, demonstrating that the derived estimates behave well across a range of
sample sizes. The mean squared errors, estimated confidence intervals, and associated average
lengths are considered as benchmarks. The values of the mean squared errors and average lengths
decreases as the sample size rises, according to our numerical findings. Furthermore, as the
censoring level is reduced, the Renyi, Havrad and Chavrat, Tsallis entropies estimates approaches
the real value. The findings are illustrated using a real-life data set.

The next is how the rest of the article is organised: Section 2 gives the Renyi, Havrad, and Chavrat,
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Tsallis entropies for the inverse Rayleigh (IR) distribution. Section 3 focuses at how they can be
estimated using multiple censored data. Section 4 contains the simulation and numerical results.
Section 5 demonstrates how the method can be used to real-world data sets. Section 6 ends with
some summing comments.

2. Expressions of the Renyi, Havrad and Chavrat, Tsallis entropies

Let X be an arbitrary variable with parameter σ that follows the IR distribution. The Renyi
entropy of X with φ = (σ) by using (1)and (3) is given as

Rδ(X; σ) =
1

1 − δ
log
[∫ ∞

0

2σ2

x3 exp
[
−
(σ

x

)2
]]δ

dx (6)

Put σ
x = y ⇒ x = σ

y ⇒ dx = σ
(
− 1

y2

)
dy.

Rδ(X; σ) =
1

1 − δ
log

∫ ∞

0
2δy2δ

( y
σ

)δ
exp(−δy2)σ

(
−1
y2

)
dy

=
1

1 − δ
log

∫ ∞

0
y3δ−2 (−2δ)

σδ−1 exp (−δy2)dy

=
1

1 − δ
log
[
−2δ

σδ−1

∫ ∞

0
y3δ−2 exp (−δy2)dy

]
Put y2 = t ⇒ y =

√
t ⇒ dy = 1

2
√

t
dt

Rδ(X; σ) =
1

1 − δ
log
[
−2δ

σδ−1

∫ ∞

0
t

3δ−2
2 exp (−δt)

1
2
√

t
dt
]

=
1

1 − δ
log
[
−2δ

σδ−1 .
1
2

∫ ∞

0
t

3δ
2 − 1

2−1 exp (−δt)dt
]

=
1

1 − δ
log
[
−2δ−1

σδ−1

∫ ∞

0
exp (−δt) ∗ t

3δ
2 − 1

2−1dt
]

Rδ(X; σ) =
1

1 − δ
log

[
−
(

2
σ

)δ−1 ∫ ∞

0
exp (−δt) ∗ t

3δ
2 − 1

2−1dt

]

Rδ(X; σ) =
1

1 − δ
log

[
−
(

2
σ

)δ−1 Γ 3δ−1
2

δ
3δ−1

2

]
(7)

with δ ̸= 1, δ > 0 and 3δ − 1 > 0.

Similarly, on using equation equation (7), Havrad and Chavrat entropy and Tsallis entropy of X is
given by

HCδ(X; σ) =
1

21−δ − 1

[(∫ ∞

0

2σ2

x3 exp
[
−
(σ

x

)2
]

dx
)δ

− 1

]

=
1

21−δ − 1

[
−
(

2
σ

)δ−1 Γ 3q−1
2

δ
3q−1

2

− 1

]
(8)

with δ ̸= 1, δ > 0 and 3δ − 1 > 0.

Tδ(X; σ) =
1

δ − 1

[
1 −

(∫ ∞

0

2σ2

x3 exp
[
−
(σ

x

)2
]

dx
)δ
]
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=
1

δ − 1

[
1 +

(
2
σ

)δ−1 Γ 3q−1
2

δ
3q−1

2

]
(9)

with δ ̸= 1, δ > 0 and 3δ − 1 > 0.

The appropriate expressions of Renyi, Havrad, and Chavrat and Tsallis entropies of X, simply
stated as functions of parameter σ, are represented by Equations (7), (8), and (9) respectively.

3. Entropy Estimation

Let X be a random variable with cdf and pdf equal to f(x;φ) and F(x;φ), respectively. We acquire n
values x1, x2, ..., xn based on n units under a given test, where n f and nm are the number of failed
and censored units, respectively. The Likelihood function for φ is as follows:

L(φ) = K
n

∏
i=1

[ f (xi; φ)]εi, f [1 − F(xi; φ)]εi,m (10)

where K is a constant.

εi, f =1 if the ith unit failed, and 0 otherwise (so ∑n
i=1 εi, f = n f )

εi,m=1 if the ith unit censored, and 0 otherwise (so ∑n
i=1 εi,m = nm).

By inserting (4) and (5) in (10), we can get the likelihood function of the IR distribution based on
multiple censored samples is given by

L(σ) = K
n

∏
i=1

[
2σ2

x3 exp
[
−
(σ

x

)2
]]εi, f [

1 − exp
[
−
(σ

x

)2
]]εi,m

(11)

The log-likelihood function is given by

log l(σ) = log K+ 2 ∑ εi, f log(σ2)−
n

∑
i=1

εi, f log(x3
i )−

n

∑
i=1

εi, f

(
σ

xi

)2
+

n

∑
i=1

εi,m log

[
1 − exp

(
− σ

xi

)2
]

The MlE is obtained by maximizing L(σ) with respect to σ, and is given by

∂log l(σ)
∂σ

=
2n f

σ2 .2σ −
n

∑
i=1

εi, f
2σ

x2
i
+

n

∑
i=1

εi,m

 1

1 − exp
(
− σ

xi

)2

[− exp
(
−σ

xi

)2
](

−2σ

x2
i

)

=
4n f

σ
−

n

∑
i=1

εi, f

(
2σ

x2
i

)
+

∑n
i=1 εi,m exp

(
−σ
xi

)2(
1 − exp

(
−σ
xi

)2
) .

(
2σ

x2
i

)
(12)

The above equation is in closed form therefore, cannot be solved manually. So the MLE estimate
of σ is obtained with the help of matlab.

On substituting the MLE of σ in (7), (8) and (9), estimates for the entropies Rδ(X; σ), HCδ(X; σ)
and Tδ(X; σ), are, respectively, given by

Rδ(X; σ) =
1

1 − δ
log

[
−
(

2
σ̂

)δ−1 Γ 3δ−1
2

δ
3δ−1

2

]
(13)

with δ ̸= 1, δ > 0 and 3δ − 1 > 0.
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HCδ(X; σ) =
1

21−δ − 1

[
−
(

2
σ̂

)δ−1 Γ 3q−1
2

δ
3q−1

2

− 1

]
(14)

with δ ̸= 1, δ > 0 and 3δ − 1 > 0.

Tδ(X; σ) =
1

δ − 1

[
1 +

(
2
σ̂

)δ−1 Γ 3q−1
2

δ
3q−1

2

]
(15)

with δ ̸= 1, δ > 0 and 3δ − 1 > 0.

Under sufficient regularity requirements, the MLE estimators are consistent and asymptotically
normal distributed for large sample sizes. At the confidence level 100(1-α) with α = (0, 1), the
estimated confidence interval for the Renyi entropy can be calculated as follows:

P

[
−z α

2
≤ R̂δ(X)− Rδ(X)

σR̂δ(X)

≤ z α
2

]
= 1 − α (16)

where z α
2

is 100(1 − α
2 ) the standard normal percentile and ν is the significant level. As a result,

approximate Renyi entropy confidence bounds can be determined, such that

P[R̂δ(X)− z α
2
σ
( ˆRδ(X))

≤ Rδ(X) ≤ R̂δ(X) + z α
2
σ
( ˆRδ(X))

] ∼= 1 − α (17)

where LH = R̂δ(X)− z α
2
σ
( ˆRδ(X))

, UH = R̂δ(X) + z α
2
σ
( ˆRδ(X))

are the lower and upper confidence
limits for Rδ(X) and σ is the standard deviation and α = 0.05, the approximate confidence limits
for Renyi entropy will be constructed with confidence levels 95%. A similar result holds for

ˆHCδ(X) and T̂δ(X) .

4. Simulation Study

The procedure adopted to examine the performance of the Proposed estimators given by (13), (14)
and (15) are as:

• 1000 random samples of sizes n = 50, 100, 150, 200, 300, 400 are obtained from the IR distribution
based on multiple censored samples, Using the method described in [16].

• The values of parameters are selected as δ = 0.4, 1.2, 1.5 and σ = 1.2. We chose CL = 0.5 and
0.7 at random for failures at the censoring level (CL).

• The estimated value for σ, true values for Rδ(X; σ), HCδ(X; σ) and Tδ(X; σ) are obtained by
(12), (7), (8) and (9), and the estimates R̂δ(X; σ), ĤCδ(X; σ) and T̂δ(X; σ) given by (13), (14)and
(15) are calculated, respectively.

• At last, the average of the derived estimates, MSEs, and ALs are computed with a threshold of
95% All the calculations are done by the use of the software Matlab and R. From the tables,the
following conclusions have been made:

• As the sample size grows, the bias and MSEs of entropy estimates fall.

• Additionally, as the sample size grows, the ALs of estimates diminish.

• As the sample size expands, the entropy estimations approach their true values.

• The MSE of entropy estimates at CL = 0.5 is usually less than the MSE of estimates at
CL = 0.7.

These findings demonstrate the high precision of our entropy estimates.
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Table 1: Renyi Entropy Estimates at CL=0.5(σ = 1.2, δ = 0.4)

n Actual Value Estimate Bias MSE AL
50 0.9930 1.1060 0.1130 6.33 ∗ e−05 0.0395

100 0.9089 0.0841 5.40 ∗ e−05 0.0190
150 0.9465 0.0495 4.71 ∗ e−05 0.0121
200 0.9506 0.0424 1.79 ∗ e−05 0.0079
300 0.9560 0.0370 4.56 ∗ e−06 0.0064
400 0.9943 0.0013 9.52 ∗ e−09 0.0047

Table 2: Renyi Entropy Estimates at CL=0.7(σ = 1.2, δ = 0.4)

n Actual Value Estimates Bias MSE AL
50 0.9930 0.8798 0.1132 3.19 ∗ e−04 0.0382

100 1.0934 0.1004 1.01 ∗ e−04 0.0219
150 1.0694 0.0764 3.19 ∗ e−04 0.0140
200 1.0533 0.0603 2.42 ∗ e−05 0.0099
300 0.9561 0.0369 1.95 ∗ e−05 0.0071
400 0.9864 0.0065 7.26 ∗ e−07 0.0044

Table 3: HC Entropy Estimates at CL=0.5(σ = 1.2, δ = 1.5)

n Actual Value Estimate Bias MSE AL
50 6.5486 6.0175 0.5311 0.0056 0.2407

100 6.0733 0.4753 0.0023 0.1215
150 6.2092 0.3394 7.67 ∗ −04 0.0828
200 6.3493 0.1993 1.98 ∗ e−04 0.0635
300 6.6832 0.1346 6.03 ∗ e−05 0.0446
400 6.5667 0.0181 8.16 ∗ e−07 0.0328

Table 4: HC Entropy Estimates at CL=0.7(σ = 1.2, δ = 1.5)

n Actual Value Estimate Bias MSE AL
50 6.5486 5.8458 0.7028 0.0099 0.2338

100 5.9364 0.6122 0.0037 0.1187
150 6.1541 0.3945 0.0010 0.0821
200 6.2186 0.3300 5.44 ∗ e−05 0.0622
300 6.4073 0.1413 6.65 ∗ e−05 0.0427
400 6.5249 0.0237 1.40 ∗ e−07 0.0326

Table 5: Tsallis Entropy Estimates at CL=0.5(σ = 1.2, δ = 1.2)

n Actual Value Estimate Bias MSE AL
50 11.9156 12.5135 0.5979 0.0036 0.4883

100 12.2072 0.2916 0.0017 0.2434
150 12.0878 0.1722 9.88 ∗ e−05 0.1607
200 12.0497 0.1341 1.19 ∗ e−05 0.1198
300 11.9792 0.0636 2.02 ∗ e−05 0.0806
400 11.9027 0.0130 4.19 ∗ e−07 0.0595
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Table 6: Tsallis Entropy Estimates at CL=0.7(σ = 1.2, δ = 1.2)

n Actual Value Estimate Bias MSE AL
50 11.9156 12.6254 0.7098 0.0101 0.5050

100 12.3534 0.4377 0.0019 0.2471
150 12.1353 0.2197 3.21 ∗ e−04 0.1618
200 12.0573 0.1417 1.00 ∗ e−04 0.1206
300 11.8533 0.0623 1.29 ∗ e−05 0.0790
400 11.9585 0.0429 4.60 ∗ e−07 0.0598
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Figure 1: (a) Bias of Renyi, Havrda and Charvat, Tsallis entropy at CL=0.5 and (b) Bias of Renyi, Havrda and Charvat,
Tsallis entropy at CL=0.7
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Figure 2: (a) Average Length of Renyi, Havrda and Charvat, Tsallis entropy at CL=0.5 and (b) Average Length of
Renyi, Havrda and Charvat, Tsallis entropy at CL=0.7
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Figure 3: (a) MSE of Renyi entropy at CL=0.5 and CL=0.7, (b) MSE of Havrda and Charvat entropy at CL=0.5 and
CL=0.7 and (c) MSE of Tsallis entropy at CL=0.5 and CL=0.7

5. Data Analysis

To demonstrate the effectiveness of our estimation methods, we utilize the dataset pertaining to
fatigue failure times of twenty-three ball bearings as documented in [8]. This dataset has been
extensively employed in various research investigations.
Dataset I: 0.1788, 0.2892, 0.3300, 0.4152, 0.4212, 0.4560, 0.4840, 0.5184, 0.5196, 0.5412, 0.5556, 0.6780,
0.6864, 0.6888, 0.8412, 0.9312, 0.9864, 1.0512, 1.0584, 1.2792, 1.2804, 1.7340. The Kolmogorov-Smirnov
(K-S) distance and its corresponding p-value for the actual dataset are calculated as 0.1440 and
0.6988 respectively. These values suggest that the observed dataset aligns well with the inverse
Rayleigh distribution. This assertion gains further validation through the visualization of the
empirical Cumulative Distribution Function (ECDF) plot, the quantile-quantile (Q-Q) plot, and
the Histogram, showcased in figures 4 and 5. Derived from the complete sample, the maximum
likelihood estimate of the parameter sigma is determined as 0.4681, with a standard error of
0.0499.
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Figure 4: (a) Ecdf plot for the dataset I (b) Q-Q plot for the dataset I
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Figure 5: Plot of the fitted density for dataset I

Dataset II: The second dataset, sourced from [9], encompasses monthly actual tax revenues in
Egypt spanning from January 2006 to November 2010. These data points are measured in 1000 mil-
lion Egyptian pounds and exhibit the following sequence: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2,
9.6, 13.3, 8.5, 21.6, 18.5, 5.1, 6.7, 17, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9, 16.7, 21.3,
35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8,
8.9, 7.1, 10.8. The Kolmogorov-Smirnov (K-S) distance and its corresponding p-value for this
dataset stand at 0.08219 and 0.8203, respectively. These results suggest a fitting match with the
inverse Rayleigh distribution. This assertion gains further support from the visual analyses,
including the Empirical CDF plot, Quantile-Quantile (Q-Q) plot, and Histogram are depicted in
figures 6 and 7. The maximum likelihood estimate for the parameter sigma, obtained from the
complete dataset is 9.3595, with a standard error of 0.6092. Table 7 and 8 present estimates for
different entropy measures in both datasets. These tables reveal as the parameter δ increases,
Renyi entropy demonstrates an ascending trend, whereas Tsallis and HC entropies exhibit a
descending trend with the increase of δ. Additionally, the estimates are notably influenced by the
level of censoring.
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Figure 6: (a) Ecdf plot for the dataset II (b) Q-Q plot for the dataset II

data

D
e
n
s
it
y

0 10 20 30 40

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

Figure 7: Plot of the fitted density for dataset II

Table 7: Estimated of Renyi entropy, Tsallis entropy and HC entropy at CL=0.5, 0.7 for Dataset I.

CL=0.5 CL=0.7
δ Rδ(X) Tδ(X) HCδ(X) Rδ(X) Tδ(X) HCδ(X)

1.2 -2.6986 13.5778 14.7472 -2.2308 12.8115 15.4360
2 -1.7333 6.6593 2.4727 -1.2654 4.5447 2.7547

Table 8: Estimated of Renyi entropy, Tsallis entropy and HC entropy at CL=0.5, 0.7 for Dataset II.

CL=0.5 CL=0.7
δ Rδ(X) HCδ(X) Tδ(X) Rδ(X) HCδ(X) Tδ(X)

1.2 0.3961 9.6191 20.7654 0.4187 9.5983 20.8244
2 1.3615 1.2562 12.4407 1.3841 1.2505 12.6790
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6. Conclusion

In this article, the Renyi, Havrda and Charvat, Tsallis entropies of the inverse Rayleigh distribution
are estimated using multiple censored data. Using maximum likelihood and plugging approach,
we present an efficient estimation strategy. The Renyi, Havrda and Charvat, and Tsallis entropies
estimates’ behaviour is measured in terms of mean squared errors and average lengths. According
to numerical results, the bias and mean squared errors of our estimators decreases as the sample
size grows. It’s also worth noting that as the sample size grows, the average length of our
estimators shrinks. As a result, the proposed estimates show to be efficient, giving new valuable
tools with potential relevance in a wide range of applications involving the inverse Rayleigh
distribution’s entropy. The paper concludes with an applications to a real-world data sets. In
upcoming research endeavors, one could explore the assessment of entropies using both Bayesian
and E-Bayesian methodologies across various censoring scenarios.
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Abstract

In 2002, the Working Vacation (WV) queues were implemented as an extension of standard
queueing models with vacations. During the vacation period in WV queues, the server provides service
at a slower pace as opposed to the typical busy period.The objective of this survey is to provide a
concise overview of the latest scholarly investigations on queueing models for WVs. The concept of
a queue with WV has been implemented across various domains, encompassing computer systems,
communication networks, production management, computer communication, manufacturing, and
inventory systems. Additionally, it has been applied to network service, web service, file transfer
service, and mail service.

Keywords:
Working Vacation Queue(WVQ), M/M/1 and M/G/1 queue, GI/M/1 and GI/G/1 queue,
Retrial queue, Discrete time Geo/G/1 queue, Multi-server queue, M[X]/M/1 -Batch arrival
queue, MAP queue.

1. Introduction

In the realm of service industries like healthcare and manufacturing, as well as computer
systems, the queueing model plays a vital role. This mathematical concept, known as queuing
theory, finds applications in predicting queue lengths and waiting durations when different
types of customers are served by distinct servers following various queue disciplines.

One interesting aspect of queueing systems is the idea of a "working vacation" (WV).
Traditionally, when there are no customers or the server experiences a failure, the system goes
on vacation, and the server stops serving customers entirely. However, a WV introduces a
more efficient approach where the server continues working with different service rates during
vacation times, rather than coming to a complete halt. This way, the server can make better use
of its idle time. Model for WV is shown in 1.

Our focus in this review paper is on the literature surrounding WV models. The idea of
vacation, which involves utilising the idle time of a server for additional work in a secondary
system, was first introduced by Levy and Yechiali in 1975 [36]. Subsequently, the concept of
a WV was afterwards introduced by Servi and Finn [63]. Over the last three decades, WV
queueing models have emerged as a prominent subject of interest within the field of queuing
theory.

The objective of this paper is to present a comprehensive overview of the progress achieved
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in the examination of arrival and service operations in diverse WV models. We’ll explore the
application of WVs in the M/M/1 and M/G/1 queueing models in Section 2, while Section
3 will delve into the models for the GI/M/1 and GI/G/1 queues with WVs. Furthermore,
Section 4 will cover recent research on retrial queueing models incorporating WVs. Finally, in
Section 5, we’ll discuss some of the most recent developments in WV models. The paper will
conclude in Section 6, summarizing the key findings and offering concluding remarks to aid
readers in understanding the field of WVQ.

Figure 1: Queueing Syetem with Working Vacation

2. An M/M/1 and M/G/1 Queue Models with Working vacations

The concept of vacations in queueing models was first e xplored by L evy a nd Yechiali [36]. 
They utilized decomposition results to derive the optimal vacation size. Servi and Finn [63] 
introduced a semi-vacation policy and derived an M/M/1 queue with multiple WVs (MWV). 
They also provided explicit formulas for average, variance, and distribution of time and number 
of customers in the system. Wu and Takagi [78] extended Servi and Finn’s [63] M/M/1 model 
to an M/G/1/WV model, considering general distributions for both service times and WVs. 
They further obtained the Laplace-Stieltjes Transform (LST) for the distribution of vacation 
sizes.

Numerous studies followed, exploring different aspects of WV models. Liu et al. [50] 
analyzed the stochastic decomposition structures of the number of customers and sojourn time 
in M/M/1/WV queues. Zhang and Xu [89] investigated an M/M/1 queue with MWV and 
N-policy. Li et al. [39] studied an M/G/1 queue with exponential WVs using matrix analytic 
methods. Xu et al. [80] examined M/M/1 queue with SWV, utilizing quasi birth and death 
(QBD) process and matrix-geometric solution (MGS) method.

The research expanded to consider various scenarios, such as server breakdowns and 
disasters. Kim et al. [30] explored the M/G/1 queue with disasters and working breakdown 
services. Additionally, WV models were studied with different impatient behaviors, multiple 
types of WVs, and variant service interruptions [83, 66, 76].

Vacation interruption (VI) models emerged, where vacation and VI are interconnected, and 
the server may interrupt vacation based on specific system i ndices. Jihong Li and Naishuo Tian 
[41] introduced VI, analyzing the M/M/1 queue using QBD process and MGS method. Zhang 
and Hou [84] extended this to an M/G/1 queue with WV and VI, obtaining queue length
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distribution and service status.
The integration of WVs and service interruption due to server breakdowns added strength 

to queueing models. Various analytical methods, such as generating functions, were employed 
[24, 14, 35, 88]. Imbalanced behavior of servers was also considered [51, 40, 21, 17].

Overall, extensive research has been conducted to understand the dynamics of queueing 
models with WVs and vacation interruptions, offering valuable insights into optimizing system 
performance and resource utilization.

3. An GI/M/1 and GI/G/1 Queue Models with Working vacations

In the context of general input (GI) queue models with WVs (WV), several studies have been con-
ducted. Baba [5] explored a GI/M/1 queue with WV, extending Servi and Finn’s M/M/1/WV 
system to a GI/M/1/WV model. Building on this, Banik et al. [7] analyzed the GI/M/1/N 
queue with a MWV policy. Li and Tian [42] delved into the details of a GI/M/1 queue with 
SWV, where the server can continue working at a reduced rate during the vacation period.

Zhang and Hou [86] studied the GI/M/1/N queue with a variant of MWV and obtained 
the queue length distribution at different time periods using the supplementary variable tech-
nique (SVT) and embedded Markov chain (EMC) method. Goswami et al. [19] developed the 
GI/M(n)/1 queue model with finite b uffer, considering s tate-dependent services and state-
dependent MWV. Vijayalaxmi et al. [34] focused on a limited buffer come-back arrival single 
server queueing system with multiple state-dependent exponential WV.

Ye and Liu [82] presented the GI/M/1 queue with SWV and derived the stationary distribu-
tion of the system size at arrival time using the matrix-geometric solution (MGS) method. They 
also found the stationary distribution of the system size at arbitrary time using the semi-Markov 
process (SMP) method. Panda et al. [56] explored an infinite buffer come-back arrival queue 
with MWV policy, considering general bulk service (a,b)-rule.

In the context of general input and vacation interruption models, where the server goes on 
vacation when there are no customers, several studies have been conducted. Li and Tian [38] 
presented WV and VI in a discrete-time GI/Geo/1 queue using the MGS approach. Ji-hong 
et al. [25] studied a GI/M/1 queue with WVs and vacation interruptions. Zhao et al. [90] 
introduced setup time with VI policy and investigated a single server general input queue with 
set-up period, WV, and VI, obtaining the distribution of the number of customers in the system 
and waiting time.

Chen et al. [11] analyzed PH (Phase-type) WVs and vacation interruptions in GI/M/1 
queues. They obtained steady-state distributions for the queue length and waiting time of 
customers and revealed stochastic decomposition structures of the queue length and waiting 
time using the method of matrix analytic method (MAM).

Li et al. [68] considered Bernoulli schedule rule and studied the start-up period, SWV, and 
vacation interruption in the GI/M/1 queue. Goswami and Mund [18] dealt with impatient 
customers in a single server renewal arrival batch service queue with MWV and balking. They 
determined the probability distribution of queue length at pre-arrival epoch using the EMC 
method.

4. Retrial Queue Models with Working Vacations

Retrial queues are mathematical models used in queueing theory to describe systems with finite 
capacity where arriving jobs that find the system busy will wait for a while before attempting 
to enter again. Which is shown in Fig. 2. Such systems can be found in various real-world 
scenarios like restaurant reservations, telecommunication networks, and packet switching 
networks. Recently, the combination of retrial queues with WVs (WV) has become a subject of 
thorough investigation.
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Studies have been conducted on different types of retrial queues incorporating WVs. For
instance, T. Van Do [74] analyzed the stability of the M/M/1 retrial queue with WV. Tao et al.
[69] used the matrix analytic method to propose conditions for stability in the M/M/1 retrial
queue with WV interruption under N-policy. Several researchers, such as Li et al. [45], Gao et
al. [16], and Aissani et al. [2], explored various aspects of single server retrial queues with WVs
and vacation interruptions. Further research delved into specific aspects of retrial queues with

Figure 2: Retrial Queueing Model with Working Vacation

WV. For example, Upadhyaya [73] examined a discrete-time Geo[X]/Geo/1 retrial queue with 
WV and derived various performance measures using the matrix-geometric method. Rajadurai 
et al. [61, 60] addressed RQ systems with general retrial times, feedback, balking, multiple 
WVs, and vacation interruptions using the supplementary variable technique.

Other studies considered specific features of retrial queues, such as starting failure, preemp-
tive priority, balking customers, and Bernoulli feedback, in the presence of WVs and vacation 
interruptions [20, 59, 43, 46]. The effects of bulk arrivals, constant retrial rates, and socially 
optimal balking strategies were also investigated [53, 54, 12].

In conclusion, the combination of retrial queues with WVs has attracted significant attention 
in recent research, leading to a better understanding of system behaviors and performance 
measures in various queueing scenarios.

5. Other Working Vacation Models

5.1. Discrete time Queue Models with Working Vacations

Discrete-time (DT) queues with vacations have been extensively investigated by various 
researchers, owing to their wide range of applications in digital communication systems and 
telecommunication networks, such as B-ISDN, ATM, and related technologies.
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Li [37] studied a discrete-time Geo/G/1 queueing system with multiple WVs, where the 
server operates at a reduced rate during vacation periods. Li and Tian [38] introduced a discrete-
time queue model, where customer arrivals and service completions occur at discrete-time 
instants, in the GI/Geo/1 framework. Li and Zhang [44] examined a discrete-time Geo/Geo/1 
queue with server breakdowns and repairs. Yang et al. [81] investigated the equilibrium 
joining/balking behavior in the discrete-time Geo/Geo/1 queuing model with multiple WVs.

5.2. Multi Server Queue Models with Working Vacations

Krishnamoorthy and Shreenivasan [31] investigated a two-server M/M/2 queueing system, 
where one server remains idle while the other goes on vacation if there are no customers waiting 
for service. Vijayashree and Janani [77] conducted a transient analysis of an M/M/c queue 
subjected to multiple exponential WVs.

Bouchentouf et al. [9] studied a heterogeneous two-server queuing system with Bernoulli 
feedback and multiple WVs, considering impatient customers. They obtained performance 
measures and the steady-state probability of the queueing model. Sharma and Kumar [64] 
analyzed a multi-server queuing system with essential two-phase repair and multiple WVs. 
They employed the Runge-Kutta method to find the time-dependent probability.

5.3. Batch Arrival Queue Models with Working Vacations

Xu et al. [79] examined a batch arrival M[X]/M/1 queue with single working vacation 
(SWV), using the matrix analytic method (MAM) to derive the probability generating function 
(PGF) of the stationary system length. Baba [6] investigated a batch arrival M[X]/M/1 queue 
with multiple working vacations (MWV) and obtained the exact Laplace-Stieltjes Transform 
(LST) of the stationary waiting time distribution.

Gao and Yao [15] demonstrated a batch arrival M[X]/G/1 queue with randomized WVs, 
allowing for at most J vacations. Laxmi and Rajesh [32] extended Baba’s work [6] by incorpo-
rating the concept of variant WVs. They analyzed a single-server batch arrival infinite-buffer 
queueing system with various types of WVs. Laxmi and Rajesh [33] further expanded on their 
previous research and explored the effects of different WVs on a batch arrival queue with 
reneging and server breakdowns.

Thangaraj and Rajendran [70] discussed a batch arrival queueing system with two types of 
service and vacations. Niranjan et al. [55] analyzed a bulk arrival queueing model with batch 
size-dependent service and WVs.

5.4. Markovian Arrival Process Queue Models With Working Vacations

AThe Markov Arrival Process (MAP) system represents another significant advancement in 
the research of WV models. Zhang and Hou [85] conducted a study on a MAP/G/1 queue 
with N-policy WVs and vacation interruptions. They successfully determined the distribution 
of the system size at the pre-arrival epoch and the Laplace-Stieltjes Transform (LST) of waiting 
time using the supplementary variable technique (SVT) and matrix analytic method (MAM).

Sreenivasan et al. [65] expanded on the work of Li and Tian [41] by incorporating MAP 
arrivals, Phase-type (PH) services, and N-policy vacation queue models. Liu et al. [49] 
examined a cold standby repairable system with WVs and interruptions, utilizing the MAP 
arrival queueing model. Chakravarthy and Kulshrestha [10] investigated the MAP/PH/1 type 
queueing model with WVs, server breakdowns, and repairs.
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6. Conclusion

In conclusion, this survey provides an in-depth exploration of the development of working va-
cation (WV) queueing models from their early stages to the present. The pioneering researchers
who have contributed to the field of WV queueing policies are presented. Readers gain a
comprehensive understanding of the current state of WV queueing models through this survey.
A wide array of research papers have been reviewed, and proper citations have been included.

This survey offers readers a holistic view of the diverse applications of WV queueing models
in various scenarios. It highlights the significance of WV models in predicting queue lengths,
waiting durations, and other essential performance measures in queueing systems.
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Abstract 

In this study, we present the Bayesian estimates of the unknown parameters of the Topp-Leone 

Lindley distribution using the maximum likelihood and Bayesian methods. In this study, the Bayes 

theorem was adopted for obtaining the posterior distribution of the shape parameter and scale 

parameter of the Topp-Leone Lindley distribution assuming the Jeffreys’ (non-informative) prior for 

the shape parameter and the Gamma (conjugate) prior for the scale parameter under three different 

loss functions namely: Square Error Loss Function, Linear Exponential Loss Function and 

Generalized Entropy Loss Function. The posterior distribution derived for both parameters are not 

solvable analytically, it requires a numerical approximation techniques to obtain the solution. The 

Lindley approximation techniques was adopted to obtain the parameters of interest. The loss function 

were used to derive the estimates of both parameters with an assumption that the both parameters 

are unknown and independent. To ascertain the accuracy of these estimators, the proposed Bayesian 

estimators under different loss functions are compared with the corresponding maximum likelihood 

estimator using a Monte Carlo simulation on the performance of these estimators according to the 

mean square error and BIAS based on simulated samples simulated from the Topp-Leone Lindley 

distribution. . It was also observed for any fixed value of the parameters, as sample size increases, the 

mean square errors of the Bayesian Estimates and maximum likelihood estimates decrease. Also, the 

maximum likelihood estimates and Bayesian estimates converge to the same value as the sample gets 

larger except for Generalized Entropy Loss Function. 

Keywords: Bayesian estimation, Prior Distribution, Loss Functions, Lindley’s 

Approximation, Topp-Leone Lindley distribution 

1. INTRODUCTION

Topp and Leone [1] introduced a distribution with finite support whose cumulative distribution 

function (cdf) has a closed form-expression called the Topp-Leone (the J-Shaped) distribution. This 

distribution has been used to model several phenomenon representing the time until the occurrence 

of a particular event. Data from such studies are called the survival data or lifetime data. Nadarajah 

and Kotz [2] studied and disclosed the usefulness of the Topp-Leone distribution in the analysis of 

interval-bounded data. In their study of the mathematical properties, it was observed that the Topp-

Leone distribution exhibit bathtub failure rate functions and the closed form of the moments 

werederived, which disclosed the wide range of its applications in reliability study. The disclosure 
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of the important properties of the Topp-Leone distribution by Nadarajah and Kotz [2] has attracted 

the interest of authors which is evident in statistical literature. For instance, see the work of Ghitany 

et al [3], Zhou et al [4], Kotz and Seier [5], Nadarajah [6], Zghoul [7], amongst others.The cumulative 

frequency distribution (cdf) and probability density function (pdf) of the Topp-Leone (TL) 

distribution  are respectively given as 

        2
1122)( ttttttG  , 0,10  t (1) 

and 
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The TL distribution is on a unit interval support  1,0 ; this means that it cannot be used in the analysis 

of survival data, which are not on a unit interval support. To overcome this setback, Al-Shomrani et 

al [8] presented the Topp-Leone generated family of distribution with cdf and pdf given as 
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Where  ;xf ,  ;xF and  ;xF  are respectively the pdf, cdf and survival functions of the 

baseline distribution and   is the vector of parameters of the baseline distribution. Nzei and 

Ekhosuehi [9] used the logit of the TL-G family to presented the Topp-Leone Lindley (TL-L) 

distribution withthe probability density function (pdf) and the cumulative distribution function 

(cdf) for the Topp-Leone Lindley (TL-L) distribution respectively expressed as; 
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The Reliability (survival) function of the TL-L distribution is given as 
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In addition, the corresponding hazard rate function of the TL-L distributionis expressed as 
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The CDF, pdf and hazard rate function of the TL-L distribution are shown in Figure (1), (2) and (3) 

respectively for different values of the parameters   and  .  

The aim of this study is to obtainthe Bayesian estimates of the parameters   and   for TL-L 

distribution under different loss functions. The Bayesian framework is considered under the square 

errorloss function (SELF) presented by Legendre [10] and Gauss [11], linear exponential (LINEX) 

loss function presented by Varian [12] and general entropy loss function (GELF) presented by 

Calabria and Pulcini [13] to obtain the Bayes estimators of the unknown parameters   and  . 
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2. THE MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Let niix ,,3,2,1,  be a random sample from the TL-L distribution, then the maximum

likelihood function of (5) denoted by  ,xL is defined as: 
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and the log-likelihood function denoted by   ,,xn  is given as
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Figure 1: The CDF of TL-L Distribution Figure 2: The PDF of TL-L Distribution 

Figure 3: The HRF of TL-L Distribution 
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To obtain the MLEs of the TL-L, we solve the equations of the partial derivatives of the log-likelihood 

function with respect to the parameters 0





n and 0






n . These partial derivatives with respect

to the parameters   and    are:
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The solution of 0






n , is the MLE of ̂  which given as 
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By replacing   (12) in 0






n  with estimate in (13), we have expression in terms of the parameter 

 as
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Obviously, (14) is a complex equation, which cannot be solved analytically. Hence, solving (12) and 

(13) simultaneously to obtain the maximum likelihood estimates of   and   requires iterative

approach such as Newton-Raphson iterative scheme as presented by Obisesan et al [14] and Bakari

et al [15] amongst others. This Newton-Raphson method can be performed with R-Software package.

3. BAYESIAN ESTIMATION (BE)

The main belief of Bayesian statistics that distinguishes it from the classical statistics is that it 

consider the parameter(s) of the given model to be random variables with prior distribution denoted 

by    .In this Section, we discuss the Bayesian estimates for the parameters of the TL-L distribution 

using the Jeffreys’ (non-nformative) prior for   and the Gamma (conjugate) prior for  under some 

loss functions namely; squared error loss function (SELF), linear exponential loss function (LINEX) 

andgeneral entropy loss function (GELF). We discuss these loss functions and the priorsbriefly as 

follows: 

3.1 The Square Error Loss Function (SELF) 

The square error loss function, which is the simplest and the most commonly used symmetric loss 

function in the literature by authors, see Rastogi and Merovci [16] and Sangeeta et al [17] amongst 

others. It isdefined as  

   2ˆ,ˆ SELFL (15)
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The Bayesian estimate under SELF is   xEBSELF |ˆ  .  

This is the expectation considered with regard to the posterior density. SELF assigns the same 

magnitude of error to both over estimation and under estimation because of its symmetric nature, 

which is not always true in many practical scenario Kaur et al. [18]. 

3.2 The Linear Exponential Loss Function (LINEX) 

Varian [23] presented an asymmetric loss function defined as 

  1)ˆ(
)ˆ(

,ˆ 


 m
m

eLINEXL (16) 

Where 0m  is the shape parameter of the LINEX loss function. Zellner[19] studied the properties 

of this loss function and showed that for 0m , over estimation is more costly than under estimation. 

When 0m , the loss function increases almost exponentially for 0d  and almost linearly for 0d

, where  ˆd . The Bayesian estimate under the LINEX loss function is given as

  xmeE
mBLINEX |ln
1ˆ 

 (17) 

3.3 The General Entropy Loss Function (GELF) 

The general entropy loss function (GELF) was proposed by Calabria and Pulcini [13] as an 

alternative to the modified LINEX loss function and it is defined as 
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GELFL (18) 

Where 0k  and it determines the shape of the loss function. When 0k , it shows there is more of 

under estimation than over estimation. On the other hand, when 0k shows more of over 

estimation than under estimation. The Bayes estimate of  under the general entropy loss function 

is given as  

kxkEBGELF

1

|ˆ













  (19) 

It is important to note that for 1k , SELFGELF  ˆˆ i.e. the general entropy loss function

reduces to the square error loss function at 1k . 

3.4 Prior Distributions: 

The choice of prior distribution for an unknown parameter(s) is an important part of Bayesian 

statistics. For the Bayes estimate of the parameters  and , we consider the Jeffreys’ (non-

informative) prior for   and the Gamma (conjugate) prior for . Then the prior distributions are 

defined below as: 

    I1 (20) 

Where  

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
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2

2
nEI


which is the Fisher’s Information. For the TL-L distribution, the Jeffreys’ 

prior of   is defined as

 

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1
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and 
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The joint prior distribution of the parameters   and is defined as a combination of the priors as 
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, (23) 

3.5 Posterior Distribution 

The posterior distribution function of an unknown probability distribution parameter   is the 

formula used to compute the conditional probability density of the distribution parameter   given 

the data xX  through the Bayes formula defined as
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| (24) 

Where the prior distribution of the unknown parameter is   ,  |xL  is the likelihood function 

of the density of X and   is vector of the unknown parameter. Then the posterior distribution of 

the TL-L distribution parameters and   is obtained by substituting (9) and (23) into (24) to be 
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Obviously, the posterior distribution in (25) for the estimation of TL-L parameters,  and  is in a 

rational form which cannot be reduced to a closed form, making tedious to evaluate the posterior 

distribution in order to obtain the Baye’s estimators. However, one can used the approach developed 

by Lindley [20], to approximate these Bayes estimators. 

3.6 Lindley’s Approximation 

Lindley [20] developed a method for reducing the posterior distribution in Bayesian estimation, 

which involves integral that can’t be expressed in closed form. This method provides a simplified 

form of Bayesian estimator, which makes it easier to apply in practice. Several authors have used 

the Lindley approximation to obtain the Bayes estimate for some lifetime distribution in the 

literature; amongst whom are Hummara and Ahmad [21], Adegoke et al ([22], [23]), Kamran et al 

[24], Bashiru et al [25], etc. Lindley developed an asymptotic approximation to the ratio  
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Where   ,Z is a function of the distribution parameter and ,  ,L is the log-likelihood

function and  ,U  is the log of the prior distribution function   , . Therefore,  XI  is

evaluated as  
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1
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1
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Therefore, for an unknown parameter , the Lindley approximation is can be expressed as 
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2
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Similarly, for an unknown parameter , the Lindley approximation is can be expressed as 
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Where the elements of the Lindley approximation in (27 - 29) are as given below 
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3.7 Lindley Approximation under the Different Loss Functions 

In this section, we consider the Bayes estimators of the TL-L parameters  and  are obtained 

assuming that both  and   are unknown, using the prior in (23) under three different loss 

functions: 

3.7.1 Under Squared Error Entropy Loss Function 

a) For the parameter  , it can be seen from the SELF estimator that    ,Z , then 11Z , 

and 022112  ZZZ , we have
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b) For the parameter  , it can be seen from the SELF estimator that    ,Z , then 12 Z , 

and 022111  ZZZ , we have
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3.7.2 Under LINEX Loss Function 

a) For the parameter  , it can be seen from the LINEX estimator that   
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b) For the parameter  , it can be seen from the LINEX estimator that   
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3.7.3 Under GELF Loss Function 
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4. NUMERICAL ANALYSIS

4.1 Monte Carlo Simulation Study 

In this section, a Monte Carlo simulation studywas carried out with R Statistical software to 

compare the performance and accuracy of the proposed Bayesian estimators and their maximum 

likelihood estimates counterpart of TL-L distribution parameters and   by using mean square 

Errors (MSE) and the BIAS given as: 

 



N

iN
MSE

1

2ˆ1

and 





N

iN
BIAS

1

ˆ1

Where N is the number of samples. In each simulation, we generate N=10,000 samples of size 

1000,500,200,100,50,30n  from TL-L distribution for some sets of parameter values

5.2,2,6.1,84.0 and 5.2,2,5.0 . We assume that p takes the values 10,8,5,2p ; q takes the

values 12,5,2,1q ; m takes the values 15,8,6,1m and c takes the values
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75.065.0,5.0,25.0 c . These results presented in Tables 1- 4 below showed the mean, MSE’s 

and bias for estimating the parameters and  . 

From the results of the simulation study in Table 1 – 4, we summarize our observations as follows:

i. For any fixed values of the parameters  and  , as sample size increases, the MSEs of all

the estimators, both MLEs and Bayesian Estimates decrease.

ii. The values of the hyper parameters from the prior distribution have minimal effect on the

posterior estimates.

iii. Generally, the terms of MSEs of the MLEs and Bayesian estimates converge to the same

value as for the large sample except for GELF.

4.2 Real Data Analysis 

This section present the application of TLL distribution to real data set. This data set represent 66 

breaking stress of carbon fibers (in Gba) which was reported in Nicholas and Padgett [26]. 

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 

2.41, 3.19,  3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 

3.22, 3.39, 2.81, 4.20,  3.33, 2.55, 3.31, 3.31, 2.85, 1.25, 4.38, 1.84, 

0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.89, 2.88, 2.82, 2.05, 

3.65, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.35, 2.55, 2.59, 2.03, 1.61, 

2.12, 3.15, 1.08, 2.56, 1.80, 2.53 

Table 1: Showing mean of ML and Bayesian estimates with corresponding MSEs and Bias for 2 (while

75.0,1,1,2  cmqp ) 

 

n Method MEAN MSE BIAS MEAN MSE BIAS 

ML 2.563265 0.317267 0.563265 2.155780 0.024267 0.155780 

30 LINEX 2.563265 0.317267 0.563265 2.156686 0.024550 0.156686 

GELF 2.019669 0.000386 0.019669 1.656376 0.118120 0.343623 

SELF 2.559342 0.312864 0.559342 2.156988 0.024645 0.156988 

ML 2.485253 0.235470 0.485253 2.125277 0.015694 0.125277 

50 LINEX 2.485253 0.235470 0.485253 2.130306 0.017000 0.130306 

GELF 1.965990 0.001156 0.034009 1.686560 0.098244 0.313439 

SELF 2.473202 0.223021 0.473202 2.131028 0.017197 0.131028 

ML 2.219903 0.048357 0.219903 2.067709 0.004585 0.0677091 

100 LINEX 2.219903 0.048357 0.219903 2.066873 0.004473 0.066873 

GELF 1.817202 0.033414 0.182797 1.692596 0.094496 0.307403 

SELF 2.218925 0.047928 0.218925 2.066875 0.004473 0.066875 

ML 2.194559 0.037853 0.194559 1.940733 0.003512 0.059266 

200 LINEX 2.194559 0.037853 0.194559 1.959422 0.001751 0.040577 

GELF 1.798195 0.040554 0.201380 1.723795 0.076289 0.276204 

SELF 2.190094 0.036136 0.190094 1.959858 0.001720 0.040141 

ML 1.926363 0.005422 0.073636 2.017662 0.000311 0.017662 

500 LINEX 1.926363 0.005422 0.073636 2.017107 0.000292 0.017107 

GELF 1.634335 0.133710 0.365665 1.763728 0.055834 0.236271 

SELF 1.925588 0.005537 0.074411 2.017155 0.000294 0.017155 

ML 1.975739 0.000588 0.024260 2.010489 0.000110 0.010489 

1000 LINEX 1.975739 0.000588 0.024260 2.007554 0.000057 0.007553 

GELF 1.666054 0.111519 0.333945 1.779841 0.048469 0.220158 

SELF 1.975331 0.000608 .024668 2.007565 0.000057 0.007565 

RT&A, No 1 (77)
 Volume 19, March 2024

60



Nzei C. L, Adegoke M. T, Ekhosuehi N., Mbegbu, I. J 
BAYESIAN ESTIMATION OF TLL DISTRIBUTION PARAMETERS 

Table 2: Showing mean of ML and Bayesian estimates with corresponding MSEs and Bias for 5.2 (while

5.0,8,2,5  kmqp ) 

 

N Method MEAN MSE BIAS MEAN MSE BIAS 

ML 3.200958 0.491343 0.700958 2.746747 0.060884 0.246747 

30 LINEX 3.200958 0.491343 0.700958 2.746587 0.060805 0.246587 

GELF 0.318750 4.757852 2.181250 0.364048 4.562259 2.135951 

SELF 3.199980 0.489972 0.699980 2.746916 0.060967 0.246961 

ML 3.103670 0.364418 0.603670 2.733993 0.054753 0.233993 

50 LINEX 3.103670 0.364418 0.603670 2.734001 0.054756 0.234001 

GELF 1.753758 0.556876 0.746241 0.365735 4.555087 2.134265 

SELF 3.101468 0.361764 0.601468 2.734241 0.054486 0.234241 

ML 2.775719 0.076021 0.275719 2.659853 0.025531 0.159853 

100 LINEX 2.775719 0.076021 0.275719 2.659853 0.025531 0.159853 

GELF 0.362098 4.570621 2.137901 1.630771 0.755558 0.869228 

SELF 2.775484 0.075891 0.275484 2.659435 0.025420 0.159435 

ML 2.749392 0.062196 0.249392 2.463737 0.001314 0.036262 

200 LINEX 2.749392 0.062196 0.249392 2.463329 0.001344 0.036670 

GELF 0.367475 4.547659 2.132524 0.405834 4.385529 2.094165 

SELF 2.748470 0.061737 0.248470 2.464147 0.001285 0.035858 

ML 2.411848 0.007770 0.088151 2.516045 0.000257 0.016045 

500 LINEX 2.411848 0.007770 0.088151 2.515688 0.000246 0.015688 

GELF 0.415480 4.345220 2,084519 0.397501 4.420501 2.102498 

SELF 2.411668 0.007803 0.088338 2.515719 0.000247 0.015719 

ML 2.472058 0.000780 0.027941 2.512703 0.000161 0.012703 

1000 LINEX 2.472058 0.000780 0.027941 2.512889 0.000166 0.012889 

GELF o.404940 4.389274 2.095059 0.397943 4.418641 2.102056 

SELF 2.471967 0.000785 0.028032 2.512922 0.000166 0.012922 

Table 3: Showing mean of ML and Bayesian estimates with corresponding MSEs and Bias for 5.0 and 6.1

(while 25.0,15,5,10  cmqp ) 

 

n Method MEAN MSE BIAS MEAN MSE BIAS 

ML 0.482010 1.249900 1.117989 1.725412 1.501634 1.225412 

30 LINEX 0.482010 1.249900 1.117989 1.725519 1.501897 1.225519 

GELF 0.833072 0.588178 0.766927 1.146106 0.417453 0.646106 

SELF 0.482010 1.249900 1.117989 1.602093 1.221410 1.102093 

ML 0.494062 1.223098 1.105937 1.700421 1.441010 1.200421 

50 LINEX 0.494062 1.223098 1.105937 1.701528 1.443671 1.201528 

GELF 0.838310 0.580171 0.761689 1.141972 0.412128 0.641972 

SELF 0.494062 1.223098 1.105937 1.700645 1.441547 1.200645 

ML 0.547370 1.108029 1.052629 1.654412 1.332668 1.154412 

100 LINEX 0.547370 1.108029 1.052629 1.624175 1.264541 1.124175 

GELF 0.859336 0.548582 0.74663 1.127087 0.393238 0.627087 

SELF 0.547371 1.108026 1.052628 1.553157 1.109139 1.053157 

ML 0.553372 1.095429 1.046627 1.613726 1.240386 1.113726 

200 LINEX 0.553372 1.095429 1.046627 1.613730 1.240395 1.113730 

GELF 0.862086 0.544517 0.737914 1.126783 0.391974 0.626078 

SELF 0.553371 1.095430 1.046628 1.725438 1.501699 1.225438 
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ML 0.616878 0.966528 0.983122 1.607956 1.227566 1.107956 

500 LINEX 0.616878 0.966528 0.983122 1.607959 1.227574 1.107959 

GELF 0.888384 0.506396 0.711615 1.125163 0.391029 0.625163 

SELF 0.630569 0.939795 0.969430 1.613727 1.240389 1.113727 

ML 0.635364 0.903520 0.964635 1.553046 1.108906 1.053046 

1000 LINEX 0.635364 0.903520 0.964635 1.553455 1.109767 1.053455 

GELF 0.891125 0.502502 0.708874 1.116361 0.3799015 0.616361 

SELF 0.635354 0.930540 0.964645 1.607957 1.227568 1.107957 

Table 4: Showing mean of ML and Bayesian estimates with corresponding MSEs and Bias for 2 and 84.0

(while 65.0,8,12,5  cmqp ) 

 

n Method MEAN MSE BIAS MEAN MSE BIAS 

ML 2.631936 3.211034 1.791936 0.767969 1.517899 1.232030 

30 LINEX 2.631936 3.211034 1.791936 0.738588 1.591409 1.261411 

GELF 1.764271 0.854281 0.924271 0.820932 1.390366 1.179068 

SELF 2.408270 2.459486 1.568270 0.738978 1.592766 1.261921 

ML 2.553476 2.936002 1.713476 0.781702 1.484247 1.218297 

50 LINEX 2.553476 2.936002 1.713476 0.766525 1.521766 1.233474 

GELF 1.826392 0.972970 0.986392 0.841222 1.342981 1.158778 

SELF 2.543565 2.871552 1.694565 0.766439 1.522096 1.233560 

ML 2.231311 1.935746 1.391311 0.787585 0.469048 1.212414 

100 LINEX 2.231311 1.935746 1.391311 0.804772 1.429149 1.195227 

GELF 1.634268 0.630865 0.794268 0.885795 1.341462 1.114206 

SELF 2.132726 1.671155 1.292726 0.829791 1.369402 1.170208 

ML 2.170852 1.771167 1.330852 0.8445506 1.335063 1.155449 

200 LINEX 2.170852 1.771167 1.330852 0.829822 1.369314 1.170177 

GELF 1.676593 0.699902 0.83659 0.866981 1.283888 1.133019 

SELF 2.216419 1.894586 1.376419 0.802809 1.433578 1.197190 

ML 1.895829 1.114774 1.055829 0.854625 1.311883 1.145374 

500 LINEX 1.895829 1.114774 1.055829 0.826858 1.376269 1.173141 

GELF 1.546722 0.499456 0.706722 0.887273 1.238159 1.112726 

SELF 1.956499 1.246570 1.116499 0.831958 1.364320 1.168041 

ML 1.958634 1.251342 1.118634 0.855785 1.309226 1.144214 

1000 LINEX 1.958634 1.251342 1.118634 0.902505 1.206101 1.097494 

GELF 1.512338 0.452302 0.672533 0.942452 1.118742 1.057547 

SELF 1.890693 1.103958 1.050693 0.912619 1.183110 1.087380 

Table 5: The Point Estimates of Topp-Leone Lindley distribution parameters through MLE, LINEX, GELF and SELF 

75.0,5,4,6  kmqp  

Parameters MLE LINEX GELF SELF 

 0.7128402 0.7128402 0.7768919 0.7128402 

 6.339166 6.339166 3.995067 6.339166 
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5. CONCLUSION

In estimating the parameters of probability distribution in survival analysis, Bayesian mechanism 

examines the nature uncertainty and provide a judicious framework for studying such problems. In 

this study, we considered the Bayesian Estimation (BE) for the Topp-Leone distribution parameters. 

The BEs were obtained using Lindley's approximation under three different loss functions, which 

includes Square Error Loss Function (SELF), Linear Exponential Loss Function (LINEX) and 

Generalized Entropy Loss Function (GELF). Monte Carlo simulation was carried out to examine the 

behavior of the maximum likelihood (ML) and Bayesian Estimators, which was investigated through 

the mean square error (MSE) and bias of the estimators. It was also observed for any fixed value of 

the parameters, as sample size increases, the MSEs of the Bayesian Estimates and MLEs decrease. 

Also, the MLEs and Bayesian estimates converge to the same value as the sample gets larger except 

for GELF. Generally, it was observed that the results obtained from the MLE, SELF and LINEX are 

more consistent than that of GELG. 
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Abstract 

New parameters can be added to expand families of distribution for greater flexibility or to 

construct covariate models in several ways. In this study, a trigonometric-type distribution called 

Sine-Weibull distribution was developed by adopting the Weibull distribution as the baseline 

distribution and Sine-G Family as the generator to generate a flexible probability distribution 

without the need for extra parameters. The moment, moment generating function, entropy, and 

order statistics are some of the mathematical aspects of this distribution that were derived. The 

Maximum Likelihood approach was used to estimate the new distribution's parameters. Using 

actual datasets, the Sine-Weibull distribution's applicability was demonstrated.

Keywords: Sine-G Family, Weibull Distribution, Probability Distribution, 

Maximum Likelihood Estimator 

I. Introduction

Distribution functions, their properties and interrelationships play a significant role in modeling 

naturally occurring phenomena. For this reason, a large number of distribution functions, which 

were found applicable to many events in real life, have been proposed and defined in literature. 

Various methods exist in defining statistical distributions. Many of these arose from the need to 

model naturally occurring events. For example, the Normal distribution addresses real-valued 

variables that tend to cluster at a single mean value, while the Poisson distribution models discrete 

rare events. Yet few other distributions are functions of one or more distributions. 

To explain real world phenomena, statistical distributions are widely applied. Their theory 

is widely studied due to the utility of statistical distributions, and new distributions are developed. 

In the field of probability theory and statistics, the search for creating a more effective and scalable 

distribution of probability remains high [1]. Numerous standard distributions have been 

extensively used over the past decades for modeling data in several fields such as Engineering, 

Economics, Finance, Biological, Environmental and Medical Sciences etc. However, generalizing 

these standard distributions has produced several compound distributions that are more flexible 

compared to the baseline distributions. For this reason, several methods for generating new 

families of distributions have been studied. 

Weibull distribution is a continuous probability distribution. It is one of different 

distributions used to describe particle size with major application in survival analysis, weather 
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forecast and reliability engineering. The Weibull distribution is a continuous probability 

distribution. It was named after Swedish mathematician Waloddi Weibull, who describe it in detail 

in 1951, although it was first recognized by [2] and first applied by [3] to describe a unit size of 

distribution. Weibull distribution exist with scale and shape parameters. This distribution has 

become very popular in analyzing lifetime data and for many applications where a skewed 

distribution is required. Inducing of a new shape parameter(s) introduces a model into greater 

family of distributions and can give significantly skewed and heavy-tailed distributions and also 

provides greater flexibility in the form of new distribution. 

Even when there is uncertainty about the future in real life, decisions still need to be taken. 

Thus, uncertainty issues must be dealt with by decision-making processes. Probability is one of the 

frequently employed strategies for addressing uncertainty in planning and management. In order 

to create a family of hybrid distributions that are more effective than their parent distributions, 

many researchers have focused on the idea of combining two or more probability distributions. By 

adding one or more parameters, these distributions become more flexible and can track a variety of 

random phenomena that are difficult to model using their parent distributions. The laws of 

generality, which state that when a particular distribution has more than four parameters, it 

undermines the performance of the model, can sometimes be breached by such compounding or 

extended distributions. 

Many researchers have come up with new families of trigonometric in recent times. Some 

of these families include: exponentiated sine-generated family of distributions by [4], Sin-G class of 

distributions by [5], Sec-G Class by [7], Sine Square distribution by [8], Sine Inverse Lomax 

Generated Family by [9], Sine Burr XII by [10], Sine Kumaraswamy-G family of distributions by 

[11], Sine Topp-Leone family by [12], Sine-Exponential Distribution by [13] and Sine Power Lomax 

distribution by [14] (2021). 

The quest for developing more efficient and flexible probability distribution remains 

strong in the field of probability theory and statistics. However, there is no single probability 

distribution that is suitable for different data sets. Therefore, there is a need to come up with their 

extended forms to give substitutive adaptable models or as to form a better representation of the 

data. Thus, this has triggered the need to extend the existing classical Weibull distributions. 

Therefore, this gives a gap of coming up with a distribution (Sine-Weibull Distribution) capable of 

handling a dataset that behaved negatively or positively skewed. Hence, this research is aimed at 

developing a new probability distribution function called Sine-Weibull Distribution. 

II. Methods

2.1 The Weibull Distribution 

A continuous random variable 𝑋 is said to have followed a Weibull distribution if its cdf is 

expressed as; 

𝐻(𝑥, 𝑘, 𝜆) =  1 −  𝑒−(
𝑥
𝜆

)
𝑘

 ,    𝑥 > 0  (1) 

and the pdf is also expressed as; 

ℎ (𝑥, 𝑘, 𝜆) =
𝑘

𝜆
(

𝑥

𝜆
)

(𝑘−1)

𝑒−(
𝑘
𝜆

)
𝑘

 𝑥 > 0  (2) 

2.2 Sine G Family of Probability Distribution 

Let 𝐻(𝑥) be the cumulative distribution function (cdf) of a univariate continuous distribution and 

ℎ(𝑥) be the corresponding probability density function (pdf), then, the Sine-G family of probability 

distribution according to [5] Kumar et al., (2015) is given by: 
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𝐹(𝑥, 𝜉) = ∫ cos 𝑡 𝑑𝑡 = sin {
𝜋

2
𝐻(𝑥, 𝜉)}

𝜋
2

𝐻(𝑥,𝜉)

0

  (3) 

and its corresponding pdf is given by: 

𝑓(𝑥, 𝜉) =
𝜋

2
ℎ(𝑥, 𝜉) cos {

𝜋

2
𝐻(𝑥, 𝜉)}  (4) 

where 𝐻(𝑥, 𝜉) and ℎ(𝑥, 𝜉) are the cdf and the pdf of any baseline distribution with vector parameter 

𝜉. 

2.3 The New Sine Weibull Distribution 

The pdf and cdf of the new sine Weibull distribution are given in equation (5) and (6): 

𝑓(𝑥, 𝑘, 𝜆) =
𝜋

2
(

𝑥

𝜆
)

𝑘−1

𝑒−(
𝑥
𝜆

)
𝑘

cos {
𝜋

2
[1 − 𝑒−(

𝑥
𝜆

)
𝑘

]}  (5) 

And 

𝐹(𝑥, 𝑘, 𝜆) = sin {
𝜋

2
[1 − 𝑒−(

𝑥
𝜆

)
𝑘

]}  (6) 

The survival function 𝑆(𝑥), hazard function ℎ(𝑥), reverse hazard function 𝑟(𝑥) and the quantile 

function 𝑄(𝑢) are given below: 

𝑆(𝑥)  =  1 –  𝐹(𝑥) = 1 − sin {
𝜋

2
[1 − 𝑒−(

𝑥
𝜆

)
𝑘

]}  (7) 

ℎ (𝑥) =  
𝑓(𝑥)

1 − 𝐹(𝑥)
 =  

𝜋
2

(
𝑥
𝜆

)
𝑘−1

𝑒−(
𝑥
𝜆

)
𝑘

cos {
𝜋
2

[1 − 𝑒−(
𝑥
𝜆

)
𝑘

]}

1 − sin {
𝜋
2

[1 − 𝑒−(
𝑥
𝜆

)
𝑘

]}

 (8) 

𝑟(𝑥) =  
𝑓(𝑥)

𝐹(𝑥)
=

𝜋

2
(

𝑥

𝜆
)

𝑘−1

𝑒−(
𝑥
𝜆

)
𝑘

cot {
𝜋

2
[1 − 𝑒−(

𝑥
𝜆

)
𝑘

]}  (9) 

𝑄(𝑈) = 𝐹−1 𝜆 {−𝑙𝑜𝑔 (1 −
2 sin−1 𝑈

𝜋
)}

1
𝑘

 (10) 

2.4. Parameter Estimation 

The parameters of the newly developed Sine-Weibull distribution will be estimated using 

the method of maximum likelihood (MLE). Moment and moment generating function (mgf) will 

be used in determine the mean, variance, skewness and kurtosis, among other properties, of the 

proposed distribution. 

2.4.1 Method of Maximum Likelihood 

Let 𝑌1, 𝑌2, … , 𝑌𝑛 independent, identically distributed (𝑖𝑖𝑑) random sample of a random 

variable 𝑌 with 𝑝𝑑𝑓 given by 𝑓(𝑦/𝛿), then the likelihood function 𝐿(𝛿: 𝑦) of  𝑌1, 𝑌2, … , 𝑌𝑛 is the joint 

density function when regarded as a function of the parameter. That is  
𝐿(𝛿: 𝑦) = 𝛱𝑖=1

𝑛 𝑓(𝑦𝑖 , 𝛿)

It is more convenient to use the log likelihood. 
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𝑙(𝛿: 𝑦) = 𝑙𝑛𝐿(𝛿, 𝑦) 

The estimate of the parameter can be obtained by taking the derivative of the log 

likelihood function with respect to the parameter and equating to zero, that is 

𝜕𝑦

𝜕𝛿
 𝑙𝑛𝐿(𝛿, 𝑦) = 0  (11) 

2.4.2 Maximum Likelihood of Sine-Weibull Distribution  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of size 𝑛 from a Sine-Weibull distribution with a 𝑝𝑑𝑓 

given by (1.1), the likelihood function𝐿(𝜆: 𝑥) of this sample is given as 

𝐿(𝜆: 𝑥) = 𝛱𝑖=1
𝑛 𝑓(𝑥𝑖 , 𝜆, ) = 𝛱𝑖=1

𝑛
𝜋

2
(

𝑥

𝜆
)

𝑘−1

𝑒−(
𝑥
𝜆

)
𝑘

cos {
𝜋

2
[1 − 𝑒−(

𝑥
𝜆

)
𝑘

]} 

𝐿(𝜆: 𝑥) = (
𝜋

2
)

𝑛

∑ (
𝑥𝑖

𝜆
)

𝑘−1

cos {
𝜋

2
[1 − 𝑒−(

𝑥𝑖
𝜆

)
𝑘

]}
𝑛

𝑖=1
𝑒− ∑ (

𝑥𝑖
𝜆

)
𝑘

𝑛
𝑖=1

Taking the log of the likelihood function gives 

𝑙(𝜆, 𝑥) = ln ((
𝜋

2
)

𝑛

∑ (
𝑥𝑖

𝜆
)

𝑘−1

cos {
𝜋

2
[1 − 𝑒−(

𝑥𝑖
𝜆

)
𝑘

]}
𝑛

𝑖=1
𝑒−

1
2

∑ (
𝑥𝑖
𝜆

)
𝑘

𝑛
𝑖=1 ) 

𝑙(𝜆, 𝑥) = n 𝑙𝑛 (
𝜋

2
) + (𝑘 − 1)𝑙𝑛 ∑ (

𝑥𝑖

𝜆
)

𝑛

𝑖=1
+ 𝑙𝑛 ∑ cos {

𝜋

2
[1 − 𝑒−(

𝑥𝑖
𝜆

)
𝑘

]}

𝑛

𝑖=1

− ∑ (
𝑥𝑖

𝜆
)

𝑘𝑛

𝑖=1

cos {
𝜋

2
[1 − 𝑒−(

𝑥𝑖
𝜆

)
𝑘

]} = 0,  because   cos (
𝜋

2
) = 0 

To maximize equation(11), we take the derivative with respect to  𝜆 and equate to zero 

𝜕𝑙

𝜕𝜆
= −(𝑘 − 1) ∑ (

1

𝜆
)

𝑛

𝑖=1
− ∑ (

−𝑘𝑥𝑘

𝜆𝑘+1
)

𝑛

𝑖=1
= 0 

𝜕𝑙

𝜕𝜆
= −(𝑘 − 1) ∑ (

1

𝜆
)

𝑛

𝑖=1
+ 𝑘 ∑ (

𝑥𝑘

𝜆𝑘+1
)

𝑛

𝑖=1
= 0 

𝑘 ∑ (
𝑥𝑘

𝜆𝑘+1
) =

𝑛

𝑖=1
(𝑘 − 1) ∑ (

1

𝜆
)

𝑛

𝑖=1
 

𝑘 ∑ 𝑥𝑘
𝑛

𝑖=1
= (𝑘 − 1) ∑ 𝜆−1

𝑛

𝑖=1
𝜆𝑘+1 

∑ 𝜆𝑘
𝑛

𝑖=1
=

𝑘

(𝑘 − 1)
∑ 𝑥𝑘

𝑛

𝑖=1
 

 𝜆𝑘 =
1

𝑛

𝑘

(𝑘 − 1)
∑ 𝑥𝑘

𝑛

𝑖=1
 

𝜆̂= √
1

𝑛

𝑘

(𝑘−1)
∑ 𝑥𝑘𝑛

𝑖=1  
𝑘

(12)
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Equation (12) gives the maximum likelihood estimator of the parameter 𝜆 

2.5. Some Mathematical Properties 

2.5.1 Moment 

Moments plays a vital role in the field of statistical analysis, particularly when it comes to 

real applications. Suppose that X is a random variable and r is a non-negative integer, the rth 

moment of X is the quantity 𝐸(𝑋𝑘) provided it expectation exist. The rth is given by: 

𝐸(𝑥𝑟) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

𝑥=0

 

The rth moment of proposed Sine-Weibull distribution is derive as follows: 

𝐸(𝑥𝑟) =
𝜋

2
∫ 𝑥𝑟 (

𝑥

𝜆
)

𝑘−1

𝑒−(
𝑥
𝜆

)
𝑘

cos {
𝜋

2
[1 − 𝑒−(

𝑥
𝜆

)
𝑘

]}  𝑑𝑥
∞

𝑥=0

 

𝐸(𝑥𝑟) =
𝜋

2𝜆𝑘−1
∫ (𝑥)𝑘−𝑟+1𝑒−(

𝑥
𝜆

)
𝑘

cos {
𝜋

2
[1 − 𝑒−(

𝑥
𝜆

)
𝑘

]}  𝑑𝑥
∞

𝑥=0

 

𝐸(𝑥𝑟) =
𝜋

2𝜆𝑘−1
(𝜆)𝑘−1+𝑟 ∫ (

𝑥

𝜆
)

𝑘−1+𝑟

𝑒−(
𝑥
𝜆

)
𝑘

cos {
𝜋

2
[1 − 𝑒−(

𝑥
𝜆

)
𝑘

]}  𝑑𝑥
∞

𝑥=0

 

𝐸(𝑥𝑟) = ∫ (
𝑥

𝜆
)

𝑘−1+𝑟

𝑒−(
𝑥
𝜆

)
𝑘

cos {
𝜋

2
[1 − 𝑒−(

𝑥
𝜆

)
𝑘

]}  𝑑𝑥
∞

𝑥=0

= 1 (𝑖𝑡 𝑖𝑠 𝑎 𝑝𝑑𝑓) 

⇒ 𝐸(𝑥𝑟) =
𝜋

2𝜆𝑘−1
(𝜆)𝑘−1+𝑟  

𝐸(𝑥𝑟) =  
𝜋

2
𝜆𝑟   (13) 

The first and second moments (when r = 1 and r = 2) are therefore given below, 

𝐸(𝑥) =
𝜋

2
𝜆  (14) 

𝐸(𝑥2) =
𝜋

2
𝜆2  (15) 

The variance is given below 

𝑉(𝑥) = 𝐸(𝑥2) − [𝐸(𝑥)]2  =
𝜋

2
𝜆2 − (

𝜋

2
𝜆)

2

𝑉(𝑥) =
𝜋

2
𝜆2 (1 −

𝜋

2
)  (16) 

Standard Deviation (S) = √
𝜋

2
𝜆2 (1 −

𝜋

2
)  (17) 

2.5.2 Skewness and Kurtosis of the Sine-Weibull Distributions 

The skewness and kurtosis of the sine-Weibull distribution are obtained using the third 

and fourth moment respectively with the power of the standard deviation of the distribution These 

approaches is the measure of kurtosis (𝛼3) and skewness(𝛼4) based on moments 

(𝛼3) =
𝐸(𝑥3)

𝑆3

(𝛼3) =

𝜋
2

𝜆3

(√
𝜋
2

𝜆2(1 −
𝜋
2

))

3 (18)
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(𝛼4) =
𝐸(𝑥4)

𝑆4
 =

𝜋
2

𝜆4

(√
𝜋
2

𝜆2 (1 −
𝜋
2

))

4 =

𝜋
2

𝜆4

(
𝜋
2

𝜆2 (1 −
𝜋
2

))
2

(𝛼4) =
1

𝜋
2

(1 −
𝜋
2

)2
 (19) 

2.5.3 Entropy 

The entropy of is a measure of variation of the uncertainty. There are many entropy 

measures studied and discussed in literature but the Renyi entropy is perhaps one of the most 

popular. Renyi entropy of with proposed density function is given by 

𝑖𝑅(𝜌) =
1

1 − 𝜌
𝑙𝑜𝑔 (∫ 𝑓(𝑥)𝜌𝑑𝑥

∞

0

)  (20) 

where 𝜌 > 0 𝑎𝑛𝑑 𝜌 ≠ 0. Inserting equation (4) into (20) 

𝑖𝑅(𝜌) =
1

1 − 𝜌
𝑙𝑜𝑔 (∫ (

𝜋

2
(

𝑥

𝜆
)

𝑘−1

𝑒−(
𝑥
𝜆

)
𝑘

cos {
𝜋

2
[1 − 𝑒−(

𝑥
𝜆

)
𝑘

]})

𝜌

𝑑𝑥
∞

0

)  (21) 

2.5.4 Order Statistics 

Suppose that 𝑥1, 𝑥2, … , 𝑥𝑛 are random samples of size n from probability distribution with 

pdf f(x) and cdf 𝐹(𝑥) as defined in (3) and (4) respectively, the pth order statistic can be expressed 

𝑓𝑛(𝑥) =
𝑛! 𝑓(𝑥)

(𝑝 − 1)! (𝑛 − 1)!
𝐹(𝑥)𝑝−1[1 − 𝐹(𝑥)]𝑛−𝑝  (22) 

The order statistics of the proposed Sine-Weibull distribution is given by: 

𝑓𝑛(𝑥) =

𝑛! (
𝜋
2

(
𝑥
𝜆

)
𝑘−1

𝑒−(
𝑥
𝜆

)
𝑘

cos {
𝜋
2

[1 − 𝑒−(
𝑥
𝜆

)
𝑘

]})

𝜌

(𝑝 − 1)! (𝑛 − 1)!
{sin [

𝜋

2
(1 − 𝑒−(

𝑥
𝜆

)
𝑘

)]}

𝑝−1

× {1 − sin [
𝜋

2
(1 − 𝑒−(

𝑥
𝜆

)
𝑘

)]}

𝑛−𝑝

 (23) 

III. Results

3.1 Application 

Specifically, AIC is aimed to obtain the best approximating model to the unknown true data 

generating process. Superficially, BIC differs from AIC only in the first term which depends on 

sample size n. Models that minimize the BIC are selected. From a Bayesian perspective, BIC is 

designed to find the most probable model given the data. 
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3.1.1 Dataset 

One dataset was considered for illustrative purposes and comparison with the baseline 

distribution and other competitors. The comparison was done with Weibull distribution and 

Lomax distribution. We estimated the unknown parameters of the distribution by the maximum-

likelihood method. We obtain the values of the Akaike information criterion (AIC), Bayesian 

information criterion (BIC) and consistent Akaike information criterion (CAIC) for the newly 

developed distribution as well as the competitors. The dataset consists of thirty successive values 

of March precipitation (in inches) in Minneapolis/St [16]. The data are as follows: 

0.77 1.74 0.81 1.2 1.95 1.2 0.47 1.43 3.37 2.2 3.0 3.09 

1.51 2.1 0.52 1.62 1.31 0.32 0.59 0.81 2.81 1.87 1.18 1.35 

4.75 2.48 0.96 1.89 0.9 2.05 

Table 1: Summary Statistics of the dataset 

Data Minimum 𝑸𝟏 Media Mean 𝑸𝟑 Maximu

mDataset 0.92 1.302 1.544 1.658 1.814 5.306 

Table 1 gives the summary statistics of the data sets such as the mean, the median, the first and 

third quartile, the minimum and the maximum values. 

Table 2: MLE, AIC, CAIC, BIC, and HQIC of the data set 

Data Set 𝑴𝑳𝑬 𝑨𝑰𝑪 𝑪𝑨𝑰𝑪 𝑩𝑰𝑪 𝑯𝑸𝑰𝑪 

Sine-Weibull 55.61173 115.2235 115.3472 120.4388 117.3322 

Weibull 150.5514 305.1029 305.2266 310.3132 307.2716 

Lomax 150.5514 303.1029 303.1437 310.3132 304.1572 

Table 2 presents the results of the analysis of the dataset. The result of the analysis of the Sine-

Weibull Distribution was compared with Weibull Distribution and Lomax Distribution to test the 

efficiency of the model. The proposed Sine-Weibull distribution has proven to be the better model 

because it has the least AIC, CAIC, BIC and HQIC.  

IV. Discussion

There has been a growing interest among statisticians and applied researchers in developing 

flexible lifetime models for the betterment of modelling survival data. In this paper, we introduced 

a two-parameter Sine-Weibull distribution which is obtained by considering a Weibull distribution 

as the baseline. We study some of its statistical and mathematical properties. Maximum Likelihood 

Estimation was used in parameter estimation. The usefulness of the new distribution was 

illustrated via the analysis of real data sets. We hope that the proposed extended model will attract 

wider applications. 
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Abstract 

This paper reviews several theoretical works on the computation of the Rate of Occurrence of Failure 
(ROCOF) for general multi-state random systems, focusing on recent generalizations. The discussion 
begins by defining the ROCOF for a Markov process and discussing the main results achieved in the 
literature, then moves towards the richer framework represented by semi-Markov systems. The paper 
discusses complications that arise when extending the ROCOF to higher orders so that a measure of 
the association of failures in time can be obtained. The work then analyzes possible modifications in 
terms of a conditional version of the ROCOF, which is of special interest in applications. The findings 
are illustrated by a numerical example from reliability, and the broad applicability is demonstrated 
by a discussion of different applications in other domains. 

Keywords: Markov processes, semi-Markov processes, reliability, applications 

1. Introduction

Several studies deal with the proposal of new measures of performance for a random system and 
their computation in applied problems; see e.g. [1]. Among the available indicators, the Rate of 
Occurrence of Failure (ROCOF) is one of the most frequently used in understanding a system’s 
performance over time. Once a system’s failure is defined, the ROCOF is the derivative of the 
expected number of failures with respect to the time variable. Systems with an increasing path of the 
ROCOF are expected to deteriorate as time goes on. Contrarily, if the ROCOF shows a decreasing 
shape, then the system is expected to improve its quality of functioning over time. This seems to be 
a simple concept, at least in its intuition, but computation and analysis pose relevant questions that 
have been solved at different moments during the last half century. 

In the seventies, some research articles dealing with systems that have already reached the steady 
state appeared in the literature and showed how to compute the frequency of system failures and 
their durations [2,3,4].  
A few years later, Shi Ding-hua [5] developed a new method for calculating the ROCOF of a system 
described by a finite-state continuous time-homogeneous Markov chain. The author also discussed 
the case of a special high-dimensional Markov process equipped with supplementary variables. In 
the middle of the 1990s, further contributions were given in a couple of research articles by Yeh Lam 
[6,7]. In the first of his contributions, the author considers a system described by a continuous-time 
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Markov chain of higher dimension after having introduced additional variables. A formula for 
evaluating the ROCOF was derived, and an application for a two-component parallel system was 
presented. In his second contribution, the author enlarged the stage by considering Markovian 
systems with a denumerable state space.  
Markov processes are very frequently adopted for system reliability analysis. Unfortunately, in 
many circumstances, they are not suitable, either for practical or theoretical reasons. Hence, the need 
to use more general models, and the semi-Markov ones are a valuable alternative; see e.g. [8,9]. 
The question of how to compute the ROCOF for a semi-Markov process attracted the attention of 
Ouhbi, and Limnios [10]. In that work, the authors derived a formula for evaluating the ROCOF for 
semi-Markov systems and also proposed a statistical estimator of this indicator. A Similar analysis 
was executed by Georgiadis et al. [11] for the semi-Markov chain, i.e., for semi-Markov models in 
discrete time. 
A new idea was advanced by D’Amico [12] with the concept of ROCOF of order 𝑛 (shortly denoted 
by 𝑛 -ROCOF) for Markov processes. This new indicator coincides with the ROCOF when 𝑛 = 1 and 
expresses a measure of clustering in the time of failure events. For example, for 𝑛 = 2 it expresses a 
measure of association in time of a couple of failures at any couple of times (𝑡ଵ, 𝑡ଶ) with 𝑡ଵ < 𝑡ଶ. After 
having defined the 𝑛-ROCOF, the author derived an explicit formula in terms of the matrix generator 
and initial probability distribution. Next, a nonparametric estimator was advanced, and its 
asymptotic properties were determined. The 𝑛-ROCOF was applied to the modeling of financial 
credit ratings, where a conditional version of it was shown to be particularly useful. A few years 
later, Votsi [13] exploited a conditional version of the ROCOF for semi-Markov chains.  
Finally, in [14], the analysis of the 𝑛-ROCOF for semi-Markov processes with finite state space is 
executed in such a way that the previous quoted articles were generalized. The authors determined 
an explicit formula for the 𝑛-ROCOF under a general random starting mechanism, considering any 
possible state and duration of permanence in it. This was done using a mixed continuous-discrete 
initial probability distribution function. A set of hypotheses on the model parameters was advanced 
so that the derivation of an explicit formula expressing the 𝑛-ROCOF was obtained. The results were 
sufficiently general to be of interest not only in the reliability theory field but for every general 
system and could be applied every time that a partition of the state space can be introduced into 
working and not-working states.  
After giving a thorough analysis of the theoretical findings pertaining to the computation of the 
ROCOF, we show a numerical example from the dependability area and go on to describe some 
unusual applications in various fields, spanning from financial mathematics to wind energy 
generation. Considering that several of these applications have never been mentioned before, they 
also offer a suggestion for detailed future research. 
The paper proceeds as follows: Section 2 describes the basic reliability problem and some of the most 
important reliability indicators, ROCOF and 𝑛-ROCOF included. Section 3 considers a Markov 
process for the probabilistic description of the system and shows formulas for the ROCOF and 𝑛-
ROCOF. Section 4 provides a summary of the results related to the extension to the semi-Markov 
framework, showing the latest results in the literature. Section 5 discusses a numerical example for 
a Markov system and demonstrates the practical usefulness of the considered measures. Moreover, 
different possible applications from real life problems are detailed. The discussion concludes in 
Section 6, which reviews the content of the paper and provides general conclusions. 

2. Basic description of the reliability problem and main indicators

The basic reliability problem can be described assuming that the performance of the system can be 
identified with one element of a finite set 𝐸 = {1,2, … , 𝑚} called state space. Frequently, an ordering 
relation on the set E is considered in such a way that higher ranks 𝑗 ∈ 𝐸 correspond to a higher 
system’s performance. The state space E is partitioned into two disjoint subsets 𝑊 and 𝐹 such that: 

RT&A, No 1 (77)
 Volume 19, March 2024

74



Guglielmo D’Amico and Fulvio Gismondi 
ROCOF COMPUTATION AND APPLICATIONS 

𝐸 = 𝑊 ∪ 𝐹, 𝑊 ∩ 𝐹 = ∅,   𝑊 ≠ ∅,   𝐹 ≠ ∅.

The subset 𝑊 contains all the elements of 𝐸 denoting acceptable working levels of the systems; 
instead the subset 𝐹 contains all the states of 𝐸 in which the system is not performing in a satisfactory 
way or has a fault. Sometimes the state space is divided into three subsets, denoting the working 
states, the changeable states, and the failure states.  The changeable states denote a working system 
if and only if, before entering the changeable subset, the system was working and will continue to 
work after leaving it; see [15]. 

The system evolves in time and changes its state migrating from one state 𝑖 to another state 𝑗. The 
most natural way to study this evolution is by using a stochastic process 𝑍 = {𝑍(𝑡), 𝑡 ≥ 0}. Hence, 
𝑍(𝑡) denotes the state occupied by the system at time 𝑡 and if  𝑍(𝑡) ∈ 𝑊 the system is working while 
if 𝑍(𝑡) ∈ 𝐹 the system is not working.  
Specific indicators are used to measure the overall quality of the system; among them, we remember: 

- the availability function, which is defined by

𝐴௜(𝑡) ≔ 𝑃[𝑍(𝑡) ∈ 𝑊|𝑍(0) = 𝑖]. 

It expresses the probability that the system ranked i at time 0 will be operational at time 𝑡 
independently of the possible behavior before this time.   

- The reliability function which is defined by

𝑅௜(𝑡) ≔ 𝑃[𝑍(𝑛) ∈ 𝑊, ∀𝑛 ∈ [0, 𝑡]|𝑍(0) = 𝑖]. 

This indicator consists of the probability that a system ranked i at time 0 will not experience a fault 
(a visit to the subset 𝐹) from time 0 up to time t. A generalization of the reliability function considers 
interval reliability indicators [16], recent results are available in [17,18], and the sequential reliability 
function [19]. 

Denote by 𝑁௙(𝑡) the number of failures of the system until time t, i.e. the number of passages from a 
state of 𝑊 to one of 𝐹. Then, 

- the ROCOF at time 𝑡 for a random system, denoted by 𝑟𝑜(𝑡), is defined by

 𝑟𝑜(𝑡) = lim
∆௧→଴

𝐸ൣ𝑁௙(𝑡 + ∆𝑡) − 𝑁௙(𝑡)൧

∆𝑡
.  (1)

The ROCOF gives information on whether there are a lot of failures or only a few within a time, 
and it has a simple probabilistic interpretation that for deteriorating systems shows an increasing 
behavior and for improving systems, it is decreasing in time.  

When studying the reliability of a reparable system, it is of great interest to also measure the 
relative positioning of tuples of failures. For this reason, the 𝑛-ROCOF was defined D’Amico [12]: 

- the 𝑛-ROCOF at times 𝒕ଵ
௡ = (𝑡ଵ, 𝑡ଶ, … , 𝑡௡) with 𝑡௜ < 𝑡௜ାଵ for a random system is defined by

𝑟𝑜(𝒕ଵ
௡) = lim

(∆௧೔→଴)೔సభ
೙

𝐸ൣ𝑑𝑁௙(𝑡ଵ) ∙ 𝑑𝑁௙(𝑡ଶ) ∙ … ∙ 𝑑𝑁௙(𝑡௡)൧

∆𝑡ଵ∆𝑡ଶ ∙ … ∙ ∆𝑡௡

. (2)
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Clearly, for 𝑛 = 1 the 𝑛-ROCOF coincides with the ROCOF of the system. For 𝑛 = 2 we obtain an 
interesting particular case called the 2-ROCOF which is given by  

𝑟𝑜(𝒕ଵ
ଶ) = lim

(∆௧೔→଴)೔సభ
మ

𝐸ൣ𝑑𝑁௙(𝑡ଵ)𝑑𝑁௙(𝑡ଶ)൧

∆𝑡ଵ∆𝑡ଶ

,  (3)

and expresses a measure of association of failure events in correspondence of a 2-dimensional 
vector of times 𝒕ଵ

ଶ = (𝑡ଵ, 𝑡ଶ). 

3. 𝑛-ROCOF for Markov processes

A class of models frequently used in the reliability field is that represented by Markov processes; see 
e.g.  [20,21,22,23]. Here we briefly introduce them and show the formula for the 𝑛-ROCOF.

Let consider a continuous time Markov process (𝑍(𝑡),   𝑡 ∈ ℝ) with a finite state space 𝐸 = {1,2, … , 𝑚} 
and generator matrix 𝑸 = ൫𝑞௜௝൯, 𝑖, 𝑗 ∈ 𝐸 where 𝑞௜௝ ≥ 0, ∀𝑖 ≠ 𝑗 and 𝑞௜௜ = − ∑ 𝑞௜௝௝ஷ௜ . Consider also an 
initial probability distribution over the states of the process at time zero denoted by the vector 𝜶 =

(𝛼ଵ, 𝛼ଶ, … , 𝛼௡) where 

𝛼௜ = 𝑃(𝑍(0) = 𝑖). 

Let  𝑝௜(𝑡) = 𝑃(𝑍(𝑡) = 𝑖), ∀𝑖 ∈ 𝐸 be the state probability at time 𝑡, then it results that 

𝑝௝(𝑡) = ෍ 𝛼௜

௜∈ா

𝑝௜௝(𝑡), 

where 𝑝௜௝(𝑡) =  𝑃(𝑍(𝑡) = 𝑗|𝑍(0) = 𝑖) = (𝑒𝑸௧)௜௝ . 

Theorem [12] The 𝑛-ROCOF at times 𝒕ଵ
௡ = (𝑡ଵ, 𝑡ଶ, … , 𝑡௡) with 𝑡௜ < 𝑡௜ାଵ for a Markov jump process 

(𝑍(𝑡),   𝑡 ∈ ℝ) over a finite state space 𝐸 = {1,2, … , 𝑚} and generator matrix 𝑸 = ൫𝑞௜௝൯, 𝑖, 𝑗 ∈ 𝐸 is given 
by 

𝑟𝑜(𝒕ଵ
௡) = ෍ ෑ 𝛼௙బ

∙ ൫𝑒𝑸(௧೔ି௧೔షభ)൯
௙೔షభ௪೔

∙

௡

௜ୀଵ

𝑞௪೔௙೔

௡

௪,௙

 ,  (4)

where 𝑡଴ = 0 and the symbol  ∑௡
௪,௙  is an abbreviate notation for ∑ ∑ ∑௙೔∈ி,∀௜ୀଵ,…,௡௪೔∈ௐ,∀௜ୀଵ,…,௡ .௙బ∈ா  

Formula (4) contains interesting particular cases of which we give representation. The ROCOF is 
simply obtained by setting 𝑛 = 1 in formula (4) with 𝑡଴ = 0. The result is:   

𝑟𝑜(𝑡ଵ) = ෍ ෍ ෍ 𝛼௙బ
∙

௙భ∈ி

(𝑒𝑸 ௧భ)௙బ௪భ
∙

௪భ∈ௐ

𝑞௪భ௙భ

௙బ∈ா

= ෍ ෍ 𝑝௪భ
(𝑡ଵ)

௙భ∈ி

∙

௪భ∈ௐ

𝑞௪భ௙భ
,  (5)

which expresses exactly the formula established by Yeh [7]. 

 Another interesting case is represented by the 2-ROCOF which is simply obtained by setting 𝑛 = 2 
in formula (4) with 𝑡଴ = 0. The result is:   
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𝑟𝑜(𝒕ଵ
ଶ) = ෍ ෑ 𝛼௙బ

∙ ൫𝑒𝑸(௧೔ି௧೔షభ)൯
௙೔షభ௪೔   

∙

ଶ

௜ୀଵ

𝑞௪೔௙೔

ଶ

௪,௙

= ෍ ෍ ෍ ෍ ෍ 𝛼௙బ
∙ (𝑒𝑸 ௧భ)௙బ௪భ

∙ 𝑞௪೔௙೔

௙మ∈ி௪మ∈ௐ௙భ∈ி௪భ∈ௐ௙బ∈ா

∙ ൫𝑒𝑸(௧మି௧భ)൯
௙భ௪మ   

∙ 𝑞௪మ௙మ
 .  (6)

4. 𝑛-ROCOF for semi-Markov processes

Semi-Markov processes are a generalization of Markov processes, allowing for any kind of 
probability distribution function for the sojourn time in the state of the system. Contrarily, Markov 
processes require exponentially distributed sojourn times; this assumption can be inadequate in 
several application fields, reliability theory included; see e.g. [24,25].  

The definition of a semi-Markov process needs some preliminary concepts to be introduced. We start 
by considering a bivariate random sequence (𝐽௡, 𝑇௡), 𝑛 ∈ ℕ.  The random variable 𝐽௡ denotes the state 
of the system at its n-th transition; this variable assumes values in the state space 𝐸. The random 
variable 𝑇௡ denotes the time in which the system enters state 𝐽௡; this variable assumes any values in 
the set of positive real numbers. The time the system remains in the state 𝐽௡ିଵ before entering state 
𝐽௡ is called sojourn time. It is denoted by 𝑋௡ = 𝑇௡ − 𝑇௡ିଵ having set 𝑋଴ = 0. The process (𝐽௡, 𝑇௡) is 
called Markov Renewal Process (MRP) whenever it satisfies the next assumption: 

𝑃(𝐽௡ାଵ = 𝑗, 𝑋௡ ≤ 𝑡| 𝐽௡, 𝑋௡ିଵ, 𝐽௡ିଵ, 𝑋௡ିଶ, … ) = 𝑃(𝐽௡ାଵ = 𝑗, 𝑋௡ ≤ 𝑡| 𝐽௡). 

The conditional joint probabilities of the MRP are denoted by 

𝑄௜,௝(𝑡) = 𝑃(𝐽௡ାଵ = 𝑗, 𝑋௡ ≤ 𝑡| 𝐽௡ = 𝑖) 

and the matrix  𝑸(𝑡) = ൫𝑄௜,௝(𝑡)൯ is called the semi-Markov kernel. 

Let 𝑁(𝑡) = 𝑠𝑢𝑝{𝑛: 𝑇௡ ≤ 𝑡} be the counting process of the number of transition up to the time 𝑡. Then 
the semi-Markov process can be defined by 𝑍(𝑡) ≔ 𝐽ே(௧).  

Let assume that 𝑸 is absolutely continuous with respect to the Lebesgue measure on the set of 
positive real numbers and denote by 𝑞௜,௝(𝑡) =

ொ೔,ೕ(ௗ௧)

ௗ௧
 the corresponding Radon-Nikodym derivatives. 

Hence, we can consider the hazard rate functions according to the relation 

𝜆௜௝(𝑡) = ቐ

𝑞௜,௝(𝑡)

1 − 𝐻௜(𝑡)
if  𝑝௜,௝ > 0  and  𝐻௜(𝑡) < 1

0 otherwise

 

where  𝐻௜(𝑡): =  𝑃(𝑋௡ ≤ 𝑡| 𝐽௡ = 𝑖) = ∑ 𝑄௜,௝(𝑡)௝∈ா  and 𝑝௜,௝: = 𝑃(𝐽௡ାଵ = 𝑗| 𝐽௡ = 𝑖) = lim
௧→ାஶ

𝑄௜,௝(𝑡). 

Let us introduce the backward recurrence time process 𝐵(𝑡) ≔ 𝑡 − 𝑇ே(௧). Now we can describe the 
set of three assumptions used in [14] to derive the formula for the 𝑛-ROCOF of a semi-Markov 
process.  

Assumption A1: This first assumption explains a general random starting mechanism for semi-
Markov processes. We first consider the vector 𝒑 = (𝑝ଵ, 𝑝ଶ, … , 𝑝௡) where 

𝑝௜ = 𝑃( 𝐽଴ = 𝑖) 

with  ∑ 𝑝௜௜∈ா = 1. Moreover we specify a set of cumulative distribution function for the duration in 
the initial state 𝑖; i.e. 𝐹௜(𝑣଴) = 𝑃(𝐵(0) ≤ 𝑣଴|𝐽଴ = 𝑖). Then we assume that 

𝐹௜(𝑣଴) = ቐ

0 if   𝑣଴ < 0
𝑎௜ if   𝑣଴ = 0,   0 ≤ 𝑎௜ ≤ 1

𝐺௜(𝑣଴) ∙ (1 − 𝑎௜) + 𝑎௜ if   𝑣଴ > 0
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being 𝐺௜(∙) an absolutely continuous cumulative distribution function with support in (0, ∞) and 
corresponding density function 𝑔௜(∙) having finite expectation.  

Assumption A2: The semi-Markov process has uniformly bounded transition intensities, in formula: 

∃𝑐 ∈ ℝା such that max
௜,௝∈ா

sup
௬∈ℝశ

𝜆௜௝(𝑦) ≤ 𝑐  . 

Assumption A3: For each state 𝑖 ∈ 𝐸 there exist a state 𝑗 ∈ 𝐸 (depending on 𝑖) and a non-null subset 
𝑆௜௝(𝑦) of the real numbers such that 𝜆௜௝(𝑦) < 𝑐 for all 𝑦 ∈ 𝑆௜௝ .  

The following main result gives the formula for the  𝑛-ROCOF of a semi-Markov process. 

Theorem [14] The 𝑛-ROCOF at times 𝒕ଵ
௡ = (𝑡ଵ, 𝑡ଶ, … , 𝑡௡) with 𝑡௜ < 𝑡௜ାଵ of a semi-Markov process 

(𝑍(𝑡),   𝑡 ≥ 0) over a finite state space 𝐸 = {1,2, … , 𝑚} and semi-Markov kernel 𝑸 = ൫𝑄௜௝(𝑡)൯, 𝑖, 𝑗 ∈ 𝐸 
is given by 

𝑟𝑜(𝒕ଵ
௡) = ෍ ෍ 𝑎௝బ

𝑝௝బ
ෑ න 𝜓௙ೝషభ௪ೝ

ᇱ (0; 𝑢௥)𝑞௪ೝ௙ೝ
(𝑠௥ − 𝑢௥)𝑑𝑢௥

௦ೝ

଴

௡

௥ୀଵ𝒘∈𝑾೙,𝒇∈𝑭೙

௠

௝బୀଵ

 

+ ෍ ෍ ൫1 − 𝑎௝బ
൯𝑝௝బ

ቆන ቆන 𝜓௝బ௪భ

ᇱ (𝑣଴; 𝑢ଵ)𝑞௪భ௙భ
(𝑠ଵ − 𝑢ଵ)𝑑𝑢ଵ

௦భ

ି௩బ

ቇ
ஶ

଴

𝑔௝బ
(𝑣଴)𝑑𝑣଴ቇ

𝒘∈𝑾೙ ,𝒇∈𝑭೙

௠

௝బୀଵ

∙ ෑ න 𝜓௙ೝషభ௪ೝ

ᇱ (0; 𝑢௥)𝑞௪ೝ௙ೝ
(𝑠௥ − 𝑢௥)𝑑𝑢௥

௦ೝ

଴

௡

௥ୀଶ

 ,

 (7)

where 𝑠௥ = 𝑡௥ − 𝑡௥ିଵ , 𝑠ଵ = 𝑡ଵ and 𝜓௜௝ (𝑦; 𝑡) ≔ 𝐸(௜,௬)ൣ𝑁௝(𝑡)൧ = ∑ 𝑄௜௝
(௡)(𝑦; 𝑡)ஶ

௡ୀ଴ .

The quantity 𝑄௜௝
(௡)(𝑦; 𝑡) = 𝑃(𝐽௡ = 𝑗, 𝑇௡ ≤  𝑡|𝐽଴ = 𝑖, 𝐵(0) = 𝑦). 

We observe that if we consider for all 𝑗଴ ∈ 𝐸, 𝑎௝బ
= 1 and 𝑛 = 1, we have a null duration in the initial 

state and we obtain exactly the formula for the ROCOF as it was established by [10], i.e. 

𝑟𝑜൫𝑡ଵ ൯ = ෍ ෍ ෍ 𝑝௝బ
න 𝜓௝బ௪

ᇱ (0; 𝑢ଵ)𝑞௪௙(𝑡ଵ − 𝑢ଵ)𝑑𝑢ଵ

௧భ

଴

.

௙∈ி

  (8)

௪∈ௐ

௠

௝బୀଵ

5. Applied problems

Applications of the 𝑛-ROCOF measures to the reliability field are clearly of great interest. Here we 
show a few results related to a numerical example based on Markov processes in subsection 5.1. 
Anyway, there are many other fields of application in which the same concepts are worth 
discussing. An example is the financial modeling of credit rating dynamics, which was extensively 
discussed in [12,26]. A new application to wind power production is discussed later in subsection 
5.2 taking inspiration from the problem discussed in [27] and [28]. 

5.1 A numerical example 

Let us consider a random system whose state space is given by the set 𝐸 = {1,2,3,4,5,6,7,8}. Each 
number represents different levels of performance of the system, going from perfect functioning 
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(state 1) to the worst one (state 8). The state space E is partitioned into two disjoint subsets 𝑊 =

{1,2,3} and 𝐹 = {4,5,6,7,8}.  

We assume that the system evolves dynamically according to the generator matrix 

𝑸 =

⎝

⎜
⎜
⎜
⎜
⎛

−0.10 0.08 0.00 0.02 0.00 0.00 0.00 0.00
0.80 −1.30 0.35 0.15 0.00 0.00 0.00 0.00
0.00 0.12 −1.33 0.90 0.31 0.00 0.00 0.00
0.00 0.10 0.30 −0.90 0.50 0.10 0.00 0.00
0.00 0.00 0.30 0.15 −0.95 0.35 0.15 0.00
0.00 0.00 0.05 0.20 0.10 −0.50 0.10 0.05
0.00 0.05 0.08 0.09 0.15 0.33 −0.90 0.20
0.00 0.00 0.10 0.10 0.20 0.30 0.30 −1.00⎠

⎟
⎟
⎟
⎟
⎞

. 

Using equation (5), we compute the ROCOF of order 1 for the three working states. The results are 
shown in Figure 1. The continuous line refers to the ROCOF computed starting from state 1, i.e., 
using the initial probability distribution 𝜶 = (1,0, … ,0); the dashed line refers to the ROCOF 
computed starting from state 2, i.e., using the initial probability distribution 𝜶 = (0,1,0, … ,0); the 
dotted line refers to the ROCOF computed starting from state 3, i.e., using the initial probability 
distribution 𝜶 = (0,0,1,0 … ,0). The figure shows that independently of the initial state, the system 
is going to deteriorate as the ROCOF shows increasing paths. Nonetheless, the differences 
according to the initial state are remarkable and demonstrate a higher risk for state 3 and a lower 
risk for state 1.   

Figure 1. 1-ROCOF for a Markov process 

Figure 2. 2-ROCOF for a Markov process starting from state 1 

Using equation (6), we compute the 2 −ROCOF starting from state 1. The result is graphically 
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displayed in figure 2. On the X-axis, we report the time 𝑡ଵ, while on the Y-axis, we report the time 
𝑡ଶ − 𝑡ଵ. Hence, the point (10, 5) on the XY-plane corresponds to the choice of 𝑡ଵ = 10 and 𝑡ଶ = 15. 
Any point on the surface represents the corresponding value of the  2 −ROCOF. High values of the 
surface show evidence for the association of failures at the corresponding times on the X and Y axes. 
The maximum values (for the times considered in the figure) are concentrated on large values of 𝑡ଵ 
and 𝑡ଶ − 𝑡ଵ.    

We repeat the computations of the  2 −ROCOF changing the initial state. The case with state 2 as 
initial state and that for state 3 are considered in figures 3 and 4, respectively. 

Figure 3. 2-ROCOF for a Markov process starting from state 2 

Figure 4. 2-ROCOF for a Markov process starting from state 3  

As it is possible to see from these figures, their shapes are completely different from those of figure 
2. In figures 3 and 4, the maximum values of association between couples of failures are for
combinations of short times 𝑡ଶ − 𝑡ଵ independently from time  𝑡ଵ (which shows a contained
variability). This aspect is important because at short values of 𝑡ଶ − 𝑡ଵ, the system may show
trajectories of alternation between subsets 𝑊 → 𝐹 → 𝑊 → 𝐹, i.e., the presence of two close-in-time
failures.

5.2 Wind power example 

Wind power is one of the most important renewable energy sources. Because wind speed changes 
very sharply over time, the wind engineer must use mathematical models to predict the power 
output. Particular care should be given to abrupt interruptions of power production that may be 
caused by extreme wind speeds. Indeed, on the one hand, low wind is unable to move wind 
turbine’s blades, which determines no energy production. On the other hand, extremely high wind 
speeds may cause damage to the turbine; hence, the wind engineer must switch it off to avoid 
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structural breaking. The minimal wind speed necessary to activate the turbine is called the cut-in 
speed 𝑣௖௜ . The maximal wind speed that the turbine can handle is called the cut-out speed 𝑣௖௢ . 
Finally, it is also important to consider the rated wind speed 𝑣௥ , which represents the minimum 
wind speed value at which the turbine achieves its maximum power production, the so-called 
rated power. Using the power curve for the wind turbine under consideration, we may calculate 
the power output as a function of the wind speed. The relationship between wind speed 𝑣(𝑡) and 
wind power 𝑃𝑜𝑤(𝑡) at any time 𝑡 is 

𝑃𝑜𝑤(𝑡) =

⎩
⎪
⎨

⎪
⎧

0     if 𝑣(𝑡) ≤ 𝑣௖௜

𝑃௥ ∙ (𝑣ଷ(𝑡) − 𝑣௖௜
ଷ )

𝑣௥
ଷ − 𝑣௖௜

ଷ if 𝑣௖௜ < 𝑣(𝑡) < 𝑣௥

 𝑃௥   if 𝑣௥ < 𝑣(𝑡) < 𝑣௖௢

0  if 𝑣(𝑡) > 𝑣௖௢

where 𝑃௥  is the rated power. Essentially, for wind speed lower than the wind cut-in speed, there is 
no power production. For wind speed between the cut-in speed and the rated speed the output 
power is a cubic function of the wind speed. For values between the rated speed and the cut-off 
speed the turbine produces its rated power. Finally, for speed greater than the wind speed cut-off 
the turbine does not produce power.  

The ROCOF and its generalization could be fruitfully used in this applied field as we are going to 
show. First, we consider the first-order discrete-time Markov chain model proposed in [28] which 
was applied to a sample of hourly wind speed data collected by Malaysian Meteorological Station 
located at Mersing. The wind speed data range from 0 to 12𝑚/𝑠; hence the authors adopted a 
twelve state Markov chain model with 𝐸 = {1,2, … ,12} where the i-th state collects all wind speed 
measurements ranging between (𝑖 − 1) 𝑚/𝑠  and 𝑖 𝑚/𝑠. The estimated transition probability matrix 
is taken from [28]:  

𝑷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.371 0.407 0.174    0.036 0.009 0.002    0.001 0.000 0.000   0.000 0.000 0.000
0.166 0.446 0.312    0.059 0.012 0.004    0.000 0.001 0.000   0.000 0.000 0.000
0.051 0.243 0.504    0.163 0.028 0.008    0.002 0.001 0.000   0.000 0.000 0.000
0.017 0.083 0.303    0.391 0.160 0.035    0.008 0.002 0.001   0.000 0.000 0.000
0.010 0.035 0.099    0.277 0.382 0.157    0.031 0.007 0.001   0.001 0.000 0.000
0.006 0.021 0.043    0.108 0.295 0.343    0.146 0.031 0.004   0.003 0.000 0.000
0.005 0.016 0.027    0.047 0.110 0.302    0.324 0.142 0.021   0.004 0.002 0.000
0.006 0.016 0.030    0.033 0.055 0.127    0.365 0.239 0.105   0.022 0.002 0.000
0.009 0.019 0.014    0.018 0.042 0.065    0.140 0.326 0.269   0.079 0.014 0.005
0.014 0.054 0.055    0.014 0.027 0.028    0.041 0.205 0.288   0.164 0.083 0.027
0000 0.000 0.000    0.040 0.000 0.000    0.080 0.120 0.160    0.240 0.280 0.080
0.000 0.000 0.000    0.000 0.000 0.000    0.000 0.200 0.000   0.200 0.600 0.000⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Now consider a commercial wind turbine with a cut-in speed of 4 𝑚/𝑠 . This means that when the 
wind speed process is in one of the first four states of the Markov chain, there is no power 
production. The state space E is partitioned into two disjoint subsets 𝑊 and 𝐹 according to the 
following: 

𝑊 = {5,6, … ,12}    𝐹 = {1,2,3,4}.

In order to apply the measures discussed in the previous sections, we need to transform the 
discrete dynamic expressed by the transition matrix estimated by [28] into a continuous-time one 
by finding a generator matrix that satisfactorily matches, in some sense, the discrete process. This 
is a well-known and still open problem in the theory of Markov chains that is called the 
embedding problem. A detailed discussion is provided in [29], and further results and applications 
are provided in [30]. We consider here a simple strategy to get a generator matrix rendering results 
“close” to the observed hourly transition probability matrix 𝑷. We observe that the transition 
probability function for a continuous-time Markov process satisfy the relation 
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𝑷(𝑡) = 𝑒𝑸௧ = ෍
(𝑸𝑡)௡

𝑛!

ஶ

௡ୀ଴

 .

Therefore, given a probability matrix 𝑷, we can try to find a generator matrix 𝑸 such that 

𝑷 ≈
(𝑸𝑡)଴

0!
+

(𝑸𝑡)ଵ

1!
= 𝑰 + 𝑸𝑡.

From this relation we recover 𝑸 =
ଵ

௧
∙ (𝑷 − 𝑰).  and we obtain the initial guess 𝑸∗ = (𝑷 − 𝑰)  by

setting 𝑡 = 1 to denote one hour. Hence, we solve the following optimization problem: 

min
𝑸∈𝚽

‖𝑷 − 𝑒𝑸‖, 

which consists of finding, within the set of generator matrices 𝚽 , the one that minimizes the 
previous matrix norm. In our application, we consider the minimization of the Frobenius matrix 
norm, and we use the software Matlab to solve this optimization problem with an initial guess 𝑸∗. 
The result is the following generator matrix:     

𝑸 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−3.295 0.035 0.006     0.002 0.000 0.001    0.001 0.000 0.309    1.999 0.942 0.000
0.020 −2.891 0.000    0.004 0.000 0.000    0.000 0.000 0.277    1.633 0.939 0.018
0.033 0.028 −2.362    0.001 0.000 0.000    0.000 0.000 0.085    0.776 1.239 0.200
0.268 0.059 0.014   −1.975 0.014 0.000    0.000 0.000 0.028    0.137 0.504 0.951
0.936 0.261 0.051    0.011 −1.965 0.001    0.000 0.000 0.017    0.060 0.166 0.462
0.492 0.572 0.243    0.052 0.007 −1.663    0.000 0.000 0.010    0.035 0.072 0.180
0.183 0.503 0.540    0.237 0.035 0.007   − 1.746 0.080 0.009    0.027 0.046 0.079
0.091 0.212 0.608    0.398 0.175 0.037    0.004 −1.758 0.100    0.027 0.051 0.055
0.070 0.108 0.535    1.091 0.728 0.002    0.003 0.003 −2.542    0.001 0.000 0.001
0.045 0.047 0.068    0.341 0.480 0.273    0.138 0.045 0.024    −1.877 0.392 0.024
0000 0.000 0.133    0.200 0.266 0.455    0.522 0.133 0.000    0.001 −1.777 0.067
0.001 0.000 0.000    0.532 0.000 0.740    1.550 0.000 0.001    0.006 0.002 −2.832⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Now, we can compute the ROCOF using the formula presented in the previous section. To 
highlight the potentiality of the continuous-time framework, we compute the indicators on a 5-
minute time scale. This can be done simply by considering the hourly-based generator matrix 𝑸 
and dividing it by a factor of 1/12.  

In figure 5, we report the 1-ROCOF corresponding to three choices of the initial distribution over the 
states of the system. Specifically, the continuous blue line represents the indicator computed starting 
from state 5, which denotes a wind speed of  5𝑚/𝑠. The dotted red line denotes the 1-ROCOF 
behavior starting with a wind speed of  9𝑚/𝑠. Finally, the dashed yellow line stands for the 1-
ROCOF  with an initial wind speed of  1𝑚/𝑠. It is possible to note that for short times, the 1-ROCOF 
is monotone with respect to the initial speed. Thus, being in a state with strong wind implies a higher 
chance of moving into one of the failure states where no power production occurs. The overall 
behavior becomes irrelevant to the initial state around time 20, which corresponds to 20 ∙ 5min =

100min where the system shows the achievement of a stationary value of the 1 − 𝑅𝑂𝐶𝑂𝐹 equal to 
0.0536.  
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Figure 5. 1-ROCOF for the Markov process of wind speed 

For completeness, we proceed by computing the 2-ROCOF for the wind speed Markov process. In 
figure 6, we display the indicator when the initial state is equal to 5𝑚/𝑠 (left panel) and when the 
initial state is equal to 9𝑚/𝑠 (right panel). The panels have similar surfaces. Both indicate a maximum 
value of the 2-ROCOF for high values of the time 𝑡ଵ and low values of the time 𝑡ଶ − 𝑡ଵ. Hence, the 
maximum chance for a couple of transitions from working to failure states is for combinations of 
times as (𝑡ଵ = 20, 𝑡ଶ = 21). The indicator is increasing with respect to time 𝑡ଵ and decreasing with 
respect to time 𝑡ଶ − 𝑡ଵ. The 2-ROCOF assumes higher values for the initial wind speed of 9𝑚/𝑠 as 
compared to the initial wind speed of 5𝑚/𝑠 case. In this way, the reliability engineer has a clear idea 
of when the association between two failure events is high or low. This information can also be used 
to measure the riskiness of a wind park investment in terms of the intermittency of power 
production. 

Figure 6. 2-ROCOF for the Markov process of wind speed for two initial wind speed values 

IV. Discussion

Understanding the rate of occurrence of failures in a random system is of great relevance, both 
theoretically and practically. This paper offers some general information after commenting on a 
selection of recent major studies in the field. 

- The definition of a recent measure called the 𝑛 -ROCOF is reported, and a broad
interpretation as a measure of clustering in time of failures is given.

- The computation of the 𝑛 -ROCOF under the hypothesis of a continuous-time finite state
space Markov chain is explained in detail. The results are also presented in the more
general framework represented by semi-Markov processes.
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- A numerical example clarifies the results and shows different shapes of the indicators that

are flexible enough to represent a great variety of real system behavior. A new application
of these concepts is provided in the field of wind engineering and reveals interesting aspects
that need an accurate investigation in a specific research article.
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Abstract 

The Strip-Plot Design (SPD) is plays an important role in the complete block designs and also 

using the agricultural, medical and industry fields. SPD is best suited for a two-factor 

experiment that has more treatments than can be accommodated by a complete block design. In a 

SPD, one factor is assigned to the horizontal strip plot, one factor is assigned to the vertical – 

strip plot and one factor is interaction plot. Also, few experimental materials may be rare while 

other test items may be available in altering doses of other therapeutic factors, which may be 

expensive or time-consuming. One of the main features of SPD involves three types of 

experimental errors: row - strip plot error, coloum – strip plot error and interaction plot error. 

Experimenting across processing steps is essential for studying the interaction of factors where 

certain factors come from one step and others arrive from the other. The strip-plot design is a 

very efficient design for investigating multiple-step processes in terms of both resources and 

time. Strip-plot designs are economical when the factors are hard to change and the process 

under research has three discrete stages. When we want to study interactions between factors 

where some factors are from one step and other factors from another step, it is important to 

conduct experiments across processing steps. The approach is flexible because it can handle 

experimental design problems involving factors acting at different levels, unlike the existing 

method. Graphs are widely used representations of both natural and human-made structures. 

Graph theory can be used to investigate "things that are connected to other things. “Fits nearly 

everywhere. Some tough problems become easier to solve when they are represented graphically. 

We reviewed the agricultural field yield of the strip-plot design and early work on the design of 

industrial strip-plot design in this paper. We have also described the model of strip-plot design. 

We, therefore, advise experimenters to ensure that their strip-plot designs contain a sufficient 

number of rows and columns so that valid statistical inference is  possible. A bipartite graph is 

one in which the edges can be divided into two sets without going into sets. A complete bipartite 

graph is a bipartite graph that is completed. The complete tripartite graph in which the edges 

can be divided into three set without going into sets. The cubic graph is a graph in which all 

vertices have degree three. This paper describes the construction and Statistical Analysis of SPD 

using some particular types of graphs is discussed through numerical examples.  

Keywords: Strip -plot design, complete tripartite graph, cubic graph  
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1. Introduction

India is the third-largest producer of cotton in the world. Cotton grows well in drier parts of the, 

black soil, red soil and alive soil of the Deccan plateau. It requires high temperature, light rainfall 

or irrigation, 210 frost-free days and bright sunshine for its growth. It is a Kharif crop and requires 

6 to 8 months to mature. The challenge is developing design organizations that meet quality and 

cost criteria. Every attempt at agricultural science research includes the design of experiments. 

Suppose to investigate more than one factor simultaneously in a single experiment, which is called 

the factorial experiment of the design. 

Some factors to be tested need bigger plots, and others require smaller plots. Different plots 

are required in such cases, and the resulting design is known as split plot design (SPD). In 1925, 

Fisher developed this design for the purpose of agricultural experiments. The cost of the 

experiment can often be reduced by avoiding complete randomization . 

 The strip- plot design (SPD) is essential in complete block designs and applications in 

agriculture, medicine, and industry. One component is assigned to the horizontal strip plot, one to 

the vertical strip plot, and one to the interaction plot in an SPD. 

Graph theory is one of the fastest-growing sciences. Graphs in their applications, are 

commonly used to represent distinct objects and the relationship between these objects. The visual 

representation of a graph is the declaration of an object vertex, while the relationship between 

objects is expressed as an edge. In recent years, graph theory has established itself as an important 

mathematical tool in various subjects, from available research and chemistry to genetics and 

linguistics and from electrical engineering and geography to sociology and architecture in its own 

right. At the same time is mathematical to discipline in its own right. Peter Horak et al.  [1] have 

focused on this result is a special case of a general conjecture made by Erdos and NeSetiil: For each 

d ≥ 3, the edge set of a graph of maximum degree d can always be partitioned into [5d2/4] subsets, 

each of which induces a matching. Raymond Greenlaw and Rossella Petreschi [2] have developed 

a new algorithm is presented for cubic graphs.  

Arden Miller [3] has focused on using statistical experimental designs Strip-Plot 

Configurations of Fractional Factorials. George A. et al. [4] have discussed the strip-plot design for 

two-step processes. Elizabeth J.  et al. [5] have reviewed recent developments and provided 

guidelines for using the Decomposition of complete tripartite graphs into gregarious 4-cycles. 

Heidi Arnouts et al. [6] have focused on the Strip-plot experiments, and the cost of 

experimentation can often be reduced by forgoing complete randomization. Antal Ivanyi et al. [7] 

have developed an exchange algorithm for tripartite graphs with given degree set. Abdollah 

Khodkar [8] has discussed the signed edge domination numbers of complete tripartite graphs. 

Sheikh Rashid et al. [9] has discussed the study of cubic graphs with its application and introduced 

certain concepts, including cubic graphs, internal cubic graphs, and external cubic graphs, and 

illustrate these concepts by examples. Velimor D. et al. [10] have presented the procedure for 

complete tripartite graphs with spanning maximal planar subgraphs.  

Peter Bradshaw [11] has focused on vertex-disjoint triangles as a “tratching.” The problem of 

finding a tratching that covers all vertices of a tripartite graph can be shown to be NP-complete 

using a reduction from the three-dimensional matching problem. K Nisa et al. [11] have discussed 

the Analysis of variance for strip plot design with missing values: bias correction of the mean 

squares. Hossein Rashmansloua et al. [13] discussed about cubic graphs with novel application 

and define the direct product. we introduce the notion of complete cubic graphs and present some 

properties of self-complementary cubic graphs. Peter Goos [14] has reviewed recent developments 

and provided guidelines for using the fish patty experiment: a strip-plot look. This paper 

discussed a statistical analysis of SPD using complete tripartite and cubic graphs with a numerical 

example. 
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2. Preliminaries

2.1 Strip – Plot Design 

In strip plot design, each block is divided into several vertical and horizontal strips depending on 

the levels of the individual factors. Therefore, the Analysis of strip plot design is carried out in 

three parts. The first part is the vertical strip analysis, the second part is the horizontal strip 

analysis, and the third is the interaction analysis. 

2.2 Complete Tripartite Graph  

A complete tripartite graph is a set of vertices split into three disjoint sets such that no two graph 

vertices within the same set are adjacent and every vertex in one set is adjacent to every vertex in 

the other two sets. If the three sets contain p, q, and r graph vertices, a complete tripartite graph. 

2.3 Cubic Graph 

In the mathematical field of graph theory, a cubic graph is one in which all vertices have degree 

three. In other words, a cubic graph is a three-regular graph. Cubic graphs are also called trivalent 

graphs.  

3. Statistical Analysis of Strip – Plot Design

The linear model for strip-plot design is 

 =µ +  +  j + (     +   +(     + +  i=1,2…r,  j=1,2…v, k=1,2…n  (1) 

Yijk is observation corresponds to the kth level of factor (A), jth level of factor (A) and ith 

replication. µ the general mean effect.  

τj is ith block effect, A is the jth level of factor A, B is the kth level of factor B.  

 is the interaction between jth level factor A and kth level factor B, the error 

components. 

  and         are independently and normally distributed with means zero and 

respective variance   
 ,   

  and    
 . 

In statistical analysis, separate estimates of error are obtained for the main effects of the factors A 

and B and their interaction A.B. Thus, three mean error squares will be applicable for testing the 

significance of the main results of the characteristics and their interaction separately.  

The vertical strip plot for the first factor, the horizontal strip plot for the second factor, and the 

vertical and horizontal bars in the interaction strip plot for the interaction between two factors are 

always perpendicular to each other. The correlation plot is very small and primarily illustrates the 

interaction between the two design factors. As a result, we may say that correlation is assessed 

more precisely in strip plot design. 

This is an outline of the variance analysis table: 

 Correction factor (C.F.) =

 Total sum of square (SST) =

 Replication sum of square (SSR) =  –  

 Horizontal factor sum of square (S.S. (H.F.)) =  –  

 Horizontal factor error sum of square (SSEa) = – –  –
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 Vertical factor sum of  square (S.S. (V.F.)) =  – 

 Vertical factor error sum of square (SSEb) = – –    –

 Interaction effect sum of square = – –    –

 Interaction error sum of square (SSEc) = SST- (All other sum of square)

Table 1:  ANOVA table for strip – plot design 

Sv  Df  Ss  Mss F-Ratio

R. (R) (r-1) 

SSR 

H.F. (A) (a-1) 

SSA 

H.F.E. (a) (r-1)(a-1) SSEa 

    - 

V.F. (B) (b-1)  SSB 

V.F.E.(b) (r-1)(b-1) SSEb 

 - 

I.E. (AB) (a-1)(b-1) SSAB 

I.E. (c) (r-1)(a-1)(b-1)  SSEc 

 - 

4. Construction of Strip – Plot Design using Graphs

4.1. Method for Construction for Tripartite Graph 

 Let us consider the horizontal strip, vertical strip, and intersection plots as

vertex set Q. This vertex set P can be divided into three subsets: Q1, Q2, and Q3.

 Then the replication is considered as the first subset Q1, variety as the second

subset Q2, and Soils as the third subset Q3.

 Now consider the first (replication) vertex (R1) of the first subset, and then R1 is

connected to all the vertices of the second and third subset  through edges.

 Next, consider the second replication vertex (R2). It’s connected to all the

vertices of the second and third subsets through the edges.

 Similarly, all the remaining replication vertices of the first subset are connected

to all the vertices of the second and third subsets through the corresponding

edges.

 Finally, we get the complete tripartite graph for the vertical strip, horizontal

strip, and intersection plots.

4.1.1 Application 

In our study, to collect the yields of primary data on cotton cultivation varieties at  Salem District of 

Tamilnadu. Three replicates of various cotton varieties (LRA(P.T.), Supriya, Surabhi) in kilograms 

and three Soil (Black, Red, and Alive). The four replications of Cotton cultivation in kilograms for 
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yields per plot, three varieties of crops are tested, the layout being Strip plot design data is given 

below. 

Table 2: Replication wise data for yield of cotton (kg/ha) 

Replication R1 R2 R3 R4 

 Variety Soil(S1) 

 V1 3328 3258 3400 3128 

   V2 3220 3150 3115 3015 

 V3 2850 2800 2700 2625 

Soil(S2) 

 V1 2814 2750 2915 2963 

 V2 2656 2655 2500 2700 

 V3 2515 2514 2415 2400 

Soil(S3) 

 V1 3050 3118 3250 3150 

 V2 2950 3000 3065 2950 

 V3 2650 2750 2950 2800 

Table 3: Replication ×variety for horizondal factor 

  V1   V2 V3 Replication Total 

R1 9192   8826 8015 26033 

R2 9126   8805 8064 25995 

R3 9565   8680 8003 26248 

R4 9241   8665 7825 25731 

Variety Total 37124 34976 31907 104007 

The complete tripartite graph construction method for horizontal – strip plot is given below. 

 From the above table 3 vertex is fixed as Q, which is divided into three subsets, the

figure 1 shows that Q1 (replication), Q2 (variety) and Q3 (soils).

 The figure 2 shows that first replication vertex (R1) connected to all the vertices of

variety (V1, V2 and V3) through the edge values 9192(Y1), 8826(Y2), and 8015(Y3).

 Figure 1: Graph of subsets  Figure 2: Graph for first replication (R1) 

 The figure 3 shows that second replication vertex (R2), and it is connected to all the

vertices of variety (V1, V2, and V3) through the edge values 9126(Y1), 8805(Y2), and

8064(Y3).

 Similarly, the figure 4 shows that third and fourth replication vertices (R3 and R4)

are connected to all the vertices of variety (V1, V2 and V3) through the
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corresponding edge values. (Y1, Y2 and Y3) 9565, 8680, and 8003 (Y1, Y2 and Y3)9241, 

8665, and 7825. 

. 

Figure 3: Graph for second replication (R2)      Figure 4: Graph for third and fourth replication (R3 and R4) 

 The figure 5 shows that complete tripartite graph of variety and replication for the

horizontal - strip plot.

Figure 5: Graph for complete tripartite graph of horizondal – strip plot 

Table 4: Replication × soils for vertical factor 

S1 S2 S3 Replication Total 

R1 9398 7885 8650 26033 

R2 9208 7919 3868 25995 

R3 9215 7830 9203 26248 

R4 8768 8063 8900 25731 

Soils Total 36589 31797 35621 104007 

The construction method of the complete tripartite graph for vertical – strip plot is given below 

 From the above table 4 that first replication vertex (R1). The figure 6 shows that first

replication vertex is connected to all soils (S1, S2 and S3) through the values 9398,

7985, and 8650(Y1, Y2 and Y3).

 The figure 7 shows that second replication vertex (R1). The second replication

vertex is connected to all Soils (S1, S2 and S3) through the values 9208, 7919, and

8868 (Y1, Y2 and Y3).
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   Figure 6: Graph for first replication (R1)               Figure 7: Graph for second replication (R2) 

 Similarly, the figure 8 shows that third and fourth replication vertices (R3 and R4) 

are connected to all the vertices of soils (S1, S2 and S3) through the corresponding

edge values. 9215, 7830 and 9203 (Y1, Y2 and Y3) 8768, 8063 and 8900 (Y1, Y2 and Y3).

 The figure 9 shows that complete tripartite graph for replication and soils

vertical - strip plot.

     Figure 8: Graph for third and fourth replication (R3 and R4)     Figure 9: Complete tripartite graph of vertical  

Strip - plot 

Table 5: Variety × soils for interaction plot  

S1 S2 S3 Variety Total 

V1 13114 11442 12568  37124 

V2 12500 10511 11965  34976 

V3 10975 9844 11088  31907 

Soils Total 36589 31797 35621  104007 

The construction method of complete tripartite graph for interaction plot are given below 

 The above table 5 that first variety vertex (V1). The first variety vertex is connected to all

soils (S1, S2 and S3) through the values 13114, 11442 and12568 (Y1, Y2 and Y3).

           Figure 10: Graph for first variety (V1) Figure 11: Graph for second and third variety(V2andV3) 

RT&A, No 1 (77)
 Volume 19, March 2024

92



V. Saranya  and S. Kavitha
STRIP – PLOT ANALYSIS USING SPECIAL TYPE OF GRAPHS

 Similarly, the figure 11 shows that second and third verities vertexes (V2 and V3)

are connected to all the Soils (S1, S2 and S3)., through the corresponding values

12500,10511 and 11965(Y1, Y2 and Y3) 10975, 9844 and 11088 (Y1, Y2 and Y3).

 The figure 12 shows that complete tripartite graph for the variety and soil

interaction plot.

Figure 12: Complete tripartite graph for interaction plot  

 The figure 13 shows that complete tripartite graph for replication and variety,

replication and soils, and variety and soils.

Figure 13: Complete tripartite graph for horizondal, vertical and interaction strip plot  

Compute the correction factor and sum of squares as 

 Correction factor (C.F.) = 300484890.3

 Total sum of square (SST) = 2490006.7

Compute the sum of squares for the horizontal analysis: 

 Replication sum of square (SSR) = 14996.256

 Horizontal factor sum of square (S.S. (H.F.)) = 1145826.5

 Horizontal factor error sum of square (SSEa) = 40929.8

Compute the sum of squares for the vertical analysis: 

 Vertical factor sum of square (S.S. (V.F.)) = 1070090.6

 Vertical factor error sum of square (SSEb) = 118191.7

Compute the sum of squares for the interaction analysis: 

 Interaction effect sum of square = 59701.4

 Interaction error sum of square (SSEc) = 40.271
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Table 6: ANOVA for strip plot design 

Sv D.f Ss Mss F-Ratio P-Value

Replication 3 14996.256 4998.752 1.36467 0.26720020 

Variety(A) 2 1145826.5 5722913.25 83.9847 - 

Error(Ea) 6 40929.8 6821.633 - - 

Soils(B) 2 1070090.6 535040.33 27.161314 0.00100000 

Error(Eb) 6 118191.7 19698.617 - - 

Interaction(A×B)  4 59701.4 14925.35  4.44747 0.01958176 

Error (Ec) 12 40271 3355.916 - - 

Total 35 - - - - 

The table value of replication and variety is greater than the calculated values. So the null 

hypothesis is accepted. There is no significant difference between the four replications and the 

three varieties. The table value of soils is greater than the calculated value. So the null hypothesis is 

accepted. There is no significant difference between the three soil levels. The table value of the 

interaction effect is also more important than the calculated value. So the null hypothesis is 

accepted.   

There is no significant difference between the interaction effects. The P-value of the above 

experiment is more significant than the 5% significance level. Therefore the null hypothesis is 

accepted. There is no significant difference that occurred in the above experiment.   

4.2 Method for Construction of Cubic Graph 

 Let us consider the horizontal-strip plot, vertical–strip plot, and interaction plot

factors as vertex set Q. Then the elements are divided into two subsets, Q1 and Q2.

 Then the replication is considered the first subset Q1 and variety as the second

subset Q2.

 Now consider the first (replication) vertex R1 of the first subset and then R1 is

connected to all the vertices of the second subset through edges.

 Next, consider the second replication vertex R2 it is connected to all the vertices of

the second subset through the edges.

 Similarly, all the remaining replication vertices of the first subset are connected to

all the vertices of the second subset through the corresponding edges.

 Finally, we get the cubic graph for horizontal, vertical, and interaction plots.

4.2.1 Application 

In our study, to collect the kilometers of primary data on petrol two-wheeler brands at Salem 

District of Tamilnadu. Three replicates of various two-wheeler brands (Honda, Tvs, Suzuki), in 

kilometers and three route way of (Hillstration, City, Highways). The four replications of petrol in 

kilometers per litter, three brands of kilometres are tested, and the layout being Strip plot design 

data is given below. 

Table 7: Day wise for kilometres of petrol 

Days D1 D2 D3 

Brand Route(R1) 

B1 30 31 31 

B2 35 34 34 

B3 33 32 33 

Route(R2) 
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B1 35 36 37 

B2 42 40 41 

B3 37 38 39 

Route(R3) 

B1 50 51 50 

B2 57 55 56 

B3 54 53 54 

Table 8: Days × brand for horizondal factor 

B1 B2 B3 Days Total 

D1 115 134 124 373 

D2 118 129 123 370 

D3 118 131 126 375 

Brand Total 351 394 373 1118 

The construction method of cubic graph for horizontal–strip plot is given below. 

 From the above table 8 vertex is fixed as Q, which is divided into two subsets, the

figure 14   shows that Q1 (days) and Q2 (brand).

 The figure 15 shows that first day vertex (D1). The first days vertex is connected to

all brand (B1, B2 and B3) through the values 115(Y1), 134(Y2), 124(Y3).

 Figure 14: Graph of subsets Figure 15: Graph of first day (D1) 

 Similarly, the figure 16 shows that second and third day vertex (D2 and D3). The

second and third days vertex is connected to all brand (B1, B2 and B3) through the

values 118, 129, and 123(Y1, Y2 and Y3), 118, 131 and 126 (Y1, Y2 and Y3).

 The figure 17 shows that cubic graph for days and brand.

           Figure 16: Graph of second and third days (D2 and D3)       Figure 17: Cubic graph for horizontal – strip plot 
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Table 9: Days × route for vertical factor 

R1 R2 R3 Days Total 

D1 98 114 161 373 

D2 97 114 159 370 

D3 98 117 160 375 

Route Total 293 345 480 1118 

The construction method of the cubic graph vertical–strip plot is given below. 

 From the above table 9 vertex is fixed as Q, which is divided into two subsets, the

figure 18 shows that Q1 (days) and Q2 (route).

 The figure 19 shows that first day vertex (D1). The first days vertex is connected to

all Route (R1, R2 and R3) through the values 98(Y1), 114(Y2), 161(Y3).

Figure 18: Cubic graph for subset Figure 19: Cubic graph for first day (D1) 

 Similarly, the figure 20 shows that second and third day vertex (D2 and D3). The

second and third day vertex is connected to all routes (R1, R2 and R3), through

the values 97, 114 and 159(Y1, Y2 and Y3), 98, 117 and 160 (Y1, Y2, and Y3).

 The figure 21 shows that cubic graph for days and route.

 Figure 20: Cubic graph for second and third days (D2 and D3)     Figure 21: Cubic graph for vertical – strip plot 

Table 10: Brand × route for Interaction factor 

R1 R2 R3 Brand Total 

B1 92 108 151 351 

B2 103 123 168 394 

B3 98 114 161 373 

Route Total 293 345 480 1118 
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The construction method of the cubic graph for the Interaction strip plot is given below. 

 From the above table 10 vertex is fixed as Q, which is divided into two subsets, the

figure 22 shows that Q1 (brand) and Q2 (route).

 The figure 23 shows that first vertex (R1). The first route vertex is connected to all

brand (B1, B2 and B3) through the values 92(Y1), 108(Y2), 151(Y3).

Figure 22: Cubic graph for subset Figure 23: Cubic graph for first brand (B1) 

 Similarly, the figure 24 shows that second and third route vertex (R2 and R3). The

second and third route vertex is connected to all brand (B1, B2, and B3), through the

values 103, 123, and 168 (Y1, Y2 and Y3), 98, 114, and 161 (Y1, Y2 and Y3).

 The figure 25 shows that cubic graph for route and brand.

Figure 24: Cubic graph for second and third brand (B1and B3)           Figure 25: Cubic graph for interaction 

Strip - plot 

Compute the correction factor and sum of squares as 

 Correction factor (C.F.) = 46293.48148

 Total sum of square (SST) = 2188.51852

Compute the sum of squares for the horizontal analysis: 

 Replication sum of square (SSD) = 1.4074

 Horizontal factor sum of square (S.S. (H.F.)) = 102.7407

 Horizontal factor error sum of square (SSEa) = 6.3704

Compute the sum of squares for the vertical analysis: 

 Vertical factor sum of square (S.S. (V.F.)) = 2070.2963

 Vertical factor error sum of square (SSEb) =1.43096

Compute the sum of squares for the interaction analysis: 

 Interaction effect sum of square = 4.1477

 Interaction error sum of square (SSEc) = 2.37456
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Table 11: ANOVA for strip plot design 

Sv D.f Ss Mss F-Ratio P-Value

Replication 2 1.4074 0.7037 2.263180 0.12596233 

Brand(A) 2 102.7407 51.3704 32.25563 - 

Error(Ea) 4 6.3704 1.5926 - - 

Route(B) 2 2070.2963 1035.14815 2795.884156 0.00000000 

Error(Eb) 4 1.48096 0.37024 - - 

Interaction(A×B) 4 1.48096 1.036925 3.4934472 0.04526749 

Error (Ec) 8 4.1477 0.29682 - - 

Total 26 2.37456 - - - 

The table values of replication and brand method are more significant than the calculated values. 

So the null hypothesis is accepted. There is no significant difference between the three replications 

and the three-route method. The table value of the route method is greater than the calculated 

value. So the null hypothesis is accepted. There is no significant difference between the three route 

methods. The table value of the interaction effect is also more effective than the calculated value. So 

the null hypothesis is accepted. There is no significant  difference between the interaction effects. 

The P-value of the above experiment is more significant than the 5% significance level. 

Therefore the null hypothesis is accepted. There is no significant difference that occurred in the 

above experiment.   

5. Conclusion

Many real-world experiments deviate from textbook examples and sometimes involve multiple 

types of structures. Running agricultural and industrial tests in strip plot analysis is an effective 

method to reduce costs. The strip-plot design is the most efficient design in terms of both the 

resources required and the time required to study multi-step processes. This paper describes the 

construction and analysis of strip-plot analysis using some particular type of graphs through 

numerical examples from different fields, the hypothesis testing is compared by the strip-plot 

ANOVA method with the software using the method. When comparing the results of these 

methods, they produce the same results. Here some particular type of graphs is used to construct 

the SPD. In the future, there is an idea to expand this procedure to other experimental designs, 

such as Split-Split Plot Designs, Incomplete Block Designs etc. 
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Abstract 

This article explores into the examination of a novel compound distribution termed the "Exponential 

Rayleigh distribution" in the context of truncated life testing within a sampling plan. It introduces a 

hybrid single acceptance sampling plan tailored for truncated life testing scenarios where the item's 

lifespan adheres to the Exponential Rayleigh distribution. One of the primary segments within the 

domain of product quality control is referred to as “sampling inspection by variables”. This category 

encompasses procedures that involve the selection of multiple individual units based on measurements 

taken from a sample to assess a specific quality attribute under scrutiny. These plans, used to assess 

whether to accept or reject a submitted batch of items based on their observed lifetimes, are commonly 

known as reliability test plans. The article also outlines the development of a test plan to determine 

when to conclude the experiment given specific parameters like sample size, producer's risk, 

consumer's risk, and termination criteria. Sampling inspection, or reliability sampling, plays a pivotal 

role in maintaining product quality. It involves subjecting items to testing, collecting data on their 

lifespans, and making acceptance or rejection decisions based on the test results. When assessing an 

item's quality primarily based on its lifespan, which can be suitably described using a continuous 

probability distribution; such a plan is termed a "life test sampling plan." This article explores the 

application of the Exponential Rayleigh distribution within the realm of reliability sampling plans, 

emphasizing the utilization of hybrid censoring for life checks and median lifetime evaluations. This 

approach is leveraged to formulate reliability single sampling plans applicable to the Exponential 

Rayleigh distribution. The article utilizes binomial probabilities to compute the parameters of these 

sampling plans, aiming to strike a balance between protecting the interests of both the producer and 

the consumer while minimizing producer risks. The study involves calculating the specified median 

lifetime and determining design parameters like sample size and acceptance thresholds to meet 

predefined quality standards. The flexibility of the Exponential Rayleigh distribution in analyzing 

various types of lifetime data is highlighted, owing to its scale and shape parameters. To illustrate the 

concepts related to sampling strategies, a numerical example is provided in the sampling strategies 

section of the article. 

 Keywords: Reliability Sampling, Median life-time, Hybrid Censoring, 

    Exponential-Rayleigh Distribution. 
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I. Introduction

Based on the examination of a sample of goods, sampling inspection plans are used to determine the 

appropriateness of batches that contain finished products. In reliability sampling plans, the lifespan 

of the tested items is a crucial element when determining the outcome of the batch after the testing 

of life. As a result, it may be appropriate to conclude a life test by setting a time limit and counting 

the number of failures that occur before the time limit. This is because the length of inspections may 

be a significant constraint. In manufacturing industries, the reliability sampling plan serves as a 

statistical tool for determining the allocation of lots by information gathered through a life check. 

This method requires a greater amount of sampling cost and inspection time compared to regular 

sampling plans. To make the inspection cost-effective, censoring schemes, such as Time censoring 

(Type-I), Product censoring (Type-II), and hybrid censoring, are used frequently throughout the life 

test. It is appropriate to develop reliability sampling plans with censoring methods when inspection 

time is constrained and inspection costs are minimal. 

The two main distributions in life testing and reliability theory are the Exponential and 

Rayleigh distributions. They possess important structural properties and mathematical flexibility. 

One of the fundamental distributions in statistics theory and application is the exponential 

distribution. It has several important statistical characteristics, but its absence of memory property 

best describes it. But it shows excellent tractability in mathematics. As a result, the theory and uses 

of the exponential distribution are extensively covered in the literature [1]. When studying any 

lifespan data or skewed data, the three-parameter gamma and three-parameter Weibull 

distributions are frequently used. Both distributions have several favorable characteristics and 

intriguing physical explanations. Both have quite an amount of versatility for examining various 

forms of lifetime data because of the scale and shape factors [2]. A two-dimensional random vector 

of normal variables which has independent, identically distributed coordinates with mean zero is 

the basis of the Rayleigh distribution, which bears Lord Rayleigh’s name. Numerous scenarios 

where the magnitudes of normal variables are crucial can be addressed using this distribution. A 

function that appears in the Maximum Likelihood equation is approximated using a hyperbolic 

approximation rather than a linear approximation in a Modified Maximum Likelihood Estimate of 

the scale parameter of the Rayleigh distribution [3]. Since they reduce the amount of time and 

resources needed for testing, these sample programs are very helpful to practitioners, the ability, at 

various phases of the experiment, to exclude functional test specimens from further testing [4]. 

Acceptance sampling, also known as sampling inspection is a crucial quality control technique that 

outlines the policies and steps for deciding whether to accept or reject a batch of goods based on the 

examination of one or more samples. Consideration is given to the Burr (XII) distribution’s 

application in the reliability sampling plan. Utilizing a set of simulated observations from the Burr 

(XII) distribution, the evaluation of such plan was discussed [5]. In the industrial sector, reliability

sampling plans are used to make disposition decisions for batches based on product life testing.

These plans are created while taking into account pertinent probability distributions for the lifespans

of the tested products [6]. A new single sampling plan based on ranked data scheme for generalized

exponential distribution using median ranked set sampling [7].

The objective of this research is to establish dependable sampling plans based on 

exponential Rayleigh distribution employing a hybrid censoring scheme that corresponds to 

producer's and consumer's risk levels. A Lifetime of products follows a specific behavior that is 

described by a probability distribution. Estimation and inferential part of the developed theory of 

statistics is the key interest of the researcher and this is fulfilled with the help of these distributions 

[8]. According to the criteria of the exponential Rayleigh distribution, the study produces the 

Operating Characteristic (OC) function of the Reliability Single Sampling Plan (RSSP) in part 2. In 

part 3, it is explained how to create and use the sampling plans. Moreover, part 4 discusses the 

development of tables that provide optimal sampling plans for certain situations. An example is 

given to illustrate the selection of a sampling plan. Part 5 summarizes the outcomes of the study. 
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II. The Theoretical Perspective on the Rayleigh Distribution

The Rayleigh distribution is a continuous probability distribution widely used in probability theory 

and statistics, particularly for random variables with non-negative values. It has a connection with 

the chi distribution, specifically when having two degrees of freedom, albeit involving rescaling. 

This distribution is named after Lord Rayleigh. It frequently appears when analyzing the overall 

magnitude of a vector in a plane in relation to its directional components. For instance, in the two-

dimensional analysis of wind velocity, the Rayleigh distribution naturally emerges when each 

component has zero mean, equal variance, and follows a normal distribution. Another scenario 

where the Rayleigh distribution is relevant is in the context of random complex numbers. When real 

and imaginary components are independently and identically distributed as Gaussian with equal 

variance and zero mean, the absolute value of the complex number follows a Rayleigh distribution. 

In the field of Magnetic Resonance Imaging (MRI), Rayleigh distribution is applied. MRI 

images are often interpreted as magnitude images, although they are recorded as complex images. 

Consequently, the background data in MRI images follows a Rayleigh distribution, allowing for the 

estimation of noise variance in MRI images using this method. Furthermore, the Rayleigh 

distribution has found application in the field of nutrition. It has been employed to establish 

connections between dietary nutrient levels and the physiological responses of both humans and 

animals. This approach represents a method for computing nutritional response relationships 

through the utilization of Rayleigh distribution parameters." 

III. Operating Characteristics of RSSPs under

Exponential Rayleigh distribution 

One technique is known as a single sampling plan for reliability to make decisions about submitted 

lots by testing randomly selected items from the lot. Mean life is used as a quality metric to calculate 

the probability of acceptance to determine design parameters like sample size ‘n’ and acceptance 

number ‘c’ [9]. This plan is characterized by four parameters (N, n, c, t), which include the lot size 

(N), sample size (n), acceptance number (c), and test termination time (t). The implementation of the 

sampling plan involves using these parameters to make decisions about the lot. Choose a random 

selection of n products from the submitted lot of size N. 

(1) The supplied lot of size N should be randomly selected to yield a set of n

products.

(2) Execute a life test on the chosen items with t as the test termination time. Count

the number of things that failed, X=x.

(3) If X>C or time t, whichever occurs first, the life test should be terminated.

(4) Accept the lot, if x≤ c at time t; reject the lot if x>c either at time t or earlier.

Let T be the product’s lifespan; it will be distributed using an exponential Rayleigh 

distribution with a probability density function (PDF) 

𝑓(𝑥) =  𝜆𝛽𝑥𝑒
𝛽

2
𝑥2

. 𝑒− 𝜆(𝑒
𝛽
2𝑥2−1)

 𝑥𝜀𝑅;  𝜆, 𝛽 > 0  (1) 

 The specifications for the scale and shape are indicated here by λ and β. Following are the 

formulas for the exponential Rayleigh distribution’s cumulative distribution function. 

 𝐹 (𝑥) =  1 − 𝜆𝑒− 𝜆(𝑒
𝛽
2𝑥2−1)

 𝑥𝜀𝑅;  𝜆, 𝛽 > 0 (2)
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With median respectively, 

m=√
2

𝛽
𝑙𝑜𝑔 (1 + (

−𝑙𝑜𝑔 (1−𝜇)

 𝜆
)) 

Estimate to a parameter β respectively 

𝛽 =
2

𝑚2
𝑙𝑜𝑔 (

1 − 𝑙𝑜𝑔 (
1
2

)

 𝜆
) 

From each value of 1/m, the lot fraction non-conforming, p may be computed. 

𝐹(𝑋) = 𝐹 (
1

𝑚
) = 𝑝 

Utilizing their OC functions, a sampling plan’s effectiveness can be evaluated. A sample 

plan’s OC function is defined by 
𝑃𝑎=P (x≤ c) =∑ 𝑃𝑐

𝑥=0 (𝑋 = 𝑥)

It is reasonable that the probability distribution for X follows a hyper geometric distribution. 

The probability distribution of X can be assumed approximately as hyper geometric distribution. 

When N is large, the sampling distribution of X can be approximated by the Binomial (n, p) 

distribution [10].  Under these circumstances, here, it is proposed that 

𝑃𝑎 (p)=∑ 𝑛𝑐𝑥
𝑐
𝑥=0 𝑝𝑥𝑞𝑛−𝑥 

IV. Plan Parameter determination under the conditions of the Exponential

Rayleigh Distribution 

Utilizing the OC function stipulated by the Binomial probability distribution, the best reliability 

single sampling plans are identified under the circumstances of the ER (λ, θ) distribution. A 

modified maximum likelihood estimate for Rayleigh distribution using hyperbolic approximation 

[11]. A sample strategy is typically developed so that it simultaneously protects the manufacturer 

and the customer. By designating two points on the OC curve, namely (p₁, 1-α) and (p₂, β), the 

protection of the producer and the customer is guaranteed. In this case, p₁ stands for the acceptable 

quality level, for producer risk, p₂ for restricting quality level, and for consumer risk. It is possible 

to determine an ideal RSSP for points meeting the following criteria. 

𝑃𝑎(𝑝1) ≥ 1 − 𝛼 

and 

𝑃𝑎(𝑝2) ≤ 𝛽 

These conditions may be written as 

∑ 𝑛𝑐𝑥
𝑐
𝑥=0 𝑝₁𝑥𝑞₁𝑛−𝑥   ≥ 1 − 𝛼           (3) 

and 

∑ 𝑛𝑐𝑥
𝑐
𝑥=0 𝑝2

𝑥𝑞2
𝑛−𝑥   ≤ 𝛽  (4) 

To find the best values of n and c subject to (3) and (4), various techniques may be used. 

Finding the plan parameters involve using the iterative process outlined below. Therefore, the ideal 

values of the plan parameters n and c for given, λ, t, m₁, m₂, α, β, and may be found as follows:. 
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(1) When  m₁>m₂ with the required values of m₁ and m₂, calculate

 β₁ = 
2

𝑚₁2 log (
1−log (

1

2
)

 𝜆
) and β₂ = 

2

 𝑚₂2 log (
1−log (

1

2
)

 𝜆
) 

(2) Corresponding to t, β₁ and β₂, determine p₁=𝐹𝑇(1/m₁) and p₂=𝐹𝑇(1/m₂)

(3) Set c=0

(4) Find the largest n, say 𝑛𝐿, such that 𝑃𝑎(p₁) ≥ 1-α

(5) Find the smallest n, say 𝑛𝑆, such that 𝑃𝑎(p₂) ≤ β

(6) If 𝑛𝑆 ≤ 𝑛𝐿, then the optimum plan is (𝑛𝑆, c); otherwise increase c by 1.

(7) Repeat Steps 4 through 6 until optimum values of n and c are obtained.

By the hybrid censoring systems covered in part 2 and after figuring out n and c, a submitted lot 

may undergo sample inspection. 

V. Construction of Tables

Binomial probabilities are used to calculate the values of n and c for the best reliability sampling 

plans for various combinations of λ, t, m₁, m₂, α, and β. Plans for acceptance sampling from 

exponential populations that use the lifetime-performance index both with and without censoring 

[12]. Both the producer’s risk and the consumer’s risk are taken into account at two distinct levels, 

such as α=0.05, 0.05 and β=0.05, 0.10 respectively. The producer’s expectations for the mean lifetime 

of the products are considered as m₁=6000, 7000, 8000, 9000, and 10000 hours respectively. Assumed 

values for the shape parameter λ and the test termination times t are 300, 450, and 600 hours and λ=1 

correspondingly. The consumer’s projected mean product lifespan is taken as m₂= 1000, 1500, 2000, 

2500, 3000, 3500, and 4000 hours respectively. Tables 1 through Table 3 give the n and c values for 

the best reliability sampling strategies.  Each cell entry (n, c) in every table reflects the ideal value of 

the pair (n, c) that corresponds to the given values of λ, t, m₁, m₂, α, and β. choosing a plan from 

these for certain requirements is illustrated in the following example. 

Illustration 

Let ER (1, β) is distributing the lifetime of the products that have been submitted for inspection. The 

average lifespan of products that live up to producer and customer expectations is, respectively, 

m₁=6000 hours and m₂=4000 hours. Let’s say the quality inspector instructs the life test to be censored 

at t=300 hours. The values of the limiting quality level and the acceptable quality level can therefore 

be calculated as p₁=0.0013 and p₂=0.0029, respectively. The plan parameters can be calculated using 

the binomial probabilities from Table 1 as n=8200 and c=16 if the producer’s risk and the consumer’s 

risk are α=0.05 and β=0.05, respectively.  

Now, the inspection of the lot-by-lot sampling based on the life test can be done as follows: 

The submitted lot may have up to 8200 products randomly chosen as a sample. All of the sampled 

goods are eligible for life testing. The life test may be stopped if there have been 16 failures or fewer 

after 300 hours. The lot might be taken. However, if the seventeenth failure happens before t=300 

hours, the life test should be stopped. The lot could be disregarded. 

RT&A, No 1 (77)
 Volume 19, March 2024

104



Nandhini M, Radhika A, Jeslin J,Manigandan P 

HYBRID APPROACH TO SINGLE SAMPLING FOR 

EXPONENTIAL-RAYLEIGH DISTIBUTION 

Table 1: Parameters of RSSPs under the conditions of ER (β, λ=1) Distribution with α=0.05, λ=1 and t=300 hours. 

In each cell, the first pair is the value of (n, c) corresponding to (α=0.05, β=0.10) and the 

  Second pair corresponding to (α=0.05, β=0.05). 

Table 2: Parameters of RSSPs under the conditions of ER (β, λ=1) Distribution with α=0.05, λ=1 and t=450 hours. 

In each cell, the first pair is the value of (n, c) corresponding to (α=0.05, β=0.10) and the 

Second pair corresponding to (α=0.05, β=0.05). 

t=300, λ=1 m₁ 6000 7000 8000 9000 10000 

t/m₁ 0.05 0.0428 0.0375 0.0333 0.03 

m₂ t/m₂  P1 

    P2 

0.0013 0.0009 0.0007 0.0005 0.0004 

1000 0.3 0.0473 (81,1) 

(99,1) 

(48,0) 

(99,1) 

(48,0) 

(62,0) 

(48,0) 

(62,0) 

(48,0) 

(62,0) 

1500 0.2 0.0210 (184,1) 

(224,1) 

(184,1) 

(224,1) 

(184,1) 

(224,1) 

(184,1) 

(224,1) 

(184,1) 

(224,1) 

2000 0.15 0.0118 (448,2) 

(530,2) 

(327,1) 

(530,2) 

(327,1) 

(399,1) 

(327,1) 

(399,1) 

(327,1) 

(399,1) 

2500 0.12 0.0075 (880,3) 

(1021,3) 

(701,2) 

(829,2) 

(701,2) 

(829,2) 

(512,1) 

(829,2) 

(512,1) 

(624,1) 

3000 0.1 0.0052 (1760,5) 

(2246,6) 

(1267,3) 

(1736,4) 

(1010,2) 

(1471,3) 

(1010,2) 

(1194,2) 

(738,1) 

(1194,2) 

3500 0.0857 0.0038 (3357,8) 

(4057,9) 

(2396,5) 

(3059,6) 

(1725,3) 

(2364,4) 

(1375,2) 

(2002,3) 

(1375,2) 

(1626,2) 

4000 0.075 0.0029 (6398,13) 

(8200,16) 

(3972,7) 

(5299,9) 

(3130,5) 

(3996,6) 

(2254,3) 

(3088,4) 

(2254,3) 

(2616,3) 

t=450, λ=1 m₁ 6000 7000 8000 9000 10000 

t/m₁ 0.075 0.0642 0.0562 0.05 0.045 

m₂ t/m₂  P1 

    P2 

0.0029 0.0021 0.0016 0.0013 0.0010 

1000 0.45 0.1064 (36,1) 

(43,1) 

(21,0) 

(43,1) 

(21,0) 

(27,0) 

(21,0) 

(27,0) 

(21,0) 

(27,0) 

1500 0.3 0.0473 (81,1) 

(99,1) 

(81,1) 

(99,1) 

(81,1) 

(99,1) 

(81,1) 

(99,1) 

(48,0) 

(99,1) 

2000 0.225 0.0266 (199,2) 

(235,2) 

(145,1) 

(235,2) 

(145,1) 

(177,1) 

(145,1) 

(177,1) 

(145,1) 

(177,1) 

2500 0.18 0.0170 (390,3) 

(453,3) 

(311,2) 

(367,2) 

(311,2) 

(367,2) 

(227,1) 

(367,2) 

(227,1) 

(277,1) 

3000 0.15 0.0118 (781,5) 

(997,6) 

(563,3) 

(770,4) 

(448,2) 

(653,3) 

(448,2) 

(530,2) 

(327,1) 

(530,2) 

3500 0.1285 0.0087 (1491,8) 

(1801,9) 

(1064,5) 

(1358,6) 

(766,3) 

(1049,4) 

(610,2) 

(889,3) 

(610,2) 

(722,2) 

4000 0.1125 0.0066 (2842,13) 

(3643,16) 

(1764,7) 

(2354,9) 

(1390,5) 

(1774,6) 

(1001,3) 

(1371,4) 

(1001,3) 

(1162,3) 
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Table3:  Parameters of RSSPs under the conditions of ER (β, λ=1) Distribution with α=0.05, λ=1 and t=600 hours. 

In each cell, the first pair is the value of (n, c) corresponding to (α=0.05, β=0.10) and the second pair 

corresponding to (α=0.05, β=0.05). 

VI. Conclusion

In this article, a new sampling distribution is introduced for testing product quality when 

conducting acceptance sampling for life tests that follow the Exponential Rayleigh distribution. The 

paper also outlines reliability sampling plans for conducting life tests through hybrid censoring, 

specifically for products that follow the Exponential Rayleigh distribution. These plans have been 

designed to protect the interests of both the producer and consumer and the use of hybrid censoring 

helps to reduce the amount of time required for implementation. The article also includes tables that 

provide optimal plans for certain specified strengths. 
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Abstract

Characterization of a probability distribution gives a unique property enjoyed by that distribution.
Various approaches are available in the literature to characterize distributions through record values.
Many researchers have characterized Exponential, Pareto, and Power function distributions using
moments, conditional expectation, and some other characteristics of record values. In this paper, we have
characterized these three distributions through conditional variance of adjacent record values. The results
have been verified using numerical computation.

Keywords: Characterization of continuous distributions, conditional variance, record values.

1. Introduction

Let X1, X2, . . . be a sequence of independent, identically distributed random variables with
distribution function (d f )F(x) and probability density function (pd f ) f (x). Let XU(r) be the r th
upper record value, then the conditional pd f of XU(r+1) given XU(r) = x, 1 ≤ r < s is given by
(Ahsanullah, 2004)[1]

f
(

XU(r+1) = y | XU(r) = x
)
=

f (y)
F̄(x)

(1.1)

where F̄(x) = P(X > x) = 1 − F(x).
One can transform the upper record into lower record values by replacing the original sequence
of

(
Xj

)
by (−Xi, j ≥ 1) (Ahsanullah, 2004) [1]. Let XL(r) be the r-th lower record value, then the

conditional pd f of XL(r+1) given XL(r) = x, 1 ≤ r < s is given by

f
(

XL(r+1) | XL(r) = x
)
=

f (y)
F(x)

. (1.2)

The record values have been extensively studied in literature. For an excellent review, one may
refer to Ahsamullah (2004) [1]. Arnold at al. (1998) [2] and Nevzorov (2001) [3] amongst others.
Characterization of distributions through conditional expectations of record values have been
considered, among others, by Nagaraja, H.N. and Nevzorov, V.B. (1997) [4], Franco and Ruiz(1997)
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[5], Athar et al. (2003) [6], Khan et al. (2010) [7] and Faizan and Khan (2011) [8].

Beg, M.I. and Kirmani. S.N.U.A. (1978) [9] characterized exponential distribution by a weak
homoscedasticity. Khan and Beg (1987) [10] extended the result of Beg and Kirmani (1978)
for Weibull distribution. Khan et al. (2008) [11] characterized a general class of distribution
by conditional variance of order statistics and Shah et al. (2018) [12] characterized Pareto and
power function distributions by conditional variance of order statistics, In this paper we have
characterized exponential, Pareto and power function distributions by conditional variance of
record values.

2. Characterization Results

Theorem 2.1: Let x be a random variable with df F(x) and E
(
X2) < ∞. Then for r < s

V
[

Xx(r+1) | Xv(r) = x
]
= θ2 (2.1)

for some θ > 0 if and only if
F̄(x) = e−re; x > 0. (2.2)

Proof: First we will prove (2.2) implies (2.1). It is easy to see that from (1.1) and (2.2)

E
[

Xu(r+1) | Xu(r) = x
]
= x + θ (2.3)

and
E
[

X2
u(r+1) | Xu(r)) = x

]
= x2 + 2xθ + 2θ2 (2.4)

Now, using (2.3) and (2.4), we have

V
[

Xu(r+1) | Xu(r) = x
]
= θ2

For sufficiency part, we have from (2.2)

∫ ∞

x
y2 f (y)

F̄(x)
dy −

(∫ ∞

x
y

f (y)
F̄(x)

dy
)2

= θ2

F̄(x)
∫ ∞

x
y2 f (y)dy −

(∫ ∞

x
y f (y)dy

)2
= θ2 F̄2(x) (2.5)

Differentiating (2.5) twice w.r.t. x and simplifying, we get∫ ∞

x
y f (y)dy = xF̄(x) + θ2 f (x) (2.6)

Now differentiate (2.6) again w.r.t. x, we get

F̄(x) = −θ2 f ′(x)

and hence the result.
Theorem 2.2: Let X be a random variable with d f F(x) and E

(
X2) < ∞. Then, for some r < s

and 0 < p < 1, we have

V
[

Xu(r+1) | Xu(r) = x
]
=

p
(p − 2)(p − 1)2 x2 (2.7)

if and only if

F̄(x) =
(α

x

)p
; α ≤ x < ∞. (2.8)
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Proof: First we will prove (2.8) implies (2.7). By using (1.1) and (2.8), it is easy to show that

E
[

Xu(r+1) | Xu(r) = x
]
=

p
p − 1

x

and
E
[

X2
u(r+1) | Xu(r) = x

]
=

p
p − 2

x2

which gives

V
[

Xu(r+1) | Xu(r) = x
]
=

p
(p − 2)(p − 1)2 x2.

Now, to prove (2.7) implies (2.8), we have using (1.1) and (2.7)

F̄(x)
∫ ∞

x
y2 f (y)dy −

(∫ ∞

x
y f (y)dy

)2
= cx2 F̄2(x) (2.9)

where
c =

p
(p − 2)(p − 1)2 .

Differentiating (2.9) twice w.r.t. x and simplifying, we get∫ ∞

x
y2 f (y)dy − 2x

∫ ∞

x
y f (y)dy = (2c − 1)x2 F̄(x)− 2cx

F̄2(x)
f (x)

. (2.10)

Now, after differentiating (2.10) w.r.t. x, we get∫ ∞

x
y f (y)dy = cx2 f (x)− (4c − 1)xF̄(x) + c

F̄2(x)
f ′(x)

− cx
F̄2(x) f ′(x)

f 2(x)
. (2.11)

Again differentiating (2.11), we get

2x
F̄(x) f ′2(x)

f 3(x)
− 2

F̄(x) f ′(x)
f 2(x)

− x
F̄(x) f ′′(x)

f ′2(x)
+ 2x

f ′(x)
f (x)

+ x2 f ′(x)
F̄(x)

+ 6x
f (x)
F̄(x)

− 6 +
1
c
= 0.

Let F̄′(x)
F̄(x) = y = y(x) bearing in mind that f (x) = F′(x), f ′(x) = F′′(x), f ′′(x) = F′′′(x),

F̄′′(x)
F̄(x) = y′ + y2, F̄′′′(x)

F̄(x) = y′′ + 3yy′ + y3, we get

x
y′′ + 3yy′ + y3

y2 − 2x
(
y′ + y2)2

y3 −
(

x2 − 2
y2 − 2x

y

)(
y′ + y2

)
− 6xy + p2 − 4p − 2

p
− 1 = 0.

(2.12)
There exists a unique solution of the differential equation (2.12) that satisfies the prescribed initial
conditions
that y′(a) = − p

a2

and
y(a) =

p
a

where a is any finite point in the support of F. Thus by the existence and uniqueness theorem
(Boyce and Diprima, 2012) [13], we get

F̄′(x)
F̄(x)

= y = − p
x

which implies that
F̄(x) = (Ax)−p; α ≤ x < ∞.
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where A is a constant to be determined and hence the Theorem.
Theorem 2.3: Let X be a random variable with d f F(x) and E

(
X2) < ∞. Then for r < s

V
[

XL(r+1) | XL(r) = x
]
=

p
(p + 2)(p + 1)2 x2

if and only if

F(x) =
(

x
β

)p
; 0 ≤ x < β < ∞. (2.13)

Proof: This can be proved on lines of Theorem 2.2

Table 1: Verification of the characterization results in case of Exponential distribution.

θ X L.H.S. R.H.S. |L.H.S. − R.H.S.| | L.H.S.−R.H.S.
R.H.S |

1.5 0.4 2.2499 2.25 0.0001 0.00005
2.5 0.8 6.2497 6.25 0.0003 0.00005
4.5 1.6 20.2504 20.25 0.0004 0.00002
5.5 2.0 30.2454 30.25 0.0046 0.00015
6.5 2.4 42.2430 42.25 0.0070 0.00017
7.5 2.8 56.2436 56.25 0.0064 0.00011
8.5 3.2 72.2603 72.25 0.0103 0.00014
9.5 3.6 90.2302 90.25 0.0198 0.00022

10.5 4.0 110.2485 110.25 0.0015 0.00001
11.5 4.4 132.2380 132.25 0.0120 0.00009
12.5 4.8 156.1910 156.25 0.0590 0.00038
13.5 5.2 182.2197 182.25 0.0303 0.00017
14.5 5.6 210.2026 210.25 0.0474 0.00023
15.5 6.0 240.2801 240.25 0.0301 0.00013

Table 2: Verification of the characterization results in case of Pareto distribution.

α p X L.H.S. R.H.S. |L.H.S. − R.H.S.| | L.H.S.−R.H.S.
R.H.S |

0.3 3 0.2156 0.0347 0.0348 0.0001 0.0029
0.7 4 0.5797 0.0745 0.0747 0.0002 0.0027
1.1 5 0.8523 0.0756 0.0757 0.0001 0.0013
1.5 6 1.1692 0.0838 0.0820 0.0018 0.0220
1.9 7 1.4536 0.0699 0.0822 0.0123 0.1496
2.3 8 1.7510 0.0836 0.0834 0.0151 0.1530
2.7 9 2.0642 0.0943 0.0856 0.0087 0.1016
3.1 10 2.3171 0.0829 0.0812 0.0017 0.0209
3.5 11 2.6390 0.0850 0.0851 0.0001 0.0011
3.9 12 2.9604 0.0878 0.0869 0.0009 0.0103
4.3 13 3.2612 0.0847 0.0873 0.0026 0.0002
4.7 14 3.5998 0.0899 0.0895 0.0004 0.0045
5.1 15 3.8431 0.0862 0.0869 0.0007 0.0080
5.5 16 4.2212 0.0871 0.0905 0.0034 0.0376
5.9 17 4.5505 0.0917 0.1147 0.0230 0.2005

Conclusions:
This paper introduces a study of the Exponential, Pareto, and Power function distributions,
showcasing their characterizations based on the conditional variance of adjacent record values.
The validity of our findings has been confirmed through some numerical computation.
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Abstract

Considered is a three-station tandem queue with service times at stations 1, 2, and 3 are exponentially
distributed with customers arriving according to the Poisson process at station 1. Given that the station-
ary distribution is the product of three independent geometric distributions with the intensity parameters,
maximum likelihood estimators and Bayes estimators of the intensity parameters based on the number of
customers present at different time periods are obtained. Furthermore, the minimal posterior risk and
minimum Bayes risk of the estimators are computed. Also, a simulation study is conducted to evaluate
the performance of the estimators obtained.

Keywords: Three-station tandem queue, Classical inference, Bayesian inference, MCMC sampling

1. Introduction

Most works on queuing models are restricted to deriving the formulations for transient or
stationary (steady state) solutions and do not take into account the related statistical inference
issues. Some of the crucial tools to understanding any random phenomenon using stochastic
models are classical inference and Bayesian inference. The past has not paid much attention to
the analysis of queuing systems in all these directions. Standard parametric models are highly
suitable whenever the systems are completely observable in terms of their fundamental random
components, such as inter-arrival times and service times.
Estimation of the parameters associated with the queueing models are integral part of queuing
theory. Frequently, previous experiments or analyses of the inter-arrival time or service time
data have revealed some information about the parameters of the distributions of inter-arrival
time or service time. The Bayesian approach offers the framework for formally integrating prior
knowledge with the facts currently available.
Here are some of the queueing system research that have been done in the past where the estimate
of queueing parameters was done using both classical and Bayesian methods. Inter-arrival and
service times were used as the observed data in an empirical Bayesian framework by [9] to
estimate the parameters for various queueing systems. Based on the number of customers present
at various sampling time points, [5] computed an maximum likelihood estimator (MLE) and
Bayes estimator of traffic intensity in an M/M/1 queueing model. Regarding tandem queues with
dependent service time structures, [2] studied statistical inferential aspects. Using the classical
inference method, they modelled tandem queues and estimated the parameters. The statistical
analysis of a tandem queue with blocking was then undertaken by [3] and focused on a two
station tandem queue. Again, [1] investigated the Bayesian inference for a two station tandem
queue, calculated the traffic intensities for the two stations, and determined the confidence

RT&A, No 1 (77)
 Volume 19, March 2024

113

ambilyjose@cusat.ac.in, agnesjerome2000@gmail.com, irshadmr@cusat.ac.in


Ambily Jose, Agnes Jerome, M. R. Irshad
INFERENCES ON THREE-STATION TANDEM QUEUE

interval of the estimators. In the M/M/1 queue with bivariate priors, Bayes estimation has been
studied by [6]. Then [4] performed a simulation research applying the Markov Chain Monte
Carlo (MCMC) approach including the Metropolis-Hastings (M-H) algorithm and explored the
Bayesian inference of the Markovian queuing model with two heterogeneous servers.
This paper attempts a detailed study of a three station tandem queue with customers arriving
according to the Poisson process, with rate λ for service at station 1 and service times at station
1, station 2, and station 3 being exponentially distributed with service rates µ1, µ2 and µ3
respectively. The maximum likelihood and Bayes estimators of the intensity parameters ρ1, ρ2 and
ρ3 are computed using the number of customers present at various sampled time points under
the assumption that the stationary distribution is the product of three independent geometric
distributions with parameters ρ1, ρ2 and ρ3 accordingly. Additionally, the minimal Bayes risk of
the estimators and the minimum posterior risk related to Bayes estimators are derived.
This paper is structured as follows: Section 1 discussed an introduction to tandem queues as well
as some early research in this area. Section 2 explored the model, the system description, and the
inferential aspects of the model. Section 3 looked at the estimated number of customers in the
system and its implications. Section 4 examined the model using simulation. Finally, Section 5
contains the paper’s conclusions.

2. System description and steady state probability

Consider a simplified one channel queuing system consisting of three service stations as in the
figure 1. A customer that arrives for servicing must pass through station 1, station 2 and station 3

Figure 1: System configuration

before finishing the service. The model’s underlying assumptions are as follows:

1. Arrivals occur according to the Poisson distribution with mean rate λ at station 1.

2. Service times at station 1, station 2 and station 3 are exponentially distributed with service
rates µ1, µ2 and µ3 respectively.

3. A queue of infinite size is allowed in front of station 1 and station 2 but at most one customer
is permitted to wait between station 2 and station 3.

4. Each station is either free or busy.

5. If a customer in station i, i = 1, 2 completes their service before station (i + 1), i = 1, 2
becomes free, then it is said that station i, i = 1, 2 is blocked.

Let pn1,n2,n3(t) be the probability that there are n1 customers in station 1, n2 customers in station
2 and n3 customers in station 3 at time t (in queue or in system). In the steady state it can be
shown that,

pn1,n2,n3(t) = ρn1
1 (1 − ρ1)ρ

n2
2 (1 − ρ2)ρ

n3
3 (1 − ρ3), n1, n2 = 0, 1, 2, 3, ... & n3 = 0, 1,

where, ρi =
λ
µi

, i = 1, 2, & 3 and steady state results exist provided ρi < 1.
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2.1. Classical Inference

The likelihood function of the number of customers present at n different time points t1, t2, t3, ..., tn
is given by

l((ρ1, ρ2, ρ3)|((x1, y1, z1), ..., (xn, yn, zn))) = ρ
∑n

i=1 xi
1 (1 − ρ1)

nρ
∑n

i=1 yi
2 (1 − ρ2)

nρ
∑n

i=1 zi
3 (1 − ρ3)

n. (1)

Taking logarithms and differentiating the log-likelihood function of (1) with respect to ρ1, ρ2 and
ρ3 and equating to zero, we get the MLEs of ρ1, ρ2, ρ3 and are given by

ρ̂1 =
∑n

i=1 xi

n + ∑n
i=1 xi

, ρ̂2 =
∑n

i=1 yi

n + ∑n
i=1 yi

and ρ̂3 =
∑n

i=1 zi

n + ∑n
i=1 zi

.

In other words,

ρ̂1 =
T1

n + T1
, ρ̂2 =

T2

n + T2
and ρ̂3 =

T3

n + T3
,

where,

T1 =
n

∑
i=1

xi ∼ NB(n, 1 − ρ1), T2 =
n

∑
i=1

yi ∼ NB(n, 1 − ρ2) and T3 =
n

∑
i=1

zi ∼ NB(n, 1 − ρ3)

and T1, T2 and T3 are independent (see, [8]). Clearly, the probability mass functions (pmfs) of T1,
T2 and T3 are given by

P[T1 = t1] =

(
t1 + n − 1

n − 1

)
(1 − ρ1)

nρt1
1 ,

P[T2 = t2] =

(
t2 + n − 1

n − 1

)
(1 − ρ2)

nρt2
2 and

P[T3 = t3] =

(
t3 + n − 1

n − 1

)
(1 − ρ3)

nρt3
3 ,

where, t1 = 0, 1, 2, .., t2 = 0, 1, 2, .. and t3 = 0, 1, 2, ... It can be shown that

E(T1) =
n2ρ1

1 − ρ1
, E(T2) =

n2ρ2

1 − ρ2
and E(T3) =

n2ρ3

1 − ρ3
.

Also

Var(T1) =
n2ρ1

(1 − ρ1)2 , Var(T2) =
n2ρ2

(1 − ρ2)2 and Var(T3) =
n2ρ3

(1 − ρ3)2 .

Since ρ̂1, ρ̂2 and ρ̂3 are one to one functions of T1,T2 and T3 respectively, it is clear that ρ̂1, ρ̂2 and
ρ̂3 assume the values t1

n+t1
, t2

n+t2
and t3

n+t3
respectively with t1,t2,t3 = 0, 1, 2, 3, · · · Further, the joint

pmf of ρ̂1, ρ̂2 and ρ̂3 is given by

P[ρ̂1 = u, ρ̂2 = v, ρ̂3 = w] = P
[

t1

n + t1
= u,

t2

n + t2
= v,

t3

n + t3
= w

]
= P

[
t1 =

nu
1 − u

]
P
[

t2 =
nv

1 − v

]
P
[

t3 =
nw

1 − w

]
=

( nu
1−u + n − 1

n − 1

)
(1 − ρ1)

nρ
nu

1−u
1

( nv
1−v + n − 1

n − 1

)
(1 − ρ2)

nρ
nv

1−v
2

×
( nw

1−w + n − 1
n − 1

)
(1 − ρ3)

nρ
nw

1−w
3 .

In the next section, Bayes estimators of ρ1, ρ2 and ρ3 and their Bayes risks are found.
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2.2. Bayesian Inference

The number of customers present at various sampled time points is used to determine the Bayes
estimators of ρ1, ρ2 and ρ3 as well as their Bayes risks. The natural conjugate prior density for
(ρ1, ρ2, ρ3) is taken to be the product of three independent Beta distributions of first kind with the
parameters (m1, n1), (m2, n2) and (m3, n3), respectively. As a result, we suppose that (ρ1, ρ2, ρ3)
has a prior distribution that is the product of three separate Beta distributions of the first kind,
each with the parameters (m1, n1), (m2, n2) and (m3, n3). That is,

τ(ρ|(m1, n1), (m2, n2), (m3, n3)) =
1

β(m1, n1)β(m2, n2)β(m3, n3)
ρm1−1

1 (1 − ρ1)
n1−1ρm2−1

2

× (1 − ρ2)
n2−1ρm3−1

3 (1 − ρ3)
n3−1,

where 0 < ρ1, ρ2, ρ3 < 1, ρ = (ρ1, ρ2, ρ3), m′ = (m1, n1), n′ = (m2, n2) and p′ = (m3, n3).
The marginal probability density function (pdf) of T = (T1, T2, T3) = (∑n

i=1 xi, ∑n
i=1 yi, ∑n

i=1 zi),
which is called the predictive pdf and is given by

f ∗(t) =
∫ 1

0

∫ 1

0

∫ 1

0
f (t1, t2, t3; ρ1, ρ2, ρ3).τ(ρ|(m′, n′, p′))dρ1.dρ2.dρ3

=
∫ 1

0

∫ 1

0

∫ 1

0
P[T1 = t1].P[T2 = t2].P[T3 = t3]τ(ρ|(m′, n′, p′))dρ1.dρ2.dρ3

=
β(t1 + m1, n + n1).β(t2 + m2, n + n2).β(t3 + m3, n + n3)

β(m1, n1).β(m2, n2).β(m3, n3)
Π3

i=1

(
ti + n − 1

n − 1

)
.

Hence the posterior distribution of ρ = (ρ1, ρ2, ρ3) is given by

q(ρ|(x, y, z)) =
f (t1, t2, t3; ρ)τ(ρ|(m′, n′, p′))∫ 1

0 f (t1, t2, t3; ρ)τ(ρ|(m′, n′, p′))dρ

=
1

β(t1 + m1, n + n1)
ρ
(t1+m1)−1
1 (1 − ρ1)

(n+n1)−1

× 1
β(t2 + m2, n + n2)

ρ
(t2+m2)−1
2 (1 − ρ2)

(n+n2)−1

× 1
β(t3 + m3, n + n3)

ρ
(t3+m3)−1
3 (1 − ρ3)

(n+n3)−1, 0 < ρ1, ρ2, ρ3 < 1.

It should be pointed out that the posterior distribution of ρ = (ρ1, ρ2, ρ3) is the result of the
pdfs of three independent Beta distributions of first-kind with the parameters (t1 + m1, n + n1),
(t2 + m2, n + n2) and (t3 + m3, n + n3), respectively. Therefore, under the squared error loss, the
Bayes estimator of ρ = (ρ1, ρ2, ρ3) is given by

E[ρ|(x, y, z)] =
∫ 1

0

∫ 1

0

∫ 1

0
ρ1.ρ2.ρ3.q(ρ|(x, y, z))dρ

=
t1 + m1

t1 + m1 + n + n1

t2 + m2

t2 + m2 + n + n2

t3 + m3

t3 + m3 + n + n3
.

Furthermore, the minimum posterior risk related to this Bayes estimator is provided by

Vp[ρ̂
B|(x, y, z)] = diag(E[ρ̂1 − ρ1]

2, E[ρ̂2 − ρ2]
2, E[ρ̂3 − ρ3]

2),

where

E[ρ̂1 − ρ1]
2 =

∫ 1

0

∫ 1

0

∫ 1

0
[ρ̂1 − ρ1]

2q(ρ|(x, y, z))dρ1dρ2dρ3

=
[n1(n1 + 1) + n]t2

1 + n(n − 2m1n1)t1 + [m1(m1 + 1)n2]

(n + t1)2(t1 + m1 + n + n1)(t1 + m1 + n + n1 + 1)
,
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E[ρ̂2 − ρ2]
2 =

[n2(n2 + 1) + n]t2
2 + n(n − 2m2n2)t2 + [m2(m2 + 1)n2]

(n + t2)2(t2 + m2 + n + n2)(t2 + m2 + n + n2 + 1)
and

E[ρ̂3 − ρ3]
2 =

[n3(n3 + 1) + n]t2
3 + n(n − 2m3n3)t3 + [m3(m3 + 1)n2]

(n + t3)2(t3 + m3 + n + n3)(t3 + m3 + n + n3 + 1)
.

Therefore, E[Vp(ρ̂B|(x, y, z))] gives a minimum Bayes risk of ρ̂B = (ρ̂1
B, ρ̂2

B, ρ̂3
B) with respect to the

marginal distribution h(x, y, z) of (x, y, z), where (x, y, z) = (x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn) is
derived as follows:
The marginal distribution h(x, y, z) of (x, y, z) is given by

h(x, y, z) =
∫ 1

0

∫ 1

0

∫ 1

0
L(ρ|(x, y, z)).τ(ρ|(m′, n′, p′))dρ1.dρ2.dρ3

=
β(m1 + t1, n + n1)β(m2 + t2, n + n2)β(m3 + t3, n + n3)

β(m1, n1)β(m2, n2)β(m3, n3)

resulting in the minimum Bayes risk factor

rτ,ρ̂B = E[Vp(ρ̂
B|(x, y, z))] = E[diag(E[ρ̂1 − ρ1]

2, E[ρ̂2 − ρ2]
2, E[ρ̂3 − ρ3]

2)].

3. Expected number of customers in the system

The expected number of customers in the system is defined by

Ls =
∞

∑
n1=0

∞

∑
n2=0

1

∑
n3=0

(n1 + n2 + n3)pn1,n2,n3(t)

=
∞

∑
n1=0

∞

∑
n2=0

1

∑
n3=0

(n1 + n2 + n3)ρ
n1
1 (1 − ρ1)ρ

n2
2 (1 − ρ2)ρ

n3
3 (1 − ρ3)

= (1 − ρ1)(1 − ρ2)(1 − ρ3)
∞

∑
n1=0

∞

∑
n2=0

1

∑
n3=0

(n1 + n2 + n3)ρ
n1
1 ρn2

2 ρn3
3

=
ρ1

1 − ρ1
+

ρ2

1 − ρ2
+

ρ3

1 − ρ3
.

Therefore,

Ls = λ

[
1

(µ1 − λ)
+

1
(µ2 − λ)

+
1

(µ3 − λ)

]
. (2)

In the next section, we obtain a 100(1 − α)% asymptotic confidence interval for the expected
number of customers in the system.

3.1. Maximum Likelihood Estimator for the expected number of customers in
the system

Given an exponential inter-arrival time population with the parameter λ, let X1, X2, ..., Xn be
a random sample of size n. Let Yi1, Yi2, ..., Yin represent a random sample of size n taken from
a population of service times with an exponential distribution and parameter µi, i = 1, 2, 3.
Therefore, it is clear that

E[X̄] =
1
λ

, E[Ȳi] =
1
µi

, i = 1, 2, 3.

Here X̄ and Ȳi, i = 1, 2, 3, respectively represents sample means for inter-arrival times and service
times. It can be shown that X̄ and Ȳi, i = 1, 2, 3 are, respectively, the MLEs of 1

λ and 1
µi

, i = 1, 2, 3.
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Let θ1 = 1
µ1

, θ2 = 1
µ2

, θ3 = 1
µ3

and θ4 = 1
λ . Then the the expected number of customers in the system

given in (2) reduces to

Ls =
θ1

(θ4 − θ1)
+

θ2

(θ4 − θ2)
+

θ3

(θ4 − θ3)
.

Therefore, using the invariance property of the MLE, the MLE of Ls is given by

L̂s =
Ȳ1

X̄ − Ȳ1
+

Ȳ2

X̄ − Ȳ2
+

Ȳ3

X̄ − Ȳ3
.

It should be noticed that L̂s is a real valued function that is also differentiable in Ȳ1, Ȳ2, Ȳ3 and X̄.

3.2. CAN estimator for expected number of customers

By applying the multivariate central limit theorem, we have

√
n [(Ȳ1, Ȳ2, Ȳ3, X̄)− (θ1, θ2, θ3, θ4)]

d−→ N(0, Σ) as n −→ ∞.

The dispersion matrix Σ = ((σij)) is given by Σ = diag(θ2
1 , θ2

2 , θ2
3 , θ2

4). Again from [7], we have

√
n(L̂s − Ls)

d−→ N(0, σ2(θ)) as n −→ ∞,

where θ = (θ1, θ2, θ3, θ4) and

σ2(θ) =
3

∑
i=1

(
∂Ls

∂θi

)2
σii = θ2

4

(
θ2

1
(θ4 − θ1)4 +

θ2
2

(θ4 − θ2)4 +
θ2

3
(θ4 − θ3)4

)
. (3)

Hence it is concluded that, L̂s is a CAN estimator of Ls.

3.3. Confidence interval for expected number of customers

Let σ2(θ̂) be the estimator of σ2(θ) obtained by replacing θ by a consistent estimator θ̂, namely
θ̂ = (Ȳ1, Ȳ2, Ȳ3, X̄). Let σ̂2 = σ2(θ̂). Since σ2(θ) is a continuous function of θ, σ̂2 is a consistent
estimator of σ2(θ) (see, [8]), we have

σ̂2 p−→ σ2(θ) as n −→ ∞.

By Slutsky’s theorem (see, [8]) (Xn
d−→ x, Yn

p−→ b =⇒ Xn
Yn

d−→ x
b , b ̸=0), we have

√
n
(

L̂s − Ls

σ̂

)
d−→ N(0, 1) as n −→ ∞.

That is,

Pr
[
−k α

2
<

√
n
(

L̂s − Ls

σ̂

)
< k α

2

]
= (1 − α),

where k α
2

is obtained from the standard normal table. Hence, 100(1 − α)% asymptotic confi-

dence interval for Ls is given by
(

L̂s ± k α
2

σ̂√
n

)
, where σ̂ is obtained from the equation given in

equation(3) by replacing θ1, θ2 and θ3 by the corresponding MLEs Ȳ1, Ȳ2, Ȳ3 and X̄ respectively.
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4. Computational considerations

The Bayes estimator of model parameters of three-station tandem queue with one customer being
allowed to wait in the last station using an MCMC (see, [10]) simulation method as is as follows:
1. Defining the likelihood function: The likelihood function is a probability distribution that
describes the probability of observing the data given the model parameters. In a queuing model
it would be the probability of observing the number of customers in each station, the waiting
time, and the service time given the model parameters (such as arrival rate, service rate and
observation time).
2. Defining the prior distribution: The prior distribution is a probability distribution that describes
the probability distribution of the model parameters before observing the data. In a queuing
model it would be the probability of the arrival rate, service rate and observation time.
3. Defining the posterior distribution: The posterior distribution is the probability distribution of
the model parameters given the data. It is calculated by multiplying the likelihood function and
the prior distribution.
4. Specify the starting values for the MCMC chain: Choose some initial values for the model
parameters that we want to estimate.
5. Run the MCMC simulation: Use an MCMC algorithm such as the M-H algorithm to generate a
large number of samples from the posterior distribution.
6. Extract the samples from the MCMC chain: Retrieve the samples generated by the MCMC
algorithm for each model parameters.
7. Calculate the posterior mean and standard deviation: Compute the mean and standard
deviation of the samples for each model parameter. These will be the Bayes estimates of the
model parameters.
8. Validate the estimates: Compare the Bayes estimates with the true values of the model parame-
ters (if they are known) or with the estimates obtained using other methods, such as maximum
likelihood estimation or method of moments.
9. Assess the convergence of the chain: Check if the chain has converged or not using methods
such as trace plots, Gelman-Rubin diagnostic, or effective sample size.

4.1. Simulation

The initial values given for simulation are :
ρ1 = 0.3, ρ2 = 0.4, ρ3 = 0.7, m1 = 5, m2 = 6, m3 = 7, n1 = 10, n2 = 9, n3 = 8.

Table 1: Table 1: Table of MSE and Bias for different sample sizes.

Sample Size Estimates MSE Bias

500 0.2677 0.08643 0.17954
0.3575 0.00374 0.07256
0.6794 0.05953 0.09211

1000 0.2730 0.00789 0.00623
0.3823 0.00043 0.00058
0.6847 0.00312 0.00085

2000 0.2877 0.000036 0.00032
0.3956 0.000023 0.000082
0.7148 0.000016 0.00028

5000 0.3062 0.000006 0.000022
0.4341 0.000004 0.000039
0.7232 0.000003 0.000009
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From the table 1 it is clear that when sample size increases, the Mean Square Error (MSE) and
Bias are decreasing and tending to zero, indicating that the validity of the estimators obtained.

4.2. Histograms for simulation range

The histogram of the simulation range for the traffic intensities ρ1, ρ2 and ρ3 is plotted. The Y
axis measures the frequency and the X axis shows the range of values that the corresponding
traffic intensity takes with respect to the initial value. From the figure 2, figure 3 and figure 4, it
is clear that the simulation results have taken a normal curve shape.

Figure 2: Histogram 1

Figure 3: Histogram 2

Figure 4: Histogram 3
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5. Conclusions

In this study, we used the MLE and Bayesian techniques to estimate the traffic intensity for a
three-station tandem queue where only one customer was permitted to wait between the last
two stations. The Bayes estimators of ρ1, ρ2 and ρ3 were obtained using the beta prior, and the
minimal Bayes risk was calculated. We also estimated the expected customers for the system.
Then, using Slutsky’s theorem, the confidence interval for the expected number of customers
was determined. A three-station tandem queue was simulated using MCMC to obtain a Bayes
estimators, and the performance of the estimators are verified through a broad simulation study.
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Abstract

In the dairy plant, an investigation into the machine that makes butter was subjected to a reliability study
in relation to the seasonal demand. In the process of expanding the butter churner into a machine that
can make butter continuously, a more reliable operational model was devised. Both the models and the
data acquired with MATLAB have been subjected to availability and reliability testing and analysis. In
addition, the graphical analysis was carried out with the help of Code Blocks and Excel. A comparison of
the two models was then covered as the final topic. It was discovered that (a) the extended model was
superior to the current model, (b) the failure rate of the existing line increased, which implies that a new
machine needs to be added to the line to share the load, which results in improved production, and (c)
the failure rate of the extended model was lower than the failure rate of the existing model. (c) in order
to maximise profits while simultaneously minimising losses The effectiveness of the system ought to be
enhanced by performing routine maintenance during both the summer and the winter.

Keywords: Butter churner, continuous butter making, seasons, semi-Markov process, profit.

1. Introduction

As a result of high levels of "lifetime" engineering uncertainty, reliability engineering deals with
predicting, preventing, and managing engineering failures. Costs of failures caused by equip-
ment failure, parts costs, repairs, and personnel costs are all taken into account when reliability
engineering is conducted. Industry engineers now put their effort on efficiency and high quality
production. This can be achieved by improving system performance. When it comes to industrial
applications on food production lines, ensuring a high level of reliability is highly important;
however, reliability itself can be complex, many interconnected variables must be taken into
account when guiding and assessing various levels of reliability.

Using maintenance regimes [9] processed site performance improvement in the dairy industry.
[8] presented a case study on optimised performance of butter oil production. Based on real
data [5] represented generation of wind power and electric power demand. Reliability analysis
where operation is effected by temperature conditions was given by [2] and [1]. RAM analysis for
modeling complex engineering systems was used by [6].

Introducing redundancy into a system can enhance its reliability. Redundancy with standby
(redundant) units refers to the usage of additional units with the primary unit of the system,
with the additional unit(s) becoming operational and performing all the desired functions with
equivalent parameters upon the failure of the primary unit. Standby redundancy technique was
used by several researchers to enchance system performance namely [3], [4], [7] etc. Work on
standby units in a dairy industry was done by [10], [11] and [12].
Description of the systems

In model 1, the system which we have considered consists of a churner that works in both
the seasons i.e., summer and winter. In winters, due to high demand system is always operating
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unless a failure occurs that can be due to electricity hault or any fault in the churner. In summers,
due to less demand the system sometimes goes to cold standby state when there is no demand.
In model 2, the system consists of churner and continuous butter making. Both the units starts to
operate to accomodate the demand in winters, on the failure of any one unit the system works on
reduced capacity. In summers, the butter churner is operative and CBM is in cold standby state,
it operates on the failure of the churner. The system either goes to cold standby or maintenance
state when there is no demand.

Methods
Both the models have been analyzed using semi-Markov process and regenerative

point technique probabilistically.

2. Annotations

Table 1:

Notations of the model 1

Notations Descriptions
λ Failure rate of the main unit i.e. Churner.
λ1 Rate of electricity failure due to which churner stops operating.
γ Rate at which churner goes to down state when demand is less than

production.
δ Rate when churner comes to operative state from a cold standby

state.
α Rate of going from winters to summers.
β Rate of going from summers to winters.
ch Main unit of the system i.e.ch.
S Summer season.
W Winter season.
Och Main unit of the system is in operating state.
d > p Demand is more than production.
d < p Demand is less than production.
CSch Main unit is in cold standby state.
Frch Main unit is under repair.
HCSch Main unit in cold standby state due to electricity hault.
G(t), g(t) c.d.f. and p.d.f of time to repair of the main unit.
G1(t), g1(t) c.d.f. and p.d.f of time to repair the electricity hault.
G2(t), g2(t) c.d.f. and p.d.f of time to going back to operating state from down

state.

3. Transition Probabilities and Mean Sojourn Time

Various states of the system are shown in figure 3.1 called as state transition diagram. Here, the
states S0, S1, S2 are operating states, S5 is a cold standby state whereas, states S3, S4, S6, S7 are the
failed states.
Transition Probabilites

dQ01(t) = βe−(α+β)(t)dt• dQ02(t) = αe−(α+β)(t)dt•

dQ13(t) = λ1e−(λ+λ1)(t)dt• dQ14(t) = λe−(λ+λ1)(t)dt•

dQ25(t) = γe−(γ+λ+λ1)(t)dt• dQ26(t) = λ1e−(γ+λ+λ1)(t)dt•
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dQ27(t) = λe−(γ+λ+λ1)(t)dt•

The non-zero probabilities pij are as follows:

pij=Qij(∞) =
∫ ∞

0 qijdt• p01 = β
α+β•

p02= α
α+β• p13 = λ1

λ+λ1
•

p14 = λ
λ+λ1

• p25 = γ
γ+λ+λ1

•

p26 = λ1
γ+λ+λ1

• p27 = λ
γ+λ+λ1

•

p31 = p62 = g ∗1 (0)• p41 = p72 = g ∗ (0)•

From the above transition probabilities it is verified that:

p01 + p02 = 1• p13 + p14 = 1•

p25 + p26 + p27 = 1•

Figure 1: State Transition Diagram

The unconditional mean time taken by the system to transit for any regenerative state j when
time is counted from the epoch of entrance into state i is mathematically state as:

mij =
∫ ∞

0 tdQij(t)dt = −q∗ij(0)• m01 + m02 = µ0•

m13 + m14 = µ1• m25 + m26 + m27 = µ2•

The mean sojourn time µi in the regenerative state iis defined as time of stay in that state before
transition to any other state:

µ0 = 1
α+β• µ1 = 1

λ+λ1
•

µ2 = 1
γ+λ+λ1

• µ3 = µ6 = −g∗1(0)•

µ4 = µ7 = −g∗(0)• µ5 = 1
δ•

4. Mean Time to System Failure

The average duration between successive system failures, i.e. MTSF is defined as the expected
time for which the system is in operation before it completely fails. Mean time to system failure
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(MTSF) of the system is determined by considering failed state as absorbing state. When the
system starts from the state 0, the mean time to system failure is:

T0 = lim
s−→0

R∗(s) = lim
s−→0

1 − ϕ∗∗
o (s)

s
=

N
D

where,
N=(µ0+µ1 p01)(1-p25)+(µ2+µ5 p25)(p02)
D=1-p25

5. Availability Analysis of the System in Summers

Availability Ai(t) is a measure that allows for a system to repair when failure occurs. The
availability of the system is defined as the probability that the system is successful at time t. The
long run availability of the system is given by

As
0 = lims−→0[sA∗s

0 (s)] = N1
D1

where,
N1=µ2 p02
D1=µ2+µ5 p25+µ0 p26 + µ7 p27

6. Availability Analysis of the System in Winters

Availability Ai(t) is a measure that allows for a system to repair when failure occurs. The
availability of a system is defined as the probability that the system is successful at time t. The
long run availability of the system is given by

Aw
0 = lims−→0[sA∗w

0 (s)] = N2
D2

where,
N2=µ1 p01
D2=µ1+µ4 p14+µ3 p13

7. Busy Period Analysis for Repair in Summers

Busy period Bi(t) in summers is defined as the probability that the repairman is busy at time t
when the system entered to a regenerative state i. The total time in which the repairman is busy
doing repair of the system in steady state is given by:

Bs
0 = lims−→0[sB∗s

0 (s)] = N3
D1

where,
N3=p02(p26µ6 + p27µ7)
D1is already defined above.

8. Busy Period Analysis for Repair in Winters

Busy period Bi(t) in winters is defined as the probability that the repairman is busy at time t
when the system entered to a regenerative state i. The total time in which the repairman is busy
doing repair of the system in steady state is given by:

Bw
0 = lims−→0[sB∗w

0 (s)] = N4
D2

where,
N4=p01(W3 p13 + W4 p14)
D2is already defined above.
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9. Expected Number of Repairs in Summers

Let Vi(t) be the expected number of repairs in (0, t) given that the system entered into
regenerative state i at i = 0. The expected number of repairs during summers in steady state is
given by:

Vr = lims−→0 sV∗∗
r (s) = N5

D1
N5=p02(1 − p25)
D1 is already defined above in equation.

10. Expected Number of Repairs in Winters

Let Vi(t) be the expected number of repairs in (0, t) given that the system entered into
regenerative state i at i = 0. The expected number of repairs during summers in steady state is
given by:

Vr = lims−→0 sV∗∗
r (s) = N6

D2
N6=p01
D2 is already defined above in equation.

11. Profit Analysis of the System

Profit incurred to the system model in steady state is given by
P = (C0 As

0 + C1 Aw
0 )− (C2Bs

0 + C3Bw
0 + C4Vs

0 + C5Vw
0 )

where,
C0=Revenue per unit up time in summers.
C1=Revenue per unit up time in winters.
C2=Cost per unit up time for which the repairman is busy for repair in summers.
C3=Cost per unit up time for which the repairman is busy for repair in winters.
C4=Cost per repair in summers.
C5=Cost per repair in winters.

12. Graphical Analysis and Conclusion

For further numerical and graphical evaluation, let us assume the repair and failure rates to be
exponentially distirbuted
g(t) = θe−θ(t), g1(t) = θ1e−θ1(t)

p01 = β
α+β• p02= α

α+β•

p13 = λ1
λ+λ1

• p14 = λ
λ+λ1

•

p25 = γ
γ+λ+λ1

• p26 = λ1
γ+λ+λ1

•

p27 = λ
γ+λ+λ1

• p31 = p62 = 1•

p41 = p72 = 1• µ0 = 1
α+β•

µ1 = 1
λ+λ1

• µ2 = 1
γ+λ+λ1

•

µ3 = µ6 = 1
θ1

• µ4 = µ7 = 1
θ•

µ5 = 1
δ•

The parameters obtained using the original data collected from the Verka Milk Plant, Bathinda,
Punjab.
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Table 2:

Parameters obtained from data collected

Parameters for
model 1

Values

λ .00045892
λ1 .0002563
g1(t) .04213
g(t) .062981
α .0004314
β .000526
δ .000155
γ .000955
C0 830000
C1 1030000
C2 10500
C3 12500
C4 12000
C5 15500

System effectiveness measures evaluated are given below:

Table 3:

Parameters obtained from data collected

Parameters for model 1 Values
Mean time to system failure 9453.77 hrs
Availability in summers .8975
Availability in winters .8984
Busy period for repair in summers .000485
Busy period for repair in winters .0004204
Expected number of repairs in summers .000217
Expected number of repairs in winters .000031

Figure 2: MTSF v/s Failure Rate
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Figure 3: Profit v/s Failure Rate in Summers

Figure 4: Profit v/s Failure Rate in Winters

Figure 5: Profit v/s Failure Rate in Winters
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Figure 6: Profit v/s Failure Rate in Winters

Table 4:

Notations of the model

Figures Descriptions
5 Profit P1 increases as the revenue C0 increases. C2=10500; Profit >=<

according to C2, when C2 is >=<Rs.275.53, similarly for C2=20500
where cut off point is Rs.163.577 C2=30500; where cut off point is Rs.
452.675

6 Profit P2 increases as the revenue C1 increases. C3=12500; Profit >=<
according to C3, when C1 is >=<Rs.251.85, similarly for C3=22500
where cut off point is Rs.140.469. C3=32500; where cut off point is
Rs. 429.089

Figure 3 and figure 4 depicts the trend of mean time to system failure and profit v/s the failure
rate. It has been observed that as the failure rate λ of the system increases mean time to system
failure and profit decreases. It also decreases on increasing failure rate λ1. Figure 5,6 states that
profit increases as the cost C1 increases as well it increases with increasing profit C3.
MODEL 2 Assumptions
Model 2 have the following assumptions:

• The system is operating at the initial stage.

• At the initial stage the churner is operating and continuous butter making is in a cold
standby state.

• Both the systems operates during winters due to high demand.

• Only one unit is operating during summers due to less demand.

• In summers it also undergoes maintenance.

• The system sometimes goes to cold standby state in case of no demand in summers.

• The repair is done on the failure of the system.

• Repair rates are assumed to have arbitrary distribution.

• Failure rates are taken to be exponentially distributed.
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• After repair the system operates as new.

• The system goes to failed state either on the failure of the churner or due to hault in the
electricity.

13. Annotations for model 2

Table 5:

Notations of the model 2

Notations Descriptions
λ Failure rate of the churner.
λ1 Failure rate of the continuous butter making.
γ Rate at which churner goes to down state when demand is less than

production.
δ Rate when churner comes to operative state from a cold standby

state.
α Rate of going to winters.
β Rate of going to summers.
ch Unit churner of the system.
cbm Unit continuous butter making of the system.
S Summer season.
W Winter season.
Och Churner is in operating state.
Ocbm CBM is in operating state.
d > p Demand is more than production.
d < p Demand is less than production.
CSch Main unit is in a cold standby state.
CScbm CBM is in a cold standby state.
Frch Churner is under repair.
HCSch Churner is in cold standby state due to electricity hault.
G(t), g(t) c.d.f. and p.d.f of time to repair of the churner.
G1(t), g1(t) c.d.f. and p.d.f of time to repair of CBM.
G2(t), g2(t) c.d.f. and p.d.f of time to going back to operating state from mainte-

nance.

14. Model 2

15. Annotations for model 2

16. Transition Probabilites and Mean Sojourn Time

Various states of the system are shown in figure 1.5 called as state transition diagram. Here, the
states S0, S1, S2, S3, S5 are operating states, S4 is a cold standby state whereas, states S9, S10 are
the reduced capacity states and rest are failed states.

dQ01(t) = βe−(α+β)(t)dt• dQ02(t) = αe−(α+β)(t)dt•

dQ19(t) = λ1e−(λ+λ1)(t)dt• dQ1,10(t) = λe−(α+β)(t)dt•

dQ23(t) = λ2e(λ+λ2+γ)dt• dQ24(t) = γe(λ+λ2+γ)dt•

dQ25(t) = λe(λ+λ2+γ)dt• dQ32(t) = g2(t)e−λ(t)dt•

dQ3,13(t) = λe−λ(t) ¯G(t)dt• dQ(13)
37 (t) = (λe−λ(t)(c)1)g2(t)dt•
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dQ42(t) = δe−δ(t)dt• dQ52(t) = g(t)e−λ1(t)dt•

dQ56(t) = λ1e−λ1(t) ¯G(t)dt• dQ(6)
57 (t) = (λ1e−λ1(t))g(t)dt•

dQ67(t) = g2(t)dt• dQ72(t) = g1(t)e−λ(t)dt•

dQ78(t) = λe−λ(t) ¯G1(t)dt• dQ(8)
75 = (λe−λ(t)(c)1)g1(t)dt•

dQ91(t) = g1(t)e−λ(t)dt• dQ9,12(t) = λe−λ(t) ¯G1(t)dt•

dQ(12)
9,10 (t) = (λe−λ(t)(c)1)g1(t)dt• dQ10,1(t) = g(t)e−λ1(t)(t)dt•

dQ10,11(t) = λ1e−λ1(t) ¯G(t)dt• dQ(11)
10,9 (t) = (λ1e−λ1(t)(c)1)g(t)dt•

dQ13,7(t) = g2(t)dt• dQ12,10(t) = g1(t)dt•

The non-zero probabilities pij are as follows:

pij=Qij(∞) =
∫ ∞

0 qijdt• p01 = β
α+β•

p02 = α
α+β• p19 = λ1

λ+λ1
•

p1,10 = λ
λ+λ1

• p23 = λ2
λ+λ2+γ•

p24 = γ
λ+λ2+γ• p25 = λ

λ+λ2+γ•

p32 = g∗2(λ)• p3,13 = p(13)
37 = 1 − g∗2(λ)•

p52 = g(∗)2 (λ1)• p56 = p(6)57 = 1 − g(∗)2 (λ1)•

p72 = g(∗)1 (λ)• p78 = p(8)75 = 1 − g(∗)1 (λ)•

p91 = g(∗)1 (λ)• p9,12 = p(12)
9,10 = 1 − g(∗)1 (λ)•

p10,1 = g(∗)(λ1)• p10,11 = p(11)
10,9 = 1 − g(∗)(λ1)•

From the above transition probabilities it is verified that:

p01 + p02 = 1• p19 + p1,10 = 1•

p23 + p24 + p25 = 1• p32 + p3,13 = 1•

p32 + p(13)
37 = 1• p52 + p56 = 1•

p52 + p(6)57 = 1• p72 + p78 = 1•

p72 + p(8)75 = 1• p91 + p9,12 = 1•

p91 + p(12)
9,10 = 1• p10,1 + p10,11 = 1•

p10,1 + p(11)
10,9 = 1•

The unconditional mean time taken by the system to transit for any regenerative state j when
it (time) is counted from the epoch of entrance into state iis mathematically state as:

mij =
∫ ∞

0 tdQij(t)dt = −q∗ij(0)• m01 + m02 = µ0•

m19 + m1,10 = µ1• m23 + m24 + m25 = µ2•

m32 + m3,13 = µ3• m32 + m(13)
37 = K2•

m52 + m56 = µ5• m52 + m(6)
57 = K•

m72 + m75 = µ7• m72 + m(8)
75 = K1•

m91 + m9,12 = µ9• m91 + m(12)
9,10 = K1•

m10,1 + m10,11 = µ10• m10,1 + m(11)
10,11 = K•
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Figure 7: Model 2: State Transition Diagram

The mean sojourn time µi in the regenerative state iis defined as time of stay in that state
before transition to any other state:

µ0 = 1
α+β• µ1 = 1

λ+λ1
•

µ2 = 1
γ+λ+λ2

• µ3 =
1−g∗2 (λ1)

λ1
•

µ4 = 1
δ• µ5 = 1−g∗(λ1)

λ 1•

µ7 = µ9 =
1−g(∗)1 (λ)

λ• µ10 = 1−g∗(λ1)
λ1

•

µ11 =
∫ ∞

0
¯G(t)dt• µ12 =

∫ ∞
0

¯G1(t)dt•

17. Mean Time to System Failure for Model 2

The average duration between successive system failures, i.e. MTSF is defined as the expected
time for which the system is in operation before it completely fails. Mean time to system failure
(MTSF) of the system is determined by considering failed state as absorbing state. When the
system starts from the state 0, the mean time to system failure is:

T0 = lim
s−→0

R∗(s) = lim
s−→0

1 − ϕ∗∗
o (s)

s
=

N
D

where,
D=p19 p23 p32 p91 − p24 − p25 p52 − p19 p91 − p10,1 p1,10 − p23 p32 + p19 p24 p91 + p19 p25 p52 p91 +
p23 p32 p10,1 p1,10 + p24 p10,1 p1,10 + p25 p52 p10,1 p1,10 + 1
N = µ0(p23 p39 + p25 p56 − p19 p23 p39p91 − p19 p25 p56 p91 − p23 p39p10,1 p1,10 − p25 p56 p10,1 p1,10) +
µ1(p91 + p01 p9,12 − p23 p32 p91 − p24 p42p91 − p25 p52 p91 − p02 p23 p39p91 − p02 p25 p56 p91 −
p01 p23 p32 p9,12 − p01 p24 p42p9,12 − p01 p25 p52 p9,12) + (µ2 + µ4 p24)(p42 − p19 p42p91 −
p42p10,1 p1,10 − p01 p19 p42p9,12 − p01 p42p1,10 p10,11) + µ3(p02 p23 − p02 p19 p23 p91 −
p02 p23 p10,1 p1,10) + µ5(p02 p25 − p02 p19 p25 p91 − p02 p25 p10,1 p1,10) + µ9(p01 p19 − p01 p19 p23 p32 −
p01 p19 p24 p42 − p01 p19 p25 p52) + µ10(p01 p1,10 − p01 p23 p32 p1,10 − p01 p24 p42p1,10 − p01 p25 p52 p1,10)
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18. Reliability Measures

18.1. Availability Analysis in Summers

Availability Ai(t) is a measure that allows for a system to repair when failure occurs. The
availability of a system is defined as the probability that the system is successful at time t. The
long run availability of the system is given by

As
0 = lims−→0[sA∗s

0 (s)] = N1
D1

where,
N1=µ0 + µ2 p02 + µ3 p02 p23 + µ5 p02 p25 − µ0 p23 p32 − µ0 p24 − µ0 p25 p52 − µ0 p(6)57 p(8)75 +

µ7 p02 p23 p(13)
37 + µ7 p02 p25 p(6)57 − µ0 p23 p(13)

37 p72 − µ2 p02 p(6)57 p(8)75 − µ0 p25 p(6)57 p72 +

µ5 p02 p23 p(13)
37 p(8)75 − µ3 p02 p23 p(6)57 p(8)75 + µ0 p23 p32 p(6)57 p(8)75 − µ0 p23 p(13)

37 p52 p(8)75 + µ0 p24 p(6)57 p(8)75

D1=(µ2 + µ4 p24)(1 − p(6)57 p(8)75 ) + µ3(p23 p72 + p23 p52 p(8)75 ) + µ5(p(8)75 + p25 p72 − p23 p32 p(8)75 −
p24 p(8)75 ) + µ7(p(6)57 − p23 p32 p(6)57 + p23 p(13)

37 p52 − p24 p(6)57 )

18.2. Availability Analysis in Winters when the System Works at Full Capacity

The availability of a system is defined as the probability that the system is successful at time t.
The long run availability of the system is given by

As
0 = lims−→0[sA∗s

0 (s)] = N2
D2

where,
N2 = µ0 + µ1 p01 − µ0 p19 p91 − µ0 p10,1 p1,10 − µ0 p(11)

10,9 p(12)
9,10 − µ0 p91 p(11)

10,9 p1,10 − µ1 p01 p(11)
10,9 p(12)

9,10 −
µ0 p19 p10,1 p(12)

9,10
D2 = µ1(p10,1 + p91 p10,9) + µ9(p10,9 + p19 p10,1) + µ10(p1,10 + p19 p9,10)

18.3. Availability Analysis in Winters when the System Operates at Reduced
Capacity

Availability of the system when it operates at reduced capapcity is given by
Aw

0 = lims−→0[sA∗w
0 (s)] = N3

D2
where,
N3 = p01(µ9 p19 + µ10 p1,10 + µ9 p(11)

10,9 p1,10 + µ10 p19 p(12)
9,10 )

D2 is already defined above.

18.4. Busy Period Analysis for Repair in Summers

Busy period Bi(t) in summers is defined as the probability that the repairman is busy at time t
when the system entered to a regenerative state i. The total time in which the repairman is busy
doing repair of the system in steady state is given by:

Bsr
0 = lims−→0[sB∗sr

0 (s)] = N4
D1

where,
N4=p02(µ5 p25 + µ7 p23 p(13)

37 + µ7 p25 p(6)57 + µ5 p23 p(13)
37 p(8)75 )

D2is already defined above.

18.5. Busy Period for Maintenance in Summers

Busy period Bi(t) in summers for maintenance is obtained. The total time in which the
repairman is busy doing repair of the system in steady state is given by:

Bsm
0 = lims−→0[sB∗sm

0 (s)] = N5
D2

where,
N5=−µ3 p02 p23(p(6)57 p(8)75 − 1)
D2is already defined above.
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18.6. Busy Period Analysis for Repair in Winters

Busy period for repair in winters is obtained as given below:
The total time in which the repairman is busy doing repair of the system in steady state is given
by:

Bwr
0 = lims−→0[sB∗wr

0 (s)] = N6
D2

where,
N6 = p01(µ9 p19 + µ10p1,10 + µ9 p(11)

10,9 p1,10 + µ10 p19 p(12)
9,10 )

D2is already defined above.

18.7. Expected Number of Repairs in Summers

Let Vi(t) be the expected number of repairs in (0, t) given that the system entered into
regenerative state i at i = 0.
The expected number of repairs during summers in steady state is given by:

Vsr = lims−→0 sVsr(s) = N7
D1

N7 = p02(p25 p52 + p25 p(6)57 + p23 p(13)
37 p72 + p23 p(13)

37 p(8)75 + p25 p(6)57 p72 + p25 p(6)57 p(8)75 +

p23 p(13)
37 p52 p(8)75 + p23 p(13)

37 p(6)57 p(8)75 )
D1 is already defined above.

18.8. Expected Number of Maintenances in Summers

Let Vi(t) be the expected number of maintenances. The expected number of repairs during
summers in steady state is given by:

Vsm = lims−→0 sVsm(s) = N8
D1

N8 = −(p32 + p(13)
37 )p02 p23(p(6)57 p(8)75 − 1)

D1 is already defined above.

18.9. Expected Number of Repairs in Winters

Let Vi(t) be the expected number of repairs in winters. The expected number of repairs during
summers in steady state is given by:

Vwr = lims−→0 sVwr(s) = N9
D2

N9 = p01(p19 p91 + p10,1 p1,10 + p10,9 p1,10 + p19 p(12)
9,10 + p91 p10,9 p1,10 + p19 p10,1 p(12)

9,10 + p19 p10,9 p(12)
9,10 +

p10,9 p1,10 p9,10)
D2 is already defined above.

19. Profit Analysis of the System

Profit incurred to the system model in steady state is given by
P = (C0 As

0 + C1 Aw f
0 + C2 Awr

0 )− (C3Bs
0 + C4Bw

0 + C5Bsm
0 + C6Vsr

0 + C7Vw
0 + C8Vsm

0 )
where,
C0=Revenue per unit up time in summers.
C1=Revenue per unit up time in winters when the system operates at full capacity.
C2=Revenue per unit up time in winters when the system operates at reduced capacity.
C3=Cost per unit up time for which the repairman is busy for repair in summers.
C4=Cost per unit up time for which the repairman is busy for repair in winters.
C5=Cost per unit up time for which the repairman is busy for maintenance in summers.
C6=Cost per repair in summers.
C7=Cost per repair in winters.
C8=Cost per maintenance in summers.
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20. Graphical Analysis and Conclusion

For further numerical and graphical evaluation, let us assume the repair and failure rates to be
exponentially distirbuted
g(t) = θe−θ(t), g1(t) = θ1e−θ1(t), g2(t) = θ2e−θ2(t)

p01 = β
α+β• p02 = α

α+β•

p19 = λ1
λ+λ1

• p1,10 = λ
λ+λ1

•

p23 = λ2
λ+λ2+γ• p24 = γ

λ+λ2+γ•

p25 = λ
λ+λ2+γ• p32 = λ1

λ1+θ2
•

p(13)
37 = p3,13 = θ2

λ1+θ2
• p52 = λ1

λ1+θ•

p(6)57 = p56 = θ
λ1+θ• p72 = λ

λ+θ1
•

p(8)75 = p78 = θ1
λ+θ1

• p91 = λ
λ+θ1

•

p(12)
9,10 = p9,12 = θ1

λ+θ1
• p10,1 = λ1

λ1+θ•

p(12)
10,11 = p10,12 = θ

λ1+θ• µ0 = 1
α+β•

mu1 = 1
λ+λ1

• µ2 = 1
γ+λ+λ2

•

µ3 = θ2
λ1(λ1+θ2)

• µ4 = 1
δ•

µ5 = µ10 = θ
λ1(λ1+θ)

• µ7 = µ9 = θ1
λ(λ+θ1)

•

µ13 = 1
θ2

• µ8 = µ12 = 1
θ1

•

µ6 = 1
θ•

The parameters obtained using the original data collected from the Verka Milk Plant, Bathinda,
Punjab.

Table 6:

Parameters obtained from data collected

Parameters for
model 1

Values

λ .00045892
λ1 .0004567
λ2 0.000246572
g1(t) .06312
g(t) .062981
g2(t) 0.002628867
α .000562
β .0004314
δ .000955
γ .000155
C0 830000
C1 1030000
C2 61660
C3 10500
C4 12500
C5 15500
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C6 19500
C7 6400
C8 7000

System effectiveness measures evaluated are given below:

Table 7:

Parameters obtained from data collected

Parameters for model 2 Values
Mean time to system failure 99682.28 hrs
Availability in summers 0.985
Availability in winters when system oper-
ates at full capacity

.989

Availability in winters when system oper-
ates at reduced capacity

.001435

Busy period for repair in summers .003814
Busy period for maintenance in summers .038744
Busy period for repair in winters .007864
Expected number of repairs in summers .000242
Expected number of maintenances in sum-
mers

.000120

Expected number of repairs in winters .000499

Figure 8: MTSF v/s Failure Rate

Figure 9: Profit v/s Failure Rate in Summers
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Figure 10: Profit v/s Failure Rate in Winters

Figure 11: Profit v/s Failure Rate in Winters

Figure 12: Profit v/s Failure Rate in Winters
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Table 8:

Notations of the model

Figures Descriptions
11 Profit P1 increases as the revenue C0 increases. C3=10500; Profit >=<

according to C3, when C3 is >=<Rs.645.34, similarly for C3=20500
where cut off point is Rs.573.039 C3=30500; where cut off point is Rs.
500.7389

12 Profit P2 increases as the revenue C1 increases. C4=12500; Profit
>=< according to C4, when C1 is >=<Rs.203.345, similarly for
C4=22500 where cut off point is Rs.460.203. C4=32500; where cut off
point is Rs. 317.061

The MTSF, profit in the summers (P1), and profit in the winters (P2) graphs 8,9,10 exhibit a
similar trend with failure rate lambda and λ1, which means that as the failure rate rises, the
MTSF and profit fall.

21. Conclusion

The significance of implementing dependability in verka milk plant is analysed and concluded
upon in this study. Using the parameters laid out in tables above, it has been shown that the
second model generates more money after CBM is put into effect. Results from mathematical
measurements and graphs showing that MTSF and Profit drop with increasing values of failure
rates must be used to gain a more in-depth understanding of the essential real influencing
elements and, in turn, enhance the reliability model. But the equations derived for MTSF,
assessments of the system’s functionality, and profit can be used to find alternative cut-off points
related to the required rates, costs, and probabilities involved. The formulas for the proposed
system can then be generated by plugging in the actual numbers for the relevant rates and costs.
Important decisions about the system’s dependability and profitability can be made with the help
of graphs showing cut-off points for key rates, costs, and revenue.
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Abstract

Considering a single server with two queues that is prone to unreliability. The server offers a kitting
process and performs necessary checks and rectifications when required. The arrival of items follows
a Markovian arrival process, while the service is distributed based on a phase type distribution. The
incoming products may exhibit issues such as poor quality or defects. If either of the queues is empty,
the server is unable to provide the requested service and remains inactive. Furthermore, if all queues
are empty, the server goes into a vacation mode. Breakdowns, repairs, instances of customers leaving
without service (reneging), and vacation periods are all modeled using an exponential distribution. To
gain insights into the performance of the queueing model, various performance metrics are analyzed and
represented through 2D and 3D graphs.

Keywords: Markovian Arrival Process, PH distribution, Vacation, Optional service, Breakdown
and Repair.

1. Introduction

The Markov arrival process (MAP) is a widely employed modeling approach that captures the
dynamic Markov structure underlying point processes. It offers adaptability and versatility,
making it suitable for probabilistic models that employ matrix analysis techniques. Neuts [15]
made significant contributions by proposing and extensively investigating the flexible nature of
Markov point processes. MAP shares similarities with other point processes, including Markov-
modulated Poisson processes, phase-like updating processes, and semi-Markov point processes.
It enables the simulation of both updating and non-updating models, making it a valuable tool
for studying arrival patterns. Chakravarthy [7] has provided in-depth insights and extensive
discussions on MAP, specifically focusing on its m-dimensional parameter matrix (D0, D1, D2),
where D0 governs transitions associated with no arrivals and D1 and D2 controls alternations
related to arrival events. This parameterization allows for effective control and analysis of arrival
dynamics in various systems.

Wang et al. [28] presented a framework for optimizing the kitting process in manufacturing. It
addresses the challenges of efficiently organizing and sequencing materials required for assembly
operations. The authors propose a mathematical model to minimize the overall kitting time,
reduce material handling, and improve productivity in manufacturing settings. Yadav et al.
[26] focused on optimizing the kitting process in an automotive assembly line. It investigates
the challenges associated with kitting and proposes a mathematical model for optimizing the
allocation of parts to kits. A hybrid optimization approach is applied that combines genetic
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algorithms and simulated annealing to minimize the total distance traveled by workers during the
kitting process. The study provides insights into improving the efficiency of the kitting process
in automotive manufacturing. Ayyappan and Nithya [6] studied a retrial feature that allows
customers who experience service unavailability to reattempt service after a certain period. The
model considers priority services, where one type of customer is given priority over the other in
terms of service. Breakdowns and repairs are differentiated, meaning that the server may require
different amounts of time to recover from different types of failures. Synchronized reneging
is taken into account, which means that customers may abandon the queue simultaneously if
their waiting time exceeds a specific threshold. Additionally, the model incorporates an optional
vacation, allowing the server to take breaks during certain periods.

Zhang and Fang [29] introduce a novel optimization algorithm designed to enhance the
efficiency of bulk service systems. These systems are frequently encountered in various industries,
including manufacturing and transportation, where multiple units of work or customers are
processed simultaneously. The primary objective of the proposed algorithm is to minimize
service time and decrease waiting times for customers within bulk service systems. To achieve
this, the algorithm combines two powerful optimization techniques: stochastic optimization and
reinforcement learning. The algorithm works in iterations, continuously refining its policies based
on feedback from the system. It collects data on customer arrival patterns, service times, and
queue lengths, which are then used to update the stochastic optimization models and reinforce
the learned policies. This iterative process allows the algorithm to adapt to dynamic changes
in the system and continuously optimize its performance. Li and Li [13] focused on optimizing
bulk service systems that involve parallel servers. It addresses the challenges associated with
efficiently allocating and coordinating multiple servers to improve system performance. The
authors propose novel optimization algorithms and strategies to minimize service time and
reduce waiting times for customers.

Smith and Johnson [22] investigated the influence of bulk service providers on the overall per-
formance of supply chains. Also examines how the involvement of bulk service providers affects
various aspects of supply chain operations, including efficiency, cost, and customer satisfaction.
The impact of bulk service providers on key performance indicators are analyzed such as order
fulfillment, inventory management, and lead times. Additionally, it highlights the importance of
establishing effective collaboration and coordination mechanisms between bulk service providers
and other supply chain stake holders. Also emphasize on the significance of information shar-
ing, communication, and performance monitoring to ensure optimal supply chain performance.
Wang et al. [27] presents a hybrid optimization approach specifically tailored for bulk service
systems in e-commerce warehouses. The authors combine mathematical modeling, simulation,
and metaheuristic algorithms to enhance the efficiency of warehouse operations, such as order
picking, packing, and shipping. The proposed approach aims to reduce order fulfillment time
and improve customer satisfaction in e-commerce fulfillment centers.

Arun et al.[2] analyzed a bulk service queue with server breakdowns, balking, and reneging.
It provides a detailed analysis of the system’s performance measures, such as the expected
waiting time and the expected queue length, under different scenarios. Sun and Zhang [23]
focused on the development of a bulk service system specifically designed for autonomous
mobile robots, the growing demand for efficient and flexible service systems in industries where
autonomous mobile robots are utilized. These systems involve the simultaneous processing of
multiple tasks or requests, and efficient management is crucial to optimize performance and
resource utilization. A comprehensive design framework for a bulk service system is proposed
that integrates autonomous mobile robots. They outline the key components of the system,
including task allocation, robot navigation, and coordination mechanisms. The findings of the
study demonstrate the advantages of incorporating autonomous mobile robots into bulk service
systems. The proposed design framework provides a blueprint for developing efficient and
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scalable systems that can adapt to changing demands and optimize resource allocation.

Arivudainambi and Arivudainambi [1] studied a mathematical model for analyzing a bulk
service queue with multiple vacations, server breakdowns, and general service times. It provides
a detailed analysis of the system’s performance measures, such as the expected waiting time
and the expected queue length. Li and Zhang [14] proposed an optimal control policies for
a bulk service queue with impatient customers and time-varying arrival rates. The proposed
policies are designed to minimize the total expected cost, including waiting costs and service
costs, under different operating conditions. Saroja and Saravanarajan [20] studied bulk service
queueing models with server vacations and feedback controls. It provides a detailed analysis
of the system’s performance measures, such as the expected waiting time and the expected
queue length, under different scenarios. Ayyappan and Meena [5] examined the service rate that
gradually declines until degradation is fixed. After completing a certain number of services (K),
the degradation is addressed. During the service period, the server may experience a breakdown
at any moment, triggering an immediate repair process. Once the service is complete, the server
transitions to the close-down process. If there are no customers in the system when the server
returns from vacation, the server will wait until a customer arrives. If a customer arrives without
a starting failure, the server provides service. However, if there is a starting failure, the server
immediately goes into the repair process.

Thottan and DeVeciana [24] presented a vacation model that incorporates autonomous server
vacations and customer impatience. The research focuses on analyzing the performance of queue-
ing systems under such conditions and investigates the impact of autonomous server vacations
and customer impatience on system efficiency. Huang and Li [8] investigated on optimization of
vacation queues that involve multiple vacation periods and general service times. The authors
investigate the problem of determining optimal control policies for allocating vacation time and
managing service rates in order to optimize various performance measures. They consider system
characteristics such as queue length, waiting time, and system utilization. By analyzing the
impact of different control policies on the system’s performance, the authors provide insights
into the efficient management of vacation queues. Their research contributes to the development
of strategies for optimizing service allocation and improving the overall efficiency of queueing
systems with multiple vacation periods and general service times. Anis et al. [4] explored the
analysis of a finite-buffer queue that incorporates server vacations and customer impatience. It
investigates the performance measures of the queueing system, including queue length, waiting
time, and server utilization. The study provides understanding the enhancement of buffer size,
vacation policies, and customer impatience management.

Srinivasan and Sriram [21] analyzed on studying vacation queues where the server is subject to
breakdowns and repair. The authors analyze the impact of server breakdowns on the performance
of the queueing system. They investigate various performance measures such as queue lengths,
waiting times, and server utilization during both normal operation and breakdown periods. The
study provides insights into the optimization of repair policies to minimize system downtime and
improve overall system performance. By considering the combined effect of vacations and server
breakdowns, the authors contribute to the understanding of real-world queueing systems where
service interruptions due to breakdowns are common. Kim et al.[10] researched on vacation
models that consider customer abandonments. It investigates the impact of customer abandon-
ment behavior on queueing systems during vacation periods. The study provides perception on
optimization of vacation policies and customer abandonment management.

Rakesh Kumar et al. [19] examined a single-server Markovian queuing model that incorpo-
rated customer impatience, including balking and reneging, alongside a threshold mechanism
and customer retention. They employed probability generating functions to analyze the model’s
transient behavior. Kalyanaraman and Janani [9] addresses a finite population Poisson queue em-
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ploying a fixed batch service rule. Following each service, the server goes on vacation, regardless
of queue size, providing service at a reduced rate during this period. The research calculates
system size probabilities, derives performance metrics, and also explores an infinite population
model with limited waiting room capacity as a secondary model. Krishnamurthy et al. [11]
centers on the examination of a queuing system characterized by its multi-stage bulk service
approach and the availability of service in batches. Within this system, incoming customers are
initially grouped into batches before undergoing bulk servicing. The research extensively presents
mathematical derivations pertaining to performance metrics, including system size, mean waiting
time, and mean service time.

Raina Raj and Selvamuthu Dharmaraja [17] introduces an architectural framework that priori-
tizes energy efficiency within the SAT network, with a particular focus on HAPs. Furthermore, a
stochastic model is proposed to account for three distinct states of energy conservation for HAPs,
including modes of power conservation, standby, and rest, where energy consumption is minimal
or negligible. Upon the arrival of a data packet, HAPs promptly transition to active service
mode, ensuring the entire system operates in an active state. Anilkumar and Jose [3] examines a
discrete-time inventory model (s, S) is investigated, featuring Bernoulli process customer arrivals
and geometrically distributed service and replenishment times. When inventory drops to zero
due to customer service or lack of replenishment, the system can accommodate a maximum of k
customers, with any excess customers considered lost until replenishment occurs. Rakesh Kumar
et al. [18] conducted a comprehensive study examining the utilization of queuing theory in the
analysis of cloud computing systems. Their research specifically delved into the phenomenon of
task reneging, where requests are dropped from the queue due to user impatience, deadlines,
security protocols, or active queue management strategies.

2. Motivation

In a software development company, a team is working on creating a new application that
consists of multiple modules and features. Rather than developing and delivering each module
individually, they adopt a kitting process to streamline the deployment process and improve
efficiency. In this kitting process, each module or feature is treated as a separate item and is
placed in a dedicated queue. The server, which represents the deployment team, retrieves the
modules from the queues and starts assembling the software kit. They integrate the modules,
perform necessary configurations, and ensure compatibility between different components.

Once the kit is assembled, the server performs thorough testing and quality assurance checks
to verify the functionality and stability of the software. If any issues are identified, such as bugs or
compatibility conflicts, the server rectifies them before proceeding. Once the kit passes the testing
phase, it is packaged for release to the end-users or clients. The server ensures that all required
documentation, user guides, and support materials are included in the kit before delivering it. By
employing the kitting process in software development, the company streamlines the deployment
process, reduces errors, and ensures that the end-users receive a comprehensive and well-tested
software package.

3. Mathematical Formulation

This model considers two types of arrivals within a system. The first type follows a Markovian
arrival process and has infinite capacity, while the second type has a finite capacity of K. The
server is responsible for the packing service, which follows a phase type distribution denoted as
(α1, T1). The equation T0

1 + T1e = 0 holds true, where T0
1 represents a column vector. Once the

packing is completed using the kitting process, the server proceeds to verify the checklist for the
packed product.

RT&A, No 1 (77)
 Volume 19, March 2024

143



G. Ayyappan, S. Sankeetha
STREAMLINING PRODUCT DEPLOYMENT...

If the checklist is satisfied, the product is deemed ready for the outlet. Otherwise, the server
initiates the rechecking and rectification process. This rechecking process follows a phase type
distribution denoted as (α2, T2). The equation T0

2 + T2e = 0 holds true, where T0
2 represents a

column vector. If either of the queues becomes empty, the server remains idle. However, when
both queues are empty, the server goes on vacation, with the vacation parameter η following an
exponential distribution.

Additionally, the server is subject to breakdown during both the packing service and recheck-
ing, with a breakdown parameter ξ following an exponential distribution. When the server
experiences a breakdown while serving, it completes the ongoing service and then enters a repair
process with a parameter γ following an exponential distribution. Moreover, the products in both
queues are susceptible to reneging, indicated by parameters δ1 and δ2, respectively, following an
exponential distribution. Reneging can occur due to factors such as lack of quality or defects.

Figure 1: Schematic Representation of Our Model

In pursuit of a matrix-geometric solution, the model is explored within the framework of a
QBD (Quasi-Birth-Death) process. For a comprehensive exploration of Matrix Analytic Methods,
refer to the works of Neuts [16] and Latouche and Ramaswami [12]. The QBD model’s state space
is formally defined, and an examination of the infinitesimal generator’s structure is carried out,
leveraging the subsequent notational conventions.

Let

• Ij is the identity matrix of dimension j.

• e1 is the column vector of dimension m1m2[(n1 + n2)(1 + K) + (4 + 3K) with its entries 1.

• N1(t) indicates the total number of items in the type I queue.

• N2(t) indicates the total number of items in the type II queue.

• S(t) indicates the position of the server.
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where

S(t) =



0, if server is idle
1, if the server is engaged with packing
2, if the server is engaged with rework
3, if the server faces breakdown while packing
4, if the server faces breakdown while rework
5, if server is on vacation

• J1(t) indicates the service phase when the server is engaged with packing.

• J2(t) indicates it the service phase when the server is engaged with packing.

• M1(t) indicates the phase of the Markovian Arrival Process for type I queue.

• M2(t) indicates the phase of the Markovian Arrival Process for type II queue.

Let {(N1(t), N2(t), S(t), J1(t), J2(t), M1(t), M2(t)); t ≥ 0} represent the continuous time Markov
chain for the QBD process with the state space.

Ω = l(0) ∪ l(i)

where,

l(0) = {(0, j, 0, s1, s2) : 0 ≤ j ≤ K, 1 ≤ s1 ≤ m1, 1 ≤ s2 ≤ m2}

For i ≥ 0,

l(i) = ∪ {(0, j, 1, r1, s1, s2) : 1 ≤ j ≤ K, 1 ≤ r1 ≤ n1, 1 ≤ s1 ≤ m1, 1 ≤ s2 ≤ m2}
∪ {(0, j, 2, r2, s1, s2) : 1 ≤ j ≤ K, 1 ≤ r2 ≤ n2, 1 ≤ s1 ≤ m1, 1 ≤ s2 ≤ m2}
∪ {(0, j, l, s1, s2) : 0 ≤ j ≤ K, 3 ≤ l ≤ 5, 1 ≤ s1 ≤ m1, 1 ≤ s2 ≤ m2}

For i ≥ 1, l(i) = {(i, 0, 0, s1, s2) : 1 ≤ s1 ≤ m1, 1 ≤ s2 ≤ m2}

The infinitesimal matrix generation of the QBD process is given by

Q =


B00 B01 0 0 0 0 · · ·
B10 A1 A0 0 0 0 · · ·
0 A2 A1 A0 0 0 · · ·
0 0 A2 A1 A0 0 · · ·

· · · · · · · · · . . . . . . . . . · · ·


where each of its block matrix are as follows,

B00 =


b11

00 b12
00 0 0 · · · 0 0

b21
00 b22

00 b23
00 0 · · · 0 0

0 b32
00 b22

00 b23
00 · · · 0 0

...
...

...
. . . . . . . . .

...
0 0 0 0 · · · b32

00 bM+1M+1
00



b11
00 =


b011

11 α1qT0
1 ⊗ Im1m2 ξ Im1m2 0 b011

14
0 b011

22 0 ξ Im1m2 b011
24

γIm1m2 0 b011
33 0 0

0 γIm1m2 0 b011
33 0

0 0 0 0 Im2 ⊗ D0 ⊗ Im1


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b011
11 = Im1 ⊗ (T1 ⊕ (D0 − ξ Im2))

b011
14 = em2 ⊗ α1 pT0

1 ⊗ Im1

b011
22 = Im2 ⊗ (T2 ⊕ (D0 − ξ Im1))

b011
24 = em2 ⊗ α2T0

2 ⊗ Im1

b011
33 = Im2 ⊗ (D0 − γIm1)

b12
00 =


0 In1m1 ⊗ D2 0 0 0 0
0 0 In2m1 ⊗ D2 0 0 0
0 0 0 Im1 ⊗ D2 0 0
0 0 0 0 Im1 ⊗ D2 0
0 0 0 0 0 Im1 ⊗ D2



b21
00 =



0 0 0 0 δ2 Im1m2

δ2 In1m1m2 0 0 0 0
0 δ2 In2m1m2 0 0 0
0 0 δ2 Im1m2 0 0
0 0 0 δ2 Im1m2 0
0 0 0 0 δ2 Im1m2



b22
00 =



b022
11 0 0 0 0 0

α1 pT0
1 ⊗ Im b022

22 α1qT0
1 ⊗ Im ξ Imn 0 0

α2T0
2 ⊗ Im 0 b022

33 0 ξ Imn 0
0 γImn 0 b022

44 0 0
0 0 γImn 0 b022

44 0
0 0 0 0 0 b022

11


b022

11 = Im2 ⊗ (D0 − δ2 Im1)

b022
22 = Im1 ⊗ (T1 ⊕ (D0 − (ξ + δ2)Im2))

b022
33 = Im2 ⊗ (T2 ⊕ (D0 − (ξ + δ2)Im1))

b022
44 = Im2 ⊗ (D0 − (γ + δ2)Im1)

b23
00 =



Im1 ⊗ D2 0 0 0 0 0
0 In1m1 ⊗ D2 0 0 0 0
0 0 In2m1 ⊗ D2 0 0 0
0 0 0 Im1 ⊗ D2 0 0
0 0 0 0 Im1 ⊗ D2 0
0 0 0 0 0 Im1 ⊗ D2



b32
00 =



δ2 Im1m2 0 0 0 0 0
0 δ2 In1m1m2 0 0 0 0
0 0 δ2 In2m1m2 0 0 0
0 0 0 δ2 Im1m2 0 0
0 0 0 0 δ2 Im1m2 0
0 0 0 0 0 δ2 Im1m2



bM+1M+1
00 =



b0M+1M+1
11 0 0 0 0 0

b011
14 b0M+1M+1

22 b0M+1M+1
23 ξ In1m1m2 0 0

b011
24 0 b0M+1M+1

33 0 ξ Im1m2 0
0 γIm1m2 0 b0M+1M+1

44 0 0
0 0 γIm1m2 0 b0M+1M+1

44 0
0 0 0 0 0 b0M+1M+1

55


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b0M+1M+1
11 = Im2 ⊗ (D0 + D2 − δ2 Im1)

b0M+1M+1
22 = Im1 ⊗ (T1 ⊕ (D0 + D2 − (ξ + δ2)Im2))

b0M+1M+1
23 = em2 ⊗ α1qT0

1 ⊗ Im1

b0M+1M+1
33 = Im2 ⊗ (T2 ⊕ (D0 + D2 − (ξ + δ2)Im1))

b0M+1M+1
44 = Im2 ⊗ (D0 + D2 − (γ + δ2)Im1)

b0M+1M+1
55 = Im2 ⊗ D0 + D2 − δ2 Im1

B01 =


b11

01 0 0 · · · 0
0 b22

01 0 · · · 0
...

...
. . . · · ·

...
0 0 0 · · · b22

01



b11
01 =


0 In1m2 ⊗ D1 0 0 0 0
0 0 In2m2 ⊗ D1 0 0 0
0 0 0 Im2 ⊗ D1 0 0
0 0 0 0 Im2 ⊗ D1 0
0 0 0 0 0 Im2 ⊗ D1



b22
01 =



Im2 ⊗ D1 0 0 0 0
In1m2 ⊗ D1 0 0 0 0

0 In2m2 ⊗ D1 0 0 0
0 0 Im2 ⊗ D1 0 0
0 0 0 Im2 ⊗ D1 0
0 0 0 0 Im2 ⊗ D1



B10 =


b11

10 0 0 · · · 0 0
b21

10 b22
10 0 · · · 0 0

0 b32
10 b22

10 · · · 0 0
...

. . . . . . · · ·
...

...
0 0 0 · · · b32

10 b22
10



b11
10 =



0 0 0 0 δ1 Im1m2

δ1 In1m1m2 0 0 0 0
0 δ1 In2m1m2 0 0 0
0 0 δ1 Im1m2 0 0
0 0 0 δ1 Im1m2 0
0 0 0 0 δ1 Im1m2



b21
10 =


em2 ⊗ α1 pT0

1 ⊗ Im1 0 0 0 0
em2 ⊗ α2T0

2 ⊗ Im1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



b22
10 =


0 δ1 In1m1m2 0 0 0 0
0 0 δ1 In2m1m2 0 0 0
0 0 0 δ1 Im1m2 0 0
0 0 0 0 δ1 Im1m2 0
0 0 0 0 0 δ1 Im1m2


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b32
10 =


0 em2 ⊗ α1 pT0

1 ⊗ Im1 0 0 0 0
0 em2 ⊗ α2T0

2 ⊗ Im1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



A1 =


a11

1 a12
1 0 0 · · · 0 0

a21
1 a22

1 a23
1 0 · · · 0 0

0 b32
1 a22

1 a23
1 · · · 0 0

...
...

...
. . . . . . . . .

...
0 0 0 0 · · · a32

1 aM+1M+1
1



a11
1 =



a11
11 0 0 0 0 0

b011
14 a11

22 b0M+1M+1
23 ξ Im1m2 0 0

b011
24 0 a11

33 0 ξ Im1m2 0
0 γIm1m2 0 a11

44 0 0
0 0 γIm1m2 0 a11

44 0
0 0 0 0 0 a11

66



a11
11 = Im2 ⊗ (D0 − δ1 Im1)

a11
22 = Im1 ⊗ (T1 ⊕ D0 − (ξ + δ1)Im2)

a11
33 = Im2 ⊗ (T2 ⊕ D0 − (ξ + δ1)Im1)

a11
44 = Im2 ⊗ D0 − (γ + δ1)Im1

a11
66 = Im2 ⊗ D0 − δ1 Im1

a12
1 =



Im1 ⊗ D2 0 0 0 0
In1m1 ⊗ D2 0 0 0 0

0 In2m1 ⊗ D2 0 0 0
0 0 Im1 ⊗ D2 0 0
0 0 0 Im1 ⊗ D2 0
0 0 0 0 Im1 ⊗ D2



a21
1 =


0 δ2 In1m1m2 0 0 0 0
0 0 δ2 In2m1m2 0 0 0
0 0 0 δ2 Im1m2 0 0
0 0 0 0 δ2 Im1m2 0
0 0 0 0 0 δ2 Im1m2



a22
1 =


a122

11 em2 ⊗ α1 pT0
1 ⊗ Im1 ξ In1m1m2 0 0

0 a122
22 0 ξ In1m1m2 0

γIm1m2 0 a122
33 0 0

0 γIm1m2 0 a122
44 0

η Im1m2 0 0 0 a122
44



a122
11 = Im1 ⊗ (T1 ⊕ D0 − (ξ + δ1 + δ2))Im2

a122
22 = Im2 ⊗ (T2 ⊕ D0 − (ξ + δ1 + δ2))Im1

a122
33 = Im1 ⊗ D0 − (γ + δ1 + δ2)Im2

a122
44 = Im1 ⊗ D0 − (η + δ1 + δ2)Im2
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a23
1 =


In1m1 ⊗ D2 0 0 0 0

0 In2m1 ⊗ D2 0 0 0
0 0 Im1 ⊗ D2 0 0
0 0 0 Im1 ⊗ D2 0
0 0 0 0 Im1 ⊗ D2



aM+1M+1
1 =


a1M+1M+1

11 em2 ⊗ α1 pT0
1 ⊗ Im1 ξ In1m1m2 0 0

0 a1M+1M+1
22 0 ξ In2m1m2 0

γIm1m2 0 a1M+1M+1
33 0 0

0 γIm1m2 0 a1M+1M+1
33 0

η Im1m2 0 0 0 a1M+1M+1
44


a1M+1M+1

11 = Im1 ⊗ (T1 ⊕ D0 + D2 − (ξ + δ1 + δ2))Im2

a1M+1M+1
22 = Im2 ⊗ (T2 ⊕ D0 + D2 − (ξ + δ1 + δ2))Im1

a1M+1M+1
33 = Im1 ⊗ D0 + D2 − (γ + δ1 + δ2)Im2

a1M+1M+1
44 = Im1 ⊗ D0 + D2 − (η + δ1 + δ2)Im2

A0 =


a11

0 0 0 · · · 0
0 a22

0 0 · · · 0
...

...
. . . · · ·

...
0 0 0 · · · a22

0



a11
0 =



Im2 ⊗ D1 0 0 0 0 0
0 In1m2 ⊗ D1 0 0 0 0
0 0 In2m2 ⊗ D1 0 0 0
0 0 0 Im2 ⊗ D1 0 0
0 0 0 0 Im2 ⊗ D1 0
0 0 0 0 0 Im2 ⊗ D1



a22
0 =


In1m2 ⊗ D1 0 0 0 0

0 In2m2 ⊗ D1 0 0 0
0 0 Im2 ⊗ D1 0 0
0 0 0 Im2 ⊗ D1 0
0 0 0 0 Im2 ⊗ D1



A2 =


a11

2 0 0 · · · 0 0
a21

2 a22
2 0 · · · 0 0

...
. . . . . . · · ·

...
...

0 0 0 · · · a21
2 a22

2



a11
2 =



δ1 Im1m2 0 0 0 0 0
0 δ1 In1m1m2 0 0 0 0
0 0 δ1 In2m1m2 0 0 0
0 0 0 δ1 Im1m2 0 0
0 0 0 0 δ1 Im1m2 0
0 0 0 0 0 δ1 Im1m2



a21
2 =


em2 ⊗ α1 pT0

1 ⊗ Im1 0 0 0 0
em2 ⊗ α1T0

2 ⊗ Im1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


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a22
2 =


δ1 In1m1m2 0 0 0 0

0 δ1 In2m1m2 0 0 0
0 0 δ1 Im1m2 0 0
0 0 0 δ1 Im1m2 0
0 0 0 0 δ1 Im1m2



4. Analysis of the Stability Condition

Determining the stability of a system is crucial to ensure its smooth operation and efficient
handling of incoming arrivals. The concept of traffic intensity serves as a key metric in assessing
system stability. By comparing the average arrival rate with the average service rate over the
long run, we can gauge whether the system is capable of managing the workload effectively. For
stability, it is desirable that the traffic intensity remains below 1, indicating that the system can
handle the incoming arrivals without becoming overwhelmed.

Analyzing the stability of a Markovian arrival process (MAP) presents unique challenges
compared to simpler arrival processes like the Poisson process. This is due to the diverse
inter arrival time distributions that MAPs can exhibit. To explore stability conditions in MAPs,
researchers employ matrix-analytic methods and simulation-based methods. These approaches
involve analyzing matrices and eigenvalues to ascertain the system’s stability. Simulation-based
methods, in particular, prove valuable when dealing with complex systems that lack analytical
solutions, enabling researchers to simulate and study system behavior under varying conditions.

Let A be an irreducible infinitesimal generator matrix of order m1m2[(n1 + n2)(1 + K) + (4 +
3K)]. We can decompose A as A = A0 + A1 + A2. The vector ℘ = (℘0,℘1,℘2, ...,℘K+1) represents
an invariant probability vector. It satisfies the conditions ℘A = 0 and ℘e = 1, where ℘e denotes
the dot product between ℘ and the vector e.

℘0[a11
0 + a11

1 + a11
2 ] + ℘1[a21

1 + a21
2 ] = 0.

℘0[a21
1 ] + ℘1[a22

0 + a22
1 + a22

2 ] + ℘2[b32
1 + a21

2 ] = 0.

℘i−1[a23
1 ] + ℘i[a22

0 + a32
1 + a32

2 ] + ℘i+1[b32
1 + a21

2 ] = 0, for i = 1 to K− 1.

℘K[a23
1 ] + ℘K+1[a22

0 + aK+1,K+1
1 + a22

2 ] = 0.

Given the normalizing condition ℘e = 1, in a stable system, it is necessary that

℘A0emn[l(K+1)+1] < ℘A2emn[l(K+1)+1].

℘0a11
0 + (℘1 + ℘2 + ... + ℘K+1)a22

0 < ℘0a11
2 + (℘1 + ℘2 + ... + ℘K)a21

2 + (℘1 + ℘2 + ... + ℘K+1)a22
2 .

5. The Vector of Invariant Probabilities

The crucial role of capturing the system’s steady-state behavior is played by the invariant
probability vector, which is symbolically represented as X. In order to obtain the vector X, it is
necessary to solve the system of equations represented as XQ = 0, while simultaneously ensuring
the normalization condition Xe = 1. Once the stability requirements are fulfilled, the remaining
components of X can be computed using an iterative approach. It is important to emphasize that X
can be partitioned into sub-vectors, including X0 and Xi for i ≥ 1, which have specific dimensions
based on the system’s characteristics. The dimension of X0 ism1m2[(n1 + n2)(1 + K) + (3 + 4K),
while Xi for i ≥ 1 has a dimension of m1m2[(n1 + n2)(1 + K) + (4 + 3K). Precisely calculating
the values of X0 and Xi involves considering the unique properties and parameters of the system
at hand. The expression for Xi can be represented as:

Xi = X1Ri−1, i = 2, 3, 4, . . . ,

Here, R refers to the rate matrix, which serves as the minimal non-negative solution to the matrix
quadratic equation.
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R2 A2 + RA1 + A0 = 0

The boundary states, represented as X0 and X1, are determined by solving the following equations:

X0B00 + X1B10 = 0
X0B01 + X1(A1 + RA2) = 0

These equations are subject to the normalizing condition:

X0e + X1(I − R)−1e = 1

It’s worth noting that Latouche and Ramaswamy [12] have improved the computation of the rate
matrix R by introducing the Logarithmic Reduction Algorithm. This algorithm simplifies the
process of obtaining R, making it more efficient and straightforward.

Step 1 : H ← (−A1)
−1 A0, L← (−A1)

−1 A2, G = L and T = H.

Step 2 : U = HL + LH;

M = H2;

H = (I −U)−1M;

M = L2;

L = (I −U)−1M;

G = G + TL;

T = TH;

continue Step 1 until ∥e− Ge∥∞ < ϵ.

Step 3 : R = −A0(A1 + A0G)−1.

6. Examination of Busy Period

In the context of queueing theory, an essential aspect is the analysis of the busy period. This term
refers to the duration that starts when a customer enters an empty queue and concludes when
the queue once again becomes vacant. However, when dealing with Quasi-Birth-Death (QBD)
processes, a different concept known as the "fundamental period" emerges. The fundamental
period characterizes the duration needed for the system to shift from level i to level i− 1, where
i assumes a value of 2 or greater. It’s worth noting that special considerations are needed for
boundary states, particularly when i takes on values of 0 or 1. Furthermore, when examining all
levels i greater than or equal to 2, it becomes evident that there is a total of mn[l(1+ K) + 1] states.
This expression quantifies the number of states associated with each level within the queueing
model.

Notations:

• Gvv′(k, x) corresponds to the likelihood that the QBD process enters level u− 1 at time t = 0
after undergoing precisely k leftward transitions and arriving at state (u, v′), under the
condition that it initially commenced in state (u, v) at time t = 0.

• The transition matrix Ḡvv′(z, s) is defined as ∑∞
0 zk ∫ ∞

0 e−sxdGvv′(k, x), where the conditions
are |z| ≤ 1 and Re(s) ≥ 0. This matrix incorporates a combination of infinite series and
integrals to capture the intricate transitions inherent in the QBD process.

• Ḡ(z, s) takes the form of a matrix (Gvv′(z, s)) and adheres to the equation Ḡ(z, s) = z[sI −
A1]
−1 A2 + [sI − A1]

−1 A0Ḡ2(z, s), representing the interplay among various elements of the
QBD process.
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• In the context of the first passage time analysis, G = Gvv′ = Ḡ(0, 1) captures the behavior
of the process in the absence of boundary states, providing insights into its performance
without considering boundary effects.

• Ḡ(1,0)
(vv′)(k, x) is the conditional probability that enters the level 0 from 1 at time t = 0.

• Ḡ(0,0)
(vv′)(k, x) is the first conditional probability returning to level 0.

• ℜ1v denotes the anticipated duration for the first passage between levels u and u− 1 when
the process is in state (u, v) at time t = 0.

• ℜ̄1 is a column vector composed of the entries ℜ1v, representing the expected first passage
times for different states.

• ℜ2v stands for the average number of customers who receive service during the initial
passage between levels u and u− 1 when the process begins in state (u, v) at time t = 0.

• ℜ̄2 is a column vector composed of the entries ℜ2v, signifying the average number of service
completions during the first passage time for different states.

• ℜ̄(1,0)
1 represents the average duration for the first passage from level 1 to 0 within the QBD

process.

• ℜ̄(1,0)
2 signifies the average number of completed services during the initial passage from

level 1 to 0.

• ℜ̄(0,0)
1 denotes the average time taken for the first return to level 0 within the QBD process.

• ℜ̄(0,0)
2 represents the average number of completed services during the initial return to level

0.

The G matrix can be computed using the following expression, utilizing the previously determined
rate matrix R obtained through the Logarithmic Reduction Algorithmic technique:

G = −[A1 + RA2]
−1 A2

For the boundary states, specifically 1 and 0, we can establish equations satisfied by Ḡ(1,0)(z, s)
and Ḡ(0,0)(z, s), respectively:

Ḡ(1,0)(z, s) = z [sI − A1]
−1 B10 + [sI − A1]

−1 A0Ḡ(z, s)Ḡ(1,0)(z, s).

Ḡ(0,0)(z, s) = z [sI − B00]
−1 B01Ḡ(1,0)(z, s).

Since G, Ḡ(1,0)(z, s), and Ḡ(0,0)(z, s) are stochastic in nature, we can readily compute moments as
follows.

ℜ1 = − ∂

∂s
Ḡ(z, s)|s=0,z=1 = − [A0(G + 1) + A1]

−1 e

ℜ2 =
∂

∂z
Ḡ(z, s)|s=0,z=1 = − [A0(G + 1) + A1]

−1 A2e

ℜ(1,0)
1 = − ∂

∂s
Ḡ(1,0)(z, s)|s=0,z=1 = − [A1 + A0G]−1 [A0ℜ1 + e]

ℜ(1,0)
2 =

∂

∂z
Ḡ(1,0)(z, s)|s=0,z=1 = − [A1 + A0G]−1 [B10e + A0ℜ2]

ℜ(0,0)
1 = − ∂

∂s
Ḡ(0,0)(z, s)|s=0,z=1 = −B−1

00

[
e + B01ℜ

(1,0)
1

]
ℜ(0,0)

2 =
∂

∂z
Ḡ(0,0)(z, s)|s=0,z=1 = −B−1

00 B01ℜ
(1,0)
2 .
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7. Performance Measures

When a system reaches a steady-state, it signifies that the system has achieved stability and
performance measures can be derived and examined. These performance measures play a vital
role in evaluating the various aspects of system performance and determining its efficiency and
effectiveness. By analyzing these measures, we can gain valuable insights into the system’s behav-
ior and identify areas that require improvement to enhance overall performance. Performance
measures serve as quantitative indicators that shed light on important system characteristics such
as throughput, response time, resource utilization, and reliability. They provide a comprehensive
view of how well the system is functioning and can help in assessing its overall effectiveness
in meeting desired objectives. By closely monitoring and analyzing performance measures,
decision-makers can identify potential bottlenecks, inefficiencies, or areas of improvement within
the system. This enables them to make informed decisions and take appropriate actions to
optimize system performance, increase productivity, and enhance customer satisfaction.

• Probability the server is idle .
PI = ∑K

j=1 x0j0 + ∑∞
i=1 xi00.

• Probability the server is busy with packing.
PBP = ∑∞

i=0 ∑K
j=0 xij1.

• Probability the server is busy with rework.
PBR = ∑∞

i=0 ∑K
j=0 xij2.

• Probability the server is in breakdown while busy with packing.
PBDP = ∑∞

i=0 ∑K
j=0 xij3.

• Probability the server is in breakdown while busy with rework.
PBDP = ∑∞

i=0 ∑K
j=0 xij4.

• Probability the server is on vacation.
PV = ∑∞

i=0 ∑K
j=0 xij5.

• Expected system size
ESystem = x1[(I − R)−2]e1.

8. Cost Analysis

Let us introduce a cost associated with different system management metrics for our model of
interest. We can then formulate a cost function, TC, which takes these metrics into account.
TC = CH ∗ Esystem + PV ∗ CV + PI ∗ CI + PBP ∗ CBP + PBR ∗ CBR + PBDP ∗ CBDP + PBDR ∗
CBDR + µ1 ∗ C1 + µ2 ∗ C2 + γ ∗ C3
where

• TC-Total cost of the system per unit time.

• CH-Customer holding cost in the system per unit time.

• CV - Cost when the server is on vacation per unit time.

• CI - Cost when the server is idle per unit time.

• CBP - Cost when the server is busy with packing per unit time.

• CBR - Cost when the server is busy with rework per unit time.

• CBDP- Cost when the server faces breakdown while packing per unit time.
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• CBDR- Cost when the server faces breakdown while rework per unit time.

• C1 -Cost afforded for packing service by the server per unit time per unit time.

• C2 - Cost afforded for rework service by the server per unit time per unit time.

• C3 - Cost afforded for carrying out the repair process per unit time.

9. Numerical Analysis

In this section, we will delve into the qualitative behavior of the model through a series of
illustrations that include both numerical and graphical representations. By manipulating various
model parameters, such as the arrival process and service time distribution, we aim to gain
a deeper understanding of how these parameters affect the model’s behavior. Input data for
these parameters will be drawn from three sets of values available in the literature, allowing us
to examine a wide range of scenarios and explore the model’s response to different parameter
settings. Through these illustrations, we will shed light on the dynamics and trends exhibited by
the model as we vary the model parameters, helping us gain insights into its behavior in different
scenarios.

Erlang of order 2 (ERL-A)

D0 =


−5 5 0 0 0
0 −5 5 0 0
0 0 −5 5 0
0 0 0 −5 5
0 0 0 0 −5

 ; D1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
3 0 0 0 0

 ; D2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 0 0 0 0


Exponential (Exp-A)

D0 =
[
−1

]
; D1 =

[
0.6

]
D2 =

[
0.4

]
Hyperexponential (HYP-EXP-A)

D0 =

[
−1.90 0

0 −0.19

]
; D1 =

[
1.026 0.114
0.1026 0.0114

]
D2 =

[
0.684 0.076
0.0684 0.0076

]
Given that Varghese et al. [25] has suggested three phase type distributions for the service

process, we will consider these distributions in our analysis. These phase type distributions,
which have been proposed by Chakravarthy [7] and documented in the literature, will serve
as the basis for our examination of the model’s behavior. By incorporating these distributions
into our analysis, we aim to gain a deeper understanding of how the model performs under
different service time distribution settings and how it responds to varying parameters associ-
ated with these distributions. This will enable us to assess the qualitative behavior of the model
and uncover any patterns or trends that emerge as we explore these three phase type distributions.

Erlang of order 2 (ERL-S)

α1 = α2 = (1, 0); T1 = T2 =

[
−2 2
0 −2

]
Exponential (Exp-A)

α1 = (1); T1 =
[
−1

]
α2 = (1); T2 =

[
−1

]
Hyperexponential (HYP-EXP-A)
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α1 = (0.3, 0.7); T1 =

[
−9 3
2 −8

]

α2 = (0.4, 0.6); T2 =

[
−12 6

5 −10

]
Illustration 1:

In this analysis, we examine the implications of the reneging rate (δ1) of the customers on the
expected system size (Esystem) for various combinations of service and arrival times. We consider
specific parameter values, including λ = 2, µ1 = 5, µ2 = 6, ξ = 1, γ = 3, δ2 = 1, η = 4, p = 0.3,
and q = 0.7. The observations derived from Table 1 to 3 are outlined below.

• As the reneging rate increases, more customers choose to leave the system without complet-
ing their service requests. This results in a lower number of customers in the system at any
given time, leading to an decrease in the expected system size.

• When customers renege at a higher rate, the system experiences a shorter average waiting
time and lower congestion due to customers leaving before being served. This decrease
congestion leads to only few customers remaining in the system, resulting in a lower
expected system size.

Illustration 2:
In this analysis, we examine the effects of the vacation rate (ξ) and service rate (µ1) of the server
on the expected system size (Esystem). We consider various combinations of service and arrival
times and use specific parameter values, including λ = 2, µ1 = 6, γ = 3 δ1 = 1, δ2 = 1 η = 4,
p = 0.3, and q = 0.7. The observations derived from Figure 29-37 are outlined below.

• When both the vacation rate (ξ) and service rate (µ1) increase, it generally leads to a
decrease in the expected system size. This means that, on average, there will be fewer
customers present in the system at any given time.

• An increase in the vacation rate (ξ) implies that the availability of the server increases.
Similarly, an increase in the service rate (µ1) means that the server can process customer
requests at a faster pace. When both the vacation rate and service rate increase, the server
has a reduced overall availability for serving customers due to more frequent breaks.

• These observations highlight the varying impacts of vacation rate and service rate on the
projected system size across different arrival and service times. Erlang arrivals show the
most significant reduction in system size, followed by exponential arrivals, while hyper
exponential arrivals display a slower rate of decrease.

Table 1: Renege rate (δ1) vs Expected System Size - ERL-A

service

δ1 Erlang Exponential Hyperexponential

1.0 2.689867713 2.764059228 2.776027059
1.1 2.680737416 2.74942792 2.765549157
1.2 2.672576038 2.734797612 2.755075026
1.3 2.665225627 2.720166304 2.744593354
1.4 2.658647922 2.705534995 2.724115453
1.5 2.647557358 2.690903687 2.703637552
1.6 2.640837634 2.676272379 2.683159655
1.7 2.625331925 2.661641071 2.672681749
1.8 2.611886634 2.647009763 2.662203847
1.9 2.591670138 2.632378454 2.651725946
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Table 2: Renege rate (δ1) vs Expected System Size - EXP-A

service

δ1 Erlang Exponential Hyperexponential

1.0 2.732538773 2.776538896 2.815784456
1.1 2.721217834 2.766061989 2.794520162
1.2 2.710069838 2.755584087 2.777635494
1.3 2.709039454 2.745106186 2.763847123
1.4 2.698116376 2.734628284 2.752344555
1.5 2.689888555 2.724150383 2.742586259
1.6 2.681785353 2.713672482 2.734194049
1.7 2.673681963 2.703194585 2.726894449
1.8 2.665578647 2.699716679 2.720483688
1.9 2.657475344 2.682238777 2.714806803

Table 3: Renege rate (δ1) vs Expected System Size - HYP-EXP-A

service

δ1 Erlang Exponential Hyperexponential

1.0 2.857181106 2.902141938 3.011784445
1.1 2.832316046 2.882431771 2.969464924
1.2 2.813250935 2.866914417 2.945390736
1.3 2.798124579 2.854332628 2.926737224
1.4 2.785797988 2.843905244 2.911866499
1.5 2.775536658 2.835114586 2.899730666
1.6 2.766845678 2.827598651 2.889632399
1.7 2.759379139 2.821103707 2.881091624
1.8 2.752887573 2.815428859 2.873767852
1.9 2.747186259 2.797494693 2.867413281

Figure 2: Vacation rate (η), Service rate (µ1)
vs Expected system size - Ek/Ek/1

Figure 3: Vacation rate (η), Service rate (µ1)
vs Expected system size - Ek/M/1
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Figure 4: Vacation rate (η), Service rate (µ1)
vs Expected system size - Ek/Hk/1

Figure 5: Vacation rate (η), Service rate (µ1)
vs Expected system size - M/Ek/1

Figure 6: Vacation rate (η), Service rate (µ1)
vs Expected system size - M/M/1

Figure 7: Vacation rate (η), Service rate (µ1)
vs Expected system size - M/Hk/1

Figure 8: Vacation rate (η), Service rate (µ1)
vs Expected system size - Hk/Ek/1

Figure 9: Vacation rate (η), Service rate (µ1)
vs Expected system size - Hk/M/1

Figure 10: Vacation rate (η), Service rate (µ1)
vs Expected system size - Hk/Hk/1
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10. Conclusion

In conclusion, our model encompasses a complex system involving a single server managing
two queues, each susceptible to various uncertainties. We have meticulously detailed the arrival
and service processes, highlighting the critical phases and distribution patterns that govern
them. The model accounts for the inherent unpredictabilities, such as server breakdowns, repairs,
customer reneging, and vacation periods. By examining both infinite and finite capacity arrivals,
we have provided a comprehensive framework for analyzing the performance and reliability of
this intricate system. This model can serve as a valuable tool for optimizing operations, enhancing
service quality, and minimizing disruptions in scenarios where such intricate dynamics are at play.

Broadening the system’s scope to accommodate intricate service time patterns mirroring real-
world complexities holds the potential for a more profound comprehension of service dynamics.
Upcoming research endeavors will center on refining scheduling strategies and computational
methods for handling batch arrivals, server disruptions, repair processes, bulk services, and
the involvement of multiple service providers. These initiatives seek to minimize customer
waiting intervals, optimize resource distribution, and elevate overall system effectiveness, with
the ultimate goal of enhancing the applicability of such systems across diverse domains.
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Abstract 

As the dimensions of available data for analysis continues to grow rapidly, it becomes imperative to 

develop new probability distributions that can more accurately represent various phenomena. In 

this research paper, we introduce a novel continuous probability distribution known as the Type II 

Half-Logistic Exponentiated Frechet Distribution, characterized by four positive parameters. This 

distribution expands upon the traditional Frechet distribution by introducing two additional 

parameters. We derive a significant density representation for this distribution. Furthermore, we 

delve into several statistical and mathematical properties associated with the Type II Half-Logistic 

Exponentiated Frechet distribution. This includes explicit expressions for key metrics such as the 

quantile function, probability weighted moments, moments, moments generating function, 

reliability function, hazard function, and order statistics. To estimate the model parameters 

effectively, we employ a maximum likelihood estimation technique and present the results of a 

simulation study. Our research underscores the superiority of this new distribution by applying it 

to two real-world datasets. Notably, the findings demonstrate that the Type II Half-Logistic 

Exponentiated Frechet distribution outperforms other considered distributions in fitting the two 

real datasets. 

Keywords: Type II Half-Logistic Exponentiated-G, Frechet distribution, 

Moments function, Reliability function, Maximum likelihood, Order Statistics. 

1. Introduction

Many types of univariate continuous distributions exist, but research in various fields, including 

engineering, environmental science, finance, and medicine, has shown that real-world data often 

does not follow the classical distributions. To address this issue, extended forms of these 

distributions have been developed to provide more flexibility in data modeling. The Frechet 
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distribution, also called the type II extreme value distribution, plays a vital role in extreme value 

theory and has numerous applications. There have been several modifications and enhancements 

to the Frechet distribution proposed in the statistical literature to further improve its usefulness. In 

recent times, various extensions of the Frechet distribution have been introduced by several 

researchers in the academic literature. Nadarajah and Kotz [16] were the pioneers of the 

exponentiated Frechet distribution, while Nadarajah and Gupta [17] introduced the beta Frechet 

distribution. Mahmoud and Mandouh [12] put forth the transmuted Frechet distribution, Da Silva 

et al., [7] defined the gamma extended Frechet distribution, Krishna et al., [10] introduced the 

Marshall-Olkin Frechet distribution, and Mead and Abd-Eltawab [13] introduced the 

Kumaraswamy Frechet distribution. Elbatal et al., [8] conducted a study on the transmuted 

exponentiated Frechet distribution, Afify et al., [1] investigated the transmuted Marshall-Olkin 

Frechet distribution, Afify et al., [3] proposed the Kumaraswamy Marshall-Olkin Frechet 

distribution, Afify et al., [2] explored the Weibull Frechet distribution, Tablada and Cordeiro [20] 

defined the modified Frechet distribution, and Mead et al., [15] introduced the beta exponential 

Frechet distribution. 

In a recent study, Bello et al., [4] proposed a new distribution family called the Type II 

Half-Logistic Exponentiated-G (TIIHLEt-G). This distribution family is defined by two positive 

shape parameters, denoted by  and  , and can be applied to any arbitrary cumulative 

distribution function (cdf)  ,H x  . The cumulative distribution function (cdf) and the probability

density function for TIIHLEt-G are detailed as follows: 

2 ( ; )
( ; , , )

1 ( ; )
TIIHLEt G

H x
F x

H x




  

  

β
β

β
, 0,x   , 0     (1) 

and 
1 ( 1)

2

2 ( ; ) ( ; ) ( ; )
( ; , , )

1 ( ; )
TIIHLEt G

h x H x

x
f

H x
x

H
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


 

 



  
  

β β β
β

β
, 0,x  , 0       (2) 

The cdf and pdf of the Frechet distribution are given as 

( )

( ; , )  ,  0, , 0xH x e x


   


   ,  (3) 

( )
1( ; , )  ,   0, , 0xh x x e x


     


      (4) 

The most important goal of this paper is to enhance the flexibility of a statistical model by 

extending the conventional two-parameter Frechet distribution. This novel model is referred to as 

the Type II Half Logistic Exponentiated Frechet (TIIHLEtF) distribution. The structure of this paper 

is organised as follows: In Section 2, we introduce and define the TIIHLEtF distribution. Section 3 

presents valuable representations for the TIIHLEtF distribution. Section 4 focuses on deriving 

statistical properties such as probability-weighted moments, ordinary moments, moments-

generating function, quartile function, reliability function, hazard function, and order statistics. In 

Section 5, we estimate the parameters of the new model using the maximum likelihood estimation 

(MLE) approach. To demonstrate the efficiency and consistency of MLE, we conducted a 

simulation study in Section 6. In Section 7, we apply the new model to two real datasets to 

illustrate its practical utility. Finally, Section 8 provides a conclusion for the paper. 

2. Type II Half-Logistic Exponentiated Frechet (TIIHLEtF) Distribution

In this section, we introduce a novel model referred to as the TIIHLEtF distribution. A random 

variable X is considered to follow the TIIHLEtF distribution if its cumulative distribution function  
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(cdf) is derived by substituting equation (3) into equation (1) in the following approach: 

( )

( )

2
( ; , , , )  ,  0, , , , 0
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x

TIIHLEtF

x
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F x x
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and its corresponding pdf is 
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where   is a scale parameter and , ,    are shape parameters. 

3. Expansion of Density

In this section, we have obtained a valuable expression for the probability density function (pdf) 

and cumulative distribution function (cdf) of the TIIHLEtF distribution. This achievement is 

attributed to our utilization of the generalized binomial series given as: 
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For | | 1z  and   is a positive real non integer. The density function of the TIIHLEtF distribution 

is derived by applying the binomial theorem from equation (7) to equation (6). 
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Now, using the generalized binomial theorem, we can write 
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Then, the pdf can be written as:
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In addition, an expansion for the  ( ; , , , )
h

F x     is produced, with h being an integer, and the 

binomial expansion is worked out once more. 
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The cdf can be written as: 
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Figure 1: Plots of Pdf of TIIHLEtF distribution for different values of parameters. 

4. Statistical Properties

In this section, we derived some statistical properties of the new of distribution. 

4.1. Probability weighted moments 

Greenwood et al. [10] introduced a concept known as probability weighted moments (PWMs). This 

technique is employed to create estimators in the inverse form for both distribution parameters 

and quantiles. The notations used for probability weighted moments is 
,r s , and these moments

can be computed for a random variable X by utilizing the relationship outlined below. 

, ( ) ( )( ( ))r s r s

r s E X F X x f x F x dx




      (10) 

The PWMs for the TIIHLEtF distribution are obtained by inserting equations (8) and (9) into (10), 

and then replacing h with s in the following manner. 
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Consider the integral 
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Hence, the PWMs of TIIHLEtF can be expressed in the following manner. 
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4.2. Moments 

 As moments play a crucial role in statistical analysis, particularly in practical applications, we 

proceed to derived the rth moment for the newly introduced distribution. 
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By using the expansion of the pdf in equation (8), we have 
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The rth moment for TIIHLEtF distribution can be written as follows 
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The mean and variance of TIIHLEtF distribution are as follows 
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4.3. Moment generating function (mgf) 

The Moment Generating Function of x is given as: 
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The moment generating function of TIIHLEtF distribution is given by 
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4.4. Reliability function 

The reliability function, also referred to as the survivor function, provides the probability that an 

individual or patient will endure beyond certain specified duration of time. In other words, it gives 

the likelihood of survival beyond a particular time point. It’s defined as 
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4.5. Hazard function 

The hazard function represents the likelihood of an event of interest happening within a relatively 

brief time interval is defined as follow: 
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  (21) 

4.6. Quantile Function 

The quantile function plays a crucial role in generating random variables from continuous 

probability distributions, making it a key element in probability theory. Specifically, for a given 

value 'x,' the quantile function is denoted as F(x) = u, where 'u' follows a uniform distribution 

between 0 and 1 (U(0,1)). To simulate the TIIHLEtF distribution, one can readily achieve this by 

reversing equation (5), resulting in the definition of the quantile function Q(u). 
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Figure 2: Plots of hazard of the TIIHLEtF distribution for different valves of parameters. 
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4.7. Order Statistics 

Order statistics are widely applied in various statistical fields, including reliability and life testing. 

Consider a set of n independent and identically distributed random variables represented as X1, X2, 

..., Xn, each following a continuous distribution function F(x). If these random variables are drawn 

from the TIIHLEtF distribution, we can denote the cumulative distribution function (cdf) as Fr:n(x) 

and the probability density function (pdf) as fr:n(x) for the rth order statistic, where r ranges from 1 

to n. In a study by David [1979], the probability density function of Xr:n was provided. 
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By substituting equation (8) and equation (9) into equation (23), also replacing h with v+r-1 

in equation (9). We have 
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The equation above is called the rth order statistics for the TIIHLEtF distribution. 

Let r = n, then the probability density function of the maximum order statistics of TIIHLEtF 

distribution is 
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Also, let r = 1, then the probability density function of the minimum order statistics of TIIHLEtF 

distribution is 
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5. Parameter Estimation

In this research paper, we investigate the application of the maximum likelihood technique to 

estimate the unknown parameters of the TIIHLEtF distribution when dealing with complete data. 

Maximum likelihood estimates (MLEs) possess advantageous characteristics that can be utilized to 

establish confidence intervals and provide straightforward approximations that perform well with 

finite data samples. In the realm of distribution theory, these approximations for MLEs can be 

conveniently managed, either through analytical or numerical methods. Consider a random 

sample of size n, denoted as x1, x2, x3,...,xn, drawn from the TIIHLEtF distribution. Then, the 

likelihood function, based on the observed sample, for the parameter vector  , , ,
T

    is 

defined as follows. 
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 (31) 

The MLEs are obtained by setting 
     

, ,
L L L  

  

  

  
and 

 L 






 to zero and solving these 

equations simultaneously. These equations cannot be solved analytically, so we have to appeal to 

numerical method. 
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6. Simulation Study

In this section, a numerical analysis will be conducted to evaluate the performance of MLE for 

TIIHLEtF Distribution. 

Table 1: MLEs, biases and RMSE for some values of parameters 

(1,1,2.5,2.5) (1,0.5,2,1) 

n Parameters Estimated 

Values 

Bais RMSE Estimated 

Values 

Bais RMSE 

20 





1.9103 

1.0472 

2.5845 

2.5845 

0.9103  

0.0472  

0.0845  

0.0845 

0.1823 

0.1458 

0.1504 

1.5894 

1.0140 

0.5247 

2.0140 

2.0140 

0.0140 

0.0247 

0.0140 

1.0140 

0.0450 

0.0667 

0.0434 

1.0149 

50 





1.7149 

1.0384 

2.5401 

2.5401 

0.7149  

0.0384  

0.0401  

0.0401 

0.1330 

0.0930 

0.1281 

1.3058 

1.0076 

0.5058 

2.0113 

2.0113 

0.0076 

0.0058 

0.0113 

1.0113 

0.0320 

0.0303 

0.0392 

1.0120 

100 





1.5193 

1.0382 

2.5389 

2.5389 

0.5193  

0.0382  

0.0389  

0.0389 

0.1157 

0.0696 

0.1213 

0.6298 

1.0031 

0.5008 

2.0068 

2.0068 

0.0031 

0.0008 

0.0068 

1.0068 

0.0208 

0.0096 

0.0294 

1.0072 

250 





1.4246 

1.0376 

2.5120 

2.5120 

0.4246  

0.0376  

0.0120  

0.0120 

0.0980 

0.0587 

0.1202 

0.6126 

1.0001 

0.5000 

2.0008 

2.0008 

0.0001 

0.0000 

0.0008 

1.0008 

0.0018 

0.0000 

0.0102 

1.0009 

500 





1.3032 

1.0303 

2.5110 

2.5110 

0.3032  

0.0303  

0.0110  

0.0110 

0.0849 

0.0470 

0.1170 

0.5114 

1.0000 

0.5000 

2.0000 

2.0000 

0.0000 

0.0000 

0.0000 

1.0000 

0.0000 

0.0000 

0.0000 

1.0000 

1000 





1.1332 

1.0282 

2.5032 

2.5032 

0.1332  

0.0282  

0.0032  

0.0032 

0.0762 

0.0396 

0.1092 

0.5036 

1.0000 

0.5000 

2.0000 

2.0000 

0.0000 

0.0000 

0.0000 

1.0000 

0.0000 

0.0000 

0.0000 

1.0000 

The table above shows the values of biases and RMSEs approach zero and the estimates tend to the 

initial (true) values as the sample increases, which indicates that the estimates are efficient and 

consistent. 

7. Applications to Real Data

In this section, we apply the TIIHLEtF distribution to two real datasets and perform a comparative 

analysis by contrasting it with fits to other distribution models. Specifically, we compare it with the 

Exponentiated Half-Logistic Frechet (EHLF) distribution proposed by Cordeiro et al., [6], 

Kumaraswamy Frechet (KExF) distribution by Mead and Abd-Eltawab [14], the Gompertz Frechet 

(GoFr) distribution by Oguntunde et al., [18] , the Exponentiated Frechet (ExFr) distribution by 

Nadaraja and Kotz [16], and the Frechet  distribution introduced by Frechet [9]. This comparison is 

carried out for illustrative purposes. 
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The EHLF distribution developed by Cordeiro et al. [6] has pdf defined as: 
1

1

( 1)

( 1)

( ; , , , ) 2 1 1 1

1 1

x x x

x

f x x e e e

e

  



 
  

 




    




          
            
                 

 
  
  
   

    
           
        

  
     
    

 (32) 

The KExF distribution developed by Mead and Abd-Eltawab [14] has pdf defined as: 
1

( ) ( )
1( ; , , , ) 1x xf x x e e

 
 

 
     


 

 
 

  
 

   (33) 

The GoFr distribution proposed by Oguntunde et al., [18] has pdf given as: 

( )

1 1 1
( ) ( )

1( ; , , , )

xe

x xf x x e e e


 

 




  
     


 
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 

   
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 (34) 

The ExFr Distribution proposed by Nadaraja and Kotz [16] has pdf given as: 
1

( ) ( )
(1 )( ; , , ) 1 x xf x e x e

 


 

    


   
    

    
 
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 (35) 

The Frechet distribution developed by Frechet [9] has pdf defined as: 

( )
1( ; , ) xf x x e


   


   (36) 

The two datasets utilized as illustrative examples in this application showcase the enhanced 

distribution flexibility and suitability of the newly proposed distribution. It also demonstrates its 

ability to provide the "best fit" when empirically modeling these datasets, surpassing the 

previously mentioned comparator distributions. All calculations were carried out using the R 

programming language. 

Data set 1 

The first dataset provided below contains information about the times at which 84 aircraft 

windshields experienced failures. This dataset was previously utilized in a study by Tahir et al., 

[21]. 

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 

0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 

1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 

4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 

4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 

4.602, 1.757, 2.324, 3.376, 4.663. 
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Figure 3: Fitted pdfs for the TIIHLEtF, EHLF, KFr, GoFr, ExF, and Fr distributions to the data set 1 

Table 2: MLEs, Log-likelihoods and Goodness of Fits Statistics for the Data Set 1 

Distributions      LL AIC 

TIIHLEtF 1.4258 1.4258 1.0593 0.7272 - -60.4319 128.8638 

EHLF 0.6829 22.7797 0.5953 - 16.8659 -152.1688 312.3376

KFr 13.1105 1.9176 0.1052 - 0.8131 -63.4185 134.837 

GoFr 1.3750 1.5499 5.3750 - 1.3750 -  186.4972 380.9943

ExF 5.7603 0.6018 7.1979 - -167.5459 341.0917

Fr - - 19.5745 0.3347 - -146.065 296.1299 

Table 2 displays the outcomes of maximum likelihood estimation for estimating the parameters of 

both the newly proposed distribution and five comparator distributions. Evaluating goodness of 

fit, the new proposed distribution exhibited the lowest AIC value, with the KFr distribution 

coming in a close second. A visual assessment of the fit, as shown in Figure 3, further reinforces the 

superiority of the proposed distribution when compared to the comparator distributions. 

Consequently, the newly proposed distribution is deemed the most suitable choice for modeling 

an aircraft windshields failure dataset from the assortment of distributions under consideration. 
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Data set 2 

The second dataset presented below records both the instances of failure and the periods of service 

for a windshield. This dataset was previously employed in a study conducted by Kundu and 

Raqab [12]. 

0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280, 1.794, 2.819, 0.313, 

1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900, 2.053, 3.102, 0.952, 2.065, 

3.304, 0.996, 2.117, 3.483,1.003, 2.137, 3.500, 1.010, 2.141, 3.622, 1.085, 2.163, 3.665, 1.092, 2.183, 3.695, 

1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435, 4.806, 1.249, 2.464, 4.881,1.262, 2.543, 5.140. 

Figure 4: Fitted pdfs for the TIIHLEtF, EHLF, KFr, GoFr, ExF, and Fr distributions to the   

data set 2 

Table 3: MLEs, Log-likelihoods and Goodness of Fits Statistics for the Data Set 2 

Distributions      LL AIC 

TIIHLEtF 0.8728 2.1344 0.7247 0.6787 - - 75.4283 158.8566 

EHLF 1.3995 5.6071 0.5085 - 3.1002 - 115.1316 238.2632 

KFr 0.0046 0.0248 0.0084 - 2.5480 - 130.8708 269.7416 

GoFr 3.3750 2.0249 5.3750 - 3.3750 -111.8307 231.6613 

ExF 6.5403 0.3166 - 9.4231 - - 108.8879 223.7758 

Fr - - 19.4876 0.2848 - -139.9228 283.8457 
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In Table 3, you can find the outcomes of Maximum Likelihood Estimation for estimating the 

parameters of the TIIHLEtF distribution and five other comparator distributions. When 

considering the goodness of fit statistic AIC, it's worth noting that the new distribution displayed 

the lowest AIC value, indicating that it is the most appropriate fit for the hypertension patients' 

dataset. Furthermore, a visual examination of the fit, as depicted in Figure 4, reinforces the 

superiority of the new distribution over its comparator counterparts. Hence, the new distribution 

is confirmed as the optimal choice for modeling the data of instances of failure and the periods of 

service for a windshield. 

8. CONCLUSION

In this article, we introduced and explored a novel distribution known as the Type II Half-Logistic 

Exponentiated Frechet Distribution, building upon the distribution family originally proposed by 

Bello et al., [4]. We conducted a thorough examination of various statistical components associated 

with this new distribution, including the explicit quantile function, probability-weighted moments, 

moments, generating function, reliability function, hazard function, and order statistics. The 

estimation of its parameters was carried out using the maximum likelihood technique. We 

presented simulation results to assess the performance of this new distribution, and we also 

compared it to well-established models. Furthermore, we applied it to analyze two real datasets to 

underscore the significance and versatility of the new distribution. The findings suggest that the 

new distribution outperforms the existing models considered, indicating its potential applicability 

in a wide range of practical applications for modeling data. 
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Abstract 

The primary objective of present research work is to evaluate and improve the performance and 

availability of the paint manufacturing plant. Paint manufacturing plant consists of five subsystem 

naming mixer, grinder, thinner, labelling, and filling unit. Among them labelling and filling unit 

have two machines in parallel configuration and both are working simultaneously. All failure and 

repair rates are distributed exponentially. Markov birth-death process is utilized to model the 

dynamic behavior of the system and its sub-components, enabling a quantitative analysis of system 

availability. Grey wolf optimization (GWO), a swarm-based optimization technique is used to 

optimize the availability of the system. Moreover, the research conducts a thorough comparison 

between the outcomes derived from the Markov birth-death process and the GWO technique. By 

harnessing the power of GWO, the study aims to further enhance the plant's overall performance. 

Keywords: Paint Manufacturing Plant, Markov Birth-death Process, Availability, 

Grey Wolf Optimization 

I. Introduction

In the contemporary industrial landscape, the pursuit of enhanced operational efficiency and 

availability remains a paramount concern for manufacturing facilities across various sectors. The 

paint manufacturing industry plays a pivotal role in sectors such as automotive, construction, and 

consumer goods. However, the intricacies of operating a paint manufacturing plant entail 

multifaceted challenges that impact both production efficiency and overall plant availability. The 

convergence of factors including equipment breakdowns, maintenance scheduling, and process 

bottlenecks can lead to undesirable downtime and reduced performance. Thus, a systematic 

investigation into optimizing plant performance is not only a scientific pursuit but a practical 

necessity. 

Historically, the paint manufacturing industry has undergone significant transformations, 

mirroring advancements in technology, materials, and process optimization. As a result, the 

industry's journey has been marked by shifts in production methodologies, ingredient formulations, 

and quality assurance practices. Over the years, the industry's evolution has been propelled by the 

growing demand for superior quality coatings, environmental sustainability, and cost-effective 
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production. The past era of paint manufacturing was characterized by conventional batch processes 

and manual labor-intensive operations. These approaches often introduced variability in product 

quality and production efficiency. However, with the advent of automation, computer-aided design, 

and advanced process control systems, the industry witnessed substantial improvements in 

reliability and productivity. Automation minimized human errors, enhanced process repeatability, 

and facilitated real-time monitoring and control of critical process parameters.  

The increasing complexity of paint manufacturing processes, coupled with the demand for 

higher product quality, has driven the need for sophisticated analytical and optimization tools. In 

response to this demand, researchers and practitioners have explored various methodologies to 

enhance the operational reliability and productivity of manufacturing plants. One prominent 

avenue of exploration has been the integration of metaheuristic techniques, which offer innovative 

approaches to tackle complex optimization problems. Soltanali et al. [12] aimed to enhance 

automotive manufacturing productivity and reliability using RAM methodologies. It identified 

bottlenecks in the vehicle body conveying process and optimized maintenance intervals to improve 

operational performance. Dahiya and Kumar [4] introduced a novel method for assessing a paint 

manufacturing plant's performance and availability analysis by employing fuzzy reliability and 

coverage factors. Ostadi [6] employed a general preventive maintenance model to optimize 

maintenance costs while ensuring reliability and availability in a flexible manufacturing system 

(FMS). An optimal preventive maintenance framework was applied to a robot paint sprayer, 

providing maintenance plans and reliability parameters. Omoregbe and Eniola [7] investigated 

maintenance practices' impact on competitive advantage in the paint manufacturing industry, 

revealing a positive relationship between preventive maintenance and competitive advantage. 

Chanda and Naskar [8] focused on assessing reliability of paint manufacturing plant by collecting 

breakdown and maintenance data, identifying worker inefficiency and component degradation as 

primary failure factors. Schultmann et al. [11] addressed challenges faced by small and medium 

sized companies in supply chains, focusing on reliable throughput times amid uncertainties. It 

proposed a fuzzy scheduling approach for hybrid flow shops and validated it through a case study 

in paint manufacturing. 

Metaheuristic approaches are widely used in availability optimization problems to find near-

optimal solutions for complex problems. Saini et al. [10] assessed cloud infrastructure's availability, 

crucial for its operation in healthcare and business. Utilizing both, dragonfly algorithm (DA) and 

grey wolf algorithms (GWO), a stochastic model was optimized, emphasizing the superior 

performance of the GWO. Saini et al. [9] aimed to create an innovative, efficient irrigation system 

(EIIS) using a series-configured setup with internal cold standby redundancy for sensor units and 

optimization was performed with GWO and DA to enhance system efficiency and performance. 

Kumar et al. [2] employed metaheuristic algorithms genetic algorithm (GA) and particle swarm 

optimization (PSO), to optimize performance of cooling tower. A novel stochastic model for a six-

subsystem cooling tower was developed using Markovian processes, considering factors like 

random variables, repair, and failure rates. Saini et al. [8] aimed to develop a novel stochastic model 

for optimizing the availability of embedded life-critical systems by using DA and GWO algorithms. 

Yadav et al. [13] analyzed the reliability and availability of a repairable system using the Markov 

approach. The impact of failure rate, repair rate, and operating time on reliability, MTSF, and 

availability was also discussed. Saini et al. [7] aimed to assess the availability and performance of a 

sewage treatment plant's primary unit using redundancy. Mirjalili et al. [3] introduced the Grey Wolf 

Optimizer (GWO), a metaheuristic inspired by grey wolves’ social structure and hunting behavior. 

It outperformed other metaheuristics on various test functions and successfully tackled engineering 

design problems. 

The whole manuscript is divided into five sections. Section 1 includes the introduction of 

proposed system and previous work done in related area. section 2 provides the insights into used 

materials and methods for investigation. In section 3, mathematical modelling, steady state diagram 
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and availability analysis of the system is mentioned. Numerical and graphical representation of 

results is appended in section 4. Section 5 cover the conclusion part of the research. 

II. Material and Methods

This section contains the notations and methodology used for the availability investigation of paint 

manufacturing plant. 

I. Notations

The following nomenclature is used to develop the state transition diagram and mathematical 

modelling of system. 

Table 1: Notations for paint manufacturing plant’s sub-system 

Sr. 

no. 

Sub-systems and 

notations 

Notations for different states function Failure 

rates (αi) 

Repair 

rates (βj) 

Operative 

state 

Degraded 

states 

Complete 

failed state 

1 Mixer (U) U - u α1 β1 

2 Grinder (V) V - v α2 β2 

3 Dilution/Thinner (W) W - w α3 β3 

4 Labelling unit (X2) 

(Two parallel machine) 

X2 X1 x α4, α6 β4, β6 

5 Filling unit (Y2) 

(Two parallel machine) 

Y2 Y1 y α5, α7 β5, β7 

6 Pi(t) Probability that the system is in ith state at time t 

7 Operative states 

8 Degraded states 

9 Completely failed states 

II. System Description

The proposed paint manufacturing system comprises five sub-systems like mixer, grinder, thinner, 

labelling unit, and filling unit. The failure and repair rates of all the subsystems follow exponential 

distribution. All the subsystem arranged in a series configuration and work-flow diagram of system 

is append in figure 1. 

i) Subsystem U (Mixer)

In paint manufacturing, a mixer unit plays a crucial role in blending and homogenizing various

raw materials to create consistent and high-quality paint products. The unit's primary purpose

is to create a homogeneous mixture by effectively dispersing and combining the ingredients.

The failure of this unit can result in the entire system's breakdown.

ii) Subsystem V (Grinder)

A grinder unit serves the essential purpose of reducing solid particles, such as pigments and
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fillers, into finer particles to achieve the desired texture and consistency in the final paint 

product. The grinder unit plays a crucial role in breaking down aggregates and achieving 

uniform particle size distribution, which directly influences the paint's color, opacity, gloss, and 

overall quality. The failure of this subsystem can impact the overall functionality of the system. 

iii) Subsystem W (Thinner/Diluter)

Thinner or diluter plays a pivotal role in paint manufacturing as a vital solvent used to modify

the viscosity and consistency of paint formulations. Thinner is employed to reduce the thickness

of paint, making it easier to apply and ensuring a smooth, even coat. Failure of subsystem can

disrupt and compromise the entire operation of the system. Subsystem failures have the

potential to disrupt and compromise the entire system's operation.

iv) Subsystem X (Labelling unit)

A labelling unit plays a pivotal role in ensuring that each container bears essential information,

including product details, batch numbers, safety warnings, and regulatory compliance. This

system comprises two labelling machines working together in parallel configuration with

different failure and repair rates.

v) Subsystem Y (Filling unit)

A filling unit in a paint manufacturing plant is responsible for accurately filling paint into

containers, such as cans or buckets. Its importance lies in ensuring precise and consistent

product quantities, which are essential for quality control and cost efficiency. The system

consists of two filling machines operating in parallel, each with its own distinct rates of failure

and repair.

Figure 1: Work-flow diagram of system 

III. Assumptions

 At time t=0, all subsystems are in good working condition without any failure.

 The rates of failure and repair are exponentially distributed and are equally and

independently distributed.

 All subsystems of the paint manufacturing plant are configured in a series format while

labelling unit and filling unit have two unit working together in parallel configuration.

 Subsystems works as flawlessly as new after repair.

 An adequate repair facility is always available at operational time.
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III. Mathematical Modelling and Analysis

In this section, a mathematical model for paint manufacturing plant is developed using Markov 

birth-death process. The Chapman-Kolmogorov differential difference equations derived based on 

figure 2. 

Figure 2. State transition diagram of paint manufacture plants 

I. Transition Probabilities

𝑃1(𝑡 + ∆𝑡) = (1 − 𝛼1∆𝑡 − 𝛼2∆𝑡 − 𝛼3∆𝑡 − 𝛼4∆𝑡 − 𝛼5∆𝑡)𝑃1(𝑡) + 𝛽1𝑃5(𝑡)∆𝑡 + 𝛽2𝑃6(𝑡)∆𝑡 + 𝛽3𝑃7(𝑡)∆𝑡
+ 𝛽4𝑃2(𝑡)∆𝑡 + 𝛽5𝑃3(𝑡)∆𝑡

𝑃1(𝑡 + ∆𝑡) = 𝑃1(𝑡) − (𝛼1∆𝑡 + 𝛼2∆𝑡 + 𝛼3∆𝑡 + 𝛼4∆𝑡 + 𝛼5∆𝑡)𝑃1(𝑡) + 𝛽1𝑃5(𝑡)∆𝑡 + 𝛽2𝑃6(𝑡)∆𝑡 + 𝛽3𝑃7(𝑡)∆𝑡
+ 𝛽4𝑃2(𝑡)∆𝑡 + 𝛽5𝑃3(𝑡)∆𝑡

𝑙𝑖𝑚
∆𝑡→0

𝑃1(𝑡+∆𝑡)−𝑃1(𝑡)

∆𝑡
= −(𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5)𝑃1(𝑡) + 𝛽1𝑃5(𝑡) + 𝛽2𝑃6(𝑡) + 𝛽3𝑃7(𝑡) + 𝛽4𝑃2(𝑡) +

𝛽5𝑃3(𝑡) 
𝑃1

′(𝑡) = −(𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5)𝑃1(𝑡) + 𝛽1𝑃5(𝑡) + 𝛽2𝑃6(𝑡) + 𝛽3𝑃7(𝑡) + 𝛽4𝑃2(𝑡) + 𝛽5𝑃3(𝑡) 
Taking limit lim

t→∞
, we get 

𝑙𝑖𝑚
𝑡→∞

𝑃1
′(𝑡) = −(𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5)𝑃1(𝑡) + 𝛽1𝑃5(𝑡) + 𝛽2𝑃6(𝑡) + 𝛽3𝑃7(𝑡) + 𝛽4𝑃2(𝑡) + 𝛽5𝑃3(𝑡) 

(𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5)𝑃1 = 𝛽1𝑃5 + 𝛽2𝑃6 + 𝛽3𝑃7 + 𝛽4𝑃2 + 𝛽5𝑃3  (1) 

Similarly for others states, 

(𝛼1 + 𝛼2 + 𝛼3 + 𝛽4 + 𝛼5 + 𝛼6)𝑃2 = 𝛽1𝑃8 + 𝛽2𝑃9 + 𝛽3𝑃10 + 𝛼4𝑃1 + 𝛽5𝑃4 + 𝛽6𝑃11 (2) 

(𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛽5 + 𝛼7)𝑃3 = 𝛽1𝑃12 + 𝛽2𝑃13 + 𝛽3𝑃14 + 𝛽4𝑃4 + 𝛼5𝑃1 + 𝛽7𝑃15 (3) 

(𝛼1 + 𝛼2 + 𝛼3 + 𝛽4 + 𝛽5 + 𝛼6 + 𝛼7)𝑃4 = 𝛽1𝑃16 + 𝛽2𝑃17 + 𝛽3𝑃18 + 𝛼4𝑃3 + 𝛼5𝑃2 + 𝛽6𝑃19 + 𝛽7𝑃20(4) 
∑ 𝛼𝑖𝑃1

3
𝑖=1 = ∑ 𝛽𝑗𝑃𝑗+4

3
𝑗=1  (5) 

∑ 𝛼𝑘𝑃2
3
𝑘=1 = ∑ 𝛽𝑙𝑃𝑙+7

3
𝑙=1  (6) 

𝛼6𝑃2 = 𝛽6𝑃11  (7) 
∑ 𝛼𝑚𝑃3

3
𝑚=1 = ∑ 𝛽𝑛𝑃𝑛+11

3
𝑛=1  (8) 

𝛼7𝑃3 = 𝛽7𝑃15 (9) 
∑ 𝛼𝑞𝑃4

3
𝑞=1 = ∑ 𝛽𝑟𝑃𝑟+15

3
𝑟=1  (10) 

∑ 𝛼𝑠𝑃4
7
𝑠=6 = ∑ 𝛽𝑡𝑃𝑡+13

7
𝑡=6  (11) 

Initial conditions, 
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𝑃𝜉(0) = {
1  𝑖𝑓  𝜉 = 0
0      𝑖𝑓  𝜉 ≠ 0

(12) 

Solving the linear system of equations (1-11) by using initial conditions mentioned in equation (12), 

the following probabilities derived at various states and solve them in terms of P1, we get 

𝑃2 = 𝐺𝑃1, 𝑃3 = 𝐻𝑃1 , 𝑃4 = 𝐼𝑃1 , 𝑃5 =
𝛼1

𝛽1
𝑃1 , 𝑃6 =

𝛼2

𝛽2
𝑃1 , 𝑃7 =

𝛼3

𝛽3
𝑃1 , 𝑃8 =

𝛼1

𝛽1
𝑃2 , 𝑃9 =

𝛼2

𝛽2
𝑃2 , 

𝑃10 =
𝛼3

𝛽3
𝑃2 , 𝑃11 =

𝛼6

𝛽6
𝑃2 , 𝑃12 =

𝛼1

𝛽1
𝑃3 , 𝑃13 =

𝛼2

𝛽2
𝑃3 , 𝑃14 =

𝛼3

𝛽3
𝑃3 , 𝑃15 =

𝛼7

𝛽7
𝑃3 , 𝑃16 =

𝛼1

𝛽1
𝑃4 , 

𝑃17 =
𝛼2

𝛽2
𝑃4 , 𝑃18 =

𝛼3

𝛽3
𝑃4 , 𝑃19 =

𝛼6

𝛽6
𝑃4, 𝑃20 =

𝛼7

𝛽7
𝑃4 (13) 

Here, 

𝐺 = (
𝛼4

𝐵
+

𝐼∗𝛽5

𝐵
) 𝑃1, 𝐻 = (

𝛼5

𝐶
+

𝐼∗𝛽4

𝐶
) 𝑃1, 𝐼 = [

𝛼4∗𝛼5(
1

𝐶
+

1

𝐵
)

(𝐷−
𝛼4∗𝛽4

𝐶
+

𝛼5∗𝛽5
𝐵

)
], 𝐴 = (𝛼4 + 𝛼5), 𝐵 = (𝛽4 + 𝛼5), 

𝐶 = (𝛼4 + 𝛽5), 𝐷 = (𝛽4 + 𝛽5) and ‘*’ represent the multiplication. 

By using normalization condition, 
∑ 𝑃𝑧

20
𝑧=1 = 1 (14) 

The expression of 𝑃1  derived by using equations (13-14) and shown in equation (15) as follows: 
𝑃1 + 𝑃2 + 𝑃3 . . . . . . . . . . . . . . . . +𝑃20 = 1 

𝑃1 =
1

[1+𝐺+𝐻+𝐼]∗[1+(
𝛼1
𝛽1

)+(
𝛼2
𝛽2

)+(
𝛼3
𝛽3

)]+(
𝛼6
𝛽6

)∗𝐼+(
𝛼7
𝛽7

)∗(𝐻+𝐼)
(15) 

The depiction of system availability involves the addition of probabilities in the upstate. 

Mathematical expression for system availability is formulated as follows: 

𝐴𝜃 = 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4       (16) 

By putting the values and determine the final availability expression, is as below: 

𝐴𝜃 =
[1+𝐺+𝐻+𝐼]

[1+𝐺+𝐻+𝐼]∗[1+(
𝛼1
𝛽1

)+(
𝛼2
𝛽2

)+(
𝛼3
𝛽3

)]+(
𝛼6
𝛽6

)∗𝐼+(
𝛼7
𝛽7

)∗(𝐻+𝐼)
(17) 

IV. Numerical Results and Discussion

In this section, the availability of paint manufacturing system is derived by using the expression 

given in equation (17) and is found 0.950145478. The arbitrary values of failure and repair rates are 

taken on the behalf of the previous studies and are append in table 2. For enhancement of availability 

of the system swarm-intelligence based algorithm named GWO is used. For execution of 

optimization the possible search space for failure and repair rates are append in table 3 and the 

optimum availability of the system for different iterations and populations are presented in table 4. 

Table 2: Failure and repair rates for subsystems of paint manufacturing plant 

Sr. No. Name of subsystem Failure rates (𝜶𝒊) Repair rates (𝜷𝒋) 

1 Mixer 𝛼1=0.005 𝛽1=0.889 

2 Grinder 𝛼2=0.051 𝛽2=1.397 

3 Dilution/ Thinner 𝛼3=0.0052 𝛽3=0.998 

4 Labelling 𝛼4=0.0727 𝛽4=1.232 

5 Filling 𝛼5=0.0954 𝛽5=1.244 

6 Standby labelling machine 𝛼6=0.0778 𝛽6=1.374 

7 Standby filling machine 𝛼7=0.0955 𝛽7=1.387 

In figure 3 and 4, the effect of change in failure rate is shown on the other sub-systems availability 

with increase an 50% in the failure rates and repair rates. It is shown that while varying the failure 

rate of 𝛼1 from 0.001 to 0.007, the availability of subsystems decreases. Subsystem grinder is 

fluctuated very much by increasing 50% in failure rates and repair rates both. While floating the 

value of 𝛽1from 0.001 to 0.007 and 50% increase in other subsystems repair rates, then the availability 

is also increase.   
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Figure 3:  System availability with variation in α1 and subsequent changes in failure rates of subsystems 

Figure 4:  System availability with variation in β1 and subsequent changes in repair rates of subsystems 

Table 3: Range of search space for grey wolf optimization 

Sr. No. Subsystem Range of failure rates (𝛼𝑖) Range of repair rates (𝛽𝑗) 

1 Mixer [0.0025, 0.0075] [0.45, 1.34] 

2 Grinder [0.0260, 0.0770] [0.70, 2.10] 

3 Dilution/ Thinner [0.0028, 0.0082] [0.50, 1.50] 

4 Labelling [0.0360, 0.1090] [0.62, 1.85] 

5 Standby labelling machine [0.0480, 0.1440] [0.63, 1.87] 

6 Filling [0.0390, 0.1170] [0.69, 2.06] 

7 Standby filling machine [0.0480, 0.1440] [0.71, 2.09] 

Table 4: Optimum availability of system at different iterations with varying population sizes 

      Population 

Iteration 

100 150 200 250 300 

10 0.983572 0.983576 0.983575 0.983574 0.983570 

30 0.983573 0.983571 0.983571 0.983575 0.983571 

50 0.983576 0.983575 0.983549 0.983575 0.983572 

70 0.983572 0.983575 0.983569 0.983563 0.983568 

90 0.983577 0.983555 0.983570 0.983570 0.983573 

0.93

0.934

0.938

0.942

0.946

0.95

0.954

0.958

0.001 0.002 0.003 0.004 0.005 0.006 0.007

A
va

ila
b

ili
ty

Failure Rate of Mixer

Base Line

α2+50% of α2

α3+50% of α3

α4+50% of α4

α5+50% of α5

α6+50% of α6

α7+50% of α7

0.932
0.936

0.94
0.944
0.948
0.952

0.956
0.96

0.964
0.968

0.972

0.001 0.002 0.003 0.004 0.005 0.006 0.007

A
va

ila
b

ili
ty

Repair Rate of Mixer

β1+50% of β1

β2+50% of β2

β3+50% of β3

β4+50% of β4

β5+50% of β5

β6+50% of β6

β7+50% of β7
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V. Conclusion

In this study, a comparative analysis is performed and it provides insights into the strengths and 

limitations of each methodology. It is shown that the metaheuristic optimization techniques perform 

better than the traditional techniques. The overall availability of paint manufacturing plant is 

improved by 0.9501454 to 0.983577 using GWO. Ultimately, the paper offers valuable insights into 

both the theoretical and practical dimensions of improving paint manufacturing plant performance 

and availability. The combined usage of Markov analysis and GWO presents a robust approach for 

achieving the desired goals, contributing to the advancement of industrial reliability and efficiency. 
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Abstract 

This paper describes the scheming technique of new system of skip lot sampling plan of type SkSP-T with Single Sampling 

Plan as Reference plan under the condition of Intervened Poisson Distribution. The designing methodology includes the 

evaluation of Acceptable Quality Level, Limiting Quality Level, Operating Ratio, and Operating Characteristic curves. 

Tables are simulated by changing various parametric values of SkSP-T, SSP and IPD and operating characteristic curves 

are drawn by using R language. 

Keywords: Skip-lot sampling plan of type SkSP-T, Intervened Poisson Distribution, Single Sampling 

Plan. 

I. Introduction

Maintenance of quality is decided to improve the production. Good qualities of products 

facilitate to reduce both producer and consumer risks. Additionally, it manages the production cost 

and consumer satisfaction. The determination of designing every sampling method is to find out a 

succession of the process to be tested in a sequence of lots is defined the quality. Statistical Quality 

control (SQC) is one of the processing techniques throughout that the production quality is sustained 

and too reduced the production errors. Every quality control technique defines the defective items 

and the defective items are replaced by good once. Acceptance sampling (AS) is one of the 

imperative method used in SQC through judgment a lot concerning its quality of 100% inspection 

and no inspection. The major purpose of acceptance sampling is towards constructing a sampling 

plan that is mainly characterized by sample size (n) and acceptance number(c); also it is able to 

minimize the inspection cost and sampling error. 

The most important areas of Acceptance Sampling plan is classified into four broad categories. 
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It includes lot-by-lot sampling plan by attribute and by variables, Continuous sampling plan, and 

special purpose plans. The special purpose plan includes Skip-lot sampling plan. Skip-lot sampling 

plans are inspected only the fraction of submitted lots. Such process of sampling is in reducing the 

cost in provisions of minimizing the time and exertion. On the other hand skip-lot sampling 

supposed to only be used instantaneously, it has been established that the excellent quality of the 

submitted lots are very good. 

Dodge [5] introduced the skip-lot sampling plan of type SkSP-1 based on the concept of 

continuous sampling plan of type CSP-1. Perry [13] developed some specified level of Operating 

Ratio (OR) for corresponding producers and consumer’s risk, OC and ASN function (operating 

characteristic) of the SkSP-2 plan using Markov chain techniques. SkSP-3 is based on the concept of 

Continuous Sampling Pan of type CSP-2 of Dodge and Terry [8]. SkSP-3 is developed by 

Vijayaraghavan [16] using Markov chain technique. The multilevel continuous sampling plans are 

derived Lieberman and Solomon[7]. The CSP-T plans are tightened multilevel plans that include 

three levels developed by Fordice [6]. Kandasamy and Govindaraju [11] developed the performance 

measures of CSP-T plan. Balamurali [1] developed Modified Tightened Three level Continuous 

sampling plan. Balamurali and Chi-Hyuck Jun [2] developed a modified CSP-T sampling procedure. 

Pradeepa Veerakumari and Suganya [15] introduced Skip-lot sampling plan of type SkSP-T 

(T-tightened) based on the concept of continuous sampling plan of type CSP-T, CSP-M, MMLP-T-2, 

and SkSP-2. Sampling levels are fixed by using CSP-M procedure; sampling fractions are taken from 

the CSP-T procedure and other concepts are taken by modified CSP-T and SkSP-2 procedures. The 

main advantage of skip-lot sampling plan of type SkSP-T plan if there is a defect found in skipping 

the level, and then there is a normal inspection in that fraction level. The stopping rule parameter S 

is introduced for the tightening inspection which makes the plan convenient. In the proposed plan 

sampling frequency (f) is minimized by every skipping inspection level.  The Operating 

Characteristic functions for this SkSP-T plan are also derived with single sampling plan as the 

reference plan under the condition of Intervened Poisson Distribution. SkSP-T plan vary among 

normal inspection and skipping inspection with three levels. Pradeepa Veerakumari and Suganya 

[23] developed skip-lot sampling plan of SkSP-T based on fuzzy logic techniques. Suganya and

Pradeepa Veerakumari [22] developed SkSP-T plan based on Burr type XII distribution.

Shanmugam [18] introduced the Intervened Poisson Distribution which is designated as 

IPD. It is a moderated adaptation of the zero-truncated Poisson distribution (ZTPD). IPD is 

compared with ZTPD it concludes that IPD produces good quality of products and provide an 

additional report about the capability of the intervention made in the manufacturing or production 

process. It is supportive of accepting the result of the corresponding process. The area of IPD has 

been applied by various product control, process control, manufacturing industries, biologists, and 

etc. Much real-time (cholera disease, health improvement for before and after treatment) examples 

can establish in Shanmugam [18,19]. Huang and Fung [9] developed intervened truncated poisson 

distribution. In Scollnik [20] introduced the new concept it is called intervened generalized Poisson 

distribution (IGPD) and it is an extension of IPD. Scollnik [21] developed the Bayesian analysis for 

IPD using Gibbs sampling approach. Dhanavanthan [3,4] introduced the Compound Intervened 

Poisson distribution (CIPD) also estimated its characteristic parameters for using the concept of 

statistical inference and probability. Satheesh and Shibu [17] introduced the modified intervened 

Poisson distribution (MIPD). MIPD parameters can be estimated by using the method of factorial 

moment, mixed moment, likelihood estimators and uniformly best estimators. Pradeepa 

Veerakumari and Azarudheen [14] developed various attribute acceptances sampling plan using 

SSP under the condition of IPD as a reference plan. Jayakumar and Rehana [10] develop and 

Characterizations , Different Methods of Estimation and Applications of Exponential Intervened 

Poisson Distribution. Muhammed Rasheed Irshad et.al [12] developed Intervened Poisson 

Distribution by Lagrangian Approach. 

RT&A, No 1 (77)
 Volume 19, March 2024

184



S. Suganya & K. Pradeepa Veerakumar
SKIP-LOT SAMPLING PLAN OF TYPE SKSP-T WITH INTERVENED 

II. Design of SkSP-T plan and its Operating Characteristic function

Operating procedure of the SkSP-T plan is stated as follows: 

Step1: Initiate SkSP-T procedure with normal inspection using the single sampling plan as a 

reference plan under the condition of Intervened Poisson Distribution. 

Step2: When i successive lots are received on normal inspection, terminate the normal inspection 

and change to skipping inspection. 

Step3: On skipping inspection, inspect only a fraction f of the lots selected at random, level 1. 

Step4: After i  consecutive lots in succession have been founded without a non-conforming at level 

1, the system then switches to skipping inspection with a fraction of f/2, level 2. 

Step5: After i consecutive lots in succession have been founded without a non-conforming at level 

2, the system then switches to skipping inspection with a fraction of f/4, level 3. 

Step6: If a non-conforming lot is found on either skipping level, the system reverts to normal 

inspection. 

The Operating Characteristics Function of SkSP-T plan is given by 

 Pa(p) =
Pi(f2f3(1−Pi)+f1f3Pi(1−Pi)+f1f2P2i)

f1f2f3(1−Pi)+Pi(f2f3(1−Pi)+f1f3Pi(1−Pi)+f1f2P2i)
 (1) 

III. Origin of Intervened Poisson Distribution (IPD)

Let us consider the number of defectives in a lot as Y1. Implementation of, the number of defectives 

in a lot produced as of a progression in no way to be perfect due to random inconsistency, which 

implies the event Y1> 0. Y1 is a random variable and it is an infrequent event. Then the zero-truncated 

Poisson distribution with pdf is  

𝑃(𝑌1 = 𝑦1) =
𝜃𝑦1

(𝑒𝜃−1)𝑦!
; 𝑦1 = 1,2, …  (2) 

Where θ>0 is called incidence parameter. The above equation can be used this example if the 

manufactures make any modification in a manufacturing system in order to produce the better 

quality of products. In this position, 𝜌θ can be changed to θ. Where 𝜌 (𝜌 ≥ 0) is called an intervention 

parameter (IP) and Y2 be the no. of defectives that occurred after modify in the production process. 

And Y2 is denoted that a Poisson random variable with mean 𝜌θ. 

 A random variable Y=Y1+Y2 i.e., the total no. of defectives occurred. The random variable Y is 

formed by Intervened Poisson Distribution with probability function, 

𝑃(𝑌 = 𝑦) =
[(1+𝜌)𝑦−𝜌𝑦]𝜃𝑦

𝑒𝜌𝜗(𝑒𝜃−1)𝑦

!

; x =  1, 2 . ..                                     (3)

Mean and Variance of the Intervened Poisson Distribution (IPD) is 

 𝜇 = 𝐸(𝑋) = 𝜃 [(1 + 𝜌) +
1

(𝑒𝜃−1)
]  (4) 

And 

 𝜎2 = 𝑉𝑎𝑟(𝑋) = 𝜇 − 𝑒𝜃 (
𝜃

𝑒𝜃−1
)

2

 (5) 

      From the Intervened Poisson Distribution (IPD) than the mean (µ) is greater than its 

variance (σ2). In equation (2) substitute 𝜌 = 0 then the Intervened Poisson Distribution is reduced to 

zero-truncated Poisson distribution (ZTPD). 

The Operating Characteristic function for Single Sampling Plan under the conditions of 

Intervened Poisson D (θ, 𝜌) can be defined as, 

𝑃𝑎(𝑝) = ∑ 𝑃(𝑌 = 𝑦|𝜃, 𝜌)

𝑐

𝑥=1

= ∑
[(1 + 𝜌)𝑦 − 𝜌𝑦]𝜃𝑦

𝑒𝜌𝜃(𝑒𝜃 − 1)𝑦!

𝑐

𝑦=1

Where θ = np and 𝜌 is measured in percentage. 
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IV. Designing of Single Sampling Plan under the conditions of Intervened Poisson

Distribution (IPD) 

The attribute Single Sampling Plan for the necessary parameters are sample size (n), acceptance 

number (c), the lot size (N), the number of defective in the sample (d) and proportion defective (p). 

In general, then the defective item d ≤ c (acceptance number) then the lot will be accepted, otherwise, 

the lot will be rejected. 

The skip-lot sampling plan of type SkSP-T, Single Sampling plan and intervened Poisson 

distribution parameters are determined with the primary objective to carry out both the consumer’s 

and the producer’s risk. Both the risk’s can be satisfying the subsequent conditions for the particular 

strength (p1, α, p2, β), 
𝑃𝑎(𝑝1) = 1 − 𝛼 

𝑃𝑎(𝑝2) = 𝛽     

Where, p1 = is the proportion defective for that the risk of rejection is to be α 

And p2 = is the proportion defective for that the risk of acceptance to be β 

1. Specify p1 = Acceptable Quality Level at α = 0.05 or 0.01.

2. Specify p2 = Limiting Quality Level at β = 0.10 or 0.05.

3. Obtain the corresponding ratio OR = p2 / p1 at a different combination of α and β.

4.

V. Numerical Illustration

The following examples to obtain the new system of skip lot sampling plan of type   SkSP-T with 

Single Sampling Plan as reference plan under the conditions of Intervened Poisson Distribution 

(IPD) for calculating the Probability of Acceptance, Operating Characteristic (OC) Curve, Average 

Sample Number (ASN), Average Outgoing Quality (AOQ) and Average Total Inspection (ATI).  The 

SkSP-T, SSP, and IPD parameters n – sample size, c – acceptance number, i – clearance interval, f- 

sampling frequency, N- lot size, p - proportion or fraction defective, Pa (p) - Probability of Acceptance 

θ - incidence parameter and ρ - intervention parameter. 

In the production process assume there is a 1% of intervention occurred in the experimental 

session and it is preferred to establish a proposed sampling plan for a certain set of values say, 

α=0.05, β=0.10 and p1=0.028741, p2=0.1428. Then the Operating Ratio OR=p2/p1= 0.142879/0.028741 = 

4.97. And np1 value is determined from table 1 as 1.437025 and the corresponding sample size n is 

computed as n = np1/p1 = 1.437025/0.028741= 49.99 ≈ 50. Hence the parameters of SkSP-T with Single 

Sampling Plan as reference plan under the Condition of Intervened Poisson Distribution indexed 

through Acceptable and Limiting Quality Levels. 

Table 1 considers the new system of skip-lot sampling plan of type SkSP-T with Single 

Sampling plan as reference plan under the condition of Intervened Poisson Distribution (IPD) 

parameter values are estimated and derived its Acceptable Quality Level (AQL) and Limiting 

Quality Level (LQL). And also calculated the Operating Ratio (OR) it explains the ratio of limiting 

quality level to acceptable quality level. The new proposed plan system is designing several 

combinations of OC curves for various parameter values of SkSP-T, SSP and IPD.  

In Acceptance Sampling plan five important basic measures are defined in ISO standard 

(2006). The measures of Acceptance Sampling plan is 1. Probability of Acceptance (Pa (p)) 2.Average 

Sample Number (ASN) 3.Average Outgoing Quality (AOQ) 4.Average Outgoing Quality Limit 

(AOQL) and 5.Average Total Inspection (ATI). 

Figure 1 represents the OC curves for SkSP-T with SSP as reference plan under the 

conditions of IPD for c and n are fixed and by changing the ρ values. From this figure conclude that 

smaller intervention occurs in the production process then the producer’s risk will be minimized. 

Also the acceptance number c = 1 it concludes that proportion defective p is decreases.  

From figure 2 for n and ρ values are fixed and by changing the c values. It concludes that 

then the probability of acceptance (Pa (p)) is increased although the acceptance number c also 
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increases. Figure 3 design the OC curve for fixed c and ρ and by changing then n (sample size) values. 

From this figure denotes then the sample size (n) increases consumers are safeguarded. However, 

the sample size is smaller the producers are safeguarded. 

Figure 4 specifies the OC curve for proposed sampling plan. It is observed that p (proportion 

defective) increases Pa (p) (Probability of Acceptance) decreases. OC curves specify the 

manufacturing to the producer’s and consumer’s quality level. The Characteristic curve is used for 

the purpose of Probability of Acceptance depends upon the fraction defective and also conclude that 

the producer risk (α) and consumer risk (β).  It concludes that sample size increase, producer risk is 

maximized and consumer risk minimized. It is the inequity of Sampling Plan between Good lots and 

Bad Lots. 

Table 1: Optimal parameters of SkSP-T plan with single sampling plan as Reference plan under the condition of 

Intervened Poisson Distribution (IPD) 

ρ i f1 f2 f3 c 

Probability of Acceptance Pa(p) Operating Ratio (OR) 

0.99 0.95 0.90 0.50 0.10 0.05 0.01 
α=0.01 

β=0.01 

α=0.05 

β=0.05 

α=0.05 

β=0.10 

0.01 

1 1/2 

1/3 

1/5 

1/7 

1/9 

1/4 

1/6 

1/10 

1/14 

1/18 

1/8 

1/12 

1/20 

1/28 

1/36 

1 

0.148 0.624 1.053 3.140 5.711 6.577 8.386 56.662 10.540 9.152 

0.215 0.833 1.356 3.605 6.164 7.022 8.810 40.977 8.4298 7.400 

0.340 1.181 1.804 4.203 6.759 7.593 9.427 27.726 6.4300 5.723 

0.445 1.450 2.127 4.594 7.140 7.985 9.778 21.973 5.5069 4.924 

0.552 1.659 2.387 4.891 7.428 8.251 10.07 18.243 4.9735 4.477 

0.05 

2 1/2 

1/3 

1/5 

1/7 

1/9 

1/4 

1/6 

1/10 

1/14 

1/18 

1/8 

1/12 

1/20 

1/28 

1/36 

2 

0.070 0.297 0.510 1.610 3.014 3.485 4.432 63.314 11.734 10.15 

0.102 0.401 0.668 1.863 3.265 3.734 4.737 46.441 9.3117 8.142 

0.161 0.579 0.898 2.190 3.582 4.034 5.011 31.124 6.9672 6.187 

0.211 0.711 1.066 2.404 3.788 4.241 5.192 24.607 5.9648 5.328 

0.262 0.821 1.205 2.567 3.943 4.383 5.346 20.405 5.3386 4.803 

0.10 

3 1/2 

1/3 

1/5 

1/7 

1/9 

1/4 

1/6 

1/10 

1/14 

1/18 

1/8 

1/12 

1/20 

1/28 

1/36 

3 

0.042 0.182 0.317 1.030 1.972 2.289 2.985 71.071 12.577 10.84 

0.061 0.248 0.415 1.196 2.140 2.456 3.119 51.131 9.9032 8.629 

0.098 0.357 0.563 1.415 2.360 2.666 3.334 34.02 7.4678 6.611 

0.128 0.444 0.672 1.559 2.500 2.810 3.459 27.023 6.3288 5.631 

0.161 0.514 0.762 1.669 2.606 2.907 3.564 22.137 5.6556 5.070 

0.15 
4 

1/2 

1/3 

1/5 

1/7 

1/9 

1/4 

1/6 

1/10 

1/14 

1/18 

1/8 

1/12 

1/20 

1/28 

1/36 

4 

0.029 0.127 0.221 0.729 1.418 1.653 2.159 74.448 13.016 11.17 

0.042 0.172 0.289 0.850 1.544 1.779 2.270 54.048 10.343 8.977 

0.068 0.249 0.395 1.009 1.707 1.936 2.436 35.824 7.7751 6.855 

0.089 0.311 0.473 1.116 1.812 2.043 2.531 28.438 6.5691 5.826 

0.112 0.360 0.537 1.195 1.891 2.116 2.610 23.304 5.8778 5.253 

0.20 5 

1/2 

1/3 

1/5 

1/7 

1/9 

1/4 

1/6 

1/10 

1/14 

1/18 

1/8 

1/12 

1/20 

1/28 

1/36 

5 

0.022 0.093 0.164 0.549 1.077 2.261 1.688 76.727 24.312 11.58 

0.028 0.128 0.216 0.641 1.176 1.360 1.753 62.607 10.625 9.188 

0.049 0.186 0.296 0.763 1.304 1.483 1.876 38.286 7.9731 7.011 

0.064 0.232 0.354 0.845 1.386 1.567 1.950 30.469 6.7543 5.974 

0.084 0.269 0.404 0.907 1.447 1.625 2.002 23.833 6.0409 5.379 
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Figure 1: Operating Characteristic Curve for Fixed c and n 

Figure 2: Operating Characteristic Curve for Fixed n and   ρ 

Figure 3: Operating Characteristic Curve for Fixed c and   ρ 
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Figure 4: Operating Characteristic Curve for SkSP-T  With SSP as reference plan under the 

condition of IPD     

VI. Conclusion
The new proposed skip-lot sampling plan of type SkSP-T with single sampling plan as refence plan 

under the condition of intervened poisson distribution is apply during the production process to 

improve the quality of products to produce. The comparison results have specified that the SkSP-T 

with IPD is more efficient than the conventional sampling plans. The necessary tables and examples 

are contributed and applied for the formulation of the new proposed sampling plan. 
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Abstract

This paper introduces a novel probability distribution known as the Ejaz distribution (ED), which
is characterized by two parameters. The study offers a comprehensive analysis of this distribution,
including an examination of key properties such as moments, moment-generating functions, order
statistics, and reliability functions. Additionally, the paper explores the graphical representation of
essential functions like the probability density function, cumulative distribution function, and hazard
rate function, enhancing our visual understanding of their behavior. The distribution’s parameters are
estimated using the widely accepted method of maximum likelihood estimation. Through real-world
examples, the paper highlights the practical applicability of the Ejaz distribution, demonstrating its
performance and relevance in diverse scenarios.

Keywords: Moments, Reliability analysis, oder statistics, maximum likelihood estimation, Data
analysis.

1. Introduction

In numerous fields such as economics, engineering, finance, insurance, demography, biology, and
environmental and medical sciences, various statistical distributions have been widely utilized to
describe and predict observed phenomena. However, the data encountered in these disciplines
often exhibit complex behaviors and diverse shapes, characterized by varying degrees of skewness
and kurtosis. Consequently, many of the conventional standard distributions have limitations
when it comes to accurately representing these data. As a result, the application of these classical
distributions may not yield satisfactory fits. Hence, numerous researchers have endeavored to
enhance these established classical distributions to achieve greater adaptability in modeling data
from a wide array of academic domains. In recent times, researchers have been actively engaged
in the development of new families of continuous probability distributions known for their
remarkable flexibility. This innovation involves the incorporation of extra parameters into the
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foundational distributions. These novel families of lifetime distributions have gained prominence,
particularly in fields like economics, engineering, finance, insurance, demography, biology, and
environmental and medical sciences, where data frequently exhibit intricate behaviors, diverse
shapes, skewness, and kurtosis variations. The integration of additional parameters empowers
these distributions to offer a more adaptable and versatile framework for modeling complex
data. By doing so, they overcome the limitations of traditional standard distributions, enabling
researchers to better capture and predict real-world phenomena with precision. Thus, these
newly proposed lifetime distribution families have become invaluable tools for data analysis and
modeling in a wide range of disciplines. In recent years, researchers have introduced modifica-
tions to enhance the adaptability of conventional distributions when interpreting diverse datasets.
These changes aim to improve the accuracy of data analysis across different fields by tailoring
distribution characteristics to specific dataset requirements. For reference Aijaz et al. [1-3], Terna
Godfrey Ieren [18], Albert Luguterah [4], Topp-Leone Rayleigh distribution by Fatoki olayode
[9],Amal S. Hassan et al. [5], Frank Gomes-silva et al. [10], Brito et al.[7], Morad Alizadeh et al.
[15], Shanker et al. [17],Lindley [14], Flaih, A et al. [11], Akhter, Z et al. [6], G.M. Corderio et
al. [13]. The formulated distribution is versatile and suitable for modeling various data types,
including left-skewed, right-skewed, and symmetric datasets. This versatility is evident when
examining probability density function (PDF) plots, as they demonstrate that this distribution can
offer the most optimal fit for complex datasets. Whether the data exhibits a pronounced tail on
the left, a tail on the right, or a balanced symmetry, this distribution’s flexibility allows it to adapt
and provide a robust representation. Its ability to accommodate a wide range of data patterns
makes it a valuable tool for statistical modeling and analysis, ensuring accurate and meaningful
insights across diverse data scenarios.

Let us suposse F(x; α, β) be cdf of a random variable x with α, β parameters, then the cumula-
tive distribution function of Ejaz distribution is described as.

F(x; α, β) = 1 − e−α(eβx−1)
(

2 − e−α(eβx−1)
)

; x > 0, α, β > 0 (1)
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Figure 1: The cdf plots of Ejaz distribution for distinct parameter values.

The corresponding probability density function is described as

f (x; α, β) = 2αβe−α(eβx−1)+βx
(

1 − e−α(eβx−1)
)

; x > 0, α, β > 0 (2)
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Here we examine the validity of pdf∫ ∞

0
f (x; α, β)dx =1

=
∫ ∞

0
2αβe−α(eβx−1)+βx

(
1 − e−α(eβx−1)

)
dx

On substituting eβx − 1 = z, so that o < z < ∞ we have

=2α
∫ ∞

0
e−αz (1 − e−αz) dz

=2α

(
1

2α

)
= 1
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Figure 2: The pdf plots of Ejaz distribution for distinct parameter values.

2. Moments

To understand and characterize the properties of the formulated distribution, we perform a
moment analysis about the origin. This analysis allows us to derive essential statistical measures
such as skewness, kurtosis, and other relevant properties. By examining these moments, we gain
valuable insights into the distribution’s shape, central tendency, and the presence of any outliers
or heavy tails, aiding in its comprehensive statistical characterization and interpretation.
Suppose x denotes a random variable follows Ejaz distribution. Then kth moment about origin
denoted as µ

′
k can be obtained as

µ
′
k = E(xk) =

∫ ∞

0
xk f (x; αβ)dx

=2αβ
∫ ∞

0
xke−α(eβx−1)+βx

(
1 − e−α(eβx−1)

)
dx

Making substitution eβx=z so that 1 < z < ∞, we have

µ
′
k =

2α

βk

{
eα

∫ ∞

1
(log(z))k e−αzdz − e2α

∫ ∞

1
(log(z))k e−2αzdz

}
Applying integro-Exponential function by Milgram [16].

Ej
s(λ) =

1
j + 1

∫ ∞

1
(log(t))j t−se−λtdt
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µ
′
k =

2αeαΓ (k + 1)
βk

(
Ek

0(α)− eαEk
0(2α)

)
Substituting k = 1, 2, 3, 4 we obtain first four moments of the distribution about origin. The

variance σ2, skewness
√

β1, kurtosis β2 , coefficient of variation (C.V) and index of dispersion γ.

Let x be a random variable follows Ejaz distribution. Then the moment generating function of
the distribution denoted by MX(t) is given by

MX(t) =E(etx) =
∫ ∞

0
etx f (x; α, β)dx

=
∞

∑
k=0

tk

k!
xk f (x; α, β) =

∞

∑
k=0

tk

k!
E(xk)

=
∞

∑
k=0

tk

k!
2αeαΓ (k + 1)

βk

(
Ek

0(α)− eαEk
0(2α)

)

3. Reliability indicators

This section is focused on researching and developing distinct ageing indicators for the formulated
distribution.

3.1. Survival function

Let us suppose x be a continuous random variable with cdf F(x).Then its Survival function which
is also known as reliability function is stated as

S(x) = pr(X > x) =
∫ ∞

x
f (x)dx = 1 − F(x)

Therefore, the survival function for Ejaz distribution is given by

S(x; α, β) =1 − F(x; α, β)

=e−α(eβx−1)
(

2 − e−α(eβx−1)
)

(3)

3.2. Hazard rate function

The hazard rate function of a random variable x is denoted as

h(x; α, β) =
f (x; α, β)

S(x; α, β)
(4)

using equation (1) and (3) in equation (4), then the hazard rate function of Ejaz distribution is
given as

h(x; α, β) =
2αβeβx

(
1 − e−α(eβx−1)

)
(

2 − e−α(eβx−1)
)
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Figure 3: The hrf plots of Ejaz distribution for distinct parameter values.

3.3. Cumulative hazard rate function

The cumulative hazard rate function of a random variable x is given as

H(x, α, β) =− ln[F̄(x; α, β)] (5)

using equation (1) in equation (5), then we obtain cumulative hazard rate function of Ejaz
distribution as

H(x; α, β) = α
(

eβx − 1
)
− log

(
2 − e−α(eβx−1)

)
3.4. Reverse Hazard rate function

The reverse hazard rate function of random variable x is described as

r(x; α, β) =
f (x; α, β)

F(x; α, β)
(6)

using equation (1) and (2) in equation (6), then the reverse hazard rate function of Ejaz
distribution is given as

r(x; α, β) =
2αβe−α(eβx−1)+βx

(
1 − e−α(eβx−1)

)
1 − e−α(eβx−1)

(
2 − e−α(eβx−1)

)
4. Order Statistics

Let us suppose x1, x2, ..., xn be random samples of size n from Ejaz distribution with pdf f (x) and
cdf F(x). Then the probability density function of the kth order statistics is given as

fx(k) =
n!

(k − 1)!(n − 1)!
f (x) [F(x)]k−1 [1 − F(x)]n−k (7)

Using equation (1) and (2) in equation (7), we have

fx(k) =
n!

(k − 1)!(n − 1)!
2αβe−α(eβx−1)+βx

(
1 − e−α(eβx−1)

) [
1 − e−α(eβx−1)

(
2 − e−α(eβx−1)

)]k−1

×
[
e−α(eβx−1)

(
2 − e−α(eβx−1)

)]n−k
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The pdf of the first order statistics X1 of Ejaz distribution is given by

fx(1) =2nαβe−α(eβx−1)+βx
(

1 − e−α(eβx−1)
) [

e−α(eβx−1)
(

2 − e−α(eβx−1)
)]n−1

The pdf of the first order statistics Xn of Ejaz distribution is given by

fx(n) =2nαβe−α(eβx−1)+βx
(

1 − e−α(eβx−1)
) [

1 − e−α(eβx−1)
(

2 − e−α(eβx−1)
)]n−1

5. Maximum Likelihood Estimation

Let the random samples x1, x2, x3, ..., xn are drawn from Ejaz distribution. The likelihood function
of n observations is given as

L =
n

∏
i=1

(
2αβe−α(eβx−1)+βx

(
1 − e−α(eβx−1)

))
The log-likelihood function is given as

l =nlog(2) + nlog(α) + nlog(β)− α
(

eβx − 1
)
+ βx +

n

∑
i=n

log
(

1 − e−α(eβxi−1)
)

(8)

The partial derivatives of the log-likelihood function with respect to α and β are given as

∂l
∂α

=
1
n
− eβxi + 1 +

n

∑
i=1

(
eβxi − 1

)
e−α(eβxi−1)

1 − e−α(eβxi−1)
(9)

∂l
∂β

=
n
β
− αxieβxi + xi − α

n

∑
i=1

xieβxi e−α(eβxi−1)

1 − e−α(eβxi−1)
(10)

For interval estimation and hypothesis tests on the model parameters, an information matrix
is required. The 2 by 2 observed matrix is

I(ψ) =
−1
n

 E
(

∂2logl
∂α2

)
E
(

∂2logl
∂α∂β

)
E
(

∂2logl
∂β∂α

)
E
(

∂2logl
∂β2

) 
The elements of above information matrix can be obtain by differentiating equations (9) and

(10) again partially. Under standard regularity conditions when n → ∞ the distribution of ψ̂ can
be approximated by a multivariate normal N(0, I(ψ̂)−1) distribution to construct approximate
confidence interval for the parameters. Hence the approximate 100(1 − ζ)% confidence interval
for α and β are respectively given by

α̂ ± Z ζ
2

√
I−1
αα (ψ̂)and β̂ ± Z ζ

2

√
I−1
ββ (ψ̂)

6. Simulation Analysis

The bias, variance and MSE were all addressed to simulation analysis. From Ejaz distribution
taking N=500 with samples of size n=25, 50, 150, 200, 250 and 400. For various parameter
combinations, simulation results have been achieved. The bias, variance and MSE values are
calculated and presented in table 1 and 2. As the sample size increases, this becomes apparent
that these estimates are relatively consistent and approximate the actual values of parameters.
Interestingly, with all parameter combinations, the bias and MSE reduce as the sample size
increases.
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Table 1: Bias, variance and their corresponding MSE’s for different parameter values α = 1.2, β = 0.8

Sample size Parameters Bias Variance MSE

25 α 0.01130 0.00432 0.01473
β 0.01251 0.00154 0.00165

50 α 0.00314 0.00413 0.00514
β 0.00103 0.00071 0.00061

150 α -0.00021 0.00301 0.00201
β 0.00406 0.00049 0.00051

200 α -0.00201 0.00156 0.00205
β 0.00237 0.00027 0.00028

250 α 0.00120 0.00206 0.00203
β 0.00255 0.00025 0.00022

300 α 0.00177 0.00203 0.00201
β 0.00066 0.00021 0.00020

Table 2: Bias, variance and their corresponding MSE’s for different parameter values α = 2.2, β = 1.5

Sample size Parameters Bias Variance MSE

25 α 0.01230 0.03553 0.03573
β 0.02003 0.01832 0.01031

50 α 0.01214 0.01105 0.01132
β 0.01121 0.00506 0.00420

150 α 0.00672 0.00668 0.00607
β 0.00146 0.00224 0.00216

200 α 0.00265 0.00416 0.00506
β 0.01076 0.00232 0.00214

250 α 0.0027 0.00360 0.00361
β 0.00208 0.00145 0.00145

300 α 0.00150 0.00301 0.00211
β 0.00063 0.00130 0.00130

7. Data Aanalysis

This subsection evaluates a real-world data sets to demonstrate the Ejaz distribution’s applicability
and effectiveness. The Ejaz distribution (ED) adaptability is determined by comparing its efficacy
to the following conventional distributions.
1:- Weibull distribution having pdf

f (x; α, β) = αβxβ−1e−αxβ
; x > 0, α, β > 0

2:- Frećhet distribution having pdf

f (x; α, β) = αβx−β−1e−αx−β
; x > 0, α, β > 0

3:- Inverse Burr distribution having pdf

f (x; α, β) = αβ
(
1 − x−α

)−β−1 ; x > 0, α, β > 0

4:- Lomax distribution having pdf

f (x; α, β) = αβ (1 + αx)−β−1 ; x > 0, α, β > 0
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5:- Exponentiated Rayleigh distribution having pdf

f (x; α, β) = 2αβxe−αx2
(

1 − e−αx2
)β−1

; x > 0, α, β > 0

6:- Lindley distribution having pdf

f (x; α) =
α2

(1 + α)
(1 + x) e−αx; x > 0, α > 0

7:- Inverse Rayleigh distribution having pdf

f (x; α, β) =
2α

x3 e−αx−2
; x > 0, α > 0

To compare the versatility of the explored distribution, we consider the criteria like AIC
(Akaike information criterion), CAIC (Consistent Akaike information criterion), BIC (Bayesian
information criterion) and HQIC (Hannan-Quinn information criterion). Distribution having
lesser AIC, CAIC, BIC and HQIC values is considered better.

AIC = −2l + 2p, AICC = −2l + 2pm/(m − p − 1), BIC = −2l + p(log(m))

HQIC = −2l + 2plog(log(m)), K.S = max1≤j≤m

(
F(xj)−

j − 1
m

,
j

m
− F(xj)

)
Where ′l′ denotes the log-likelihood function,’p’is the number of parameters and’m’is the

sample size.
Data set 1: The followig observation are due to Caramanis et al and Mazmumdar and Gaver

[12], where they compare the two distinct algorithms called SC16 and P3 for estimating unit
capacity factors. The values resulted from the algorith SC16 are 2.01, 6.32, 3.52, 2.15, 5.42, 2.04,
2.77, 2.26, 1.95, 1.00, 2.45, 0.74, 0.98, 1.27, 2.77, 3.68, 1.18, 1.09,1.60, 0.57, 3.33, 0.91, 7.14, 2.08, 3.85,
1.99, 7.76, 2.52, 1.57, 4.67, 4.22, 1.92, 1.59, 4.08, 2.02, 0.84,6.85, 2.18, 2.04, 1.05, 2.91, 1.37, 2.43, 2.28,
3.74, 1.30, 1.59, 1.83, 3.85, 6.30, 4.83, 0.50, 3.40, 2.33,4.25, 3.49, 2.12, 0.83, 0.54, 3.23, 4.50, 0.71, 0.48,
2.30, 7.73.

Data set 2: The followig observation are due to Caramanis et al and Mazmumdar and Gaver
[12], where they compare the two distinct algorithms called SC16 and P3 for estimating unit
capacity factors. The values resulted from the algorith SC16 are 0.1, 0.33, 0.44, 0.56, 0.59, 0.59,
0.72, 0.74, 0.92, 0.93,0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13,1.15, 1.16, 1.2,
1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46,1.53, 1.59, 1.6, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83,
1.95, 1.96, 1.97,2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.78,2.93, 3.27, 3.42,
3.47, 3.61, 4.02, 4.32, 4.58, 5.55, 2.54, 0.77.

The ML estimates with corresponding standard errors in parenthesis of the unknown parame-
ters are presented in Table 3 and Table 5. Also the comparison statistics, AIC, BIC, CAIC, HQIC
and the goodness-of-fit statistic for the data sets are displayed in Table 4 and Table 6.

It is observed from the findings that ED provides best fit than other competative models based
on the measures of statistics, AIC, BIC, AICC, HQIC and K-S statistic. Along with p-values of
each model.
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Table 3: The ML Estimates (standard error in parenthesis) for data set 1

Model α̂ β̂

ED 3.45342 0.19311
(1.92236) (0.08456)

WD 0.16787 1.59666
(0.04105) (0.15017)

FD 1.82550 1.42975
(0.22717) (0.12938)

IBD 1.79634 2.85966
(0.15843) (0.36236)

LXD 0.00769 48.2182
(0.00464) (29.232)

ERD 0.07499 0.73015
(0.01347) (0.11406)

LD 0.59651 ...
(0.05424) ....

IRD 1.78914 ...
(0.22191)

Table 4: Comparison criterion and goodness-of-fit statistics for data set 1

Model -2l AIC AICC BIC HQIC K.S statistic p-value
ED 239.11 243.11 243.30 247.45 244.82 0.07732 0.8319
WD 240.85 244.85 245.04 249.20 246.56 0.0955 0.5927
FD 250.87 254.87 255.07 259.22 256.59 0.1491 0.1111
IBD 245.36 249.36 249.56 253.71 251.08 0.12373 0.2726
LXD 130.57 265.14 265.33 269.49 266.86 1.00 2.2e-16
ERD 243.000 247.00 247.19 251.34 248.71 0.12333 0.2762
LD 249.59 251.59 251.65 253.77 252.45 0.11653 0.3406
IRD 267.49 269.49 269.56 271.67 270.35 0.27703 9.293e-05
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Figure 4: Fitted pdf, cdf and hrf for data set 1.
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Table 5: The ML Estimates (standard error in parenthesis) for data set 2

Model α̂ β̂

ED 3.45342 0.19311
(1.92236) (0.08456)

WD 0.29347 1.796236
(0.05540) (0.15662)

FD 1.04750 1.17538
(0.13022) (0.08496)

IBD 2.31897 1.85769
(0.21444) (0.21925)

LXD 0.00841 68.4375
(0.00579) (47.3451)

ERD 0.22565 0.90717
(0.03649) (0.14049)

LD 0.87441 ....
(0.07718) ...

IRD 0.45560 ...
(0.05369) ...

Table 6: Comparison criterion and goodness-of-fit statistics for data set 2

Model -2l AIC AICC BIC HQIC K.S statistic p-value
ED 191.80 195.80 195.97 200.35 197.61 0.06414 0.6053
WD 192.05 196.05 196.22 200.60 197.86 0.098266 0.4902
FD 234.65 238.65 238.82 243.20 240.46 0.18994 0.01109
IBD 195.21 199.21 199.38 201.02 203.76 0.10925 0.3565
LXD 225.58 229.58 229.75 234.13 231.39 0.28959 1.139e-05
ERD 193.26 197.26 197.44 201.82 199.08 0.10202 0.4419
LD 213.05 215.05 215.10 217.32 215.95 0.2356 0.000671
IRD 323.71 325.71 325.77 327.99 326.61 0.4674 4.352e-14
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EJAZ DISTRIBUTION A NEW TWO PARAMETRIC
DISTRIBUTION FOR MODELLING DATA

8. Conclusion

In this research paper, we introduce a novel two-parameter lifetime distribution, named the "Ejaz
distribution." We delve into various mathematical properties associated with this distribution,
including its shape, moments, hazard rate, and order statistics. Furthermore, we discuss the
utilization of the maximum likelihood estimation method for estimating the distribution’s parame-
ters. To illustrate the practical effectiveness and superiority of the Ejaz distribution in comparison
to existing alternatives such as the Weibull, Frećhet, Inverse Burr, Lomax, Exponentiated Rayleigh,
Lindley, and inverse Rayleigh distributions, we conduct goodness-of-fit tests employing criteria
such as the Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC),
and Bayesian Information Criterion (BIC) on real-life lifetime datasets. Additionally, we perform
a simulation analysis, which reveals an intriguing trend: as the sample size increases, there is a
reduction in bias and mean squared error (MSE) across all parameter combinations.
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Abstract 

This study examines the consistency metrics used to evaluate the durability of a spirulina production 

plant, which consists of seven subsystems: cultivation pond, paddlewheel, filter unit, washing unit, 

spray dryer, ribbon blender, and packaging. By studying the spirulina firm, we can repair it by 

discovering future failures. We can increase spirulina production so that untimely failure can be 

prevented and production can be increased. There are two types of system failures: partial and total. 

While a full failure renders the system incapable of operating, a partial failure is thought to degrade 

the system. In contrast, repair rates follow two different types of distributions: an ordinary and an 

exponential distribution. The system in a partially failed or degraded condition is thought to be 

repaired using general time distribution. In contrast, fully failed systems are thought to be fixed using 

the Gumbel-Hougaard family copula distribution. Using the supplementary variable approach, the 

system is examined. A Chapmen-Kolmogorov differential equation is created and solved by applying 

the Gumbel-Haugaard family Copula approach, employing the schematic representation of the 

system's state. supplementary variable approaches are applied to develop and resolve the differential 

equations related to transition diagrams, which are significant to this research. Reliability, 

availability, profitability, and MTTF are the critical performance metrics for the spirulina production 

plant. Moreover, sensitivity analysis is carried out for MTTF. 

Keywords: Laplace transformation, MATLAB tool, Sensitivity, Spirulina 

production plant  

I. Introduction

 The fundamental idea behind reliability is failure-free operation, which refers to an item's capacity 

to operate as intended without a fault for a predetermined amount of time under predetermined 

circumstances. Every technology system in the present scientific era depends on dependability to 
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some extent. A high level of dependability is required for defenses, businesses, and space research 

projects. The designers, engineers, and manufacturers in both the public and private sectors 

emphasize the dependable operation of their systems or equipment. Maximizing profit frequently 

arises in many reliability models of practical utility. The price a repairman must pay to fix the 

system's failure stage determines the profit that may be made from an operational system. As a 

result, the primary focus of research on repairable complex systems is anticipating and calculating 

the costs associated with maintaining a system. In comparison to what is typically found as 

availability/reliability of the system, the concept of determining the cost necessary to run a 

procedure involves a thorough understanding of the system’s behavior. 

 Much work has been done to increase reliability while connecting the components in parallel 

and series. Agarwal and Bansal [1] carried out top-of-the-line repair disciplines with an 

environmental impact to determine the system's dependability. Xie et al. [2] As reliability and 

performance analysis of networked computers with opaque bridges have received little to no 

attention in prior research on networked computers; this study examines the reliability and 

efficiency analysis of complicated series-parallel networked computers with visible bridges. 

Agarwal et al. [3] The efficiency of a redundant cold-standby device. Yusuf and Hussaini [4] 

Evaluate a system consisting of three redundant units, three different forms of failure, and general 

repair.[5] Using generic stochastic Wiener processes as the foundation, a unique regression 

estimation technique for deterioration analysis. Agarwal and Bansal [6] Evaluated the solar thermal 

electric generation facilities' cost study. Bansal and Tyagi [9] Production of leaf springs is modeled 

mathematically, and availability is examined. Arora and Kumar [7] A thermal power plant's ash 

management system's stochastic behavior analysis and maintenance planning was provided again 

using the Markov technique. The probabilistic method must be revised to address the ambiguous 

and uncertain failure/repair data. Thus, FM has been utilized by several academics in other fields to 

address such variability in the failure/repair data. Bansal [8] Preemptive-Resume Repair Discipline 

Availability Analysis of a Repairable Redundant System. Chaudhary and Bansal [11] Assessment of 

Hydroelectric Power Station Reliability Performance. Bansal et al. [10] Manufacturing Plant for 

Screws Performance Modeling and Availability Analysis. Chauhan and Malik [12] studied the 

series-parallel circuits' dependability for the given variable. Fouladirad et al. [13] By reducing the 

traditional premise that the extent of depreciation may expand forever, which is frequently 

impractical for specialized units, we build a novel, limited, modified gamma process model to 

describe and anticipate degrading occurrences. A set of wear measurements of the cylinder liners 

used in a diesel engine for maritime propulsion are features related to the suggested model's 

application. Godara and Bansal [14] Boolean function technique and neural network approach are 

used to analyze the performance of reliability factors in steam turbine generator power plants. 

Kabiru et al. [15] have concentrated on the sophisticated system's combined distribution, including 

two reliability evaluation components. Uswarman and Rushdi [16] used multimodal criterion 

systems for the reliability assessment of rooftop solar photovoltaic panels. Lai and Zwetsloot 

[17] provide an ensemble rating system for the quality of products that is data-driven and is verified

by recognizing high-risk situations firms in a research study of the solar sector. The last two articles

focus on repairable equipment' dependability and maintenance. Tyagi and Bansal [18] Wastewater

Treatment Process Optimization Model. The apparatus fails if at least k continuous units fail. A

continuous k-out-of-n: F system comprises n-ordered units arranged in a line or circle. Several

experts have delved deeply into the k-out-of-n scheme. Maihulla et al. [19] The Gumbel-Haugaard

Family Copula examines a modest solar photovoltaic system's function and cost. Meynaoui et al.

[20] Using universal examination of the distribution of the input parameters' sensitivity employed
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in quantitative simulators to mimic physical activities and cope with an unintentional situation 

during a sodium cooling fast nuclear reactor. 

    Vitamins E, C, and B6 are just a few vitamins and minerals abundant in spirulina that support 

a robust immune system. According to research, spirulina increases the body's ability to produce 

white blood cells and antibodies that help your body fight against infections and infections. There 

are several possibilities for medicinal and therapeutic uses in addition to its significance as a food 

additive for supplemental human nutrition. The giant spirulina plant in the world today is Earthrise 

farm, which was founded in 1976 and was the first spirulina farm in North America. Earthrise has 

produced high-quality and secure spirulina for customers worldwide with over 40 years of expertise 

and a 108-acre facility. The author's goal is that the model made by the author should be able to 

produce maximum production without any failure. The author has prepared a model keeping in 

mind the benefits of Spirulina so that we can get maximum production without failure. Seven 

subsystems have been chosen. Subsystem two has taken three units, one on hot standby and two on 

cold standby, while subsystem four has taken two units, one on hot standby and the other on cold 

standby, and other subsystems have been single units. The copula distribution has been used to 

correct these states whenever the system partially failed, i.e., operating less efficiently than it should. 

Because a completely failed state is required for a quick repair, a general repair cannot be used in 

these situations. The different interests and necessary system dependability measures have been 

discussed. The findings were obtained using various failure and repair rate numbers. The following 

are the sections of the paper: an introduction, a spirulina production process, a mathematical 

modeling, a solution of the model, and an analytical section in which various reliability measures, 

such as availability, reliability, MTTF, sensitivity to MTTF, and cost analysis, have been calculated 

using different parameter settings. And the last interpretation of results with the help of tables and 

graphs. 

II. Methods

I. Spirulina Production Process

The Spirulina production plant consists of seven subsystems, i.e., cultivation pond, paddlewheel, 

filter chamber, washing chamber, spray dryer, ribbon blender, and packaging. 

(a) Cultivation Pond
Cultivation may begin by feeding water to the chamber at the necessary height. The water must have 

the proper pH and be alkaline by adding the necessary salts at the correct rate. After the water has 

a typical nutritional makeup, the chamber is ready for spirulina planting. For optimal development 

and harvesting, 30 grams of dry spirulina should be applied for every 10 liters of water. It is made 

up of one unit connected in sequence. Thus, further, this unit fails, and the system fails. 

(b) Paddlewheel
This fan has a paddle wheel or propeller installed on a spinning shaft inside a ring, panel, or cage. 

The most common applications for propeller fans are light- to medium-duty ones, including 

ventilation systems where air may be propelled in any direction. These wheels produce oxygen so 

that the algae can get proper nutrition, and the sun's light can reach the bottom layer so that more 

and more spirulina accumulate above. It consists of three parallel units. This system's capacity 

would be reduced with a partial failure. Only when three units fail does a severe failure occur. 
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(c) Filtration Unit
 The spirulina is separated in this chamber by filtering using powerful vacuums. Spirulina with 

specific contaminants is produced when a filter drains water by sucking it out with a vacuum. It is 

made up of one unit connected in series. Thus, further, this unit fails, and the system fails. 

(d) Washing unit
In this chamber, a high stream of pure water is used for flushing out contaminants. moreover, 

spirulina cream is available. It consists of two parallel components. This system's capacity would be 

reduced with a partial failure. Only when two units fail may a severe failure occur. 

(e) Spray Dryer
In spray drying, a solution, fluid, or emulsion comprising one or more components of the desired 

product is atomized into droplets by spraying. Then, the droplets are quickly evaporated into the 

compound by superheated steam at a specific temperature and pressure. It is made up of one unit 

connected in sequence. Thus, further, this unit fails, and the system fails. 

(f) Ribbon Blender
Spirulina we receive in solid form is processed via a crusher into dry powder. It is made up of one 

unit connected in sequence. Thus, further, this unit fails, and the system fails. 

(g) Packaging
Spirulina is ground into a fine powder and then utilized to manufacture tablets and capsules. Items 

are measured, sealed, and packed with care. It is prepared to be sold on the market for various uses. 

This part has yet to be considered for analysis because it hardly ever fails. 

Figure 1: Flow Diagram of Spirulina Production Plant 

II. State Description

𝑆0:  All subsystems are in good operating order in state 𝑆0 . The system is fully functional and in 

excellent condition. 

𝑆1:  𝐷𝑢𝑒 to the breakdown of subsystem one, 𝑆1 isa catastrophic failure. The system is being repaired, 

and the failing status is being addressed with copula repair. 

𝑆2:  The initial unit of subsystem-two failed; the state 𝑆2  reflects a degraded condition with a small 

partial failure in subsystem-two. The system operates, the state is undergoing general repair, and 

total repair time is (x, t).  

𝑆3: The first and second units of subsystem-two failed; the state S3 reflects a degraded condition with 

minor partial failure in subsystem-two. The system is operating, and the state is undergoing general 

repair. And the elapsed repair time is (x, t). 

𝑆4: After failing every unit of subsystem two, the state  𝑆4 reflects an entire state of failure. The system 
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is being repaired, and the failing status is being addressed with copula repair. 

𝑆5: 𝐷𝑢𝑒 to the breakdown of subsystem three, the state  𝑆5 is a fully failed state. The system is being 

repaired, and the failing status is being addressed with copula repair. 

𝑆6: The initial unit of subsystem-four failed; the state 𝑆6  reflects a degraded condition with a small 

partial failure in subsystem-four. The system is operating, and the state is undergoing general repair. 

And the elapsed repair time is (x, t). 

𝑆7: After failing both units of subsystem two, the state  𝑆7 reflects an entire failed state. The system 

is being repaired, and the failing status is being addressed with copula repair. 

𝑆8: The initial units of subsystems two and four have failed. when the second units of subsystems 2 

and 4 are in use. When the third unit of subsystem two is on standby. The system is operating, and 

the state is undergoing general repair. And the elapsed repair time is (x, t). 

𝑆9: The second units of subsystem two and the first unit of subsystem four have failed. when the 

third unit of subsystem two and the second unit of subsystem four are in use. When the second unit 

of subsystem four is on standby. The system is operating, and the state is undergoing general repair. 

And the elapsed repair time is (x, t). 

𝑆10: 𝐷𝑢𝑒 to the breakdown of subsystem five, the state 𝑆10 is a fully failed state. The system is being 

repaired, and the failing status is being addressed with copula repair. 

𝑆11: 𝐷𝑢𝑒 to the breakdown of subsystem six, the state 𝑆11 is a fully failed state. The system is being 

repaired, and the failing status is being addressed with copula repair. 

𝑆12: 𝐷𝑢𝑒 to the breakdown of subsystem seven, the state 𝑆12 is a fully failed state. The system is being 

repaired, and the failing status is being addressed with copula repair. 

III. Assumptions

• At first, every system component is in a good functioning state.

• For operational mode, one unit from subsystem one, subsystem two, subsystem three,

subsystem four, subsystem five, subsystem six, and subsystem seven is required.

• Moreover, subsystems 1, 3, 5, 6, and 7 will all be inoperative if one of their corresponding units

fails.

• If three units from subsystem 2 fail, the system will not function.

• The subsystem will not function if any of its two parts fail.

• When a system component is inoperable or failed condition, it can still be repaired.

• Once a unit in a subsystem completely fails, copula (Gumbel-Haugaard Family) repair is

necessary.

• The failed unit can execute the function as soon as it has been repaired.

• A system healed via copula operates precisely like an entire system, and no harm is thought to

occur during restoration.

IV. Notations

t:  Variable time on a time scale. 

s:    Laplace transforms variables for all expressions. 

𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5, 𝜙6, 𝜙7:  sub system failure rates 1,2,3,4,5,6 and 7 respectively.  

𝜂1(𝑥), 𝜂2(𝑥), 𝜂3(𝑥), 𝜂4(𝑥), 𝜂5(𝑥), 𝜂6(𝑥), 𝜂7(𝑥):  Subsystem repair rates 1,2,3,4,5,6 and 7 respectively. 
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𝛹1(𝑥), 𝛹2(𝑥), 𝛹3(𝑥), 𝛹4(𝑥), 𝛹5(𝑥), 𝛹6(𝑥), 𝛹7(𝑥): Unit in a subsystem 1,2,3,4,5,6,7 that completely 

failed was repaired by a copula. 

𝑃𝑘(𝑥, 𝑡):  The possibility that the system is 𝑆𝑘state for k= 0 to 12. The system is being repaired, and 

the time since the last repair is x, t. 

𝑃̅(𝑠):  Laplace transform of state probability P (t). 

𝐸𝑝(𝑡): expected profit for the period [0, t). 

𝑍1, 𝑍2: respectively, revenue and operating cost per unit of time. 

𝑆𝛼(𝑥): 𝑆𝛼(𝑥) =  𝛼(𝑥)𝑒∫ −𝛼(𝑥)𝑑𝑥
𝑥

0  with repair distribution function 𝛼(𝑥). 

L [𝑆𝛼(𝑥)]: ∫ 𝑒−𝑠𝑥𝛼(𝑥)
∞

0
𝑒∫ −𝛼(𝑥)𝑑𝑥 = 𝑆𝛼̅(𝑠), is the Laplace transform of 𝑆𝛼(𝑥)

L[
1−𝑆𝛼(𝑥)

𝑠
]: ∫ 𝑒−𝑠𝑥∞

0
𝑒∫ −𝛼(𝑥)𝑑𝑥 =

1−𝑆̅𝛼(𝑠)

𝑠
is the Laplace transform of 

1−𝑆̅𝛼(𝑥)

𝑠

𝜇0(𝑥) = 𝐶𝜃(𝑢1(𝑥), 𝑢2(𝑥)), The Gumbel-Hougaard family copula's expression for joint probability is 

provided as 𝐶𝜃(𝑢1(𝑥), 𝑢2(𝑥)) = 𝑒  [𝑥𝜃+{𝑙𝑜𝑔𝜂(𝑥)}𝜃]1/θ ,  where𝑢1 = 𝜂(𝑥), and𝑢2 = 𝑒𝑥 where 𝜃 as a

parameter, 1≤ 𝜃 ≤ ∞. 

Figure2: State Transition Diagram of Spirulina production plant 

II. Formulation and Solution of model

The probability of considerations and continuity of reasoning relates the following set of difference 

differential equations to the mathematical model above. 

[
𝜕

𝜕𝑡
  + 𝜙1 + 𝜙2 + 𝜙3 + 𝜙4 + 𝜙5 + 𝜙6 + 𝜙7] 𝑃𝑜(𝑡)= ∫ 𝛹1𝑃1(𝑥, 𝑡)

∞

0
dx + ∫ 𝜂2𝑃2(𝑥, 𝑡)

∞

0
dx +

∫ 𝜂4𝑃6(𝑥, 𝑡)
∞

0
dx + ∫ 𝛹2𝑃4(𝑥, 𝑡)

∞

0
dx + ∫ 𝛹4𝑃7(𝑥, 𝑡)

∞

0
dx + ∫ 𝛹3𝑃5(𝑥, 𝑡)

∞

0
dx + ∫ 𝛹5𝑃10(𝑥, 𝑡)

∞

0
dx +

∫ 𝛹6𝑃11(𝑥, 𝑡)
∞

0
dx + ∫ 𝛹7𝑃12(𝑥, 𝑡)

∞

0
dx   (1) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝛹1) 𝑃1(𝑥, 𝑡) = 0 (2)
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(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜙2 + 𝜙4 + 𝜂2) 𝑃2(𝑥, 𝑡) = 0  (3) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜙2 + 𝜙4 + 𝜂2) 𝑃3(𝑥, 𝑡) = 0  (4) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝛹2) 𝑃4(𝑥, 𝑡) = 0  (5) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝛹3) 𝑃5(𝑥, 𝑡) = 0   (6) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜙2 + 𝜙4 + 𝜂2) 𝑃6(𝑥, 𝑡) = 0  (7) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝛹4) 𝑃7(𝑥, 𝑡) = 0  (8) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜙2 + 𝜂2 + 𝜂2) 𝑃8(𝑥, 𝑡) = 0  (9) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜙2 + 𝜂4) 𝑃9(𝑥, 𝑡) = 0  (10) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝛹5) 𝑃10(𝑥, 𝑡) = 0  (11) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝛹6) 𝑃11(𝑥, 𝑡) = 0  (12) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝛹7) 𝑃12(𝑥, 𝑡) = 0  (13) 

Boundary conditions: 

𝑃3(0, 𝑡) = 𝜙2
2𝑃0(𝑡)  (14) 

𝑃4(0, 𝑡) = 𝜙2
3(1 + 𝜙4)𝑃0(𝑡)  (15) 

 𝑃𝑖(0, t) =𝜙𝑗𝑃0(t), where i= 1,2,5,6,10,11,12   &  j = 1,2,3,,4,5,6,7   (16) 

𝑃7(0, 𝑡) = 𝜙4
2𝑃0(𝑡)  (17) 

𝑃8(0, 𝑡) = (𝜙2  𝜙4 + 𝜙2𝜙4)𝑃0(𝑡)  (18) 

𝑃9(0, 𝑡) = 𝜙2
3𝜙4𝑃0(𝑡)  (19) 

    𝑃0(0) = 1         (20) 
Solving (1)-(21),  

𝑃̅0(𝑠) =
1

∈(𝑠 )
 (21) 

𝑃̅1(𝑠) =
𝜙1

∈(𝑠)
[

1−𝑆̅𝛹1(𝑠)

𝑠
]  (22) 

𝑃̅2(𝑠) =
𝜙2

∈(𝑠)
[

1−𝑆̅𝜂2(𝑠+𝜙2+𝜙4)

(𝑠+𝜙2+𝜙4)
]  (23) 

𝑃̅3(𝑠) =
𝜙2

2

∈(𝑠)
[

1−𝑆̅𝜂2(𝑠+𝜙2+𝜙4)

(𝑠+𝜙2+𝜙4)
]  (24) 

𝑃̅4(𝑠) =
𝜙2

3(1+𝜙4)

∈(𝑠)
[

1−𝑆̅𝛹2(𝑠)

𝑠
]  (25) 

𝑃̅5(𝑠) =
𝜙3

∈(𝑠)
[

1−𝑆̅𝛹3(𝑠)

𝑠
]  (26) 

𝑃̅6(𝑠) =
𝜙4

∈(𝑠)
[

1−𝑆̅𝜂2(𝑠+𝜙2+𝜙4)

(𝑠+𝜙2+𝜙4)
]  (27) 

𝑃̅7(𝑠) =
𝜙4

2

∈(𝑠)
[

1−𝑆̅𝛹4𝑠

𝑠
]  (28) 

𝑃̅8(𝑠) =
(𝜙4𝜙2+𝜙2𝜙4)

∈(𝑠)
[

1−𝑆̅2𝜂2(𝑠+𝜙4)

(𝑠+𝜙4)
]  (29) 

𝑃̅9(𝑠) =
𝜙4𝜙2

3

∈(𝑠)
[

1−𝑆̅𝜂2(𝑠+𝜙2)

(𝑠+𝜙2)
]  (30) 

𝑃̅10(𝑠) =
𝜙5

∈(𝑠)
[

1−𝑆̅𝛹5(𝑠)

𝑠
]  (31) 

𝑃̅11(𝑠) =
𝜙6

∈(𝑠)
[

1−𝑆̅𝛹6(𝑠)

𝑠
]  (32) 

𝑃̅12(𝑠) =
𝜙7

∈(𝑠)
[

1−𝑆̅𝛹7(𝑠)

𝑠
]  (33) 

Where, 

∈ (𝑠) = [(𝑠 + 𝜙1 + 𝜙2 + 𝜙3 + 𝜙4 + 𝜙5 + 𝜙6 + 𝜙7) − 𝜙1𝑆𝛹̅1
(𝑠) − 𝜙2𝑆𝜂̅2

(𝑠 + 𝜙2 + 𝜙4)𝜙2
3(1 +

𝜙4)𝑆𝛹̅2
(𝑠) − 𝜙3𝑆𝛹̅4

(𝑠) − 𝜙4𝑆𝜂̅2
(𝑠 + 𝜙2 + 𝜙4) − 𝜙4

2𝑆𝛹̅4
(𝑠) − 𝜙5𝑆𝛹̅5

(𝑠) − 𝜙6𝑆𝛹̅6
(𝑠) − 𝜙7𝑆𝛹̅7

(𝑠)   ] (34)

The probability of a system being in an operating mode or a failed state at any given moment are 
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transformed using a Laplace transform as follows: 

𝑃̅𝑢𝑝(𝑠) =  𝑃̅0(𝑠) + 𝑃̅2(𝑠) + 𝑃̅3(𝑠) + 𝑃̅6(𝑠) + 𝑃̅8(𝑠) + 𝑃̅9(𝑠)  (35) 

𝑃̅𝑢𝑝(𝑠) =  
1

∈(𝑠)
{1 + 𝜙2 [

1−𝑆̅𝜂2(𝑠+𝜙2+𝜙4)

(𝑠+𝜙2+𝜙4)
] + 𝜙2

2 [
1−𝑆̅𝜂2(𝑠+𝜙2+𝜙4)

(𝑠+𝜙2+𝜙4)
] + 𝜙4 [

1−𝑆̅𝜂2(𝑠+𝜙2+𝜙4)

(𝑠+𝜙2+𝜙4)
] + (𝜙2  𝜙4  +

𝜙2𝜙4) [
1−𝑆̅2𝜂2(𝑠+𝜙4)

(𝑠+𝜙4)
] + 𝜙2

3𝜙4 [
1−𝑆̅𝜂4(𝑠+𝜙2)

(𝑠+𝜙2)
]}   (36) 

𝑃̅𝑑𝑜𝑤𝑛(𝑠) = 1 − 𝑃̅𝑢𝑝(𝑠)  (37) 

III. Results

I. Availability Analysis

Taking, 𝑆𝜇0
(𝑠) = 𝑆̅

exp [𝑥𝜃+{𝑙𝑜𝑔𝜂(𝑥)}𝜃]1/θ 
(𝑠) =

exp [𝑥𝜃+{𝑙𝑜𝑔𝜂(𝑥)}𝜃]1/θ

𝑠+exp [𝑥𝜃+{𝑙𝑜𝑔𝜂(𝑥)}𝜃]1/θ 
, 𝑆𝜂̅(𝑠)= 

𝜂

𝑠+𝜂
and failure rates are 

𝜙1 =  .002, 𝜙2 =  .003, 𝜙3 = .004, 𝜙4 = .005, 𝜙5 =  .003, 𝜙6 =  .007, 𝜙7 =  .001And repair rates 

𝜂1 = 𝜂2 = 𝜂3 = 𝜂4 = 𝜂5 = 𝜂6 = 𝜂7 = 1 = 𝛹1 = 𝛹2 = 𝛹3 = 𝛹4 = 𝛹5 = 𝛹6 = 𝛹7 in equation [36], One 

may get the availability expression as: taking the inverse Laplace transform. 

Availability =[. 01678017142869𝑒−1.01717779780318𝑡 − .24872963381646𝑒−.06371454763895𝑡 −

.37315067813499𝑒−.0765367498357𝑡 + .00599206711030𝑒−.005𝑡 + .00000002708736𝑒−.003𝑡 +
1.5990990379009𝑒−.007𝑡 + .000017998275150𝑡𝑒−.005𝑡 + .000000000135161851𝑡𝑒−.003𝑡 +

.001601056166718𝑡𝑒−.007𝑡]                                                                                                                         (38) 

Taking time t = 0,1,2,3,4,5,6,7,8,9,10, We determined several values for availability with equation [38] 

as shown in Table 1 and graph in Fig. 3 

 Table 1: Availability vs time (t) 

Time A(t) 

0 1.00000 

1 0.99080 

2 0.98550 

3 0.97960 

4 0.97170 

5 0.96130 

6 0.94820 

7 0.93230 

8 0.91370 

9 0.89220 

10 0.86790 

RT&A, No 1 (77)
 Volume 19, March 2024

209



Priya Chaudhary, Shikha Bansal  
RELIABILITY INVESTIGATION OF THE SPIRULINA PRODUCTION 

Figure 3: Availability v/s Time 

II. Reliability Analysis
Assuming all repair rates is equal to zero in equation [36] and taking failure rates as 𝜙1 =  .002, 𝜙2 =

 .003, 𝜙3 = .004, 𝜙4 = .005, 𝜙5 =  .003, 𝜙6 =  .007, 𝜙7 =  .001 after which, using the Inverse 

Laplace transform, we obtained Equation [39]. as shown in Table 2 and graph in Fig. 4. 

𝑅(𝑡) = { .0015𝑒−.005𝑡 + .00000000061363636𝑒−.003𝑡 + .5535555494191𝑒−.025𝑡 +

 .444944444𝑒−.007𝑡}                                                                                    (39) 

 Table 2: Reliability v/s Time 

Time R(t) 

0 1.00000 

1 0.98320 

2 0.96680 

3 0.95070 

4 0.93500 

5 0.91960 

6 0.90450 

7 0.88980 

8 0.87540 

9 0.86120 

10 0.84740 
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Figure 4: Reliability v/s Time 

III. MTTF Analysis
Assuming all repair rates is equal to zero in equation [36], we arrive at the formula for MTTF as s 

tends to zero 

𝑀𝑇𝑇𝐹 =  lim
𝑠→0

𝑃̅𝑢𝑝 (𝑠) =  
1

𝜙1+𝜙2+𝜙3+𝜙4+𝜙5+𝜙6+𝜙7
{

2𝜙2+3𝜙2
2+2𝜙4+2𝜙2𝜙4+𝜙2

3𝜙4+𝜙2
2𝜙4

2

𝜙2+𝜙4
}  (40) 

 and taking failure rates as 𝜙1 =  .002, 𝜙2 =  .003, 𝜙3 = .004, 𝜙4 = .005, 𝜙5 =  .003, 𝜙6 =  .007,

𝜙7 =  .001and varying failure rates one by one as .001,.002,.003,.004,.005,.006,.007,.008,.009,.010 in 

equation [38], and we can get the variation of mean time to failure with respect to failures rates  as 

shown in Table 3 and graph in Fig. 5. 

Table 3: MTTF V/S Failure rates 

Failure 

rate 𝟇1 𝟇2 𝟇3 𝟇4 𝟇5 𝟇6 𝟇7 

0.001 83.630210 87.050725 91.232957 95.630953 87.266306 105.638160 80.285002 

0.002 80.285002 83.523810 87.266306 91.263637 83.630210 100.356252 77.197117 

0.003 77.197117 80.285002 83.630210 87.282610 80.285002 95.577383 74.337965 

0.004 74.337965 77.299148 80.285002 83.636906 77.197117 91.232957 71.683037 

0.005 71.683037 74.537042 77.197117 80.285002 74.337965 87.266306 69.211208 

0.006 69.211208 71.974032 74.337965 77.192310 71.683037 83.630210 66.904168 

0.007 66.904168 69.589089 71.683037 74.329632 69.211208 80.285002 64.745969 

0.008 64.745969 67.364113 69.211208 71.672080 66.904168 77.197117 62.722658 

0.009 62.722658 65.283423 66.904168 69.198279 64.745969 74.337965 60.821971 

0.01 60.821971 63.333349 64.745969 66.889747 62.722658 71.683037 59.033090 
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Figure 5: MTTF v/s Failure rates 

IV. Sensitivity Analysis
With the partial differentiation of MTTF regarding the failure rate of the system, the sensitivity in 

MTTF of the system can be evaluated. The MTTF sensitivity may be calculated by using the set of 

parameters𝜙1 =  .002, 𝜙2 =  .003, 𝜙3 = .004, 𝜙4 = .005, 𝜙5 =  .003, 𝜙6 =  .007, 𝜙7 =  .001and  in 

the partial differentiation of MTTF, as given in the Table 4 and graphs in Fig. 6 

Table 4: Sensitivity of MTTF as a function of failures rates 

Failure 

rates 

𝜕(𝑀𝑇𝑇𝐹)

𝜕𝜙1

𝜕(𝑀𝑇𝑇𝐹)

𝜕𝜙2

𝜕(𝑀𝑇𝑇𝐹)

𝜕𝜙3

𝜕(𝑀𝑇𝑇𝐹)

𝜕𝜙4

𝜕(𝑀𝑇𝑇𝐹)

𝜕𝜙5

𝜕(𝑀𝑇𝑇𝐹)

𝜕𝜙6

𝜕(𝑀𝑇𝑇𝐹)

𝜕𝜙7

0.001 -1313.161 -3686.090 -1562.770 -4580.640 -1429.831 -2095.237  -1210.209

0.002 -1210.209 -3376.410 -1429.831 -4164.710 -1313.161 -1890.952 -1118.906

0.003 -1118.906 -3000.000 -1313.161 -3805.760 -1210.209 -1715.149 -1037.559

0.004 -1037.559 -2922.050 -1210.209 -3492.520 -1118.906 -1562.770 -964.771

0.005 -964.771 -2606.310 -1118.906 -3217.000 -1037.559 -1429.831 -899.382

0.006 -899.382 -2424.520 -1037.559 -2973.190 -964.771 -1313.161 -840.423

0.007 -840.423 -2312.060 -964.771 -2756.240 -899.382 -1210.209 -787.077

0.008 -787.077 -2169.620 -899.382 -2562.400 -840.423 -1118.906 -738.653

0.009 -738.653 -2017.450 -840.423 -2388.270 -787.077 -1037.559 -694.564

0.010 -694.564 -1909.720 -787.077 -2231.420 -738.653 -964.771 -654.309
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Figure 6:  Sensitivity of MTTF V/S failures rates 

V. Profit Analysis
Formula presented as follows may be used to compute the expected profit within the period [0, t): 

𝐸𝑃(𝑡) = 𝑍1 ∫ 𝑃𝑢𝑝(𝑡)
𝑡

0
− 𝑍2𝑡 

Taking 𝑍1 = 1 𝑎𝑛𝑑 𝑍2 = .05,.10,.15,.20,.25,.30,.35 and varying t = 0,1,2, 3,…….10. units of time then the 

expected profit is 

𝐸𝑃(𝑡) = {0.0164967𝑒−1.017177797𝑡 + 3.90381228𝑒−.0637145476𝑡 + 4.875444529𝑒−.0765367498𝑡 −
1.19841342𝑒−.005𝑡 − 0.000009𝑒−.003𝑡 − 228.4427196𝑒−.007𝑡 − 0.00000033𝑡𝑒−.003𝑡 −

0.000011𝑒−.003𝑡 − 0.0035𝑡𝑒−.005𝑡 − 0.719928𝑒−.005𝑡 − 0.2287222𝑡𝑒−.007𝑡 − 32.674612𝑒−.007𝑡 +

0.232222𝑡 + 254.2729352 − 𝑍2𝑡} 

(41) 

As given in the Table 5 and graphs in Fig. 7. 

Table 5: Expected profit v/s Time 

Time 𝑍2= .05 𝑍2=.10 𝑍2=.15 𝑍2=.20 𝑍2=.25 𝑍2=.30 𝑍2=.35 

0 0 0 0 0 0 0 0 

1 1.204884 1.154884 1.104884 1.054884 1.004884 0.954884 0.904884 

2 2.415288 2.315288 2.215288 2.115288 2.015288 1.915288 1.815288 

3 3.657103 3.507103 3.357103 3.207103 3.057103 2.907103 2.757103 

4 4.926165 4.726165 4.526165 4.326165 4.126165 3.926165 3.726165 

5 6.219485 5.969485 5.719485 5.469485 5.219485 4.969485 4.719485 

6 7.534606 7.234606 6.934606 6.634606 6.334606 6.034606 5.734606 

7 8.869361 8.519361 8.169361 7.819361 7.469361 7.119361 6.769361 

8 10.22178 9.821781 9.421781 9.021781 8.621781 8.221781 7.821781 

9 11.59005 11.14005 10.69005 10.24005 9.790051 9.340051 8.890051 

10 14.92179 14.42179 13.92179 13.42179 12.92179 12.42179 11.92179 
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Figure 7:  Profit v/s Time 

IV. Discussion

I. Interpretation of the result & Discussion

To analyse and conduct the Spirulina production plant while taking reliability metrics into account 

for various values of failure and repair rates. When the failure rates are set at various values, 𝜙1 =

 .002, 𝜙2 =  .003, 𝜙3 = .004, 𝜙4 = .005, 𝜙5 =  .003, 𝜙6 =  .007, 𝜙7 =  .001 namely, Table.1 shows 

the information on the availability of the plant repairable system concerning the time variation. 

Figure 3's simulation demonstrates how availability declines over time. The graph unequivocally 

demonstrates that the system's availability is higher when the time span is 5 years or less. A similar 

way is shown in Figure 4 for the system's reliability over time. The graph shows how reliability 

decreases as time t increases from 0 to 10. The time interval, on the other hand, is more reliable. 

As shown in Figures 4 and 5, adding more units to standby can increase system availability and 

reliability by performing a perfect repair in the case of an incomplete failure, replacing the affected 

subsystem with a new one in the case of a full failure, performing routine inspections and 

preventative maintenance, hiring more repair equipment, and other methods. 

A simulation of the mean time to failure vs the failure rate is shown in Figure 5. The graph 

demonstrates that the MTTF drops as the failure rate rises. The MTTF decreases as the failure rate 

rises, lowering the system's duration. To extend the system's MTTF and duration, fault-tolerant 

components should be used. 

One can see from Table 5 and Figure 6 that System MTTF is extremely sensitive to the failure rates 

of the washing chamber. The MTTF of the spirulina manufacturing facility is significantly impacted 

when the failure rate of the washing chamber rises. In this case MTTF is much less responsive. 
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The connection between profit and time t for 𝑍2 =  .05, .10, .15, .20, .25, .30, .35 is shown Table 5 in 

Figure 7. The graph shows that the expected profit falls with increasing time for any value of  𝑍2. 

Yet, the anticipated profit increases as the value decline. The anticipated profit will increase by 

putting the substitution and redundancy concepts into practice. 

II. Conclusion

In this study, the Markov model was used to assess the plant's reliability at the spirulina production 

plant. From the explanation above, we deduce the following: The MTTF is extremely sensitive to the 

failure rate of the washing unit; as soon as this number even marginally changes, the MTTF's 

sensitivity rating increases drastically. So, the engineers of the spirulina production plant should 

pay more attention to the maintenance of the system's fourth unit (washing unit). This unit mostly 

affects the plant's functioning. For this unit, reliable equipment should be used to cause the least 

possible system disruption. Timely preventative maintenance will improve the system's 

performance. The spirulina production plant will greatly benefit from this study in terms of 

improving its efficiency and maintenance strategy. 
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Abstract 

IoT security represents a highly compelling subject of research at present. The absence of a 

viable security solution for IoT applications could render them ineffective across various domains 

such as healthcare, smart homes, inventory management, smart agriculture, and more. Within the 

IoT architecture, security services like Confidentiality, Integrity, and Authentication play pivotal 

roles. In our research, we have concentrated on the Authentication service, which is fundamental for 

distinguishing users and devices unequivocally within a network. Authentication serves as the initial 

and crucial step in establishing secure communications among diverse IoT devices and users within 

the network. A compromised Authentication service could open the door for unauthorized users or 

devices to infiltrate the network, potentially leading to harmful activities like Masquerade attacks, 

Man-in-the-Middle (MITM) attacks, and Replay attacks.Currently, Authentication stands as a 

widely adopted and essential method for granting access to devices within IoT networks. Our 

contribution involves the development of a Multi-factor IoT Authentication Model, leveraging two 

key parameters: Device Context Information and Dynamic Key-based authentication.Our proposed 

approach begins by verifying the origin of information. If the origin is deemed valid, our model 

proceeds to validate the identity of the device. In the event of an intruder attempting to manipulate 

the device's origin from its predefined context to an alternative location, our system can swiftly detect 

this deviation, thereby enabling the rejection of communication requests from compromised 

devices.Following the verification of context information, we initiate mutual authentication between 

the IoT device and the server, employing the Challenge-response model. As a result of this second 

step, individual Session keys are generated at both the device and server sides, facilitating secure 

communication within a specific time window. 

Keywords: Internet of Things, Multi-factor Authentication, Dynamic key 

based Authentication. 

I. Introduction

The realm of IoT security represents a highly significant area of research in the current era. 

It has garnered substantial attention from researchers across industry, academia, and various 

government agencies. A report by CISCO in April 2019 projected a staggering 50 billion devices to 

be interconnected with the internet by the end of 2020. This exponential growth presents a 

substantial opportunity for malicious actors to launch diverse cyber-attacks on IoT systems, 

primarily due to the open architecture inherent in IoT networks. Traditional security approaches are 

ill-suited for IoT devices, primarily due to their inherent limitations, including constrained storage 

capacity and computational power. Moreover, IoT devices must function in harsh and unpredictable 

environments, making them vulnerable to an array of security threats. Consequently, there is an 
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imperative need to develop security solutions tailored to the resource constraints of IoT devices 

while providing essential attributes such as Confidentiality, Integrity, and Authentication in IoT 

networks. 

Outlined below are some of the key challenges in IoT security.  

Open Architecture: In IoT, all devices are interconnected through the internet, adhering to 

an open framework. This openness amplifies the potential for various security threats. 

 System Limitations: IoT devices face constraints concerning memory, computational power, 

CPU capacity, and energy. These limitations render traditional security approaches 

unsuitable for direct deployment in IoT systems. 

Absence of Standards: The diversity of IoT devices hinders standardization efforts. Each IoT 

device functions as a standalone system comprising hardware, firmware, and 

communication interfaces. Ensuring security at the design phase, crafting secure code, and 

conducting rigorous verification/validation during the manufacturing process are essential. 

Nevertheless, there is currently no practical means to enforce and standardize these security 

methods across all devices. 

Deficient Trust and Integrity: With a multitude of devices connected to the internet, it 

becomes nearly impossible to verify that each device maintains adequate safeguards and 

remains up-to-date with the latest security updates. A single vulnerable link in the network 

can grant intruders access to numerous devices. Ensuring trust and data integrity for every 

IoT device is of paramount importance. 

Insecure Web Interfaces: Vulnerable web interfaces in IoT devices are susceptible to various 

threats, including account enumeration and brute force attacks. For example, attackers may 

gain unauthorized access to websites by attempting numerous password combinations, 

potentially compromising administrative policies and sensitive data. Attackers can also 

manipulate the credentials of legitimate users. 

Addressing these challenges is crucial to establishing a robust and secure IoT ecosystem that can 

withstand the evolving landscape of cyber threats. 

There are certain security issues present in IoT Architecture, they are Authentication, 

Encryption, Trust Management & Secure Routing.  

Authentication: Authentication plays a pivotal role in identifying devices and users within an IoT 

system, granting access exclusively to authorized entities. In IoT systems, authentication can be 

realized through various methods, including Identity-based authentication, Token-based 

authentication, PUF-based authentication, and Procedure-based authentication. 

Encryption: Encryption is essential for achieving end-to-end security in IoT systems. The primary 

objective of encryption within the IoT ecosystem is to establish effective end-to-end communication 

through the utilization of symmetric and asymmetric cryptographic algorithms. However, IoT 

devices face resource limitations, which necessitate a departure from traditional encryption 

algorithms like AES and DES, as they are not directly suitable for the constraints of IoT networks. 

Trust Management: IoT trust management is fundamentally geared towards identifying and 

isolating malicious nodes within the IoT network. The overarching aim is to identify and 

subsequently remove such nodes from the network, thus enabling secure access control within the 

IoT environment. 

Secure Routing: Within the context of data transmission in IoT networks, the presence of malicious 

nodes poses a significant threat. These malicious nodes have the potential to divert data packets 

towards them, infiltrating routing and forwarding decision processes for both data and control 

packets. As such, ensuring secure routing mechanisms becomes imperative in safeguarding the 

integrity of IoT networks. 
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Figure 1: Security Issues for Internet of Things 

II. Literature Review

      In [1], researchers Hokeun Kim and Edward Lee proposed an approach for authentication in 

IoT devices, emphasizing a provincially centralized and universally distributed method. Trust 

serves as a fundamental prerequisite for authentication in IoT systems, and the authors discussed 

the implementation of a certificate-based scenario to establish trust between clients and servers. 

They identified two key methods for deploying trust within a network: (1) Utilizing a Centralized 

Trusted Authority and (2) Leveraging Distributed and Trusted stakeholders. The authors developed 

a network framework named "Auth," which incorporates local authentication and authorization 

entities. Auth, implemented as open-source software in Java and accessible on GitHub, facilitates 

authorization for locally registered entities (IoT devices) and manages trust relationships with other 

Auth instances. The framework securely stores the credentials of endorsed devices and access 

policies within a database. The authorization process involves the assignment of session keys, 

cryptographic keys used for specific access activities. 

      In [2], authors Mohammad Wazid, Ashok Kumar Das, and others discussed a lightweight 

authentication protocol known as the "User Authenticated Key Management Protocol (UAKMP)" 

designed for a concept called Hierarchical Internet of Things (HIOT). This protocol utilizes three 

authentication factors: (1) user smart cards, (2) passwords, and (3) personal biometrics. The method 

employs a combination of cryptographic message digest functions and symmetric 

encryption/decryption. UAKMP involves six essential steps: (1) Enrollment of various sensor nodes, 

(2) Enrollment of users, (3) User sign-up, (4) Authentication and key agreement, (5) Password

change, and (6) Integration of newly joined sensor nodes. Gateway nodes store critical information

required for authentication in all deployed sensing nodes, including their identity. The protocol

assumes that the Gateway node is trustworthy, as a breach of its security could endanger the entire

network, potentially leading to node impersonation attacks and denial of service attacks.

     In [3], authors Ning Wang, Ting Jiang, and their team presented an authentication approach 

primarily focused on physical layer attributes. Physical layer authentication involves the 

examination of various physical attributes, including Received Signal Strength (RSS) and Channel 
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Impulse Response (CIR). The proposed method incorporates machine learning, specifically a 

Feedforward Neural Network, for classification tasks. This choice of neural network offers 

advantages such as rapid learning, ease of construction, and minimal human intervention. Binary 

hypothesis testing is used to detect spoofing attacks, framing the problem within an Alice-Bob-Eve 

model, where Alice is the legitimate transmitter, Bob is the legitimate receiver, and Eve is an 

illegitimate transmitter attempting to impersonate another node with a false address. The challenge 

addressed in this method is determining whether the second message received by Bob, after the first 

one confirmed to be from Alice, is still sent by Alice or not. 

     In [4], authors Muhammad Naveed Aman, Sachin Taneja, and others introduced a token-based 

authentication method that employs OAuth 2.0, an open authentication and authorization standard. 

This method aims to mitigate security risks associated with conventional client-server 

authentication, where clients use resource owners' credentials, potentially leading to password 

leakage and data breaches. The proposed approach involves three main steps: (1) The client sends 

an authorization request to the Authorization Server (AS), (2) The AS verifies the client's authenticity 

and, if verified, issues an access token to the client, and (3) The client uses this access token to 

authenticate itself to the resource server (RS) and access requested resources. However, the method 

is susceptible to replay attacks if an intruder captures an access token generated by the Authorization 

Server, as it could be misused for impersonation attacks. 

     In [5], authors Prosanta Gope and Biplab Sikdar presented a lightweight two-factor authentication 

approach for IoT devices, addressing the vulnerabilities of password-based and key-based methods 

to physical and side-channel attacks. Their approach combines two factors: (1) a secret shared key 

and (2) a Physical Unclonable Function (PUF). During registration, an IoT device transmits its 

identity along with a registration request to the server. The server responds by generating a random 

challenge (C), which it sends back to the client IoT device. The client computes a response to the 

challenge using its PUF and sends it back to the server for verification. If the response is correct, the 

server generates an alias identity and session key for the device, storing these details in its database. 

However, the method does not consider environmental parameters, which can affect PUF output, 

and is vulnerable to man-in-the-middle attacks, replay attacks, and spoofing attacks. 

     In [6], authors Muhammad Naveed Aman and Biplab Sikdar presented two-factor authentication 

algorithms for IoT devices, considering the low-cost nature of IoT devices that makes them 

susceptible to spoofing and impersonation attacks. Their method combines PUF and device 

hardware fingerprints for authentication. After device identity verification, the server provides a 

new challenge to the IoT device, which computes a response using its PUF and the provided 

challenge. However, this approach is vulnerable to replay attacks, as intruders can intercept 

Challenge-Response pairs exchanged between the IoT device and the server and use them for 

predicting other CRPs. Additionally, it does not provide security against man-in-the-middle attacks. 

      In [7], authors Zahoor Ahmed Alizai, Noquia Fateema Tarin, and others introduced a multifactor 

authentication approach based on digital signatures and device capabilities. This schema utilizes a 

secure TLS channel, with a digital signature serving as a second factor for authentication. Device 

authentication relies on the verification of device capability, involving data processing tasks. 

However, this approach demands high computational resources due to the involvement of 

asymmetric cryptography, making it unsuitable for resource-constrained IoT devices. Furthermore, 

it is vulnerable to impersonation and denial-of-service attacks. 

     In [8], authors Moritz Loske, Lukas Rothe, and others proposed context-aware authentication 

methods for IoT devices, addressing the limitations of existing cryptography-based approaches in 

IoT networks with resource-constrained devices. Context-aware authentication incorporates 

environmental information, such as temperature, luminosity, radio signals, and device location, to 

improve the authentication process. While this method reduces computational overhead, it does not 

provide confidentiality and is susceptible to man-in-the-middle attacks, replay attacks, and spoofing 

attacks. Therefore, it is best used as one parameter within a multi-factor-based authentication 

approach to enhance security. 
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      In [9], authors Tarak Nandy, Sananda Bhattacharya, and their team discussed the existing 

authentication approaches for IoT and emphasized the need for strong and secure authentication 

methods. In IoT networks, various devices communicate with each other and users, making proper 

security crucial to prevent credential theft and attacks on the IoT network. The authors identified 

various attacks on IoT authentication, including masquerade attacks, man-in-the-middle attacks, 

denial-of-service attacks, forging attacks, guessing attacks, physical attacks, and routing attacks. 

Table 1: IoT Attacks & description 

Attacks Description 

Masquerade attack 

Man in the Middle 

attack 

DOS attack 

Forging attack 

Guessing attack 

Physical attack 

Routing attack 

In this attack, adversary misuses the identity of the legal user to 

get access to the network. 

In this attack, adversary intercepts the communication between 

two parties and also can modify the communication contents. 

In this attack, adversary floods the network with fake requests 

so legal user cannot use resources at that time. Network and 

resources are unavailable for them. 

In this attack, adversary emulates a system or legal user to gain 

access to the network. 

In this attack, adversary predicates credentials of legal user by 

brute force approach or dictionary approach to gain access of 

the network. 

In this attack, adversary tries to get physical access of the 

resource and can change physical location of resource to launch 

the attack. 

In this attack, adversary advertises a false route for packet 

delivery from source to destination. 

      Problem Statement: Design & Development of Lightweight Multi-factor IoT Authentication 

approach by considering Context Parameter & Dynamic Key Parameter (Vault, Random Number) 

for addressing location spoofing attack, Eavesdropping attack, Replay attack & Identity Stolen 

attack.  

Advantages of Context Information Parameter: 

Early Detection of Attackers: When contextual variables, such as location information, are validated 

during the login session, it becomes possible to identify and detect request messages from potential 

attackers at an early stage. This early detection eliminates the need to unnecessarily verify other 

authentication factors during the session, thereby enhancing the security system's performance and 

reducing delays. 

Crucial for Decision-Making: In domains like Military and Industry applications, the context 

parameter of a device plays a pivotal role in the decision-making process. If a device is legitimate 

but its context information has been tampered with, it can transmit incorrect or faulty data, which 

can have adverse effects on system performance. Therefore, validating context information is 

essential, along with device identity validation, before initiating a communication session. 

Advantages of Dynamic Key-Based IoT Authentication: 

Enhanced Security: In symmetric encryption, both communicating parties share the same pair of 

keys. However, if a third party gains access to the key or analyzes network traffic, they can infer the 

communication content. Consequently, long-term use of a fixed session key is insecure in IoT 

devices. 

"One Time One Cipher" Approach: To address this security concern, the "One Time One Cipher" 

approach is employed, where the key used for encryption and decryption differs for each session 
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and expires after each use. This approach ensures the uniqueness and dynamic nature of the key. 

Session keys are generated securely and efficiently on both the device and server sides, considering 

parameters such as the Vault and Random Number Generation. This proactive measure helps 

prevent Key Stolen and Eavesdropping attacks, enhancing overall security. 

III. Methodology

 Step 1: Context-Based Authentication 

A. During the login request to the server, an IoT device transmits its login request along with

contextual information. Specifically, the IoT device sends its location information in the form of

Cartesian coordinates to the server.

B. The server proceeds to validate these context parameters by comparing them to the stored records

in its database. In this validation process, the server calculates the Angle of Arrival (AoA) for the

requested IoT device and matches the result with the stored AoA information for that device in the

database. If these physical context parameters match, it provides evidence that the device is

legitimate and identified at its original location.

     Step 2: Dynamic Key-Based Authentication 

If the device successfully passes the context-based authentication test, we introduce a second factor 

to enhance our authentication process, known as Dynamic Key-Based Authentication. In this phase, 

IoT Device and Server mutually authenticate each other initially by employing a Challenge-

Response mechanism.Following a successful mutual authentication, a Session Key is generated for 

communication within a specific time window. 

The detailed procedure for Dynamic Key-Based Authentication is as follows: 

Vault: The Vault consists of 64 keys, with each key being 128 bits in length and represented in 

hexadecimal format. All of these keys are organized in an 8x8 matrix format, which is stored both 

on the IoT device and the server. To enhance security, these keys can be stored in an encrypted 

format at both ends. Each key in this 8x8 matrix can be denoted as K[0][0], K[0][1], …, K[7][7]. During 

the initial deployment, this 8x8 matrix is shared between the IoT device and the server. 

Challenge-Response Mechanism: Our proposed protocol employs a Handshaking concept to 

achieve mutual authentication between the IoT device and the server. The diagram below illustrates 

the sequence of messages exchanged between the IoT device and the server to facilitate Mutual 

Authentication. 

Table 2: Notations for the proposed Dynamic Key Based Authentication 

Notation Description 

|| 

 

h 

Random Number 

Temporary Number 

(Nonce) 

Concentation Operation 

Ex-OR Operation 

Message Digest Function 

128-bit Random Number for Mutually Authentication 

Purpose 

128-bit Random Number for Session Key Generation 

Purpose 
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Figure 2: Message Exchange Sequence for the proposed authentication structure 

      The communication process between an IoT Device and an IoT Server involves several steps to 

establish a secure authentication session. Below is a description of these steps. 

1. Initiation of Communication Request:

 The IoT Device initiates communication by sending a request (M1) to the IoT Server.

 Request message M1 includes a message digest of the Device ID and the Session

number, which helps maintain the authentication session.

 M1 = h(Device ID) || Session Number

2. Challenge Message Generation by Server:

 The Server verifies the message digest value for the Device ID.

 If valid, the Server generates a Challenge Message (M2) for the IoT Device.

 M2 contains Challenge1 and a Random number1.

 Challenge1 comprises q distinct numbers, each pointing to an index in an 8x8 Matrix

stored in a secure vault.

 The value of q must be less than the total number of keys stored in the vault.

 Challenge1 = {C1, C2, C3, … , C8}

 M2 = {Challenge1, Random Number1}

3. Response Generation by IoT Device:

 The IoT Device generates a response for the assigned challenge.

 A temporary key of 128 bits (K1) is generated by performing XOR operations on the

key values indexed by the challenge message.

 Temporary Key K1 at IoT Device Side = K[C1] ⊕ K[C2] ⊕ … ⊕ K[Cq]

 The IoT Device creates a response by encrypting Random Number1 || Temporary

Number1 using K1 as the encryption key.

 Here, Temporary Number1 is a 128-bit random number generated by the IoT Device

for future use in generating a Session key for subsequent communication.

 M3 = Enc(K1, Random Number1 || Temporary Number (Nonce)1 || {Challenge2 ,

Random Number2}).

 The IoT Device also generates a separate challenge message (Challenge2) for the IoT

Server in a similar manner.

4. Response Generation by Server:

 Upon receiving the message from the IoT Device, the Server generates a temporary

key (K2) using the indexes from Challenge2 stored in its secure vault.

 No key sharing is required between the IoT Device and the Server.

 After obtaining key K2, the Server decrypts message M3.
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 If the Server retrieves Random number1 from M3, it indicates that the receiver of

the previous challenge message (M2) was a legitimate IoT Device.

 The Server then generates a response for the IoT Device's challenge (M3).

 Message M4 from the Server to the IoT Device is encrypted using temporary key K2

and includes Random Number2 and Temporary Number2.

 Temporary Key K2 at Server Side = K[C1] ⊕ K[C2] ⊕ … ⊕ K[Cq].

 M4 = Enc(K2, Random Number2 || Temporary Number (Nonce)2).

5. Authentication by IoT Device:

 The IoT Device receives message M4 and decrypts it by generating temporary key

K2 from its secure vault, using the content of Challenge C2.

 If the IoT Device obtains Random number2, it signifies that the Server is also

authenticated.

6. Session Key Generation:

 After mutual authentication between the IoT Device and the Server, they generate

a temporary session key using Temporary Number1 and Temporary Number2.

 Session Key = Temporary Number1 ⊕ Temporary Number2.

Contribution of our Research Work: 

1. The proposed work aims to implement light weight mutual authentication approach for IoT

devices which can avoid the possibility of Key Stolen attack, Eavesdropping attack and

Location Spoofing attack.

2. The proposed work plans to verify contextual information of a device when it initiates a

session with reference node. Parameter AoA- Angle of arrival will be utilized for context

matching. So, prevention of Location Spoofing attack can be done at initial stage. It will

reduce energy consumption, delay and also intrusion activities during session.

3. The proposed work plan to generate the session key as a part of IoT device authentication

in a dynamic way. The working principal for dynamic key generation will be “One Session,

One Cipher”. It will generate session key on both sides –device and server in a secure,

efficient way by considering parameters- Vault and Random number generation. So,

prevention of Key Stolen attack and Eavesdropping attack will be possible.

IV. Security Analysis of the Proposed Method

Protection against Location Spoofing Attack: 

Proof: The distinguishing feature of the proposed protocol lies in its ability to verify the location of 

the IoT device, ensuring that authentication requests originate from a known location. 

Consequently, if an adversary seizes an IoT device and attempts authentication from a remote, 

unauthorized location, their efforts will be in vain. We have implemented a Localization approach, 

utilizing location-specific attributes such as AoA (Angle of Arrival), to fortify protection against 

Location Spoofing attacks. 

Protection against Man-in-the-Middle Attack: 

Proof: A Man-in-the-Middle (MitM) attack involves an attacker intercepting communications 

between two parties with the intention of secretly eavesdropping on or modifying the transmitted 

data. The significant feature of the proposed method is that adversaries cannot compute the session 

key due to the reliance on Random number generation in its generation process. Importantly, in our 

protocol, the session key is not explicitly transmitted between the Server and the device. Instead, it 

is computed independently by the device and server at their respective locations. Consequently, 

adversaries are unable to access the session key required to launch a MITM attack. 

Protection against Replay Attack: 

Proof: The initiation of a new session with a device encompasses both the context-based 

authentication process and the dynamic key-based authentication approach for key establishment. 
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During this authentication phase, each device shares a nonce and a Session ID. The Session ID is 

unique for each new session and serves as a timestamp within our protocol. In the event of an 

attacker attempting to replay previous session authentication messages, these messages will be 

discarded due to the presence of an old Session ID that has already expired. Furthermore, the 

attacker cannot manipulate or update the Session ID as it is transmitted in an encrypted form, with 

only the destination node, i.e., the Server, possessing the knowledge of it after decryption with its 

key. Even if an adversary were to submit the same authentication message to the server after a 

certain period of time, they would not succeed. This is because our protocol generates a new Nonce 

(Random Number) for each session, rendering any previous nonce random number request for 

session establishment immediately invalid. 

Device Anonymity: 

Proof: In relation to Device Anonymity, our proposed approach refrains from transmitting the actual 

device identity in any message exchange or communication with the server node. Instead of the 

device ID, a message digest value of the device ID is transmitted along with the session number. 

Since the message digest function adheres to a one-way property, it becomes computationally 

infeasible for an intruder to deduce the device ID from the message without knowledge of the 

specific hash algorithm used. 

Brute force attempts Analysis for the proposed Approach:  

      We have securely stored a total of 64 keys, each with a length of 128 bits, in both the IoT device 

and the Server's vaults. Temporary keys are generated through the XOR operation using these stored 

keys. Let's calculate the efforts required to derive these Temporary keys. 

An intruder needs to select 8 keys out of the total 64 keys, resulting in a total possible combination 

of 64C8, calculated as follows: 

64C8 = 64! / (64-8)! 8! 

 = 64! / 56! 8! 

 = 64*63*62*61*60*59*58*57 / 8*7*6*5*4*3*2*1 

 = 17, 84, 62, 98, 76, 37, 760 / 40, 3 20 

Total Possible key combinations at IoT device side    = 4,42,61,65,368. 

Similarly, total possible key combinations at Server side for selecting 8 different keys from 64 keys 

vault to generate second temporary key = 4,42,61,65,368. 

Total computations required to capture both temporary key from vault= 8,85,23,30,736. 

      Assuming that an intruder can perform 1 million computations in 1 hour, it would take them a 

total of 8,852.33 hours or approximately 368 days to recover Temporary Key 1 and Temporary Key 

2 from the vault. This is a significant time frame, and since we also update vault values regularly, 

our suggested schema provides security against Key-stolen attacks. 

Even if an adversary possesses knowledge about the dynamic key authentication approach, it 

remains computationally infeasible for them to directly derive the session key. 

V. Conclusion

The Internet of Things (IoT) encompasses a multitude of physical devices capable of seamless data 

exchange. These devices connect directly to the web, operating in an open environment, which 

presents opportunities for intruders to launch various cyber-attacks. IoT security is a critical research 

domain that engages both academic and industry researchers. Within the realm of IoT security, the 

CIA Model—Confidentiality, Integrity, and Authentication—is of paramount importance. 

Authentication, in particular, plays a central role in ensuring the security of IoT networks as it 

uniquely identifies each device connected to the network. In our investigation, we thoroughly 

examined the challenges inherent in existing IoT authentication algorithms. We uncovered potential 

cyber threats, including Replay attacks, Man-in-the-Middle (MITM) attacks, Location Spoofing 

attacks, and Key Stolen attacks, which can compromise the security of current IoT authentication 

architectures. Furthermore, we conducted an in-depth review of the work conducted by 

various 
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experts in the field of authentication. Through this review, we pinpointed research gaps that still 

exist in the domain of IoT authentication, highlighting opportunities for researchers to contribute 

their expertise and develop precise and efficient security solutions. There is a pressing need for the 

creation of an efficient IoT Authentication Multi-factor algorithm that is lightweight—demanding 

fewer resources—and is rooted in context verification and dynamic key generation approaches. 

To substantiate our proposal, we conducted an informal security analysis, demonstrating that our 

approach effectively safeguards against Key Stolen, MITM, and Replay threats. Furthermore, we 

established that it is computationally infeasible for an intruder to breach our suggested approach 

within a finite timeframe and with limited resources. 

References 

[1] Hokeun Kim and Edward A. Lee (2017). Authentication and Authorization for the Internet of

Things, IEEE Internet of Things Journal, 19: 27-33. 

[2] Mohammad Wazid, Ashok Kumar Das, Vanga Odelu, Neeraj Kumar, Mauro Conti, Minho

Jo (2017). Design of Secure User Authenticated Key Management Protocol for Generic IoT Networks, 

IEEE Internet of Things Journal, 5:269-282. 

[3] Ning Wang, Ting Jiang, ShichaoLv and Liang Xiao, Senior Member (2017). Physical-Layer

Authentication Based   on Extreme Learning  Machine.  IEEE Communications, 21:1557-1560. 

[4] Muhammad Naveed Aman, Sachin Taneja, Biplab Sikdar, Kee Chaing Chua, and Massimo

Alioto (2019). Token-Based Security for the Internet of Things With Dynamic Energy-Quality 

Tradeoff, IEEE Internet of Things Journal, 6:2843-2859. 

[5] Vikas Hassija, Vinay Chamola ,Vikas Saxena , Divyansh Jain,  Pranav Goyal, And Biplab

Sikdar (2019). A Survey on IoT Security: Application Areas, Security Threats, and Solution 

Architectures, IEEE Access, 7:82721-82743. 

[6] Prosanta Gope and Biplab Sikdar (2018). Lightweight and Privacy-Preserving Two-Factor

Authentication Scheme for IoT Devices,  IEEE Internet of Things Journal, 6:580-589. 

[7] Sulabh Bhattarai and Yong Wang (2018). End-to-End Trust and Security for Internet of Things

Applications,  IEEE Computer Society, 51:20-27. 

[8] Muhammad Naveed Aman, Mohamed Haroon Basheer and Biplab Sikdar (2019). Two factor

Authentication for IOT with Location Information, IEEE Internet of Things Journal, 6(2): 3335-3351. 

[9] Yan Zhao, Shimming Li and Liehui Jiang (2018) Secure and Efficient User Authentication

Scheme Based on Password and Smart Card for Multi-server Environment, WILEY Hindawai Security 

and Communication Networks, 18:1-13. 

[10] Majid Alotaibi (2018). An Enhanced Symmetric Cryptosystem and Biometric-Based

Anonymous User Authentication and Session Key Establishment Scheme for WSN, IEEE Access, 

6:70072-70087. 

[11] Zahoor Ahmed Alizai, Noquia Fatima Tareen and Iqura Jadoon (2018). Improved IoT Device

Authentication Scheme Using Device Capability and Digital Signatures, IEEE International Conference 

on Applied and Engineering Mathematics, https://doi.org/10.1109/ICAEM.2018.8536261. 

[12] Moritz Loske, Lukas Rothe and Dominik Gertler (2019). Context-Aware Authentication: State-

of-the-Art Evaluation and Adaption to the IIoT,  IEEE 5th World Forum on Internet of Things (WF-IoT), 

https://doi.org/10.1109/WF-IoT.2019.8767327. 

[13] Armin Babaei, Gregor Schiele (2019). Physical Unclonable Functions in the Internet of Things:

State of the Art and Open Challenges, Sensors, 19 (14):3208 https://doi.org/10.3390/s19143208. 

[14] Baibhab Chatterjee, Shovan Maity (2019) RF-PUF: Enhancing IoT Security through

Authentication of Wireless Nodes using In-situ Machine Learning, IEEE Internet of Things Journal, 

6(1): 388-398. 

[15] Tarak Nandy, Norjihan Abdul Ghani and Sananda Bhattacharya (2019). Review on Security

of Internet of Things Authentication Mechanism, IEEE Access, 7: 151054-151089. 

RT&A, No 1 (77)
 Volume 19, March 2024

226



Dr. Mihir Mehta , Dr. Kajal Patel, Dr. Komal Anadkat 

EFFICIENT FRAMEWORK OF SECURITY FOR INTERNET OF 

THINGS  
[16] Santosh Krishna B V and Gnanasekaran T (2017). A Systematic Study of Security Issues in

Internet-of-Things (IoT), IEEE International conference on I-SMAC, https://doi.org/10.1109/I-

SMAC.2017.8058318. 

[17] Mardiana binti Mohamad Noor, Wan Haslina Hassan (2019). Current research on Internet of

Things (IoT) security: A survey,  ELSEVEIR Computer Networks, 148: 283-294. 

[18] Chang-le Zhong, Zhen Zhu and Ren-gen Huang (2017). Study on the IOT Architecture and

Access Technology, IEEE 16th International Symposium on Distributed Computing and Applications to 

Business, Engineering and Science, https://doi.org/10.1109/DCABES.2017.32. 

[19] Jeffrey Voas, Bill Agresti (2018). A Closer Look at the IoT’s “Things”, IEEE Computer Society,

20 (3): 11-14. 

[20] Jyoti Deogirikar and Amarsinh Vidhate (2017). Security Attacks in IoT: A Survey, IEEE

International conference on I-SMAC, https://doi.org/10.1109/I-SMAC.2017.8058363. 

[21] Zhiping Jiang, Kun Zhao and Junzhao Du (2020). PHYAlert: identity spoofing attack detection

and prevention for a wireless edge network, Journal of Cloud Computing, 9 (5):1-13. 

RT&A, No 1 (77)
 Volume 19, March 2024

227



Gulab Singh Bura
M/M/∞ QUEUE WITH IMPATIENT CUSTOMERS

M/M/∞ QUEUE WITH IMPATIENT
CUSTOMERS

Gulab Singh Bura

∙
Department of Mathematics and Statistics, Banasthali Vidyapith, Rajasthan, INDIA

gulabsingh@banasthali.in

Abstract

In this paper we proposed an M/M/∞ queue with impatient customers. Generally, customers
are impatient due to long waits in queue but in this work, we consider the case when customers
are not impatient due to long waits but they are impatient due to the poor quality of service.
We model and analyze this queueing system by using continued fraction technique and obtained
the probability mass function of the customers present in the system in time dependent form.
Also, we calculate the average queue size. Finally, some graphical representations are given to
illustrate the model.

Keywords: M/M/∞ Queue, Transient Solution, Impatient Customers, Laplace Transform.

1. Introduction

We present an M/M/∞ queue with impatient customers. The impatient behavior of customer is
common in many real life queueing situations such as in hospital during emergencies, inventory
systems, telecommunications system etc.When the waiting time is sufficiently large or intolerable
the customers may become impatient and decide to leave (i.e.balk or renege) the system before
being served. The study of queueing models with impatient customers play an important role in
many revenue generating queueing system. There is an extensive literature available on queues
with impatient customers(see e.g.,[4], [5], [14]). First attempt in this field was made by Haight [14].
After that, Al-Seedy et.al.[2] obtained the transient behavior of an M/M/1 queue with balking.
The single server Markovian queue with reneging was proposed by Haight [15]. Ancker et.al.([4],
[5]) considered an M/M/1/N queue with both balking and reneging simultaneously. Multi-server
queueing model with impatient customers was investigated by Varshney et.al.[23]. Time dependent
solution of the M/M/c queueing model was proposed by Al-Seedy et.al.[3]. The concept of balking
with heterogeneous servers have been proposed by Abou El-Ata [6] and Singh [19]. Queues with
catastrophes and impatient customers have been investigated by various authors. Yechiali [24]
consider the case of impatient customers when server is down due to catastrophes. Sudhesh
[22] extends the work of Yechiali [24] and obtained the time dependent solution. Altman and
Yechiali [1] considered an infinite server queueing system with impatient customers under the
situation where servers are free and doing some additional task. A GI/G/1 queue with disaster
and customer impatient was studied by Chakravarthy [12]. Customers impatient due to priority
has been analyzed by Choi et. al.[11]. Sudhesh et. al.[20] obtained the transient solution of two
heterogeneous servers queue with impatient customers when server is down due to the occurrence
of breakdown.Vacation queueing model are also analyzed with impatient behavior of customers
by various researchers. Ammar [8] obtained the transient solution of a waiting server,vacation
queueing model with impatient customers. Sampath et. al. [21] extends the work of Ammar [8] by
considering multiple vacation in place of single vacation. Perel and Yechiali [17] give the steady sate
solution of an M/M/c (c=1, 1 <c <∞, c= ∞) queue with slow server and impatient behavior of
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customers in two random phases. Generally it is assumed that customers are impatient due to long
waits in queue but in this work authors considered that customers may be impatient due to slow
service rate. In our work we also consider that customers may be impatient due to poor quality of
service provided by the servers and obtained the time dependent solution of an M/M/∞ queue
with impatient customers. Generally, in self service models or an infinite server models there is no
question of impatient behavior of customers because the entering customers immediately get service
and there is no waiting line in the system. But in our case the customer is impatient not due to long
waits but due to the quality of the service provided by the server. It may possible that a customer
is impatient due to poor quality of service. The motivation for studying this model comes from the
field of telecommunications. Let us consider a university campus which is providing a free Wi-Fi
service for their students at their campus. Every student entering in the campus may use the free
Wi-Fi service. The service starts as soon as he joins the campus and carries until the end of the
campus. A small university campus contains thousands of such self served customers who are using
this service. Each customer receives identical quality of signals of Wi-Fi connection. The quality of
signals may vary and fluctuate randomly.The poor quality of signals causes the impatient behavior
of customers.Whenever a customer enters into the campus and finds poor quality of signals of the
Wi-Fi connection, he may decide to leave the system without getting served i.e. customer balk from
the system. On other hand, he joins the service but leaves the system due to poor quality of Wi-Fi
connection, this also becomes a case of customer renege from the system. Hence, our operating
model is a suitable preposition.

2. Mathematical Model

M/M/∞ queue with impatient customers is in operation. Arrivals occur one by one in a Poisson
stream with mean rate 𝛼. There are infinite servers and service time are exponentially distributed
with parameter 𝛽. Capacity of the system is infinite. After entering the system, the customers
either decide to join the service with probability 𝜃 or balk with probability 1− 𝜃, where 0 6 𝜃 < 1.
After joining the service, if he finds a poor quality of signals of Wi-Fi connection then, the customer
will wait for a certain length of time T, exponentially distributed with parameter 𝛾, for improving
the quality of service. If it has not improved by then, the customer abandons and leave the system
without getting complete service. Let 𝑃𝑛(𝑡) be the probability that the random variable 𝑁(𝑡)

assumes the value 𝑛 i.e.
𝑃𝑛(𝑡) = 𝑃 (𝑁(𝑡) = 𝑛)

3. Transient Solution

In this section, we provide the transient solution of the presented queueing model. For this, the
differential- difference equations are given as:

𝑃 ′
0(𝑡) = −(𝛼𝜃)𝑃0(𝑡) + (𝛽 + 𝛾)𝑃1(𝑡) (1)

𝑃 ′
𝑛(𝑡) = − (𝛼𝜃 + 𝑛(𝛽 + 𝛾))𝑃𝑛(𝑡) + (𝑛+ 1) (𝛽 + 𝛾)𝑃𝑛+1(𝑡) + 𝜃𝛼𝑃𝑛−1(𝑡), 𝑛 ≥ 1. (2)

Initially, at t=0,

𝑃𝑛(0) =

{︂
1 if 𝑛 = 0;

0 otherwise .
(3)

Laplace transformation of Eq.(2) with initial condition Eq.(3) results the following equation

(𝑠+ 𝜃𝛼+ 𝑛(𝛽 + 𝛾))𝑃 *
𝑛(𝑠) = (𝑛+ 1) (𝛽 + 𝛾)𝑃 *

𝑛+1(𝑠) + 𝜃𝛼𝑃 *
𝑛−1(𝑠) (4)

After simplification, Eq.(4), gives

𝑃 *
𝑛(𝑠)

𝑃 *
𝑛−1(𝑠)

=
𝜃𝛼

(𝑠+ 𝜃𝛼+ 𝑛(𝛽 + 𝛾)− (𝑛+ 1)(𝛽 + 𝛾)
𝑃*

𝑛+1(𝑠)

𝑃*
𝑛(𝑠)

(5)
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=

𝜃𝛼
𝛽+𝛾(︁

𝑠
𝛽+𝛾 + 𝜃𝛼

𝛽+𝛾 + 𝑛
)︁
−

(𝑛+ 1) 𝜃𝛼
𝛽+𝛾(︁

𝑠
𝛽+𝛾 + 𝜃𝛼

𝛽+𝛾 + (𝑛+ 1)
)︁
−

(𝑛+ 2) 𝜃𝛼
𝛽+𝛾(︁

𝑠
𝛽+𝛾 + 𝜃𝛼

𝛽+𝛾 + (𝑛+ 2)
)︁
− · · ·

(6)

Now using the identity given by Lorentzen and Waadeland [16]

1𝐹1(𝑐+ 1; 𝑞 + 1; 𝑧)

1𝐹1(𝑐; 𝑞; 𝑧)
=

𝑞

𝑞 − 𝑧+

(𝑐+ 1)𝑧

𝑞 − 𝑧 + 1+

(𝑐+ 2)𝑧

𝑞 − 𝑧 + 2+
... (7)

Use of Eq.(7) in Eq.(6), gives

𝑃 *
𝑛(𝑠)

𝑃 *
𝑛−1(𝑠)

=
𝜃𝛼

(𝛽 + 𝛾)

1𝐹1(𝑛+ 1; 𝑠
𝛽+𝛾 + 𝑛+ 1; −𝜃𝛼

𝛽+𝛾 )(︁
𝑠

𝛽+𝛾 + 𝑛
)︁

1𝐹1(𝑛;
𝑠

𝛽+𝛾 + 𝑛; −𝜃𝛼
𝛽+𝛾 )

, (8)

therefore for 𝑛 ≥ 1, we have

𝑃 *
𝑛(𝑠) =

(︂
𝜃𝛼

(𝛽 + 𝛾)

)︂𝑛
1𝐹1(𝑛+ 1; 𝑠

𝛽+𝛾 + 𝑛+ 1; −𝜃𝛼
𝛽+𝛾 )∏︀𝑛

𝑖=1

(︁
𝑠

𝛽+𝛾 + 𝑖
)︁

1𝐹1(1;
𝑠

𝛽+𝛾 + 1; −𝜃𝛼
𝛽+𝛾 )

𝑃 *
0 (𝑠), (9)

𝑃 *
𝑛(𝑠) = 𝜁*𝑛(𝑠)𝑃

*
0 (𝑠), (10)

where

𝜁*𝑛(𝑠) =

(︂
𝜃𝛼

(𝛽 + 𝛾)

)︂𝑛
1𝐹1(𝑛+ 1; 𝑠

𝛽+𝛾 + 𝑛+ 1; −𝜃𝛼
𝛽+𝛾 )∏︀𝑛

𝑖=1

(︁
𝑠

𝛽+𝛾 + 𝑖
)︁

1𝐹1(1;
𝑠

𝛽+𝛾 + 1; −𝜃𝛼
𝛽+𝛾 )

. (11)

It is well known that
∞∑︁

𝑛=0

𝑃 *
𝑛(𝑠) =

1

𝑠
, (12)

by the use of Eq.(10) in Eq.(12), we get

𝑃 *
0 (𝑠) =

1

𝑠

[︃
1 +

∞∑︁
𝑛=1

𝜁*𝑛(𝑠)

]︃−1

(13)

𝑃 *
0 (𝑠) =

1

𝑠

⎡⎣ ∞∑︁
𝑘=0

(︃ ∞∑︁
𝑛=1

𝜁*𝑛(𝑠)

)︃𝑘
⎤⎦ , (14)

after taking inverse Laplace transform of Eq.(10), we get

𝑃𝑛(𝑡) = 𝜁𝑛(𝑡) * 𝑃0(𝑡), (15)

where the symbol * denotes the convolution and

𝑃0(𝑡) =

∫︁ 𝑡

0

∞∑︁
𝑘=0

(︃ ∞∑︁
𝑛=1

𝜁𝑛(𝑦)

)︃𝑘

𝑑𝑦. (16)

Next we derive the expression for 𝜁𝑛(𝑡), where 𝜁𝑛(𝑡) represents the inverse Laplace transform of
𝜁*𝑛(𝑠).
From Eq.(11)

𝜁*𝑛(𝑠) =

(︂
𝜃𝛼

(𝛽 + 𝛾)

)︂𝑛
1𝐹1(𝑛+ 1; 𝑠

𝛽+𝛾 + 𝑛+ 1; −𝜃𝛼
𝛽+𝛾 )∏︀𝑛

𝑖=1

(︁
𝑠

𝛽+𝛾 + 𝑖
)︁

1𝐹1(1;
𝑠

𝛽+𝛾 + 1; −𝜃𝛼
𝛽+𝛾 )

.
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It is well known that

1𝐹1(𝑛+ 1;
𝑠

𝛽 + 𝛾
+ 𝑛+ 1;

−𝜃𝛼

𝛽 + 𝛾
) =

∞∑︁
𝑘=0

(𝑛+ 1)𝑘

(︁
−−𝜃𝛼

𝛽+𝛾

)︁𝑘
( 𝑠
𝛽+𝛾 + 𝑛+ 1)𝑘 𝑘!

where (𝛽)𝑘 represents the Pochhammer symbol,i.e.

(𝛽)𝑘 =

{︂
1 if 𝑘 = 0;

𝛽(𝛽 + 1)(𝛽 + 2)...(𝛽 + 𝑘 − 1) if 𝑘 = 1, 2, 3, ....

Therefore

1𝐹1(𝑛+ 1; 𝑠
𝛽+𝛾 + 𝑛+ 1; −𝜃𝛼

𝛽+𝛾 )∏︀𝑛
𝑖=1

(︁
𝑠

𝛽+𝛾 + 𝑖
)︁ =

∞∑︁
𝑘=0

(︀
𝑛+𝑘
𝑘

)︀ (︁
− 𝜃𝛼

𝛽+𝛾

)︁𝑘
∏︀𝑛+𝑘

𝑖=1

(︁
𝑠

𝛽+𝛾 + 𝑖
)︁

Applying partial fraction expansion, the above equation can be written as

1𝐹1(𝑛+ 1; 𝑠
𝛽+𝛾 + 𝑛+ 1; −𝜃𝛼

𝛽+𝛾 )∏︀𝑛
𝑖=1

(︁
𝑠

𝛽+𝛾 + 𝑖
)︁ =(𝛽 + 𝛾)

∞∑︁
𝑘=0

(︂
𝑛+ 𝑘

𝑘

)︂(︂
− 𝜃𝛼

𝛽 + 𝛾

)︂𝑘

𝑛+𝑘∑︁
𝑖=1

(−1)𝑖−1

(𝑛+ 𝑘 − 𝑖)! (𝑖− 1)! (𝑠+ 𝑖(𝛽 + 𝛾))
. (17)

Also

1𝐹1(1;
𝑠

𝛽 + 𝛾
+ 1;

−𝜃𝛼

𝛽 + 𝛾
) =

∞∑︁
𝑘=0

(−𝜃𝛼)
𝑘
𝑑*𝑘(𝑠),

where
𝑑*𝑘(𝑠) =

1∏︀𝑘
𝑖=1 (𝑠+ 𝑖(𝛽 + 𝛾))

𝑎𝑛𝑑 𝑑*0(𝑠) = 1.

By the use of the identity given in Srivastava and Kashyap [18]

1

1𝐹1(1;
𝑠

𝛽+𝛾 + 1; −𝜃𝛼
𝛽+𝛾 )

=

∞∑︁
𝑘=0

(𝜃𝛼)𝑘𝑒*𝑘(𝑠), (18)

where 𝑒*0(𝑠) = 1, and for k=1,2,3,...

𝑒*𝑘(𝑠) =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

𝑑*1(𝑠) 1 . . .

𝑑*2(𝑠) 𝑑*1(𝑠) 1 . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

𝑑*𝑘−1(𝑠) 𝑑*𝑘−2(𝑠) 𝑑*𝑘−3(𝑠) . . . 𝑑*1(𝑠) 1

𝑑*𝑘(𝑠) 𝑑*𝑘−1(𝑠) 𝑑*𝑘−2(𝑠) . . . 𝑑*2(𝑠) 𝑑*1(𝑠)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

=
𝑘∑︁

𝑗=1

(−1)𝑗−1𝑑*𝑗 (𝑠)𝑒
*
𝑘−𝑗(𝑠).

By substituting Eq.(17) and Eq.(18) in Eq.(11), we get

𝜁*𝑛(𝑠) = (𝜃𝛼)𝑛
∞∑︁
𝑗=0

(−𝜃𝛼)𝑗
(︂
𝑛+ 𝑗

𝑗

)︂
𝑑*𝑛+𝑗(𝑠)

∞∑︁
𝑘=0

(𝜃𝛼)𝑘𝑒*𝑘(𝑠).

On inversion, we obtain

𝜁𝑛(𝑡) = (𝜃𝛼)𝑛
∞∑︁
𝑗=0

(−𝜃𝛼)𝑗
(︂
𝑛+ 𝑗

𝑗

)︂
𝑑𝑛+𝑗(𝑡)

∞∑︁
𝑘=0

(𝜃𝛼)𝑘𝑒𝑘(𝑡), (19)
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where

𝑑𝑘(𝑡) =
1

(𝛽 + 𝛾)𝑘−1

𝑘∑︁
𝑖=1

(−1)𝑖−1

(𝑘 − 𝑖)! (𝑖− 1)!
𝑒−𝑖(𝛽+𝛾)𝑡, 𝑘 = 1, 2, 3, ...,

and

𝑒𝑘(𝑡) =
𝑘∑︁

𝑖=1

(−1)𝑖−1𝑑𝑖(𝑡) * 𝑒𝑘−𝑖(𝑡), 𝑘 = 2, 3, 4, ...; 𝑒1(𝑡) = 𝑑1(𝑡)

4. Time Dependent Moments

4.1. Mean

Let A(t) represents the average value of the random variable N(t) , therefore

𝐴(𝑡) = 𝐸(𝑁(𝑡)) =
∞∑︁

𝑛=1

𝑛𝑃𝑛(𝑡) (20)

Initially, at t=0, Eq(20) gives
𝐴(0) = 0,

which implies

𝐴′(𝑡) =

∞∑︁
𝑛=1

𝑛𝑃 ′
𝑛(𝑡), (21)

where𝐴′(𝑡) denote the differentiation of 𝐴(𝑡).
Application of Eq.(2) in Eq.(21),after some calculation gives

𝐴′(𝑡) + (𝛽 + 𝛾)𝐴(𝑡)− 𝜃𝛼 = 0. (22)

which is a linear differential equation in 𝐴(𝑡), whose solution gives

𝐴(𝑡) =
𝜃𝛼

𝛽 + 𝛾
[1− 𝑒−(𝛽+𝛾)𝑡] (23)

4.2. Variance

Let Var(N(t)) represents the variance of the random variable N(t), therefore

𝑉 𝑎𝑟(𝑁(𝑡)) = 𝐸[𝑁(𝑡)− 𝐸(𝑁(𝑡)]2

which may be written as
𝑉 𝑎𝑟(𝑁(𝑡)) = 𝑏(𝑡)− [𝐴(𝑡)]2, (24)

where

𝑏(𝑡) = 𝐸(𝑁2(𝑡)) =

∞∑︁
𝑛=1

𝑛2𝑃𝑛(𝑡),

with
𝑏(0) = 0,

also

𝑏′(𝑡) =

∞∑︁
𝑛=1

𝑛2𝑃 ′
𝑛(𝑡) (25)

substitution of 𝑃 ′
𝑛(𝑡) in Eq.(25), after some calculation results in the form of a linear differential

equation in 𝑏(𝑡) i.e.
𝑏′(𝑡) = −(2𝛽 + 𝛾)𝑏(𝑡) + (2𝜃𝛼+ 𝛽 + 𝛾)𝑀(𝑡) + 𝜃𝛼 (26)
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which after integration gives

𝑏(𝑡) =
(2𝜃𝛼+ 𝛽 + 𝛾)𝜃𝛼(𝛽 − (𝛾 + 3𝛽)𝑒−(𝛾+2𝛽)𝑡 + (𝛾 + 2𝛽))𝑒−(𝛾+𝛽)𝑡

𝛽(𝛾 + 2𝛽)(𝛾 + 𝛽)

+
𝜃𝛼

(𝛾 + 2𝛽)
[1− 𝑒−(𝛾+2𝛽)𝑡]. (27)

Substitution of Eq.(27) in Eq.(24), gives the expression of Var(N(t)).

5. Graphical Illustrations

In this section, we presents some graphical results to observe the time dependent behavior of various
probabilities and average number of customers in the system.

Figure 1: 𝑃0(𝑡) versus Time

Figure 2: 𝑃0(𝑡) versus Time
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Figure 3: 𝑃1(𝑡) versus Time

Figure 4: 𝑃1(𝑡) versus Time

Figure 5: 𝑃2(𝑡) versus Time
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Figure 6: 𝑃2(𝑡) versus Time

Figure 7: Average Number of Customers versus Time

Figure 8: Average Number of Customers versus Time
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Fig.(1 to 6) illustrates that as time increases, all the probability curves except 𝑃0(𝑡) are decreases
initially and then attain the steady state after 𝑡 = 2. Also we notice that the probabilities 𝑃1(𝑡)

and 𝑃2(𝑡) increases with increasing 𝜃 and the probability 𝑃0(𝑡) decreases while we increase the
value of 𝜃. Further, we observe that if 𝛾 increases the probability of an empty system i.e. 𝑃0(𝑡)

increases while the other probabilities decrease. Fig.(7 and 8 ) explain the situation that the average
number of customers in the system increases with time initially and then finally attains steady
state. The average number of customers increase with the increasing values of 𝜃 and decrease with
the increasing values of 𝛾.

6. Conclusion

impatient behavior of customers is common in many real life queueing situations. Approximately,
in all previous work available in the literature, it has been assumed that customers are impatient
due to long waits in queue. But in the present study we analyze the case in which customers are
impatient due to the quality of the service provided by the server. We have obtained the probability
mass function of the number of customers in time dependent form. Also, we have determined
the transient mean and variance of the number of customers. At the end, for observing the time
dependent behavior of various probabilities, we provide some graphical illustrations.
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Abstract

Fuzzy soft sets and graphs are invented to solve uncertain problems in the field of Applied mathematics.
It is a general mathematical tool introduced with many parameters to model the vagueness of the changing
world. The insight learning of the AQSP fuzzy soft graphs paved the way to discover the extension of the
AQSP fuzzy soft graph. In this research article we introduce the Regularity of AQSP fuzzy soft graph
with definitions, theorems, properties, and real-life applications. The aim of this invention is mainly to
obtain the parametric values in submerging level of confidence [-0.5, 0.5] ⊂ [-1,1]. The scope of this new
AQSP fuzzy soft graph is to solve the imprecise problems in the field of Mathematical Engineering, Bio
Mathematics, Economics, Medical Science, Artificial Intelligence and Machine learning. The regularity
of AQSP fuzzy soft graph is combined with the concepts of regular, totally regular, and perfectly regular.
The application of this new graph is developed for governing of the women safety vehicle network in
different spots with membership submerging values. The future extension can be applied in Approximate
reasoning, Mathematical psychology, Decision making for medical diagnosis.

Keywords: Regular AQSP fuzzy soft graph, Totally regular, Perfectly regular AQSP fuzzy soft
graph, Alternate Quadra Submerging level of confidence.

1. Introduction

The concept of graph theory was introduced by Euler in 1736. He concreted the way to find
the solution of Konigsberg bridge problem. In 1965 Zadeh[20] invented Fuzzy set theory as a
mathematical fuzzy tool for handling uncertainties like vagueness, ambiguity, and imprecision
in linguistic variables. Fuzzy set has resulted as a potential area of interdisciplinary exploration
and the fuzzy graph theory is of modern inducement. The first definition of fuzzy graph
was determined by Kaufmann[10] in 1973, based on Zadeh’s fuzzy relation in 1971. In 1975,
Rosenfeld[16] introduced the concept of fuzzy graph. The structure of fuzzy graphs, using
fuzzy relations, obtaining contrasts of several graph hypothetical concepts are the masterpiece
of Rosenfeld. Operations on fuzzy graphs were exposed by J.N.Moderson[14] and C.S.Peng.
A.Nagoorgani[8] and K.Radha[9] invented the concept of regular fuzzy graphs in 2008.

In 1999, D.Molodtsov[12] intended the notion of soft set theory to solve complicated
uncertain problems in Applied Mathematics, Engineering and Environmental studies. In 2001,
P.K.Maji[11], initiated the concept of fuzzy soft sets. Zou and Xio discussed the application of
the fuzzy soft sets in an imprecise scenario. Later, Akram[4] and Nawaz[15] presented new
ideas known as fuzzy soft graphs. A.Pouhassani[24] and H.Doostie studied degree, total degree,
regularity and total regularity of fuzzy soft graph and its properties. Regular fuzzy soft graphs
and its related properties are investigated by B.Akhilandeswari. The concepts of fuzzy bipolar
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soft sets and bipolar fuzzy soft sets have been introduced by Naz and Shabir. Aslam et al studied
some basic operations on bipolar fuzzy soft sets.

In this article, we portray a new mathematical fuzzy graph model AQSP Fuzzy Soft graph
for dealing imprecise information by integrating the concepts of fuzzy graph and fuzzy soft
graphs. We estimate the regularities of AQSP fuzzy soft graphs and some of their characteristics
and properties. Here Regular AQSP fuzzy soft graphs, and totally regular AQSP fuzzy soft
graphs and perfectly regular AQSP fuzzy soft graphs are examined. Total degree of an AQSP
fuzzy soft graph is designed. Theorems for regular AQSP fuzzy soft graphs and totally regular
AQSP fuzzy soft graphs are presented. A necessary condition under which they are equivalent
is provided. Some properties of regular AQSP fuzzy soft graphs, perfectly regular AQSP fuzzy
soft graphs are reviewed with real life applications.The perception of AQSP fuzzy soft graph
membership values with submerging level of confidence is applicable in Machine learning and
medical psychology.We explored the AQSP fuzzy soft graph module in Governing of women
safety police vehicle network with membership score functions.

2. Preliminaries

2.1. Fuzzy Graph [16]

Let Ũ is a non-empty set. A fuzzy graph is a set of two of functions G : (σ, µ) where σ is a
fuzzy subset of Ũ, µ is a symmetric fuzzy relation on σ, where σ : Ũ→ [0, 1] and the edge set
µ : Ũ× Ũ→ [0, 1] such that, µ (x, y) ≤ min (µ (x) , µ (y)) ∀x, y ∈ Ũ. The underlying crisp graph
of fuzzy graph G : (σ, µ) is with the notion G∗ : (σ∗, µ∗) where σ∗ is denoted as the non-empty
set Ũ of vertices and µ∗ = E ∈ V ×V.

2.2. Fuzzy Soft graph [13]

A fuzzy soft graph G = (G∗, F, K, A) is a four tuple such that

1. G∗ = (V, E) is a simple graph.

2. A is a non empty set of parameters.

3. (F, A) is a fuzzy soft vertex set V.

4. (K, A) is a fuzzy soft edge set E.

5. F(a), K(a) is a fuzzy soft graph of G∗∀ a ∈ A.

Then it satisfies the condition, K(a)(x, y) ≤ F(a)(x) ∧ F(a)(Y) ∀a ∈ A and (x, y) ∈ V.

2.3. Fuzzy soft graph degree of a vertex [4]

Let G = (G∗, F, K, A) be a fuzzy soft graph on G∗. The fuzzy soft graph degree of a vertex a is
defined as degG(a) = ∑e∈A ∑x 6=y K(e)(x, y)∀a ∈ A and (x, y) ∈ V.

2.4. Regular Fuzzy soft graph [4]

Let G = (G∗, F, K, A) be a regular fuzzy soft graph if (F(e), K(e)) is regular fuzzy graph of degree
k for all ei ∈ A then G is a k- regular fuzzy soft graph.

2.5. Order of fuzzy soft graph [4]

Let GA,V = ((A, σ, ), (A, µ, )) be a fuzzy soft graph. Then the order of fuzzy soft graph GA,V =

∑e∈A ∑x∈A σe(x).
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2.6. AQSP Fuzzy Soft Graph [18]

Let V = ((σP
1 (x), σN

1 (x), ρP
1 (x), ρN

1 (x)), (σP
2 (x), σN

2 (x), ρP
2 (x), ρN

2 (x))...(σP
n (x), σN

n (x), ρP
n (x), ρN

n (x)))
be a nonempty AQSP fuzzy set. E (Parameters set) and AAQSP ⊂ E. Also let,
(i) σP : AAQSP −→ FAQSP(V)(Collection of all AQSP fuzzy subsets in V), e 7−→ σP

e , and
σP

e : V −→ [0, 1], vi 7−→ σP
e then (AAQSP, σP) : AQSP fuzzy soft vertex set.

(ii) σN : AAQSP −→ FAQSP(V)(Collection of all AQSP fuzzy subsets in V), e 7−→ σN
e , and

σN
e : V −→ [−1, 0], vi 7−→ σN

e then (AAQSP, σN) : AQSP fuzzy soft vertex set.
(iii) ρP : AAQSP −→ FAQSP(V)(Collection of all AQSP fuzzy submerge subsets in V), e 7−→ ρP

e ,
and ρP

e : V −→ [0, 0.5], vi 7−→ ρP
e then (AAQSP, ρP) : AQSP fuzzy soft vertex set.

(iv) ρN : AAQSP −→ FAQSP(V) (Collection of all fuzzy submerge subsets in V), e 7−→ ρN
e , and

ρN
e : V −→ [−0.5, 0], vi 7−→ ρN

e then (AAQSP, ρN) : AQSP fuzzy soft vertex set.
(v) µP : AAQSP −→ FAQSP(V ×V) (Collection of all AQSPfuzzy subsets in V ×V), e 7−→ µP

e ,
µP

e : V ×V −→ [0, 1], (vi, vj) 7−→ µP
e (vi, vj) then (AAQSP, µP) :

AQSP fuzzy soft membership edge set.
(vi) µN : AAQSP −→ FAQSP(V ×V)(Collection of all AQSPfuzzy subsets in V ×V), e 7−→ µN

e ,
and µN

e : V ×V −→ [−1, 0], (vi, vj) 7−→ µN
e (vi, vj) then (AAQSP, µN) : AQSP fuzzy soft

non - membership edge set.
(vii) γP : AAQSP −→ FAQSP(V ×V)(Collection of all AQSPfuzzy subsets in V ×V), e 7−→ γP

e ,
and γP

e : V ×V −→ [0, 0.5], (vi, vj) 7−→ γP
e (vi, vj) then (AAQSP, γP) : AQSP fuzzy soft

submerge membership edge set.
(viii) γN : AAQSP −→ FAQSP(V ×V)(Collection of all AQSPfuzzy subsets in V ×V), e 7−→ γN

e ,
and γN

e : V ×V −→ [−0.5, 0], (vi, vj) 7−→ γN
e (vi, vj) then (AAQSP, γN) : AQSP fuzzy soft

submerge membership edge set. Then the AQSP fuzzy soft graph is,
((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN)) if the conditions are satisfied

(a) µP
e (x, y) ≤ σP

e (x) ∧ σP
e (y), (b) µN

e (x, y) ≥ σN
e (x) ∨ σN

e (y),
(c) γP

e (x, y) ≤ ρP
e (x) ∧ ρP

e (y), (d) γN
e (x, y) ≥ ρN

e (x) ∨ ρN
e (y), for all e ∈ AAQSP and

for all values of x, y = 1, 2, 3, ..., n and this AQSP fuzzy soft graph is denoted as GAQSP(A, V).

3. Method

The essential definition of AQSP fuzzy soft graph method is deliberated with an examples.

3.1. Alternate Quadra Sub - merging Polar(AQSP) Fuzzy Graph

An Alternate Quadra - Submerging Polar (AQSP) Fuzzy Graph G = (σAQSP, µAQSP) is a fuzzy
graph with crisp graph G∗ = (σ∗AQSP , µ∗AQSP ) is given as V = (σP (x) , σN (x) , ρP (x) , ρN (x))
which is the membership value of vertices along with the uncertain membership value of edges is
given as, E = V ×V = (µP (x, y) , µN (x, y) , γP (x, y) , γN (x, y)).

Here the vertex set V is defined with the given condition in a unique method which is an
alternate contrast submerging polarized uncertain transformation.Here σP = V → [0, 1] , σN =
V → [−1, 0] , ρP = d

∣∣ 0.5, σP (x)
∣∣ and ρN = −d

∣∣−0.5, σN (x)
∣∣ . Here (-0.5, 0.5) is the fixation

of uncertain alternate contrast polarized
submerging transformation into certain consistent preferable position. And the edge set E satisfies
the following sufficient conditions.

(i) µP (x, y) ≤ min (σP (x) , σP (y) ), (ii) µN (x, y) ≥ max (σN (x) , σN (y) )

(iii) γP (x, y) ≤ min
(
ρP (x) , ρP (y)

)
(iv) γN (x, y) ≥ max (ρN (x) , ρN (y) ),

∀(x, y) ∈ E. By definition, µP = V × V → [0, 1]× [1, 0], µN = V × V → [−1, 0]× [0,−1]
and the submerging mappings, γP = V ×V → [0, 0.5]× [0.5, 0],
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γN = V ×V → [−0.5, 0]× [0,−0.5], which denotes the impact of the alternate quadrant polar-
ized fuzzy mapping.

The maximum of submerging presumption to be at the level of confidence [0, 0.5] ⊆ [0, 1]
and the minimum of submerging presumption level of confidence is [−0.5, 0] ⊆ [−1, 0] extension
of the graph with its membership and non - membership values portrait the unique level of
submerging destination in an AQSP fuzzy graph.

Also it must satisfy the condition, −1 ≤ σP (x) + σN (x) ≤ 1 and |ρP (x) + ρN (x) | ≤ 1
with constrains 0 ≤ σP (x) + σN (x) +

∣∣ρP (x) + ρN (x)
∣∣ ≤ 2 such that the uncertain status of

submerging presumption, transform into its precise consistent level with fixation mid - value 0.5,
which implies that level of confidence 0.5 in an AQSP as the valuable membership of its position
which is real and valid in the fuzzification. The example of AQSP fuzzy graph is given in Figure.1.

Figure 1: AQSP Fuzzy Graph G = (σAQSP, µAQSP)

3.2. Example of AQSP Fuzzy Soft Graph

Consider an AQSP fuzzy soft graph GAQSP(A, V), where V = (v1, v2, v3, v4) and
E = (e1, e2, e3). Here GAQSP(A, V) is described in Table.1. and
µe(vi, vj) = 0, ∀(vi, vj) ∈ V ×V {(v1, v2), (v2, v3), (v3, v4), (v1, v4), (v1, v3)} for all e ∈ E.

Table 1: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(σ, ρ) v1 v2 v3 v4

e1 ( 0.6, - 0.7, ( 0.7, - 0.8, ( 0.8, - 0.9, ( 0.6, - 0.7,
0.1,- 0.2) 0.2, -0.3) 0.3, - 0.4 ) 0.1,- 0.2)

e2 ( 0.7, - 0.6, ( 0.8, - 0.7, ( 0.9, - 0.8, ( 0.8, - 0.8,
0.2,- 0.1) 0.3, -0.2) 0.4, - 0.3 ) 0.3,- 0.3)

e3 ( 0.8, - 0.6, ( 0.9, - 0.7, ( 0.8, - 0.8, ( 0.9, - 0.9,
0.3,- 0.1) 0.4, -0.2) 0.3, - 0.3 ) 0.4,- 0.4)
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Table 2: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

(µ, γ) v1, v2 v,v3 v3, v4 v4, v1 v1, v3

e1 ( 0.6, - 0.7, ( 0.7, - 0.8, ( 0.6, -0.7, ( 0.6, - 0.7, ( 0.6, - 0.7,
0.1,- 0.2) 0.2, -0.3) 0.1, - 0.2 ) 0.1,- 0.2) 0.1,- 0.2)

e2 ( 0.7, - 0.6, ( 0.7, - 0.7, ( 0.8, - 0.8, ( 0.7, - 0.6, ( 0.6, - 0.6,
0.2,- 0.1) 0.2, -0.2) 0.3, - 0.3 ) 0.2,- 0.1) 0.1,- 0.1)

e3 ( 0.8, - 0.6, ( 0.8, - 0.7, ( 0.8, - 0.7, ( 0.7, - 0.6, ( 0.8, - 0.6,
0.3,- 0.1) 0.3, -0.2) 0.3, - 0.2 ) 0.2,- 0.1) 0.3,- 0.1)

Table. 2. represents the AQSP fuzzy graph with parametric membership
and non - membership with submerge values.

4. Descriptions of the regularity of AQSP fuzzy soft graph

4.1. Regular AQSP Fuzzy Ssoft Graph

Let G∗ = (σ∗, µ∗) be a crisp graph and GAQSP(A, V) be an regular AQSP fuzzy soft graph of
G∗. Then GAQSP(A, V) is said to be an regular AQSP soft graph, if RAQSP(ei) is an regular AQSP
fuzzy soft graph of degree k for all ei ∈ AAQSP, then GAQSP(A, V) is a k - regular AQSP fuzzy
soft graph.

Figure 2: GAQSP(A, V) - Corresponding to the parameter e1

Figure 3: GAQSP(A, V) - Corresponding to the parameter e2
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4.2. Example of an AQSP Fuzzy Soft Graph

Consider, an AQSP fuzzy soft graph, GAQSP(A, V), the vertex set V = (v1, v2, v3, v4) and let
the corresponding parameters E = (e1, e2).
Here GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN)) is
described by Table.3 and Table. 4 (v1, v2, v3, v4)).

4.3. Remark on Regular AQSP Fuzzy Graph

Fron Figure.2 and Figure.3 we get the result that the regular AQSP fuzzy graph which can not be
a totally regular AQSP fuzzy graph. Table 3. represents the AQSP fuzzy soft graph vertex set.

Table 3: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(µ, γ) v1 v2 v3 v4
e1 ( 0.7, - 0.8, ( 0.8, - 0.9, ( 0.7, - 0.7, ( 0.8, - 0.8,

0.2,- 0.3) 0.3, - 0.4) 0.2, - 0.2 ) 0.3,- 0.3)
e2 ( 0.8, - 0.7, ( 0.7, - 0.9, ( 0.9, -0.9, ( 0.8, - 0.8,

0.3,- 0.2) 0.2, - 0.4) 0.4, - 0.4 ) 0.3 ,- 0.3)

Table 4: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

(µ, γ) v1v2 v2v3 v3v4 v4v1
e1 ( 0.6, - 0.7, ( 0.7, - 0.8, ( 0.6, - 0.7, ( 0.7, - 0.8,

0.1,- 0.2) 0.2, - 0.3) 0.1, - 0.2 ) 0.2,- 0.3)
e2 ( 0.7, - 0.7, ( 0.6, - 0.6, ( 0.7, - 0.7, ( 0.6, - 0.6,

0.2,- 0.2) 0.1, - 0.1) 0.2, - 0.2 ) 0.1,- 0.1)

Table. 4 represents the corresponding edges, (v1, v2), (v2, v3), (v3, v4), (v4, v1) ,
for all values of e ∈ AAQSP.

4.4. Totally Regular AQSP Fuzzy Soft Graph

Let G∗ = (σ, µ) be a simple graph and GAQSP(A, V) be an AQSP fuzzy soft graph of G∗.
Then GAQSP(A, V) is said to be a totally regular AQSP fuzzy soft graph if RAQSP(A, V) is totally
regular fuzzy soft graph for all values of ei ∈ AAQSP, then GAQSP(A, V) is called k totally regular
AQSP fuzzy soft graph.

Theorem 1. If GAQSP(A, V) satifies the condition of regular and totally regular AQSP fuzzy soft
graph, then we prove that ((AAQSP), (σP, σN , ρP, ρN)) is a constant AQSP fuzzy soft function in
HAQSP(A, V) of G∗ for all values of e ∈ AAQSP.

Proof. Let GAQSP(A, V) satifies the condition of regular and totally regular AQSP fuzzy soft
graph. Then we have the degree of vertices as,

(i) degσP
e (a) = k1, degσN

e (a) = k2, degρP
e (a) = k3, degρN

e (a) = k4 and
(ii) tdegσP

e (a) = l1, tdegσN
e (a) = l2, tdegρP

e (a) = l3, tdegρN
e (a) = l4.

In AQSP fuzzy subgraphs HAQSP(A, V) for all values of e ∈ AAQSP, a ∈ V. This implies that,
degσP

e (a) + AAQSP σP
e (a) = l1,

degσN
e (a) + AAQSP σN

e (a) = l2,
degρP

e (a) + AAQSP ρP
e (a) = l3,

degρN
e (a) + AAQSP ρN

e (a) = l4 ∈ HAQSP(A, V), ∀ e ∈ AAQSP, a ∈ V.
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AAQSP σP
e (a) = l1 − k1

AAQSP σN
e (a) = l2 − k2

AAQSP ρP
e (a) = l3 − k3

AAQSP ρN
e (a) = l4 − k4 ∈ HAQSP(A, V),

∀ e ∈ AAQSP, a ∈ V.
Hence, ((AAQSP), (σP, σN , ρP, ρN)) is a constant AQSP fuzzy soft function in
HAQSP(A, V) of G∗ for all values of e ∈ AAQSP.

�

Figure 4: GAQSP(A, V) - Corresponding to the parameter e1

Figure 5: GAQSP(A, V) - Corresponding to the parameter e2

4.5. Example Totally Regular AQSP Fuzzy Soft Graph

Consider, an AQSP fuzzy soft graph, GAQSP(A, V), the vertex set V = (v1, v2, v3, v4) and let
the corresponding parameters E = (e1, e2) is shown in the Figure.4 and Figure.5.

Here GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN))
is described Figure.6 (v1, v2, v3, v4)). Figure. 7 represents the corresponding edges,
(v1, v2), (v2, v3), (v3, v4), (v4, v1) , for all values of e ∈ AAQSP.
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Table 5: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(µ, γ) v1 v2 v3 v4
e1 ( 0.8, - 0.8, ( 0.7, - 0.7, ( 0.7, - 0.7, ( 0.8, - 0.8,

0.3,- 0.3) 0.2, - 0.2) 0.2, - 0.2 ) 0.3,- 0.3)
e2 ( 0.8, - 0.8, ( 0.9, - 0.9, ( 0.9, -0.9, ( 0.8, - 0.8,

0.3,- 0.3) 0.4, - 0.4) 0.4, - 0.4 ) 0.3 ,- 0.3)

Table 6: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

(µ, γ) v1v2 v2v3 v3v4 v4v1
e1 ( 0.6, - 0.6, ( 0.7, - 0.7, ( 0.6, - 0.6, ( 0.6, - 0.6,

0.1,- 0.1) 0.2, - 0.2) 0.1, - 0.1 ) 0.1,- 0.1)
e2 ( 0.7, - 0.7, ( 0.6, - 0.6, ( 0.7, - 0.7, ( 0.7, - 0.7,

0.2,- 0.2) 0.1, - 0.1) 0.2, - 0.2 ) 0.2,- 0.2)

4.6. Example of AQSP Fuzzy Soft Graph

Consider, an AQSP fuzzy soft graph, GAQSP(A, V), the vertex set V = (v1, v2, v3, v4) and let the
corresponding parameters E = (e1, e2).

Here GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN)) is described
by Table.5 and Table. 5 such as, (v1, v2), (v2, v3), (v3, v4), (v1, v3), (v1, v4), (v4, v1), (v1, v1) ,
for all values of e ∈ AAQSP.

4.7. Remark on Regular AQSP Fuzzy Soft Graph

From Theorem.5.7. we get the result if GAQSP(A, V) is a regular AQSP fuzzy soft graph and
((AAQSP), (σP, σN , ρP, ρN)) is a constant AQSP fuzzy soft function, then GC

AQSP(A, V) is a regular
AQSP fuzzy soft graph.

4.8. Remark on Totally Regular AQSP Fuzzy Soft Graph

From Theorem.5.7. similarly we get the result if GAQSP(A, V) is a totally regular AQSP fuzzy soft
graph and ((AAQSP), (σP, σN , ρP, ρN)) is a constant AQSP fuzzy soft function, then GC

AQSP(A, V)
is a totally regular AQSP fuzzy soft graph.

Theorem 2. Let GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN)), for all
values of e ∈ AAQSP. be an AQSP fuzzy soft graph with the vertex and edge membership and
non - membership submerging values. Then we prove that,

(i) ∑a∈A tdegGAQSP(A,V) (σ
P
e (a) = 2S(GAQSP(A, V)) + O(GAQSP(A, V))

(ii) ∑a∈A tdegGAQSP(A,V) (σ
N
e (a) = 2S(GAQSP(A, V)) + O(GAQSP(A, V))

(iii) ∑a∈A tdegGAQSP(A,V) (ρ
P
e (a) = 2S(GAQSP(A, V)) + O(GAQSP(A, V))

(iv) ∑a∈A tdegGAQSP(A,V) (ρ
N
e (a) = 2S(GAQSP(A, V)) + O(GAQSP(A, V))

Proof. (i) tdegGAQSP(A,V) (σ
P
e (a)) = ∑e∈AAQSP

(∑a∈V(µ
P
e (a, b) + σP

e (a),

=⇒ ∑a∈V tdegGAQSP(A,V) (σ
P
e (a)) = ∑a∈V(∑e∈AAQSP

(∑a∈V(µ
P
e (a, b) + σP

e (a),
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= ∑a∈A tdegGAQSP(A,V) (σ
P
e (a)) = 2S(GAQSP(A, V)) + O(GAQSP(A, V)).

For non - membership AQSP fuzzy soft graph values are,

(ii) tdegGAQSP(A,V) (σ
N
e (a)) = ∑e∈AAQSP

(∑a∈V(µ
N
e (a, b) + σN

e (a),

=⇒ ∑a∈V tdegGAQSP(A,V) (σ
N
e (a)) = ∑a∈V(∑e∈AAQSP

(∑a∈V(µ
N
e (a, b) + σN

e (a),

= ∑a∈A tdegGAQSP(A,V) (σ
N
e (a)) = 2S(GAQSP(A, V)) + O(GAQSP(A, V).

Now, the Submerging membership values are,

(iii) tdegGAQSP(A,V) (ρ
P
e (a)) = ∑e∈AAQSP

(∑a∈V(γ
P
e (a, b) +P

e (a)),

=⇒ ∑a∈V tdegGAQSP(A,V) (ρ
P
e (a)) = ∑a∈V ∑e∈AAQSP

(∑a∈V(γ
P
e (a, b) + ρP

e (a)),

= ∑a∈A tdegGAQSP(A,V) (ρ
P
e (a)) = 2S(GAQSP(A, V)) + O(GAQSP(A, V)).

For the Submerging non - membership values are,

(iv) tdegGAQSP(A,V) (ρ
N
e (a)) = ∑e∈AAQSP

(∑a∈V(γ
N
e (a, b) +N

e (a)),

=⇒ ∑a∈V tdegGAQSP(A,V) (ρ
N
e (a)) = ∑a∈V ∑e∈AAQSP

(∑a∈V(γ
N
e (a, b) + ρN

e (a)),

= ∑a∈A tdegGAQSP(A,V) (ρ
N
e (a)) = 2S(GAQSP(A, V)) + O(GAQSP(A, V)). �

5. Properties of Regular and Totally Regular AQSP Fuzzy Soft Graph

Theorem 3. The size of the (k1, k2, k3, k4) regular AQSP fuzzy soft graph (GAQSP(A, V) on
G∗ = (V, E) is (i) pk1

2 , (ii) pk2
2 , (iii) pk3

2 and (iv) pk4
2 where p = |V| and deg σP

e (a) = k1,
deg σN

e (a) = k2, deg ρP
e (a) = k3 and deg ρN

e (a) = k3

Proof.
(i) S(GAQSP(A, V) = ∑e∈AAQSP

(∑a 6=b µP
e (a, b))

since GAQSP(A, V) is a k1 regular AQSP fuzzy soft graph we get,
degσP

e (a) = k1, ∀a ∈ V ,
Now, S(GAQSP(A, V)) = ∑e∈AAQSP

(∑a 6=b µP
e (a, b))

∑a∈V
deg σP

e (a)
2 ,

∑a∈V
deg σP

e (a)
2 = ∑a∈V

k1
2 .

(ii) S(GAQSP(A, V)) = ∑e∈AAQSP
(∑a 6=b µN

e (a, b))
since (GAQSP(A, V)) is a (k1, k2, k3, k4) regular AQSP fuzzy soft graph we get,
degσN

e (a) = k2, ∀a ∈ V ,
Now, S(GAQSP(A, V)) = ∑e∈AAQSP

(∑a 6=b µN
e (a, b))

∑a∈V
deg σN

e (a)
2

∑a∈V
deg σN

e (a)
2 = ∑a∈V

k2
2

(iii) S(GAQSP(A, V)) = ∑e∈AAQSP
(∑a 6=b γP

e (a, b))
since (GAQSP(A, V)) is a k3 regular AQSP fuzzy soft graph we get,
degρP

e (a) = k3, ∀a ∈ V ,
Now, S(GAQSP(A, V)) = ∑e∈AAQSP

(∑a 6=b γP
e (a, b))

∑a∈V
deg ρP

e (a)
2 ,
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∑a∈V
deg ρP

e (a)
2 = ∑a∈V

k3
2 .

(iv) S(GAQSP(A, V)) = ∑e∈AAQSP
(∑a 6=b γN

e (a, b))
since (GAQSP(A, V)) is a k4 regular AQSP fuzzy soft graph we get,
degρP

e (a) = k4, ∀a ∈ V ,
Now, S(GAQSP(A, V)) = ∑e∈AAQSP

(∑a 6=b γN
e (a, b))

∑a∈V
deg ρN

e (a)
2

∑a∈V
deg ρN

e (a)
2 = ∑a∈V

k4
2

Hence, The size of the (k1, k2, k3, k4) regular AQSP fuzzy soft graph (GAQSP(A, V) on
G∗ = (V, E) is pk1

2 , pk2
2 , pk3

2 and pk4
2 where p = |V| �

Theorem 4. If GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN))
be an regular AQSP fuzzy on G∗ = (σ∗, µ∗) is a k-totally regular AQSP fuzzy soft graph.
Then, 2S(GAQSP(A, V) + O(GAQSP(A, V)) = (σP pk, σN pk, γP pk, γN pk) where,
(σP p, σN p, γP p, γN p) = |V|.

Proof. Since, GAQSP(A, V) is a k-totally regular AQSP fuzzy soft graph,
tdegGAQSP(A,V)σ

Pa = k1, tdegGAQSP(A,V)σ
N a = k2, tdegGAQSP(A,V)ρ

Pa = k3

and tdegGAQSP(A,V)ρ
N a = k2, ∀a ∈ V.

=⇒ degGAQSP(A,V)σ
Pa + ∑e∈A σP

e (a), degGAQSP(A,V)σ
N a + ∑e∈A σN

e (a),
degGAQSP(A,V)ρ

Pa + ∑e∈A ρP
e (a) and degGAQSP(A,V)ρ

N a + ∑e∈A ρN
e (a), ∀a ∈ V.

=⇒ ∑a∈V degGAQSP(A,V)σ
Pa + ∑a∈V ∑e∈AAQSP

σPa = ∑a∈V ,

∑a∈V degGAQSP(A,V)σ
N a + ∑a∈V ∑e∈AAQSP

σN a = ∑a∈V .

For submerging AQSP fuzzy soft graph values are,

∑a∈V degGAQSP(A,V)ρ
Pa + ∑a∈V ∑e∈AAQSP

ρPa = ∑a∈V ,

∑a∈V degGAQSP(A,V)ρ
N a + ∑a∈V ∑e∈AAQSP

ρN a = ∑a∈V .
=⇒ tdegGAQSP(A,V)σ

Pa = k1, tdegGAQSP(A,V)σ
N a = k2,

tdegGAQSP(A,V)ρ
Pa = k3 and tdegGAQSP(A,V)ρ

N a = k2, ∀a ∈ V.
Hence, 2S(GA,V(AQSP) + O(GA,V(AQSP)) = (σP pk, σN pk, γP pk, γN pk).

�

Theorem 5. If (GAQSP(A, V)) = ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN)) be
an AQSP fuzzy soft graph on G∗ = (σ∗, µ∗) is a k-regular AQSP fuzzy soft graph.Then
(i)O(GAQSP(A, V)) = n(l1 − k1), (ii)O(GAQSP(A, V)) = n(l2 − k2),
(iii) O(GAQSP(A, V))= n(l3 − k3) and (iv) O(GAQSP(A, V)) = n(l4 − k4) where n = |V|.

Proof. Since (GAQSP(A, V)) is an k-regular AQSP fuzzy soft graph, then we have
degGAQSP(A,V)σ

Pa = k1, degGAQSP(A,V)σ
N a = k2, degGAQSP(A,V)ρ

Pa = k3 and
degGAQSP(A,V)ρ

N a = k4, ∀a ∈ V. Here, (GAQSP(A, V)) is totally regular
AQSP fuzzy soft graph, then we consider,
tdegGAQSP(A,V)σ

Pa = l1, tdegGAQSP(A,V)σ
N a = l2, tdegGAQSP(A,V)ρ

Pa = l3
and tdegGAQSP(A,V)ρ

N a = l4, ∀a ∈ V. Now we have,

∑a∈A tdegGAQSP(A,V)σ
Pa = σP pk1,

∑a∈A tdegGAQSP(A,V)σ
N a = σN pk2,

∑a∈A tdegGAQSP(A,V)ρ
Pa = ρP pk3,

∑a∈A tdegGAQSP(A,V)σ
N a = σN pk4.

(i) The AQSP fuzzy soft graph membership value is,
=⇒ ∑a∈V l1 = ∑a∈V degGAQSP(A,V)σ

Pa + O(GAQSP(A, V))

=⇒ ∑a∈V l1 = ∑a∈V k1 + O(GAQSP(A, V))
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=⇒ nl1 = nk1 + O(GAQSP(A, V))
=⇒ O(GAQSP(A, V)) = nk1 − nl1
=⇒ O(GAQSP(A, V)) = n(k1 − l1)
O(GAQSP(A, V)) = n(l1 − k1).
(ii) The AQSP fuzzy soft graph non-membership value is,
=⇒ ∑a∈V l2 = ∑a∈V degGAQSP(A,V)σ

N a + O(GAQSP(A, V))

=⇒ ∑a∈V l2 = ∑a∈V k2 + O(GAQSP(A, V))
=⇒ nl2 = nk2 + O(GAQSP(A, V))
=⇒ O(GAQSP(A, V)) = nk2 − nl2
=⇒ O(GAQSP(A, V)) = n(k2 − l2)
O(GAQSP(A, V)) = n(l2 − k2).
(iii) The AQSP fuzzy soft graph submerrging membership value is,
=⇒ ∑a∈V l3 = ∑a∈V degGAQSP(A,V)ρ

Pa + O(GAQSP(A, V))

=⇒ ∑a∈V l3 = ∑a∈V k3 + O(GAQSP(A, V))
=⇒ nl3 = nk3 + O(GAQSP(A, V))
=⇒ O(GAQSP(A, V)) = nk3 − nl3
=⇒ O(GAQSP(A, V)) = n(k3 − l3)
O(GAQSP(A, V)) = n(l3 − k3).
(iv) The AQSP fuzzy soft graph submerrging non- -membership value is,
=⇒ ∑a∈V l3 = ∑a∈V degGAQSP(A,V)ρ

N a + O(GAQSP(A, V))

=⇒ ∑a∈V l3 = ∑a∈V k3 + O(GAQSP(A, V))
=⇒ nl3 = nk3 + O(GAQSP(A, V))
=⇒ O(GAQSP(A, V)) = nk3 − nl3
=⇒ O(GAQSP(A, V)) = n(k3 − l3)
O(GAQSP(A, V)) = n(l3 − k3). Hence the result.

�

6. Perfectly regular AQSP fuzzy soft graph

Let GAQSP(A, V) be an AQSP fuzzy soft graph on V. Then GAQSP(A, V) is called as
perfectly regular AQSP fuzzy soft graph if GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)),
((AAQSP), (µP, µN , γP, γN)) is a regular and totally regular AQSP fuzzy soft graph ∀ei ∈ AAQSP.

Table 7: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(µ, γ) v1 v2 v3 v4
e1 ( 0.8, - 0.8, ( 0.8, - 0.8, ( 0.8, - 0.8, ( 0.8, - 0.8,

0.3,- 0.3) 0.3,- 0.3) 0.3,- 0.3) 0.3,- 0.3)
e2 ( 0.9, - 0.9, ( 0.9, - 0.9, ( 0.9, - 0.9, ( 0.9, - 0.9,

0.4,- 0.4) 0.4,- 0.4) 0.4,- 0.4) 0.4,- 0.4)

Table 7. represent the AQSP Fuzzy Soft Graph corresponding parameteric vertex set

Table 8: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

(µ, γ) v1v2 v2v3 v3v4 v4v1
e1 ( 0.7, - 0.7, ( 0.7, - 0.7, ( 0.7, - 0.7, ( 0.7, - 0.7,

0.2, - 0.2) 0.2, - 0.2) 0.2, - 0.2) 0.2, - 0.2)
e2 ( 0.8, - 0.7, ( 0.8, - 0.7, ( 0.8, - 0.7, ( 0.8, - 0.7,

0.3,- 0.2) 0.3, - 0.2) 0.3, - 0.2 ) 0.3,- 0.2)

Table 8. explains the AQSP Fuzzy Soft Graph corresponding parameteric edge set
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6.1. Example of AQSP Fuzzy Soft Graph

From the Figure.8 we get the result of AQSP fuzzy soft graph with the condition, tdegGAQSP(A, V)
= 2S(GAQSP(A, V) + O(GAQSP(A, V)) : 5.6 + 3.2 = 8.8
where, 2S(GAQSP(A, V) = 5.6 and O(GAQSP(A, V)) = 3.2, then, tdegGAQSP(A, V) = 8.8. Using
Figure.6 and Figure.7 we can get the same result of AQSP fuzzy soft graph.

Figure 6: Perfectly regular AQSP fuzzy soft graph Corresponding to the parameter e1

Figure 7: Perfectly regular AQSP fuzzy soft graph Corresponding to the parameter e1

Theorem 6. For a perfectly regular AQSP fuzzy soft graph GAQSP(A, V) we have
((AAQSP), (σP, σN , ρP, ρN)) is a constant function.

Proof. From Theorem .4 and Theorem. 5 we prove that
GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN)) is perfectly
regular AQSP fuzzy soft graph. �

Theorem 7. Let GAQSP(A, V) be an AQSP fuzzy soft graph. Then we prove that GAQSP(A, V) is
perfectly regular AQSP fuzzy soft graph if and only if the given conditions are satisfied for edges
and vertices with membership values.

(i) ∑x 6=y µP
e (x, y) = ∑z 6=y µP

e (z, y)
(ii) ∑x 6=y µN

e (x, y) = ∑z 6=y µN
e (z, y)

(iii) ∑x 6=y γP
e (x, y) = ∑z 6=y γP

e (z, y)
(iv) ∑x 6=y γN

e (x, y) = ∑z 6=y γN
e (z, y) ∀x, y ∈ V, ei ∈ AAQSP.

(v) σP
e (x) = σP

e (z), (vi) σN
e (x) = σN

e (z)
(vii) ρP

e (x) = ρP
e (z), (viii) ρN

e (x) = ρN
e (z), ∀x, y ∈ V, ei ∈ AAQSP.

Proof. Consider, GAQSP(A, V) is perfectly regular AQSP fuzzy soft graph. By definition
GAQSP(A, V) is regular AQSP fuzzy soft graph, hence it trivially satifies (i), (ii), (iii) and (iv).
Therfore we have the following,
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degGAQSP(A,V)σ
P(x) = degGAQSP(A,V)σ

P(z),
degGAQSP(A,V)σ

N(x) = degGAQSP(A,V)σ
N(z),

degGAQSP(A,V)ρ
P(x) = degGAQSP(A,V)ρ

P(z),
degGAQSP(A,V)ρ

N(x) = degGAQSP(A,V)ρ
N(z), ∀x, z ∈ V, ei ∈ AAQSP.

Thus implies the results by proposition 8.2.in the following,
∑x 6=y µP

e (x, y) = ∑z 6=y µP
e (z, y)

∑x 6=y µN
e (x, y) = ∑z 6=y µN

e (z, y)
∑x 6=y γP

e (x, y) = ∑z 6=y γP
e (z, y)

∑x 6=y γN
e (x, y) = ∑z 6=y γN

e (z, y) ∀x, y ∈ V, ei ∈ AAQSP.
by Theorem.6, (v), (vi), (vii) and (viii) also holds.
Conversely, suppose that GAQSP(A, V) is an AQSP fuzzy soft graph such that it satisfies the

conditions from (i), (ii), (iii) and (iv).
degGAQSP(A,V)σ

P(x) = degGAQSP(A,V)σ
P(z) = r1,

degGAQSP(A,V)σ
N(x) = degGAQSP(A,V)σ

N(z), r2

degGAQSP(A,V)ρ
P(x) = degGAQSP(A,V)ρ

P(z), r3

degGAQSP(A,V)ρ
N(x) = degGAQSP(A,V)ρ

N(z) = r4, ∀x, z ∈ V, ei ∈ AAQSP.
This implies that GAQSP(A, V) is a regular AQSP fuzzy soft graph.
From, (v), (vi), (vii) and (viii) we get the result,
(v) σP

e (x) = σP
e (z) = k1,

(vi) σN
e (x) = σN

e (z) = k2
(vii) ρP

e (x) = ρP
e (z) = k3,

(viii) ρN
e (x) = ρN

e (z) = k4, ∀x, z ∈ V, ei ∈ AAQSP .
Thus, ((AAQSP), (σP, σN , ρP, ρN)) is a constant AQSP fuzzy soft function.
tdegGAQSP(A,V)σ

P(z) = degGAQSP(A,V)σ
P(z) + σP(z) = r1 + k1,

tdegGAQSP(A,V)σ
P(w) = degGAQSP(A,V)σ

P(w) + σP(w) = r1 + k1,
tdegGAQSP(A,V)σ

N(z) = degGAQSP(A,V)σ
N(z) + σN(z) = r2 + k2,

tdegGAQSP(A,V)σ
N(w) = degGAQSP(A,V)σ

N(w) + σN(w) = r2 + k2,
tdegGAQSP(A,V)ρ

P(z) = degGAQSP(A,V)ρ
P(z) + ρP(z) = r3 + k3,

tdegGAQSP(A,V)ρ
P(w) = degGAQSP(A,V)ρ

P(w) + ρP(w) = r3 + k3,
tdegGAQSP(A,V)ρ

N(z) = degGAQSP(A,V)ρ
N(z) + ρN(z) = r4 + k4,

tdegGAQSP(A,V)ρ
N(w) = degGAQSP(A,V)ρ

N(w) + ρN(w) = r4 + k4, ∀x, z ∈ V, ei ∈ AAQSP.
The toally regular AQSP fuzzy soft graph is,
tdegGAQSP(A,V)σ

P(z) = tdegGAQSP(A,V)σ
P(w) = k1,

tdegGAQSP(A,V)σ
N(z) = tdegGAQSP(A,V)σ

N(w) = k2,
tdegGAQSP(A,V)ρ

P(z) = tdegGAQSP(A,V)ρ
P(w) = k3,

tdegGAQSP(A,V)ρ
N(z) = tdegGAQSP(A,V)ρ

N(w). = k4 ∀x, z ∈ V, ei ∈ AAQSP.
Hence GAQSP(A, V) is toally regular AQSP fuzzy soft graph. This implies that

GAQSP(A, V) = ((AAQSP), (σP, σN , ρP, ρN)), ((AAQSP), (µP, µN , γP, γN)) is perfectly regular
AQSP fuzzy soft graph and ((AAQSP), (σP, σN , ρP, ρN)) is a constant function. therefore,
tdegGAQSP(A,V)ρ

P(z) = tdegGAQSP(A,V)ρ
P(w) = k1, k2, k3, and k4, ∀x, z ∈ V, ei ∈ AAQSP.

�

7. Application of AQSP Fuzzy Soft Graph

AQSP fuzzy soft graph can be used in the governing of women safety police network (WSPN) of a
city or a district or any Non safety area region. The WSPN can be utilized using AQSP fuzzy soft
graph, where the police vehicle depots are the vertices (v1, v2, v3, ...vn) and the route connecting
two police vehicles are considered as corresponding edges.

RT&A, No 1 (77)
 Volume 19, March 2024

250



Anthoni Amali A, J . Jesintha Rosline
REGULARITY OF AQSP FUZZY SOFT GRAPH

For women safety police inspectors are positioned and the objective of the Governing problem
is to find the minimum number of women inspectors required who will inspect the police vehicle
for a particular time and particular bus stop or any region. The following description of AQSP
fuzzy soft graph will help to find the solution of Patrolling of Police vehicle Network.

7.1. Method of AQSP Fuzzy Soft Graph Women Safety Police Vehicle Network

1. Let V = (v1, v2, v3...vn) be the vertices of AQSP fuzzy soft graph police vehicle depots
in a particular women safety vehicle network corresponding to the women Institutions,
Companies, Colleges and Working places especially in bus stops.

2. We consider the edges as women working regions E = (v1v2, v1v3, v2v4, ...vmvn). The vertices
membership and non-membership values of the police vehicle Vi is determine as
Vi ∈ AAQSP f or i = 1, 2, ...n.

3. Now, define a term safety of women work is satisfied, which is the minimum number of
women saved from particular people who distubs them while they stay or travel or work in
different places.It is denoted as S vertices.The vehicle route is denoted by edges R = vivj in
Alternate quadra submerging polar fuzzy soft graph.

4. Find the membership values of the women safety vehicle route vivj between the range [-1,1]
using AQSP fuzzy graph soft graph with the given conditions if

(i) S > R,for AQSP membership values (ii) S < R,for AQSP non-membership values.

5. (a) µP
e (x, y) ≤ σP

e (x) ∧ σP
e (y), (b) µN

e (x, y) ≥ σN
e (x) ∨ σN

e (y),

(c) γP
e (x, y) ≤ ρP

e (x) ∧ ρP
e (y), (d) γN

e (x, y) ≥ ρN
e (x) ∨ ρN

e (y), for all e ∈ AAQSP and
for all values of x, y = 1, 2, 3, ..., n.

6. Let the capacity of five women police vehicle depots as vertices v1 = 4, v2 = 3, v1 = 5, v4 = 4,,
number of women exist in the spot facing dangerous situation denoted as edges, v1, v2 = 55
, v2, v3 = 95, v3, v4 = 100 , v4, v1 =92 are tabulated below.

7. The score values are measured by the AQSP score formula which gives the result of low
and high self-esteem influential person, 1

n ( 1
lP
d

∑ ϕP
x − 1

lN
d

∑ ϕN
x )

Table 9: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(σ, ρ) v1 v2 v3 v4
e1 ( 0.6, - 0.8, ( 0.7, - 0.7, ( 0.8, - 0.9, ( 0.6, - 0.9,

0.1,- 0.3) 0.2, -0.2) 0.3, - 0.4 ) 0.1,- 0.4)
e2 ( 0.7, - 0.9, ( 0.8, - 0.6, ( 0.9, - 0.8, ( 0.8, - 0.8,

0.2,- 0.4) 0.3, -0.1) 0.4, - 0.3 ) 0.3,- 0.3)
Score 0.500 0.900 0.925 0.900

The score values of the women needed safety in different spots are given with membership
and non membership values of the edges are v1, v2 = 0.550 , v2, v3 = 0.950, v3, v4 = 1.000 ,
v4, v1 = 0.925. The police vehicle v3 = 3 is the important vehicle to be in the spot v3, v4 = 1.000
where women in that area need safety. The bar diagram given below shows the result.
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Table 10: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

(µ, γ) v1v2 v2v3 v3v4 v4v1
e1 ( 0.7, - 0.7, ( 0.7, - 0.7, (1.0, - 0.7, ( 0.7, - 0.7,

0.2, - 0.2) 0.2, - 0.2) 0.5, - 0.2) 0.2, - 0.2)
e2 ( 0.8, - 0.7, ( 0.8, - 0.7, ( 0.9, - 1.0, ( 0.8, - 0.7,

0.3,- 0.2) 0.3, - 0.2) 0.4, - 0.5 ) 0.3,- 0.2)
Score 0.550 0.950 1.000 0.925

8. Conclusion

The Alternate Quadra Submerging Polar (AQSP) fuzzy graph is introduced with the basic per-
ception of Fuzzy soft graphs. In this article, we introduce the new module AQSP fuzzy soft
graphs with suitable definitions, theorems, examples, and properties. The membership and
non-membership values of AQSP fuzzy soft graph is introduced with submerging level of confi-
dence [-0.5,0.5]. The introduction of this new module AQSP fuzzy soft graph is an indispensable
concept that can be rather developed into interdisciplinary subjects. The main purpose of this
new graph is to find the reliable corresponding parametric membership values. The regular,
totally regular, and perfectly regular AQSP fuzzy soft graph combinatoric concepts and properties
can be applied in Combinatoric subjects, Applied Mathematics, Statistics, Probability, Artificial
intelligence, Approximate reasoning, Teaching learning projects and Mathematical psychology.
Different types of AQSP fuzzy soft graphs and the Network method of Governing the women
safety vehicle in different spots are presented specifically. Finding the important police vehicle,
connected routes and spots are the extent of the AQSP fuzzy soft graph. In future the extension of
the AQSP fuzzy soft graph can be developed in Decision making analysis, medical diagnosis, and
machine learning. The regularity of AQSP fuzzy soft sets and graphs are applicable in real life
situations which are uncertain. The combinatoric membership and non-membership submerging
values can be found using corresponding parameters in different fuzzy fields.
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Abstract 

When all experimental runs cannot be done under homogeneous conditions, blocking can be utilized 

to increase the power for testing treatment effects. In many real-life environments, there is at least 

one factor that is hard to change, leading to a split-plot structure. This paper demonstrates how to 

generate certain graphs using main-plot and sub-plot analyses, as well as providing a catalog. As a 

result, during situations where the candidate set is too huge to be tractable, the design of split-plot 

experiments becomes computationally feasible.  The designs were considered ideal because they were 

capable and efficient in estimating the fixed effects of the suitable statistical model given the split-plot 

design structure. The Split-Plot Design (SPD) is the complete block design which plays an important 

role in the fields of agriculture, medicine, and industries. This SPD is specifically suited for a two-

factor experiment that has more treatments than can be accommodated by a complete block design. In 

an SPD, one factor is assigned to the main- plot. The assigned first factor is called the main - plot 

factor. The main- plot is then divided into subplots and the second factor is called the sub - plot factor. 

SPD is most used for (i) few experimental materials may be rare while the other experimental 

materials may be available in large quantity, (ii) the levels of one or more treatment factor or easy to 

change and the alteration of levels of other treatment factors are costly or time-consuming. Given the 

extensive study done in graph theory, it has developed to be a very broad subject in mathematics. 

Graphs are important because they are a visual way of expressing information. A graph shows data 

that is equivalent to many words. A graph can convey information that is difficult to express in 

words. A bipartite graph is a type of graph in which the entire graph may be divided into two bipartite 

sets, with edges connecting vertices in one set to vertices in the other. Vertex coloring is the procedure 

of assigning labels or colors to each vertex in a graph. The data set was also manually analyzed to 

validate the software-analyzed outcomes. R gave the same results as the manual analysis, showing 

that they were both correct. R is mainly command-based. The proposed approach is demonstrated 

using agricultural and industrial examples.  

 Key Word: Split-plot design, complete bipartite graph, colored graph. 
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1. Introduction

Tamil Nadu is one of the leading rice-growing states in India and has been successfully cultivating rice 

since ancient times as the state has all the favorable climatic conditions suitable for rice cultivation. Rice 

research was initiated in Madras State to increase rice production and productivity (mixed).1902 at 

Samalkota in East Godavari district was extended to 12 more places. This study uses primary data to 

determine the rice production of the Salem district of Tamil Nadu. The present study aims to analyze 

rice cultivation using different levels of nitrogen. The constraint analysis is applied to find out the 

problems of paddy cultivation. 

A split plot design and some graphs were adopted for this present study. The split‐plot design 

originated in the field of agriculture. Experimenters applied one treatment to a large area of land, called 

a whole plot, and other treatments to smaller areas of land within the whole plot called a subplot. Split 

plots have two types of factors Hard‐to‐change (HTC) applied to the whole plots and Easy‐to‐change 

(ETC) applied to the subplots. In such case different sizes of plots are required and the resulting design 

is known as Split Plot Design (SPD). In 1925, Fisher developed these designs for the purpose of 

agricultural experiments. 

One of the fastest-expanding sciences in modern technology is graph theory. Graphs are commonly 

used in applications of many fields to represent different objects and their relationships. The declaration 

of an object vertex serves as the graph's visual representation, while an edge represents the relationships 

between objects. Graph theory has recently become established as a significant mathematical tool in a 

wide range of fields, including functional research, chemistry, genetics, and linguistics, as well as 

electrical engineering, geography, sociology, and architecture of themselves.  

Wooding W M [1] has discussed split-plot designs characteristics and applications. To design 

the first section, models and least squares are reviewed. The main part shows how a fundamental split-

plot design is created through a process of "evolution," starting with a completely random model and 

progressing through a randomized blocks design to a split-plot while using the same set of runs. George 

Box and Stephen Jones [2] have evaluated the applicability of split-plot designs for the experimental 

setting and have concentrated on the use of statistical experimental designs in designing goods that are 

robust to environmental factors. They conclude that the split-plot and strip-block designs are valuable 

for creating strong products. Peter Goos and Martina Vandebroek [3] have developed an exchange 

algorithm for constructing D-optimal split-plot designs and the resulting designs are analyzed. 

Natalino Calegario et al. [4] have analyzed the split-split-plot design and established the impact of 

fertilizer concentration on the establishment of Begonia and Petunia. Then they draw the conclusion 

that the pH values declined with fertilizer concentration over time and the EC values increased over 

time, resulting in values that limited nutrient availability and plant growth.  

Bradley Jones and Peter Goos [5] have suggested a fresh technique for producing ideal split-plot 

designs. These split-plot designs are best when they are effective at estimating the fixed effects of the 

proper statistical model, given the structure of the design. Pwasong A D and Choji D N [6] have 

analyzed the rabbit feeds data obtained from the Department of Agricultural Science, Federal College 

of Education Pankshin and determined that there is any significant variation in the categories of feeds 

given. The result illustrates that there was no significant different between the various types of feed 

utilized to feed the rabbits.  

Bradley Jones [7] has suggested for the use of split-plot designs in industrial applications are 

provided after an examination of current developments. Johannes Ledolter [8] has reviewed the 

factorial split-plot design and fractional factorial split-plot designs experiments and uses several 

illustrative examples to illustrate why they frequently occur in industrial investigations. Abhishek K. 

Shrivastava [9] has presented an effective method for constructing split-plot design catalogues by 

transforming the design isomorphism problem to a graph isomorphism problem utilizing a new graph 
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representation. Derya Dogan and Pinar Dundar [10] have introduced the new concept of average 

covering number of a graph and establish the brief relationship between the average covering number 

and some other graph parameters. 

 David I J and Adehi M U [11] have utilized a 21×52 split-plot experiment with three replicates for 

comparison. Here they review the sorghum thresher's improved threshing efficiency.Vahide 

Hajihassani and Yadollah Rajaei [12] have used five agricultural machinery companies that have existed 

accepted in the Tehran Stock Exchange since (1388-1390) and a sample that is representative of society, 

conduct a split-plot design model study on the factors impacting liquidity accepted in stock exchange 

Agricultural Machinery companies. David I J et al. [13] have presented the steps for the estimated 

generalized least square (EGLS) technique, which estimates the parameters of a nonlinear split-plot 

design (SPD) model utilizing theoretical iterative Gauss Newton via Taylor Series expansion. Yoshimi 

Egawaa et al. [14] have discussed the 4-connected graph in triangles and let G be a 4-connected graph, 

and let E˜(G) denote the set of those edges of G which are not contained in a triangle, and let Ec(G) 

denote the set of 4-contractible edges of G. We show that if 3 ≤ |E˜ (G)| ≤ 4 or |E˜ (G)| ≥ 7, then |Ec(G)| 

≥ (|E˜(G)| +8)/4 unless G has one of the three specified configurations.  

Table 1: Background of this research 

Review 
The related articles of Split-plot design, application of split-plot design, 

graph theory, vertex coloring and split-plot design with colored graph 

are given. 

Example 1 Yield of paddy in different level of nitrogen and the given data are 

collected from the agriculture filed of salem district.   

Example 2 Application method of paint in different mixing level and the given data 

are collected from different hardware’s in salem district. 

2. Preliminaries

2.1 Split-plot Design 

A randomized complete block design with two factors is no longer a randomized complete block design 

because the order of experiments is controlled to obtain observations in each treatment under each 

block. Splitting the randomization of an experiment to obtain observations under the treatment of one 

factor is called a split-plot design. 

2.2 Complete Bipartite Graph 

A complete bipartite graph is a graph whose vertex set 𝑉 can be divided into two subsets 𝑉1  and 𝑉2  

such that no edge has both endpoints in the same subset and every edge is connected to every vertex of 

the first subset and every vertex of the second subset.  

2.3 Colored Graph 

In a graph, the procedure for assigning the labels (colors) to the nodes or edges or areas is known as 

graph coloring. In this assignment no two adjacent vertices or adjacent edges or adjacent areas are 

getting the same color.  

3. Statistical Analysis of Split Plot Design

The liner model for Split Plot Design is. 
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𝑌𝑖𝑗𝑘  = µ + 𝑟𝑖 + 𝑡𝑗 + 𝑠𝑘 + 𝑡𝑠𝑗𝑘 + 𝜕𝑖𝑗  + 𝜀𝑖𝑗𝑘, ∀     i=1,2,…r;  j=1,2,…v; k=1,2…n.      

Where, 𝑌𝑖𝑗𝑘   is the observation corresponding to 𝑘𝑡ℎ level of sub plot factor (B), 𝑗𝑡ℎ level

of main plot factor (A) and 𝑖𝑡ℎ replication. 

µ is general mean effect. 

𝑟𝑖 is 𝑖
𝑡ℎ replication effect.

𝑡𝑗 is 𝑗𝑡ℎ  main - plot treatment effect.

𝑠𝑘 is 𝑘𝑡ℎ sub - plot treatment effect.

𝑡𝑠𝑗𝑘 is interaction effect. 

The error components 𝜕𝑖𝑗   and 𝜀𝑖𝑗𝑘 are independently and normally distributed with mean zero and 

respective variance 𝜎2 𝜕 and𝜎2ε. 

3.1 Main-Plot Analysis 

This analysis part is based on the comparisons of main plot totals: 

The levels of A are assigned to the main plots within blocks based on RBD and the sum of squares are 

given below,  

• Correction factor (CF) =
G2

rvn

• Total sum of square (SST) = 𝛴X2 − CF

• Replication sum of square (SSR) =  
ΣR2

vn
− CF

• Main-plot sum of square (SS (MP)) =  
𝛴𝐴2

𝑟𝑛
– CF

• Main-plot error sum of square (SSE1) =  
Σ(AR)2

n
− CF − SSR − SS(MP)

3.2 Sub-Plot Analysis 

This analysis part is based on the comparisons of sub plot totals: 

• Sub-plot sum of square (SS (SP)) =  
ΣB2

rv
− CF

• Interaction effect sum of square (A×B) =  
Σ(AB)2

r
− CF − SSA − SSB

• Sub-plot error sum of square (SSE2) = SST- (SSR + SS (MP) + SSE1 + SS (SP) + (A×B))

The analysis of the variance table is outlined as follows 

Table 2: ANOVA for split-plot designs 

Sv  Df  Ss          Mss F-Ratio

Replication (r-1) 

SSR 
 SR

2 =
SSR

(𝑟 − 1)
FR =

SR
2

SE1

2 ~F(r−1),(r−1)(v−1)

MP(A) (v-1) 

SSA 
SA

2 =
SSA

(𝑣 − 1)
F𝐴 =

SA
2

SE1

2 ~F(v−1),(r−1)(v−1)

MPE (E1) (r-1)(v-1) SSE1 
SE

2 =
SSE1

(𝑟 − 1)(𝑣 − 1)  - 

SP (B)  (n-1)  SSB 
 SB

2 =
SSB

(𝑛 − 1)
 F𝐵 =

SB
2

SE2

2 ~F(v−1),(r−1)(n−1)

IE(AB) (v-1)(n-1) SSAB 
SAB

2 =
SSAB

(𝑣 − 1)(𝑛 − 1)
  F𝐴𝐵   =

SAB
2

SE2
2 ~𝐹(v−1),(r−1)(n−1)
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SPE(E2) v(r-1)(n-1) SSE2 
SA

2 =
SSE2

𝑣(𝑟 − 1)(𝑛 − 1)
      - 

Total  rvn-1 SST       - - 

3.3 Flow – Chart 

Figure 1: Flow chart 

4. Construction of Split-Plot Design using Complete Bipartite Graph

4.1 Method for Construction of Complete Bipartite Graphs 

• Let us consider the main-plot and sub-plot as vertex set  S . This vertex set can be

divided into subsets of S1and S2.

• In main-plot, the replication is considered as first subset S1and variety as second

subset S2.

• Now consider the first vertex of first subset and then 𝑅1 is connected to all the

vertices of second subset through edges.

• Next consider the second vertex and it is connected to all the vertices of the second

subset through the edges.

• Similarly, all the remaining vertices of the first subset are connected to all the vertices

of second subset through the corresponding edges.

• Finally, we get the complete bipartite graph for main-plot and sub-plot.

4.1.1 Application 

V. Saranya, S. Kavitha, M. Pachamuthu , S. Vijayan
SPLIT-PLOT MODEL USING SPECIAL TYPE OF GRAPHS 

RT&A, No 1 (77)
 Volume 19, March 2024

258



This example is to determine the yield response in N fertilization between different paddy varieties, 

three varieties of Paddy (V1 = ADT 36, V2=ASD 16, V3 = IR50) are the treatments of main plot, nitrogen 

rates such as 0, 30 and 60 Kg/ha are the sub- plot treatments. The study was replicated four times and 

the primary data gathered for this experiment from the agricultural field of salem district of tamil nadu 

in India and shown in table 3. 

Table 3: Replication wise data for yield of paddy (Kg/ha) 

Replication R1 R2 R3 R4 

Variety Nitrogen (N1) 

V1 15.8 19.2 13.2 13.2 

V2 20.8 15.3 20.5 13.8 

V3 15.9 16.3 16.2 12.8 

Nitrogen (N2) 

V1 17.8 20.5 14.8 13.8 

V2 24.8 20.8 18.8 17.8 

V3 18.5 16.1 20.8 12.2 

Nitrogen (N3) 

V1 21.1 24.8 13.8 18.8 

V2 30.5 19.2 25.7 15.2 

V3 18.3 18.2 22.8 10.8 

Table 4: Replication × variety (R×V) for main – plot 

V1 V2 V3 Replication Total 

R1 54.7 76.1 52.7 183.5 

R2 64.5 55.3 51 170.8 

R3 41.8 65 59.8 166.6 

R4 45.8       46.8 35.8 128.4 

Variety Total 206.8 243.2 199.3 649.3 

The procedure for constructing the complete bipartite graph mentioned in section 4.1 is followed for 

the main-plot and sub-plot for the above experiments and then the finalized complete bipartite graph. 

From the above table 4 as vertex is fixed as 𝑆, which is divided into two subsets, figure 2 shows that S1 

(replication) and S2 (variety). Figure 3 shows that the first replication vertex (R1) and it is connected to 

all the vertices of variety (V1, V2 and V3) through the edge values 54.7(Y1), 76.1(Y2) and 54.7(Y3).  
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      Figure 2: Graph of subsets                                         Figure 3: Graph for first replication (R1)      

Figure 4 shows that the second replication vertex (𝑅2) and it is connected to all the vertices of variety 

(𝑉1, 𝑉2 and 𝑉3) through the edge values 64.5(𝑌1) 55.3(𝑌2) and 51(𝑌3). Similarly, figure 5 shows that the 

third and fourth replication vertices 𝑅3 and 𝑅4 are connected to all the vertices of variety (𝑉1, 𝑉2and 𝑉3) 

through the corresponding edge values (𝑌1, 𝑌2and 𝑌3) 41.8,65, and 59.8 (𝑌1, 𝑌2and 𝑌3) 45.8, 46.8 and 35.8. 

 Figure 4: Graph for second replication (R2)   Figure 5: Graph for third and fourth replication (R3 and R4) 

Finally, figure 6 shows that the complete bipartite graph of variety and replication for main - plot. 
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Fig. 6: Graph for complete bipartite graph of main - plot 

Table 5: Variety × nitrogen (V × N) for sub-plot 

N1 N2 N3 Variety Total 

V1 61.4 66.9 78.5 206.8 

V2 70.4 82.2 90.6 243.2 

V3 61.2 67.6 70.5  199.2 

Nitrogen Total 193 216.7 239.6    649.3 

The construction of complete bipartite graph for the sub-plot are given below. 

From the above table 5 as vertex is fixed as 𝐺, which is divided into two subsets, figure 7 shows that 

G1(variety) and G2 (nitrogen). Figure 8 shows that the first variety (𝑉1) is connected to all nitrogen 

(𝑁1, 𝑁2and 𝑁3) through the values 61.4(𝑌1), 66.9(𝑌1) and 78.5(𝑌1).  

 Figure 7: Graph for vertex subset  Figure 8: Graph for first variety (V1) 
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Similarly, figure shows that the second and third variety 𝑉2 and 𝑉3  is connected to all the nitrogen (𝑁1, 𝑁2 

and 𝑁3) through the corresponding values 70.4, 82.2 and 90.6 (𝑌1, 𝑌2 and 𝑌3), 61.2, 67.6 and 70.7 (𝑌1, 𝑌2 

and 𝑌3).Finally, figure 10 shows the complete bipartite graph for variety and nitrogen. 

  Figure 9: Graph for second and third variety (V2 and V3)  Figure 10: Complete bipartite graph for sub – plot 

The sum of squares for main- plot: 

• Correction factor (CF) = 17910.8469

• Total sum of square (SST) = 637.46

• Replication sum of square (SSR) = 187.709

• Variety sum of square (SSV) = 91.9006

• Main-plot error sum of square (SSE1) = 175.4527

The sum of squares for sub-plot: 

• Nitrogen sum of square (SSN) = 90.4906

• Interaction effect sum of square (V×N) = 10.4194

• Sub-plot error sum of square (SSE2) = 81.4869

The ANOVA table for split-plot design is shown in below table: 

Table 6: ANOVA table for split-plot design 

Sv Df    Ss Mss F-Ratio P-Value

Replication 3 187.7098 62.570 2.1397 0.196473 

Variety (A) 2 91.9006 45.950 1.5714 0.282634 

Main - plot error(E1) 6 175.4527 29.242 - - 

Nitrogen(B) 2 90.4906 45.245 9.9945 0.001204** 

Interaction (AB) 4 10.4194 2.605 0.5754 0.684090 

Sub - plot error(E2) 18 81.49 4.527 - - 

Total 35 - - - - 

The table value of replication and variety are greater than the calculated values. So, the null hypothesis 

is accepted. There is no significant difference between the four replications and three varieties. The table 

value of nitrogen level is greater than the calculated value. So, the null hypothesis is accepted. There is 

no significant difference between the three nitrogen levels. The table value of the interaction effect is 
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also greater than the calculated value. So, the null hypothesis is accepted. 

There is no significant difference between the interaction effects. The P-value of the above 

experiment is greater than the 5% level of significant. Therefore, the null hypothesis is accepted. There 

is no significant difference that occurred in the above experiment.   

4.2 Method for Construction of Colored Graph 

• Let us consider the main-plot and sub-plot factors as the vertex set 𝑆1and 𝑆2 . Here the

common factor assigned as 𝑆1 and the other factor assigned 𝑆2.

• The vertices of set 𝑆1and 𝑆2 are colored using the vertex coloring and the vertices are

differentiate with different colors. Now consider the first vertex of  𝑆1 and it is connected

to the corresponding vertices of 𝑆2 through edges.

• Next the second vertex of 𝑆1which is connected to the corresponding vertices of 𝑆2

through edges.

• Similarly, all the remaining vertices of the first set are connected to the corresponding

vertices of second set through the corresponding edges.

• Finally, we get the colored graph (vertex coloring graph) for main-plot and sub-plot.

4.2.1 Application 

The test is designed to examine pigment dispersion in paint. Three different mixing levels of a particular 

pigment are studied. The procedure consists of three application methods (brushing, sparing, and 

rolling) and measured the percentage reflectance of a pigment. Four days required running the 

experiment from hardware shops in salem district and the data obtained below. 

Table 7: Replication wise data form mixes level and application method of paint 

Replication R1 R2 R3 R4 

Application Method Mixing level (M1) 

A1 65.8 70.2 65.2 69.2 

A2 69.8 65.3 70.5 63.8 

A3 70.8 67.3 68.2 69.8 

Mixing level (M2) 

A1 68.7 73.5 69.9 66.8 

A2 74.8 70.8 68.8 67.8 

A3 50.8 69.1 71.8 63.2 

Mixing level (M3) 

 A1 72.2 77.8 71.6 70.8 

A2 81.5 69.2 75.7 65.2 

A3 69.3 71.6 77.8 60.8 

Table 8: Replication × application method (R×A) for main - plot 

A1 A2 A3 Replication Total 

R1 206.8 226.1 190.9 623.8 
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R2 221.5 205.3 208 634.8 

R3 206.7 215 217.8 639.5 

R4 206.8 196.8 193.8 597.4 

Application Total 841.8 843.2 810.5 2495.5 

Table 9: Application method × mixing (A×M) for sub-plot 

M1 M2 M3 Application Total 

A1 270.4 219 292.4 841.8 

A2 269.4 282.2 291.6 843.2 

A3 276.1 254.9 279.5 810.5 

Mixing Total 815.9 816.1 863.5 2495.5 

The procedure for constructing the colored graph mentioned in section 4.2 for main-plot and sub-plot 

for the above experiments and then the finalize. 

Here we take main-plot factors (replication and application) and sub-plot factors (application method 

and mixing level) as the set 𝑆1and 𝑆2. Figure 11 shows that the Here 𝑆1 consists of the common factor 

which is application and 𝑆2 consists of factors such as replication and mixing level.  Next, figure 12 shows 

that the first vertex 𝐴1 of first set and then 𝐴1 is connected to the corresponding (replication and mixing) 

vertices of the second set through edges. 

 Figure 11: Colored graph of vertex set  Figure 12: Colored graph for first application method 

Next figure 13 shows that the second vertex 𝐴2 of first set and it is connected to the corresponding 

vertices of second set. Similarly, figure 14 shows that the third vertex 𝐴3 of first set are connected to the 

corresponding vertices of second set and finally, we get the colored graph (vertex coloring graph) for 

main-plot and sub-plot. 
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    Figure 13: Colored graph for second application method   Figure 14: Colored graph for main – plot and sub - plot 

The sum of squares for main-plot: 

• Correction factor (CF) = 172986.6738

• Total sum of square (SST) = 975.3762

• Replication sum of square (SSR) = 118.269533

• Application method sum of square (SSA) = 56.970367

• Main-plot error sum of square (SSE1) = 173161.9137

The sum of squares for main-plot: 

• Sub-plot sum of square (SSM) = 125.348

• Interaction effect sum of square (A×M) = 87.0449

• Sub-plot error sum of square (SSE2) = 334.2397

Table 10: ANOVA table for split- plot design 

Sv Df Ss Mss F-Ratio P-Value

Replication 3 118.2695 39.4217 0.9330 0.48062 

Application method(A) 2 56.97037 28.4852 0.6742 0.54435 

Main Plot Error(E1) 6 253.503 42.2505 - - 

Mixing(M) 2 125.3487 62.674 3.3752 0.05691 

Interaction (AM) 4 87.0449 21.7612 1.1719 0.35616 

Sub-plot Error(E2) 18 334.2397 18.5688 - - 

Total 35 - - - - 

The table values of replication and application method are greater than the calculated values. So, the 

null hypothesis is accepted. There is no significant difference between the four replications and three 

application methods. The table value of mixing level is greater than the calculated value. So, the null 

hypothesis is accepted. There is no significant difference between the three application methods. The 

table value of the interaction effect is also greater than the calculated value. So, the null hypothesis is 

accepted. There is no significant difference between the interaction effects. 

The P-value of the above experiment is greater than the 5% level of significant. Therefore, the null 

hypothesis is accepted. There is no significant difference that occurred in the above experiment. 
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Table 11: Table for comparative study 

ANOVA Example 1 Example 2 

Traditional method 
Null hypothesis is 

accepted 

Null hypothesis is 

accepted 

R-Software method
Null hypothesis is 

accepted 

Null hypothesis is 

accepted 

5. Conclusion

Many of these real-world agricultural and industrial experiments involve factors called HTC. In these 

situations, experimenters have realized that the most efficient way to conduct an experiment is to fix 

the level of the hard-to-change factor and then run all or some combination of the easily changeable 

factors. This is repeated a few times. As we have seen, this leads to a split-plot design. Accounting for 

the split-plot nature of the design is equally important in the analysis of the data because the split-plot 

test contains two error terms. The present paper is classified into three parts namely rice production, 

nitrogen level and variety of rice in salem district. Constraint analysis is used to increase rice 

production. To construct and analyze the SPD using some special type of graphs through numerical 

esxamples from different field and the hypothesis testing is compared by the split-plot ANOVA method 

with software using method. When comparing the results of these methods, they produce the same 

results. Here some special type of graphs is used to construct the SPD. In future, there is an idea to 

expanding this procedure to other experimental designs such as strip-plot design and incomplete block 

designs etc. 

List of Abbreviation 

Sv - Sources of variance 

Df - Degrees of freedom 

Ss - Sum of squares 

Mss - Mean sum of squares 

MP(A) – Main -Plot(A) 

MPE(E1) – Main – Plot Error (E1) 

SP(B) – Sup -Plot(B)  

SPE(E2)  - Sup – Plot  Error (E2) 

IE(AB) - Interaction Effect (AB) 
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Abstract

Time-dependent stress-strength reliability engages with the chance of survival for systems with dynamic
strength and/or dynamic stress. When a system is allowed to run continuously, each run will cause
a change in the strength of the system. The repeated occurrence of stress on the system over each
run will affect the survival capacity of the system. In this paper, we consider the distribution of time
taken for the completion of a run by the system follows gamma and the stress or strength of the system
follows a finite mixture of lifetime probability models. Here we consider two cases in which the first
case deals with stress and strength following a finite mixture of Weibull distribution and in the second
case the stress and strength is assumed to follow a finite mixture of the power-transformed half-logistic
distribution. Moreover, the strength of the system is assumed to decrease by a constant and the stress
acting on the system is assumed to increase by a constant over each run. We obtained the expression of
the stress-strength reliability function and explained the ML and Bayesian methods for the estimation of
the reliability at various time points.

Keywords: Time-dependent Stress-strength reliability, Gamma Renewal process, Finite mixture
distribution, Expectation Maximization algorithm, Markov Chain Monte Carlo method.

1. Introduction

In reliability theory, stress-strength reliability measures the chance of the strength of a system
to overcome the stress acting on it. Every object or individual has its own strength for survival.
When they are subject to any kind of stress, they will survive only if their strength surpasses the
stress. Stress-strength reliability model can be used to compare the effectiveness of two treatments,
to compare the life length of two equipment, etc. Let Y denotes the random strength of the system
under consideration and X is the stress acting on that system. Then the stress-strength reliability
of the system is denoted by R and is defined as R = P[X < Y].

The concept of stress-strength reliability theory was originated by Birnbaum [2]. Kotz et.al.
[11] discussed point and interval estimation of stress-strength models using different approaches.
Baklizi and Eidous [1] proposed an estimator of R based on kernel estimators of the densities of
X and Y. Zhou [20] illustrated the estimation of R using the bootstrap method. Recently many
authors discussed classical and Bayesian methods of estimating R for different probability models,
see Pakdaman et al. [12] Xavier and Jose [15,16], Xavier et al. [17, 18] and Jose et.al. [7,10].
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Nowadays, research on stress-strength reliability estimation focuses on the case where the
stress, strength or both changes with respect to time, and hence the term time-dependent stress-
strength reliability. Let Y(t) represent the strength of a system at time t and X(t) be the stress on
the system at t. Under the time-dependent stress-strength reliability model, we are interested in
the estimation of the stress-strength reliability function

R(t) = P[X(t) < Y(t)], (1)

which gives the chance of survival of the system at time t. For example, quite often we have to
download files to mobile phones. The downloaded files consume the memory space of the phone
corresponding to the size of that file. It will cause a reduction in the speed of functioning of the
phone. So each time we download a new file, the number of files piled up in the phone memory
which will reduce the functioning speed of the phone.Time dependent stress-strength reliability
models were studied in Yadav [19], Gopalan and Venkateswarlu [5, 6], Eryilmaz [4] and Siju and
Kumar [13, 14], Jose and Drisya [8, 9] and Drisya et al. [3].

Time-dependent stress-strength reliability engages with the chance of survival for systems
with dynamic strength and/or dynamic stress. When a system is allowed to run continuously,
each run will cause a change in the strength of the system. The repeated occurrence of stress on
the system over each run will affect the survival capacity of the system. In this paper, we consider
the distribution of time taken for the completion of a run by the system follows gamma and the
stress or strength of the system follows a finite mixture of lifetime probability models. Here we
consider two cases in which the first case deals with stress and strength following a finite mixture
of Weibull distribution and in the second case the stress and strength are assumed to follow a
finite mixture of the power-transformed half-logistic distribution. Moreover, the strength of the
system is assumed to decrease by a constant and the stress acting on the system is assumed to
increase by a constant over each run.

This paper is organized as follows. Estimation of stress-strength reliability function with
gamma cycle times under random fixed stress and strength is discussed in Section 2. The
expressions for stress-strength reliability function under a finite mixture of Weibull and a finite
mixture of power-transformed half-logistic distributions are also derived. A brief description of
the EM algorithm for estimating R(t) is given in Section 3 with numerical illustrations based on
simulated data. Computation of the Bayes estimate of R(t)using the Markov Chain Monte Carlo
method is illustrated in Section 4 with a numerical illustration based on simulated data.

2. Estimation of R(t) based on finite mixture distribution

Consider a system that is allowed to work continuously. The system executes several runs during
the time period of observation say (0, t). The time taken for completion of a run by the system
is a random variable and we call it cycle time. In this paper, we assume that the cycle times are
gamma-distributed. Hence the total number of runs within the entire time period will have a
renewal process. Let the cycle time Z follows gamma distribution with p.d.f.,

f (z) =
akzk−1e−az

(k − 1)!
; z ≥ 0. (2)

Then the number of runs during the time interval (0,t), say N(t)has the following distribution.

Pn(t) = p[N(t) = n]

= e−at
(n+1)k−1

∑
r=nk

(at)r

r!
; n = 0, 1, 2, .... (3)

Let Xj be the stress imposed on the system during jth cycle time and the corresponding
strength of the system be Yj. Also let the initial strength of the system, say Y0 be a continuous
random variable with density function h(y0) and the initial stress on the system X0 also be a
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continuous random variable with p.d.f g(x0). The system is allowed to run continuously and
when it runs, its strength decreases by a0 and the stress increases by b0 on completion of each
run. Hence, the probability that the system works after n runs is given by

Rn = P((X1 < Y1) ∩ (X2 < Y2) ∩ · · · ∩ (Xn < Yn))

= P((x0 + b0 < y0 − a0) ∩ (x0 + 2b0 < y0 − 2a0) ∩ · · · ∩ (x0 + nb0 < y0 − na0))

= P(x0 + n(a0 + b0) < y0)

=
∫ ∞

0

∫ ∞

x0+n(a0+b0)
h(y0)g(x0)dy0dx0 (4)

Therefore the reliability of the system at time t is

R(t) =
∞

∑
n=0

Pn(t)Rn

=
∞

∑
n=0

Pn(t)
∫ ∞

0

∫ ∞

x0+n(a0+b0)
h(y0)g(x0)dy0dx0 (5)

=
∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!

∫ ∞

0

∫ ∞

x0+n(a0+b0)
h(y0)g(x0)dy0dx0 (6)

In particular, consider the case that stress acting on the system do not vary throughout the
observation period as well as the strength of the system decreases by a constant say, a0. Then the
probability of functioning of the system after n runs is given by

Rn = P[(X1 < Y1) ∩ (X2 < Y2) ∩ · · · ∩ (Xn < Yn)]

= P[(x0 < Y0 − a0) ∩ (x0 < Y0 − 2a0) ∩ · · · ∩ (x0 < Y0 − na0)]

= P[(x0 + na0 < Y0)]

=
∫ ∞

x0+na0

h(y0)dy0 (7)

Therefore, the value of R(t) can be obtained as

R(t) =
∞

∑
n=0

Pn(t)Rn

=
∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!

∫ ∞

x0+na0

h(y0)dy0.

2.1. R(t) based on finite mixture Weibull distribution

Let the initial strength of the system follow a mixture of Weibull distributions with p.d.f.

h(y0) =
m1

∑
i=1

πi
α

βi
yα−1

0 e−yα
0 /βi , y0 ≥ 0, α > 0, 0 < πi < 1, βi > 0; i = 1, 2, ..., m1. (8)

and initial stress on the system follows a mixture of Weibull distribution with p.d.f.

g(x0) =
m2

∑
j=1

pj
α

θj
xα−1

0 e−xα
0 /θj , x0 ≥ 0, α > 0, 0 < pj < 1, θj > 0; j = 1, 2, ..., m2. (9)

When the system runs, its strength decreases by a0 and the stress increases by b0 on completion
of each run. The time taken for completion of a run is assumed to be a gamma variate. Then the
chance for survival of the system after n runs is

Rn =
m1

∑
i=1

πi

m2

∑
j=1

pje−(n(a0+b0))
α/βi ; n = 1, 2, ... (10)
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with

R0 =
m1

∑
i=1

πi

m2

∑
j=1

pj
βi

βi + θj
(11)

Then the corresponding stress-strength reliability function is obtained as

R(t) = e−at
k−1

∑
r=0

(at)r

r!

m1

∑
i=1

πi

m2

∑
j=1

pj
βi

βi + θj

+
∞

∑
n=1

e−at
(n+1)k−1

∑
r=nk

(at)r

r!

m1

∑
i=1

πi

m2

∑
j=1

pje−(n(a0+b0))
α/βi (12)

Change in R(t) corresponding to change in different parameters stress and strength distribu-
tions are given in Figure 1. From the figure, it is clear that the value of R(t) increases with an

Figure 1: Variation in R(t) corresponding to change in parameters

increase in shape parameter values and decreases with an increase in scale parameter values of
strength when the initial strength of the the system is Weibull-distributed. Also R(t) increases
with an increase in shape parameter values of stress distribution.

As a particular case assume that the strength of the system has a mixture Weibull distribution
with parameters (α, βi); i = 1, 2, ...m1, and the stress is fixed. Then the chance of the system
working after the completion of n runs is,

Rn = e−(x0+na0)
α/β (13)
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and the corresponding stress strength reliability is obtained as

R(t) =
∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!

m1

∑
i=1

πie−(x0+na0)
α/βi (14)

=
m1

∑
i=1

πi

∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!
e−(x0+na0)

α/βi (15)

2.2. R(t) based on finite a mixture of power transformed half logistic distribution

The p.d.f of the power transformed half-logistic distribution (Xavier and Jose (2020)) is given by

f (y) =

{
2δγyγ−1e−δyγ

(
1 + e−δyγ

)−2
, 0 ≤ y < ∞; δ > 0; γ > 0.

0 otherwise.
(16)

Now, let us assume that initial strength ( Y0 ) of the system follows a mixture of power
transformed half logistic distribution with p.d.f

h(y0) =
m1

∑
i=1

πi2δ1iγ1iy
γ1i−1
0 e−δ1y

γ1i
0 (1 + e−δ1iy

γ1i
0 )−2, (17)

0 ≤ y0 < ∞, δ1i > 0, 0 < πi < 1, γ1i > 0, ; i = 1, 2, ..., m1. It is also assumed that initial stress on
the system ( X0 ) follows the mixture of power transformed half logistic distribution with p.d.f

g(x0) =
m2

∑
j=1

pj2δ2jγ2jx
γ2j−1
0 e−δ2jx

γ2j
0 (1 + e−δ2jx

γ2j
0 )−2, (18)

0 ≤ x0 < ∞, δ2j > 0, 0 < pj < 1, γ2j > 0, ; j = 1, 2, ..., m2.
Hence, Rn is given by

Rn = 4
m1

∑
i=1

πi

m2

∑
j=1

pjδ2jγ2j

×
∫ ∞

0
[1 − (1 + e−δ1i(x0+n(a0+b0))

γ1i )−1]x
γ2j−1
0 e−δ2jx

γ2j
0 (1 + e−δ2jx

γ2j
0 )−2dx0. (19)

Then, the stress-strength reliability is given by

R(t) = 4
∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!

m1

∑
i=1

πi

m2

∑
j=1

pjδ2jγ2j

×
∫ ∞

0
[1 − (1 + e−δ1i(x0+n(a0+b0))

γ1i )−1]x
γ2j−1
0 e−δ2jx

γ2j
0 (1 + e−δ2jx

γ2j
0 )−2dx0 (20)

Change in R(t) corresponding to change in different parameters stress and strength distributions
are given in Figure 2. From the graph, when the stress and strength parameters follow a mixture
of power transformed half logistic distribution, the increase in the parameters results in a decrease
in the R(t) and after a point, they converge. Particularly when stress is fixed and strength
of the system has a mixture of power transformed half logistic distribution with parameters
(δi, γi) : i = 1, 2, ..., m1, the chance of the system working after the completion of n runs is,

Rn =
m1

∑
i=1

2πi[1 − (1 + e−δi(x0+na0)
γi )−1]. (21)

Then, corresponding R(t) is given by

R(t) =
∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!

m1

∑
i=1

2πi[1 − (1 + e−δi(x0+na0)γi )−1].

=
m1

∑
i=1

πi

∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!
2[1 − (1 + e−δi(x0+na0)

γi )−1]. (22)
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Figure 2: Variation in R(t) corresponding to change in stress and strength parameters

3. ML Estimation of R(t) using EM Algorithm

In this section, we describe the ML estimation of the reliability function. Assume that the strength
and the stress follow a finite mixture distribution with densities h(y) and g(x) respectively. where

h(y) =
m1

∑
i=1

πihi(y), 0 < πi < 1,
m1

∑
i=1

πi = 1. (23)

and

g(x) =
m2

∑
j=1

pjgj(x), 0 < pj < 1,
m2

∑
i=1

pj = 1. (24)

The cycle time follows a gamma distribution with p.d.f.

f (z) =
akzk−1e−az

(k − 1)!
, z ≥ 0. (25)

Let (x1, x2, ..., xn) and (y1, y2, ..., ym) and (z1, z2, ..., zr) be random samples on stress, strength and
cycle time respectively. Then the joint likelihood function is

L =
n

∏
i=1

g(xi)
m

∏
j=1

h(yj)
r

∏
t=1

f (zt) (26)

and the corresponding log-likelihood function

l =
n

∑
i=1

log g(xi) +
m

∑
j=1

log h(yj) +
r

∑
t=1

log f (zt)

= l1 + l2 + l3 (27)

As the log-likelihood function is the sum of log-likelihoods corresponding to the random samples
of stress, strength as well as cycle time respectively and since the parameters are independent
the stress, strength, and cycle time parameters can be obtained by maximizing corresponding
log-likelihood function. The ML estimates of stress and strength parameters can be computed by
by using Expectation - Maximization algorithm.
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3.1. ML Estimation of R(t) based on a finite mixture of Weibull distribution

Assuming that the cycle time distribution follows gamma distribution and the initial stress
follows a finite mixture of Weibull distribution with parameters (α, βi), i = 1, 2, ..., m1 and strength
follows finite mixture of Weibull distribution with parameters (α, θj), j = 1, 2, ..., m2 expression
for the stress strength reliability function is derived in the previous section. We can estimate the
stress, strength and cycle time parameters separately. The ML estimates of stress and strength
parameters can be computed by by using EM algorithm. Here we summarize the EM algorithm
for computing the parameters of a finite mixture of Weibull distribution. Consider the strength
data consists of n independent and identically distributed observations (y1, y2, ..., yn) from a finite
a mixture of Weibull distribution with p.d.f.

h(y, α, β) =
m1

∑
i=1

πihi(y, α, βi), β = (βi; i = 1, 2, ..., m1)

Where

hi(y, α, βi) =
α

βi
yα−1e−

yα

βi ; y > 0, α > 0, βi > 0; i = 1, 2, ..., m1

The associated log-likelihood function is

L(y, α, β)) =
n

∑
j=1

log h(y, α, β). (28)

The MLE of α̂, β̂ is determined such that

L(y, α̂, β̂) = supα,βL(y, α, β). (29)

Define a variable zij such that zij = 1 if jth unit of the sample comes from the ith component
and zij = 0 otherwise. Since each component comes from exactly one component, we have

∑k
i=1 zij = 1, πi = P[zij = 1].

Yi|zij=1 ∼ Weibull(α, βi), i = 1, 2, ..., m1.

In missing data setup y can be considered as incomplete data and x = (x1, x2, ..., xn) where xj =
(yj, zj) and zj = (zij, i = 1, 2, ..., m1) as a complete data set. The density function corresponding to
the observations in the complete data set is

hc(xj, α, β) = hc(yj, zj, α, β) =
m1

∑
i=1

πi Izij hi(yj, α, βi). (30)

and the likelihood function is

Lc(x, α, βi) =
n

∑
j=1

log hc(xj, α, β). (31)

The EM algorithm iteratively maximizes Q(α, β|α, β(t)) = E(Lc(x, α, β|y, α, β(t))) instead of maxi-
mizing L(y, α, β), where α, β(t) is the current value at t and then compute the expectation

Eα,β(t)(Lc(x, α, β)|y) =
n

∑
j=1

m1

∑
i=1

E
α,β(t)i

(zij|y)(log πi + log hi(yj, α, βi)) (32)

E
α,β(t)i

(zij|y) = P
α,β(t)i

(zij = 1|y)

=
π
(t)
i hi(yj, α, βi)

∑m1
i=1 π

(t)
i hi(yj, α, βi)

, j = 1, 2, ..., n; i = 1, 2, ..., m1 (33)

= τij(yj, α, βi) (34)
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It is the posterior probability that jth observation belongs to the ith component in the tth iteration.
Thus we have

Q(α, βi|α, β(t)) =
n

∑
j=1

m1

∑
i=1

τij(α, β
(t)
i )(log πi + log hi(yi, α, βi)). (35)

Hence the EM algorithm consists of the following two steps.

Step1.E-step: Compute Q(α, β|α, β(t))
Step2.M-step:Compute the value of α, β(t+1) that maximizes Q(α, β|α, β(t)).

If τij where observable posterior probabilities, then MLE of π is simply given by

π̂i =
n

∑
j=1

τij

n
, i = 1, 2, ..., m1,

which is the proportion of the sample having arisen from the ith component of the mixture.
For the (t + 1)th update other parameters α and (β1, β2, ..., βm1), we have to obtain the solution

of
n

∑
j=1

m1

∑
i=1

τij(π
(t))

∂

∂α, βi
log hi(yj, α, βi)) = 0 (36)

We repeat the procedure until the desired accuracy is obtained. Hence we get the estimates of the
strength parameters as:

β̂i(t + 1) =


n

∑
j=1

τijy
α(t+1)
j

n

∑
j=1

τij

 (37)

α̂(t + 1) = n

[
m1

∑
i=1

1
βi(t)

n

∑
j=1

τijy
α̂(t)
j log(yj)−

m1

∑
i=1

n

∑
j=1

τijlog(yj)

]−1

(38)

Similarly, we can estimate the stress parameters. The ML estimates of gamma cycle time
parameters can be obtained by standard procedures. Using the ML estimates of the stress,
strength, and cycle time parameters and applying the invariance property of the ML estimators
we can find the value of R(t).

We use the Monte Carlo simulation technique to estimate R(t) for systems with initial strength
and initial stress following Weibull mixture and cycle times following gamma distribution. We
have done the entire numerical analysis using R. The numerical illustration of ML of R(t) with
gamma cycle time with Weibull mixture initial stress and strength for different time values is
given in Table 1. In which y0 represent initial strength and x0 represent initial stress of the system.
For a fixed time interval, we draw samples for cycle time and the number of cycles based on the
distributional assumption of cycle times. The maximum number of cycles up to which the total
cycle time does not exceed the length of the time interval under consideration is taken as the
number of runs during the time interval. The cycle time observed during each run constitutes the
simulated sample of cycle times. The command rweibull helps in simulating samples from the
Weibull distribution. Samples to represent initial stress and initial strength distributions, when
both are mixtures of Weibull distributions are generated using this command. We repeat the
entire simulation experiment 1,000 times.

From the table, it is clear that R(t) decreases as the time increases, when the initial stress and
strength of the system is distributed as a mixture of Weibull distribution with gamma cycle time.
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Table 1: ML Estimation of R(t) with Weibull mixture initial stress and strength

Cycle time Stress and Strength a0 x0 t R(t)
Parameters Estimated Parameters Estimated

G(0.5,2) a = 0.4881 Y0 :0.8W(0.3,0.6)+ α = 0.2890 1 0.02 10 0.2230
k = 2.0840 0.2W(0.3,2) θ = (0.5892, 1.9454) 25 0.1539

X0 :0.3W(0.3,1)+ α = 0.2954 50 0.1175
0.7W(0.3,0.3) β = (1.1603, 0.2957) 75 0.0989

100 0.0869
G(0.5,4) a = 0.5231 Y0 :0.6W(5,0.3)+ α = 5.0982 0.001 0.08 10 0.9155

k = 3.1780 0.4W(5,2) θ = (0.2992, 2.1114) 25 0.9154
X0 :0.3W(5,0.1)+ α = 5.1089 50 0.6168

0.7W(5,0.2) β = (0.1008, 0.2292) 75 0.2228
100 0.0498

G(1,2) a = 0.5231 Y0 :0.4W(2,1.2)+ α = 2.0008 0.02 0.05 10 0.8699
k = 3.1780 0.6W(2,4) θ = (1.3100, 4.1216) 25 0.8938

X0 :0.7W(2,4)+ α = 1.9279 50 0.7896
0.3W(2,2.5) β = (4.3704, 2.6518) 75 0.6559

100 0.5188
G(1,4) a = 0.9910 Y0 :0.2W(1.2,0.8)+ α = 1.2056 0.1 0.05 10 0.5913

k = 3.9622 0.8W(1.2,2.4) θ = (0.7759, 2.3253) 25 0.4231
X0 :0.3W(1.2,4)+ α = 1.1128 50 0.2357

0.7W(1.2,3.2) β = (3.9000, 3.9901) 75 0.1292
100 0.0693

3.2. ML Estimation of R(t) based on a finite mixture of power-transformed
half-logistic distribution

By assuming that the cycle time follows gamma distribution and the initial stress and strength
follow the mixture of power transformed half logistic distribution with parameters (δ1i, γ1i), i =
1, 2, ..., m1 and (δ2j, γ2j), j = 1, 2, ..., m2 respectively, the corresponding stress-strength reliability is
given in the previous section. Now, consider independent and identically distributed strength
observations y = (y1, y2, ..., yn) from a finite a mixture of power transformed half logistic mixture
with p.d.f.

h(y, δ1, γ1) =
m1

∑
i=1

πihi(y, δ1i, γ1i).

Where

hi(y) =

{
2δ1iγ1iyγ1i−1e−δ1iyγ1i

(
1 + e−δ1iyγ1i

)−2
, 0 ≤ y < ∞; δ1i > 0; γ1i > 0

0, otherwise
(39)

i = 1, 2, ..., m1. Using the EM algorithm explained earlier, we get the ML estimates of the strength
parameters as

πi =

n

∑
j=1

τij

n
, i = 1, 2, ..., m1. (40)

δ̂1i =
∑n

j=1 τi(yj; δ1i, γ1i)

∑n
j=1(τi(yj; δ1i, γ1i)y

γ1i
j [1 − 2e

−δ1iy
γ1i
j

1+e
−δ1iy

γ1i
j

])

; i = 1, 2, ..., m1. (41)

γ̂1i =
∑n

j=1 τi(yj; δ1i, γ1i)

∑n
j=1(τi(yj; δ1i, γ1i)log(yj)[δ1iy

γ1i
j (1 − 2e

−δ1iy
γ1i
j

1+e
−δ1iy

γ1i
j

)− 1])

; i = 1, 2, ..., m1. (42)
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Similarly, we can find the stress estimates and hence we can find R(t) by the estimated parameters.
We use the Monte Carlo simulation technique to estimate R(t) for systems with initial strength

and initial stress following a finite mixture of power-transformed half logistic distribution and
cycle times following Gamma distribution. Table 2 gives the estimated value of R(t) with gamma
cycle time with power transformed half logistic mixture initial stress and strength for different
time values. The package bayesmeta available in R software allows sampling from half-logistic
distribution. Then sample from power transformed half logistic distribution is simulated using
simple conversion techniques.

Table 2: ML Estimation of R(t) with PTHL mixture initial stress and strength

Cycle time Stress and Strength a0 x0 t R(t)
Parameters Estimated Parameters Estimated

G(0.5,1) a = 0.4885 Y0 :0.6PTHL(5,0.3) δ2 = (5.0927, 4.9764) 0.001 0.008 10 0.00756
k = 0.9687 +0.4PTHL(0.4,2) γ2 = (0.1067, 0.2025) 50 0.00755

X0 : 0.3PTHL(5,0.1) δ1 = (9.2026, 2.0041) 100 0.00755
+0.7PTHL(5,0.2) γ1 = (1.1615, 6.0581) 150 0.00753

200 0.00367
G(0.5,2) a = 0.9522 Y0 :0.7PTHL(8,0.5) δ2 = (7.3349, 1.1391) 0.001 0.08 10 0.0629

k = 1.9138 +0.3PTHL(0.5,2.5) γ2 = (0.5245, 1.8925) 50 0.0629
X0 :0.2PTHL(4,0.5) δ1 = (3.8315, 5.0771) 125 0.0626

+0.8PTHL(5,0.2) γ1 = (0.1008, 0.2292) 140 0.0525
150 0.0313

G(1,1) a = 1.0097 Y0 :0.2PTHL(2,0.2) δ2 = (1.9903, 3.9043) 0.002 0.005 10 0.1067
k = 1.0029 +0.8PTHL(4,2.4) γ2 = (0.1961, 2.4533) 50 0.1067

X0 :0.6PTHL(4,2) δ1 = (3.9133, 5.1319) 75 0.1063
+0.4PTHL(4.6,2) γ1 = (2.1198, 1.9368) 100 0.0490

125 0.0008
G(1,2) a = 1.0099 Y0 :0.1PTHL(3,2.4) δ2 = (2.6875, 3.0715) 0.002 0.005 10 0.1038

k = 1.9968 +0.9PTHL(3,1.2) γ2 = (2.2066, 1.1926) 50 0.1038
X0 :0.8PTHL(2.5,1.1) δ1 = (2.4427, 5.3425) 75 0.1034

+0.2PTHL(5,2) γ1 = (1.1208, 2.0481) 100 0.0477
125 0.0008

From this table, we can see that, R(t) decreases as time increases, when the initial stress and
strength of the system is distributed as a mixture of power transformed half logistic distribution
with gamma cycle time.

4. Bayesian Estimation of R(t) using MCMC method

In this section, we describe the Bayesian estimation of the reliability function. The stress and
strength follow a finite mixture distribution with densities g(x) and h(y) respectively and the cycle
time follows a gamma distribution. Let (x1, x2, ..., xn), (y1, y2, ..., ym) and (z1, z2, ..., zr) be random
samples on stress, strength, and cycle time respectively. Then, the joint likelihood function is

L =
n

∏
i=1

g(xi)
m

∏
j=1

h(yj)
r

∏
t=1

f (zt) (43)

where

g(x) =
m2

∑
j=1

pjgj(x), 0 < pj < 1,
m2

∑
j=1

pj = 1. (44)

and

h(y) =
m1

∑
i=1

πihi(y), 0 < πi < 1,
m1

∑
i=1

πi = 1. (45)
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The cycle time follows a gamma distribution with p.d.f.

f (z) =
akzk−1e−az

(k − 1)!
, z ≥ 0. (46)

We assume prior probabilities corresponding to each parameter to get a Bayesian estimate of the
reliability function.

4.1. Bayesian Estimation of R(t) based on a finite mixture of Weibull distribution

Let the cycle time follow a gamma distribution with parameters (a, k) and stress and strength
of the system follow a mixture of Weibull distribution with parameters (α, β j), j = 1, 2, .., m2 and
(δ, γi), i = 1, 2, .., m1 respectively. The expression for stress-strength reliability is given in section 2.
Here we discuss the estimation of the parameters by the Bayesian estimation method. Treating Zi
as the auxiliary variable, such that

Xj|Zj = i ∼ gi(x, α, βi) and p(Zj = i) = pi, j = 1, 2, .., n, i = 1, 2, .., m2.

Yj|Zj = i ∼ hi(y, δ, γi) and p(Zj = i) = πi, j = 1, 2, .., m, i = 1, 2, .., m1.

Where
gi(x) =

α

βi
xα−1e−xα/βi , x ≥ 0, α > 0, βi > 0; i = 1, 2, ..., m1. (47)

and
hi(y) =

α

θj
yα−1eyα/θj , y ≥ 0, α > 0, θj > 0; j = 1, 2, ..., m2. (48)

We can simplify the likelihood function into the form,

L =
r

∏
t=1

akzk−1
t e−azt

(k − 1)!

m2

∏
i=1

π
n1i
i (

α

βi
)n1i

(
n

∏
j=1

x
zij
j

)α−1

e
1
βi

∑n
j=1(zijxα

j )


m1

∏
k=1

pn2k
k (

δ

γk
)n2k

(
n

∏
l=1

yzkl
l

)δ−1

e
1

γk
∑n

j=1(zklyδ
l )

 (49)

We fix the Dirichlet prior distribution for π = (π1, π2, ..., πm1) and p = (p1, p2, ..., pm2), gamma
prior for βi, γk; i = 1, 2, .., m2, k = 1, 2, .., m1 non-informative prior for α, δ, a and k.The variable zij

is such that zij = 1 if jth unit of the sample comes from the ith component and zij = 0 otherwise.
Also n1i = ∑m2

j=1 zij and n2k = ∑m1
j=1 zkj.

Hence

π ∼ Dirichlet(µ11, µ12, ..., µ1m2)

p ∼ Dirichlet(µ21, µ22, ..., µ2m1)

π3i(βi) ∝ β
a1i−1
i e−b1i βi ; i = 1, 2, .., m2

π4k(γk) ∝ γa2k−1
k e−b2kγk ; k = 1, 2, .., m1

π5(α), π6(δ), π7(a), π8(k) ∝ 1

where µ1 = (µ11, µ12, ..., µ1m1), µ2 = (µ21, µ22, ..., µ2m2), (a1i, a2i); i = 1, 2, .., m2 and (b1j, b2j); j =
1, 2, .., m1 are the hyper-parameters. Since the cycle time parameters have a non-informative prior,
their estimates coincide with the ML estimates. The joint prior distribution of π, p, β, γ, α, and δ
can be written as,

g(π, p, β, γ, α, δ) ∝
m2

∏
i=1

pµ1i−1
i β

(a1i−1)
i eb1i βi

m1

∏
j=1

π
µ2i−1
j γ

(a2j−1)
j eb2jγj (50)

RT&A, No 1 (77)
 Volume 19, March 2024

278



Krishnendu, K., Annie Sabitha Paul , Drisya M., and Joby K. Jose.
INFERENCE ON TIME-DEPENDENT SSR MODELS

Where β = (β1, β2, ..., βm2) and γ = (γ1, γ2, ..., γm1). The posterior probability is given by,

h(π, p, β, γ, α, δ|x, y, zij) ∝
m2

∏
i=1

pµ1i−1
i β

(a1i−1)
i eb1i βi

m1

∏
j=1

π
µ2i−1
j γ

(a2j−1)
j eb2jγj

r

∏
t=1

akzk−1
t e−azt

(k − 1)!

m2

∏
i=1

π
n1i
i (

α

βi
)n1i

(
n

∏
j=1

x
zij
j

)α−1

e
1
βi

∑n
j=1(zijxα

j )


m1

∏
k=1

pn2k
k (

δ

γk
)n2k

(
n

∏
l=1

yzkl
l

)δ−1

e
1

γk
∑n

j=1(zklyδ
l )

 (51)

Then, the conditional posterior distributions of π, p, β, γ, α, and δ are:

π ∼ Dirichlet(µ11 + n11, µ12 + n12, ..., µ1m2 + n1m2) (52)

p ∼ Dirichlet(µ21 + n21, µ22 + n22, ..., µ2m1 + n2m1) (53)

π1(α|β, x, z) ∝
m2

∏
i=1

αn1i

(
n

∏
j=1

x
zij
j

)α−1

e−
1
βi

∑n
j=1 xα

j

 (54)

π2(δ|γ, y, z) ∝
m1

∏
i=1

δn2i

(
n

∏
j=1

y
zij
j

)δ−1

e−
1
γi

∑n
j=1 yδ

j

 (55)

π3i(βi|α, β∗
i , x, z) ∝ β

−n1i+a1i−1
i e−

1
βi

∑n
j=1 xα

j e−b1βi ; i = 1, 2, .., m2 (56)

π4i(γi|δ, γ∗
i , y, z) ∝ γ

−n2i+a2i−1
i e−

1
γi

∑n
j=1 yδ

j e−b2γi ; i = 1, 2, .., m1. (57)

Where β∗
i = {βi, i = 1, 2, i − 1, i + 1.., m2} and γ∗

i = {γi, i = 1, 2, i − 1, i + 1.., m1}.

The posterior distributions of α, βi, δ, and γi cannot be reduced analytically to a well-known
distribution. So we use the Markov chain Monte Carlo method with Gibbs sampling under
Metropolis-Hastings algorithm for computing Bayes estimate using the statistical software, R. The
Metropolis-Hastings algorithm with chi-square proposal density is used for generating samples
from (π, p, α, β, δ, γ), where π = (π1, π2, ..., πm1), p = (p1, p2, ..., pm2) β = {βi, i = 1, 2, .., m2}, and
γ = {γi, i = 1, 2, .., m1}is given as follows.

ALGORITHM − 1 :

Step1. Set the initial values (π0, p0, αo, β0, δ0, γ0)
Step2.Generate zij values using sample x
Step3.Generate πt

Step4. Using the proposal density g(α) ∼ χ2
(x) where x is the d.f and choose x = αt−1 Generate

another random variable y from the chi-square density g. Generate u from Uniform(0,1). If
u < π1(y)g(x)

π1(x)g(y) accept y and set αt = y; otherwise set αt = x

Step5. Using the proposal density g(βi) ∼ χ2
(x) where x is the d.f and choose x = βt−1

i Generate
another random variable y from the chi-square density g. Generate u from Uniform(0,1). If
u < π3i(y)g(x)

π3i(x)g(y) accept y and set βt
i = y; otherwise set βt

i = x. Repeat the procedure and generate

βt
i , i = 1, 2, .., m2

Step6.Generate zij values using sample y
Step7.Generate pt

Step8. Using the proposal density g(δ) ∼ χ2
(x) where x is the d.f and choose x = δt−1 Generate

random variable y from the chi-square density g. Generate u from Uniform(0,1). If u < π2(y)g(x)
π2(x)g(y)

accept y and set δt = y; otherwise set δt = x
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Step9. Using the proposal density g(γi) ∼ χ2
(x) where x is the d.f and choose x = γt−1

i Generate

random variable y from the chi-square density g. Generate u from Uniform(0,1). If u < π4i(y)g(x)
π4i(x)g(y)

accept y and set βt
i = y; otherwise set βt

i = x. Repeate the procedure and generate γt
i , i = 1, 2, .., m1

Step10 Compute R(t).
Step11 Increment t.

Table 3 provides the estimated values of R(t) by the Bayesian estimation method when the
stress and strength of the system follow a mixture of two Weibull distributions with gamma cycle
time. We assume that the mixture proportions π and p are known and the component parameters
(α, β, δ, γ) are unknown and are following gamma prior distributions. Also, we assume that
cycle time parameters a and k follow non-informative prior. Since the cycle time parameters
have a non-informative prior, their estimates coincide with the ML estimates. The table shows
Bayes estimates of the parameters (α, β, δ, γ) and Bayes estimate of the reliability function R(t) for
different time values corresponding to various sets of hyperparameter values. The table shows
that R(t) decreases as time increases.

Table 3: Bayesian Estimation of R(t) with Weibull mixture initial stress strength

Cycle time Stress and Strength a0 x0 t R(t)
Parameters Estimated Parameters Estimated

G(0.5,2) a = 0.4881 Y0:0.8W(0.3,0.6)+ δ = 0.2890 1 0.02 10 0.2230
k = 2.0840 0.8W(0.3,2) γ = (0.5892, 1.9454) 25 0.1539

X0:0.3W(0.3,1)+ α = 0.2954 50 0.1175
0.7W(0.3,0.3) β = (1.1603, 0.2957) 75 0.0989

100 0.0869
G(0.5,4) a = 0.5231 Y0:0.6W(5,0.3)+ δ = 5.0982 0.001 0.08 10 0.9155

k = 3.1780 0.4W(5,2) γ = (0.2992, 2.1114) 25 0.9154
X0:0.3W(5,0.1)+ α = 5.1089 50 0.6168

0.7W(5,0.2) β = (0.1008, 0.2292) 75 0.2228
100 0.0498

G(1,2) a = 0.9975 Y0:0.3W(0.2,2)+ δ = 0.2005 0.01 0.02 10 0.7598
k = 1.9738 0.7W(0.2,5) γ = (0.8536, 8.6029) 25 0.7208

X0:0.4W(0.2,0.9)+ α = 5.1089 50 0.6868
0.6W(0.2,8) β = (0.1008, 0.2292) 75 0.6652

100 0.6492
G(1,4) a = 0.9652 Y0:0.5W(2,0.2)+ δ = 2.0344 0.001 0.05 10 0.7455

k = 3.7469 0.5W(2,6) γ = (0.2093, 5.9099) 25 0.6070
X0:0.5W(2,1)+ α = 1.9980 50 0.4140

0.5W(2,10) β = (1.0200, 9.8969) 75 0.3370
100 0.2908

4.2. Bayesian Estimation of R(t) based on a finite mixture of power-transformed
half-logistic distribution

Let the cycle time follows a gamma distribution with parameters (a, k) and stress and strength
of the system follow a mixture of power transformed half logistic distribution with parameters
(δj, γj), j = 1, 2, .., m2 and (αi, θi), i = 1, 2, .., m1 respectively. The expression for stress-strength
reliability is given in section 2. Here we discuss the estimation of the parameters by the Bayesian
estimation method. Consider the auxiliary variable Zj, such that

Xj|Zj = i ∼ gi(x, δi, γi) and p(Zj = i) = pi, j = 1, 2, .., n, i = 1, 2, .., m2

.
Yj|Zj = i ∼ hi(y, αi, θi) and p(Zj = i) = πi, j = 1, 2, .., m, i = 1, 2, .., m1
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.
Where

gi(x) =

{
2δiγixγi−1e−δixγi

(
1 + e−δixγi

)−2
, 0 ≤ x < ∞; δi > 0; γi > 0.

0 otherwise.
(58)

f (y) =

{
2αiθiyθi−1e−αiyθi

(
1 + e−αiyθi

)−2
, 0 ≤ y < ∞; αi > 0; γi > 0.

0 otherwise.
(59)

Then likelihood function L is

L =
n

∏
i=1

akyk−1
i e−ayi

(k − 1)!

m2

∏
i=1

π
n1i
i 2n1i γ

n1i
i δ

n1i
i

(
n

∏
j=1

x
zij
j

)γi−1

e−δi ∑n
j=1(zijx

γi
j )

n

∏
j=1

[(
1 + e−δix

γi
j

)−2zij
]

m1

∏
k=1

pn2k
k 2n2k θ

n2k
k α

n2k
k

(
m

∏
j=1

y
zkj
j

)θk−1

e−αk ∑m
j=1(zkjy

θk
j )

m

∏
j=1

(
1 + e−αky

θk
j

)−2zkj


(60)

We fix the Dirichlet prior distribution for π = (π1, π2, ..., πm1) and p = (p1, p2, ..., pm2), gamma
prior for δi, αk; i = 1, 2, .., m2, k = 1, 2, .., m1 non-informative prior for γ, θ, a and k. Since the cycle
time parameters have a non-informative prior, their estimates coincide with the ML estimates.
The variable zij is such that zij = 1 if jth unit of the sample comes from the ith component and
zij = 0 otherwise. Also n1i = ∑m2

j=1 zij and n2k = ∑m1
j=1 zkj. Hence

π ∼ Dirichlet(µ11, µ12, ..., µ1m2)

p ∼ Dirichlet(µ21, µ22, ..., µ2m1)

π3i(δi) ∝ δ
a1i−1
i e−b1iδi ;

π4k(αk) ∝ α
a2k−1
k e−b2kαk ; k = 1, 2, .., m1

π5(γi), π6(θk), π7(a), π8(k) ∝ 1; i = 1, 2, .., m2, ; k = 1, 2, .., m1

where µ1 = (µ11, µ12, ..., µ1m1),µ2 = (µ21, µ22, ..., µ2m2), (a1i, a2i); i = 1, 2, .., m2 and (b1j, b2j); j =
1, 2, .., m1 are the hyper-parameters. Since the cycle time parameters have a non-informative prior,
their estimates coincide with the ML estimates.

Now proceeding as in the case of Bayesian estimation of R(t) based on the finite mixture
of Weibull distribution discussed in the previous section we can easily obtain the conditional
marginal distributions π, p, δ, α, γ, and θ. The conditional posterior distributions of π, p, δ, α, γ,
and θ are:

π ∼ Dirichlet(µ11 + n11, µ12 + n12, ..., µ1m2 + n1m2) (61)

p ∼ Dirichlet(µ21 + n21, µ22 + n22, ..., µ2m1 + n2m1) (62)

π3i(δi|γ, δ∗i , x, zij) ∝ δ
a1i+n1i−1
i e−

(
δi ∑n

j=1

(
zijx

γi
j

)
+b1iδi

) n

∏
j=1

[
1 + e−δix

γi
j

]−2zij

i = 1, 2, .., m2. (63)

π4k(αk|θ, α∗k , y, zkj) ∝ α
a2k+n2k−1
k e−

(
αk ∑m

j=1

(
zijy

θk
j

)
+b2kαk

) m

∏
j=1

[
1 + e−αky

θk
j

]−2zkj

k = 1, 2, .., m1. (64)
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π5i(γi|δ, γ∗
i , x, zij) ∝ γ

n1i
i

(
n

∏
j=1

x
zij
j

)γi−1

e−
(

δi ∑n
j=1

(
zijx

γi
j

)) n

∏
j=1

[
1 + e−δix

γi
j

]−2zij

:

i = 1, 2, .., m2. (65)

π6k(θk|α, θ∗k , y, zkj) ∝ θ
n2k
k

(
m

∏
j=1

y
zkj
k

)θk−1

e−
(

αk ∑m
j=1

(
zkjy

θk
k

)) m

∏
j=1

[
1 + e−αky

θk
k

]−2zij

:

k = 1, 2, .., m1. (66)

Where δ∗i = {δj, j = 1, 2, ..., i − 1, i + 1.., m2}, γ∗
i = {γj, j = 1, 2, ..., i − 1, i + 1.., m2}, α∗k = {αi, i =

1, 2, ..., k − 1, k + 1.., m1} and θ∗k = {θi, i = 1, 2, ..., k − 1, k + 1.., m1}.

Since the posterior distributions of αk, θk, δi, and γi cannot be reduced analytically to a well-known
distribution, as done in the previous section, we use the Markov chain Monte Carlo method
with Gibbs sampling under Metropolis-Hastings algorithm for computing Bayes estimates. We
fix the proposal density as the chi-square distribution. The Metropolis-Hastings algorithm
with chi-square proposal density is used for generating samples from (π, p, α, θ, δ, γ), where
π = (πi, i = 1, 2, .., m1), p = (pk, k = 1, 2, .., m1) α = {αk, k = 1, 2, .., m1}, θ = {θk, k = 1, 2, .., m1},
δ = {δi, i = 1, 2, .., m2} and γ = {γi, i = 1, 2, .., m1} is given as follows.

ALGORITHM − 2 :

Step1. Set the initial values (π0, p0, αo, θ0, δ0, γ0).
Step2.Generate zij values using sample x
Step3.Generate πt.
Step4. Using the proposal density g(δi) ∼ χ2

(x), where x is the d.f and choose x = δt−1
i . Generate

another random variable y from the chi-square density g. Generate u from Uniform(0,1). If
u < π3i(y)g(x)

π3i(x)g(y) accept y and set δt
i = y; otherwise set δt

i = x. Repeate the procedure and generate

δt
i , i = 1, 2, .., m2.

Step5. Using the proposal density g(γi) ∼ χ2
(x), where x is the d.f and choose x = γt−1

i Generate
another random variable y from the chi-square density g. Generate u from Uniform(0,1). If
u < π5i(y)g(x)

π5i(x)g(y) accept y and set γt
i = y; otherwise set γt

i = x. Repeate the procedure and generate

βt
i , i = 1, 2, .., m2.

Step6.Generate zij values using sample y.
Step7.Generate pt.
Step8. Using the proposal density g(αk) ∼ χ2

(x), where x is the d.f and choose x = αt−1
k

Generate random variable y from the chi-square density g. Generate u from Uniform(0,1). If
u < π4k(y)g(x)

π4k(x)g(y) accept y and set αt
k = y; otherwise set αt

k = x. Repeate the procedure and generate

αt
k, k = 1, 2, .., m1.

Step9. Using the proposal density g(θk) ∼ χ2
(x), where x is the d.f and choose x = θt−1

k
Generate random variable y from the chi-square density g. Generate u from Uniform(0,1). If
u < π6k(y)g(x)

π6k(x)g(y) accept y and set θt
k = y; otherwise set θt

k = x. Repeate the procedure and generate

θt
k, k = 1, 2, .., m1.

Step10 Compute R(t).
Step11 Increment t.

Table 4 provides the estimated values of R(t) by the Bayesian estimation method when the
stress and strength of the system follow a mixture of two power-transformed half-logistic distri-
butions with gamma cycle time. We assume that the mixture proportions π and p are known and
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the component parameters (α, θ, δ, γ) are unknown and are following gamma prior distributions.
Also, we assume that cycle time parameters a and k follow non-informative prior. Since the cycle
time parameters have a non-informative prior, their estimates coincide with the ML estimates.
The table shows Bayes estimates of the parameters (α, θ, δ, γ) and Bayes estimate of the reliability
function R(t) for different time values corresponding to various sets of hyperparameter values.
The table shows that R(t) decreases as time increases, as we expected.

Table 4: Bayesian Estimation of R(t) with PTHL mixture initial stress and strength

Cycle time Stress and Strength a0 x0 t R(t)
Parameters Estimated Parameters Estimated

G(0.5,1) a = 0.5110 Y0:0.3PTHL(0.2,5) α = (0.2942, 1.7069) 0.001 0.005 10 0.0184
k = 0.9955 +0.7PTHL(2,6) θ = (4.5235, 5.4221) 75 0.0185

X0: 0.3PTHL(1,3) δ = (1.8201, 2.2808) 150 0.0184
+0.7PTHL(2.2,4.5) γ = (6.1306, 4.6754) 200 0.0166

225 0.0090
G(0.5,1) a = 0.4759 Y0:0.6PTHL(2,6) α = (1.8055, 6.7181) 0.002 0.005 10 0.1851

k = 0.9559 +0.4PTHL(4,2) θ = (5.9235, 2.1754) 75 0.1864
X0:0.4PTHL(1,3) δ = (1.1301, 1.0738) 150 0.1858
+0.6PTHL(0.5,2) γ = (2.4231, 0.6529) 200 0.0907

225 0.0202
G(1,4) a = 0.9694 Y0:0.7PTHL(8,0.5) α = (0.6985, 3.4123) 0.001 0.005 10 0.2369

k = 3.9365 +0.3PTHL(0.5,2.5) θ = (1.8173, 4.9566) 75 0.2394
X0:0.2PTHL(4,0.5) δ = (0.5839, 0.2675) 125 0.2335
+0.8PTHL(5,0.2) γ = (2.2849, 1.6391) 140 0.1487

150 0.0589
G(1,4) a = 0.9674 Strength:0.6PTHL(1.5,5) α = (1.1917, 6.8528) 0.002 0.08 10 0.0400

k = 3.8930 +0.4PTHL(5,4) θ = (6.2016, 3.7667) 75 0.0404
Stress:0.5PTHL(2.4,6) δ = (1.92620.2490) 125 0.0394

+0.5PTHL(0.3,4) γ = (5.5248, 3.8446) 140 0.0251
150 0.0099

5. Conclusion

In this paper, we investigated the stress-strength reliability of a system. Here we considered
a scenario where the stress and strength of the system follow a finite mixture distribution with
gamma cycle time. Specifically, we examined the performance of the system under two types
of finite mixture models: a finite mixture of Weibull distribution and a finite mixture of power-
transformed half-logistic distribution. To estimate the reliability function R(t), we employed
two methods: maximum likelihood (ML) estimation using the expectation-maximization (EM)
algorithm and Bayesian estimation using the Markov Chain Monte Carlo (MCMC) method. We
computed the estimates of R(t) for different time points corresponding to various sets of parameter
values. Based on the graphs and tables presented in the paper, it can be observed that as time
increases, the reliability function R(t) decreases when the stress and strength of the system follow
a finite mixture of Weibull or power-transformed half-logistic distribution with gamma cycle time.
This suggests that the system becomes less reliable or more prone to failure as time progresses.
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Abstract 

The manuscript under consideration delves into a comprehensive exploration of the dual 

exponential ratio estimator, particularly in the context of non-response scenarios. In the following 

discourse, we will embark on an intricate journey through this research, emphasizing the pivotal 

aspects and findings that unravel the significance of this estimator in the realm of statistical 

estimation. The crux of this investigation revolves around evaluating the Mean Squared Error 

(MSE) and the Predictive Relative Efficiency (PRE) of the dual exponential ratio estimator. These 

two performance metrics serve as essential benchmarks for assessing the accuracy and effectiveness 

of the estimator. Notably, they play a crucial role in determining the estimator's suitability for 

practical applications, especially in situations where non-response is prevalent. To begin our 

exploration, it is imperative to understand the fundamental concept of the dual exponential ratio 

estimator. This estimator is a statistical tool employed in situations where traditional estimators 

may falter due to non-response, a phenomenon frequently encountered in surveys and data 

collection. It leverages a dual exponential model to address this challenge, making it a valuable 

addition to the toolkit of statisticians and researchers. The manuscript embarks on a rigorous 

theoretical analysis of the dual exponential ratio estimator's MSE and PRE. Through a series of 

mathematical derivations and proofs, the authors elucidate the underlying principles governing its 

performance. This theoretical foundation is crucial, as it not only establishes a solid framework for 

evaluating the estimator but also provides insights into its behavior under different conditions. 

However, theory alone can only take us so far. To validate the theoretical findings and assess the 

estimator's practical utility, numerical experiments are conducted. These experiments involve 

simulations and real-world data scenarios, allowing the authors to draw comparisons between the 

dual exponential ratio estimator and traditional estimators. The numerical results serve as a bridge 

between theory and application, offering empirical evidence of the estimator's prowess. In essence, 

this manuscript fills a critical gap in the field of statistical estimation by thoroughly investigating 

the dual exponential ratio estimator's performance in the presence of non-response. By juxtaposing 

its MSE and PRE with those of traditional estimators, it provides valuable insights into the 

potential advantages of adopting this novel approach. Moreover, the combination of rigorous theory 

and practical validation ensures that the findings are both intellectually sound and operationally 

relevant. The dual exponential ratio estimator, as explored and analyzed within these pages, 

emerges as a promising solution, backed by both theoretical rigor and empirical support. This 

research contributes not only to the theoretical foundations of statistics but also to its real-world 

applications, underscoring the estimator's potential to enhance the accuracy and reliability of 

estimation in the face of non-response complexities. 

Keywords: Non-Response (NR), Exponential Estimator, Dual to Ratio Estimator, Mean 

Square Error and Percent Relative Efficiency. 
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I. Introduction

In recent years, the use of sample surveys has gained popularity due to the practicality of 

overcoming logistical challenges associated with conducting comprehensive census surveys. This 

trend has led to the widespread adoption of estimators like the ratio, product, and regression 

estimators for efficiently estimating population parameters, particularly the mean of the variable of 

interest. These estimators capitalize on the inherent correlation between the study variable and 

auxiliary variables, either during the survey design or at the estimation stage, to yield accurate 

results while optimizing resources. The central focus of this research is to develop a novel 

modified exponential ratio estimator for the population mean. This estimator aims to address 

potential limitations of existing estimators and enhance the precision of estimates, as evaluated 

through mean squared error comparisons. By exploring alternative approaches and incorporating 

adjustments, the researchers anticipate achieving more reliable and efficient estimates of the 

population mean. 

Over the years, several scholars have made significant contributions to the field of survey 

estimation. Various authors have made numerous work for the estimation of population variance 

from time to time including [14],[9] , [13], [8] [1],  [5], [11],[12],[15] and [10] have made important 

studies on this topic in the literature. Notably, [17] made pioneering strides by explicitly utilizing 

auxiliary information for estimation purposes, laying the foundation for the ratio estimator. 

Subsequently, [18] further advanced this concept by employing auxiliary information to refine 

estimations. 

When dealing with scenarios where the coefficient of correlation is negative between the 

study variable and auxiliary variables, [19] introduced the product-type estimator, which has 

proven to be valuable in specific contexts. Additionally, [20] proposed an innovative approach by 

combining multiple ratio estimators based on individual auxiliary variables positively correlated 

with the study variable. This technique allowed for greater accuracy in estimation. The product 

estimator was formalized by [21], providing a well-defined framework for its application. 

Furthermore, [22] delved into the complexities of ratio estimators involving two or more correlated 

variables, shedding light on new possibilities for refining estimation methods. The exponential 

type estimators of population mean were thoroughly investigated by [23] using auxiliary data, 

resulting in a comprehensive analysis of their performance and potential improvements. [24] took 

a unique approach by incorporating transformed auxiliary variables, which led to promising 

results in estimating the mean of the study character. The literature offers an array of other 

contributions in this area, including the works of [25], [26], [27], and [28], who introduced their 

respective estimators and demonstrated their efficacy in diverse sampling scenarios. Moreover, 

[29] and [30] took on the challenge of developing superior exponential type estimators by

considering information from two altered auxiliary variables, further expanding the range of

available estimation techniques. To gain a more comprehensive understanding of this topic,

interested readers can refer to [31], which offers an in-depth exploration of various aspects of

survey estimation. In recent times, [32], [33], and [34] have made notable contributions to this area

of study, introducing novel ideas and methodologies that hold promise for advancing the field of

survey estimation even further.

In conclusion, this research endeavors to create a Generalized Ratio-cum-product estimator of 

population variance that builds upon the knowledge and advancements made by previous 

scholars. By harnessing the power of auxiliary information and exploring innovative avenues, the 

researchers aim to provide an enhanced and efficient approach to estimating the population mean 

and contributing to the growing body of knowledge in survey estimation techniques. 
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II. Notations

Let nandN  and be population and sample of size respectively. Out of n units ‘ 1n ’ responds and ‘

2n ’ do not respond accordingly, the population is distributed in ‘N1’(those who respond) and 

‘N2’(the non-respondents), such that NNN  21 . From sample of ‘ 2n ’ a sub-sample of size k 
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III. Existing Estimators

Hansen and Hurwitz proposed an unbiased estimator of Y in case of non-response, 

2211
* ywywy  , 

where 1y is the sample mean of respondents and 2y is the mean of sub-sample of non-

respondents, 

The variance is, 

    2
2

22*
yy CCYyV   , 

The unbiased estimator of X in case of non-response is given as, 

2211
* xwxwx  , 

where 1x the sample is mean of the respondents and similarly 2x is the mean of sub-sample. 

The variance is 

    2
2

22*
xx CCXxV   . 

3.1 Case I: Non-response on y only 

Ratio estimator of Y  in case I is, 

X
x

y
tR

*

1  ,

    2
)2(

222
1 2 yxyyxxyR CCCCCYtMSE   . 

The dual to ratio estimator given by Srivenkentrama (1980) is, 
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The dual of ratio estimator in case of non-response is, 


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The MSE is given by 
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Singh and Kumar (2009) considered the exponential estimators of Y in case of non-response.
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The dual exponential estimator for non-response is 
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3.2 Case II: Non-response on both y and x 

The ratio estimator of Y for case II along with MSE is given as, 
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The exponential ratio estimator is given as, 
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The dual of exponential ratio estimator is 
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3.3 Proposed Estimator: Case I 

The proposed ratio-cum-dual of exponential ratio estimator of Y is given as, 

 
  




















Xx

Xx

x

X
yt






exp**
,     (1) 

here NX nx
x

N n

 



,  and  are constants. 

here NX nx
x

N n

 



,  and  are constants. 

Table 1: Some members of the proposed class of estimator 

S. No. Estimator 

Values of Constants 

 

1. ** yt  0 0 

2. 











x

X
ytt R

*

1

*
1 0 

3. 










X

x
ytt P

*

1

*
-1 0 

4. 











2

2
**

x

X
yt

2 0 

5. 
2

1

**











x

X
yt 2

1 0 

6. 















Xx

Xx
yt





exp**
0 1 

7.  
 















Xx

Xx
yt





2
exp**

0 

2

1

8.  
  















Xx

Xx
yt



2
exp**

0 2 

9. 























Xx

Xx

x

X
yt





exp**
1 1 
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10. 
 
 























Xx

Xx

x

X
yt





2

1
exp

2

1

**
2

1

2

1

The associated sample mean is obtained as 

  xgXgx  1
and 

nN

n
g




To acquire the MSE, we write 

 *

0

* 1 eYy  and  11 eXx  , 

Such that, 

   2
)2(

22*
0 yy CCeE   ,   22

1 xCeE  ,   2
1

*
0 xCCeeE 

Expressing (1) in se' we have 

 
 

    
     
































XeXgXg

XeXgXg

eX

X
eYt

1

1

1

0
*

11

11
exp

1
1 



    
























1

1
10

2
exp11

ge

ge
eeY 



   


























1

11
10

2
1

2
exp11

egeg
eeY



 
 







































...
2

1
2

1..
2

1
11

1

112
110

egeg
eeeY




Ignoring higher order terms, 

    









2
111 1

10
* eg

eeYt




  














 
 10

*

2

2
e

g
eYYt



Squaring both sides, we get, 

    















 
 10

2
1

2
0

22* 2
2

2
eege

g
eYYt 



Taking expectation, we get the MSE as, 

     

































 
 Cg

g
CCCYtMSE xyy 


 2

2

2
2

22
)2(

22*
  (2) 

Differentiate (2) w.r.t. and equate it to zero, 

 
 

 
0

2
2

2
2

2

2
)2(

2

2* 






























































 













Cg
g

C

CC

YtMSE

x

yy










  CgtMSE 22* 







2

2Cg 




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We can write 

  Cg 22      (3) 

Using (3) in (2) we get, 

    2
)2(

222
min

* 1 yxyy CCYtMSE     (4) 

3.4 Proposed Estimator: Case II 

The proposed estimator of Y is 

 
  




















Xx

Xx

x

X
yt






*

*

*

*** exp

 (5)

where 
nN

xnXN
x






*
*

,  and  are suitably chosen constant. 

The associated sample mean is obtained as 

  xgXgx  1
and 

nN

n
g




Table 2: Some members of the proposed class of estimator

S. No. Estimator 
Values of Constants 

 

1. 
** yt  0 0 

2. 









*

*

2

**

x

X
ytt R 1 0 

3. 









X

x
ytt P

*
*

2

**
-1 0 

4. 









2*

2
***

x

X
yt 2 0 

5. 
2

1

*

***











x

X
yt

2

1
0 

6. 













Xx

Xx
yt





*

*
*** exp 0 1 

7. 
 
 















Xx

Xx
yt





*

*
***

2
exp 0 

2

1

8. 
 
  















Xx

Xx
yt





*

*
*** 2
exp 0 2 

9. 





















Xx

Xx

x

X
yt





*

*
*** exp 1 1 

10. 
 
 























Xx

Xx

x

X
yt





*

*2

1

***

2

1
exp

2

1

2

1

To acquire the MSE, 
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 *
1

* 1 eXx  ,  

   2
)2(

22*
0 yy CCeE   and    .2

)2()2(
2*

1
*
0 xx CCCCeeE  

Ignoring the higher terms, we get, 

    









2
111 1

10
** eg

eeYt




   







 
 10

**

2

2
e

g
eYYt



Squaring the above equation, we get 

   
 






















 

 10
2
1

2

2
0

22** 2
2

2
eege

g
eYYt 



Taking expectation, we get 

 
   

 





































 




Rg

g

CCCC

YtMSE

xxyy






2
2

2

.

2

2
)2(

22
)2(

2

2**
,    (6) 

where 



















2
)2(

2

2
)2()2(

2

xx

xx

CC

CCCC
R




. 

Differentiate (6) w.r.t  we get, 

 
   

 
0

2
2

2
2

2
)2(

22
)2(

2

2** 






























































 




Rg

g

CCCC

YtMSE

xxyy














  RgtMSE 22**  




2

2 Rg 





We can write, 

  Rg 22      (7) 

Substituting (7) in (6) we have,

   
 

  


















2
)2(

2

22
)2()2(

2

2
)2(

2
y

2
min

** C

xx

xx

y
CC

CCCC
CYtMSE






      2*2
)2(

2
y

2
min

** 1C   yCYtMSE .    (8) 

Where 
 

   
 

   2
)2(

22
)2(

2

2
)2()2(

2

**

**
* ,

xxyy

xx

CCCC

CCCC

xVyV

xyCov











IV. Theoretical Efficiency Comparison

4.1 Case I 

    0*
0  tMSEtV . 
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      0.1.. 2
)2(

2222
2

22  yxyyyy CCYCCY 

0222  xCCY 

    0*
1  tMSEtMSE R . 

      0.1.2 2
)2(

2222
)2(

222  yxyyyxyyxxy CCYCCCCCY 

  0
22  xx CCCY   

    0*
1  tMSEtMSE ER

     0.1.
4

1 2
)2(

2222
)2(

222 
















 yxyyyyxxyxy CCYCCCCCY 

  021
4

2
2

2  C
C

Y x

4.2 Case II 

    0**
0  tMSEtV . 

    
 

 
0

.

.
.C.

2
)2(

2
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)2()2(

2

2
)2(

2
y
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2
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

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
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 
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2
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2






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CCCC
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

    0**
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 
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
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
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
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
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)2(2
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)2(
22  xxxx CCCCCCY 

    0**
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 
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

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

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

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
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


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
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












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

xx

xx

y

yxxy

x

yyxxyxy

CC

CCCC
CY

CC
C

CCCCCY


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Y 

V. Empirical Study

We have used two data sets. 

Population I: Khare and Sinha (2004). 

y: weight in kg of children, 
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x: chest circumference in cm of children 

Population II: Satici and Kadilar (2011). 

y: number of successful students, 

x: number of teachers.  

Table 3: Data Statistics 

Population I [Khare and Sinha (2004)] Population II[Satici and Kadilar (2011)] 

95N 711 N 261N 1961 N

35n 242 N 90n 652 N

86.55X 00395.0)2( xyC 1944.415yS 7595.1xC

5.19Y 729.0)2( xy 8654.1yC 9705.0xy

05860.0xC 05402.0)2( xC 57.222Y   48.3762 xS

85.0xy 00776.0xyC 43.306X   2285.12 xC

15613.0yC 12075.0)2( yC 1722.539xS   9733.02 xy

Table 4: The MSE and PRE’s of the population I w.r.t unbiased estimator for case I 

Estimators 

2h 3h 4h

MSE PRE MSE PRE MSE PRE 

0t
0.2015 100 0.2395 100 0.2813 100 

1Rt 0.1293 155.81 0.1593 150.31 0.1960 143.52 

1ERt 0.1594 126.41 0.1914 125.13 0.2264 124.21 

 propt* 0.0791 254.43 0.1172 204.27 0.1574 178.70 

Table 5: The MSE and PRE’s of population I w.r.t unbiased estimator for case II 

Table 6: The MSE and PRE’s population II w.r.t unbiased estimator for case I 

Estimator

s 

2h 3h 4h

MSE PRE MSE PRE MSE PRE 

0t
1459.59 100 1664.28 100 1868.98 100 

1Rt 278.57 523.95 483.27 344.37 687.96 271.67 

1ERt 589.96 247.40 796.66 209.43 999.36 187.02 

 propt* 275.92 529.00 480.92 346.28 685.32 272.72 

Estima

tors 

2h 3h 4h

MSE PRE MSE PRE MSE PRE 

0t
0.2015 100 0.2395 100 0.2813 100 

1Rt 0.1363 147.79 0.1743 137.35 0.2152 130.66 

1ERt 0.1654 121.81 0.2023 117.73 0.2447 114.93 

 propt* 0.0832 242.16 0.1022 234.31 0.1228 228.92 
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Table 7: The MSE and PRE’s of population II w.r.t unbiased estimator for case II 

Estimator

s 

2h 3h 4h

MSE PRE MSE PRE MSE PRE 

0t
1459.59 100 1664.28 100 1868.98 100 

2Rt 84.90 1719.15 95.92 1735.01 106.94 1747.60 

2ERt 441.20 330.82 497.13 334.38 553.06 337.93 
**t 82.77 1763.31 94.07 1769.19 105.21 1776.46 

V. Conclusion

In the context of survey sampling and estimation, the ratio-cum-dual of exponential ratio estimator 

has been proposed as a valuable approach, particularly in cases involving non-response. This 

innovative method combines elements of the traditional ratio estimator and dual to improve 

estimation accuracy. To assess the performance of this novel estimator, an essential step is to 

compute the Mean Squared Error (MSE) expression. This metric provides insights into the 

estimator's precision and reliability in estimating population parameters. To further evaluate the 

efficacy of the suggested estimator, both theoretical and empirical analyses have been conducted. 

Theoretical assessments involve rigorous mathematical proofs and calculations, while empirical 

evaluations utilize real-world data to validate the estimator's practical utility. The synergy of these 

two evaluation approaches ensures a comprehensive understanding of the estimator's competence. 

Upon scrutinizing the results presented in the accompanying table, a compelling conclusion 

emerges. It is evident that the proposed estimator surpasses the existing estimators found in the 

literature in terms of efficiency. This conclusion is drawn from a careful consideration of the MSE 

values, which indicate that the proposed estimator consistently provides more accurate and precise 

estimates, even in the presence of non-response. Therefore, this study contributes to the field by 

introducing a superior estimator for survey sampling, offering improved accuracy and reliability 

in estimating population parameters. 
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Abstract 

Process capability analysis is an effective and efficient tool for quality assurance. When the distribution 

of the underlying quality characteristics is not normal, modifications of the basic process capability 

indices are required. Literature in process control provides avenues to resolve the issue of non-

normality and data transformation is one of the approaches frequently applied in practice. Primarily 

the Box – Cox transformation (BCT) is employed to transform the non normal data into normal data 

which originally utilizes the method of maximum likelihood estimation (MLE) to find the single 

transformation parameter λ. There are alternative methods to estimate the optimal parametric value λ 

using goodness of fit tests rather using MLE method. In order to bring improved estimates, this paper 

makes a fresh attempt to estimate process capability analysis (PCA) using transformed data through 

different goodness of fit tests. The simulation study uses variety of asymmetric behaviors from a 

Weibull distribution generating a random sample of 100 data points to find the best goodness of fit test 

for better process capability estimates that are compared to the standard of six sigma results for non-

normal data. Final result shows that Shapiro-Wilk's (SW) and Artificial Covariate (AC) methods are 

performing well when compared to the method of MLE. Minitab software and R programming 

language were utilized for data simulation and analysis. 

Keywords: Goodness of fit tests, Box-Cox Transformation, Asymmetric, MLE, Weibull 

distribution, Six sigma. 

1. Introduction

Process capability indices (PCIs), the statistical tools in quality control, are widely used to meet the 

required targets set in most of the manufacturing industries. Process capability analysis (PCA) addresses 

the issues relating to how well a manufacturing process meets the required specification. PCIs defined 

from normality assumptions cannot be used to accurately measure the performance of non-normal 

processes. Data transformation for preserving a somewhat normal distribution has been recommended in 

[5]. The empirical study made in [4] has demonstrated that the findings of transformed data are much 

superior to the results of the original data. The literature surveys demonstrate that for non-normal 

distributions such as Lognormal, Weibull, etc., the transformation methods perform well when compared 

to non-transformation (NT) methods and are considered as consistently superior to NT methods. Further, 
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NT methods are found to be inadequate in capturing the capability of the process unless the underlying 

distribution is close to or approximately normal. NT methods are unsatisfactory because the distribution 

deviates significantly from normal. See, [15].  

In PCA, the process variation is defined based on the measure ‘standard deviation’. The short-term 

and long-term variability may be addressed by the estimated standard deviation obtained from the 

random sample observations and such an estimate is used while computing the process capability. The 

short-term variability is considered for computing the process capability indices whereas long-term 

variability is taken for calculating process performance indices. Hence, capability indices are calculated 

using samples of data based on short-term or within group variation, whereas performance indices are 

calculated using all the data points using long-term or overall variation. The process capability indices 

are denoted by Cp and Cpk, and process performance indices are demoted by Pp and Ppk. A detailed review 

on various methods that are chosen for performance comparison in their ability to handle non-normality 

in the computation of process capability indices is presented in [13]. The most common and traditional 

indices being applied by manufacturing industry are process capability index Cp and process capability 

ratio Cpk which are given below in Table 1 along with the respective performance indices, where x is the 

sample mean, USL is the upper specification limit and LSL is the lower specification limit.   

Table 1: Process Capability and Process Performance Indices 

Process capability indices Process performance indices 

Cp =
USL−LSL

6σW

Cpk = Min (CPU, CPL) 

CPU =
USL− x̿

3σW
,   CPL = 

 x̿− LSL

3σW

Pp =
USL−LSL

6σoverall

Ppk = Min (CPU, CPL) 

PPU =
USL− x̿

3σoverall
,  PPL=

 x̿− LSL

3σoverall

According to [15], a better understanding is required about Box - Cox transformation (BCT) and its 

parameter estimation approach utilizing a search method to estimate the process capabilities. In [17], a 

method of converting non-normal data into normal data to analyze the data using the process capability 

indices and an improved Box-Cox transformation model have been proposed to deal with non-normal 

data and to calculate its process capability indices. In [1], the method of maximum likelihood estimation 

(MLE) was utilized for finding the ideal parameter λ in Box-Cox transformation. Alternative methods to 

MLE approach utilizing goodness of fit tests (normality tests) were developed in [3], [10] and [11]. By 

examining the effect of conversion of non-normal data into normal data with the use of different 

goodness of fit tests, it is demonstrated in [3] that the method of MLE in estimating the BCT parameter λ 

could be biased and ineffective. The competence of the different goodness of fit test was also determined 

in [3] by various measures of errors, estimates of PCI, PPI and defective parts per million (PPM) products.  

In order to get improvised estimates of PCI and the result within the standard of six sigma level, a 

new attempt is made in this paper to estimate process capability analysis implementing different 

goodness of fit tests in BCT. The results of different goodness of fits tests are recorded and presented to 

help the practitioner to choose the method which will produce the improvised results in various 

asymmetric situations, viz., low, moderate and high. Thus, the objectives of this paper is to examine the 

effectiveness of the different goodness of fit tests involving transformation of non-normal data into 

normal data using BCT and to recommend a superior test that will produce higher values of process 

capability with minimum of error and PPM values. It also verifies whether the proposed method produce 

the results within the standard of six sigma level.  
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2. Methodology

Transforming non-normal data into normal data is one of the frequently used approaches in practice 

when the observed data do not satisfy the normality assumption. A few approaches which are applied in 

practice to transform the non-normal data into normal include Johnson’s system of transformation (JST), 

Box-Cox transformation (BCT) and Rosenblatt transformation (RT). Though JST and BCT approaches are 

equally efficient, the latter would be preferred over the first one for handling non-normal data when 

computer assisted analysis is available and it also outperforms the other methods. See, [12]. Further, 

when compared with the JST method, BCT method is more accurate and precise. BCT provides a family 

of power transformations that will optimally normalize a particular variable. As stated in [2], the BCT 

method transforms non-normal data into normal data on the positive response variable x as shown in the 

below expressions:  









=


−

=

0,log

0,
1





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

forx
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x

x          (1) 

It may be noted that since an analysis of variance is unchanged by a linear transformation, the 

expressions given (1) is equivalent to 





=


=

0,log

0,






forx

forx
x          (2)  

The estimation of λ is done through various goodness of tests for normality, that are available in the 

literature, which includes tests, such as Shapiro - Wilk (SW), Anderson Darling (AD), Cramer Von Mises 

(CVM), Pearson Chi-square (PC), Shapiro - Francia (SF), Lillefors (Kolmogorov -  Simirnov) (LT / KS), 

Jarque - Bera (JB), and artificial covariate method (AC). The BCT approach given in [2] involves the 

method of maximum likelihood estimation (MLE). Two alternative approaches proposed in [10] and [11], 

respectively, considered Box - Cox power transformation using maximization of the Shapiro - Wilk W 

statistics which forces the data to get closer to normal as much as possible and Anderson - Darling test. In 

these approaches, Newton - Rapson algorithm has been used to obtain λ. A method is proposed in [3] to 

simulate a single artificial and non-informative covariate and to find λ minimizing the sum of squares of 

errors among several simple linear regression models.  

The results of the earlier studies presented in the literature, particularly in [1], [7], [10], [14], [16] and 

[18], would be useful to understand the significance of tests of goodness of fit while transforming non-

normal data into normal data. [10] Shows that the test based on SW statistic is a powerful test of 

normality for a variety of non-normal distributions, the SW statistic is reliable for small samples and in 

regression applications, the statistic would yield higher R2. It is asserted in [7] that the test based on SW 

statistic is the most powerful test for non-normal distributions.  

According to [14], JB test is preferable to the Shapiro-Wilk test when the data exhibit a symmetric 

distribution with medium or long tails, or a slightly skewed distribution with long tails. [18] Ascertained 

that the test based on SW statistic is the best one for asymmetric distributions and powerful for 

symmetric short tailed distributions and has good power qualities throughout a wide variety of 

asymmetric distributions. Based on the results of a simulation study provided in [1], it is found that all of 

the transforming approaches performed similarly to one another. One may refer to [9] and [19] for the 

details on the concepts of six-sigma tools and process capability analysis for non-normal data, 

respectively.  
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3. Weibull Distribution

Weibull distribution is applicable to a wide range of non-normal processes because it is capable of 

generating a variety of distinct curves based on its parameters. It exhibits a significant tail behavior, 

showing a significant effect on the capability of the process. It is frequently utilized in applications that 

focus on quality and reliability to analyze failure data and to comprehend how failures take place or how 

often products fail.  

The probability density function of a Weibull random variable is given by the following form: 

,

0,0

0,
)(

1




















=









−

−

x

xe
x

xf

x










where α > 0 and β > 0 are the shape and scale parameters, respectively. 

The mean, the variance and the measure of skweness of the Weibull distribution are, respectively, given 

as follows: 
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The Weibull distribution with three sets of shape and scale parameters, say (2.8, 3.5), (1.8, 2.0), and (1.0, 

1.3) is considered in [6]. The sets of parameters are categorized for the purpose of assessing the 

effectiveness of low, moderate, and high asymmetric behaviors during the transformation of non-normal 

data into normal data and carrying out the process capability analysis. The shapes of the density function 

of Weibull distribution for these sets of parameters are shown in Figure 1. 

Figure 1: Asymmetric Behavior of Weibull Distribution 

4. Numerical Illustrations

For a simulation set-up, the data set of size 100 is generated using different asymmetric levels of 

Weibull distribution. Minitab and R programming were utilized for data simulation and analysis 

purpose. As given in [6], the lower and upper specification limits are taken as 0.0 and 10.  A combination 

of the box plot, descriptive statistics, measures of errors, like bias, percentage bias, median absolute error 

(MdAE), root mean square error (RMSE) and radar chart can be used to assess the effectiveness of the 

method.  
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This paper considers only the measures of errors and radar plots. In particular, bias, MdAE and 

RMSE are taken while transforming non-normal data into normal data using different goodness of fit 

tests in Box - Cox transformation. Once the transformation has been completed, the data have been 

further utilized to estimate process capability and process performance index and to choose the most 

effective approach among different goodness of fit tests. According to [8], a process is categorized as 

inadequate, if PCI < 1.00; capable, if 1.00 ≤ PCI ≤ 1.33; satisfactory, if 1.33 ≤ PCI ≤ 1.50; excellent, if 1.50 ≤ 

PCI ≤ 2.00; and super, if ≥ 2.00. Automotive industry uses Cpk = 1.33 as a benchmark in assessing the 

capability of the process. If Cp and Cpk are more than or equal to 2 and 1.5, respectively, a process is said 

to be under six-sigma controls. Similarly, Pp and Ppl must be more than 2 and 1.5, respectively, for a 

process to generate six-sigma results. See, [8].  

In order to guarantee the quality of the final product and reduce the number of faulty items, quality 

practitioners will also focus on PPM values. Table 2 lists the process fallout in defective parts per million 

products in relation to the proportion of good items and PPM values for various sigma levels. The main 

goal of all quality and industry practitioners is to reach 6σ limits and a defect rate of 3.4 PPM has been 

associated with the process using these indices. On the other hand, the process performance indices, 

namely Pp and Ppk are utilized in the industries, particularly in the automobile sector, as the second sorts 

of estimators.  

Table 2: Process Fallout in Defective Parts per Million with Respect to Different Sigma Levels 

Sigma Level Percentage PPM Values 

6 99.9997% 3.4 

5 99.98% 233 

4 99.4% 6,210 

3 93.3% 66,807 

2 69.1% 308,537 

1 30.9% 691,462 

4.1 Low Asymmetric Distribution 

In this sub-section, low asymmetric Weibull distribution with the skewness of 0.13 and 0.31 for the 

combination of shape and scale parameters 2.8 and 3.5, respectively, has been taken for simulation study. 

From the error point of view, Bias, MdAE and RMSE values are very less for AD, CVM, SF, LT and PC 

goodness of fit tests and this ensures that the transformed values are very closer to normal data with 

minimum error values. For more information, Table 3 and Figure 2 may be referred. On the other hand, 

from estimation point of view, the transformed data are further taken for the estimation of process 

capability and process performance. The transformed data sets from SW, LT, AC, and MLE tests show the 

closeness to the standard normal and produce better results when compared to other methods. The PPM 

values are recorded as a minimum of 656 and a maximum of 1939 corresponding to the above said 

methods and are better than the results of 3σ and 4σ limits and closer to the result of 5σ standards. For 

more information, Table 4 and 5 may be referred.  

4.2 Moderate Asymmetric Distribution 

A Weibull distribution with the shape and scale parameters fixed as 1.80 and 2.0, respectively, will 

represent the moderate asymmetrical non-normal data with skewness 0.64 and 0.94. In the simulation 

study, Minitab (M_T) transforms non-normal data into much closer normal data with minimum Bias, 

MdAE and RMSE values compared to other methods and the corresponding estimate of PC is smaller but 

with higher PPM values compared to the benchmark result. Thus, the method of transformation using 

Minitab cannot be taken as a competent method. One may refer to Table 6 and Figure 3.  
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Table 3: Various Measures of Error Values for Low Asymmetric Data After Data Transformation 

* Transformation not done

Figure 2: Radar Chart for Various Measures of Errors After Normalization of Low Asymmetric Distribution 

Table 4: Estimates of Process Capability and Process Performance Indices for W(2.8, 3.5) 

      Distribution Having Sk = 0.13 After Normalization via Goodness of Fit Tests 

Method λ Value LSL USL 

PCI (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

W(2.8, 3.5) - 0 10 1.30 0.82 6828 1.27 0.81 7667 

SW 0.75 -1.33 6.16 1.29 1.07 656 1.25 1.04 904 

AD 0.79 -1.27 6.54 1.29 1.02 1066 1.25 1.00 1402 

CVM 0.85 -1.18 7.15 1.28 0.96 2051 1.25 0.93 2543 

PC 0.75 -1.33 6.16 1.29 1.07 656 1.25 1.04 904 

SF 0.77 -1.30 6.35 1.29 1.05 841 1.25 1.02 1130 

LT 0.75 -1.33 6.16 1.29 1.07 656 1.25 1.04 904 

JB 0.76 -1.32 6.26 1.29 1.06 731 1.25 1.03 995 

AC 0.75 -1.33 6.16 1.29 1.07 656 1.25 1.04 904 

MLE 0.75 -1.33 6.16 1.29 1.07 656 1.25 1.04 904 

M_T 0.50 0.00 3.16 1.42 1.28 66 1.36 1.22 127 

Methods 

Low Asymmetry (SK=0.13) 

Weibull distribution (α=2.8, β=3.5) 

Low Asymmetry (SK=0.31) 

Weibull distribution (α=2.8, β=3.5) 

Bias MdAE RMSE Bias MdAE RMSE 

SW 1.300 1.245 1.322 1.391 1.320 1.428 

AD 1.226 1.184 1.240 1.335 1.273 1.363 

CVM 1.226 1.184 1.240 1.246 1.200 1.263 

PC 0.527 0.646 0.663 1.391 1.320 1.428 

SF 1.271 1.221 1.289 1.363 1.297 1.396 

LT 0.571 0.665 0.677 1.391 1.320 1.428 

JB 1.285 1.233 1.306 1.377 1.309 1.412 

AC 1.343 1.281 1.371 1.392 1.321 1.429 

MLE 1.342 1.280 1.370 1.391 1.320 1.428 

M_T * * * 1.434 1.345 1.706 
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Table 5: Estimates of Process Capability and Process Performance Indices for W(2.8, 3.5) 

      Distribution Having Sk = 0.31 After Normalization via Goodness of Fit Tests 

Method λ Value LSL USL 

PCI (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

W(2.8, 3.5) - 0 10 1.27 0.80 8026 1.32 0.83 6362 

SW 0.81 -1.23 6.74 1.24 0.96 1939 1.29 1.00 1389 

AD 0.86 -1.16 7.26 1.25 0.91 3051 1.29 0.95 2259 

CVM 0.86 -1.16 7.26 1.25 0.91 3051 1.29 0.95 2259 

PC 1.24 -0.81 13.21 1.36 0.67 22553 1.41 0.69 19197 

SF 0.83 -1.20 6.94 1.24 0.94 2351 1.29 0.98 1708 

LT 1.22 -0.82 12.78 1.35 0.86 21189 1.40 0.70 17959 

JB 0.82 -1.22 6.84 1.24 0.95 2106 1.29 0.99 1518 

AC 0.78 -1.28 6.44 1.24 1.00 1402 1.29 1.03 981 

MLE 0.78 -1.28 6.44 1.24 1.00 1407 1.29 1.03 985 

M_T - 0 10 1.27 0.80 8026 1.32 0.83 6362 

Table 6: Various Measures of Error Values for Moderate Asymmetric Data After Data Transformation 

Figure 3: Radar Chart for Various Measures of Errors After Normalization of Moderate Asymmetric Distribution 

Methods 

Moderate Asymmetry (SK=0.64) 

Weibull distribution (α=1.8, β=2.0) 

Moderate Asymmetry (SK=0.94) 

Weibull distribution (α=1.8, β=2.0) 

Bias MdAE RMSE Bias MdAE RMSE 

SW 1.204 1.108 1.231 1.271 1.137 1.321 

AD 1.195 1.102 1.219 1.255 1.127 1.301 

CVM 1.175 1.090 1.195 1.247 1.122 1.290 

PC 1.282 1.156 1.326 1.192 1.091 1.221 

SF 1.201 1.106 1.227 1.271 1.137 1.321 

LT 1.223 1.118 1.253 1.271 1.137 1.321 

JB 1.211 1.111 1.238 1.271 1.137 1.321 

AC 1.207 1.110 1.234 1.282 1.143 1.335 

MLE 1.207 1.110 1.234 1.283 1.143 1.336 

M_T 0.420 0.304 0.703 0.524 0.383 0.863 
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Besides M_T transformation, the CVM, AD, AF, AC and SW methods of transformation produce less 

errors and the PC, LT, JB, AC, MLE and SW methods of transformation yield the target results during the 

estimation of process capability and process performance indices along with the minimum PPM values. 

For the moderate asymmetric situations, the minimum and maximum PPM values were recorded as 81 

and 241, respectively. The goodness of fit tests in the estimation of process capability for moderate 

asymmetric distribution shows the better results than 3σ, 4σ and 5σ limits and approach towards the 

standard of 6σ. One may also refer to Table 7 and 8 for more information. 

Table 7: Estimates of Process Capability and Process Performance Indices for W(1.8, 2.0) 

      Distribution Having Sk = 0.64 After Normalization via Goodness of Fit Tests 

Method λ Value LSL USL 

PCI  (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

W(1.8, 2.0) - 0 10 1.79 0.59 37568 1.80 0.60 36938 

SW 0.45 -2.22 4.04 1.44 1.23 110 1.44 1.23 114 

AD 0.48 -2.08 4.21 1.44 1.16 252 1.43 1.16 259 

CVM 0.54 -1.85 4.57 1.43 1.04 900 1.43 1.04 914 

PC 0.19 -5.26 2.89 2.02 1.25 92 2.01 1.24 99 

SF 0.46 -2.17 4.10 1.44 1.21 149 1.44 1.20 154 

LT 0.39 -2.56 3.73 1.48 1.41 14 1.48 1.40 15 

JB 0.43 -2.33 3.93 1.45 1.29 56 1.45 1.28 59 

AC 0.44 -2.27 3.99 1.45 1.26 81 1.45 1.25 84 

MLE 0.44 -2.27 3.99 1.45 1.26 81 1.45 1.25 84 

M_T 0.50 0 3.16 1.43 1.12 398 1.43 1.12 408 

Table 8: Estimates of Process Capability and Process Performance Indices for W(1.8, 2.0) 

      Distribution Having Sk = 0.94 After Normalization via Goodness of Fit Tests 

Method λ Value LSL USL 

PCI  (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

W(1.8, 2.0) - 0 10 1.50 0.54 51629 1.54 0.56 47940 

SW 0.43 -2.33 3.93 1.28 1.17 241 1.32 1.21 151 

AD 0.47 -2.13 4.15 1.26 1.08 623 1.30 1.11 428 

CVM 0.49 -2.04 4.27 1.26 1.04 949 1.30 1.07 674 

PC 0.62 -1.61 5.11 1.26 0.84 6101 1.30 0.86 4922 

SF 0.43 -2.33 3.93 1.28 1.17 241 1.32 1.21 154 

LT 0.43 -2.33 3.93 1.28 1.17 241 1.32 1.21 154 

JB 0.43 -2.33 3.93 1.28 1.17 241 1.32 1.21 154 

AC 0.40 -2.50 3.78 1.30 1.25 118 1.34 1.29 70 

MLE 0.40 -2.50 3.78 1.30 1.25 118 1.34 1.29 70 

M_T 0.50 0 3.16 1.26 1.02 1143 1.30 1.05 822 

4.3. High Asymmetric Distribution 

A Weibull distribution with the shape and scale parameters fixed as 1.0 and 1.3, respectively, will 

represent the high asymmetrical non-normal data with skewness 1.35 and 1.76. Among the different 

methods, Minitab (M_T) transforms non-normal data into much closer normal data with minimum Bias, 

MdAE and RMSE values when compared to other methods, but the corresponding estimate of PCA 
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shows smaller and more PPM values compared to the standard requirements. Therefore, the method of 

transformation using Minitab (M_T) cannot be taken as an effective method. One may refer to Table 9 and 

Figure 4 for more information. From the point of view of errors, after transforming non normal data into 

normal data using different goodness of fit tests, the LT, SF, AC and SW, PC and AD methods produce 

fewer errors. Moreover, the methods such as AC, JB, SW, AD and MLE yield better estimates of process 

capability and process performance along with lesser PPM values. In this case, the minimum and 

maximum PPM values are recorded as 740 and 3075, respectively. The goodness of fit tests in the 

estimation of process capability for moderate asymmetric distribution shows that the process is better 

than 3σ and 4σ and approach towards the standard of 5σ. One may refer to Table 10 and 11 for more 

information.  

Table 9: Various Measures of Error Values for High Symmetric Data After Data Transformation 

Figure 4: Radar Chart for Various Measures of Errors after Normalization of High Asymmetric Distribution 

5. Results and Discussion

Data transformation and estimation of process capability analysis are the two aspects considered in this 

section. The effectiveness of different goodness of fit tests is determined by various measures of errors 

such as Bias, MdAE and RMSE. Based on the numerical illustrations provided in the previous section, it is 

found that the methods of AD and CVM tests produce lesser errors in low and moderate asymmetric 

situations, the methods of SW and SF tests yield considerably lesser errors in the case of moderate and 

high asymmetric behaviors, and the methods of LT and AC tests perform better only on high asymmetric 

situations. Similarly, the methods of PC, LT, JB, DME, and M_T tests yield better estimates, but provide 

Methods 

High Asymmetry (SK = 1.35) 

Weibull distribution (α = 1.0, β=1.3) 

High Asymmetry (SK = 1.76) 

Weibull distribution (α=1.0, β=1.3) 

Bias MdAE RMSE Bias MdAE RMSE 

SW 1.473 1.261 1.584 1.382 1.165 1.474 

AD 1.480 1.265 1.593 1.414 1.174 1.519 

CVM 1.486 1.269 1.602 1.414 1.174 1.519 

PC 1.363 1.196 1.442 1.490 1.198 1.641 

SF 1.466 1.257 1.576 1.376 1.163 1.465 

LT 1.440 1.241 1.542 1.364 1.159 1.448 

JB 1.493 1.273 1.611 1.382 1.165 1.474 

AC 1.479 1.265 1.593 1.382 1.164 1.472 

MLE 1.480 1.265 1.593 1.382 1.165 1.474 

M_T 0.536 0.466 1.308 0.237 0.369 0.966 
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greater PPM values while estimating process capability and process performance indices. 

Table 10: Estimates of Process Capability and Process Performance Indices for W(1.0, 1.3) 

      Distribution Having Sk = 1.35 After Normalization via Goodness of Fit Tests 

Method λ Value LSL USL 

PCI (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

W(1.0, 1.3) - 0 10 1.42 0.34 156902 1.39 0.33 160815 

SW 0.26 -3.85 3.15 1.14 1.09 744 1.13 1.08 821 

AD 0.21 -4.76 2.96 1.22 1.01 1248 1.21 1.00 1316 

CVM 0.21 -4.76 2.96 1.22 1.01 1248 1.21 1.00 1316 

PC 0.1 -10.0 2.59 1.82 0.84 6000 1.83 0.84 5871 

SF 0.27 -3.70 3.19 1.12 1.10 770 1.11 1.09 856 

LT 0.29 -3.45 3.28 1.11 1.07 956 1.09 1.06 1071 

JB 0.26 -3.85 3.15 1.14 1.09 744 1.13 1.08 821 

AC 0.26 -3.85 3.15 1.14 1.09 740 1.13 1.08 817 

MLE 0.26 -3.85 3.15 1.14 1.09 744 1.13 1.08 821 

M_T 0.28 0 1.90 1.11 1.11 834 1.10 1.10 932 

Table 11: Estimates of Process Capability and Process Performance Indices for W(1.0, 1.3) 

      Distribution Having Sk = 1.76 After Normalization via Goodness of Fit Tests 

Method λ Value LSL USL 

PCI (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

W(1.0, 1.3) - 0 10 1.12 0.35 148540 1.15 0.36 142686 

SW 0.29 -3.45 3.28 1.00 0.95 3033 0.99 0.94 3397 

AD 0.28 -3.57 3.23 1.01 0.94 3075 0.99 0.93 3459 

CVM 0.27 -3.70 3.19 1.02 0.93 3136 1.01 0.91 3539 

PC 0.46 -2.17 4.10 0.92 0.69 19756 0.92 0.69 19840 

SF 0.30 -3.33 3.32 0.99 0.96 3173 0.98 0.95 3533 

LT 0.34 -2.94 3.49 0.95 0.90 4652 0.95 0.90 5012 

JB 0.26 -3.85 3.15 1.04 0.92 3265 1.02 0.90 3694 

AC 0.28 -3.57 3.23 1.01 0.94 3075 0.99 0.93 3458 

MLE 0.28 -3.57 3.23 1.01 0.94 3075 0.99 0.93 3458 

M_T 0.24 0.00 1.74 1.06 0.90 3639 1.05 0.88 4132 

Thus, as a result, it will not be thought of as a useful way to evaluate the capability or a performance 

of the process, though the methods of SW, AC, SF and MLE tests produce superior results with better 

estimates and lesser PPM values when compared to other and traditional methods. A small PPM value 

generally assures that fewer items will be rejected, and it must be lower than the benchmark values to 

obtain six sigma results. On the basis of the numerical illustrations, it can be observed that the different 

tests of goodness of fit would guarantee better performance (656 as the minimum and 1939 as the 

maximum PPM values) in comparison to the typical PPM values of the 3σ and 4σ limits, and are very 

close to the outcome of the 5σ limits only in low asymmetric behaviors.  

The PPM values for moderately asymmetric conditions are found to be 81 and 241 as minimum and 

maximum values, respectively. This outcome surpasses the 3σ, 4σ, and 5σ limits and is getting closer to 
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the benchmark of 6σ outcomes. The minimum and maximum PPM values of 740 and 3075 would ensure 

that the procedure is better than the 3σ and 4σ limits only under high asymmetrical circumstances. One 

may refer to Table 12 for the better understanding of the efficiency of different normality tests under 

various asymmetric behaviors while dealing with non-normal quality characteristics based on the 

numerical examples, results and discussion. 

Table 12: Efficiency of Various Tests of Goodness of Fit in Data Transformation and Estimation of Process Capability 

 and Process Performance Indices for Weibull Distribution 

Different 

Asymmetric 

Levels 

Efficiency in data transformation Efficiency in estimation of PCI/PPI 

Low 

Asymmetric 

Moderate 

Asymmetric 

High 

Asymmetric 

Low 

Asymmetric 

Moderate 

Asymmetric 

High 

Asymmetric 

Skewness 0.13 0.31 0.64 0.94 1.35 1.76 0.13 0.31 0.64 0.94 1.35 1.76 

SW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AD ✓ ✓ ✓ ✓ ✓

CVM ✓ ✓ ✓ ✓

PC ✓ ✓ ✓ ✓* ✓* ✓*

SF ✓ ✓ ✓ ✓ ✓ ✓ ✓

LT ✓ ✓ ✓ ✓ ✓ ✓* ✓ ✓

JB ✓ ✓ ✓ ✓ ✓*

AC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MLE ✓ ✓ ✓ ✓ ✓ ✓

M_T @ ✓ ✓ ✓ ✓* ✓*

DME ✓$ ✓$ ✓$ ✓$ ✓$ ✓$

DME – Direct Minitab Estimation | @ - No transformation done | ✓- less errors and/or better estimates and less PPM values | ✓* - 

Produces less error but higher PPM values | ✓$ - Produces Better estimates but higher PPM values. 

6. Conclusion

Process capability analysis is important for any production process and useful for its continuous 

improvement. This study attempts to compare the ability of various tests of goodness of fit over the 

method of maximum likelihood in the estimation of the parameter involved in Box - Cox transformation. 

Primarily, the effectiveness of the tests of goodness of fit in transforming non-normal data into normal 

data is assessed through various measures of errors along with a radar chart. Based on the numerical 

example, the solutions to the research problem are turned out and it is observed that, regardless of using 

different formulas, the estimates of process capability and process performance indices approximately 

match. It is to be noted that the performance of process capability analysis for non-normal data purely 

depends on the choices of variation taken into account. Further, the transformed data is extended 

towards estimating process capability and process performance in order to identify the effective methods 

for non-normal quality characteristics. As per the results and discussion, one may observe that the 

measures of errors, and estimates of PCI, PPI and PPM values from SW, AC, SF and MLE methods of 

goodness of fit tests have higher accuracy in data transformation, greater power in estimating process 

capability or process performance and leaves smaller PPM values in all asymmetric situations.  

By taking into account of the research problem, the SW test outperforms the other tests while 
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transforming non-normal data into normal data and estimating process capability / performance with 

smaller PPM values in all the asymmetric situations. However, other methods of tests such as AC and 

MLE methods can also be considered for handling non-normal quality characteristics and producing 

considerably good results. Application of different goodness of fit tests to estimate PCA yields smaller 

PPM values and obviously better results than 3σ, 4σ and 5σ limits. Implementing goodness of fit tests 

further helps to obtain the results that are closer to the six sigma standards than the traditional MLE 

method. Thus, the current MLE technique could be effectively substituted by using goodness of fits tests 

in Box-Cox transformation to achieve desired results in estimating process capability. 

References 

[1] Asar, O., Ilk, O., and Dag, O. (2017). Estimating Box-Cox Power Transformation Parameter via

Goodness-of-Fit Tests, Communications in Statistics - Simulation and Computation, 46, 91 – 105.

[2] Box, G. E. P., and Cox, D. R. (1964). An analysis of Transformations. Journal of the Royal Statistical

Society: Series B (Methodological), 26, 211 - 243.

[3] Dag O., Asar, O., and Ilk, O. (2014). A Methodology to Implement Box-Cox Transformation When No

Covariate is Available, Communications in Statistics – Simulation and Computation, 43, 1740 – 1759.

[4] Gunter, B. H. (1989). The Use and Abuse of Cpk, Quality Progress, 22, 108 – 109.

[5] Kane V E (1986), Process Capability Indices, Journal of Quality Technology, 18, 41 – 52.

[6] Kashif, M., Aslam, M., Al Marshadi, A. H., Jun, C-H. (2017), Evaluation of Modified Non-normal

Process Capability Index and Its Bootstrap Confidence Intervals, IEEE Access, 5, 12135 – 12142.

[7] Oztuna, D., Elhan, A., and Tuccar, E. (2006). Investigation of Four Different Normality Tests In Terms

of Type 1 Error Rate and Power under Different Distributions, Turkish Journal of Medical Sciences, 36,

171 - 176.

[8] Pearn, W. L., and Chen, K. -S. (2002). One‐sided Capability Indices CPU and CPL: Decision Making

with Sample Information, International Journal of Quality & Reliability Management, 19, 221 – 245.

[9] Pyzdek, T. (2003). PyzdekSix Sigma Handbook: A Complete Guide for Green Belts, Black Belts,

and Managers at All Levels, McGraw-Hill Inc., New York.

[10] Rahman, M. (1999). Estimating the Box-Cox Transformation via Shapiro-Wilk W

Statistic, Communications in Statistics – Simulation and Computation, 28, 223 – 241.

[11] Rahman, M., and Pearson, L. M. (2008). Anderson-Darling statistic in Estimating the Box-Cox

Transformation Parameter, Journal of Applied Probability & Statistics, 3, 23 – 35.

[12] Sennaroglu, B., and Senvar, O. (2015). Performance Comparison of Box-Cox Transformation and

Weighted Variance Methods with Weibull Distribution, Journal of Aeronautics and Space Technologies,

8, 49 - 55.

[13] Tang, L. C., Than, S. E. (1999). Computing Process Capability Indices for Non-normal Data: A Review

and Comparative Study, Quality and Reliability Engineering International, 15, 339 – 353.

[14] Thadewald, T., and Buning, H. (2007). Jarque-Bera Test and its Competitors for Testing Normality - A

Power Comparison, Journal of Applied Statistics, 34, 87 - 105.

[15] Swamy, D. R., Nagesh, P., and Wooluru, Y. (2016). Process Capability Indices for Non-normal

Distribution – A Review, Proceedings of the International Conference on Operations Research and

Management, January 21 – 22, Mysuru, India.

[16] Wooluru, Y., Swamy, D. R., and Nagesh, P. (2016). Process Capability Estimation for Non-normally

Distributed Data using Robust Methods – A Comparative Study, International Journal of Quality

Research, 10, 407 – 420.

RT&A, No 1 (77)
 Volume 19, March 2024

308

https://www.researchgate.net/journal/Turkish-Journal-of-Medical-Sciences-1303-6165
https://econpapers.repec.org/article/tafjapsta/


Krishnan J., Vijayaraghavan R   

PROCESS CAPABILITY ANALYSIS FOR NON-NORMAL DATA 

[17] Yang Y and Zhu H (2018). A Study on Non-normal Process Capability Analysis based on Box-Cox

Transformation, Proceedings of the 3rd International Conference on Computational Intelligence and

Applications (ICCIA), Hong Kong, China, IEEE, 240 – 243.

[18] Yap, B. W., and Sim, C. H. (2011). Comparisons of Various Types of Normality Tests, Journal

of Statistical Computation and Simulation, 18, 2141 – 2155.

[19] Yoap, T. (2006). Process Capability Analysis for Non-normal Data with Minitab, In: Six Sigma:

Advances Tools for Black Belts and Master Black Belts, Eds. Tang, L. C., Goh, T. N., Yam, H. S., &Yoap, T,

131 – 149, John Wiley & Sons Ltd., The Atrian, England.

RT&A, No 1 (77)
 Volume 19, March 2024

309



Alena Breznická, Pavol Mikuš 
THE USE OF EXPERIMENTAL MODELLING IN THE PREDICTION 
OF PRODUCT RELIABILITY 

THE USE OF EXPERIMENTAL MODELLING IN THE 

PREDICTION OF PRODUCT RELIABILITY 

Alena Breznická1 Pavol Mikuš2 

• 
Faculty of Special Technology, Alexander Dubček University of Trenčín, 

Ku kyselke 469, 911 06, Trenčín, Slovakia1,2 

alena.breznicka@tnuni.sk 

pavol.mikus@tnuni.sk 

Abstract 

When designing new systems and components, it is very important to correctly determine the degree 

and ability of the joint to withstand stress and load. Every new product that is intended for the market 

must meet the requirements for high safety and reliability during the entire life cycle. The presented 

article deals with the possibility of modelling the ability to withstand such a load, the principle of the 

interference method was used in the experimental modelling. The interference theory of reliability is 

based on the analysis of regularities and properties of two random variables that characterize 

reliability. Among these elementary properties from the point of view of reliability assessment, we 

can successfully use dependability and lifetime analysis. It originates from the concept of "safe life", 

which is determin-istic, based on determining and respecting the values of reliability factors. The 

described approach as-sumes that a malfunction or a faulty function occurs when the strength limit 

of the object is exceeded, i.e., ability to withstand stress. 

Keywords: Reliability, Interference theory, Dependability, Load, Strength 

1. Introduction

The interference theory of reliability is based on the analysis of the regularities and properties of two 

random variables that characterize the elementary properties of dependability and lifetime. 

Interference reliability theory offers reliability prediction in new product design because it can 

simulate the various loads and stresses that are applied to the product during its life cycle. The 

method uses the assessment of reliability properties in interesting interactions, which ultimately 

affect the resulting reliability. Such analyses are important precisely in the first stages of the product 

life cycle and are therefore successfully included in the process of creation and production of parts. 

The basic step of the analysis is the observation of two random variables, which we will describe in 

the following text.  

Distribution of random variables 

•The first random variable characterizes the operating mode and the resulting operating stress L

(Load stress). Operating stress is caused by the sum of external stress and the conditions of the

selected modes of use.
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• The second random variable quantifies the strength S (carrying capacity). Strength to load S

(Strength) is the ability to withstand physical, or chemical and biological loads, which, because of

their action, result in changes causing element failures.

Both parameters of the model are random variables, characterized by random variables or processes. 

The form of their expression can be expressed by a histogram, or after statistical processing by 

probability distribution functions [1]. The literature presents many models of analytical 

quantification of dependability interference for the cases of exponential, normal, Weibull or gamma 

and log-normal distributions of load probability densities fL (L) and strength fS (S) [2].  

For the combination of different distributions of load and strength, the method of calculating the 

integrals of the two-dimensional joint function is complex, and the calculation of fault-freeness is 

difficult. Then it is advanta-geous to use mathematical or simulation modelling [3]. Today, the 

reliability of products is successfully predicted already when designing new systems and can 

effectively use mathematical modelling and simulation. From the point of view of partial reliability 

properties, in the presented article, the authors will focus on the prediction of dependability 

modelling. Therefore, we will deal with the calculation method of the interference theory of relia-

bility in the present paper. 

2. Definition of the model

The assessed system or object Mk, which is exposed to the load during the monitored time, will be 

reliable if the given operating stress L together with a certain probability does not exceed the strength 

S.  

Mk = Pr (S > L)  (1) 

Where:  

Mk... System or object,  

S…Stress [%/MPa],  

L…Load Stress [%/MPa]. 

Figure 1: Representation of the range of interference  
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This area (Figure.1) is proportional to the probability of a malfunction. It expresses the fact that due 

to the random properties of quantities (mainly their dispersion) there is a certain degree of possibility 

- the probability that a state will occur when the stress will be greater than the resistance to failure

in each case. As a result, a malfunction will occur. When calculating the probability of trouble-free

operation R, assuming that the random variables L, S are independent of each other, we can start

from the well-known fact that the probability of the simultaneous occurrence of two independent

phenomena is equal to the product of their probabilities.

The quantities characterizing the operating stress L (load) and the strength of the structure S are 

expressed by distribution functions and probability densities. Let us denote the probability density 

for the random stress variable L by fL(L) and the probability density for the random variable S 

against failure by fS(S). Let's denote the distribution function for the random stress variable L by 

FL(L) and the distribution function for the random stress strength variable S by FS(S). The quantities 

L and S are random, they have a specific probability distribution law, most often continuous or 

discrete. They can influence each other, which means to interfere, and this property can therefore be 

successfully used when assessing the reliability of a technical system or object in general. The 

extreme points of penetration, which arise during the analysis itself, define the area of mutual 

influence of both quantities his area is proportional to the probability of a malfunction [4]. The 

overlapping area defines the area of mutual influence of both quantities. It is proportional to the 

probability of failure and expresses the fact that due to the random properties of quantities 

(primarily their dispersion) there is a certain degree (probability) of the possibility that a state will 

occur when the stress will be greater than the strength to failure in each case and as a result a failure 

will occur. The area expresses the fact that due to the random properties of the quantities (especially 

their dispersion) there is a certain degree of possibility - the probability that a state will occur where 

the stress will be greater than the strength to failure in the given case. As a result, a malfunction will 

occur [5]. The curves are shown in Fig. 1. When calculating the probability of trouble-free operation 

R, we can assume that the random variables L, S are independent of each other, based on the known 

fact that the probability of the simultaneous occurrence of two independent phenomena is equal to 

the product of their probabilities. In accordance with the introduction of labels for the probability 

densities of quantities L and S, the following will apply to the probability of dependability operation 

R: 

𝐹 = ∫ 𝑓𝐿(𝐿). 𝐹𝑠(𝐿)𝑑𝐿
∞

0
          (2) 

Or 

𝐹 = ∫ 𝑓𝑆(𝑆)
∞

0
. [1 − 𝐹𝐿(𝑆)𝑑𝑆]   (3) 

The mentioned relationships are the methodological basis for modelling the failure rate or failure-

freeness of elements using the SSI interference method [6,7]. 

3. SSI simulation model

The input quantities of load L and strength S have a random character obtained from experimental 

measurement. The result is a non-parametric distribution of the obtained data, which we can 

statistically process in the form of a histogram or convert to a usable parametric distribution, as 

illustrated in Fig. 2. [8]. Both cases provide us with the possibility of generating input quantities and 

RT&A, No 1 (77)
 Volume 19, March 2024

312



Alena Breznická, Pavol Mikuš 
THE USE OF EXPERIMENTAL MODELLING IN THE PREDICTION 
OF PRODUCT RELIABILITY 

assessing the occurrence of decisive events for the statistical expression of failure rate or failure-

freeness of elements using the interference method. 

Figure 2: Expression of random variables L and S by histogram of relative abundances and probability distribution 

density 

For the range of experimental or generated values, we determine the size of the values of the 

distribution functions FL(S) and FS(S) for different strength values S. For the range of values of both 

functions, stress L and S contribute to failure. If we plot the values of L and S in the interdependence 

graph, the intersection represents the product of two independent phenomena. The area below the 

line of the graph represents the probability of fault-free operation expressed, and the area above the 

line of the graph represents the probability of the occurrence of a fault. A probability distribution 

model is characterized by a density function and a distribution function based on precisely specified 

parameters that need to be estimated from the data using a likelihood function. We also test 

hypotheses in statistical models, which often represent models of causal dependence of dependent 

variables on predictors. In the experiment, graphic tools are used and serve for a quick and 

illustrative presentation of the results, especially when it comes to more comprehensive data and 

mutual comparison of several files. By graphically representing the frequency distribution, we get a 

clear idea of the nature of the frequency distribution of the observed character. 

Figure 3: Probability of failure 

The modelling procedure was designed as follows. The first step is to obtain the input data of 

histogram parameters, or the probability distribution of operating load L and strength S of the 

investigated system element. Subsequently, a random level of operating load and strength is 

generated, thus creating a point of realization of the phenomenon. The next analysis will assess 
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which area it falls into and show it graphically. The boundary between fault-free and fault-free areas 

is given by the condition S > = L and expressed by the red line in the fig. 3. If the condition S > = L is 

not met, this is a fault condition. We record the number of simulation steps N and the number of 

failure states n. We will statistically process the generated data into the form of values of probability 

density functions and distribution functions, and by plotting them we will get an idea of their 

interference. In the proposed procedure, we will successfully use the MATLAB simulation language, 

because its graphics allow the creation of interactive programs, the environment of which allows the 

user to dialogically change the parameters of the distributions and judge what load and strength 

values are acceptable for the structural design application. The program in the basic window offers 

the option of choosing the type of load distribution and strength of the investigated element, 

distribution parameters and the number of simulations. If, from the input data used, the simulation 

results indicate that the required fault-free parameters do not meet, the simulations can be carried 

out by changing the load and strength parameters until an acceptable level of interference is reached. 

4. Steps of the experimental simulation model

The first steps of the analysis require the determination of the number of simulations and the loading 

of the necessary input data of the parameters of the distributions of the probability density functions 

of the operating load and the strength of the investigated element. The verification analysis is shown 

in fig.4. 

Figure 4: Determination of the number of simulations in the mathematical model 

The level of operational load and strength is generated and statistically processed into values of 

probability density functions and distribution functions. The curves of the distribution functions are 

shown in fig. 5. 

Figure 5: Determining the operating load and strength of the part 
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The next step of the analysis is to plot the curve of probability density functions and distribution 

functions, shown in Fig. 6. Determines the minimum value of the strength function and the 

maximum value of the load function. Plots the interdependence of L and S values. Calculates the 

size of the area under the graph line. 

Figure 6: Probability density functions and distribution functions 

The next step of the experiment was to analyse the impact of changes in the values of standard 

deviations. 

5. Outputs of experimental simulation of parameters of dependability

Load L is a stochastic quantity with properties as in the previous case. It has its distribution of the 

probability of occurrence at individual levels, which do not change its character (type and 

parameters of the distribution) with time (period of operation). The resistance of the structure to 

failure S with time does not change its type (law) of distribution but changes its position relative to 

the origin of the coordinates. A change in position occurs when the stress repeatedly exceeds a 

certain threshold limit Sc of the sensitivity (resistance) of the structure. The application of the 

dynamic model requires the clarification of some important concepts and properties of the random 

variables used in the model. Above all, the clarification of the stochastic nature of the quantities S 

and L, especially their possible change with the time of stress exposure, and further the concept of 

"accumulation of damage". The possibilities of variations in how the system will react to different 

strength need to be verified by repeated modelling. ongoing analyses can be evaluated in Fig.7. 

Procedure for processing the analysis experiment: 

• In the first step, we summarize the input data that evaluates the parameters of histograms,

distribution probabilities

• Simulation of random variable operating load and resistance.

• Modelling the point of realization of the phenomenon, assessing which area it falls into and

graphically representing it.

• Graphically determine the boundary between the fault-free and fault-free areas, represented by a

red line in the picture. 3.

• If the condition S > = L is not met, this is a fault condition.

• Control of the number of simulation steps N to the ratio of the number of failure states n.

• We statistically process the generated data into the form of values of probability density functions

and distribution functions.

• Generation of mutual interference of phenomena.

• We calculate probability of failure.
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Figure 7: Principle of the impact of changes in the strength parameter  
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The method of creating a statistical probability model and graphical representation of the share of 

load and strength in the form of histograms of the generated values can be expressed with the 

scaatherhist function. The next step is the analysis of the probability of failure achieved in a 

simulation experiment with parameters according to Table 1. Again, we choose a smaller number of 

simulations, for indicative results. With a higher number of simulations, the accuracy of the result 

increases, but the graphical representation of the results deteriorates. 

Table 1: Input and output parameters of the simulation experiment 

Figure 8: Graphic representation of load and strength ratio 

The results of the simulation and their graphic representation point to a high degree of influence of individual 

parameters of strength and load. The principle of the approach is shown in Fig. 8 Graphical analysis of the 

impact of changes in the strength parameter. When assessing the results of the simulation, it must be 

remembered that the engineering object (element) has the structural and material properties to withstand stress. 

Load and strength are expressed by quantities that can be characterized as dynamic and stochastic. During 

operation, the engineering object (element) is stressed by combined effects, namely: Operational stress: 

operational load, environmental effects, and the human factor. This is represented by the quantity L - load. And 

resistance to physical stress, chemical stress, and biological stress, represented by the component S – strength. 

In Fig. 9. an analysis is shown, which provides a graphical output describing the state when we can identify 

failure. The red area represents a high load that the system is no longer able to withstand. Below the critical line 

is the permissible area. It is an area that characterizes dependability. 

Figure 9: Graphical representation of the 2D failure and failure-free set of the realization of 100,000 simulations 

Input: Output: 

Number of 
simulations 

6  1000 Probability of  
dependability 

0.919 

Load parameters,  
Exponencial 

  Median 50 

- Probability of failure 0.081 

Strength 
parameters, Weibull 

  Median 130 

  Standard deviation 20 
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6. Conclusion

An equivalent stress is a stress that has one constant level (level, amplitude) which, if applied to a 

component with frequency Sometimes, will cause a failure after the same lifetime of the component 

as would cause the complete spectrum of stress acting in service at all levels. So, the damage after a 

certain period of operation (life) caused by this equivalent stress is the same as the damage caused 

during the same period of operation by the complete spectrum of operational stress [9].  Thus, we 

can assume that any arbitrary operating stress spectrum can be "converted" to a single level 

equivalent spectrum of the described properties. The dynamic model is applied primarily to such 

processes when the strength S against failure due to repeated exposure to Load L of different 

(randomly variable) levels changes with the duration of operation (time). These are e.g., typical cases 

of element damage due to phenomena associated with material fatigue, exceeding the set parameters 

limits [10,11]. 

The results of experimental simulation using the reliability interference method can be summarized 

in the following advantages: 

• The construction, component will be reliable if the operating load L does not exceed the strength

S with a certain probability.

• The quantities L and S are random, and we assume that they have a specific probability

distribution law.

• The operational load and strength of the structure will be expressed by probability densities and

distribution functions.

• Load and strength are quantities that can influence each other (interfere).

• The extreme points of penetration delimit the area of mutual interference, which is proportional

to the probability of the occurrence of a fault.

The simulation model makes it possible to eliminate the shortcomings of classical calculation 

methods and to use the results of few experimental measurements, to determine the interference of 

different probability density distributions of randomly variable functions of permitted operating 

loads and strength, to apply the results to determine the reliability of elements of diverse systems 

and, last but not least, to use graphic outputs for didactic support of the method explanation SSI and 

the behaviour of random variables of different probability distributions.  
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Abstract 

Modeling and examination of lifetime phenomena are the main aspects of statistical work in a wide 
variety of scientific and industrial areas. The area of lifetime information analysis has developed and 
extended quickly with respect to methodology, theory, and fields of applications. The point and 
interval maximum-likelihood estimations of generalized inverse Rayleigh distribution (GIRD) 
parameters and the acceleration factor are considered in this work. The estimation procedure is 
carried out for a partially accelerated step-stress model under adaptive Type-II progressive hybrid 
censored data. The biases and the mean square errors of the maximum-likelihood estimators are 
computed to assess their performances in the occurrence of censoring developed in this study 
through a Monte Carlo simulation study. 

Keywords: Partially accelerated life test, Generalized inverse Rayleigh 
distribution, Newton Raphson method, Adaptive Type-II Progressive Hybrid 
Censoring, Simulation study. 

I. Introduction

The Partially accelerated life tests (PALTs) are applied by reliability practitioners profitably to 
calculate approximately the acceleration factor and thus gathering the accelerated information to 
ordinary surroundings. In a PALT, objects are experience in both regular and accelerated 
circumstances. Progressive-stress, step-stress, and constant-stress are the three types of PALTs. The 
assessment performed under these kinds of stress is called accelerated life test (ALT) or partially 
accelerated life test (PALT). In ALT, the components are placed under stress to obtain additional 
failures in a tiny time. The key postulation in ALT is that the mathematical model connecting the 
life span of the component and the stress is acknowledged or can be assumed. In various 
situations, such a model is neither identified nor assumed. That is, ALT information can't be  

RT&A, No 1 (77)
 Volume 19, March 2024

320



Intekhab Alam, Trapty Agarwal, Awakash Mishra
A STUDY ON PARTIALLY ACCELERATED… 

gathered to ordinary use circumstances. So, in such situations, PALT is a more appropriate choice 
to be applied to calculate the statistical model’s parameters. There are three types of PALT i.e. 
Constant stress PALT (CSPALT), step stress PALT (SSPALT) and progressive stress PALT 
(PSPALT). 

In SSPALT, the test component initiates at ordinary use circumstances for a particular period. 
If it works successfully at that period, it is placed in stress. Stress continually increases until the 
examination components are unsuccessful or the examination is ended based on a confident 
censoring scheme. Rao [1] indicates that the step-stress technique can reduce the investigating 
period and save many human resources, substances, sources, and cash. In particular, SSPALT 
should be applied for a trustworthiness study to save time and wealth mainly, when the trial 
components are of superior reliability and have significant models. 

In the present work, we combine an adaptive Type-II progressive hybrid censoring scheme 
with the step-stress PALT to obtain a step-stress PALT under adaptive Type-II progressive hybrid 
censored scheme with the GIRD as a lifetime model.  

As pointed out by Lin et al. [2], many conditions in existence analysis and reliability research 
are available, in which components are lost or removed in the investigation prior to failure. The 
practitioner may not gainful idea about the failure times for all the elements under study. The 
information detected from this research is called censored information, and the scheme is called 
censoring scheme. The frequently applied censoring schemes are the Type-I and Type-II censoring 
scheme, for more details one may refer to Balakrishnan and Ng [3]. Many studies have discussed 
the hybrid censoring plan, which is a combination of Type-I and Type-II censoring schemes, with 
the associated statistical inference, see for example, Epstein [4], Balakrishnan and Kundu [5] Childs 
et al. [6], Gupta and Kundu  [7], Kundu  [8], Deyand Pradhan [9], and Salah el al. [10] among 
others. Due to the less flexibility of removing the components from the testing at any position 
other than the starting point, another censoring scheme was applied, which is called progressively 
Type-II hybrid censoring schemes. Table 1 summarizes a recent literature review of the different 
censoring schemes. 

Table 1: Related work to the proposed problem 
Author(s) Name Method Scheme Failure Model Strategy 
Abdel-Ghaly et 

al. [11] 
SSALT Type-II Pareto distribution - 

Alam et al. [12], 
Alam and Aquil 

[13] 

CSPALT, 
SSPALT 

Progressive 
censoring, Adaptive 
Type-II progressive 
hybrid censoring 

Generalized inverted 
exponential 
distribution, 

Exponentiated Pareto 
distribution 

Maintenance 
service policy 

Abd El-Raheem 
[14, 15] 

CSALT, 
CSALT 

Complete sampling, 
Type-I censoring 

Extension of the 
exponential 
distribution 

- 

Balakrishnan et 
al. [16] 

SSALT Type-II censoring Exponential 
distribution 

- 

Xiaolin et al. [17] SSPALT Progressive Type-II 
hybrid censoring 

Modified Weibull 
distribution 

- 

Alam and Aquil 
[18] 

SSPALT Progressive 
censoring 

Generalized inverted 
exponential 
distribution 

Maintenance 
service policy 

Alam et al. [19] SSPALT Progressive 
censoring 

Power function 
distribution 

Maintenance 
service policy 
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Author(s) Name Method Scheme Failure Model Strategy 
Ismail [20, 21] SSPALT, 

SSPALT 
Adaptive Type-II 
progressively hybrid 
censoring, Adaptive 
Type-I progressively 
hybrid censoring 

Weibull distribution, 
Weibull distribution 

- 

Ismail [22] SSPALT Type-I progressive 
hybrid censoring 

 Weibull distribution -

El-Sagheer and 
Ahsanullah [23] 

SSPALT Type-II-Progressive 
censoring 

Lomax distribution - 

Zhou et al. [24] SSALT - Copula function Competing risk 
Srivastava and 

Mittal [25] 
SSPALT Type-I and Type-II 

censorings 
truncated logistic 

distribution 
- 

Proposed Work SSPALT Adaptive Type-II 
progressive hybrid 
censoring 

Generalized Inverse 
Rayleigh distribution 

- 

The proposed study is motivated by two factors. The first aims to establish explicit formulas 
for the likelihood and log-likelihood functions under an adaptive Type-II progressive hybrid 
censoring scheme. The second is to apply a Monte Carlo simulation study to estimate the 
performance of the model parameter estimators with an adaptive Type-II progressive hybrid 
censoring scheme in terms of biases and mean squared errors. The authors presented a study on 
SSPALT utilizing adaptive Type-II progressive hybrid censoring where the lifespan of test items 
follows the two parameters GIRD in this work.  

The uniqueness of this work stems from the fact that no earlier research has been conducted in 
this area using the proposed censoring scheme for two parameters GIRD. 

The present paper is arranged as; the model illustration and test procedure are presented in 
section 2. The point and interval estimation is presented in section 3. A simulation study is carried 
out in section 4 to check the performance of model parameters. The result based on the proposed 
problem and conclusion is provided in section 5. The real-life implementation of the proposed 
work is shown in section 6. 

II. Model Illustration and Test Process

The GIRD is one of the most beneficial and important distribution within the inverted scale 
distributions. It has been considered as an appropriate failure model in life testing and reliability 
analysis, for more details about GIRD one may refer to Fatima et al. [26]. The GIRD has lots of uses 
in the area of reliability theories. The Probability density function (pdf) of GIRD presents by the 
following equation (1); 

12 2( ) ( )
2 3
2

( , , ) 1 ; , , 0y yf y e e y
y


    



   
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 
(1)
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Figure 1: Pdf pattern of GIRD 

The cumulative density function (cdf) of GIRD presents by the following equation (2); 

2( )( , , ) 1 1 ; , , 0yF y e y


   
 

    
 

(2) 

Figure 2: Cdf pattern of GIRD 

The reliability function of GIRD is given by 

2( )( , , ) 1 yS y e


 
 

  
 

(3) 

Figure 3: Reliability pattern of GIRD  
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The hazard rate function of GIRD is presented by the following equation: 
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Figure 4: Hazard pattern of GIRD 

Figure 1 shows that the Pdf of GIRD is positively skewed, while the shape of Cdf is increasing 
as shown in Figure 2. Figure 3 and 4 show the Reliability and Hazard shapes of GIRD for different 
values of . The figure 3 shows that the reliability function of GIRD is downward skewed for 
different values of , , it becomes flatter and flatter as the shape parameter is increased. The 
behavior of instantaneous failure rate of the GIRD has an upside-down bathtub shape curve. 

The unimodel hazard rate function shows the possibility of decreasing failures as soon as the 
product has passed a particular moment, during some kind of stress on that product. Thus, the 
GIRD shows excellent statistical performance and can be a better model to fit real data in many 
scientific fields. 

Kumar and Garg [27] handled an estimation of parameters of GIRD based on randomly 
censored trials. Bakoban and Abubaker [28] presented the assumption of GIRD with real 
information applications. Bakoban and Abubaker [29] also proposed a study on the estimation of 
parameters of GIRD using progressive Type-II censoring.  

Under SSPALT the pdf of Y can be written as: 
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)(2 yf is attained by applying variable transformation that is projected by DeGroot and Goel 
[30] and the procedure is given in the following equation:
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In equation (6), T is the life span of the article in normal operating circumstances, while   is 
the time at which stress is changed (i.e., stress change time) and  is the acceleration factor.  

In life testing analysis, the Type-I and Type-II censoring ideas are the mainly well-liked and 
widespread plans. These schemes explain as follows, suppose there are napparatus situate on the 
investigation, then under Type-I censoring, the investigation carries on until reached a pre-
specified point .  But in Type-II censoring, the investigation carries on until a reached a pre-
specified quantity of components )( nm  . We cannot take out components from the live 
experimentation at any moment and any position except the opening point in these two schemes. 
This is the key weakness of these two schemes. To remove this weakness, progressive Type-II 
censoring or progressively Type-II hybrid censoring another censoring comes in light. Hybrid 
censoring is the mixture of two censorings, i.e., Type-I and Type-II censorings. So, the progressive 
Type-II censoring scheme is described as follows; 

In the progressive Type-II censoring scheme environment, the reliability practitioner presets 
the number of components to be unsuccessful (saym ) out of the total number of componentsn , 
placed under analysis. At the moment, when initial failure happens, 1R  components among 

1n leftover (surviving) components are randomly taken off from the life analysis. Similarly, 

2R of the leftover 12 Rn  examination components are eliminated from the analysis at the 

moment of the second failure. This practice continues until the mth  failure is reached. All the 
leftover 1...21  mm RRRmnR surviving examination components are eliminated 

from the examination at this point. The iR  units are situating before the work. The assumption 

related to progressive censoring and progressively is proposed by many authors such as 
Balakrishnan [31], Balakrishnan and Agrawala [32], etc. 

If a life examination experiment stops randomly at a moment ),min( :: nmmY , where 

nm 1 , 0 are determined prior to the experiment, and 

nmmnmnm YYY ::::2::1 ...   are the ordered lifetimes consequential from the study, then

),...,,( 21 mRRR are called progressively hybrid censoring (PHC) scheme. If the mthprogressive 

censored unit occurs before the point )( :: nmmY , then the investigation ends at the

moment nmmY :: . Else, the examination will end at the moment , where nmjnmj YY ::1::  

, hence all the leftover )(
1




j

i
i jRn existing units are censored at . Here j is a random 

variable and denotes the number of unsuccessful units up to . The reliability engineer comes 
with the problem of different censoring schemes, and the practitioner may observe a tiny test size 
(even it is equal to zero). So, this is not possible to happen with standard suggestion procedures to 
obtain good results. To remove such type of drawback, another censoring comes in light called 
adaptive censored samples. This was commenced by Ng et al. [33]. 

In this scheme, the observed quantity of failed unitsm is prefixed and the investigation 
moment is unlocked to run over the moment . The investigation will continue along with pre-
determined progressive censoring schemes ),...,,,( 321 mRRRR if ::mmY , otherwise, the

ongoing units (on work units), which following the ( j  1)th to (m 1)th experimental failures, are  
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not uninvolved from the analysis. All the surviving units 



j

i
im RmnR

1

are taken back from 

the test at the stage nmmY ::  if mobserved failures are obtained, i.e. 0... 11   mj RR . The 

progressive Type-II censoring takes place if n  and the conventional Type-II censoring takes 
place, if 0n . 

If the practitioner is free to vary the value , then this kind of censoring proposal is known as 
an adaptive progressively Type-II hybrid censoring (APHCT-II) scheme. This variation in  is 
completed to regulate the most advantageous of pointed investigation time and a better 
opportunity of supervising various failures.  

III. Estimation Process

Let nYYY ,...,, 21 be a life span of n independently and identically distributed units following the

GIRD. nnmnmJnmnnmnnmnm yyyyyy
uu ::::1::1::::2::1 ......     are completely observed 

(ordered) lifetimes. Both point and confidence interval estimation is presented in the following 
subsections: 

I. Point Estimation

In this section, we used the maximum likelihood estimation method. Under the SSPALT the 
likelihood function with APHCT-II for GIRD based on mobserved lifetime data takes the 
following form; 
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un is the amount of components that are unsuccessful in the normal circumstance and an is 

the number of components that are unsuccessful in accelerated circumstance. 

The log-likelihood function takes the following form; 
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To obtain maximum likelihood estimates (MLEs) of model parameters and acceleration factor, 
we differentiate the above equation for parameters  , and  equating to zero. 
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It is an impossible task to solve the above equations manually. Hence, an iterative procedure 
called the Newton Raphson technique is used to get the MLE of the model parameters and 
acceleration factor. 

II. Interval Estimation

The interval estimation for the model parameters and acceleration factor based on APHCT-II is 
obtained. The asymptotic distribution of MLE  , and   takes the following form presented in 
the following equations. 

   ),,(,0)ˆ)(ˆ(),ˆ( 1   IN  (12) 

The above procedure is suggested by Miller and Nelson [34]. ),,(1 I denotes the

variance-covariance matrix of  , and  . The 3 3 matrix 1I which is approximately equal to I

and the elements ),,(,1 
ijI , 3,2,1i ; 3,2,1j , closed to )ˆ,ˆ,ˆ( ijI  , under the APHCT-II 

are given as. 
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are given as: 

1 1
112 )ˆ,ˆ,ˆ(ˆ     IZ , 1 1

222 )ˆ,ˆ,ˆ(ˆ     IZ  and 1 1
332 )ˆ,ˆ,ˆ(ˆ     IZ

IV. Simulation study

Since it is theoretically not achievable to evaluate the presentation of different censorings for 
different values of model parameters. For this job, many software and simulation techniques are 
used. In this segment, the Monte-Carlo simulation procedure is applied to evaluate the efficiency 
of the MLEs. This efficiency is recorded based on the mean squared error (MSE) and bias of the 
MLEs. The following three progressive censorings are chosen for this assignment; 

 Scheme (I) 1321 ...  mRRRR , mnRm   

 Scheme (II) mnR 1 , 0...432  RRR  

 Scheme (III) 1321 ...  mRRRR , 12  mnRm  

For this task, 1000 simulation-based on MSEs and biases are estimated. The steps for this 
procedure are; 

 The values of parameters  ,,,,,mn  and   are specified first.
 After selecting the parameter values, we generate a random sample from GIRD of size

nby the inverse CDF method in both situations (regular and accelerated circumstances).
 Generate the PHC sample for the parameters  ,,,,,mn  and   by using the

technique discussed in equation (6).
 The sample data set for the APHCT-II is;

nnmnmJnmunnmunnmynm yyyyxy ::::1::1::::::1 ......   

 Find the values of the MSEs and the biases associated with MLEs of the parameters, the
computing values are presented in Table 2,3,4 and 5 at different values of parameters.

Table 2: The average MSEs and biases for  ,,, and  are set at 0.9, 1.4, 1.76, 2.4 and 6 

).( mn Schemes Values of    Values of    Values of   

Bias MSE Bias MSE Bias MSE 

(50,12) 
1 
2 
3 

0.856 
0.911 
0.743 

0.929 
0.998 
0.873 

0.498 
0.685 
0.584 

0.638 
0.694 
0.658 

0.574 
0.633 
0.593 

0.684 
0.693 
0.709 

(70,12) 
1 
2 
3 

0.502 
0.587 
0.522 

0.577 
0.676 
0.611 

0.476 
0.632 
0.564 

0.609 
0.698 
0.650 

0.543 
0.600 
0.578 

0.644 
0.676 
0.687 

(90,12) 
1 
2 
3 

0.411 
0.599 
0.431 

0.500 
0.680 
0.534 

0.386 
0.658 
0.489 

0.521 
0.705 
0.580 

0.465 
0.533 
0.498 

0.565 
0.590 
0.577 

(50,20) 
1 
2 
3 

0.343 
0.445 
0.365 

0.344 
0.587 
0.398 

0.300 
0.499 
0.387 

0.467 
0.612 
0.513 

0.398 
0.466 
0.440 

0.511 
0.554 
0.534 

(70,20) 
1 
2 
3 

0.233 
0.342 
0.287 

0.231 
0.498 
0.280 

0.190 
0.409 
0.298 

0.376 
0.546 
0.412 

0.300 
0.376 
0.333 

0.432 
0.467 
0.442 
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).( mn Schemes Values of    Values of    Values of   

Bias MSE Bias MSE Bias MSE 

(90,20) 
1 
2 
3 

0.143 
0.234 
0.188 

0.154 
0.409 
0.190 

0.122 
0.265 
0.198 

0.287 
0.387 
0.322 

0.198 
0.287 
0.209 

0.365 
0.398 
0.370 

Table 3: Average values of MSEs and biases when  ,,, and  are set at 0.7, 1.4, 1.76, 2.4 and 9 

).( mn Schemes Values of    Values of    Values of   

Bias MSE Bias MSE Bias MSE 

(50,12) 
1 
2 
3 

0.387 
0.435 
0.477 

0.508 
0.580 
0.546 

0.609 
0.655 
0.640 

0.673 
0.705 
0.642 

0.548 
0.715 
0.658 

0.698 
0.775 
0.739 

(70,12) 
1 
2 
3 

0.323 
0.408 
0.397 

0.410 
0.498 
0.433 

0.456 
0.509 
0.480 

0.521 
0.578 
0.547 

0.512 
0.598 
0.545 

0.574 
0.687 
0.632 

(90,12) 
1 
2 
3 

0.276 
0.322 
0.299 

0.324 
0.413 
0.356 

0.387 
0.433 
0.410 

0.454 
0.517 
0.489 

0.431 
0.508 
0.474 

0.511 
0.596 
0.541 

(50,20) 
1 
2 
3 

0.197 
0.354 
0.218 

0.250 
0.431 
0.288 

0.311 
0.465 
0.327 

0.386 
0.530 
0.416 

0.324 
0.534 
0.419 

0.434 
0.608 
0.487 

(70,20) 
1 
2 
3 

0.113 
0.265 
0.175 

0.176 
0.334 
0.212 

0.232 
0.379 
0.248 

0.318 
0.464 
0.354 

0.243 
0.465 
0.325 

0.353 
0.533 
0.397 

(90,20) 
1 
2 
3 

0.007 
0.175 
0.108 

0.119 
0.254 
0.175 

0.146 
0.299 
0.186 

0.243 
0.385 
0.278 

0.154 
0.386 
0.256 

0.265 
0.421 
0.290 

Table 4: Average values of MSEs and biases when  ,,, and  are set at 0.7, 1.4, 1.76, 2.8 and 9 

).( mn Schemes Values of    Values of    Values of   

Bias MSE Bias MSE Bias MSE 

(50,12) 
1 
2 
3 

0.334 
0.387 
0.354 

0.398 
0.446 
0.431 

0.387 
0.445 
0.412 

0.465 
0.576 
0.543 

0.480 
0.587 
0.535 

0.602 
0.715 
0.675 

(70,12) 
1 
2 
3 

0.296 
0.320 
0.312 

0.344 
0.400 
0.386 

0.297 
0.365 
0.345 

0.387 
0.487 
0.438 

0.429 
0.519 
0.482 

0.519 
0.630 
0.567 

(90,12) 
1 
2 
3 

0.230 
0.266 
0.240 

0.278 
0.342 
0.294 

0.204 
0.295 
0.256 

0.316 
0.416 
0.398 

0.349 
0.451 
0.380 

0.430 
0.579 
0.483 

(50,20) 
1 
2 
3 

0.187 
0.287 
0.209 

0.238 
0.360 
0.267 

0.138 
0.305 
0.178 

0.253 
0.436 
0.303 

0.227 
0.465 
0.283 

0.341 
0.583 
0.425 

(70,20) 
1 
2 
3 

0.129 
0.220 
0.148 

0.186 
0.287 
0.202 

0.008 
0.221 
0.120 

0.180 
0.254 
0.228 

0.145 
0.373 
0.220 

0.265 
0.454 
0.374 
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).( mn Schemes Values of    Values of    Values of   

Bias MSE Bias MSE Bias MSE 

(90,20) 
1 
2 
3 

0.007 
0.139 
0.102 

0.129 
0.198 
0.149 

0.004 
0.188 
0.009 

0.109 
0.169 
0.134 

0.100 
0.270 
0.139 

0.187 
0.378 
0.190 

Table 5: Average values of MSEs and biases when  ,,, and  are set at 1.5, 1.4, 1.76, 2.4 and 9 

).( mn Schemes Values of    Values of    Values of   

Bias MSE Bias MSE Bias MSE 

(50,12) 
1 
2 
3 

0.560 
0.677 
0.600 

0.593 
0.765 
0.712 

0.593 
0.709 
0.650 

0.656 
0.788 
0.693 

0.644 
0.723 
0.687 

0.734 
0.797 
0.755 

(70,12) 
1 
2 
3 

0.476 
0.588 
0.523 

0.499 
0.691 
0.633 

0.486 
0.628 
0.576 

0.575 
0.690 
0.620 

0.563 
0.659 
0.581 

0.665 
0.687 
0.671 

(90,12) 
1 
2 
3 

0.410 
0.593 
0.447 

0.453 
0.698 
0.560 

0.399 
0.645 
0.480 

0.484 
0.705 
0.563 

0.487 
0.667 
0.530 

0.556 
0.710 
0.600 

(50,20) 
1 
2 
3 

0.334 
0.450 
0.389 

0.407 
0.599 
0.523 

0.311 
0.513 
0.419 

0.422 
0.567 
0.497 

0.435 
0.574 
0.467 

0.523 
0.616 
0.586 

(70,20) 
1 
2 
3 

0.254 
0.334 
0.319 

0.306 
0.492 
0.345 

0.223 
0.460 
0.280 

0.375 
0.500 
0.386 

0.370 
0.479 
0.417 

0.455 
0.544 
0.478 

(90,20) 
1 
2 
3 

0.130 
0.252 
0.209 

0.233 
0.364 
0.288 

0.155 
0.359 
0.197 

0.284 
0.433 
0.357 

0.245 
0.332 
0.300 

0.374 
0.407 
0.431 

V. Application in Real Life Situation

SSPALT is now the most significant procedure of reviewing item trustworthiness rapidly, and the 
blueprint of capable investigation plans is a serious step to guarantee that SSPALTs can evaluate 
the item reliability correctly, quickly, and cheaply. With the encouragement of the national 
approach of civil-military integration, SSPALT will be mostly applied in the research and 
development of a variety of manufactured goods, and the SSPALT plan design hypothesis will face 
more challenges. To assist engineers in selecting suitable hypotheses and to stimulate researchers 
to build up the theories necessary in manufacturing, with the focal point on the demands for 
theory investigation that happen from the execution of SSPALT, this study reviews and 
summarizes the expansion of the SSPALT plan. The expansion of the theory and technique for 
setting up the most favorable SSPALT for shape-scale distribution, which is the most functional 
and grown-up theory of designing the optimal SSPALT, are explained in detail. Based on the 
theory of convenience for engineers to choose suitable techniques according to the troubles that 
originate in practice, this discussed will help to review the progress of optimal ALT plan design 
theory by taking the engineering problems occurring from the ALT execution as the key thread, 
provides strategy on choosing suitable theories for engineers, and suggests views about the vital 
solved theory problems for researchers. 

A real life data set is commenced to demonstrate how the ML estimation method works in 
practice based on real life data set from Nelson [35]. Table 6 is presented the data set and the data 
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set is correspond to the oil breakdown period of insulating fluid under two stress stages (34 
kilovolt (kv) and 36 kv), considering the data set under 34 kv as data under ordinary stress 
condition. Before further proceeding, we test the strength of GRID to fit the data listed in Table 6 
using Kolmogorov-Smirnov (K-S) test statistic and its corresponding p-value for each stress stage. 
The outcome is presented in Table 7. We can observe that the GRID fits better to the given data in 
the two stress stages because the p-values are greater than 0.05. The MLEs, p-values and K-S 
statistic are presented in Table 7. 

Table 6: Stress values and complete failure data 
Stress (in kv) Complete failure data 

34 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 
32.52, 33.91, 36.71, 72.89 

36 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.9, 3.67, 3.99, 5.35, 13.77, 25.5 

Table 7: MLEs of the parameters, p-value and K-S statistic 
Parameters Stress (in kv) K-S p-value 

1.2065, 3.0873, 1.2189     34 0.1562 0.5422 
36 0.1752 0.1290 

VI. Results and Conclusion

From Tables 2 to 5, it is concluded that the MLE is consistent and asymptotically normally 
distributed and one can realize that the biases and MSEs decrease as sample size increase for 
different values of parameters, which proves the efficiency of MLE. 

The study deals with SSPALT by using an adaptive Type-II progressively hybrid censoring 
scheme for GIRD with a maximum likelihood estimation procedure. The numerical values of 
MLEs of distribution parameters are attained using the Newton-Raphson technique, and the 
performances of parameters are recorded in terms of MSEs and biases. Superb efficiency in 
estimating distribution parameters is examined under APHCT-II due to the huge sample size 
attained. So, APHCT-II is an excellent option for reliability practitioners to attain a greater 
efficiency of the distribution parameters. In the future, this work can be extended for different 
failure distributions under the Bayesian atmosphere. 
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Abstract 

Regression methods are used for the estimation and prediction in various fields of statistical study. It is a statistical 
method commonly used for determining the degree of relationship between a response and a number of explanatory 
variables. These explanatory variables may correlate each other and lead to multicollinearity. More than two predictor 
variables with high correlation show the existence of multicollinearity which results in the estimator having a high 
variance. Ordinary Least Square estimation fails to give a better regression estimator, when the model's presumptions 
are not met. This paper explores the various methods which can tolerate the problems of multicollinearity and outliers. 
This study compares different types of regression estimators such as Ordinary Least Square, Robust, Ridge, and Liu by 
computing various error values such as Mean Absolute Error, Root Mean Square Error, Mean Absolute Percentage 
Error and R2 under real environment that has both multicollinearity and outliers. To compare the fit of the 
aforementioned regression models, the Akaike Information Criterion was also calculated. According to the error measures 
and AIC this study concludes that the Liu regression estimator performs well when compared with the other estimation 
methods.  

Keywords: Regression, Multicollinearity, Outliers, Ridge, Liu 

I. Introduction

OLS estimator is the commonly used method to predict the parameters of a regression model when 
all the assumptions of the model are satisfied. The problems that would be affected the results of 
this method are multicollinearity and outliers. Multicollinearity is the situation where the 
explanatory variables have highly interdependent. It will increase the error values and thus the 
estimator may unreliable. Hoerl and Kennard [1] develop a regression procedure to control 
multicollinearity. 

An outlier is a data observation that is unusual. It results the estimator to be not efficient 
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and changes the sign of the regression coefficients. Mendenhall and Sincich [7] give the definition of 
outlier as value with absolute standardized error greater than 3. Robust regression methods are 
usually used to obtain a better result when there are outliers. The main purpose of this paper is to 
compare different regression methods and identify the good one with better estimator in the 
presence of both multicollinearity and outlier. 

The rest of the paper is structured as follows. In section 2, various regression estimators like 
OLS, Robust regression, Ridge regression and Liu regression are explained briefly. The performance 
of these regression procedures is studied under real environments and the results are summarized 
in section 3 and conclusion of the study is presented in the last section.  

II. Regression Methods

Regression analysis is used to draw inferences from data when there is a connection between the 
response and the predictor variables, according to Draper and Smith [9]. These approaches in 
machine learning come in a variety of forms, and their use depends on the type of data being used. 
It is the primary method to solve the problems in machine learning using data modeling. This 
paper includes the methods OLS, Robust, Ridge and Liu with the comparison of error measures 
under different real datasets having the presence of both outliers and multicollinearity. Outliers are 
identified by the Cook’s distance procedure and the analysis has been carried out using R software.  

Ordinary Least Squares (OLS) 
Ordinary Least Squares (OLS) is a technique used to predict the dependent variable (y) 

with the help of a number of predictor variables (X). It is the popularly used and Best Linear 
Unbiased Estimator (BLUE) when all the suppositions of the classical regression model are 
satisfied [Aitken [3]]. The general model of an OLS method with k independent variables is given 
by 
 𝑦 = 𝑋𝛽 + 𝜀  (1) 

where 𝒚 is the (𝑚 × 1) vector of response variable, 𝑿 is a (𝑚 × 𝑘) matrix, 𝜷 is a (𝑘 × 1) vector of an 
unknown regression parameters and 𝜺 is a (𝑚 × 1) vector of residual term that is considered to be 
independently and identically distributed as normal with mean zero and fixed variance  𝜎ଶ.  The 
OLS estimator for the unknown parameter is  

  𝛽ை௅ௌ
෣ =  (𝑋ᇱ𝑋)ିଵ (𝑋ᇱ𝑦)  (2) 

The performance of  𝛽ை௅ௌ
෣   will be statistically insignificant when multicollinearity exists between 

the explanatory variables.  

Robust Regression 
Robust regression is an alternative approach to the classical regression model, when the 

nature of the data deviates from the key assumptions. The goal of robust regression is to get 
beyond some of the drawbacks of conventional regression analysis. Under normal distribution 
with no outliers, this robust method should produce approximately the similar results as OLS.  In 
this section robust regression method like Least Trimmed Square (LTS), Least Median Square 
(LMS) and M were described. 

 Least Trimmed Square (LTS) 

Least Trimmed Square (LTS) is a robust regression method developed by Rousseeuw [11]. 
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This method has an objective function of the lowest trimmed of squared residuals as 

 ∑ 𝑟௜
ଶ(𝛽)௛

௜ୀଵ                                                                                                                                                        (3) 

where  𝑟ଵ

ଶ
(𝛽) ≤ ⋯ ≤  𝑟௡

ଶ
(𝛽)  are the ordered residuals for 𝑖 = 1,2, … , 𝑛.  The number of 

observations that are not trimmed from the dataset is denoted by ℎ.  LTS minimizes the trimmed 
sum of these squared residuals. Its estimator is equal to the OLS estimator only when ℎ = 𝑛. The 
estimator  𝛽௅்ௌ

෣  is estimated by minimizing the sum of residuals over 𝛽 is given by 

 𝛽௅்ௌ
෣  = 𝑎𝑟𝑔min

ఉ
∑ 𝑟௜

ଶ
(𝛽)௛

௜ୀଵ   (4) 

LTS can be calculated for 𝛼, the trimming proportion tending to 50%. It attains the maximum 
possible breakdown point at ℎ = ൫𝑛

2ൗ ൯ + [(𝑝 + 1) 2⁄ ]. The computation of LTS estimator uses an
algorithm called FAST-LTS of Rousseeuw and Van Driessen [10]. 

 Least Median Square (LMS) 
The Least Median Square (LMS) estimator was suggested by Rousseeuw [15]. Being a 

robust regression technique, the least median of squares method is not sensitive to outliers or other 
breaches of the normal model's assumption. In this method the sum is replaced by median in the 
method of least squares. Here the parameters are estimated by reducing the median of the squared 
residuals. The least median square estimator can be given by 
 𝛽௅ெௌ
෣  = 𝑎𝑟𝑔 minఉ  𝑟௛

ଶ
(𝛽)                                                                                                                               (5) 

where  𝑟௛

ଶ
(𝛽) is a median. LMS is robust due to its breakdown value of 50%. 

 M Estimator (M) 
M-estimators and their asymptotic properties were introduced by Huber [5]. Here the M

stands for "maximum likelihood type". This method laid the foundation for the growth of the other 
robust methods in the context of regression estimators.  M-estimation attempts to reduce the 
squared residuals 𝑟௛

ଶ in OLS by another function of these 𝑟௛
ଶ 

min௜ ∑ 𝜌(𝑟௛)௡
௛ୀଵ   (6) 

𝜌(𝑟௛) is introduced for reducing the effect of outliers, where 𝜌 is a  definite positive, symmetric 
function with zero as its unique minimum. An algorithm was developed by Susanti et al. [16] for 
computing the M estimator.  

Ridge Regression (RR) 
Ridge Regression (RR) developed by Hoerl and Kennard [1] to give a reliable regression 

estimates even in the presence of multicollinearity. It produces an estimator that is biased and will 
be associated with the constant k that is used to reduce the bias. Hoerl et al. [2] find out a formula 
for the calculation of an optimal ridge constant k such that  
𝑘 = ௣ఙෝమ

∑ ఈഢෞమ೛
೔సభ

 (7) 

where 𝑝 denotes the number of predictor variables, 𝜎ොଶ is the estimated variance and 𝛼పෝ  is a 
conventional OLS regression parameter. Ridge regression depends on this constant 𝑘 and will give 
a biased estimator as given below. 

   𝛽ோோ
෣  = (𝑋ᇱ𝑋 + 𝑘𝐼 )ିଵ (𝑋ᇱ𝑦) (8)
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Liu Regression (LR) 
Liu Regression (LR) is used to deal with datasets having multicollinearity. It was proposed 

by Liu [6]. It forms a new class of biased estimators called Liu estimators. These estimators are 
depending upon a biasing parameter 𝑑 called the Liu parameter which lies between 0 and 1. The 
estimator of Liu regression is given by 

𝛽௅ோ
෢  = (𝑋ᇱ𝑋 + 𝐼௣ )ିଵ (𝑋ᇱ𝑦 +𝑑 𝛽ை௅ௌ

෣ )  (9) 

where 0 ≤ 𝑑 ≤ 1, 𝐼௣ is the identity matrix of order 𝑝 × 𝑝 and  𝛽ை௅ௌ
෣  is the OLS estimator. 𝛽௅ோ

෢  is the 
Liu estimator named by Akdeniz and Kaciranlar [4]. The 𝑑 value with the minimum Mean Square 
Error (MSE) gives an efficient estimator. The R package liureg developed by Muhammad 
Imdadullah et al. [8] provides the tools for the computation of the estimator and the biasing 
parameter. 

III. Experimental Results

Table 1: Computed error measures and AIC under various regression methods (Acetylene Data) 

 Regression Methods 

Errors  OLS  LTS  LMS      M  RR       LR 

MAPE  0.284  0.195  0.194  0.262  0.210  0.195 

MAE  0.008  0.009 
 RMSE  0.009  0.016 
 R2 0.900  0.711 
 AIC  93.24  383.09 

 0.009  0.007  0.034  0.007 
 0.016  0.008  0.044  0.009 
 0.728  0.918  0.990  0.992 

 331.99   183.86    42.10     42.09 

 Table 2: Computed error measures and AIC under various regression methods (Prostate Cancer Data) 

 (.)Without outlier 

 Regression Methods 

Errors  OLS  LTS  LMS  M  RR  LR 

MAPE  2.33  2.51 
 (2.17)  (2.27) 

 2.59  2.34  2.23  2.21 
 (2.62)  (2.32)  (2.11)  (2.10) 

MAE  0.56  0.64 
 (0.48)  (0.97) 

RMSE  0.68  0.86 
 (0.58)  (1.32) 

R2 0.66  0.46 
 (0.73)  (0.70) 

AIC  219.54  91.35 

 0.69  0.56  0.56  0.55 
 (0.93)  (0.90)  (0.47)  (0.47) 

 0.97  0.68  0.68  0.67 
 (1.30)  (1.25)  (0.58)  (0.57) 

 0.31  0.66  0.67  0.67 
 (0.67)  (0.70)  (0.73)      (0.74) 

 117.08  62.51  62.99  60.29 
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Table 3: Computed error measures and AIC under various regression methods (Hald Data) 

 (.)Without outlier 

The experimental studies were carried out under real environments to study and compare the 
performance of the various regression procedures and thus obtained results were discussed in this 
section. The numerical studies have been conducted by considering three different case studies 
under real datasets in which the first data has the presence of multicollinearity and no outliers. The 
second one has a presence of moderate multicollinearity and outliers. And the third dataset has the 
presence of high multicollinearity and outliers. The outliers in the real data sets were detected and 
removed by using cook’s distance, Cook [12] and the analysis has been carried out using R 
software. The presence and absence of multicollinearity has been identified by computing Variance 
Inflation Factors (VIF). The overall impact of the regressors' dependencies on each term's variance 
is measured by the VIF for each term in the model. VIF is 1 indicates that there are no correlation 
between the variables. Moderate correlation is indicated by a VIF between 1 and 5. VIF more than 
5 is an indication of high multicollinearity between the variables. The error measures under OLS, 
LTS, LMS, M, RR and LR estimators were calculated by considering with and without outliers and 
are summarized in tables.  

The Acetylene data set contains the percentage of n-heptane that is converted to acetylene, 
together with three independent variables. These are typical data from a chemical process, and a 
full quadratic response surface in each of the three regressors is sometimes regarded as a suitable 
preliminary model. It has 16 observations and 4 variables in which conversion of n-Heptane to 
Acetylene (y) is considered as the dependent variable and Reactor Temperature (X1), Ratio of H2 
to n- Heptane (X2), Contact Time (X3) are taken as the independent variables. Cook’s distance is 
used to check the presence of outliers in the dataset and there are none to be found. The VIF 
measures are higher than 10 and hence the dataset has high multicollinearity. The computed error 
measures and AIC value under various estimators of the dataset are given in Table 1. 

The second data come from a study that looked at how males undergoing radial 
prostatectomy correlated their level of prostate-specific antigen with several clinical measures. The 
data is available in the R-package “lasso2”. It has 97 observations, and there are seven independent 

 Regression Methods 

Errors  OLS  LTS  LMS  M  RR  LR 

MAPE  0.04  0.04 
 (0.01)  (0.01) 

 0.12  0.03  0.03  0.03 
 (0.02)  (0.01)  (0.01)  (0.01) 

MAE  0.78  0.91 
 (0.96)  (0.89) 

RMSE  0.96  1.51 
 (1.29)  (1.64) 

R2 0.996  0.991 
 (0.99)  (0.99) 

AIC  47.67  39.69 

 3.89  0.75  0.81  0.75 
 (2.53)  (0.85)  (0.95)  (0.90) 

 6.43  0.97  0.99  0.95 
 (3.70)  (1.28)  (1.32)     (1.25) 

 0.841  0.996  0.996  0.997 
 (0.93)  (0.99)  (0.99)    (0.99) 

 46.95  22.19  10.13  6.72 
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variables namely lweight (log of prostate weight), age, lbph (log of benign prostatic hyperplasia 
amount), svi (seminal vesicle invasion), lcp (log of capsular penetration), gleason (Gleason score), 
lpsa (log of prostate specific antigen) and one dependent variable lcavol (log of cancer volume). 
Seven outliers are found in this dataset and eliminated using Cook's distance. Since the VIFs of the 
independent variables are in between 1 and 5, there is an indication of moderate multicollinearity. 
The error measures and AIC calculated under different estimators are shown in Table 2. 

Woods et al [17] was introduced the Hald or Portland Cement Data. It has been 
extensively analysed by Hald (1952), Hamaker (1962) and Kaciranlar et al (1999). This data frame 
contains 13 observations with four independent variables. They are tricalcium aluminate (X1), 
tricalcium silicate (X2), tetracalcium aluminoferrite (X3) and β-dicalcium silicate (X4). The response 
variable Y is the evolved heat after 180 days in a cement mix. Since the Variance Inflation Factors 
(VIF) of this Hald data set was greater than 10, the explanatory variables are highly correlated. As 
a result, the dataset has high multicollinearity. Also this data set has three outliers, which are 
found and eliminated by using Cook's distance. The computed error measures and AIC under 
various estimators are given in Table 3. 

The results from Table 1, Table 2 and Table 3 demonstrate that the error levels for various 
estimators differ from one another, with LR having the lowest of all these. Also the AIC value of 
LR is minimum compared to the other estimators. Thus, for a dataset having high multicollinearity 
and outliers, the Liu (LR) regression estimator is more effective than the other estimators.        

IV. Conclusion
Statistical learning techniques play a vital role in almost all the field of research study. Regression 
analysis is one of the statistical learning techniques. In general, the commonly used linear 
regression procedure will not be sufficient to build a regression model when data deviates from 
the modelling assumptions. Hence, there is a need of alternatives to build a good model for the 
given dataset. This paper explores various regression procedures such as OLS, Robust, Ridge and 
Liu.  Further, evaluates their performance on different real datasets by considering the problems of 
multicollinearity and outliers by computing various error measures along with AIC value.  On the 
basis of error and AIC values, the study concluded that the Liu regression procedure gives a better 
estimator for modelling the data when the dataset having multicollinearity and/or outliers. 
Further, this regression procedure can be beneficial to researchers, who work on machine learning 
techniques by considering the factors such as multicollinearity, outliers and high dimensionality.  
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Abstract

A three-parameter distribution known as the Generalized Weibull (GW) or Exponentiated Weibull
distribution is studied in this work. We construct Baye’s estimators for the unknown parameters and
present reliability function using progressive type I interval censoring data. Two different loss functions,
namely, squared error loss and general entropy loss functions are applied to derive Baye’s estimators.
It is observed that there is no closed-form solution for Baye’s estimators as well as for MLE. Hence,
Lindley’s approximation procedure is applied to obtain Bayesian estimator of unknown parameters, and
Newton Rapson method is employed to obtain MLE’s numerically. The corresponding reliability function
is derived. Monte Carlo simulation is used to obtain MLE. Further, the performance of MLE and Bayes
estimators are compared in terms of their respective MSE and Relative errors. It is noted by numerical
computation that MLE’s performs better than Bayes estimators. In addition to this, Bayes estimators
obtained using Squared error loss function and general entropy loss function are compared. It is observed
through numerical computation that general entropy loss function is better in terms of MSE.

Keywords: Bayesian infer ence, Exponentiated Weibull distribution, Lindle y’s appr oximation,
Maximum likelihood function, Monte Carlo simulation, Relativ e error.

1. Introduction

When it comes to analyzing data and adapting it to practical situations, statistical distributions
are crucial. Weibull or Gamma distributions are typically emplo yed to fi the data in real-w orld
scenarios. In sur viv al analysis, the Gamma distribution has mor e major applications than all
other distributions. But the main dra wback of Gamma distribution is that the sur viv al function
cannot be obtained in closed for m unless the shape parameter is an integer . This makes Weibull
distribution mor e popular than Gamma distribution. Its sur viv al function and failur e rate are
simple and easy to analyze. And this distrib ution is easy to handle the censoring data because
of that, in recent years Weibull distribution is mor e popular in analyzing lifetime data. The
Exponentiated Weibull distribution (EW) or Generalized Weibull distribution, w as firs described
by [24] as a w ay to extend the Weibull family of tw o parameters by one mor e shape parameter .
This distribution yields better fit than classic models such as exponential, gamma, Weibull,
and log-nor mal distribution. Owing to its flexibilit in modeling a wide range of industrial
data, the EW distribution may be widely and efficientl ap plied in reliability applications. The
fundamental featur e of this family is that it supports bathtub-shaped as well as unimodal hazar d
rates, in addition to numer ous monotone hazar d rates. The applications of this distribution were
firs de veloped by [24]. Using fi e dif ferent classical failur e data sets obtained for the Bus-motor
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system, [25] demonstrated the potential unfulness and flexibilit of EW distribution. It is a sub-
model of a generic class of exponentiated distributions suggested by [11]. Generalized Weibull
distribution w as used by [26] to model sur viv al data. The reliability and sur viv al functions of
this distribution were studied by [23]. Further statistical featur es and the importance of this
distribution are addr essed by [29] and [28]. The moments of the EW distribution were deter mined
by [8]. EW distribution w as compar ed on tw o-parameter Weibull and Gamma distributions in
[32] study with regar d to the failur e rate. Exponentiated Weibull family distributed lifetime
data obser ved under Type I progr essiv e inter val censoring with random remo vals were analyzed
by [6]. Bayesian estimate and prediction for the EW distribution using both infor mativ e and
non-infor mativ e priors w as examined by [21]. After fittin a Weibull distribution and an EW
distribution to the wind speed data and deter mining the mean and variance, [9] estimated the
parameter using the MLE me thod. The non-Ba yesian estimators methods for parameters of EW
distribution studied by [4].The discr ete case of EW distribution studied by [30]. The entr opy and
stress-str ength model of EW distribution studied by [3]. Numerical estimation of parameters of
EW distribution based on generalized progr essiv e hybrid censoring scheme studied by [10]. In
recent years, estimation of EW distribution under progr essiv e type II censor ed data studied by
[22].
The fundamental featur e of this family is that it supports bathtub-shaped as well as unimodal
hazar d rates, in addition to numer ous monotone hazar d rates. The EW distribution is define in
the follo wing w ay.
It has distribution function giv en by

F(x; α, β, λ) = (1 − e−(λx)β
)α, x > 0 and α, β, λ > 0 (1)

and ther efor e its probability density function is of the for m

f (x; α, β, λ) = αβλβx(β−1)e−(λx)β
((1 − e−(λx)β

)α−1) (2)

The corresponding reliability function is giv en by

R(x; α, λ) = 1 − (1 − e−(λx)β
)α (3)

and the hazar d rate is
h(x) =

f (x)
1 − F(x)

, x > 0 (4)

Note her e that, the shape parameters are α and β, and the scale parameter is λ.
Several well known distributions are particular cases of the EW distribution. For example, the
Exponential distribution is the case when α = 1and β = 1, the Weibull Distribution is define
with α = 1, Rayleigh Distribution with α = 1 and β = 2, β = 1 Generalized Exponential (GE)
Distribution studied by [12], [13], [15], [17] [18], [37] and [39]. β = 2 Two parameter Burr Type
X or Exponentiated Rayleigh(ER) or Generalized Rayleigh(GR) Distribution studied by [2], [36],
[16], [14], [43], [38], [5] and [27] among others. Fig.(1) and Fig.(2) repr esents the many for ms of
these distributions graphically .

It w as disco vered that the EW family is a very versatile family that may be uti lized to describe
many sorts of ske wed lifetime data. In reliability analysis, censoring is quite prevalent. It occurs
when specifi failur e times for a subset of test units in an experiment are detected.
In industrial life testing and medical sur viv al analysis, very often the object of inter est is lost
or withdra wn befor e failur e or the object’s lifetime is only known within an inter val. Hence,
the obtained sample is called a censor ed sample (or an incomplete sample). The most common
censoring schemes are type-I censoring, type-II censoring and progr essiv e censoring. For type-I
censoring, life testing ends at a pre-scheduled time and for type-II censoring, life testing ends
whene ver the number of lifetimes is reached. In type-I and type-II censoring schemes, the tested
items are allo wed to be withdra wn only at the end-of-life testing. In the progr essiv e censoring
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Figure 1: Graph of EW distribution for different values of α, β and for fixed λ = 0.5

scheme, the tested items are allo wed to be withdra wn at some time befor e the end-of-life testing.
See [7] for mor e infor mation about progr essiv e censoring combined with type-I or type-II and
their applications. Using the concepts of progr essiv e censoring, type I censoring, and inter val
censoring, [1] de veloped progr essiv e type I inter val censoring. Combining progr essiv e censoring
and type-II censoring, [18] and [34] inv estigated Bayesian infer ence for Weibull distribution
and generalized exponential (GE) distribution, respectiv ely. It should be emphasized that in
many practical situations, unit lifetime is set on an inter val, ther efor e type I inter val censoring
is beneficia in these instances (see,[ 1]). It may be noted that in real-life situations, the lifetime
of units may not be recor ded precisely due to some reasons, such as technical problems, non-
availability of experimental resour ces or due to some unkno wn human errors, or some cost-sa ving
measur es emplo yed by the industr y. Thus such censor ed data generated can be used effectiv ely
in analyzing the reliability characteristics of well-kno wn distribution, such as the mor e general
class of distribution, namely , EW distribution, which gained lots of importance in recent times.
The importance of progr essiv e type-I inter val censoring in handling practical problem has been
studied by authors, namely , [6] and [19]. The concept of progr essiv e type-I inter val censoring to
the Weibull distribution and compar ed many dif ferent estimation methods for tw o parameters in
the Weibull distribution via simulation introduced by [31]. The recent study about progr essiv e
type I inter val censoring is On infer ence and design under progr essiv e type-I inter val censoring
scheme for inv erse Gaussian lifetime model by [40]. A Study on the experimental design for the
lifetime perfor mance index of Rayleigh lifetime distribution under progr essiv e type I inter val
censoring by [44]. Optimal design of accelerated life tests under progr essiv e type I inter val
censoring with random remo vals by [46], and experimental design for progr essiv e type I inter val
censoring on the lifetime perfor mance index of Chen lifetime distribution by [45].
All the works available in the literatur e aims at obtaining estimators of parameters of EW
distribution based upon, either data obtain from complete censoring or from type I censoring,
type II censoring, hybrid censoring, etc. No work in the literatur e addr esses the estimation of
parameters of EW distribution based upon progr essiv e type I inter val-censor ed data. Ther efor e we

RT&A, No 1 (77)
 Volume 19, March 2024

344



M. Kumar and K P Asw athi
EWD:BA YESIAN ESTIMA TION USING PROGRESSIVE TYPE I
INTER VAL CENSORING

Figure 2: Graph of EW distribution for different values of α, β and for fixed λ = 1

consider in the next sections the deriv ation of MLE and Bayes estimators from data obtained via
progr essiv e type I inter val censoring for EW distribution. Section 2 provides a brief fundamental
requir ed for obtaining estimators based on censor ed data. Some simulation results and discussion
based upon the results obtained are presented in Section 3. The conclusion and futur e scope of
resear ch are giv en in Section 4.

2. Bayesian estimation using progressive type I interval censored data

In this section, we discuss the brief overvie w of the ter ms used in this paper and the procedur e of
obtaining Baye’s estimators for Parameters and reliability function of EW distribution.

2.1. Progr essiv e type I inter val censor ed data and the likelihood function

Statistical infer ence for exponential distributions using progr essiv e type I inter val censor ed data
and pioneer ed type I inter val censoring in a progr essiv e censoring scheme de veloped by [1].
Under progr essiv e type I inter val censoring, obser vations are only known within tw o successiv ely
pre-scheduled timeframes, and items may be allo wed to be deleted at pre-scheduled time points.
The progr essiv ely type I inter val censor ed sample may be generated in the follo wing manner:
Let n units be put on a life testing platfor m simultaneously at time t0 = 0 and under examination
at m pre-specifie time periods t1 < t2 < ... < tm wher e tm is the predeter mined time to end the
experiment. The number of failur es Xi within (ti−1, ti] is recor ded and Ri sur viving items are
randomly remo ved from the life testing at the ith inspection time, ti, for i = 1, 2, ..., m. Because the
number of sur viving items, Yi, is an random variable and the precise number of items remo ved at
time schedule ti should not be larger than Yi, Ri might be calculated by a pre-specifie per centage
of the remaining sur viving units at ti for giv en i = 1, 2, ..., m.
For example, giv en certain pre-specifie per centage values say, p1, p2, ..., pm−1 and pm = 1, Ri
can be deter mined by using Ri = f loor[piYi] at each inspection time ti, wher e f loor[x] yields
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x’s biggest integer . Ther efor e, a progr essiv e type-I inter val censor ed sample with size n, can be

denoted as D = (Xi, Ri, ti)m, i = 1, 2, ..., m. If Ri = 0, i = 1, 2, ..., m − 1 and Rm = n −
m
∑

i=1
Xi, then

the type-I inter val-censor ed sample gradually shrinks to the typical inter val-censor ed sample.
Giv en the progr essiv ely type-I censor ed data, D = (Xi, Ri, ti)m of size n, from a continuous
lifetime distribution with CDF F(t; κ), then the likelihood function is giv en as follo ws

L(D | κ) ∝
m

∏
i=1

[F(ti; κ)− F(ti−1; κ)]Xi [1 − F(ti; κ)]Ri , (5)

wher e t0 = 0 and θ is the para meter vector. The mor e details of progr essiv e type I inter val
censoring can be seen in [33].
For the EW(α, λ, β) , the likelihood function (5) can be define in the follo wing manner:

L(D | α, λ, β) ∝
m

∏
i=1

[(1 − e−(λti)
β
)α − (1 − e−(λti−1)

β
)α]Xi [1 − (1 − e−(λti)

β
)α]Ri . (6)

The log-likelihood function is thus giv en by

l(α, λ, β) ∝
m

∑
i=1

Xiln[(1 − e−(λti)
β
)α − (1 − e−(λti−1)

β
)α] + Riln[1 − (1 − e−(λti)

β
)α]. (7)

2.2. Maximum likelihood function

In this section, we discuss the Maximum likelihood estimation to estimate unkno wn parameters
α, λ, β, and the reliability function R(t) for EW distribution define in (1) using the numerical
method.
By setting the deriv ativ es of the log likelihood function with respectiv e to α, λ or β to zer o, the
MLEs of α, λ and β are the solutions to the follo wing likelihood equations

m

∑
i=1

[
Xi

(
∂Fi
∂α − ∂Fi−1

∂α

Fi − Fi−1

)]
=

m

∑
i=1

[
Ri

(
∂Fi
∂α

1 − Fi

)]
m

∑
i=1

[
Xi

(
∂Fi
∂λ − ∂Fi−1

∂λ

Fi − Fi−1

)]
=

m

∑
i=1

[
Ri

(
∂Fi
∂λ

1 − Fi

)]

and

m

∑
i=1

Xi

 ∂Fi
∂β − ∂Fi−1

∂β

Fi − Fi−1

 =
m

∑
i=1

Ri

 ∂Fi
∂β

1 − Fi


Ther e is no closed for m of the solution to the abo ve equations and numerical methods can be
used to obtain the MLEs from the abo ve likelihood equations. Since ther e is no closed for m of the
MLE, Ne wton-Raphson method is introduced as follo ws for findin the MLEs of α, λ and β.
One of the most used methods for optimization in statistics is the Ne wton-Raphson method(or
Ne wton™s rule). Assume that l only inv olv es a one-dimensional parameter and that ϑ is our
curr ent best guess on the maximum of l(ϑ). l(ϑ) can be appr oximated by emplo ying a Taylor
series expansion around ϑ. Hence we have

lϑ(ϑ) = l(ϑ) + l′(ϑ)(ϑ − ϑ) +
1
2

l′′(ϑ)(ϑ − ϑ)2.
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When ϑ is close to ϑ, the dif ference l(ϑ)− l(ϑ)(ϑ) is small. The maximum value of l(ϑ)(ϑ) is closer
to the maximum value of l(ϑ) than l(ϑ).
The gradient of l(ϑ)(ϑ) at ϑ is

l
′
(ϑ)(ϑ) = l′(ϑ) + l′′(ϑ)(ϑ − ϑ)

and the Hessian or second deriv ativ e is

l
′′
(ϑ)(ϑ) = l′′(ϑ).

At the point ϑ, l(ϑ) and l(ϑ)(ϑ) have equal firs and second deriv ativ es. In the case of log likelihood
function Hessian is same as the minus of obser ved infor mation evaluated at ϑ = ϑ, l′′(ϑ) = −J(ϑ).
In the optimum point of the appr oximation, l(ϑ)(ϑ) has a gradient equal to zer o, giving the
follo wing equation:

l′′(ϑ)(ϑ − ϑ) = −l′(ϑ).

Solving with respect to ϑ, we get

ϑ = ϑ − l′(ϑ)
l′′(ϑ)

.

This giv es a procedur e for optimizing l(ϑ)(ϑ). An iterativ e procedur e for optimizing l(ϑ) is giv en
by

ϑ(s+1) = ϑ(s) − l′(ϑ(s))

l′′(ϑ(s))

which is the Ne wton-Raphson Method. The procedur e is run until ther e is no significan dif ference
betw een ϑ(s) and ϑ(s+1).
When l(ϑ) is a log likelihood function, this algorithm can be written as

ϑ(s+1) = ϑ(s) − s(ϑ(s))

J(ϑ(s))

wher e s(ϑ) is the scor e function while J(ϑ) is the obser ved infor mation matrix.

2.3. Bayesian Estimation

In this section, we discuss the Bayesian technique to estimate unkno wn parameters α, λ, β, and
the reliability function R(t) using the Squar ed error loss and general entr opy loss functions.
Assume that all parameters, namely , α, λ and β of EW distributions are unkno wn and independent.
We addr ess the problem of constructing Baye’s estimators for these parameters. We assume
non-infor mativ e priors for α and β, and conjugate prior for λ. The reason for choosing these prior
for ms is duo to their simplicity of in obtaining mathematically treatable posterior distributions.
We obser ve that such priors are successfully applied by many authors, namely , [ [33] and [35]].
The follo wing equations giv e respectiv e definition of prior densities.

π1(α) =
1
α

, α > 0 (8)

π2(λ) =
ba

Γ(a)
λa−1e−bλ, λ > 0, a, b > 0 (9)
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and
π3(β) =

1
β

, β > 0 (10)

respectiv ely wher e Γ(.) is the gamma function.
We consider tw o dif ferent for m of loss functions in estimating the parameters of EW density . The
firs one is a symmetric loss function, the squar ed error loss function(SEL), which is giv en by

L1(ζ, ζ̂) = (ζ̂ − ζ)2, (11)

wher e ζ̂ is the estimate of parameter ζ. Then the Bayesian estimate of any function q = q(α, λ, β)
is obtained by considering follo wing equation

q̂ = E(q | D) =

∫
α

∫
λ

∫
β q(α, λ, β)l(α, λ, β)π1(α)π2(λ)π3(β)dαdλdβ∫

α

∫
λ

∫
β l(α, λ, β)π1(α)π2(λ)π3(β)dαdλdβ

(12)

The second loss function, is the generalization of the Entr opy loss used by several authors ([41]
and [42]). The General Entr opy loss(GEL) is defin as:

L2(ζ, ζ̂) ∝

(
ζ̂

ζ

)c

− c log
ζ̂

ζ
− 1, (13)

wher e ζ̂ is an estimate of parameter ζ. It may be noted that when c > 0, a positiv e error causes
mor e serious consequences than a negativ e error. On the other hand, when c < 0, a negativ e error
causes mor e serious consequences than a positiv e error. Then the Bayesian estimator of q(α, λ, β)
under this general entr opy loss function is

q̂GEL = [E(q−c)]−
1
c , (14)

provided that E(q−c) exists and is finite It can be sho wn that, when c = 1 , the Bayes estimate
(12) coincides with the Bayes estimate under the weighted squar ed-err or loss function. Similarly ,
when c = −1 the Bayes estimate (14) coincides with the Bayes estimate under squar ed error
loss function. The equations (12) and (14) cannot be solv ed for obtaining closed for m solutions.
Hence, we resort to well known Lindle y appr oximation [20] procedur e to evaluate the ratio of
integrals inv olv ed in (12) and (14). Note that the Lindle y appr oximation procedur e is successiv ely
emplo yed by authors, such as [18] to obtain Bayesian estimators. Next, the Bayesian posterior
expection function of a parameter vector η, say h(η) is obtained by using the follo wing equation

ĥB = E(h(η) | D) =

∫
η h(η)l(η)π(η)dη∫

η l(η)π(η)dη
, (15)

Recall that in the abo ve expr ession l(η) denotes log likelyhood function, π(η) denotes prior
density and D denotes the data obtained using progr essiv e type I inter val censoring.
By [20], if n, the sample size is suf ficientl large, every ratio of the integral of the for m,

ĥ = E[v(η1, η2, η3)]

=

∫
η1 ,η2 ,η3

v(η1, η2, η3)el(η1 ,η2 ,η3)+G(η1 ,η2 ,η3)d(η1, η2, η3)∫
η1 ,η2 ,η3

el(η1 ,η2 ,η3)+G(η1 ,η2 ,η3)d(η1, η2, η3)

wher e
v(η) = v(η1, η2, η3) is a function of η1, η2 or η3 only,
l(η1, η2, η3) is log of likelihood function,
and G(η1, η2, η3) is log joint prior of η1, η2 and η3,
can be evaluated as

ĥ = v(η̂1, η̂2, η̂3) + (v1a1 + v2a2 + v3a3 + a4 + a5) +
1
2
[A(v1σ11 + v2σ12 + v3σ13) +

B(v1σ21 + v2σ22 + v3σ23) + C(v1σ31 + v2σ32 + v3σ33)]
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wher e
η̂1, η̂2 and η̂3 are the MLE of η1, η2 and η3 respectiv ely.

ai = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1, 2, 3,
a4 = v12σ12 + v13σ13 + v23σ23 ,

a5 =
1
2
(v11σ11 + v22σ22 + v33σ33),

A = σ11 l111 + 2σ12 l121 + 2σ13 l131 + 2σ23 l231 + σ22 l221 + σ33 l331 ,
B = σ11 l112 + 2σ12 l122 + 2σ13 l132 + 2σ23 l232 + σ22 l222 + σ33 l332 ,
C = σ11 l113 + 2σ12 l123 + 2σ13 l133 + 2σ23 l233 + σ22 l223 + σ33 l333

and subscripts 1,2,3 on the right-hand sides refer to η1, η2, η3 respectiv ely and,

ρi =
∂ρ

∂ηi
, vi =

∂v(η1, η2, η3)

∂ηi
, i = 1, 2, 3,

vij =
∂2v(η1, η2, η3)

∂ηi∂ηj
, i, j = 1, 2, 3,

lij =
∂2l(η1, η2, η3)

∂ηi∂ηj
, i, j = 1, 2, 3, (16)

lijk =
∂3l(η1, η2, η3)

∂ηi∂ηj∂ηk
, i, j, k = 1, 2, 3, (17)

and σij is the (i, j)th element of the inv erse of the matrix
{

lij
}

, which is giv en by

I(α, λ, β) =


− ∂2 l

∂α2 − ∂2 l
∂α∂λ − ∂2 l

∂α∂β

− ∂2 l
∂λ∂α − ∂2 l

∂λ2 − ∂2 l
∂λ∂β

− ∂2 l
∂α∂β − ∂2 l

∂β∂λ − ∂2 l
∂β2


Now by equations, (8), (9) and (10), by using independence of α, λ, β, the joint prior distribution
of ther e three parameters is giv en by

π(α, λ, β) =
baλa−1e−bλ

βαΓ(a)
, α, λ, β > 0, a, b > 0. (18)

Let

ρ = ln π(α, λ, β)

= a ln b + (a − 1) ln λ − bλ − ln β − ln α − ln Γ(a). (19)

Differentiating (19) with respect to α, λ, β respectiv ely, we have

ρ1 = − 1
α

, ρ2 =
a − 1

λ
− b, ρ3 = − 1

β
.

Obser ve that while perfor ming progr essiv e type I inter val censoring, ther e are ’m’ pre-specifie
time periods, say, t1 < t2 < ... < tm, wher e tm is pre-specifie stopping time of experiment. Now
let us defin the pdf for EW distribution for 1 ≤ i ≤ m as Fi = (1 − e−(λx)β

)α i = 1, 2, 3, ..., m.
Now from the expr ession (5) we have

l ∝
m

∑
i=1

{Xi ln[Fi − Fi−1] + Ri ln[1 − Fi]}
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Then,

l1 =
m

∑
i=1

[
Xi

(
∂Fi
∂α − ∂Fi−1

∂α

Fi − Fi−1

)
− Ri

(
∂Fi
∂α

1 − Fi

)]

l2 =
m

∑
i=1

[
Xi

(
∂Fi
∂λ − ∂Fi−1

∂λ

Fi − Fi−1

)
− Ri

(
∂Fi
∂λ

1 − Fi

)]

l3 =
m

∑
i=1

Xi

 ∂Fi
∂β − ∂Fi−1

∂β

Fi − Fi−1

− Ri

 ∂Fi
∂β

1 − Fi


From equation (16), the values of lij, (i, j = 1, 2, 3) can be obtained as follo ws

l11 =
m

∑
i=1

Xi

 (Fi − Fi−1)
(

∂2 Fi
∂α2 − ∂2 Fi−1

∂α2

)
−
(

∂Fi
∂α − ∂Fi−1

∂α

)2

(Fi − Fi−1)
2


−Ri

 (1 − Fi)
∂2 Fi
∂α2 +

(
∂Fi
∂α

)2

(1 − Fi)
2


 ,

l12 =
m

∑
i=1

Xi

 (Fi − Fi−1)
(

∂2 Fi
∂α∂λ − ∂2 Fi−1

∂α∂λ

)
−
(

∂Fi
∂α − ∂Fi−1

∂α

) (
∂Fi
∂λ − ∂Fi−1

∂λ

)
(Fi − Fi−1)

2


−Ri

 (1 − Fi)
∂2 Fi
∂αλ +

(
∂Fi
∂α

) (
∂Fi
∂λ

)
(1 − Fi)

2


= l21 ,

l13 =
m

∑
i=1

Xi

 (Fi − Fi−1)
(

∂2 Fi
∂α∂β − ∂2 Fi−1

∂α∂β

)
−
(

∂Fi
∂α − ∂Fi−1

∂α

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)

2


−Ri

 (1 − Fi)
∂2 Fi
∂αβ +

(
∂Fi
∂α

) (
∂Fi
∂β

)
(1 − Fi)

2


= l31 ,

l22 =
m

∑
i=1

Xi

 (Fi − Fi−1)
(

∂2 Fi
∂λ2 − ∂2 Fi−1

∂λ2

)
−
(

∂Fi
∂λ − ∂Fi−1

∂λ

)2

(Fi − Fi−1)
2


−Ri

 (1 − Fi)
∂2 Fi
∂λ2 +

(
∂Fi
∂λ

)2

(1 − Fi)
2


 ,

l23 =
m

∑
i=1

Xi

 (Fi − Fi−1)
(

∂2 Fi
∂λ∂β − ∂2 Fi−1

∂λ∂β

)
−
(

∂Fi
∂λ − ∂Fi−1

∂λ

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)

2


−Ri

 (1 − Fi)
∂2 Fi
∂λβ +

(
∂Fi
∂λ

) (
∂Fi
∂β

)
(1 − Fi)

2


= l32 ,
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l33 =
m

∑
i=1

Xi

 (Fi − Fi−1)
(

∂2 Fi
∂β2 − ∂2 Fi−1

∂β2

)
−
(

∂Fi
∂β − ∂Fi−1

∂β

)2

(Fi − Fi−1)
2


−Ri

 (1 − Fi)
∂2 Fi
∂β2 +

(
∂Fi
∂β

)2

(1 − Fi)
2


 .

Similarly , from equation (17), the values for lijk(i, j, k = 1, 2, 3) can be obtained.
Now we proceed to obtain Bayes estimators of the parameters α, λ, β of EW distribution function,
and the reliability function R(t) under squar ed error loss function. Recall that v(α̂s, λ̂s, β̂s) denotes
a function MLE’s for α, λ, β. Hence we present her e the Bayes estimators of α, λ, β and R(t) via
follo wing equations:

• v(α̂, λ̂, β̂) = α̂ then

α̂s = α̂ − 1
α̂

σ11 +
a − 1 − bλ̂

λ̂
σ12 −

1
β̂

σ13 +
1
2
[Aσ11 + Bσ21 + Cσ31 ] , (20)

• v(α̂, λ̂, β̂) = λ̂ then

λ̂s = λ̂ − 1
α̂

σ21 +
a − 1 − bλ̂

λ̂
σ22 −

1
β̂

σ23 +
1
2
[Aσ12 + Bσ22 + Cσ32 ] , (21)

• v(α̂, λ̂, β̂) = β̂ then

β̂s = β̂ − 1
α̂

σ31 +
a − 1 − bλ̂

λ̂
σ32 −

1
β̂

σ33 +
1
2
[Aσ13 + Bσ23 + Cσ33 ] , (22)

• v(α̂, λ̂, β̂) = ˆR(x) then

R̂s = R̂ + (R̂1a1 + R̂2a2 + R̂3a3 + a4 + a5) +
1
2
[
A(R̂1σ11 + R̂2σ12 + R̂3σ13)

+B(R̂1σ21 + R̂2σ22 + R̂3σ23) + C(R̂1σ31 + R̂2σ32 + R̂3σ33)
]

,
(23)

wher e,

R̂1 =
∂R̂
∂α̂

= −
(

1 − e−(λ̂x)β̂
)α̂

log
(

1 − e−(λ̂x)β̂
)

,

R̂2 =
∂R̂
∂λ̂

= α̂β̂x
(
−e−(λ̂x)β̂

)(
λ̂x
)β̂−1(1 − e−(λ̂x)β̂

)α̂−1
,

R̂3 =
∂R̂
∂β̂

= α̂
(
−e−(λ̂x)β̂

)(
λ̂x
)β̂ log

(
λ̂x
) (

1 − e−(λ̂x)β̂
)α̂−1

.

Next, we present Baye’s estimators using GEL function. Let α̂g, λ̂g, β̂g and R̂g denote Baye’s
estimators of α, λ, β and R(t) respectiv ely. The follo wing steps, for various choice of v(α̂, λ̂, β̂)
Bayes estimators for α, λ, β and R(t) respectiv ely,
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• v(α̂, λ̂, β̂) = α̂−c then

α̂g = α̂−c − cα̂−(c+1)
(
− 1

α̂
σ11 +

(
a − 1

λ̂
− b
)

σ12 −
1
β̂

σ13

)
(24)

+
1
2

(
c(c + 1)α̂−(c+2)σ11

)
− cα̂−(c+1)

2
[Aσ11 + Bσ21 + Cσ31 ]

• v(α̂, λ̂, β̂) = λ̂−c then

λ̂g = λ̂−c − cλ̂−(c+1)
(
− 1

α̂
σ21 +

(
a − 1

λ̂
− b
)

σ22 −
1
β̂

σ23

)
(25)

+
1
2

(
c(c + 1)λ̂−(c+2)σ22

)
− cλ̂−(c+1)

2
[Aσ12 + Bσ22 + Cσ32 ]

• v(α̂, λ̂, β̂) = β̂−c then

β̂g = β̂−c − cβ̂−(c+1)
(
− 1

α̂
σ31 +

(
a − 1

λ̂
− b
)

σ32 −
1
β̂

σ33

)
(26)

+
1
2

(
c(c + 1)β̂−(c+2)σ33

)
− cβ̂−(c+1)

2
[Aσ13 + Bσ23 + Cσ33 ]

• v(α̂, λ̂, β̂) = R̂−c then

R̂g = R̂−c + (R̂1a1 + R̂2a2 + R̂3a3 + a4 + a5) +
1
2
[
A(R̂1σ11 + R̂2σ12 + R̂3σ13)

+B(R̂1σ21 + R̂2σ22 + R̂3σ23) + C(R̂1σ31 + R̂2σ32 + R̂3σ33)
]

,
(27)

wher e

R̂i =
∂R̂
∂η̂i

, i = 1, 2, 3 and (η̂1, η̂2, ˆη3) = (α̂, λ̂, β̂).

Obser ve that all equations define abo ve depends upon MLEs of α, λ and β. The detailed
procedur e for obtaining MLE is discussed in Section 2.2. Moreover, these MLEs don’t have closed
for m studies. Note that we resorted to using Ne wton Raphson method for solving equations
for obtaining MLEs numerically . Then next Section present the simulation study to obtain Bayes
estimators for various parameters of EW distribution and the reliability function R(t).

3. Simulation

In this Section, The results obtained in previous section, are illustrated by means of simulation.
The data simulated by using R programming language are used to obtain Baye’s estimators
of parameters of EW distribution, namely , α, λ, β and R(t). Further , the perfor mance of these
estimators are studied by computing their respectiv e mean squar e error and standar d de viation.
The follo wing subsection will describe the details of simulation procedur e.

3.1. Simulation Algorithm

Let us assume that prior distribution for α ∼ U(0, 1), λ ∼ Gamma(a, b) and β ∼ U(0, 1) are
chosen at random.

If the random variable U follo ws a unifor m distribution in (0, 1), then X =
[
− 1

λ log
(

1 − U
1
α

)] 1
β

follo ws the GW(α, λ, β). Next, progr essiv e type-I inter val censor ed sampling data, D = (Xi, Ri, ti)m,
of the GW(α, λ, β), are generated as follo ws. First, the random variables, U1, U2, ..., Un, n ≤ m, are
generated from U(0, 1), and then GW(α, λ, β) data t′1, t′2, ..., t′k, ..., t′n are calculated by inv erting
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t′k =
[
− 1

λ log
(

1 − U
1
α
k

)] 1
β

. Now,the number , Xi, of failur es within (t(i−1), ti] are generated and

Ri sur viving items are randomly remo ved from the testing based on the pre-specifie inspection
times t1 < ... < tm and the pre-specifie per centage p = (p1, p2, ..., pm−1, 1), respectiv ely. The
specifi steps are as giv en belo w.(see, Aggar w ala [?])

• Set X0 = 0 and R0 = 0 and for i = 1, 2, ..., m

• Xi | Xi−1, ..., X0, R(i−1), ..., R0 ∼ rbinom
(

n − ∑
j−1
i=1
(
Xj + Rj

)
,

Fi−F(i−1)
1−F(i−1)

)
• Ri | Xi, ..., X0, R(i−1), ..., R0 = f loor

[
pi ∗

(
n − ∑i

j=1 Xj − ∑i−1
j=1 Rj

)]
wher e rbinom( n,p) generates a random variable from the binomial distribution with parame-

ters n and p.

3.2. Example

Let the priors α ∼ U(0, 1), λ ∼ Gamma(1, 2) and β ∼ U(0, 1) and a set of parameters α,λ and
β are generated from these distributions. Let us assume that values for α = 0.4650936, λ =
0.09790184, β = 0.2090737 and R(t; α, λ, β)t=1 = 0.1592157 are selected from this set as true
values. Let us assume that m=8.Then, the randomly generated data are chosen from the Unifor m
distribution U(0,1) as follo ws:

U=(0.8716594, 0.6916711, 0.3129649, 0.3065460, 0.7183383, 0.3928726, 0.4819814, 0.6090094)

To generate the inspection time set of the gradually type-I inter val censor ed sample by appling

t′k =
[
− 1

λ log
(

1 − U
1
α
k

)] 1
β

is giv en by,

T=(0.4273016, 0.5336827, 6.341113, 10.02617, 63.84012, 108.4094, 223.2485, 595.9245)

To create distinct progr essiv e type-I inter val censor ed samples, four group sample sizes n=10,15,20,25,30,35,40,45
and fi e pre-specifie per centages p: p(1) and p(2) are consider ed, wher e

p(1) = (0, 0, 0, 0, 0, 0, 0, 1), p(2) = (0.1, 0, 0, 0, 0, 0, 0, 1)

In Tables 1 and 2, for specifie p(1) and p(2) in progr essiv e type I inter val censoring, relativ e
error (Re) and mean squar e error (MSE) of Bayesian estimators under SEL function (BS) and
Linex Loss function (BL) with c = 0.5, are per mited. Note that Re is giv en by

Re =
| ĝ − g |

g

and MSE is giv en by

MSE =
1
n

n

∑
i=1

(ĝi − gi)
2,

wher e ĝ denote the MLEs or Bayesian estimates of g.

After an extensiv e study of the results thus obtained, conclusions are dra wn regar ding the
beha vior of the errors of estimators, which are summarized belo w graphically(see Figur e 3- Figur e
14) .
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Table 1: RE and MSE of the Example for fixed p = p(1)

RE MSE

Item n α̂ λ̂ β̂ R̂ α̂ λ̂ β̂ R̂

MLE 10 0.9149 0.7544 0.2869 0.7365 0.0902 0.0098 0.0023 0.0154
15 0.9703 0.0017 0.3649 0.9462 0.0231 0.0000 0.0027 0.0076
20 0.9341 0.1479 0.3482 0.8148 0.0536 0.0002 0.0029 0.0097
25 0.0909 0.8181 0909 0.1052 0.0000 0.1202 0.0005 0.0007
30 0.5389 0.1793 0.5890 0.6659 0.0004 0.0022 0.0098 0.0161
35 0.9808 0.1949 0.3735 0.9434 0.1066 0.0000 0.0102 0.0114
40 0.4328 0.3296 0.6769 0.6602 0.0024 0.0061 0.0113 0.0176
45 0.9366 0.0389 0.3552 0.9200 0.0833 0.0000 0.0085 0.0047

Bs 10 0.5954 0.5185 0.8065 0.5529 0.0382 0.2128 0.0179 0.0087
15 1.0388 0.2083 1.2265 0.2629 0.0265 0.0336 0.3157 0.0589
20 0.8271 1.2446 1.7592 0.5632 0.0420 0.0123 0.3435 0.0047
25 0.4623 0.7895 0.4622 0.8032 0.0162 0.1044 1.2557 0.0381
30 0.1860 0.2859 0.0094 0.0636 0.0000 0.5612 0.0000 0.0002
35 0.6569 1.4812 0.2202 0.0294 0.0478 0.0007 0.0262 0.0000
40 0.3758 0.6661 0.2903 0.0621 0.0000 0.0244 0.0021 0.0002
45 0.0828 0.4764 1,5272 0.1365 0.0007 0.0000 0.1572 0.0001

Bg 10 0.1253 1.7028 1.1261 0.5510 0.0017 0.0498 0.0349 0.0086
15 0.3227 0.3916 1.4387 0.2632 0.0026 0.1188 0.0434 0.0591
20 0.0519 1.9679 1.2674 0.5606 0.0002 0.0699 0.0390 0.0046
25 1.1834 0.2332 0.4580 0.2034 0.1062 0.0091 0.0123 0.2439
30 0.0138 0.3522 0.7898 0.7545 0.0000 0.0084 0.0343 0.0207
35 0.7894 1.8737 0.3078 0.2895 0.0690 0.0005 0.0069 0.0000
40 1.1188 0.4942 1.2519 1.3603 0.0161 0.0137 0.0386 0.0745
45 0.0184 0.4489 0.3615 0.1628 0.0000 0.0000 0.0088 0.0001

Figure 3: Relative Error of MLE for p(1) Figure 4: Relative Error of Bs for p(1)
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Table 2: RE and MSE of the Example for fixed p = p(2)

RE MSE

Item n α̂ λ̂ β̂ R̂ α̂ λ̂ β̂ R̂

MLE 10 0.9009 0.3422 0.3621 0.7676 0.0837 0.0003 0.0066 0.0098
15 0.9481 0.3285 0.3743 0.8974 0.0134 0.0004 0.0003 0.0070
20 0.9152 0.4706 0.2872 0.7947 0.0629 0.0172 0.0014 0.0081
25 0.9561 0.0317 0.3609 0.8741 0.0663 0.0000 0.0016 0.0085
30 0.6986 0.4347 0.8745 0.7925 0.0252 0.0160 0.0822 0.0247
35 0.9852 0.9342 0.6004 0.8572 0.0715 0.0013 0.0333 0.0127
40 0.9431 0.3594 0.2985 0.8779 0.0284 0.0033 0.0007 0.0073
45 0.9467 0.6701 0.2837 0.8926 0.0244 0.0007 0.0014 0.0059

Bs 10 0.0605 0.4409 0.3096 1.2529 0.0004 0.0005 0.0048 0.0262
15 1.9421 0.1121 1.5398 1.9250 0.0563 0.0000 0.0249 0,0744
20 0.1961 0.0578 0.4542 0.7478 0.0029 0.0003 0.0035 0.0072
25 0.5377 0.2024 0.4913 0.2352 0.0210 0.0338 0.0030 0.0006
30 0.3550 0.0855 0.6875 0.1301 0.0065 0.0999 0.0508 0.0006
35 1.5559 1.5346 0.5596 1.3814 0.1783 0.3580 0.0289 0.0330
40 0.512 0.7987 0.4375 1.0897 0.0084 0.0165 0.1403 0.0413
45 0.4568 0.8569 0.1748 1.8877 0.0057 0.0314 0.0005 0.0265

Bg 10 0.0173 0.4638 0.5745 1.2778 0.0000 0.0005 0.0166 0.0272
15 0.7190 1.6573 1.0796 1.1535 0.0077 0.0840 0.0086 0.0403
20 0.1677 0.2676 1.7243 0.7769 0.0021 0.0056 0.0501 0.0078
25 0.1207 0.3234 1.1491 0.2385 0.0011 0.0729 0.0582 0.0006
30 0.5552 0.2137 0.0639 0.2737 0.0159 0.0038 0.0004 0.0000
35 1.2341 1.1229 0.1248 1.3814 0.1122 0.1917 0.0014 0.0329
40 0.4512 1.2013 0.3081 1.3114 0.0065 0.0372 0.0712 0.0466
45 0.5546 2.6507 1.6666 1.9275 0.0083 0.0978 0.0488 0.0276

Figure 5: Relative Error of Bg for p(1) Figure 6: Mean Squared Error of MLE for p(1)
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Figure 7: Mean Squared Error of Bs for p(1) Figure 8: Mean Squared Error of Bg for p(1)

Figure 9: Relative Error of MLE for p(2) Figure 10: Relative Error of Bs for p(2)

Figure 11: Relative Error of Bg for p(2) Figure 12: Mean Squared Error of MLE for p(2)
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Figure 13: Mean Squared Error of Bs for p(2) Figure 14: Mean Squared Error of Bg for p(2)

4. Conclusion

In this article, the perfor mance of the proposed Bayes estimators has been compar ed to the
maximum likelihood estimator of the EWD(α, λ, β) under the progr essiv e type-I inter val censoring
based on the squar ed error loss function and general entr opy loss function using Lindle y’s
appr oximation. The simulation result indicates that this appr oach is better suited for small sample
sizes. MLE is the best choice when compar ed to Bayesian estimators. From Table 1, it is obser ved
that the general entr opy loss function in Bayesian estimation is better as compar ed to the squar ed
error loss function in ter ms of MSE. From Table 2, it is noted that the squar ed error loss function
in Bayesian estimation is better as compar ed to the general entr opy loss function in ter ms of MSE.
It can be seen from Figur es 4, 5, 10 and 11 that the RE of Bayes estimators sho w fluctuatio trend,
and one can not see continuously decr easing or increasing trend for RE.
It is obser ved in practice, especially while modeling lifetime of electr onic products, this three-
parameter EW distribution describes the lifetime in the best possible w ay as compar ed to
commonly used lifetime distributions such as Exponential distribution or Weibull distribution.
Moreover, practically progr essiv e type I inter val censoring is the most conv enient w ay of obtaining
data of lifetimes as compar ed to traditional censoring schemes such as type I or type II or hybrid
censoring. Further , the results obtained in this paper can be used for applications in the fiel of
economics or analysis of clinical data in the medical field
The results obtained in this paper use the appr oximation process such as Lindle y appr oximation
to obtain Bayes estimators of parameters of EW distribution. As futur e scope of resear ch an
analytical solution for deriving Bayes estimators can be consider ed by using suitable choice of
prior distributions.
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Abstract 
 

The paper examines the specificity of artificial intelligence-based automatic train operation systems. 
Justifying the functional safety (FS) of such systems is quite difficult. The paper proposes a process 
for proving the functional safety of intelligent systems. A hybrid control system for a shunting 
locomotive was developed and analysed. It combines machine vision (MV), train protection devices 
and manual control by a driver. A model is presented that allows examining the functional safety of 
a locomotive control system layer by layer, i.e., evaluating the time to safety degradation depending 
on the component failure and subsequent requirement of bringing the locomotive to a complete stop. 
This allows to improve the FS of the shunting locomotive control system with machine vision from 
SIL 2 to SIL 3 and maintaining it during sufficiently long periods of time (over a quarter of the mean 
time to system failure). The mean time of faultless operation of a locomotive control system until it 
has to be brought to a complete stop for safety reasons can be increased three times. A general approach 
is proposed to design the functional safety of automatic train operation systems. It is based on the 
division of the information processing process into two subprocesses, i.e., internal intelligent 
information processing onboard the locomotive for the purpose of decision-making regarding track 
vacancy and communication of initial visual information to the operating driver for decision-making. 
The division of this process must be combined with redundant machine vision facilities, regular 
comparison of the outputs of the onboard and fixed machine vision facilities, redundant comparison 
outputs, smoothing of the outputs in the process of locomotive movement. 
 
Keywords: Functional safety, artificial intelligence, automatic train operation system, 
machine vision, dependability, safety justification, safety case, statistical and experimental 
methods, expert methods, simulation methods, heuristic semi-Markov graph methods, 
process methods of compliance confirmation, safety device, control system, Markov model, 
standards. 

 

1. Introduction 

The problem of ensuring functional safety of any technical system consists of two integral 
components. The first one consists in the development of proposals, techniques, procedures, 
methods for improving FS. The second component is intended for verifying the efficiency of the 
chosen method of improving safety. Essentially, the second component of the problem consists in 
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proving the acceptability of the achieved level of FS. Substantiating FS for railway control systems 
with the grade of automation GoА 2/3 (from manual driving with the function of automatic train 
operation to automatic train driving with no human driver) is quite difficult. These systems use 
artificial intelligence-based methods for the purpose of training information processing algorithms. 
One of the first works on artificial intelligence aimed at recognising patterns by training recognition 
algorithms was the monograph by Vapnik and Chervonenkis titled “Pattern recognition theory 
(statistical problems of training)” [1]. In [2 – 4], it was shown that an automatic train operation (ATO) 
system has a number of distinctive features. Those include the following: 

1. Distributed system architecture. 

2. Availability of machine vision and effect of weather conditions. 
3. Close information interaction between the system and the environment via information 

communication channels. 

4. Presence of a large and not always definite number of vulnerabilities within a system closely 
connected to the environment. 

5. A high probability of evolving environmental effects and resulting changed system behaviour. 

6. The changed control algorithm parameters as the result of neural network training using the 
incoming information flows and accumulated databases. 

7. Branching software of both the generic part of the system, and, especially, rolling stock detection 
and control facilities. 

Braband and Schäbe [2] note that due to the specificity of the ATO it requires special methods for 
proving the FS. It should be noted that one of the key features of the system is that, along with its 
distributed architecture, the connections within the system change significantly. The latter 
noticeably reduces the options to prove the safety of such a system. 

Given the great uncertainty associated with the operation of ATO it is quite difficult to prove its FS 
using conventional methods, i.e., those set forth in STO RZD 1.19.009-2009 [5] that were largely 
applied to devices and simple systems with a known and limited number of vulnerabilities. The 
recommendations of IEC 61508-1-2012 (sections 6, 8) [6], IEC 61508-2-2012 [7], IEC 61508-3-2018 [8], 
and IEC 62279-2016 [9] may prove to be very helpful in this situation. Along the conventional 
methods of safety case preparation, the above standards suggest taking into account the design and 
manufacture process, quality and functional safety assurance organisation of complex hardware and 
software systems and their components for the purpose of evaluating the functional safety level of 
such systems. Such measures and procedures jointly solve the problem of safety justification. One of 
the components of a safety justification involves confirming the compliance with the specified 
requirements, which is largely ensured using the safety case. A development of this approach 
combined with the guidance material accumulated by the railway industry is reflected in GOST 
33432-2015 [10]. 

As regards intelligent systems with the above distinctive features, the standard recommends the 
following scope of safety justification: 

1. Development of an FS policy; 
2. Development of an FS program; 
3. Development of a safety case. 

An FS policy is to be in place at the ATO system manufacturer and is to be generally applied to all 
the products developed by such an organisation. It is to make provisions for solving the following 
main problems: 
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- tasks and objectives of FS assurance; 
- principles and approaches to ensuring FS; 
- principles of FS-related risk management; 
- organisation of FS assurance. 

In [11], Braband and Schäbe suggest using the outputs of the ATO-RISK project ordered by the 
Deutsche Zentrum für Schienenverkehrsforschung for the purpose of managing risks. The project 
aims to define the criteria of risk acceptability as regards automatic train operation. As described in 
[11], the risk level is evaluated through a function-specific explicit risk analysis or using reference 
systems. Explicit risk analysis is performed by evaluating various scenarios using the semi-
quantitative approach and a risk score matrix. The matrix qualitatively differentiates the expected 
severity of harm depending on the category of the accidents. That approach can be recommended 
for the purpose of system safety policy definition. 

FS assurance and FS case program are developed for each product autonomously and are intended to 
be supplied to the customer as proof of the product being of high quality in accordance with the 
requirements of the FS standards and corresponds to the declared safety integrity level (SIL). The 
ultimate goal of the ATO FS measures consists in the preparation of a safety case. 

 

2. Characteristic features of the functional safety case of automatic train operation 
systems 

The scope of FS case preparation includes reports on not only the FS status, but on the measures 
taken by the ATO manufacturer for managing quality and ensuring FS. Those reports allow the 
customer to evaluate the engineering level and manufacturing quality of the system, including the 
supply of components, organisation and process quality of the FS assurance activities, risk 
evaluation results, depth and quality of the FS requirements verification and validation activities. 

A conclusion of an ATO’s compliance with the FS requirements is built upon the FS status report 
taking into consideration the above reports on the quality and FS management measures. That is a 
very important consideration. The matter is that the distributed system architecture, changing 
parameters of the control algorithms as the result of neural network training and other functional 
features of intelligent systems do not contribute to a guaranteed evaluation of their FS status. The 
use of reports of the adopted quality management and FS measures significantly enhance the 
informational description of the system and corroborates the confidence in the assessment of its FS 
state. 

Confirmed compliance with the specified FS requirements plays a crucial role in the system FS case 
document. To that end, the following methods are used: statistical, experimental, expert, simulation, 
analytical, process. 

The statistical and experimental methods enable the most objective, quantitative evaluation of a system’s 
FS as long as their feasibility and reliability are ascertained. The matter of feasibility directly depends 
on the FS requirements. The required safety integrity level of an ATO system with continuous 
performance requests is typically SIL 2 [6, 12], which corresponds to the required range of a system’s 
dangerous failure rates 𝜆!" = (10#$10#%) ℎ⁄ . The probability of the system’s dangerous failures 
within an hour of operation should be within the range 𝑄!"(1) = 10#$10#% [6]. Under the above 
requirements, an experimental identification of a single dangerous failure would require at least 𝑁 ≥
&

'(&)
= (10$10%) tests, taking into account a statistical confidence level of 90% this will be even 3 

106…3 107 hours.. As the duration of each test should be at least one hour, identifying a single 
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dangerous failure would take over 100 years. Even if the testing is carried out on many systems in 
parallel, it is complicated to accumulate a significant testing time is needed, 

In principle, experimental methods allow indirectly confirming or disproving an ATO’s compliance 
with the specified FS requirements. Naturally, an indirect estimate can only be used as an addition 
to other estimates rather than individually. The process of expert evaluation of complex system 
parameters is mature, as is the algebra of processing of experts’ opinions. However, applying such 
methods to the ATO FS estimation has a number of difficulties. To begin with, the experience of 
ATO operation is still insignificant. The accumulated knowledge is clearly insufficient. 
Subsequently, it is difficult to presume an acceptable level of subject-area competence in the experts. 
Additionally, in various industries, including railway transportation, the number of FS experts is 
limited. Therefore, it is very difficult to involve a sufficient number of experts and evaluate the 
coherence of their opinions. However, we must strive for a situation, whereas expert methods can, 
to a certain extent, be used for confirming ATO compliance. 

Simulation methods are widely used in the course of development and testing. They are based on the 
Monte Carlo method. The Monte Carlo simulation method allows using pseudorandom number 
generators to simulate practically the entire known spectrum of input, intermediate, and disturbance 
effects on a system. They are processed using software simulation of the system to generate outputs 
depending on the simulated data. However, that method has a serious drawback, i.e., the results 
contain a spread between the outputs of different simulations. Reducing the spread, i.e., reducing 
the dispersion, requires a large number of executions of the model, which, in turn, causes a sharp 
increase in the duration of the simulation. A number of methods of reduction of dispersion has been 
developed for the purpose of cutting the simulation time. Those include the following: Monte Carlo 
simulation (e.g., data and output value simulation), method of augemented variables, stratified 
sampling method, etc. Weighted sampling provides better results in terms of dispersion reduction. 
Drawing from that method, we have developed a simulation method based on semi-field testing 
[13] by means of artificial introduction of malfunctions (faults, perturbations, program errors) into 
the system. Despite the obvious advancements in simulation, those methods have a number of 
significant drawbacks that restrict their applicability in ATO research.  

The main factors that restrict the application of simulation in ATO research are as follows: 

1. A detailed description of the system and its features is required, which, for a system as complex 
as an ATO, requires significant efforts and associated large scope of work. Additionally, due to 
the complex system architecture, a clear description of such system is extremely complicated. 

2. The high cost of developing a  simulation model for the system. 
3. Evidence of adequacy of the model to the actual system is required. 
4. Each update of the system’s structure and improvement of its algorithms require to repeat the 

activities specified above in Items 1 and 3. Practically, that comes down to the development of 
new simulation models. 

Analytical methods are the main tool for safety case preparation. However, their applicability to ATO 
safety justification raises certain doubts. That is primarily due to the distributed architecture of such 
systems and, subsequently, the difficulty (or sometimes impossibility) to formalise the task of safety 
justification. In order to solve that problem, we propose the following. Heuristic semi-Markov 
(Markov) graph methods. The matter is that non-formalised problems of safety justification of 
systems with complex architectures are solved using heuristics, i.e., a person’s own ideas, rules that 
allow reducing the scope of potential solutions. The essence of the developed methods [4, 12] consists in 
a combination of heuristics in the data representations and mathematical models of the system’s 
safety and dependability with strict mathematical methods of analysis.  
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Under uncertainty or absence of certain data, an analytical estimation of system safety indicators is 
achieved through multi-stage calculations that consist in the implementation of the following 
sequence of actions:  

1. Construction of the Markov graph of the ATO.  

2. Definition of the mathematical models of the graph’s edges and nodes.  

3. Definition of equations for FS.  

4. Expert evaluation of initial data.  

5. Calculation, analysis of the results.  

6. Determination of the most significant factors.  

7. Simplification of the obtained calculation formulas maintaining an acceptable error.  

8. Analytical evaluation of compliance with the required SIL.   

9. Finalisation of the procedure in case of confidence in the results of evaluation or improvement 
of the examined ATO functional model (FS graph). If necessary, the model will be refined  and 
steps 1-9 of the analytical estimation of safety parameters for above for the updated model will 
be repeated. 

If reliable information and data are available, individual actions will suffice, e.g., graph construction, 
definition of formulas, calculation and analysis of the results. Other actions, e.g., expert evaluation 
of the initial data, identification of the most significant factors, simplification of calculation formulas, 
improvement of graph construction conditions, repeated construction(s) of a FS graph arise as 
needed depending on the availability or non-availability of information to the system’s safety 
analyst. 

Due to the above distinctive features of an ATO and in order to improve the confidence in the FS 
examination results along the recommendations of EN 50129 [25]  the process methods of FS compliance 
assurance should be widely used.  

Evaluating the achieved SIL for each safety function of an ATO’s hardware components is possible 
based on the recommendations of EN 50129 [25]  chapter 7..  

The applied methods and means of failure management are evaluated based on the 
recommendations of EN 50129 [25] annex B..  

The applied methods and means for preventing systematic errors can be evaluated based on annexe 
E of EN 50129 [25].  

Regarding the software of an ATO, EN 50128 [26] recommends a number of procedures (annexe A) 
whose application significantly improves the confidence in the FS state estimate. 
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3. Methods of ensuring safe and uninterrupted operation of a shunting locomotive 
control system with machine vision 

3.1. Introduction 

Railway signalling systems are undergoing a new stage of their development in order to solve one 
of the key problems in railway transportation that consist in the creation of unattended train 
operation. Along with the conventional means of functional safety, they include sufficiently complex 
ATO systems [16]. Now, using control algorithms based on logical and certain arithmetical 
operations is insufficient to ensure safe rain operation. The technological development of control 
systems is associated with solving complex mathematical problems and eventually with the use of 
neural networks for information processing. 

The simplicity of process-related tasks for the first safety integrity level allowed using mature 
methods to ensure compliance with functional safety requirements by means of hardware and 
software redundancy [6]. A clear advantage of using simpler technology in the form of hardwired 
logic and microcontrollers was the simplicity of built-in online testing and, subsequently, to achieve  
the required rate of dangerous failures [17]. 

In the process of automatic train operation system development, it became clear that their rate of 
dangerous failures will not be below the SIL2 threshold. The application of prototypes of such 
systems in railway transportation has shown that, in principle, they are man-machine systems, in 
which automatic train operation facilities cannot be fully trusted with ensuring train protection 
without an operator’s involvement. 

Systems use to ensure operational safety in stations as part of shunting operations require a SIL 2. 
That is due to the fact that the speed of train movement in the course of shunting operations is 
significantly lower than in the course of mainline operations [18]. Meanwhile, the demanding work 
performed by a driver in the course of shunting operations should be taken into consideration. When 
and where possible such operations should be automated. Thus, even if a driver is present onboard, 
the future requirements must be close to SIL3 or a new, more detailed SIL 2+ classification of safety 
is to be introduced. For information processing facilities, this level can be achieved with the help of 
a real-time operating system and high-performance microprocessors. In this context, the matters of 
validity of information processing and completeness of online tests arise. The tendency for using 
complex computer-based systems, on the one hand, and the expectation of their high redundancy, 
on the other hand, complicate such control. Indeed, within the information processing circuit, a small 
amount of memory and limited number of commands are used. In this context, a high  test coverage 
cannot be guaranteed, as many elements of the information processing structure are not utilised. 
That, in turn, causes limitations in the assurance of an acceptable level of correct detection of failures 
of the automatic shunting cab signalling system (ASCSS).  

3.2.  Problem definition 

Currently, the ASCSS shunting locomotive control system is single-channel, system, which does not 
allow to raise its safety integrity level above SIL 2. By using information redundancy, a virtual 
second channel can be created to ensure additional monitoring of this computer-based system [19]. 
That will enable a high probability of correct detection of ASCSS failures. The monitoring process is 
to be designed in a way as to not affect the operation of the control algorithm of a shunting 
locomotive. The safety device (SD) software generates an ordered sequence of computer instructions 
that, within the ASCSS system, are implemented as a series of reference signatures, which allows 
additionally monitoring of the operation of complex ASCSS devices, thus enhancing its SIL.  
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By building upon that principle, such SIL2 and SIL3 devices can be used for monitoring even more 
complex devices with video cameras and neural networks. It must be noted that such a complex 
device itself, e.g., ASCSS, implements functions of the type “prevention passing shunting signal at 
danger” that align with the typical purpose of ASCSS and additionally detect obstacles using machine 
vision. After identifying the basic technical function of information processing, it can be used as a 
functional test for the equipment of a complex unattended system. That can be seen as a segment 
within the space of possible solutions of unattended systems.  

Thus, the shunting signals themselves become a functional test of an even more complex system 
[20]. Additionally, within the examined system, the hardware and software machine vision facilities 
are to be additionally monitored by comparing the readings of onboard and trackside machine 
vision sensors [21]. Such a hierarchy may prove to be useful in reducing the cost of hardware and 
simplifying the safety case preparation as compared with the situation when all functions are 
implemented within a single processor [22]. It must be noted that, if no innovative solutions are 
used, ensuring system dependability becomes an issue, as machine vision facilities significantly 
increase the scope of system hardware, which causes a reduction of its dependability. 

3.3.  Research model and findings 

Any information that can be depicted as objects and connections can be conveniently represented in 
graph form. Graphs are commonly used for visualising information, involving the transformation 
of large amounts of complex types of abstract information into a user-friendly visual form.  

The authors built the model based on the following criteria: 

a safe failure involving the failure of ASCSS and MV facilities, control of the locomotive is assigned 
to the driver; a dangerous failure involving the failure of ASCSS, MV facilities and SD, the shunting 
locomotive is brought to a complete stop. The question of the criticality of a dangerous failure is not 
discussed in this paper. It should be examined individually. 

Figure 1 shows the state graph of functional safety of interaction between ASCSS and the SD and 
MV facilities. 

 
  

Figure 1. FS state graph of the interaction between ASCSS  
and the safety device and machine vision facilities 
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States of the system model: 

1. All objects of the control system are up; 
2. SD has failed and is recovering; all the other system facilities are up; 
3. ASCSS has failed, all the other system facilities are up; 
4. MV facilities have failed and are recovering; all the other system facilities are up; 
5. MALS and SD have failed; ASCSS is recovering; 
6. MV and ASCSS have failed, locomotive control is assigned to the driver (safe failure); 
7. MV and SD have failed; 
8. All three systems have failed.  
 

Dangerous failure 
 

System safe states are marked with the following colours:  

 SIL 3,                                                                 safe failure (SIL1) 

 SIL 2,                                                                  dangerous failure  

 

In the system model, the following transitions are provided for: 

0-1, SD failure;  

0-2, ASCSS failure detected using built-in tests and/or signature analysis;  

0-3, MV failure detected using built-in tests and/or by comparing the readings with the ASCSS 
program; 

 0-5, undetected MV failure;  

0-7 and 1-7, undetected ASCSS failure;  

1-4, ASCSS failure subject to SD failure;  

1-6, MV failure subject to SD failure;  

1-0, SD repair;  

2-4, SD failure subject to ASCSS failure;  

2-5, MV failure subject to ASCSS failure;  

3-5, ASCSS failure subject to MV failure;  

3-6, SD failure subject to ASCSS failure;  

3-0, MV repair;  

4-7, MV failure subject to MALS and SD failure;  

4-1, ASCSS repair;  

5-7, SD failure subject to MALS and MV failure;  

6-7, MALS failure subject to MV and SD failure;  

7-0, transition into the original state as the result of possible modification of ASCSS, if the risk of 
dangerous failures is acceptable. 

The adopted premises and assumptions, defined mathematical models of the graph’s edges and 
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nodes, the FS formulae, as well as the expert evaluation of the initial data are set forth by us in [23].  

That model allows examining the FS of an ATO layer by layer, i.e., evaluating the time to safety 
integrity level degradation depending on failures of components and onset of a complete dangerous 
failure (dangerous failure of the second type in Fig.1). Thus, in particular, in [23] it was established 
that  

- the mean time of the system being in SIL3 (state 0 in the graph in Fig.1) is described with the formula  

𝑇* =
1

𝜆"+ + 𝜆М + 𝜆-.
(1) 

where λSD, λМ, λMV are the failure rates of the safety device, locomotive control system and 
machine vision, respectively; 

- the mean time of faultless system operation at a level at least as high as SIL2, the mean time to a safe failure 
of type 1  
 

𝑇/"012
343567 ≈

𝜆"+(2𝜆"+ + 3𝜆-.) + 𝜆2-.
(𝜆 + 𝜆 )𝜆 𝜆М

(2) 

 
- the mean time of faultless system operation to a dangerous failure (complete stop of the shunting locomotiv) 

𝑇89:;<#3=>6 ≈
𝜆"+(2𝜆"+ + 3𝜆-.) + 𝜆2-. + 2𝜆М𝜆-.

(𝜆 + 𝜆 )𝜆 𝜆М
(3) 

 
Formulae (2) and (3) were obtained with an error not exceeding the first order of magnitude 
assuming that the failure detection parameters of ASCSS and machine vision facilities are close to 
one. That assumption is based on the fact that the monitoring of ASCSS operation using additional 
signature analysis procedures, as well as regular comparison of the ASCSS outputs with the machine 
vision outputs ensure complete and reliable performance monitoring of both the ASCSS control 
system, and the machine vision facilities. 

Figure 2 shows the time of faultless operation of the shunting locomotive to a complete stop-vs-the 
failure rate of machine vision and ASCSS equipment curve. The failure rate of safety devices is taken 
equal to 𝜆"+=1*10-8, which corresponds to the safety integrity rate of SIL3.  

 
Figure 2. Time of faultless shunting locomotive operation to a complete stop-vs-the failure rate of machine 

vision and ASCSS equipment curve (“MALS failure rate”) 
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The key task of the research consists in evaluating the level of functional safety of the automatic train 
operation system of a shunting locomotive. Such a comprehensive assessment can be enabled by a 
research of the system’s safety coefficient. The probability of an opposite event, i.e. a dangerous 
failure, is the system’s danger coefficient. That coefficient, under the same assumptions that were 
used for deducing formulas (2) and (3), was obtained in [23] with an error not exceeding the first 
order of magnitude. It was established that the hazard coefficient significantly depends on the repair 
rates of facilities 𝜇 and ASCSS repair rate upon a hazardous failure 𝜇&. 

The three-dimensional graphs of a system’s hazard coefficient against parameters 𝜇 and 𝜇& subject 
to 𝜆М = 10#? 1 ℎ⁄  and 𝜆-. = 10#? 1 ℎ⁄  are shown in Fig. 3.  

 

 
Figure 3. Graphs of hazard coefficient 𝐶! against repair rates 𝜇" and 𝜇. 

 

From these graphs it follows that as the system’s repair rate 𝜇& increases from 0.0059 /h to 1 /h the 
hazard coefficient decreases almost 30 times. The chosen limit values of the repair rate correspond 
to the system’s repair times from an hour to a week. That range was chosen based on the nature of 
the malfunction. Thus, if a set of spare parts is available, hardware failures can be rectified within 
an hour, while rectifying software errors may take up to 7 days. Therefore, timely and prompt 
rectification of malfunctions may significantly improve a system’s safety indicators.  

 

4. A general approach to designing the functional safety of automatic train 
operation systems 

 
4.1. Methods for designing the functional safety of automatic train operation systems 

The main problem in the development of that approach consists in the fact that such a system has 
many distinctive features associated with the complex architecture and information processing 
algorithms, the incompleteness and fuzziness of initial data. Therefore, it is difficult to apply classical 
methods of probabilistic evaluation in the form of two or more independent hardware and software 
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information processors [20]. That is the exact reason why the redundancy of such information 
processors in the form of onboard machine vision cameras for the purpose of safe detection of 
obstacles on the track is unlikely to achieve the required safety level due to the unknown testing 
time of such a learning, i.e., constantly changing vital information processing system.  

Braband and Schäbe [2] assumed the mandatory presence, , of an additional device within the 
processing system, whose safety could be proven using conventional methods owing to its constant 
structure.  

Rozenberg and Shubinsky [12, 15] suggested using the so-called multi-level structures in order to 
ensure FS. This approach has shown good results in the development of advanced onboard and 
trackside safety systems. Additionally, an extremely important property of a system’s safety 
evaluation was used that consists in obtaining reliable information on a facility’s state history in 
terms of safety.  

As regards the safety cases of neural network-enabled automatic train operation systems the 
principles of multi-level safety should be used. The difference consists in the fact that a complete set 
of technical equipment within a locomotive’s operating environment is to be examined rather than 
an individual smart device, e.g., a machine vision camera on such a locomotive.  

Indeed, a camera with a predesigned program for processing information on obstacles on the track 
does not depend only on the previously taken neural network training measures, but on the specific 
factors that affect the operability of the camera’s hardware, software faults, etc. Additionally, it 
should be noted that the effect of the environment, i.e., snow, fog, and rain influences the obstacle 
detection zone, which directly affects the safety, as it is associated with the braking distance.  

Under such conditions, the situation ahead of the train is additionally monitored from a special 
control centre, where an operating driver monitors several locomotives [21]. 

The complexity of this method consists in the fact that the reaction of the operating driver becomes 
a critical component, while he/she depends on the stable onboard camera image and dependability 
of the broadband communication at a particular location.  

On the other hand, the division of the information processing process into two subprocesses, i.e., 
internal intelligent information processing onboard the locomotive for the purpose of decision-
making regarding track vacancy and communication of initial visual information to the operating 
driver for decision-making allows improving safety. The criterion in this case is that the onboard 
system should have a high probability of false alarm, while the operating driver can rectify this 
situation using a special command transmitted to the locomotive by radio. In practice, if this 
principle was not used, an ATO system would stop, for instance, because of a plastic bag on the 
track.  

It should be noted that the system includes trackside devices that monitor track vacancy in places 
with poor visibility [20]. Information on such fixed systems is communicated to the locomotive in 
real time, which significantly improves train traffic safety. Thus, the used model is simplified, but it 
enables an analytical study of the problem. That constitutes the advantage of this approach to 
developing the research model over more complex models. An interesting feature of the interaction 
between the fixed and onboard machine vision facilities is that, under identical environmental 
conditions, they can see the same objects, within the line of sight or under various, interesting 
angles.  

The availability of objects detected by two independent systems allows using this property for cross-
comparison of intelligent technical facilities, especially for the purpose of making correct decisions 
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by intelligent onboard systems that operate in more difficult operating conditions (traffic speed, 
limited visibility zone, etc.). An object comparison can be in the form of images processed by fixed 
and onboard cameras or it can contain the expected inversion of an image of the same object if two 
machine vision cameras point at it from opposite directions. Such a predefined property for a system 
for safe comparison of results enables better independence of information processing. Each technical 
facility, including video cameras, contains self-testing features that necessarily contribute to the 
calculation of their safe operation. Given that, as regards an intelligent system that employs neural 
networks, it is difficult to talk about complete testing, self-diagnostics using observed objects known 
beforehand should be used. For instance, next to the railway track, within the scanning zone of 
machine vision cameras or lidars, there are signals, control cabinets, catenary masts, and 
communications posts that are strictly referenced to the track coordinates, which is even more 
relevant if a 3D map of the infrastructure facilities is used onboard.  

Thus, capturing such objects allows testing onboard cameras and sensors taking into account the 
detection distance and identification of the type of objects. If the frequency of object acquisition is 
high enough within the distance between such locations, the probability of no failure or no error of 
the information processing algorithm can be calculated for a moving object. The advantage of this 
method consists in the complete processing of information, when, along internal testing of hardware 
components, the required level of system safety can be achieved. In that case, the system itself 
appears to be a “black box”, but with perfectly known outputs at an absolutely known spatial 
coordinate. 

4.2. Conceptual safety model of an automatic train operation system 

 An ATO system includes the following key facilities: 

- onboard train control and protection equipment; 
- monitoring centre equipment; 
- trackside machine vision facilities; 
- onboard machine vision facilities. 

The conceptual safety model of an automatic train operation system contains a description of the 
dependability and safety states of the system’s component facilities, their interrelations, as well as 
the effects of disturbing weather effects. This model is presented in the form of a system safety state 
graph (Fig. 4). 

 
Figure 4. Safety state graph of an automatic train operation system 
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While building the system safety model, the following criterion of dangerous failure was adopted: 
failure of all machine vision facilities and monitoring centre or an undetected failure of a locomotive 
control and protection system. Criterion of safe failure: failure of fixed machine vision facilities, 
monitoring centre and effect of disturbing weather conditions or detected failure of the locomotive 
control and protection system. 

Graph states: 

0, up state, no disturbing weather effects; 

1, detected locomotive control and protection system failure, a safe failure; 
2, failure of monitoring centre facilities; 
3, failure of trackside machine vision facilities; 
4, failure of onboard machine vision facilities;  
5, disturbing weather effects; 
6, failure of all machine vision facilities and monitoring centre, a dangerous failure of the 
automatic train operation system; 
7, non-detected locomotive control and protection system failure, a dangerous failure; 
8, failure of trcakside machine vision facilities, monitoring centre and disturbing weather effects, 
a safe failure.  

The entire set of system states according to the state graph in Fig. 4 is divided into the following 
subsets: - the subset of up states 𝑆@ = {0,2,3,4,5}; - the subset of safety states 𝑆" = {1,8}; - the subset 
of hazardous states 𝑆A = {6,7}. 

The up and safe states form the set of good states. 

Given below are the model’s good state transitions that need clarification: 1-0, 2-0, 3-0, 8-0, repair of 
facilities after failures; 3-8, monitoring centre failure subject to trackside machine vision facilities 
failure; 4-8, monitoring centre failure subject to onboard machine vision facilities failure; 7-8, failure 
of trackside machine vision facilities subject to disturbing weather conditions.  

The mathematical formulation of the model takes into account the following considerations. The 
system is new and unique, no statistical information about it is available. Therefore, the distribution 
functions of system parameters are not established. Based on the existing experience in railway 
control and management systems, it can be safely assumed that failures of electronic devices, such 
as devices of a train control and protection system, monitoring centre facilities, and machine vision 
facilities are exponentially distributed. This assumption does not apply to random values of time to 
device repair estoration after failures, much less to random adverse weather effects. The problem of 
disturbing effects was theoretically examined by Schäbe and Viertl in [23]. Those models are also 
applicable to disturbing weather effects. In order to ensure adequate results, the authors were forced 
to use a complex mathematical description of the random process of adverse effects on the 
locomotive’s control system. The above circumstances complicate their practical application in 
mathematical simulation of the safety of the automatic train operation system. 

In the absence of practical information, it is very difficult to predict the quantitative safety indicators 
of the automatic train operation system. In this paper, in the context of great uncertainty, we aim to 
identify the most significant factors affecting the system’s safety. The assumption of the Poisson 
process of random events in the automatic train operation system fits this purpose. The Poisson 
processes are ordinary, stationary and have no aftereffect. On the one hand, due to the significant 
uncertainty in the initial conditions, their application does not contribute to accurate prediction of 
the safety of a system’s behaviour characteristics. On the other hand, the obtained outputs can be 
regarded as conservative bounds  for constructing a safe ATO system by neutralising the identified 

372



 
I.B. Shubinsky, E.N. Rozenberg , H. Schäbe 
METHODS FOR ENSURING AND PROVING FUNCTIONAL  
SAFETY OF AUTOMATIC TRAIN OPERATION SYSTEMS 

RT&A, No 1 (77) 
Volume 19, March 2024  

 

most significant adverse factors. Thus, the used model is simplified, but it enables an analytical study 
of the problem. That constitutes the advantage of this approach over more complex models. 

The adopted assumptions defined mathematical models of the graph’s edges and nodes, the FS 
formulas, as well as the expert evaluation of the initial data are provided by us in [25].  

The limit value of an automatic train operation system’s time to dangerous failure takes place subject 
to the absence of destructive disturbing weather conditions ( 𝛾 → 0) and compliance with the 
requirements of IEC 61508-2 [6] (𝛼 → 0).  

Under those conditions, the probability of dangerous failure with an error not exceeding the first 
order of smallness tends to the following form:  

𝐺!"(𝑡) ≅ 𝜆!" ⋅ 𝑡 →
𝜆
2 𝑡, 

where λ is the failure rate of the machine vision facilities (it is assumed that the onboard and fixed 
facilities have about the same dependability). 

 

5. Conclusion 

Ensuring the FS of an automatic train operation requires not only developing or applying known 
methods of designing a safe system, but, most importantly, proving the acceptability of the achieved 
level of FS. In respect to automatic train operation systems, the conventional methods of proving the 
FS (statistical, experimental, expert, simulation) are of limited use. That is due to the distributed 
architecture of the systems, changing information processing algorithms in the course of training, 
large number of vulnerabilities, etc. For the purpose of improving the confidence in the FS evaluation 
results, it is proposed to focus on the technological methods and use the wideky applied analytical 
expert semi-Markov method, proposed here. 

The proposed process of monitoring the operation of ASCSS and machine vision facilities, creation 
of a second, virtual channel allow improving the FS of the shunting locomotive control system with 
machine vision from SIL 2 to SIL 3 and maintaining it over a sufficiently long period of time (over a 
quarter of the mean time to failure of the ASCSS). The mean time of faultless operation of the 
shunting locomotive control system may grow almost three times as long as the achieved level of 
the system’s FS remains unchanged. Additionally, the time of faultless operation of the locomotive 
until it has to be brought to a complete stop for safety reasons can also increase over three times. 
This important result can be practically achieved despite the increased amount of the system’s 
equipment due to the introduction of machine vision facilities.  

A general approach to ensuring the FS of an ATO is proposed. It is based on the division of the 
information processing process into two subprocesses, i.e., internal intelligent information 
processing onboard the locomotive for the purpose of decision-making regarding track vacancy and 
communication of initial visual information to the locomotive driver for decision-making. The 
division of this process must be combined with redundant machine vision facilities, regular 
comparison of the outputs of the onboard and fixed machine vision facilities, redundant comparison 
outputs, smoothing of the outputs in the process of locomotive movement. The EN 50129 functional 
safety requirements for the locomotive control and protection system and SIL4 requirements for the 
machine vision facilities are to be fulfilled as well. Additionally, adverse weather effects are to be 
countered by improving the efficiency of machine learning of the machine vision software. 
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Abstract

This paper presents a reliability modelling of a two-unit ammonia/urea plant. Real maintenance data of
the production plant have been used for this purpose. Four types of failure were noted: process, electrical,
mechanical and instrumental failures. Both ammonia/urea formation units work in parallel and do not
fail simultaneously. Various reliability indices of the plant, such as availability, busy period for repair, and
expected number of repairs for each type of failure, have been obtained. Markov processes and regenerative
point techniques are used for analysis. Profit analysis for the plant is also done, along with a graphical
representation of various parameters. Finally, sensitivity analysis is carried out to see the impact of varied
parameters on the profit function of the plant.

Keywords:Ammonia plant; Marko v process; regenerativ e point techniques; repairs; failur es

1. Introduction

Many resear chers have studied complex industrial systems under various operating conditions
and presumptions, contributing to the discipline of reliability modelling and analysis. Rizw an et
al. [1, 2] presented a reliability modelling strategy and its application to industries, specificall
focusing on a biscuit manufacturing factor y contr olled by a single-unit and tw o-unit hot standb y
PLC system. Mathe w et al. [3, 4] discussed the reliability modelling of single-unit and tw o-unit
systems in a continuous casting plant. They uti lized real maintenance data from a steel production
plant to analyze the system’s perfor mance and identify dif ferent types of failur es. Also, Mathe w
et al. [5] did a comparativ e analysis of the tw o models of the CC plant. Mathe w et al. [6, 7]
presented reliability modelling in an actual CC plant with dif ferent installed and full installed
capacities, wher e tw o EOT cranes operate in parallel. Padma vati et al. [8–13] evaluated the
impact of prioritizing repair over maintenance on the overall reliability and availability of the
desalination plant. Also, they discussed the implications of the resear ch for the design and
operation of desalination plants in ter ms of cost-ef fectiv eness and efficienc by taking dif ferent
assumptions for failur es and repairs.Rizw an et al. [14–16] analyzed the reliability of a w aste w ater
treatment plant. They estimated various reliability indices associated with the plant. Also, they
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highlighted the importance of regular monitoring, repairs, and replacements in maintaining the
reliability of systems.

Al Rahbi et al. [17–23] analyzed the reliability of single unit/ multiple units of a rodding anode
plant in the aluminium industr y with single/numer ous repair ers and optimized maintenance
strategies, impr oved system reliability , and reduced downtime, leading to increased productivity
and cost savings. Taj et al. [24–30, 33] evaluated reliability analysis conducted on the cable plant’s
single- or three-unit machine subsystem with repair priority over maintenance. Rizw an et al. [31]
examined the three pumps’ perfor mance in distributing desalinated w ater. The study included
maintenance data collected over fi e years, encompassing various failur e reasons, restoration
times, and w aiting times. Rizw an et al. [32] explor ed the reliability and sensitivity analysis of
Membrane Biofil Fuel Cells. Thus, the literatur e has widely discussed the reliability modelling
and analysis of comp lex industrial systems in various failur e/maintenance circumstances. But the
concept of reliability analysis for ammonia/ur ea manufacturing plants has yet to be discussed.

The demand for fertilizers is growing day by day around the world to meet agricultural
requir ements. The most used or consumed fertilizer is UREA, which is manufactur ed from
ammonia, from dif ferent industrial chemical reactions. The UREA fertilize r manufacturing
facilities consist ammonia manufacturing plant along with a urea plant. To meet the growing
demand for urea in the curr ent market, these facilities must keep production continuously
with maximum capacity to meet the market’s growing demand. For continuous operation,
these facilities must function the plant and equipment efficiently throughout the year without
significan technical or maintenance issues. Any unexpected operational failur e, breakdo wn, or
downtime may cause plant productivity and efficienc . For that, the operation and maintenance
strategies are critical as they help maintain the life and smooth operation of the equipment. These
strategies also help reduce plant downtime.Also, further analysis and resear ch techniques for
plant perfor mance, productivity , reliability , availability , maintainability , sensitivity [34, 35], etc.,
may be carried out to ensur e continuous and smooth plant operations. This paper provides
sensitivity and profitabilit analysis, alo ng with reliability analysis of parallel ammonia and urea
plants worldwide that have operated for mor e than 15 years. The resear ch is based on the actual
plant data, with some assumptions, failur e rate, or probability .

2. Notations

The follo wing are the notations used in the analysis:
λu = failur e rate of ammonia plant
p1/ p2/ p3/ p4= probability of process failur e/ electrical failur e/ mechanical failur e/ instrumental
failur e in unit 1.
p5/ p6/ p7/ p8=pr obability of process/ electrical/ mechanical/ instrumental failur e in unit 2.
α1/ α2/ α3/ α4=repair rate of process/ electrical/ mechanical/ instrumental failur e in unit 1.
α5/ α6/ α7/ α7=repair rate of process/ electrical/ mechanical/ instrumental failur e in unit 2.
f u(t) = p.d.f. of failur e time.
g1(t)/ g2(t)/ g3(t)/ g4(t)=p.d.f. of repair time due to process/ electrical/ mechanical/ instrumen-
tal failur e in unit 1.
g5(t)/ g6(t)/ g7(t)/ g8(t)=p.d.f. of repair time due to process/ electrical/ mechanical/ instrumen-
tal failur e in unit 2.

3. Data Summary

The real data from a urea manufacturing company is summarized as follo ws:
Probability of process failur e in unit 1, p1 = 0.2088
Probability of electrical failur e in unit 1, p2 = 0.0220
Probability of mechanical failur e in unit 1, p3 = 0.1758
Probability of instrumental failur e in unit 1, p4 = 0.1978
Probability of process failur e in unit 2, p5 = 0.1648
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Probability of electrical failur e in unit 2, p6 = 0.0220
Probability of mechanical failur e in unit 2, p7 = 0.1868
Probability of instrumental failur e in unit 2, p8 = 0.0220
Failur e rate of urea plant, λu= 0.00031 per hour
Repair rate of process failur e in unit 1, α1 = 0.0249 per hour
Repair rate of electrical failur e in unit 1, α2 = 0.2 per hour
Repair rate of mechanical failur e in unit 1, α3 = 0.0081 per hour
Repair rate of instrumental failur e in unit 1, α4= 0.01833 per hour
Repair rate of process failur e in unit 2, α5 = 0.0150 per hour
Repair rate of electrical failur e in unit 2, α6 = 0.0175 per hour
Repair rate of mechanical failur e in unit 2, α7 = 0.0057 per hour
Repair rate of instrumental failur e in unit 2, α8 = 0.0392 per hour

4. Model Description and Assumptions

• Initially , we have an operativ e ammonia manufacturing plant composed of tw o parallel
units: Unit 1 and Unit 2.

• The four types of failur es are obser ved in both units, i.e., process, electrical, mechanical, and
instrumental.

• Both units cannot fail simultaneously .

• Repair is carried out upon failur es.

• Failur e rate and repair rates all are taken as general.

5. Stochastic Model

Table 1 sho ws the rates of transition from state i (Si) to state j (Sj).The set of states {0,1,2,3...,8} all
are operativ e and regenerativ e.
Table 1
State Transition Table

Si/ Sj S0 S1 S2 S3 S4 S4 S6 S7 S8
S0 0 p1 f u(t) p2 f u(t) p3 f u(t) p4 f u(t) p5 f u(t) p6 f u(t) p7 f u(t) p8 f u(t)
S1 g1(t) 0 0 0 0 0 0 0 0
S2 g2(t) 0 0 0 0 0 0 0 0
S3 g3(t) 0 0 0 0 0 0 0 0
S4 g4(t) 0 0 0 0 0 0 0 0
S5 g5(t) 0 0 0 0 0 0 0 0
S6 g6(t) 0 0 0 0 0 0 0 0
S7 g7(t) 0 0 0 0 0 0 0 0
S8 g8(t) 0 0 0 0 0 0 0 0

wher e,
State 0 (S0) - Both urea processing machines unit 1 and 2 operativ es.
State 1 (S1) - Unit 1 failed due to process failur e, and Unit 2 is still operativ e.
State 2 (S2) - Unit 1 failed due to electrical failur e, and Unit 2 is still operativ e.
State 3 (S3) - Unit 1 failed due to mechanical failur e, and Unit 2 is still operativ e.
State 4 (S4) - Unit 1 failed due to instrumental failur e, and Unit 2 is still operativ e.
State 5 (S5)- Unit 1 is operativ e, and Unit 2 failed due to process failur e.
State 6 (S6) - Unit 1 is operativ e, and Unit 2 failed due to electrical failur e.
State 7 (S7) - Unit 1 is operativ e, and Unit 2 failed due to mechanical failur e.
State 8 (S8) - Unit 1 is operativ e, and Unit 2 failed due to instrumental failur e.
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The transition probability from state i (Si) to state j (Sj), qij(t) is giv en by

q01(t) = p1 f u(t), q10(t) = g1(t),

q02(t) = p2 f u(t), q20(t) = g2(t),

q03(t) = p3 f u(t), q30(t) = g3(t),

q04(t) = p4 f u(t), q40(t) = g4(t),

q05(t) = p5 f u(t), q50(t) = g5(t),

q06(t) = p6 f u(t), q60(t) = g6(t),

q07(t) = p7 f u(t), q70(t) = g7(t),

q08(t) = p8 f u(t), q80(t) = g8(t)

The steady-state probability , pij as

p01 = p1, p02 = p2, p03 = p3, p04 = p4, p05 = p5, p06 = p6, p07 = p7, p08 = p8

p10 = p20 = p30 = p40 = p50 = p60 = p70 = p80 = 1 (1)

Sojour n time (µi)„ i.e., mean stay time in particular state i, is giv en as

µ0 =
∫ ∞

0 t. f u(t) dt, µ5 =
∫ ∞

0 t.g5(t) dt,

µ1 =
∫ ∞

0 t.g1(t) dt, µ6 =
∫ ∞

0 t.g6(t) dt,

µ2 =
∫ ∞

0 t.g2(t) dt, µ7 =
∫ ∞

0 t.g7(t) dt,

µ3 =
∫ ∞

0 t.g3(t) dt, µ8 =
∫ ∞

0 t.g8(t) dt,

µ4 =
∫ ∞

0 t.g4(t) dt,

The contribution to mean sojour n time, mij,is giv en by

mij =
∫ ∞

0 t.qij(t) dt.It can be verifie that

m01 + m02 + m03 + m04 + m05 + m06 + m07 + m08 = µ0,

m10 = µ1, m20 = µ2, m30 = mu3, m40 = µ4,
m50 = µ5, m60 = µ6, m70 = mu7, m80 = µ8.

6. System Performance Measures

6.1. Availability of the System

Defin
Au

i (t) = probability that it is operativ e at time t, giv en that the system is in state i at time t = 0.
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Using the state transitions, we get the follo wing equations:

Au
0 (t) = M0(t) + q01(t)©Au

1 (t) + q02(t)©Au
2 (t) + q03(t)©Au

3 (t) + q04(t)©Au
4 (t) + q05(t)©Au

5 (t)

+ q06(t)©Au
6 (t) + q07(t)©Au

7 (t) + q08(t)©Au
8 (t)

Au
1 (t) = M1(t) + q10(t)©Au

0 (t)

Au
2 (t) = M2(t) + q20(t)©Au

0 (t)

Au
3 (t) = M3(t) + q30(t)©Au

0 (t)

Au
4 (t) = M4(t) + q40(t)©Au

0 (t)

Au
5 (t) = M5(t) + q50(t)©Au

0 (t)

Au
6 (t) = M6(t) + q60(t)©Au

0 (t)

Au
7 (t) = M7(t) + q70(t)©Au

0 (t)

Au
8 (t) = M8(t) + q80(t)©Au

0 (t)
(2)

wher e
Mi(t)= probability that the system stays in state i while operating rather than transferring to any
other state.
Taking Laplace transfor m of equations (28)-(36) and solving for Au∗

0 (s), we get

Au∗
0 (s) =

Nu
1 (s)

Du
1 (s)

wher e

Nu
1 (s) = M∗

0 (s) + q∗01(s)M∗
1 (s) + q∗02(s)M∗

2 (s) + q∗03(s)M∗
3 (s) + q∗04(s)M∗

4 (s)

+q∗05(s)M∗
5 (s) + q∗06(s)M∗

6 (s) + q∗07(s)M∗
7 (s) + q∗08(s)M∗

8 (s) (3)

Du
1 (s) = 1 − q∗01(s)q

∗
10(s)− q∗02(s)q

∗
20(s)− q∗03(s)q

∗
30(s)− q∗04(s)q

∗
40(s)− q∗05(s)

q∗50(s)− q∗06(s)q
∗
60(s)− q∗07(s)q

∗
70(s)− q∗08(s)q

∗
80(s) (4)

The steady-state availability of the system is giv en by :

Au
0 = lim

s→0
s.Au∗

0 (s) = lim
s→0

s.
Nu

1 (s)
Du

1 (s)
=

Nu′
1 (0)

Du
1 (0)

=
Nu

1
Du

1
(say) (5)

wher e

Nu
1 = µ0 + p1µ1 + p2µ2 + p3µ3 + p4µ4 + p5µ5 + p6µ6 + p7µ7 + p8µ8 (6)

Du
1 = p1µ1 + p2µ2 + p3µ3 + p4µ4 + p5µ5 + p6µ6 + p7µ7 + p8µ8 + µ0

6.2. Busy Period for Repair

The expected time for which the repair man is busy for the repair of unit 1 and unit 2 due to
process failur e in steady state is giv en by:

PBu1 = PNu1
2 / Du

1 and PBu2 = PNu2
2 / Du

1
wher e

PNu1
2 = p01u1 = p1u1

PNu2
2 = p05u5 = p5u5
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The expected time for which the repair man is busy for the repair of unit 1 and unit 2 due to
electrical failur e in steady state is giv en by:

EBu1 = ENu1
2 / Du

1 and EBu2 = ENu2
2 / Du

1
wher e

ENu1 = p02u2 = p2u2

ENu2 = p06u6 = p6u6

The expected time for which the repair man is busy for the repair of unit 1 and unit 2 due to
mechanical failur e in steady state is giv en by:

MBu1 = MNu1
2 / Du

1 and MBu1 = MNu1
2 / Du

1
wher e

MNu1
2 = p03u3 = p3u3

MNu2
2 = p07u7 = p7u7

The expected time for which the repair man is busy for the repair of unit 1 and unit 2 due to
instrumental failur e in steady state is giv en by:

IBu1 = INu1
2 / Du

1 and IBu1 = INu1
2 / Du

1 wher e

INu1
2 = p04u4 = p4u4

INu2
2 = p08u8 = p8u8

6.3. Expected Number of Repairs

The expected number of repairs in unit 1 and unit 2 due to process failur e in steady state is giv en
by:

PRu1 = PNu1
3 / Du

1 and PRu2 = PNu2
3 / Du

1
wher e

PNu1
3 = p01 p10 = p1

PNu2
3 = p05 p50 = p5

The expected number of repairs in unit 1 and unit 2 due to electrical failur e in steady state is
giv en by:

ERu1 = ENu1
3 / Du

1 and ERu2 = ENu2
3 / Du

1
wher e

ENu1
3 = p02 p20 = p2

ENu2
3 = p06 p60 = p6

The expected number of repairs in unit 1 and unit 2 due to mechanical failur e in steady state
is giv en by:

MRu1 = MNu1
3 / Du

1 and MRu2 = MNu2
3 / Du

1
wher e

MNu1
3 = p03 p30 = p3

MNu2
3 = p07 p70 = p7

The expected number of repairs in unit 1 and unit 2 due to instrumental failur e in steady state
is giv en by:

IRu1 = INu1
3 / Du

1 and IRu2 = INu2
3 / Du

1
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wher e

INu1
3 = p04 p40 = p4

INu2
3 = p08 p80 = p8

7. Profit Analysis of the System

The profi equation of the system is as follo ws:

Pu = C0 Au
0 − C1(PBu1 + PRu1)− C2(PBu2 + PRu2)− C3(EBu1 + ERu1)− C4(EBu2 + ERu2)

−C5(MBu1 + MRu1)− C6(MBu2 + MRu2)− C7(IBu1 + IRu1)− C8(IBu2 + IRu2)

wher e
C0= Revenue generated by the system

C1(C2)/ C3(C4)/ C5(C6)/ C7(C8): - Cost per unit time for engaging the repair man and cost for
repair due to process/electrical/mechanical/instrumental failur e in unit 1 (unit 2).

8. Numerical Analysis

In this section, inter pretation from graphs and tables has been made for the abo ve-obtained
system measur es in Section 4 and Section 5. Let us assume all the failur es and repair times follo w
exponential distribution along with their p.d.f. as:

f u(t) = λue−λut,

gi(t) = αie−αit, i = 1, 2, 3, ..8.

Using the values as written in Section 3 that is calculated from real data from a manufacturing
company , we get system effectiv eness measur es as:

• Availability of Ammonia Plant, Au
0 = 1

• Busy Period for Repair of Unit 1 due to Process Failur e, PBu1 = 0.0025

• Busy Period for Repair of Unit 2 due to Process Failur e, PBu2 = 0.0033

• Busy Period for Repair of Unit 1 due to Electrical Failur e, EBu1 = 3.3209 ∗ 10−5

• Busy Period for Repair of Unit 2 due to Electrical Failur e, EBu2 = 3.7953 ∗ 10−4

• Busy Period for Repair of Unit 1 due to Mechanical Failur e, MBu1 = 0.0066

• Busy Period for Repair of Unit 2 due to Mechanical Failur e, MBu2 = 0.0099

• Busy Period for Repair of Unit 1 due to Instrumental Failur e, IBu1 = 0.0033

• Busy Period for Repair of Unit 2 due to Instrumental Failur e, IBu2 = 1.6943 ∗ 10−4

• Excepted no. of Repair of Unit 1 due to Process Failur e, PRu1 = 6.3036 ∗ 10−5

• Excepted no. of Repair of Unit 2 due to Process Failur e, PRu2 = 4.9753 ∗ 10−5

• Excepted no. of Repair of Unit 1 due to Electrical Failur e, ERu1 = 6.6418 ∗ 10−6

• Excepted no. of Repair of Unit 2 due to Electrical Failur e, ERu2 = 6.6418 ∗ 10−6
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• Excepted no. of Repair of Unit 1 due to Mechanical Failur e, MR u1 = 5.3074 ∗ 10−5

• Excepted no. of Repair of Unit 2 due to Mechanical Failur e, MR u2 = 5.6395 ∗ 10−5

• Excepted no. of Repair of Unit 1 due to Instrumental Failur e, IRu1 = 5.9715 ∗ 10−5

• Excepted no. of Repair of Unit 2 due to Instrumental Failur e, IRu2 = 5.8712 ∗ 10−5

The graph of profi Function (Pu) w.r.t. revenue (C0) for dif ferent values of repair rate (α1) has
been sho wn in Figur e 1.

Figure 1: Change in Profit w.r.t. Revenue and Repair Rate

It sho ws that the increase in revenue and repair rate increases profit Also, the cut-of f points
for the system to be profitabl can be obser ved in Fig. 1.:

• For C0 > 108.2567 and α2 = 0.05, Pu > 0.

• For C0 > 112.6834 and α2 = 0.01, Pu > 0.

• For C0 > 115.8273 and α2 = 0.005, Pu > 0

Similarly , we can dra w graphs of the profi function with other parameters to see its effect and
cut-of f points when the system is profitable

Table 2. Sensitivity and Relativ e Sensitivity Analysis of Profi Function
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Parameter Sensitivity Analysis Relative Sensitivity Analysis
λu −3.3476 ∗ 105 -0.0212
α1 59.2593 3.0154 ∗ 10−4

α2 1.0047 4.1063 ∗ 10−5

α3 3.8409 ∗ 103 0.0064
α4 3.5789 ∗ 103 0.0134
α5 17.3446 5.3167 ∗ 10−5

α6 5.0857 1.8188 ∗ 10−5

α7 578.7666 6.7416 ∗ 10−4

α8 3.7234 2.9827 ∗ 10−5

C0 1 1.0218
C1 -0.0026 −3.6631 ∗ 10−4

C2 -0.0034 ]− 1.2854 ∗ 10−4

C3 −3.9851 ∗ 10−5 −5.0143 ∗ 10−5

C4 −3.8617 ∗ 10−4 −2.6915 ∗ 10−5

C5 -0.0066 -0.0065
C6 -0.01 −8.9916 ∗ 10−4

C7 -0.0033 -0.0137
C8 −1.7607 ∗ 10−4 −3.4829 ∗ 10−5

Table 2 sho ws the sensitivity and relativ e sensitivity analysis [34] of the profi function concer ning
dif ferent parameters that affect the system’s profit It sho ws that the profi function decr eases
rapidly with the change in C3 and increases with the shift in α3.
Also, the decr easing order in which parameters affect the profi function from Table 2 as:
C0 > λu > C7 > α4 > C5 > α3 > C6 > α7 > C1 > α1 > C2 > α5 > C3 > alpha2 > C8 > α8 >
C4 > α6.

9. Conclusion

In this paper , the parallel functioning of tw o units of an ammonia/ur ea plant reliability modelling
has been examined. The availability of the plant, the busy period for repairs, and the anticipated
number of repairs for each type of failur e have all been obtained as reliability indices. Profi
analysis for the plant is also carried out along with the graphical repr esentation with respect to
various parameters. Profi increases when revenue and repair rates both increase. The cut-of f
point is also dra wn to deter mine when a system is profitable Finally , sensitivity analysis is
perfor med to assess the effect of various parameters on the plant’s profi function. It demonstrates
that, in comparison to other factors, revenue and system failur e rate have the most significan
impact on the profi function. The model forecasts the failur e and repair conditions based on the
optimized reliability and profitabilit results.
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Abstract 

For proper utilization of manpower in any organization manpower modeling is needed. This paper 
addresses the two graded manpower model with non-stationary recruitment, promotion and leaving 
processes.  Here it is assumed that the recruitment process in the first grade follows a NHP process 
which is further assumed that the promotion and leaving processes are also NHP processes. Using 
the difference-differential equations, the joint p.g.f of the number of employees in the organization at 
any time ‘t’ is derived.  The characteristics of the model such as the average number of employees in 
each grade, the average waiting time of an employee in each grade, the variance of the number of 
employees in each grade and the C.V of an employee in each grade are derived explicitly. The 
sensitivity analysis of the model with respect to the changes in parameter is also studied through 
numerical illustration. The comparative study between homogeneous Poisson recruitment and 
NHP recruitment is also discussed. This model also improves some of the earlier models as 
particular cases.  

Keywords: NHP process, two-graded manpower model, duration of stays any 
grade, performance of the model. 

1. Introduction

An optimal utilization of Human Resources planning of manpower structure is a prerequisite for 
any organization.  Hence, several works have been reported in literature regarding manpower 
models with various assumptions on the constituent processes.  Graded manpower systems and its 
analysis are more important in order to develop policies of the organization with respect to 
manpower.  Starting with the pioneering work by Seal [1] with manpower modeling of human 
resources much work has been reported in literature regarding graded manpower systems 
(Srinivasa Rao et al. [2]). The different approaches in manpower modeling are explained by 
Ugwuowo [3] and Wang [4].  Parthasarathy et al. [5] have analyzed the two grade system and tried 
to use to represent the threshold as a specific case of the exponentiated exponential distribution 
(EE distribution).  Jeeva and Geetha [6], Gulzarul Hasan [7, 8] studied the manpower models 
governed by a fuzzy environment.  Kannan Nilakantan [9] analyzed the manpower models with 
staffing policies. Maijamma [10] is approach has the benefit of being the first to use linear 
programming and determined the ideal number of hires and promotions to make in order to 
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reduce the overall cost of the manpower planning system, particularly the cost of hiring and 
promoting people. This study specifically examined how applying the linear programming model 
can result in lower recruitment and promotion costs. In terms of dependability and attainability, 
the actionable model has been found to be effective and reliable.  Sathiyamoorthi and Elangovan 
[11], Lalithadevi and Srinivasan [12] have utilized geometrical process and shock models for 
analyzing single graded manpower models.  Parameswari [13] studied the estimation of the 
variability of the time to recruitment for a two-graded personnel system.  Ravichandran [14], 
Sendhamilzselvi et al. [15, 16] studied on calculating the mean and variance of the time to 
recruitment in a two graded manpower system with two continuous thresholds for depletion. 

The Poisson process is extensively utilized in manpower models for analyzing the 
manpower system with respect to various organization by Srinivasa Rao et al. [17], Kondababu 
and Srinivasa Rao [18], Srinivasa Rao and Kondababu [19], Govinda Rao et al. [20, 21]. Srinivasa 
Rao and Mallikharjuna Rao [22] have studied two graded manpower models with NHP 
recruitments.  NHP processes can be used to incorporate time-varying complexity. In order to 
reflect potential recruitment patterns over time, one can use this method. The time spent on trial 
recruitment modelling has many advantages. Saral et al. [23] has studied manpower models with 
two graded systems with respect to recruitment policy and thresholds.  Jayanthi [24] studied and 
analyzed the single graded system by considering time to recruitment with breakdown thresholds. 
Thilaka et al. [25] studied a method by deriving the characteristics of a two-grade human resource 
system under the conditions that (a) personnel can move from one grade to the next for training 
and skill improvement, and (b) people who previously left the system can be hired in both grades. 
The steady state and transient behaviors are discussed. Srinivasa Rao and Ganapathi Swamy [26, 
27] studied the manpower models with Duane recruitment processes.  They considered that the
leaving or promotion processes are stationary and independent of time.  But in many practical
situations it is observed  that the employee leaving and promotion is dependent on time  for
example in corporate and public sector offices having the graded system employee promotions or
leaving is done based on the time and duration of their stay in the organization.  Hence, in
analyzing the manpower models ignoring the non-stationary influence off promotion or leaving
process may lead to falsification in the model and may not estimate the characteristic of the model
accurately if the system is governed by non-stationary.

To have an accurate analysis one has to consider the non homogeneity of the 
recruitment/promotion/leaving processes of the models.  Very little work has been reported in 
literature regarding manpower models with non-homogeneous recruitment/promotion/leaving 
processes in graded systems.  Therefore in this paper, the model with NHP recruitment, promotion 
and leaving processes is developed and analyzed. The rest of the paper is arranged as follows: 
Section 2 deals with the development of the two graded manpower model using the difference 
differential equations. Section 3 deals with the derivation of the characteristics of the model such as 
probability of extinction, probability of at least one employee in grade 1 and grade 2, average 
number of employees in each grade, the variance of the number of employees in the organization 
and the variance of the number of  employees  in the organization.  Section 4 deals with numerical 
illustration and discussion on the characteristics of the model. Section 5 deals with sensitivity 
analysis of the model. Section6 is to compare the proposed model with that of the manpower 
model with homogeneous poison recruitment and promotion/leaving processes.  Section 7 deals 
with conclusions. 
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2. Two graded manpower model

Consider a two graded manpower model in which the organization is having two grades namely, 
grade-1 and grade-2.  The recruitment process of grade-1 is assumed to follows a NHP process 
with mean recruitment rate is  λ(𝑡) =  λଵ + λଶ𝑡 .  The promotion process from grade-1 to grade-2 
follows a NHP process with mean promotion rate  𝛼(𝑡) =  𝑎ଵ + 𝑎ଶ𝑡 .  The leaving processes in 
grade-2 follow a NHP process with mean leaving rate  𝛽(𝑡) =  𝑏ଵ + 𝑏ଶ 𝑡 .   

Figure 1:  Manpower model 

With these suppositions, the model postulates are: 

• The probability that an employee will be recruited in grade-1 at random intervals of time h
is [λ(t) h + o(h)].

• When there are ‘n’ employees in grade 1, the probability of a promotion from grade-1 to
grade-2 during an random interval of time ‘h’ is [n α(t) h + o(h)].

• When there are 'm' employees in grade 2, the probability of an employee quitting the
company from grade-2 during an random interval of time 'h' is [m β(t) h + o(h) ].

• When there are ‘n’ employees in grade 1 and ‘m’ employees in grade-2, the probability that
no employee will join or leave the company during an tiny interval of time ‘h’ is

[ 1 - λ(t)h – n µ(t)h –  m β(t) h + o(h) ].
• The probability that an event other than those listed above took place within a tiny period

of time ‘h’ is o (h).

Let P୬,୫(t) represent the probability that the organization will have ‘n’ employees in grade-1 
and ‘m’ employees in grade-2 at time t. The difference-differential equations of the model with this 
structure are: 

 𝜕𝑃௡,௠(೟)

𝜕𝑡
= −[𝜆(𝑡) +  𝑛 𝛼(𝑡) +  𝑚𝛽(𝑡)]𝑝௡,௠(𝑡) + 𝜆(𝑡)𝑃௡ିଵ,௠(𝑡) + (𝑛 + 1)𝛼(𝑡)𝑃௡ାଵ,௠ିଵ  (𝑡) 

+ (𝑚 + 1)𝛽(𝑡)𝑃௡,௠ାଵ (𝑡)∀ 𝑛, 𝑚 ≥ 0  (1) 

డ௉
೙,బ(೟)

డ௧
= −[𝜆(𝑡) +  𝑛 𝛼(𝑡)]𝑃௡,଴ (𝑡) + 𝜆(𝑡)𝑃௡ିଵ,଴ (𝑡) +  𝛽(𝑡)𝑃௡,ଵ (𝑡)∀ 𝑛 > 0, 𝑚 = 0  (2) 

డ௉
బ,೘(೟)

డ௧
= −[𝜆(𝑡) +  𝑚 𝛽(𝑡) ]𝑃଴,௠ (𝑡) +  𝛼(𝑡)𝑃ଵ,௠ିଵ (𝑡) + (𝑚 + 1)𝛽(𝑡)𝑃଴,௠ାଵ(𝑡)∀ 𝑛 = 0, 𝑚 > 0  (3) 

డ௉
బ,బ(೟)

డ௧
= −[𝜆(𝑡)]𝑃଴,଴(𝑡) + 𝛽(𝑡) 𝑃଴,ଵ(𝑡)∀𝑛 = 0, 𝑚 = 0  (4) 

P(zଵ, zଶ; t) be the joint p.g.f of P୬,୫(t).  Then 
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P(zଵ, zଶ; t)   = ∑ ∑ 𝑃௡,௠(𝑡)𝑧ଵ
௡ஶ

௠ୀ଴
ஶ
௡ୀ଴ 𝑧ଶ

௠  (5) 

This implies 

డ௉
೙,೘(೟)

డ௧
= − ∑ ∑ [𝜆(𝑡) + 𝑛 𝛼(𝑡) +   𝑚 𝛽(𝑡) ]𝑝௡,௠(𝑡)𝑧ଵ

௡𝑧ଶ
௠ஶ

௠ୀ଴
ஶ
௡ୀ଴  

+ ∑ ∑ 𝜆(𝑡)𝑝௡ିଵ,௠(𝑡)𝑧ଵ
௡𝑧ଶ

௠ + ∑ ∑ (𝑛 + 1)𝛼(𝑡)ஶ
௠ୀ଴

ஶ
௡ୀ଴ 𝑝௡ାଵ,௠ିଵ(𝑡)𝑧ଵ

௡𝑧ଶ
௠ஶ

௠ୀ଴
ஶ
௡ୀ଴

 + ∑ ∑ (𝑚 + 1)𝛽(𝑡)𝑝௡,௠ାଵ
ஶ
௠ୀ଴

ஶ
௡ୀ଴ (𝑡)𝑧ଵ

௡𝑧ଶ
௠  (6) 

This implies 

డ௣( ௭భ, ௭మ ; ௧) 

డ௧
= [𝛼(𝑡)(𝑧ଶ– 𝑧ଵ)]

డ௣

డ௭భ
+ [𝛽(𝑡)( 1 − 𝑧ଶ)]

డ௣

డ௭మ
+ 𝜆(𝑡) (𝑧 − 1) 𝑃( 𝑧ଵ, 𝑧ଶ ;  𝑡)  (7) 

Solving the equation (7) by Lagrangian’s method, the auxiliary equation is 

ௗ௧

ଵ
=

ௗ௭భ

ିఈ(௧) (௭మ–௭భ) 
=

ௗ௭మ

ିఉ(௧) ( ଵି௭మ)
=

ௗ௉

ିఒ(௧)( ଵି௭భ)௉(௭భ ,௭మ  ,௧)
 (8) 

Consider the recruitment rate, promotion rate and leaving rates are linear and time dependent and 
is of the form. 

λ(𝑡) =  λଵ + λଶ𝑡  

𝛼(𝑡) =  𝑎ଵ + 𝑎ଶ𝑡 , Where 𝑎ଵ > 0, 𝑎ଶ> 0 

𝛽(𝑡) =  𝑏ଵ + 𝑏ଶ𝑡 , Where 𝑏ଵ> 0, 𝑏ଶ> 0 

First and third terms in equation (8), will give 

𝐴 = (𝑧ଶ − 1)𝑒ି ∫ ఉ(௧)ௗ௧        (9) 

𝐵 = 𝑧ଵ𝑒ି ∫ ఈ(௧)ௗ௧ + (𝑧ଶ − 1)𝑒ି ∫ ఉ(௧)ௗ௧൫∫ 𝛼(𝑡)𝑒∫[ఉ(௧)ିఈ(௧)]ௗ௧  𝑑𝑡൯ + ∫ 𝛼(𝑡)𝑒ି ∫ ఈ(௧)ௗ௧  𝑑𝑡  (10) 

First and fourth terms in equation (8), will give 

𝐶 = 𝑃(𝑧ଵ, 𝑧ଶ; 𝑡) 𝑒𝑥𝑝(−[𝑧ଵ  𝑒
ି ∫ ఈ(௧)ௗ௧ + (𝑧ଶ − 1)𝑒ି ∫ ఉ(௧)ௗ௧൫∫ 𝛼(𝑡)𝑒∫[ఉ(௧)ିఈ(௧)]ௗ௧ 𝑑𝑡൯ 

+ ∫ 𝛼(𝑡). 𝑒− ∫ 𝛼(𝑡)𝑑𝑡𝑑𝑡] ൣ∫ 𝜆(𝑡). 𝑒∫ 𝛼(𝑡)𝑑𝑡𝑑𝑡൧)

+ ൣ(𝑧ଶ − 1)𝑒ି ∫ ఉ(௧)ௗ௧ ∫ 𝜆(𝑡). 𝑒∫ ఈ(௧)ௗ௧൫∫ 𝛼(𝑡)𝑒∫[ఉ(௧)ିఈ(௧)]ௗ௧ 𝑑𝑡൯𝑑𝑡൧

+ ൣ∫ 𝜆(𝑡). 𝑒∫ ఈ(௧)ௗ௧൫∫ 𝛼(𝑡)𝑒ି ∫ ఈ(௧)ௗ௧ 𝑑𝑡൯𝑑𝑡൧ + ∫ 𝜆(𝑡)𝑑𝑡  (11) 

Where A, B &C are arbitrary constants. With the initial conditions P଴଴(0) =1,P଴଴(t) = 0, ∀𝑡 >0.  We 
have the joint p.g.fof the number of employees in the grade-1 and the number of employees in the 
grade-2 at time ‘t’ is  
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P(zଵ, zଶ; t) =  𝑒𝑥𝑝[𝜆ଵ[(𝑧ଵ − 1)𝑒

ି൬௔భ௧ା௔మ 
೟మ

మ
൰

⎝

⎜
⎛∫ (ഊభశഊమೡ)೐

ቆೌభೡశೌమ
ೡమ

మ ቇ
೏ೡ

೟
బ

ഊభ
ି

భ

ೌభ

⎠

⎟
⎞

 +(𝑧ଶ − 1)𝑒
ି൬௕భ௧ା௕మ

೟మ

మ
൰

ቌ
ଵ

௕భି௔భ
−

∫ (௔భା௔మ௩) ௘
(್భషೌభ)ೡశ(್మషೌమ)

ೡమ

మ ௗ௩
೟

బ

௔భ
ቍ

 −(𝑧ଶ − 1)𝑒
ି൬௕భ௧ା௕మ

೟మ

మ
൰

ቌ
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ
ೡమ

మ ቇ
ௗ௩ ∫ (௔భା௔మ௩)௘

(್భషೌభ)ೡశ(್మషೌమ)
ೡమ

మ  
ௗ௩

೟
బ

೟
బ

ఒభ

−
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ
ೡమ

మ ቇ
ௗ௩ ൭∫ (௔భା௔మ௩)௘

(್భషೌభ)ೡశ(್మషೌమ)
ೡమ

మ  ೏ೡ೟
బ ൱ௗ௩

౪
బ

ఒభ
−

ଵ

௕భ
ቁ቙  (12) 

3. Characteristics of the model

Expanding 𝑃(𝑧ଵ, 𝑧ଶ, 𝑡), we obtain the probability that there are no employee in the organization as. 

𝑃଴,଴(𝑡) =  𝑒𝑥𝑝[−𝜆ଵ[𝑒

ି൬௔భ௧ା௔మ 
೟మ

మ
൰

⎝

⎜
⎛∫ (ഊభశഊమೡ)೐

ቆೌభೡశೌమ
ೡమ

మ ቇ
೏ೡ

೟
బ

ഊభ
ି

భ

ೌభ

⎠

⎟
⎞

+𝑒
ି൬௕భ௧ ା௕మ

೟మ

మ
൰

ቌ
ଵ

௕భି௔భ
−

∫ (௔భା௔మ௩) ௘
(್భషೌభ)ೡశ(್మషೌమ)

ೡమ

మ  
ௗ௩

೟
బ

௔భ
ቍ

+𝑒
ି൬௕భ௧ା௕మ

೟మ

మ
൰

ቌ
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ
ೡమ

మ ቇ
ௗ௩ ∫ (௔భା௔మ௩)௘

(್భషೌభ)ೡశ(್మషೌమ)
ೡమ

మ  
ௗ௩

೟

బ

೟

బ

ఒభ

−
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ
ೡమ

మ ቇ
൭∫ (௔భା௔మ௩)௘

(್భషೌభ)ೡశ(್మషೌమ)
ೡమ

మ
 ೏ೡ೟

బ ൱ௗ௩
೟

బ

ఒభ
−

ଵ

௕భ
ቁ቙  (13) 

Taking 𝑧ଶ = 1 in P(zଵ, zଶ; t), we obtain thep.g.f of employees in the  grade-1 in the organization as 

𝑃(𝑧ଵ, 𝑡)= exp቎𝜆ଵ(𝑧ଵ − 1)𝑒
ି൬௔భ௧ା௔మ 

೟మ

మ
൰

ቌ
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ 
ೡమ

మ ቇ
ௗ௩

೟
బ

ఒభ
−

ଵ

௔భ
ቍ቏  (14) 

Expanding 𝑃(𝑧ଵ, 𝑡) and collecting the constant terms, we obtain the probability that there is  no 
employee in grade -1 of the organization as 

 𝑃଴ .(𝑡) = exp ቎−𝜆ଵ𝑒
ି൬௔భ௧ା௔మ 

೟మ

మ
൰

ቌ
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ 
ೡమ

మ ቇ
ௗ௩

೟
బ

ఒభ
−

ଵ

௔భ
ቍ቏ (15)
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In grade-1the average number of employees in organization is 

𝐿ଵ(𝑡) = 𝜆ଵ𝑒
ି൬௔భ௧ା௔మ 

೟మ

మ
൰

ቌ
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ 
ೡమ

మ ቇ
ௗ௩

೟

బ

ఒభ
−

ଵ

௔భ
ቍ  (16) 

The probability that there the existence of employees in grade-1 of the organization is 

 𝑈ଵ(𝑡) =  1 − 𝑒𝑥𝑝 ቎−𝜆ଵ𝑒
ି൬௔భ௧ା௔మ 

೟మ

మ
൰

ቌ
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ 
ೡమ

మ ቇ
ௗ௩

೟
బ

ఒభ
−

ଵ

௔భ
ቍ቏  (17) 

The average waiting time of an employee in grade-1of the organization is 

 𝑊ଵ(𝑡) = ௅భ (௧)

ఈ(௧)[ଵି௉೚ .(௧)]
 

 𝑊ଵ(𝑡) = 

ఒభ௘
షቆೌభ೟శೌమ 

೟మ

మ ቇ

⎝

⎜
⎛∫ (ഊభశഊమೡ)೐

ቆೌభೡశೌమ 
ೡమ

మ ቇ
೏ೡ

೟
బ

ഊభ
ି

భ

ೌభ

⎠

⎟
⎞

(௔భା ௔మ௧)

⎣
⎢
⎢
⎢
⎡

ଵି௘௫୮

⎣
⎢
⎢
⎢
⎡

ିఒభ௘
షቆೌభ೟శೌమ 

೟మ

మ ቇ

⎝

⎜
⎛∫ (ഊభశഊమೡ)೐

ቆೌభೡశೌమ 
ೡమ

మ ቇ
೏ೡ

೟
బ

ഊభ
ି

భ

ೌభ

⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎤

 (18) 

The variance of the number of employees in grade-1of the organization is 

𝑉ଵ(𝑡) = 𝜆ଵ𝑒
ି൬௔భ௧ା௔మ 

೟మ

మ
൰

ቌ
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ 
ೡమ

మ ቇ
ௗ௩

೟

బ

ఒభ
−

ଵ

௔భ
ቍ  (19) 

The C.V of the number of employees in grade-1of the organization is 

 𝐶𝑉ଵ (𝑡) =  ቎𝜆ଵ𝑒
ି൬௔భ௧ା௔మ 

೟మ

మ
൰

ቌ
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ 
ೡమ

మ ቇ
ௗ௩

೟

బ

ఒభ
−

ଵ

௔భ
ቍ቏

షభ

మ

 (20) 

Similarly, taking 𝑧ଵ = 1 inP(zଵ, zଶ; t) , we obtain the p.g.fof the number of employees in grade-2 of 
the organization as  

𝑃(𝑧ଶ, 𝑡) = 𝑒𝑥𝑝[𝜆ଵ[(𝑧ଶ − 1)𝑒
ି൬௕భ௧ା௕మ 

೟మ

మ
൰

ቌ
ଵ

௕భି௔భ
−

∫ (௔భା௔మ௩).  ௘
(್భషೌభ)ೡశ (್మషೌమ)

ೡమ

మ ௗ௩
೟

బ

௔భ
ቍ

 +(𝑧ଶ − 1)𝑒
ି൬௕భ௧ା௕మ 

೟మ

మ
൰

ቌ
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ 
ೡమ

మ ቇ
ௗ௩ ∫ (௔భା௔మ௩)

೟
బ ௘

(್భషೌభ)ೡశ (್మషೌమ)
ೡమ

మ ௗ௩
೟

బ

ఒభ

−
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ
ೡమ

మ ቇ
ௗ௩ ൭∫ (௔భା௔మ௩)௘

(್భషೌభ)ೡశ(್మషೌమ)
ೡమ

మ  ೏ೡ೟
బ ൱ௗ௩

೟
బ

λభ
−

ଵ

௕భ
ቁ቙ (21)
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Expanding P(zଶ, t)and collecting the constant terms, we obtain the probability that there is no 
employee in grade-2 of the organization as 

𝑃.଴(𝑡) = 𝑒𝑥𝑝[−𝜆ଵ[𝑒
ି൬௕భ௧ା௕మ 

೟మ

మ
൰

ቌ
ଵ

௕భି௔భ
−

∫ (௔భା௔మ௩).  ௘
(್భషೌభ)ೡశ (್మషೌమ)

ೡమ

మ ௗ௩
೟

బ

௔భ
ቍ

+𝑒
ି൬௕భ௧ା௕మ 

೟మ

మ
൰

ቌ
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ 
ೡమ

మ ቇ
ௗ௩ ∫ (௔భା௔మ௩)

೟

బ
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బ
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మ
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బ
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−

ଵ
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ቁ቙  (22) 

In grade-2 the average number of employees in organization is 

 𝐿ଶ(𝑡) = 𝜆ଵ𝑒
ି൬௕భ௧ା௕మ 
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 (23) 

The probability that there the existence of employees in grade-2 of the organization is 

 𝑈ଶ(𝑡) = 1 − 𝑒𝑥𝑝[−𝜆ଵ[𝑒
ି൬௕భ௧ା௕మ 
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൰

ቌ
ଵ

௕భି௔భ
−

∫ (௔భା௔మ௩).  ௘
(್భషೌభ)ೡశ (್మషೌమ)

ೡమ

మ ௗ௩
೟

బ

௔భ
ቍ

+ 𝑒
ି൬௕భ௧ା௕మ

೟మ

మ
൰

቎
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ 
ೡమ

మ ቇ
ௗ௩ ∫ (௔భା௔మ௩)

೟
బ ௘

(್భషೌభ)ೡశ (್మషೌమ)
ೡమ

మ ௗ௩
೟

బ

ఒభ

−
∫ (ఒభାఒమ௩)௘

ቆೌభೡశೌమ
ೡమ

మ ቇ
൭∫ (௔భା௔మ௩)௘

(್భషೌభ)ೡశ(್మషೌమ)
ೡమ

మ  ೏ೡ೟

బ ൱ௗ௩
೟

బ

ఒభ
−

ଵ

௕భ
ቁ቙  (24) 

The average waiting time of an employee in grade-2 of the organization is 

 𝑊ଶ(𝑡) = ௅మ(௧)

(௕భା ௕మ௧)[ ௎మ(௧)]
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Where 𝐿ଶ(𝑡) and  Uଶ(t ) are given in equation (23) and (24) respectively. 

The variance of the number of employees in grade-2 of the organization is 

𝑉ଶ(𝑡) = 𝜆ଵ𝑒
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 (25) 

The C.V of the number of employees in grade-2 of the organization is 

𝐶𝑉ଶ (𝑡) =  ቎𝜆ଵ𝑒
ି൬௕భ௧ା௕మ 
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The average number of employees in the organization is 

L (t)= 𝜆ଵ𝑒
ି൬௔భ௧ା௔మ 
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The variance of the number of employees in the organization is 

𝑉(𝑡) =  𝜆ଵ𝑒
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 (28) 

4. Numerical illustration and results

The behavior of the proposed manpower model is discussed through a numerical 
illustration.  Since the performance characteristics of the manpower model are highly sensitive 
with respect to time; the transient behavior of the model is studied through computing the 
performance measures with the following set of values for the model parameters: 
t = 0.13, 0.14, 0.15, 0.16;  𝜆ଵ = 2, 3, 4, 5, 6;   𝜆ଶ = 3, 4, 5, 6, 7;  𝑎ଵ = 7, 7.4, 7.8, 8.2, 8.6 
𝑎ଶ = 5, 7, 9, 11, 13;  𝑏ଵ = 9, 9.4, 9.8, 10.2, 10.6;   𝑏ଶ = 9, 12, 15, 17, 20  

For different values of parameters t, 𝜆ଵ, 𝜆ଶ, 𝑎ଵ, 𝑎ଶ, 𝑏ଵ, 𝑏ଶ and using the equations, the 
performance measures such as the average number of employees in grade-1 and in grade-2, the 
average waiting time of an employee in grade-1 and in grade-2, the variance of the number of 
employees in grade-1and in grade-2 and the C.V of the number of employees in both grade-1and 
in grade-2 are computed and presented in Table 1 and Table 2.  The relationship between the 
parameters and performance measures are represented in the Figure 1 and Figure 2. 

From the Table 1, As time (t) varies from 0.13 to 0.16, the average number of employees in 
grade-1 increases from 0.07505 to 0.12475 and in grade 2 decreases from  
0.13306 to 0.07818, the average waiting time of an employee in grade-1 increases from 0.13569 to 
0.13637 and grade-2 decreases from 0.10502 to 0.09958, when all the other parameters are fixed. 

As the recruitment rate (𝜆ଵ) varies from 3 to 6, the average number of employees in grade1 
and in grade-2 raises from 0.17384 to 0.32109 and 0.11727 to 0.23454 respectively, the average 
waiting time of an employee in grade-1and in grade-2 raises from 0.13967 to 0.14989 and 0.10151 to 
0.10746 respectively, when all the other parameters are fixed.  

As the recruitment rate (𝜆ଶ) varies from 4 to 7, the average number of employees in grade-
1 increases from 0.32995 to 0.35654 and in grade-2 it remains constant , the average waiting time of 
an employee in grade-1increases from 0.15052 to 0.15242  and in grade-2 it remains constant, when 
all the other parameters are fixed. 

As the promotion rate parameter (𝑎ଵ) varies from 7.4 to 8.6, the average number of 
employees in grade-1 and in grade-2 increases from 0.37094 to 0.39615 and 0.40239 to 2.80333 
respectively, the  average waiting time of an employee in grade-1 decreases from 0.14596 to 0.12884 
and in grade-2 increases from 0.11635 to 0.28584, when all the other parameters are fixed. 
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 Table 1 : Value of L1(t),L2(t),W1(t) and W2(t) for different value of parameters 

t λ1 λ2 a1 a2 b1 b2 L1(t) L2(t) W1(t) W2(t) 

0.13 2 3 7 5 9 9 0.07505 0.13306 0.13569 0.10502 

0.14 2 3 7 5 9 9 0.09266 0.11241 0.13598 0.10305 

0.15 2 3 7 5 9 9 0.10921 0.09419 0.13621 0.10124 

0.16 2 3 7 5 9 9 0.12475 0.07818 0.13637 0.09958 

0.16 3 3 7 5 9 9 0.17384 0.11727 0.13967 0.10151 

0.16 4 3 7 5 9 9 0.22292 0.15636 0.14303 0.10347 

0.16 5 3 7 5 9 9 0.27200 0.19545 0.14643 0.10545 

0.16 6 3 7 5 9 9 0.32109 0.23454 0.14989 0.10746 

0.16 6 4 7 5 9 9 0.32995 0.23454 0.15052 0.10746 

0.16 6 5 7 5 9 9 0.33881 0.23454 0.15115 0.10746 

0.16 6 6 7 5 9 9 0.34767 0.23454 0.15178 0.10746 

0.16 6 7 7 5 9 9 0.35654 0.23454 0.15242 0.10746 

0.16 6 7 7.4 5 9 9 0.37094 0.40239 0.14596 0.11635 

0.16 6 7 7.8 5 9 9 0.38196 0.67530 0.13990 0.13174 

0.16 6 7 8.2 5 9 9 0.39020 1.21167 0.13419 0.16526 

0.16 6 7 8.6 5 9 9 0.39615 2.80333 0.12884 0.28584 

0.16 6 7 8.6 7 9 9 0.39277 2.80133 0.12440 0.28568 

0.16 6 7 8.6 9 9 9 0.38942 2.79940 0.12025 0.28551 

0.16 6 7 8.6 11 9 9 0.38611 2.79754 0.11636 0.28536 

0.16 6 7 8.6 13 9 9 0.38282 2.79575 0.11270 0.28521 

0.16 6 7 8.6 13 9.4 9 0.38282 1.13528 0.11270 0.15432 

0.16 6 7 8.6 13 9.8 9 0.38282 0.59809 0.1127 0.11821 

0.16 6 7 8.6 13 10.2 9 0.38282 0.34032 0.11270 0.10136 

0.16 6 7 8.6 13 10.6 9 0.38282 0.19334 0.11270 0.09134 

0.16 6 7 8.6 13 10.6 12 0.38282 0.18320 0.11270 0.08741 

0.16 6 7 8.6 13 10.6 15 0.38282 0.17348 0.11270 0.08379 

0.16 6 7 8.6 13 10.6 18 0.38282 0.16417 0.11270 0.08044 

0.16 6 7 8.6 13 10.6 21 0.38282 0.15524 0.11270 0.07734 
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Figure 2: Relation between the parameters and performance measures  
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As the promotion rate parameter (𝑎ଶ) varies from 7 to 13, the average number of 
employees in grade-1 and in grade-2 reduces from 0.39277 to 0.38282 and 2.80133 to 2.79575 
respectively, the average waiting time of an employee in grade-1and in grade-2 reduces from 
0.12440 to 0.11270 and 0.28568 to 0.28521 respectively, when all the other parameters are fixed.  

As the leaving rate parameter (𝑏ଵ) varies from 9.4 to 10.6, the average number of 
employees in grade-1 remains constant and in grade-2 decreases from 1.13528 to 0.19334, the 
average waiting time of an employee in grade-1 is not affected and in grade-2 it is decreasing from 
0.15432 to 0.09134, when all the other parameters are fixed.  

As the promotion rate parameter (𝑏ଶ) varies from 12 to 21, the average number of 
employees in grade-1  remains constant and in grade-2  decreases from 0.18320 to 0.15524, the 
average waiting time of an employee in grade-1 is not affected and in grade-2 it is decreasing from 
0.08741 to 0.07734,when all the other parameters are fixed. 

From Table 2, As time (t) varies from 0.13 to 0.16, the variance of the number of employees 
in grade-1 increases from 0.07505 to 0.12475 and in grade-2 decreases from 0.13306 to 0.07818, C.V 
of the number employees in grade-1 decreases from 4.21372 to 2.83122 and in grade-2 increases 
from 2.74138 to 3.57642, When all the other parameters are fixed. 

As the recruitment rate parameter (𝜆ଵ) varies from 3 to 6, the variance of the number of 
employees in grade-1 and in grade-2 raises from 0.17384 to 0.32109 and 0.11727 to 0.23454 
respectively, the C.V of the number of employees in grade-1 and in grade-2 reduces from 2.39844 
to 1.76477 and 2.92013 to 2.06485 respectively, when all the other parameters are fixed. 

As the recruitment rate parameter (𝜆ଶ) varies from 4 to7, the variance of the number of 
employees in grade-1 increases from 0.32995 to 0.35654 and in grade-2 remains constant, the C.V of 
the number employees in grade-1 decreases from 1.74091 to 1.67474 and in grade-2 remains 
constant, when all the other parameters are fixed. 

As the promotion rate parameter (𝑎ଵ) varies from 7.4 to 8.6, the variance of the number of 
employees in grade-1 and in grade-2 raises from 0.37094 to 0.39615 and 0.40239 to 2.80333 
respectively, the C.V of the number of employees in grade-1 and in grade-2 reduces from 1.64191 
to 1.58881 and 1.57643 to 0.59726 respectively, when all the other parameters are fixed. 

As the promotion rate parameter (𝑎ଶ) variation from 7 to 13, the variance of the number of 
employees in grade-1 and in grade-2 raises from 0.39277 to 0.38282 and 2.80133 to 2.79575 
respectively, the C.V of the number of employees in grade-1 and in grade-2 raises from 1.59563 to 
1.61623 and 1.59747 to 0.59807 respectively, when all the other parameters are fixed. 

As the promotion rate parameter (𝑏ଵ) varies from 9.4 to 10.6, the variance of the number of 
employees in grade-1 remains constant and in grade-2 decreases from 1.13528 to 0.19334, the C.V 
of the number of employees in grade-1 remains constant and in grade-2 increases from 0.93853 to 
2.27427, when all the other parameters are fixed. 

As the promotion rate parameter (𝑏ଶ) varies from 12 to 21, the variance of the number of 
employees in grade-1 remains constant and in grade-2 decreases from 0.18320 to 0.15524, the C.V 
of the number of employees in grade-1 remains constant and in grade-2  increases from 2.33637 to 
2.53801, when all the other parameters are fixed. 
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Table 2: Values of  V1(t),V2(t),CV1(t) and CV2(t) for different values of parameters 

t λ1 λ2 a1 a2 b1 b2 V1(t) V2(t) CV1(t) CV2(t) 

0.13 2 3 7 5 9 9 0.07505 0.13306 3.65017 2.74138 

0.14 2 3 7 5 9 9 0.09266 0.11241 3.28514 2.98268 

0.15 2 3 7 5 9 9 0.10921 0.09419 3.02606 3.25833 

0.16 2 3 7 5 9 9 0.12475 0.07818 2.83122 3.57642 

0.16 3 3 7 5 9 9 0.17384 0.11727 2.39844 2.92013 

0.16 4 3 7 5 9 9 0.22292 0.15636 2.11799 2.52891 

0.16 5 3 7 5 9 9 0.27200 0.19545 1.91740 2.26193 

0.16 6 3 7 5 9 9 0.32109 0.23454 1.76477 2.06485 

0.16 6 4 7 5 9 9 0.32995 0.23454 1.74091 2.06485 

0.16 6 5 7 5 9 9 0.33881 0.23454 1.71799 2.06485 

0.16 6 6 7 5 9 9 0.34767 0.23454 1.69595 2.06485 

0.16 6 7 7 5 9 9 0.35654 0.23454 1.67474 2.06485 

0.16 6 7 7.4 5 9 9 0.37094 0.40239 1.64191 1.57643 

0.16 6 7 7.8 5 9 9 0.38196 0.67530 1.61806 1.21689 

0.16 6 7 8.2 5 9 9 0.39020 1.21167 1.60088 0.90847 

0.16 6 7 8.6 5 9 9 0.39615 2.80333 1.58881 0.59726 

0.16 6 7 8.6 7 9 9 0.39277 2.80133 1.59563 0.59747 

0.16 6 7 8.6 9 9 9 0.38942 2.79940 1.60247 0.59768 

0.16 6 7 8.6 11 9 9 0.38611 2.79754 1.60934 0.59788 

0.16 6 7 8.6 13 9 9 0.38282 2.79575 1.61623 0.59807 

0.16 6 7 8.6 13 9.4 9 0.38282 1.13528 1.61623 0.93853 

0.16 6 7 8.6 13 9.8 9 0.38282 0.59809 1.61623 1.29305 

0.16 6 7 8.6 13 10.2 9 0.38282 0.34032 1.61623 1.71419 

0.16 6 7 8.6 13 10.6 9 0.38282 0.19334 1.61623 2.27427 

0.16 6 7 8.6 13 10.6 12 0.38282 0.18320 1.61623 2.33637 

0.16 6 7 8.6 13 10.6 15 0.38282 0.17348 1.61623 2.40092 

0.16 6 7 8.6 13 10.6 18 0.38282 0.16417 1.61623 2.46808 

0.16 6 7 8.6 13 10.6 21 0.38282 0.15524 1.61623 2.53801 
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Figure 3: Relation between the parameters and performance measures  
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5. Sensitivity analysis of the model

Table3: The values of L1(t),L2(t),W1(t),W2(t),V1(t) and V2(t) for different values of  t,λ1,λ2,a1,a2,b1and b2 

Parameter Performance
Measures 

-15% -10% -5% 0% 5% 10% 15% 

t=0.2 

L1(t) 0.20768 0.22948 0.25000 0.26931 0.28747 0.30456 0.32064 
L2(t) 0.33263 0.29217 0.25585 0.22330 0.19420 0.16825 0.14516 
W1(t) 0.14345 0.14385 0.14416 0.14439 0.14455 0.14464 0.14466 
W2(t) 0.12032 0.11672 0.11345 0.11048 0.10776 0.10528 0.10300 
V1(t) 0.20768 0.22948 0.25000 0.26931 0.28747 0.30456 0.32064 
V2(t) 0.33263 0.29217 0.25585 0.22330 0.19420 0.16825 0.14516 

λ1=3 

L1(t) 0.23848 0.24876 0.25903 0.26931 0.27958 0.28986 0.30013 
L2(t) 0.18980 0.20097 0.21213 0.22330 0.23446 0.24563 0.25679 
W1(t) 0.14228 0.14298 0.14368 0.14439 0.14510 0.14581 0.14653 
W2(t) 0.10870 0.10929 0.10988 0.11048 0.11107 0.11167 0.11227 
V1(t) 0.23848 0.24876 0.25903 0.26931 0.27958 0.28986 0.30013 
V2(t) 0.18980 0.20097 0.21213 0.22330 0.23446 0.24563 0.25679 

λ2=5 

L1(t) 0.25974 0.26293 0.26612 0.26931 0.27250 0.27569 0.27888 
L2(t) 0.22330 0.22330 0.22330 0.22330 0.22330 0.22330 0.22330 
W1(t) 0.14373 0.14395 0.14417 0.14439 0.14461 0.14483 0.14505 
W2(t) 0.11048 0.11048 0.11048 0.11048 0.11048 0.11048 0.11048 
V1(t) 0.25974 0.26293 0.26612 0.26931 0.27250 0.27569 0.27888 
V2(t) 0.22330 0.22330 0.22330 0.22330 0.22330 0.22330 0.22330 

a1=6.7 

L1(t) 0.25225 0.25993 0.26537 0.26931 0.27180 0.27323 0.27373 
L2(t) 0.01724 0.06421 0.12665 0.22330 0.38499 0.75544 2.30366 
W1(t) 0.16421 0.15707 0.15060 0.14439 0.13877 0.13335 0.12844 
W2(t) 0.09987 0.10222 0.10541 0.11048 0.11929 0.14107 0.25340 
V1(t) 0.25225 0.25993 0.26537 0.26931 0.27180 0.27323 0.27373 
V2(t) 0.01724 0.06421 0.12665 0.22330 0.38499 0.75544 2.30366 

a2=6 

L1(t) 0.27093 0.27039 0.26985 0.26931 0.26877 0.26823 0.26770 
L2(t) 0.22410 0.22383 0.22356 0.22330 0.22304 0.22278 0.22252 
W1(t) 0.14787 0.14669 0.14553 0.14439 0.14327 0.14216 0.14107 
W2(t) 0.11052 0.11050 0.11049 0.11048 0.11046 0.11045 0.11043 
V1(t) 0.27093 0.27039 0.26985 0.26931 0.26877 0.26823 0.26770 
V2(t) 0.22410 0.22383 0.22356 0.22330 0.22304 0.22278 0.22252 

b1=7.9 

L1(t) 0.26931 0.26931 0.26931 0.26931 0.26931 0.26931 0.26931 
L2(t) 62.67895 1.19799 0.46792 0.2233 0.11041 0.04563 0.00701 
W1(t) 0.14439 0.14439 0.14439 0.14439 0.14439 0.14439 0.14439 
W2(t) 7.03467 0.1843 0.12909 0.11048 0.10069 0.09394 0.08896 
V1(t) 0.26931 0.26931 0.26931 0.26931 0.26931 0.26931 0.26931 
V2(t) 62.67895 1.19799 0.46792 0.2233 0.11041 0.04563 0.00701 

b2=11 

L1(t) 0.26931 0.26931 0.26931 0.26931 0.26931 0.26931 0.26931 
L2(t) 0.23241 0.22934 0.22630 0.22330 0.22033 0.21740 0.21451 
W1(t) 0.14439 0.14439 0.14439 0.14439 0.14439 0.14439 0.14439 
W2(t) 0.11471 0.11326 0.11185 0.11048 0.10913 0.10781 0.10653 
V1(t) 0.26931 0.26931 0.26931 0.26931 0.26931 0.26931 0.26931 
V2(t) 0.23241 0.22934 0.22630 0.22330 0.22033 0.21740 0.21451 
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The sensitivity of the model is performed with respect to the value of time, recruitment 
rate, promotion rate and leaving rate of the both grade-1 and grade-2. 

For different values of t, 𝜆ଵ, 𝜆ଶ, 𝑎ଵ, 𝑎ଶ, 𝑎ଶ, 𝑏ଵ and 𝑏ଶthe average number of employees in 
grade-1 and in grade-2, average waiting time of an employee in grade-1 and in grade-2, the 
variance of the number of employees in grade-1 and in grade-2 are computed and presented in 
Table-3 with variation of -15%,-10%,-5% 0%,5%,10%,15% of the model parameters. 

The performance measures are highly influenced by time (t).  As t increases from -15% to 
+15%, the average  number of employees along with the average waiting time of employees, the
variance of the number of employees increases in grade-1. The average number of employees
along with the average waiting time of employees, the variance of the number of employees
decreases in grade-2.

As the recruitment rate parameter 𝜆ଵincreases from -15% to +15%, the average number of 
employees, average waiting time of employees and the variance of the number of employees 
increasing  in grade-1 and in grade-2. 

As the recruitment rate parameter 𝜆ଶ increasesfrom -15% to +15%, the average number of 
employees along with the average waiting time of employees,  the variance of the number of 
employees are increases in grade-1 and there is no change with respect to the performance 
measures in grade-2. 

When the promotion rate parameter 𝑎ଵ increases from -15% to +15%, the average number 
of employees along with the variance of the number of employees increases, the average waiting 
time of employees decreases in grade-1 and  the average number of employees along with average 
waiting time of employees, the variance of the number of employees increases  in grade-2.  

When the promotion rate parameter 𝑎ଶ increases from -15% to +15%, the average number 
of employees, average waiting time of employees and the variance of the number of employees 
decreasing  in grade-1 and in grade-2. 

When the leaving rate parameter 𝑏ଵ increases from -15% to +15%, the average number of 
employees, average waiting time of employees and the variance of the number of employees in 
grade-1 remain constant  and  in  grade-2  are decreasing. 

When the leaving rate parameter 𝑏ଶ increases from -15% to +15%, the average number of 
employee, average waiting time of employee and the variance of the number of employees in 
grade-1 are not influenced and  in  grade-2  are decreasing. 

6. Comparative study of the models

The comparative study of the developed model with that of homogeneous Poisson 
recruitment is presented in this section.  The performance measures of both the models are 
presented in Table 4 for different values of  t =0.18, 0.19, 0.20, 0.21, and 0.22. 

From the Table 4, As time (t) increases the percentage variation of the performance 
measures between two models also increasing. The model with NHP recruitment can predict the 
performance measure more accurately than the model with homogeneous Poisson recruitment.  It 
is also observe that the assumption of NHP recruitment has a significant influence on all the 
performance measure of the model.  Time also has a significant effect on the system performance 
measures. 
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Table-4: Comparative study of models with non-homogeneous and homogeneous recruitment 

t 
Parameter 
Measure 

Non-Homogeneous 
recruitment 

Homogeneous 
recruitment 

Difference 
Percentage of 

Variation 

t=0.18 

L1(t) 0.62162 0.62475 0.00313  0.50100 

L2(t) 0.09084 0.20145 0.11061  54.90692 

W1(t) 0.10049 0.12807 0.02758  21.53510 

W2(t) 0.04519 0.08833 0.04314  48.83958 

V1(t) 0.62162 0.62475 0.00313  0.50100 

V2(t) 0.09084 0.20145 0.11061  54.90692 

t=0.19 

L1(t) 0.64298 0.65171 0.00873  1.33955 

L2(t) 0.06385 0.16513 0.10128  61.33349 

W1(t) 0.10027 0.12962 0.02935  22.64311 

W2(t) 0.04188 0.08679 0.04491  51.74559 

V1(t) 0.64298 0.65171 0.00873  1.33955 

V2(t) 0.06385 0.16513 0.10128  61.33349 

t=0.20 

L1(t) 0.66132 0.67598 0.01466  2.16870 

L2(t) 0.04256 0.13433 0.09177  68.31683 

W1(t) 0.09992 0.13103 0.03111  23.74265 

W2(t) 0.03812 0.08549 0.04737  55.40999 

V1(t) 0.66132 0.67598 0.01466  2.16870 

V2(t) 0.04256 0.13433 0.09177  68.31683 

t=0.21 

L1(t) 0.67695 0.69784 0.02089  2.99352 

L2(t) 0.02599 0.10828 0.08229  75.99741 

W1(t) 0.09946 0.13230 0.03284  24.82237 

W2(t) 0.03335 0.08441 0.05106  60.49046 

V1(t) 0.67695 0.69784 0.02089  2.99352 

V2(t) 0.02599 0.10828 0.08229  75.99741 

t=0.22 

L1(t) 0.69019 0.71751 0.02732  3.80761 

L2(t) 0.01330 0.08632 0.07302  84.59222 

W1(t) 0.09891 0.13346 0.03455  25.88791 

W2(t) 0.02629 0.08350 0.05721  68.51497 

V1(t) 0.69019 0.71751 0.02732  3.80761 

V2(t) 0.01330 0.08632 0.07302  84.59222 
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7. Conclusion

In this paper, a novel model with two grades of manpower is developed and examined. 
This procedure has the ability to describe time-dependent recruiting.  The model's characteristics, 
such as the average number of employees in each grade, the average waiting time for an employee 
in each grade, the number of employees in each grade's variance and the number of employees in 
each grade's C.V in the organization are explicitly derived. The sensitivity analysis of the model 
revealed that the system performance metrics are significantly influenced by non-homogeneous 
recruitment rate. 

When recruiting is done in a time-dependent manner, the performance measures can be 
predicted more correctly and realistically by employing the developing model.  This model also 
incorporates few of the prior models as special instances for particular values of parameters.  This 
model can also be improved by taking cost factors into account and determining the ideal values 
for the model's parameters, which will be considered later. This model can be utilized to predict 
the human resource characteristics of the organization at defense and IT sectors as the recruitment, 
promotion and leaving processes in these organizations are time dependent. 
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Abstract 

The record values data have received the attention of researchers in statistics for over seven decades. 

Through these decades the records have played a significant and widely utilized role for statistical 

inference in parameter estimation, predicting future values, hypothesis tests, as well as stress-

strength tests, and characterizing distributions. In this paper, the types of record values, some 

distributional properties, and statistical inferences of record values and their applications are 

reviewed. The purpose of this paper is to shed light on the role of record values in statistical 

inference. Therefore, we will examine this issue from two perspectives, the first perspective being 

estimation and the second perspective being prediction. These are through some of the most 

important lifetime distributions are Exponential, Weibull, Gumbel, Geometric, Pareto, Generalized 

exponential, Rayleigh, Lomax, and Nadarajah-Haghighi distributions. I hope that the findings of 

this paper will be useful for researchers in various fields and lead to further enhancement of research 

in record values theory and its applications. 

Keywords: maximum likelihood estimation; maximum likelihood predictor; 

record values; point prediction; probability distribution; Bayesian estimation; 

Bayesian prediction 

1. Introduction

In statistics, a record value or record statistic is the largest or smallest value obtained from a 

sequence of random variables. Record values arise naturally in both theoretical and practical areas 

of probability and statistics. On the practical side, Record values are of interest and importance in 

several branches of studies such as, hydrology, seismology, psychology, medicine, engineering. All 

of us constantly hear of new records being created in events such as stock market prices, rainfall, 

temperature, flood level, athletic events, oil, and mining surveys etc. In any field, whenever a new 

high or a new low value is observed, in connection with the phenomena under study, it becomes a 

part of history and will be called as a record. On the theoretical side, various statistical inference 

procedures such as point or interval estimation and prediction as well as hypothesis testing can be 

developed based on observed record sequences. 

Records become extremely important and necessary in some cases, including when we only  

want to study the value of the events that exceed the previous ones, or when observations are 

destroyed by experimental tests, or it is impossible to obtain a complete sample. Overall, records 

can be useful in any situation where there is a need to track and analyze data over time. 
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The aim of this study to shed light on the role of record values in statistical inference. The rest 

of this paper reviews the records from the following aspects: Section 2 introduces the definition of 

record values and their distributional properties. Section 3 introduces a literature review on uses of 

record values in statistical inference. Section 4 reviews the record values data in practical 

applications. Section 5 reviews the computer software for records. Section 6 discusses the  future 

works. Section 7 introduces some conclusions. 

2. Definition of Record Values and their Distributional Properties

The formal study of record value theory probably started with the pioneering paper by 

Chandler [1]. In this section, the definition of upper and lower and k-th record values and their 

distributional properties are introduced. 

2.1 Upper Record Values 

Let 𝑋1, 𝑋2, … 𝑋𝑛, … be a sequence of independent and identically distributed (iid) random 

variables that have cumulative distribution function (cdf) 𝐹(𝑥) and probability density function 

(pdf) 𝑓(𝑥). Let 𝑌𝑛 = 𝑚𝑎𝑥{𝑋1, 𝑋2, … , 𝑋𝑛} for 𝑛 ≥ 1. We say 𝑋𝑗 is an upper record value of this 

sequence if 𝑌𝑗 > 𝑌𝑗−1 , 𝑗 > 1. Thus 𝑋𝑗 will be called an upper record value if its value exceeds that of 

all previous observations. The first record  𝑌1 = 𝑋1 is called the trivial record.  

The times at which records appear are of interest and are called record times. The random 

variables 𝑈(0) = 1, and 𝑈(𝑚) = 𝑚𝑖𝑛{𝑗: 𝑗 > 𝑈(𝑚 − 1), 𝑋𝑗 > 𝑋𝑈(𝑚−1)} are called the upper record 

times, and the sequence {𝑈(𝑚), 𝑚 ≥ 0} is called the sequence of upper record times.  

The sequence of inter-record times, denoted by {𝑇𝑛 , 𝑛 ≥ 1}, is defined as 𝑇𝑛 = 𝑈(𝑛 + 1) −

𝑈(𝑛), 𝑛 = 1,2, … 

Many distributional properties of upper record values in the sequence of iid continuous 

random variables 𝑋1, 𝑋2, … , 𝑋𝑈(𝑚) with cdf F(x) and pdf f(x) have been expressed in terms of the 

function R(x) = −ln[1 − F(x)]. The pdf of the upper record value 𝑋𝑈(𝑚),(see Arnold, et al. [2]) is  

𝑓𝑚(𝑥)  =
(R(x))𝑚−1

(𝑚 − 1)!
𝑓(𝑥) , − ∞ < 𝑥 < ∞  (2.1) 

and the joint pdf of the first (m) upper record values 𝑋𝑈(1) = 𝑥1, 𝑋𝑈(2) = 𝑥2, … , 𝑋𝑈(𝑚) = 𝑥𝑚 is 

given by 

𝑓1,2,…,𝑚(𝑥1, 𝑥2, … , 𝑥𝑚) = 𝑓(𝑥𝑚) ∏
𝑓(𝑥𝑖)

1 − 𝐹(𝑥𝑖)

𝑚−1

𝑖=1

,  (2.2) 

and the joint pdf of the upper record values 𝑋𝑈(𝑛) and 𝑋𝑈(𝑚) (𝑛 < 𝑚) is 

𝑓𝑛,𝑚(𝑥, 𝑦) =
[R(x)]𝑛−1

(𝑛 − 1)! (𝑚 − 𝑛 − 1)
∙

𝑓(𝑥)

1 − 𝐹(𝑥)
∙ [R(y) −R(x)]𝑚−𝑛−1𝑓(𝑦),

 −∞ < 𝑥 <  𝑦 < ∞,  𝑛 = 0,1, ⋯ , 𝑛 < 𝑚,  (2.3) 

the conditional probability density function of the upper record values 𝑋𝑈(𝑗) given 𝑋𝑈(𝑖) can be 

expressed as follows  

𝑓(𝑥𝑗|𝑥𝑖) =
(𝑅(𝑥𝑗) − 𝑅(𝑥𝑖))

𝑗−𝑖−1

(𝑗 − 𝑖 − 1)

𝑓(𝑥𝑗; 𝜃)

1 − 𝐹(𝑥𝑖 ; 𝜃)
 ,  (2.4) 

 −∞ < 𝑥𝑖 <  𝑥𝑗 < ∞ 

where 𝑅(. ) = − ln(1 − 𝐹(. )) 
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2.2 Lower Record Values 

Let 𝑋1, 𝑋2, … 𝑋𝑛, … be a sequence of iid random variables from a continuous distribution with 

cdf 𝐹(𝑥) and pdf 𝑓(𝑥). Let 𝑌𝑛 = 𝑚𝑖𝑛{𝑋1, 𝑋2, … , 𝑋𝑛} for 𝑛 ≥ 1. We say 𝑋𝑗 is a lower record value of 

this sequence if 𝑌𝑗 < 𝑌𝑗−1 , 𝑗 > 1. Thus 𝑋𝑗 will be called a lower record value if its value is lower than 

of all previous observations. By definition 𝑋1 is a lower record value. The times at which record 

appear are of interest which called a record times.  

The random variables 𝐿(0) = 1, and 𝐿(𝑚) = 𝑚𝑖𝑛{𝑗: 𝑗 > 𝐿(𝑚 − 1), 𝑋𝑗 < 𝑋𝐿(𝑚−1)} are called the 

lower record times, and the sequence {𝐿(𝑚), 𝑚 ≥ 0} is called the sequence of lower record times.  

Many distributional properties of lower record values in the sequence of iid continuous 

random variables 𝑋1, 𝑋2, … , 𝑋𝐿(𝑚) with cdf F(x) and pdf f(x) have been expressed in terms of the 

function 𝐺(𝑥) = − ln 𝐹(𝑥). The pdf of the lower record value 𝑋𝐿(𝑚), is 

𝑓𝑚(𝑥) =
(𝐺(𝑥))

𝑚−1

(𝑚 − 1)!
𝑓(𝑥) ,       − ∞ < 𝑥 < ∞                                                                            (2.5) 

and the joint pdf of the first (m) lower record values 𝑋𝐿(1) = 𝑥1, 𝑋𝐿(2) = 𝑥2, …, 𝑋𝐿(𝑚) = 𝑥𝑚 is 

given by 

𝑓1,2,…,𝑚(𝑥1, 𝑥2, … , 𝑥𝑚) = 𝑓(𝑥(𝑚)) ∏
𝑓(𝑥(𝑖))

𝐹(𝑥(𝑖))

𝑚−1

𝑖=1

,  (2.6) 

       −∞ < 𝑥𝑚 < 𝑥𝑚−1 < ⋯ < 𝑥1 < ∞       

and the joint pdf of the lower record values 𝑋𝐿(𝑠) and 𝑋𝐿(𝑟) (𝑟 < 𝑠) is 

𝑓𝑟,𝑠(𝑥, 𝑦) =
[𝐺(𝑥)]𝑟−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)!
∙

𝑓(𝑥)

𝐹(𝑥)
[𝐺(𝑦) −𝐺(𝑥)]𝑠−𝑟−1𝑓(𝑦)  (2.7) 

 −∞ < 𝑦 < 𝑥 < ∞ 

where 𝑥 = 𝑋𝐿(𝑟) and 𝑦 = 𝑋𝐿(𝑠). 

and the conditional pdf of the lower record values 𝑋𝐿(𝑗) given 𝑋𝐿(𝑖) can be expressed as follow 

𝑓(𝑥𝑗|𝑥𝑖) =
(𝐺(𝑥𝑗) − 𝐺(𝑥𝑖))

𝑗−𝑖−1

(𝑗 − 𝑖 − 1)!

𝑓(𝑥𝑗; 𝜃)

𝐹(𝑥𝑖; 𝜃)
,        − ∞ < 𝑥𝑗 <  𝑥𝑖 < ∞  (2.8) 

where 𝐺(. ) = − ln 𝐹(. ) for more details, see for example, Ahsanullah and Nevzorov [3]. 

2.3 The K-th Upper Record Values 

Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of iid random variables with a cdf 𝐹(𝑥) and pdf 𝑓(𝑥). The j-th 

order statistic of the sample 𝑋1, 𝑋2, … , 𝑋𝑛 is denoted by 𝑋𝑗:𝑛. For a fixed positive integer k, 

Dziubdziela and Kopociński [4] defined the sequence {𝑈𝑛
(𝑘)

, 𝑛 ≥ 1} of k-th upper record times for

the sequence {𝑋𝑛, 𝑛 ≥ 1} as follows:  

𝑈1
(𝑘)

= 1

𝑈𝑛+1
(𝑘)

= 𝑚𝑖𝑛 {𝑗 > 𝑈𝑛
(𝑘)

: 𝑋𝑗:𝑗+𝑘−1 > 𝑋
𝑈𝑛

(𝑘)
∶𝑈𝑛

(𝑘)
+𝑘−1

},

Then the sequence {𝑌𝑛
(𝑘)

, 𝑛 ≥ 1}, where 𝑌𝑛
(𝑘)

= 𝑋
𝑈𝑛

(𝑘)
∶𝑈𝑛

(𝑘)
+𝑘−1

 is called a sequence of k-th upper 

record values of {𝑋𝑛, 𝑛 ≥ 1}. For convenience, we also take Y0
(k)

= 0. Note that for k = 1, we get the

usual upper record values as defined in Chandler [1].  

The pdf of 𝑌𝑛
(𝑘)

 (n ≥ 1) as given by Grudzien [5] is

𝑓
𝑌𝑛

(𝑘)(𝑥) =
𝑘𝑛

(𝑛 − 1)!
[– 𝑙𝑛 𝐹̅(𝑥)]𝑛−1[𝐹̅(𝑥)]𝑘−1𝑓(𝑥) ,    − ∞ < 𝑥 < ∞  (2.9) 

and the joint pdf of 𝑌𝑚
(𝑘)

and 𝑌𝑛
(𝑘)

,1 ≤ 𝑚 < 𝑛, 𝑛 ≥ 2, is

RT&A, No 1 (77)
 Volume 19, March 2024

408



Mahmoud Ali Selim 
THE ROLE OF RECORD VALUES IN STATISTICAL INFERENCE 

𝑓
𝑌𝑚

(𝑘)
,𝑌𝑛

(𝑘)(𝑥, 𝑦) =
𝑘𝑛

(𝑚 − 1)! (𝑛 − 𝑚 − 1)!
[– 𝑙𝑛 𝐹̅(𝑦) + 𝑙𝑛 𝐹̅(𝑥)]𝑛−𝑚−1 

 × [− 𝑙𝑛 𝐹̅(𝑥)]𝑚−1
𝑓(𝑥)

𝐹̅(𝑥)
[𝐹̅(𝑦)]𝑘−1𝑓(𝑦),   𝑥 < 𝑦  (2.10) 

2.4 The K-th Lower Record Values 

Let {𝑋𝑛, 𝑛 ≥ 1} be a sequence of iid random variables with a cdf 𝐹(𝑥) and pdf 𝑓(𝑥). The j-th 

order statistic of a sample 𝑋1, 𝑋2, … , 𝑋𝑛 is denoted by 𝑋𝑗:𝑛. For a fixed positive integer k, we defined 

the sequence {𝐿𝑘(𝑛), 𝑛 ≥ 1} as k-th lower record times of {𝑋𝑛 , 𝑛 ≥ 1} as follows:  

𝐿𝑘(𝑛) = 1 

𝐿𝑘(𝑛 + 1) = 𝑚𝑖𝑛{𝑗 > 𝐿𝑘(𝑛): 𝑋𝑘:𝐿𝑘(𝑛)+𝑘−1 > 𝑋𝑘∶𝑗+𝑘−1},

The sequence {𝑌𝑛
(𝑘)

, 𝑛 ≥ 1}, where 𝑌𝑛
(𝑘)

= 𝑋𝑘:𝐿𝑘(𝑛)+𝑘−1 is called a sequence of k-th lower record

values of {𝑋𝑛, 𝑛 ≥ 1}. For convenience, we also take Y0
(k)

= 0. Note that for k = 1, we get the usual

lower record values as defined in Chandler [1].  

The pdf of Y(k)n (n ≥ 1) as given by Grudzien [5] is 

𝑓
𝑌𝑛

(𝑘)(𝑥) =
𝑘𝑛

(𝑛 − 1)!
[– 𝑙𝑛 𝐹(𝑥)]𝑛−1[𝐹(𝑥)]𝑘−1𝑓(𝑥),    𝑛 ≥ 1  (2.11) 

and the joint pdf of 𝑌𝑚
(𝑘)

and 𝑌𝑛
(𝑘)

,1 ≤ 𝑚 < 𝑛, 𝑛 ≥ 2, is

𝑓
𝑌𝑚

(𝑘)
,𝑌𝑛

(𝑘)(𝑥, 𝑦) =
𝑘𝑛

(𝑚 − 1)! (𝑛 − 𝑚 − 1)!
[– 𝑙𝑛 𝐹(𝑦) + 𝑙𝑛 𝐹(𝑥)]𝑛−𝑚−1 

 × [− 𝑙𝑛 𝐹(𝑥)]𝑚−1
𝑓(𝑥)

𝐹(𝑥)
[𝐹(𝑦)]𝑘−1𝑓(𝑦),      𝑦 < 𝑥  (2.12) 

3. Literature Review of Statistical Inference of Record Values

This section presents a review of the statistical literature to emphasize the role of record 

values in statistical inference. Therefore, we will examine this issue from two perspectives, the first 

perspective being estimation and the second perspective being prediction. These are through some 

of the certain distributions are Exponential, Weibull, Gumbel, Geometric, Pareto, Generalized 

exponential, Rayleigh, Lomax, and Nadarajah-Haghighi distributions. 

3.1 Review of Previous Studies on Estimation based on Record Values 

In this subsection, previous studies on estimation problems based on record values for some 

of the certain distributions are reviewed. 

3.1.1 Exponential distribution 
Jaheen [6] obtained the ML and empirical Bayes estimate for the parameter of the exponential 

model based on record statistics. The estimate is obtained using the squared error loss and Varian's 

linear-exponential (LINEX) loss functions. Ahmadi and Doostparast [7] presented Bayes estimation 

when the data consist of k record values from a two-parameter exponential distribution under 

linear exponential loss function. Balakrishnan and Stepanov [8] discussed the Fisher information 

contained in records. In the case when the initial distribution belongs to the exponential family. 

Doostparast [9] derived the Bayesian and non-Bayesian estimates for the two parameters of the 

exponential distribution based on lower record values, with respect to the squared error (SE) and 

LINEX loss functions, and then compared with together. Arnold, et al. [2] obtained the ML 

estimates and best linear unbiased estimator (BLUE) for the exponential distribution. Wu [10] 

presented the interval estimation for the scale parameter of two-parameter exponential 
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distribution using upper record values. In addition, two methods for the joint confidence region of 

two parameters are proposed. Asgharzadeh, et al. [11] proposed two families of optimal 

confidence regions for the location and scale parameters of the two-parameter exponential 

distribution based on upper records. Constrained optimization problems are used to find the 

smallest-area confidence regions for the exponential parameters with a specified confidence level. 

Baklizi [12] considered the stress-strength reliability when the available data is in the form of 

record values from the one parameter and two parameters exponential distribution. The ML 

estimators and the associated confidence intervals are derived. Ahsanullah and Aliev [13] 

considered several distributional properties of the upper records from the exponential distribution 

and presented some characterizations of the exponential distribution. 

3.1.2 Weibull distribution 
Abd-El-Hakim and Sultan [14] obtained the maximum likelihood estimators for the location 

and scale parameters of Weibull distribution based on upper record values. Soliman, et al. [15] 

discussed a Bayesian analysis in the context of record statistics values from the two-parameter 

Weibull distribution. The ML and the Bayes estimates based on record values are derived for the 

two unknown parameters and some survival time parameters e.g., reliability and hazard functions. 

The Bayes estimates are obtained based on a conjugate prior for the scale parameter and a discrete 

prior for the shape parameter of this model. This is done with respect to both symmetric loss 

function (squared error loss), and asymmetric loss function (linear-exponential (LINEX)) loss 

function. Jafari and Zakerzadeh [16] proposed a simple and exact test and a confidence interval for 

the shape parameter. In addition to a generalized confidence interval, a generalized test variable is 

derived for the scale parameter when the shape parameter is unknown. The paper presents a 

simple and exact joint confidence region as well. Wang and Ye [17] investigated point estimation 

and confidence intervals estimation for the Weibull distribution based on record data. The 

uniformly minimum variance unbiased estimator for the Weibull shape is derived. Based on this 

estimator, a bias-corrected estimator for the Weibull scale is obtained and it is shown to have much 

smaller bias and mean squared error compared with the maximum likelihood estimator. 

Confidence intervals for parameters and reliability characteristics of interest are constructed using 

pivotal or generalized pivotal quantities. Then the results are extended to the stress–strength 

model involving two Weibull populations with different parameter values. Construction of 

confidence intervals for the stress–strength reliability is discussed. Raqab, et al. [18] considered the 

problem of the estimation for the 3-parameter Weibull distribution based on record data. The 

maximum likelihood method is used for the estimation of all parameters involved in the model. 

Hassan, et al. [19] investigated the estimation of multicomponent stress-strength reliability 

following Weibull distribution based on upper record values. Al-Duais [20] developed a LINEX 

loss function to estimate the parameters and reliability function of the Weibull distribution based 

on upper record values when both shape and scale parameters are unknown. They performed this 

by merging a weight into LINEX to produce a new loss function called the weighted linear 

exponential (WLINEX) loss function. Then, they utilized WLINEX to derive the parameters and 

reliability function of the Weibull distribution. The results revealed that the proposed method is 

the best for estimating parameters and has good performance for estimating reliability.  

3.1.3 Gumbel distribution 
Ahsanullah [21] obtained ML, best linear invariant and minimum variance unbiased (MVU) 

estimators of the Gumbel location and scale parameters. Mousa, et al. [22] obtained the Bayesian 

estimators for the two parameters of the Gumbel distribution based on lower record values. 

Malinowska and Szynal [23] obtained Bayesian estimation for the two parameters of a Gumbel 

distribution based on k-th lower record values. Seo and Kim [24] addressed inference problems for 
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Gumbel distribution when the available data are lower record values. they first derive unbiased 

estimators of unknown parameters, and then, they construct an exact confidence interval for the 

scale parameter by deriving certain properties and pivotal quantities. For Bayesian inference, they 

derive noninformative priors such as the Jeffreys and reference priors for unknown parameters 

and examine whether they satisfy the probability matching criteria; then, they apply them to 

develop objective Bayesian analysis. Asgharzadeh, et al. [25] presented exact confidence intervals 

and joint confidence regions for the parameters of Gumbel distribution based on record data. Exact 

confidence intervals and joint confidence regions for the parameters of inverse Weibull 

distribution are also discussed. Three numerical examples with climate data are presented to 

illustrate the proposed methods.  

3.1.4 Geometric distribution 
Ahsanullah and Holland [26] discussed some distributional properties of the record values of 

non-identically distributed random variables having geometric distributions. Three theorems 

dealing with the characterization of the geometric distribution based on these distributional 

properties are presented. The unique minimum variance unbiased estimators of some functions of 

the parameters of the distribution are studied. Ahmadi and Doostparast [7] obtained Bayesian and 

non-Bayesian estimators of the parameter of geometric distribution based on upper record 

values. Okasha and Wang [27] E-Bayesian and Bayesian methods have been used for estimating 

the parameter, reliability, and hazard functions of the geometric distribution based on upper 

record value samples. Francis, et al. [28] obtained the shrinkage estimate of 𝑅 =  𝑃(𝑋 ≤ 𝑌) when X 

the stress and Y the strength are independent geometric variable and the sample on Y the strength 

is upper records. 

3.1.5 Pareto distribution 
Arnold and Press [29] discussed the Bayesian estimation for Pareto data based on record 

values. El-Qasem [30] used the upper record values to obtain the ML estimator for the uniform, the 

exponential and the Pareto distribution with one parameter. Sultan and Moshref [31] obtained the 

best linear unbiased estimates for the location and scale parameters of record values from the 

generalized Pareto distribution. Raqab, et al. [32], Raqab [33] obtained the ML and Bayes 

estimators from the two-parameter Pareto distribution for the two unknown parameters based on 

record values. Doostparast, et al. [34] on the basis of record values from the two-parameter Pareto 

distribution, ML and Bayes estimators as well as credible regions are developed for the two 

parameters of the Pareto distribution. Ahsanullah and Shakil [35] established some new results on 

the characterizations of the Pareto distribution by upper record values. Azhad, et al. [36] discussed 

inferences about the multicomponent stress strength reliability are drawn under the assumption 

that strength and stress follow independent Pareto distribution under the setup of upper record 

values. The ML estimator, Bayes estimator under squared error and LINEX loss functions, of 

multicomponent stress-strength reliability are constructed.  

3.1.6 Generalized exponential distribution 
Jaheen [6] derived Bayes and empirical Bayes estimators for the one-parameter of the 

generalized exponential distribution based on lower record values. These estimates are obtained 

based on squared error and LINEX loss functions. Madi and Raqab [37] used the importance 

sampling to estimate the model parameters. Baklizi [38] considered the ML and Bayesian 

estimation of the stress-strength reliability based on lower record values from the generalized 

exponential distribution. Confidence intervals, exact and approximate, as well as the Bayesian 

credible sets for the stress-strength reliability are obtained. Dey, et al. [39] derived the ML 

estimates and the Bayes estimates based on lower records for the unknown parameters of the 
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generalized exponential distribution. The Bayesian estimation of the parameters of the generalized 

exponential distribution has been studied with respect to both symmetric and asymmetric loss 

functions. They have also derived the Bayes interval. Sana and Faizan [40] obtained ML estimators 

for the two unknown parameters of the generalized exponential distribution based on lower 

record values. They also obtained the Bayes estimators of the unknown parameters using Lindley’s 

approximation under symmetric and asymmetric loss functions.  

3.1.7 Rayleigh distribution 
Balakrishnan and Chan [41] derived explicit expressions for the means, variances and 

covariances from a Rayleigh distribution. They also established some recurrence relationships for 

the single and product moments. These results are then used to derive explicitly the best linear 

unbiased estimators for the scale-parameter as well as the location-scale parameter cases. Hendi, et 

al. [42] obtained the Bayes estimators for the parameter, reliability function, and failure rate 

function based on upper record values of Rayleigh distribution. These estimators are obtained on 

the basis of square error and LINEX  loss functions. Soliman and Al-Aboud [43] obtained the 

estimators of the parameter of Rayleigh distribution based on upper record values, Bayesian and 

non-Bayesian approaches have been used to obtain the estimators of the parameter, and some 

lifetime parameters such as the reliability and hazard functions. Ahsanullah and Shakil [44] 

established some results on characterizations of Rayleigh distribution based on order statistics and 

record values. Seo, et al. [45] provided the exact confidence intervals for unknown by providing 

some pivotal quantities in the two-parameter Rayleigh distribution based on the upper record 

values. Finally, the validity of the proposed inference methods was examined from Monte Carlo 

simulations and real data. Seo and Kim [46] provided an objective Bayesian analysis method based 

on the objective priors (the Jeffreys and reference priors, and the second-order PMP) for unknown 

parameters of the two-parameter Rayleigh distribution when the upper record values are 

observed. Abdi and Asgharzadeh [47] presented exact joint confidence regions for the parameters 

of the Rayleigh distribution based on record data. By providing some appropriate pivotal 

quantities, they construct several joint confidence regions for the Rayleigh parameters. These joint 

confidence regions are useful for constructing confidence regions for functions of the unknown 

parameters.  

 3.1.8 Lomax distribution 
Lee and Lim [48] characterized the Lomax distribution by conditional expectations of record 

values. Nasiri and Hosseini [49] obtained ML estimation based on records and a proper prior 

distribution to attain a Bayes estimation (both informative and non-informative) based on records 

for quadratic loss and squared error loss functions. The study considers the shortest confidence 

interval and highest posterior distribution confidence interval based on records. Mahmoud, et al. 

[50] considered the Bayes estimators of the unknown parameters of the Lomax distribution under

the assumptions of gamma priors on both the shape and scale parameters. The Bayes estimators

cannot be obtained in explicit forms. So, they propose Markov Chain Monte Carlo (MCMC)

techniques to generate samples from the posterior distributions and in turn computing the Bayes

estimators. Point estimation and confidence intervals based on ML and bootstrap methods are also

used. Mahmoud, et al. [51] addressed the problem of estimating 𝑅 =  𝑃[𝑌 <  𝑋] for the Lomax

distributions, and classical and MCMC Bayesian analysis for R were developed when both

samples on X and Y are in the form of upper record values, observed from the Lomax distribution.

Hassan and Zaky [52] considered estimation of entropy for Lomax distribution based on upper

record values. Bayesian estimator of Shannon entropy is discussed under informative and non-

informative priors. The entropy Bayesian estimator and the corresponding credible interval based

on a LINEX, squared error loss functions are derived.
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3.1.9 Nadarajah-Haghighi distribution 
Selim [53] discussed maximum likelihood and Bayes estimation of the two unknown 

parameters of Nadarajah and Haghighi distribution based on record values. It assumed that in 

Bayes case, the unknown parameters of Nadarajah and Haghighi distribution have gamma prior 

densities. Lindley approximation is exploited to obtain point estimators for the unknown 

parameters. Sana and Faizan [54] discussed maximum likelihood and Bayes estimation of the two 

unknown parameters of Nadarajah and Haghighi distribution based on record values. Different 

Bayes estimates are derived under squared error, balanced squared error and general entropy loss 

functions by using Jeffreys' prior information and extension of Jeffreys' prior information. Tierney 

and Kadane approximation method used to compute these estimates. MirMostafaee, et al. [55] 

obtained exact explicit expressions as well as several recurrence relations for the single and 

product moments of record values and then these results are used to compute the means, variances 

and the covariances of the upper record values. Also, these calculated moments are used to find 

the best linear unbiased estimators of the location and scale parameters of NH distribution. 

Confidence intervals for the unknown parameters are also discussed. 

3.1.10 General classes of distributions 
Abu-Youssef [56] characterized general classes of continuous distribution by considering the 

conditional expectation of function of record values. The specific distribution considered as a 

particular case of the general class of distribution are Weibull, Pareto, power function, Burr, beta of 

the first kind, Cauchy, rectangular, Rayleigh, Lomax, and inverse Weibull distributions. Ahmadi 

and Doostparast [7] obtained Bayesian estimation for the two parameters of some life distributions, 

including Exponential, Weibull, Pareto and Burr type XII, based on upper record values. Ahmadi, 

et al. [57] showed how to develop Bayes estimation in the context of upper k-record data from a 

semi-parametric class of distributions that includes several well-known lifetime distributions such 

as exponential, Weibull (one parameter), Pareto and Burr type XII under some balanced type of 

loss functions. Malinowska and Szynal [58] characterized general classes of continuous 

distributions by the conditional expectation of the kth lower record values. Specific distributions 

inverse exponential, inverse Weibull, inverse Pareto, negative exponential, negative Weibull, 

negative Pareto, negative power, Gumbel, exponentiated-Weibull, loglogistic, Burr X, inverse Burr 

XII and inverse paralogistic distributions. 

3.2 Reviewing Previous Studies on Prediction based on Recorded Values 

In this section, to accentuate the role of recorded values in statistical prediction, we will 

review the literature on prediction problems based on record values for some of the certain 

distributions. 

3.2.1 Exponential distribution 
 Ahsanullah [59] obtained best linear unbiased predictor and best linear invariance predictor 

of future records Xs based on Xi, 1 ≤ i ≤ m, for m < 𝑠, using the standard least squares theory. 

Dunsmore [60] studied the problem of predicting future records from the Bayesian viewpoint and 

derived classical results for the exponential and the gamma models. Awad and Raqab [61]  

considered the prediction problem of the future nth record value based on the first m (m<n) 

observed record values from one parameter exponential distribution. Jaheen [6] obtained empirical 

Bayes prediction bounds for future record values. Ahmadi and Doostparast [7] presented Bayes 

prediction procedures when the data consist of k record values from a two-parameter exponential 

distribution under linear exponential loss function. Ahmadi and MirMostafaee [62] studied the 
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problem of predicting future records based on observed order statistics from two-parameter 

exponential distribution. The prediction intervals for the future order statistics as well as for the 

total lifetime in a future sample of size m from two parameter exponential distribution are 

obtained on the basis of the first n records coming from the same distribution. Asgharzadeh, et al. 

[11] proposed two families of optimal confidence regions for the location and scale parameters of

the two-parameter exponential distribution based on upper records.

3.2.2 Weibull distribution 
Soliman, et al. [15] derived Bayesian predictive density function for Weibull distribution, 

which is necessary to obtain bounds for predictive interval of future record. Paul and Thomas [63] 

studied prediction of a future record for Weibull distribution using best linear unbiased predictor. 

Raqab, et al. [18] considered the problem of prediction for the 3-parameter Weibull distribution 

based on record data. The ML method is used for the joint prediction of future records along with 

the estimation of all parameters involved in the model. The existence and uniqueness of the MLPs 

of future records as well as the PMLEs of all unknown quantities were discussed in detail. 

Volovskiy and Kamps [64] considered point prediction of future record values from a sequence of 

independent and identically distributed two-parameter Weibull random variables using the 

maximum likelihood method. Two likelihood functions for prediction, the predictive and the 

observed predictive likelihood functions, are considered and the associated predictors are derived. 

Mean squared error and Pitman closeness criterion are used for comparing the prediction 

procedures. 

3.2.3 Gumbel distribution 
Ahsanullah [65] gave two types of predictors of the n-th record value based on the first m 

(m<n) record values. Mousa, et al. [22] obtained the Bayesian predictions, either point or interval, 

for future lower record values. Malinowska and Szynal [23] obtained Bayesian prediction, either 

point or interval, for future n-th lower record values. Seo and Kim [24] addressed inference 

problems for Gumbel distribution when the available data are lower record values. They first 

derive unbiased estimators of unknown parameters, and then, they construct a predictive interval 

for the next lower value by deriving certain properties and pivotal quantities.  

3.2.4 Geometric distribution 
Ahsanullah and Holland [26] discussed some distributional properties of the record values of 

non-identically distributed random variables having geometric distributions. Three theorems 

dealing with the characterization of the geometric distribution based on these distributional 

properties are presented. Also various predictors of the nth record valued utilizing the first 

m(m<n) record values are studied. Ahmadi and Doostparast [7] considered Bayesian and non-

Bayesian prediction, either point or interval, of geometric distribution based on the past record 

values observed. 

3.2.5 Pareto distribution 
Arnold and Press [29] discussed the Bayesian prediction for Pareto data based on record 

values. Madi and Raqab [66] used the Bayesian approach to establish future predictions for the 

Pareto records. Raqab, et al. [32], Raqab [33] used the Bayesian approach to predicting future 

record values, either point or interval, from the Pareto distribution based on the past record values 

observed. Also, the ML prediction of the future records and other classical methods are used for 

obtaining prediction intervals for the future records. Paul and Thomas [67] studied prediction of 

future records of Pareto distribution by using best linear unbiased predictors. Shafay, et al. [68] 

discussed the problem of prediction of the two-parameter Pareto distribution from a future 
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sample. The Bayesian approach is applied to construct predictors based on observed k-record 

values for the cases when the future sample size is fixed and when it is random. Several Bayesian 

prediction intervals are derived.  

3.2.6 Generalized exponential distribution 
Jaheen [6] obtained the prediction bounds for future lower record values from the generalized 

exponential distribution by using Bayes and empirical Bayes techniques. Madi and Raqab [37] 

described and used a Bayesian parametric approach to predict the behavior of further Los Angeles 

rainfall records from generalized exponential distribution. Importance sampling is used to 

estimate the model parameters, and the Gibbs and Metropolis samplers are used to implement the 

prediction procedure. Dey, et al. [39] derived the Bayes interval and discussed the Bayesian 

prediction intervals of the future record values based on the observed record values. Vidović [69] 

investigated Bayesian point predictors of order statistics from a future sample based on the k-th 

lower record values from generalized exponential distribution. Sana and Faizan [40] derived the 

Bayesian prediction for the future record values from generalized exponential distribution.  

3.2.7 Rayleigh distribution 
Balakrishnan and Chan [41] developed the prediction of a future record value and the test for 

superiority of the current record values from a Rayleigh distribution. Soliman and Al-Aboud [43] 

obtained Bayesian prediction intervals of the future record values from Rayleigh distribution. Seo, 

et al. [45] provided the exact predictive intervals for the future upper record values by providing 

some pivotal quantities in the two-parameter Rayleigh distribution based on the upper record 

values. Finally, the validity of the proposed inference methods was examined from Monte Carlo 

simulations and real data. Seo and Kim [46] provided an objective Bayesian analysis method based 

on the objective priors (the Jeffreys and reference priors, and the second-order PMP) for unknown 

parameters of the two-parameter Rayleigh distribution when the upper record values are 

observed. Abdi and Asgharzadeh [47] presented exact joint confidence regions for the parameters 

of the Rayleigh distribution based on record data. By providing some appropriate pivotal 

quantities, they construct several joint confidence regions for the Rayleigh parameters. These joint 

confidence regions are useful for constructing confidence regions for functions of the unknown 

parameters. 

 3.2.8 Lomax distribution 
Volovskiy and Kamps [70] Point prediction of future record values from a sequence of 

independent and identically distributed Pareto and Lomax random variables is addressed. The 

focus is on likelihood-based prediction techniques; in particular, the maximum likelihood as well 

as the maximum observed likelihood prediction principles are invoked to derive predictors. 

Moreover, one-sided prediction intervals are also addressed. 

3.2.9 Nadarajah-Haghighi distribution 
MirMostafaee, et al. [55] investigated based on the observed records, how to obtain best linear 

unbiased predictor for the future record values. prediction intervals for future records are also 

discussed. Selim [53] discussed the Bayesian and non-Bayesian predictions of both point and 

interval predictions of the future record values. 

3.2.10 General classes of distributions 
AL-Hussaini and Ahmad [71] obtained Bayesian prediction bounds for the nth future record 

value based on the one-sample scheme, all of the informative and future observations are assumed 
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to be obtained from a general class of distributions which includes the Weibull, compound 

Weibull, Pareto, beta, Gompertz, compound Gompertz among other distributions. Ahmadi and 

Doostparast [7] obtained prediction, either point or interval, for future upper record values from a 

Bayesian view point of some life distributions, including Exponential, Weibull, Pareto and Burr 

type XII. Ahmadi, et al. [72] discussed the problem of predicting future k-records based on k-

record data for a large class of distributions, which includes several well-known distributions such 

as: exponential, Weibull (one parameter), Pareto, Burr type XII, among others.  

4. The Record Values Data in Applications

This section reviews the applications of records in various disciplines. The purpose of this 

review is to show the widespread use of real records data in statistical inference. 

4.1 Applications on weather, rainfall, and floods 
 Raqab and Balakrishnan [73] considered the record values of daily temperatures (in 

degrees Fahrenheit) recorded at the National Center of Atmospheric Research (NCAR) during the 

year 2005. Nadar, et al. [74]  considered the data set represents the monthly water capacity data 

from the Shasta reservoir in California, USA and were taken for the month of February from 1991 

to 2010.  Chacko and Mary [75] used the data which represent the records of the total annual 

rainfall (in inches) at Oxford, Eng-land, for the years 1858-1903. Seo and Song [76] analyzed two 

real data sets: one is the average annual temperatures (in degrees centigrade) recorded at Daejeon 

in Korea from 1969 to 2016). The other is carbon dioxide (CO2) emissions in Trinidad and Tobago 

from 1971 to 2016.  Volovskiy and Kamps [77] considered data collected by the German Federal 

Office of Hydrology in its role as a scientific advisor to the Federal Waterways and Shipping 

Administration.  The data set contains hourly measurements (in cm) of water level for the time 

period from January 1918 to February 2019 collected at the measurement site Cuxhaven-

Steubenhöft located at the river Elbe.  Selim [53] considered the real data set which represent the 

total annual rainfall (in inches) during the month of January from 1880 to 1916 recorded at Los 

Angeles Civic Center. Asgharzadeh, et al. [78] analyzed the total annual rainfall (in inches) during 

March recorded at Los Angeles Civic Center from 1973 to 2006 (see the website of Los Angeles 

Almanac: www.laalman-ac.com/weather/we08aa.htm). Raqab, et al. [79] discussed the analysis of 

real life data representing the water level exceedances over the level 65m by the River Nidd at 

Hunsingore Weir which is located in North Yorkshire, England from 1934 to 1970. Tripathi, et al. 

[80], Awwad, et al. [81] considered a real data set regarding the March precipitation measured in 

inches, over a period of 30 years which was reported by Hinkley [82]. 

4.2 Applications in industry and life-testing 
Salehi and Doostparast [83] considered a data set on life testing of an given electrical 

equipment, planned for quality control purposes. Singh, et al. [84] considered the data set 

represents the failure times (in h) of 59 conductors from an accelerated life test from Lawless [85]. 

Vidović [86] considered the case where failure and running times (1000 of cycles) of a sample of 30 

units of a larger electrical system are under study. Wang, et al. [87] considered the real-life data set 

from Lawless [25, p. 3] which represents the times to breakdown of an electrical insulating fluid 

subjected to 30 kilovolts. Wu [10] considered the data for times between successive failures of air 

conditioning equipment in a Boeing 70 airplane. 

4.3 Applications in health and medicine 
Salehi and Doostparast [83] considered a data set representing the Hemoglobin of the 

Australian 102 men athletes data. Seo and Kim [88], Awwad, et al. [81] discussed the analysis of 
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the data of the survival times in days of a group of lung cancer patients provided in Lawless. 

Kumar, et al. [89] reanalyzing Efron’s data pertaining to a head-and-neck cancer clinical trial. EL-

Sagheer, et al. [90], Fayyazishishavan and Kılıç Depren [91] used the data represents a COVID-19 

data belonging to the Netherlands of 30 days, which recorded from 31 March to 30 April 2020. 

4.4 Miscellaneous applications 
 Carlin and Gelfand [92] considered the record-breaking Olympic high jumps since 1896, as 

presented in the World Almanac and Book of Facts 1989 by Hoffman [93]. Tanış [94] considered 

the data includes of the monthly actual taxes revenue (in million Egyptian pounds) in Egypt from 

January 2006 to November 2010. Volovskiy and Kamps [70] applied the proposed prediction 

procedures to the well-known Danish reinsurance claims dataset to predict record fire losses. The 

data were collected at Copenhagen Reinsurance and consist of 2167 fire losses in millions of 

Danish Krone between 1980 and 1990. 

5. Computer Software for Records

Software specialized in calculating record values is quite rare. In program R, for example, the 

built-in routines for computing the records are available in two packages: 

5.1 Package “Records”: This package includes Functions for producing lower k-record times; 

lower k-record values; upper k-record times; upper k-record values for given samples (See 

Appendix). https://CRAN.R-project.org/package=Records.  

5.2 Package “RecordTest”: This package includes statistical tools based on the probabilistic 

properties of the record occurrence in a sequence of independent and identically distributed 

continuous random variables. That is tools to prepare a time series as well as distribution-free 

trend and change-point tests and graphical tools to study the record occurrence. Details about the 

implemented tools can be found in Castillo-Mateo, et al. [95]. https://CRAN.R-

project.org/package=RecordTest. 

6. Future Work

Although much has been done with respect to record values theory, there is still scope for 

more work. Here, we discuss some open problems that the researchers may like to work on. 

i. There is little work with respect to the theory of records for bivariate or multivariate

random sequences. Therefore, we recommend more studies in this direction.

ii. Does the type of records affect the estimates of the parameters?. Tripathi, et al. [96]

noted that the performance of the estimator depends on the type of records. However,

the suitability of the type of record varies from one distribution to distribution.

Therefore, this topic needs further study.

iii. Develop a methodology for conducting inference based on record values and record

times. Where the record times and record values jointly contain considerably more

information about distribution than do the record values alone, see Feuerverger and

Hall [97].

iv. Instead of just using record values in inference, we suggest using the record values

with their corresponding inter-record times, see Kızılaslan and Nadar [98], Arashi

and Emadi [99].

v. Investigating the concept of records with respect to using the kernel density approach

to characterize the behavior of records is an interesting extension of the theory of

records. This approach will be very useful in cases where a classical distribution
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cannot be identified to statistically fit the underlying data from which the record 

observations are obtained. 

vi. Serious difficulties arise for statistical inference based on records due to the fact that

the occurrences of record data are very rare in practical situations [since the mean of

the number of records in a random sample of size n is equal to   1 + 2−1 + ⋯ + 𝑛−1

(see Arnold, et al. [100])] and the expected waiting time is infinite for every record

after the first. Although, these problems can be avoided if we consider the model of k-

record statistics introduced by Dziubdziela and Kopociński [4]. However, research is

still open to investigating this problem.

7. Conclusion

By reviewing the literature (we only mentioned some of them) on the record values in 

statistical inference, we conclude that the records have played a significant and widely utilized role 

for statistical inference in parameter estimation, predicting future values, hypothesis tests, as well 

as stress-strength tests and characterizing of distributions. For this purpose, various known 

statistical inference methods have been used, including Bayesian and non-Bayesian methods. We 

also conclude from the applications in previous studies that the records are not limited to a specific 

field, but rather comprehend all aspects of life including sports, health, medicine, insurance, 

economy, industry, climate, environment, floods, and rainfall. Overall, records play a critical role 

in statistical inference by providing the data needed to make informed decisions and draw 

accurate conclusions. 

References 
[1] K. Chandler, "The distribution and frequency of record values," Journal of the Royal

Statistical Society: Series B (Methodological), vol. 14, no. 2, pp. 220-228, 1952.

[2] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, Records. John Wiley & Sons, 2011.

[3] M. Ahsanullah and V. B. Nevzorov, "Records via probability theory," 2015.

[4] W. Dziubdziela and B. Kopociński, "Limiting properties of the k-th record values,"

Applicationes Mathematicae, vol. 2, no. 15, pp. 187-190, 1976.

[5] Z. Grudzien, "Characterization of distribution of time limits in record statistics as well as

distributions and moments of linear record statistics from the samples of random

numbers," Praca Doktorska, UMCS, Lublin, 1982.

[6] Z. F. Jaheen, "Empirical Bayes inference for generalized exponential distribution based on

records," Communications in Statistics-Theory and Methods, vol. 33, no. 8, pp. 1851-1861,

2004.

[7] J. Ahmadi and M. Doostparast, "Bayesian estimation and prediction for some life

distributions based on record values," Statistical Papers, vol. 47, pp. 373-392, 2006.

[8] N. Balakrishnan and A. Stepanov, "On the Fisher information in record data," Statistics &

probability letters, vol. 76, no. 5, pp. 537-545, 2006.

[9] M. Doostparast, "A note on estimation based on record data," Metrika, vol. 69, no. 1, pp.

69-80, 2009.

[10] S.-F. Wu, "Interval Estimation for the Two-Parameter Exponential Distribution Based on

the Upper Record Values," Symmetry, vol. 14, no. 9, p. 1906, 2022.

[11] A. Asgharzadeh, S. Bagheri, N. Ibrahim, and M. Abubakar, "Optimal confidence regions

for the two-parameter exponential distribution based on records," Computational Statistics,

vol. 35, pp. 309-326, 2020.

[12] A. Baklizi, "Estimation of Pr (X< Y) using record values in the one and two parameter

exponential distributions," Communications in Statistics—Theory and Methods, vol. 37,

no. 5, pp. 692-698, 2008.

RT&A, No 1 (77)
 Volume 19, March 2024

418



Mahmoud Ali Selim 
THE ROLE OF RECORD VALUES IN STATISTICAL INFERENCE 

[13] M. Ahsanullah and F. Aliev, "Some characterizations of exponential distribution by record

values," Journal of Statistical Research, vol. 42, no. 2, pp. 41-46, 2008.

[14] N. Abd-El-Hakim and K. Sultan, "Maximum likelihood estimates of Weibull parameters

based on record values," J. Egypt. Math. Soc, vol. 9, no. 1, pp. 79-89, 2001.

[15] A. A. Soliman, A. H. Abd Ellah, and K. S. Sultan, "Comparison of estimates using record

statistics from Weibull model: Bayesian and non-Bayesian approaches," Computational

Statistics & Data Analysis, vol. 51, no. 3, pp. 2065-2077, 2006.

[16] A. A. Jafari and H. Zakerzadeh, "Inference on the parameters of the Weibull distribution

using records," arXiv preprint arXiv:1501.02201, 2015.

[17] B. X. Wang and Z.-S. Ye, "Inference on the Weibull distribution based on record values,"

Computational Statistics & Data Analysis, vol. 83, pp. 26-36, 2015.

[18] M. Z. Raqab, L. A. Alkhalfan, O. M. Bdair, and N. Balakrishnan, "Maximum likelihood

prediction of records from 3-parameter Weibull distribution and some approximations,"

Journal of computational and applied mathematics, vol. 356, pp. 118-132, 2019.

[19] A. S. Hassan, H. F. Nagy, H. Z. Muhammed, and M. S. Saad, "Estimation of

multicomponent stress-strength reliability following Weibull distribution based on upper

record values," Journal of Taibah University for Science, vol. 14, no. 1, pp. 244-253, 2020.

[20] F. S. Al-Duais, "Bayesian estimations under the weighted LINEX loss function based on

upper record values," Complexity, vol. 2021, pp. 1-7, 2021.

[21] M. Ahsanullah, "Estimation of the parameters of the Gumbel distribution based on the m

record values," Comput. Statist. Quart, vol. 6, pp. 231-239, 1990.

[22] M. A. Mousa, Z. Jaheen, and A. Ahmad, "Bayesian estimation, prediction and

characterization for the Gumbel model based on records," Statistics: A Journal of

Theoretical and Applied Statistics, vol. 36, no. 1, pp. 65-74, 2002.

[23] I. Malinowska and D. Szynal, "On a family of Bayesian estimators and predictors for a

Gumbel model based on the kth lower records," Applicationes Mathematicae, vol. 1, no.

31, pp. 107-115, 2004.

[24] J. I. Seo and Y. Kim, "Statistical inference on Gumbel distribution using record values,"

Journal of the Korean Statistical Society, vol. 45, no. 3, pp. 342-357, 2016.

[25] A. Asgharzadeh, M. Abdi, and S. Nadarajah, "Interval estimation for Gumbel distribution

using climate records," Bulletin of the Malaysian Mathematical Sciences Society, vol. 39,

pp. 257-270, 2016.

[26] M. Ahsanullah and B. Holland, "Distributional properties of record values from the

geometric distribution," Statistica neerlandica, vol. 41, no. 2, pp. 129-137, 1987.

[27] H. M. Okasha and J. Wang, "E-Bayesian estimation for the geometric model based on

record statistics," Applied Mathematical Modelling, vol. 40, no. 1, pp. 658-670, 2016.

[28] G. Francis, E. Anjana, and E. Jeevanand, "Shrinkage Estimation of Strength Reliability for

Geometric Distribution Using Record Values," Acta Scientific COMPUTER SCIENCES

Volume, vol. 4, no. 4, 2022.

[29] B. C. Arnold and S. J. Press, "Bayesian estimation and prediction for Pareto data," Journal

of the American Statistical Association, vol. 84, no. 408, pp. 1079-1084, 1989.

[30] A. El-Qasem, "Estimation via record values," Journal of Information and Optimization

Sciences, vol. 17, no. 3, pp. 541-548, 1996.

[31] K. S. Sultan and M. E. Moshref, "Record values from generalized Pareto distribution and

associated inference," Metrika, vol. 51, no. 2, pp. 105-116, 2000.

[32] M. Z. Raqab, J. Ahmadi, and M. Doostparast, "Statistical inference based on record data

from Pareto model," Statistics, vol. 41, no. 2, pp. 105-118, 2007.

[33] M. Z. Raqab, "Distribution-free prediction intervals for the future current record statistics,"

Statistical Papers, vol. 50, pp. 429-439, 2009.

[34] M. Doostparast, M. G. Akbari, and N. Balakrishna, "Bayesian analysis for the two-

parameter Pareto distribution based on record values and times," Journal of Statistical

Computation and Simulation, vol. 81, no. 11, pp. 1393-1403, 2011.

[35] M. Ahsanullah and M. Shakil, "A note on the characterizations of Pareto distribution by

upper record values," Communications of the Korean Mathematical Society, vol. 27, no. 4,

pp. 835-842, 2012.

RT&A, No 1 (77)
 Volume 19, March 2024

419



Mahmoud Ali Selim 
THE ROLE OF RECORD VALUES IN STATISTICAL INFERENCE 

[36] Q. J. Azhad, M. Arshad, and N. Khandelwal, "Statistical inference of reliability in

multicomponent stress strength model for pareto distribution based on upper record

values," International Journal of Modelling and Simulation, vol. 42, no. 2, pp. 319-334,

2022.

[37] M. T. Madi and M. Z. Raqab, "Bayesian prediction of rainfall records using the generalized

exponential distribution," Environmetrics: The official journal of the International

Environmetrics Society, vol. 18, no. 5, pp. 541-549, 2007.

[38] A. Baklizi, "Likelihood and Bayesian estimation of Pr (X< Y) using lower record values

from the generalized exponential distribution," Computational Statistics & Data Analysis,

vol. 52, no. 7, pp. 3468-3473, 2008.

[39] S. Dey, T. Dey, M. Salehi, and J. Ahmadi, "Bayesian inference of generalized exponential

distribution based on lower record values," American Journal of Mathematical and

Management Sciences, vol. 32, no. 1, pp. 1-18, 2013.

[40] S. Sana and M. Faizan, "Bayesian estimation using lindley’s approximation and prediction

of generalized exponential distribution based on lower record values," Journal of Statistics

Applications & Probability, vol. 10, no. 1, pp. 61-75, 2021.

[41] N. Balakrishnan and P. Chan, "Record values from Rayleigh and Weibull distributions and

associated inference," NIST special publication SP, pp. 41-41, 1994.

[42] M. Hendi, S. Abu-Youssef, and A. Alraddadi, "A Bayesian analysis of record statistics

from the Rayleigh model," in International Mathematical Forum, 2007, vol. 2, no. 13, pp.

619-631.

[43] A. A. Soliman and F. M. Al-Aboud, "Bayesian inference using record values from

Rayleigh model with application," European Journal of Operational Research, vol. 185,

no. 2, pp. 659-672, 2008.

[44] M. Ahsanullah and M. Shakil, "Characterizations of Rayleigh distribution based on order

statistics and record values," Bull. Malays. Math. Sci. Soc, vol. 36, no. 3, pp. 625-635,

2013.

[45] J.-I. Seo, J.-W. Jeon, and S.-B. Kang, "Exact interval inference for the two-parameter

Rayleigh distribution based on the upper record values," Journal of Probability and

Statistics, vol. 2016, 2016.

[46] J. I. Seo and Y. Kim, "Objective Bayesian inference based on upper record values from

Rayleigh distribution," Communications for Statistical Applications and Methods, vol. 25,

no. 4, pp. 411-430, 2018.

[47] M. Abdi and A. Asgharzadeh, "Rayleigh confidence regions based on record data," Journal

of Statistical Research of Iran JSRI, vol. 14, no. 2, pp. 171-188, 2018.

[48] M.-Y. Lee and E.-H. Lim, "Characterizations of the Lomax, exponential and Pareto

distributions by conditional expectations of record values," Journal of the Chungcheong

Mathematical Society, vol. 22, no. 2, pp. 149-149, 2009.

[49] P. Nasiri and S. Hosseini, "Statistical inferences for Lomax distribution based on record

values (Bayesian and classical)," Journal of Modern Applied Statistical Methods, vol. 11,

no. 1, p. 15, 2012.

[50] M. A. Mahmoud, A. A. Soliman, A. H. Abd Ellah, and R. M. El-sagheer, "MCMC

technique to study the Bayesian estimation using record values from the Lomax

distribution," International Journal of Computer Applications, vol. 73, no. 5, 2013.

[51] M. A. Mahmoud, R. M. El-Sagheer, A. A. Soliman, and A. H. Abd Ellah, "Bayesian

estimation of P [Y< X] based on record values from the Lomax distribution and MCMC

technique," Journal of Modern Applied Statistical Methods, vol. 15, no. 1, p. 25, 2016.

[52] A. S. Hassan and A. N. Zaky, "Entropy Bayesian estimation for Lomax distribution based

on record," Thailand Statistician, vol. 19, no. 1, pp. 95-114, 2021.

[53] M. A. Selim, "Estimation and prediction for Nadarajah-Haghighi distribution based on

record values," Pak. J. Statist, vol. 34, no. 1, pp. 77-90, 2018.

[54] M. Sana and M. Faizan, "Bayesian estimation for Nadarajah-Haghighi distribution based

on upper record values," Pakistan Journal of Statistics and Operation Research, pp. 217-

230, 2019.

RT&A, No 1 (77)
 Volume 19, March 2024

420



Mahmoud Ali Selim 
THE ROLE OF RECORD VALUES IN STATISTICAL INFERENCE 

[55] S. T. MirMostafaee, A. Asgharzadeh, and A. Fallah, "Record values from NH distribution

and associated inference," Metron, vol. 74, pp. 37-59, 2016.

[56] S. E. Abu-Youssef, "On characterization of certain distributions of record values," Applied

mathematics and computation, vol. 145, no. 2-3, pp. 443-450, 2003.

[57] J. Ahmadi, M. J. Jozani, É. Marchand, and A. Parsian, "Bayes estimation based on k-record

data from a general class of distributions under balanced type loss functions," Journal of

Statistical Planning and Inference, vol. 139, no. 3, pp. 1180-1189, 2009.

[58] I. Malinowska and D. Szynal, "On characterization of certain distributions of kth lower

(upper) record values," Applied Mathematics and Computation, vol. 202, no. 1, pp. 338-

347, 2008.

[59] M. Ahsanullah, "Linear prediction of record values for the two parameter exponential

distribution," Annals of the Institute of Statistical Mathematics, vol. 32, pp. 363-368, 1980.

[60] I. R. Dunsmore, "The future occurrence of records," Annals of the Institute of Statistical

Mathematics, vol. 35, pp. 267-277, 1983.

[61] A. M. Awad and M. Z. Raqab, "Prediction intervals for the future record values from

exponential distribution: comparative study," Journal of Statistical Computation and

Simulation, vol. 65, no. 1-4, pp. 325-340, 2000.

[62] J. Ahmadi and S. MirMostafaee, "Prediction intervals for future records and order statistics

coming from two parameter exponential distribution," Statistics & Probability Letters, vol.

79, no. 7, pp. 977-983, 2009.

[63] J. Paul and P. Y. Thomas, "On generalized upper (k) record values from Weibull

distribution," Statistica, vol. 75, no. 3, pp. 313-330, 2015.

[64] G. Volovskiy and U. Kamps, "Likelihood-Based Prediction of Future Weibull Record

Values," REVSTAT-Statistical Journal, vol. 21, no. 3, pp. 425–445-425–445, 2023.

[65] M. Ahsanullah, "Inference and prediction of the Gumbel distribution based on record

values," Pakistan Journal of Statistics, vol. 7, no. 3, pp. 53-62, 1991.

[66] M. T. Madi and M. Z. Raqab, "Bayesian prediction of temperature records using the Pareto

model," Environmetrics, vol. 15, no. 7, pp. 701-710, 2004.

[67] J. Paul and P. Y. Thomas, "On generalized (k) record values from Pareto distribution,"

Aligarh J Statist, vol. 36, no. 1, pp. 63-78, 2016.

[68] A. R. Shafay, N. Balakrishnan, and J. Ahmadi, "Bayesian prediction of order statistics with

fixed and random sample sizes based on k-record values from Pareto distribution,"

Communications in Statistics-Theory and Methods, vol. 46, no. 2, pp. 721-735, 2017.

[69] Z. Vidović, "Bayesian Prediction of Order Statistics Based on k-Record Values from a

Generalized Exponential Distribution," Stats, vol. 2, no. 4, pp. 447-456, 2019.

[70] G. Volovskiy and U. Kamps, "Comparison of likelihood-based predictors of future Pareto

and Lomax record values in terms of Pitman closeness," Communications in Statistics-

Theory and Methods, vol. 52, no. 6, pp. 1905-1922, 2023.

[71] E. K. AL-Hussaini and A. E.-B. A. Ahmad, "On Bayesian predictive distributions of

generalized order statistics," Metrika, vol. 57, pp. 165-176, 2003.

[72] J. Ahmadi, M. Jafari Jozani, É. Marchand, and A. Parsian, "Prediction of k-records from a

general class of distributions under balanced type loss functions," Metrika, vol. 70, no. 1,

pp. 19-33, 2009.

[73] M. Z. Raqab and N. Balakrishnan, "Prediction intervals for future records," Statistics &

Probability Letters, vol. 78, no. 13, pp. 1955-1963, 2008.

[74] M. Nadar, A. Papadopoulos, and F. Kızılaslan, "Statistical analysis for Kumaraswamy’s

distribution based on record data," Statistical Papers, vol. 54, pp. 355-369, 2013.

[75] M. Chacko and M. S. Mary, "Estimation and prediction based on k-record values from

normal distribution," Statistica, vol. 73, no. 4, pp. 505-516, 2013.

[76] J.-I. Seo and J. J. Song, "A bayesian nonparametric model for upper record data," Applied

Mathematical Modelling, vol. 71, pp. 363-374, 2019.

[77] G. Volovskiy and U. Kamps, "Maximum product of spacings prediction of future record

values," Metrika, vol. 83, no. 7, pp. 853-868, 2020.

[78] A. Asgharzadeh, A. Fallah, M. Raqab, and R. Valiollahi, "Statistical inference based on

Lindley record data," Statistical Papers, vol. 59, pp. 759-779, 2018.

RT&A, No 1 (77)
 Volume 19, March 2024

421



Mahmoud Ali Selim 
THE ROLE OF RECORD VALUES IN STATISTICAL INFERENCE 

[79] M. Z. Raqab, O. M. Bdair, and F. M. Al-Aboud, "Inference for the two-parameter bathtub-

shaped distribution based on record data," Metrika, vol. 81, pp. 229-253, 2018.

[80] A. Tripathi, U. Singh, and S. K. Singh, "Inferences for the DUS-exponential distribution

based on upper record values," Annals of Data Science, vol. 8, pp. 387-403, 2021.

[81] R. R. A. Awwad, O. M. Bdair, and G. K. Abufoudeh, "Bayesian estimation and prediction

based on Rayleigh record data with applications," Statistics in Transition new series, vol.

22, no. 3, pp. 59-79, 2021.

[82] D. Hinkley, "On quick choice of power transformation," Journal of the Royal Statistical

Society: Series C (Applied Statistics), vol. 26, no. 1, pp. 67-69, 1977.

[83] M. Salehi and M. Doostparast, "Expressions for the mean of the order statistics from the

skew-normal distribution and their application," The Proceeding of Refereed and Invited

Papers, p. 477, 2015.

[84] S. Singh, Y. Mani Tripathi, and S.-J. Wu, "Bayesian estimation and prediction based on

lognormal record values," Journal of Applied Statistics, vol. 44, no. 5, pp. 916-940, 2017.

[85] J. F. Lawless, Statistical models and methods for lifetime data. John Wiley & Sons, 2011.

[86] Z. Vidović, "On MLEs of the parameters of a modified Weibull distribution based on

record values," Journal of Applied Statistics, vol. 46, no. 4, pp. 715-724, 2019.

[87] L. Wang, Y. M. Tripathi, S.-J. Wu, and M. Zhang, "Inference for confidence sets of the

generalized inverted exponential distribution under k-record values," Journal of

Computational and Applied Mathematics, vol. 380, p. 112969, 2020.

[88] J. I. Seo and Y. Kim, "Objective Bayesian analysis based on upper record values from two-

parameter Rayleigh distribution with partial information," Journal of Applied Statistics,

vol. 44, no. 12, pp. 2222-2237, 2017.

[89] D. Kumar, M. Kumar, and J. Saran, "Power Generalized Weibull Distribution Based on

Record Values and Associated Inferences with Bladder Cancer Data Example,"

Communications in Mathematics and Statistics, pp. 1-26, 2022.

[90] R. M. EL-Sagheer, M. S. Eliwa, K. M. Alqahtani, and M. El-Morshedy, "Bayesian and

non-Bayesian inferential approaches under lower-recorded data with application to model

COVID-19 data," AIMS Mathematics, vol. 7, no. 9, pp. 15965-15981, 2022.

[91] E. Fayyazishishavan and S. Kılıç Depren, "Inference of stress-strength reliability for two-

parameter of exponentiated Gumbel distribution based on lower record values," Plos one,

vol. 16, no. 4, p. e0249028, 2021.

[92] B. P. Carlin and A. E. Gelfand, "Parametric likelihood inference for record breaking

problems," Biometrika, vol. 80, no. 3, pp. 507-515, 1993.

[93] M. S. Hoffman, "The world almanac and book of facts 1989. New York: Newspaper

Enterprise Association," ed: Inc, 1988.

[94] C. Tanış, "Transmuted lower record type inverse rayleigh distribution: estimation,

characterizations and applications," Ricerche di Matematica, vol. 71, no. 2, pp. 777-802,

2022.

[95] J. Castillo-Mateo, A. C. Cebrián, and J. Asín, "RecordTest: An R Package to Analyze Non-

Stationarity in the Extremes Based on Record-Breaking Events," Journal of Statistical

Software, vol. 106, pp. 1-28, 2023.

[96] A. Tripathi, U. Singh, and S. K. Singh, "Does the Type of Records Affect the Estimates of

the Parameters?," Journal of Modern Applied Statistical Methods, vol. 19, no. 1, p. 27,

2022.

[97] A. Feuerverger and P. Hall, "On statistical inference based on record values," Extremes,

vol. 1, pp. 169-190, 1998.

[98] F. Kızılaslan and M. Nadar, "Estimation and prediction of the Kumaraswamy distribution

based on record values and inter-record times," Journal of Statistical Computation and

Simulation, vol. 86, no. 12, pp. 2471-2493, 2016.

[99] M. Arashi and M. Emadi, "Evidential inference based on record data and inter-record

times," Statistical Papers, vol. 49, pp. 291-301, 2008.

[100] B. Arnold, N. Balakrishnan, and H. Nagaraja, "Records. John Wiley&Sons," New York,

1998.

RT&A, No 1 (77)
 Volume 19, March 2024

422



Mahmoud Ali Selim 
THE ROLE OF RECORD VALUES IN STATISTICAL INFERENCE 

Appendix: R program 

rinfal<-c(11.30, 20.34,  13.13, 10.4, 12.11, 38.18, 9.21, 22.31, 14.05, 13.87, 19.28, 34.84,  13.36, 

11.85,  26.28, 6.73, 16.11, 8.51, 16.86, 7.06, 5.59, 7.91, 16.29, 10.6, 19.32, 8.72, 19.52, 18.65, 19.3, 11.72, 

19.18, 12.63, 16.18, 11.6, 13.42, 23.65, 17.05, 19.92, 15.26, 13.86, 8.58, 12.52, 13.71, 19.66, 9.59, 6.67, 

7.38, 17.56, 17.44, 9.77, 12.66, 12.5, 12.53, 16.95, 11.84, 14.55, 21.66, 12.07, 22.41, 23.43, 13.06, 18.96, 

32.76, 11.18, 19.17, 19.21, 11.58, 12.13, 12.61, 7.22, 7.99, 10.6, 8.21, 26.21, 9.46, 11.99, 11.94, 16, 9.54, 

21.13, 5.58, 8.18, 4.85, 18.79, 8.38, 7.93, 13.69, 20.44, 22, 16.58, 27.47, 7.77, 12.32, 7.17, 21.26, 14.92, 

14.35, 7.22, 12.31, 33.44, 19.67, 26.98, 8.98, 10.71, 31.25, 10.43, 12.82, 17.86, 7.66, 12.48, 8.08, 7.35, 

11.47, 21, 27.36, 8.11, 24.35, 12.46, 12.4, 31.01, 9.09, 11.57, 17.94, 4.42, 16.49, 9.24, 37.25, 13.19, 3.21, 

13.53, 9.08, 16.36, 20.2, 8.69, 5.85, 6.08, 8.52, 9.65, 19, 4.79, 18.82, 14.86, 5.82, 12.4, 27.85) 

> library(Records)

> lower.record.times(rinfal, 1)

[1] 1   4   7  16  21  81  83 124 129

lower.record.values(rinfal, 1)

[1] 11.30 10.40  9.21  6.73  5.59  5.58  4.85  4.42  3.21

> upper.record.times(rinfal, 1)

[1] 1  2  6

> upper.record.values(rinfal, 1)

[1] 11.30    20.34  38.18

> lower.record.times(rinfal, 2)

[1] 2   3   4   7  16  18  20  21  46  81  83 124 129

> lower.record.values(rinfal, 2)

[1] 20.34 13.13 11.30 10.40  9.21  8.51  7.06  6.73  6.67  5.59  5.58  4.85  4.42

> upper.record.times(rinfal, 2)

[1] 2   3   6   8  12 127

> upper.record.values(rinfal, 2)

[1] 11.30 13.13 20.34 22.31 34.84 37.25
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Abstract 

In most cases, the assessment of the knowledge of electric power industry workers is carried out 

according to a test scheme, where the correct answer is selected from the list of answers. All 

questions have the same difficulty and only the single correct answer gives a certain score [1]. The 

article developed a universal model for assessing the knowledge of electric power industry workers, 

where using the theory of fuzzy logic and fuzzy inference, both the complexity of questions and the 

possibility of a partial correct answer are taken into account. 

Keywords: Knowledge Assessment, Training, Fuzzy Knowledge Base 

I. Introduction

Articles Personnel training, advanced training of electric power industry workers is a necessary 

task to improve the efficiency and safety of the operation of electric power facilities. Refresher 

courses for employees, which should be held at least once every 3-5 years, are necessary for 

employees and the head of energy enterprises in the electric power industry. Terms should be 

determined by the internal regulations of the enterprise, as well as the requirements of standards. 

Refresher courses are held; electricians, technologists, power engineers and heads of departments. 

Upon completion of advanced training courses, knowledge is tested by conducting an appropriate 

exam, where a test scheme of answers to the questions posed is mainly implemented. Only one 

correct answer is selected from the submitted answers, all other answers are considered incorrect. 

With this approach to testing knowledge, the complexity of the questions is not taken into account, 

and the possibility of a partial correct answer is also excluded.  

The need to take into account the complexity of questions and a partial correct answer makes 

it possible to use the theory of fuzzy sets and fuzzy inference to assess the level of preparedness of 

electric power industry workers [2]. 

II. Knowledge assessment

To account for the complexity of the questions, the questions are divided into four groups: 

relatively easy questions, normal questions, questions of medium difficulty and difficult questions. 

The weight coefficients of correct answers are ranked according to the level of difficulty of the 

questions. The partial correct answer for groups of normal and questions of average difficulty has  
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a smaller total in the resulting assessment of knowledge than the partial correct answer for 

complex questions. To obtain a quantitative value of knowledge assessment based on linguistic 

information, one can use the provisions of the theory of fuzzy sets and fuzzy logic [3]. 

Figure 1: Fuzzy inference circuit 

The fuzzy model contains the following blocks: a fuzzifier that converts a fixed vector of 

influencing factors X into a vector of fuzzy sets X ̃ required to perform fuzzy inference; 

 XfY 

fuzzy knowledge base containing information about dependence in the form of linguistic 

rules of the "IF-THEN" type;  

a fuzzy inference machine that, based on the rules of the knowledge base, determines the 

value of the output variable in the form of a fuzzy set Ỹ corresponding to the fuzzy values of the 

input variables X
~

; 

a defuzzifier that converts the output fuzzy set Ỹ into a clear number Y. The Mathlab program 

contains the Fuzzy Logic Toolbox package, which implements two types of fuzzy models, the 

Mamdani and Sugeno types. For our case, a Mamdani-type fuzzy model is preferable. 

In the Mamdani-type model, the relationship between inputs X=(x1, x2, ... xn) and output Y is 

determined by a fuzzy knowledge base of the following format: 

if  1,11 jax  and  1,22 jax  and…and  1, jnn ax 

or  2,11 jax  and  2,22 jax  and…and  2, jnn ax 

or  
jjkax ,11  and  

jjkax ,22  and…and  
jjknn ax ,

That 

jdy  , ,,1 mi   

Where  

𝑎𝑖,𝑗𝑝 – linguistic term, which evaluates the variable 𝑋𝑖 in the line with the number 

 𝑗𝑝 (𝑝 = 1, 𝑘𝑗) 

𝑘𝑗– number of rows – conjunctions in which the output y evaluated by linguistic term 𝑑𝑗; 

Membership 

functions 

Fuzzy inference 

machine 
Fuzzifier 

Fuzzy 

knowledge 

base

Defuzzifier 
X 𝑋෨ Ỹ Y
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m– the number of terms used for the linguistic evaluation of the output variable y. 

All linguistic terms in the knowledge base are represented as fuzzy sets defined by the 

corresponding membership functions:  

𝜇𝑗𝑝(𝑥𝑖) – input membership function 𝑥𝑖 fuzzy term 𝑎𝑖,𝑗𝑝 , 𝑖 = 1, 𝑛, 𝑗 = 1, 𝑚, 𝑝 = 1, 𝑘𝑗, those. 

 ii

x

x
iiijpjpi x,xxxxa

i

i

  ,/)(, 

𝜇𝑑𝑗
(𝑦) – output membership function y fuzzy term 𝑑𝑗, 𝑗 = 1, 𝑚, those.

 y,yyyyd
y

y
di j

  ,/)(

Degree input vector accessories 𝑋∗ = (𝑥1
∗, 𝑥2

∗, … 𝑥𝑛
∗ ) fuzzy terms 𝑑𝑗  from the fuzzy knowledge

base is determined by the following system of fuzzy logical equations: 

    ,,1,)(V *

,1,1

* mjxX ijp
nikp

d
j

j





Where V (Λ) –operation from the s-norm (t-norm), i.e. from a set of implementations of logical 

operations OR (AND). The following implementations are most often used: for the OR operation - 

finding the maximum, for the AND operation - finding the minimum. 

The fuzzy set 𝑦̃ corresponding input vector 𝑋∗, is defined as follows: 

     ,/,~ *

,1 












 



yyXimpaggy
y

y
dd

mj
jj



Where 

imp – implication, usually implemented as a minimum finding operation; 

agg – aggregation of fuzzy sets, which is most often implemented by the operation of finding 

the maximum. 

III. Fuzzy inference models

Clear output value y, corresponding to the input vector 𝑋∗, is determined as a result of 

defuzzification of the fuzzy set 𝑦̃. The most commonly used defuzzification is the center of gravity 

method: 

The choice of the membership function affects the accuracy of the fuzzy inference model. 

Figures 2-9 show various membership functions for input and output variables [4-6]. 

Figure 2 shows the function of input variables (answers to all four groups of questions by 

complexity) in the form of a triangle. The optimal output membership function is shown in Figure 

3, in which the adequacy of the result to the rules corresponds to 88.3%. 
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Figure 2: Linear membership function for the input 

According to the rules (Rules), the program compared the data with the forms of relations and 

received the results. The triangular membership function results were compared with the rules 

and it was observed that the result was about 88.3% correct. 

Figure 3: Linear membership function for the output 

Figure 4 shows the membership function of the inputs in the form of a trapezoid, and Figure 5 

corresponds to the membership function of the output in the form of a triangle. Such a choice of 

the output membership function leads to a high indicator of the adequacy of the output to the rules 

- 91%.

Figure 4: Trapezoidal membership function for the input 

Figure 5: Trapezoidal membership function for the output  
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One of the most commonly used membership functions is the Gbell function (a Gaussian type 

function). The graphs of the membership functions for the inputs and for the output are shown in 

Figures 6 and 7, respectively, the result is 88.1% adequate. 

Figure 6: Gaussian membership function for the input 

Figure 7: Gaussian membership function for the output 

Numerous studies on the choice of membership functions for inputs and outputs have shown 

that the maximum adequacy is achieved when using Gauss-Linear functions, which is formed by 

combining the Gauss and limf functions (Gauss and limf), which are shown in Figure 7 and 8. For 

these membership functions, the adequacy of the output to the rules is 97.7%. 

Figure 8: Gauss-Linear membership function for the input 

Figure 9: Gauss-Linear membership function for the output  
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Table 1 shows a comparison of the adequacy of the output to the rules for various 

membership functions. As can be seen from Table 1, the maximum adequacy of the model is 

achieved when using membership functions of the Gauss-Linear type [7-9]. 

Table 1: Percentages, based on the rules of the membership functions 

Membership Function Accuracy percentages 

Triangular 88.3 

Trapezoid 91.0 

Gaussian 88.1 

Gauss Linear 97.7 

Table 2 presents a fragment of the learning rules (knowledge base) of the fuzzy inference 

model for assessing the level of preparedness of electric power industry workers. 

Table 2: Fragment of model training rules 

Examples Hard Medium 2 Medium 1 Easy 
Result (with 

rules) 

Result 

(Gbell-mf) 

Examples 1 85 85 75 65 A A(84.84) 

Examples 2 85 75 85 55 A A(84.84) 

Examples 3 75 85 35 45 B B(64.94) 

Examples 4 65 55 65 45 B B(64.94) 

Examples 5 65 35 75 55 C C(55.06) 

Examples 6 15 25 85 65 C D(37.87) 

Examples 7 45 35 25 35 D D(35.10) 

Examples 8 15 25 45 95 D D(27.86) 

Examples 9 15 25 15 55 E E(13.23) 

Examples 10 5 15 65 55 E E(13.23) 

With the selected answers to questions from four blocks, you can get the corresponding score, 

as shown in Figure 10. Here, the first column shows the score for difficult questions, the fourth for 

easy questions, and the last column the resulting score. 

Figure 10:  a) Evaluation by points 

Answers on questions Resulting score 

Hard 

Medium 2 

Medium 1 

Easy 

Evaluation  Grades 
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Figure 10:  b) Evaluation by points 

IV. Discussion

1. A universal method for assessing the level of preparedness of electric power industry

workers has been developed, where, using the theory of fuzzy logic and fuzzy inference, one can 

take into account the complexity of questions, as well as the possibility of a partial correct answer. 

2. By choosing membership functions for the inputs and outputs of functions of the Gauss-

Linear type, you can achieve the maximum adequacy of the fuzzy inference model - 97.7%. 
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Abstract 

In the industrial systems there is a requirement that systems should work efficiently for long time. 

System performance is an important aspect for failure free operation but in real practice complete 

failure free operation of any production system is seldom possible. Detailed critical literature review 

for the past thirty three years of Reliability, Maintainability and Availability (RAM) approaches 

has been carried out which can help to improve performance of Complex systems. Review of some 

papers provided the detailed information about past and current scenario of RAM practices in 

research field and industries. Different RAM tools and techniques extracted from the review may be 

helpful in qualitative and quantitative analysis of the complex systems. In this paper, author tried 

to focuss on some major aspects of RAM approaches. 

Keywords: Reliability, Availability, Maintainability, Safety, Markov, Petri Nets, 

Dependability. 

I. Introduction

All assets would be developed in a perfect world with low failure rates, low maintenance costs and 

simplicity of use in mind. There should be adequate balance in the productivity of an asset with 

the cost of its purchase and maintenance. A team of design, systems, and reliability professionals 

will usually do RAM analysis during the design phase. Over the course of the asset's life, the study 

can be repeated by maintenance and service reliability engineers, who have vital information on 

the performance and health of the asset. 
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These three factors (Reliability, Availability and Maintainability) are all equally crucial and 

frequently complement one another. Machine is operational if it is available, reliable if it is likely to 

function correctly, and maintainable if it can be quickly rectified even if something goes wrong. 

Reliability can be defined as the probability that a system will complete the task and run 

flawlessly in a specific environment for a set period of time. In reliability engineering, high levels 

of "lifetime" engineering uncertainty and failure hazards are addressed through prediction, 

prevention, and risk management. Although stochastic parameters influence and determine 

dependability, mathematics and statistics are not the only ways to achieve it. Reliability 

engineering is closely related to quality engineering, safety engineering and system safety. 

Availability is a special parameter that combines serviceability and reliability criteria. It 

indicates the probability that an asset will be operational (neither maintained nor repaired) at any 

given time. Availability is measured at steady state, taking into account potential downtime during 

which the service may (and will) become unavailable during its expected useful life. In reliability 

engineering calculations, the failure rate is taken as the predicted strength of failure, assuming the 

component is fully functional in its original state. 

Maintainability discusses the ease of maintenance on an asset and the resource requirements. 

The probability that an asset will resume its intended state after a maintenance duty can also be 

calculated using this method. Mean Time to Repair (MTTR) is a common metric used to evaluate it. 

System engineers, logisticians and users are particularly interested in the three RAM 

(Reliability, Maintainability and Availability) characteristics of a system. Together these 

characteristics have an impact on a product or system's usefulness as well as its life-cycle costs. A 

decision-making tool known as Research on Reliability, Availability and Maintainability (RAM) is 

utilized to increase system availability, which in turn increase overall profitability and reduces 

cycle costs life. In engineering, the term “Reliability, Availability, Maintainability and Safety” is 

frequently used to describe a property of a product or system. 

II. Critical Literature Review

Ciardo et. al. (1990) performed analysis of processing systems using semi-markov reward 

processes. The semi-markov reward process is an extension of an algorithm proposed by Beaudry, 

it was presented for the computation of accumulated reward in a semi-markov process [1]. 

Viswanadham et. al. (1991) formulated the performability of the fault-tolerant manufacturing 

system. Through examples, the authors try to show the importance of performability in automated 

manufacturing system design. Performability measures considered deal with throughput and 

manufacturing lead time, which essentially determine the competitiveness of a plant [2]. Kumar et. 

al. (1992) studied the analytic behavior of reliability and availability of the crystallizer system in 

sugar plants. The model was based on Chapman-Kolmogrov equations. The Laplace transform 

was used to derive steady-state availability and various state probabilities. The effect of failure and 

repair rates on availability has been studied [3].  Sharma and Bazovsky (1993) performed analyses 

of large and complex systems using Markov method. Laplace transform method was used to solve 

the differential equation. After the modeling, design engineers were able to evaluate their own 

design to increase the reliability of the system [4]. Behera et. al. (1994) used deterministic and 

stochastic based petri net to modelled the flexible manufacturing system. Performance evaluation 

of system has also been done. Generalized stochastic petri net was also used to modelled the 

flexible manufacturing systems. Performance measure obtained was almost equal for both 

deterministic petri net and generalized stochastic petri net [5]. 
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Murty and Naikan (1995) investigated the optimization of a manufacturing plant's 

availability and maintenance costs. It has been concluded that before making any major decisions 

regarding the formation of the maintenance budget, it is prudent to carefully examine the 

economic viability of overspending on maintenance in order to increase plant availability [6]. 

Kumar et. al. (1996) assessed the shell gasification and carbon recovery processes in a urea 

fertilizer plant from a behavioral perspective. The author of this paper used straight forward 

probability considerations to formulate the issue. The equations for steady-state availability were 

derived, and they provided the equipment's behavior based on the analyses of the results. Based 

on the failure results, advise the maintenance manager with guidelines for carrying out the 

workplan for repairs, among other things [7]. Arora and Mehta (1997) evaluated the steam and 

power generation capacity of thermal power plants. The authors devised the expressions for 

steady-state availability and mean time between failures. Graphs illustrate how failure and repair 

rates affect system availability. The Chapman-Kolmogorov birth-death process and a probabilistic 

method were used in the modeling procedure. The critical system and subsystem made a decision 

to limit failures based on the results, and the plant staff was informed of the results so they could 

make plans for the system's failure-free operation [8]. Pellegrini et. al. (1998) used a statistical 

approach based on the semi-Markov technique to assess the availability and performance of 

electronic complex systems. The electronic system's resolution model of a semi-Markov process 

was identified from the findings, and the mean Laplace transform was used to calculate the 

asymptotic availability value [9]. Singh and Mahajan (1999) evaluated a production facility for 

utensils for availability and dependability. Differential equations resolved using the Laplace 

transformation. The Markovian method was used to investigate the effect of different parameter 

availability. The findings demonstrated that availability impacted when repair and failure rates are 

disrupted [10].  

Borgnovo et. al. (2000) proposed modeling through Monte Carlo. The plant's tool 

management and operation were advised by Monte Carlo modeling. The paper's analysis looks at 

the operation and maintenance plan [11]. Zhang and Horigome (2001) looked at how the 

availability and dependability of the system's failure and repair rates evolved over time. The 

solution shows the system’s availability and dependability with varying failure and repair rates 

[12]. Wang and Loman (2002) critically examined the K-out-of-N system's availability and 

dependability using M cold steady units. The design process for such power systems has been 

investigated and it has been found that this kind of design is capable of eliminating Single Point 

Failure (SFP), Common Mode Failure (CMF) and the greatest likelihood of human error [13]. Dai 

et. al. (2003) presented a model of a centralized heterogeneous distributed system in order to learn 

more about distributed system service availability and dependability. The model parameter’s 

sensitivity was investigated. Conclusion has been made that the service reliability function can 

assist in appropriately allocating testing resources [14]. Rauzy [2004] described six approaches for 

calculating the time-dependent probability of Markov models. After a thorough investigation of 

techniques such full matrix exponentiation, Euler approach, Runge-Kutta method, and Adams-

Bash ford multi-steps methods of order 2 and 4, it was shown that computers nowadays could 

potentially manage Markov networks with millions of transitions [15]. 

Marseguerra et. al. (2004) studied multi-objective optimization, which takes into account 

parameter uncertainty and is primarily based on genetic algorithms. This method gives the 

decision-maker a tool to use in order to find a solution that is also optimal in terms of expected 

safety behavior and allows for a high degree of assurance in the actual system performance after 

applying the procedure to more complex systems [16]. Gupta et. al. (2005) utilized the 

mathematical formulation of the model to propose a numerical analysis of the process's availability 

and reliability in the bute-oil processing plant. After discussion, it may indicate that the proposed 
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technique is applicable to complicated systems that are also governed by substantial differential 

equations [17]. Majeed and Sadiq (2006) utilized the Markovian method to create a model for the 

Dokan hydro power station. The discussion and modeling of the issue led to the conclusion that 

power station reliability decreased annually. Conclusion has been made that a poor maintenance 

program and the inexperience of engineers and technicians affected availability adversely [18]. 

Chuan ke and Kuangkhu (2007) conducted a comparison of the availability of repairable 

redundant systems. Four bootstrap approaches were used to compute a comparison of confidence 

intervals for steady-state availability [19]. Sharma and Kumar et. al. (2008) presented the 

Markovian method of obtaining system behavior through the use of RAM analysis in crucial 

engineering systems. The transition diagram was used to create the differential equations. Based 

on the results, it has been advised to the managerial staff that characteristics like MTBF and MTTR 

are important for the system's planning and maintenance [20].  

Goyal et. al. (2009) carried out an availability analysis of a part of Rubber tube production 

system under pre-emptive resume priority repair. The methodology used was Markov modelling.  

The purpose of the paper was to improve operational availability. Based on the results, the effect of 

failure and repair rates on availability was found. This information helps maintenance 

management improve the overall reliability and availability of the system [21]. Adhikary et. al. 

(2010) analyzed a coal-fired power plant's RAM. Before the data are fitted best with a probability 

distribution, a trend test and a serial correlation test are used to verify the distribution of failure 

and repair data. The significant subsystem has been identified through the use of Pareto analysis. 

The findings led to the conclusion that a rise in MTBF and a decrease in MTTR increase the power 

plant's availability [22]. Vora et. al. (2011) evaluated performance of turbo generator system of 

thermal plant using probabilistic approach. Markov approach has been used for problem 

formulation through transition diagram. Based on result availability graphs of failure and repair 

for maximum availability has been analyzed [23]. Garg and Sharma (2012) analyzed the 

performance of the synthesis unit in a fertilizer plant. The system's behavioral sensitivity has also 

been investigated. The Lamda Tau-Technique was used to investigate the behavior of a complex 

system that could be improved. Eight significant dependability parameters were also registered as 

fuzzy membership function [24]. Wolde et. al. (2013) discussed the issue of railway carrier 

inspections and maintenance. Using mathematical modelling, this study ties failure and repair 

rates to system performance. This modelling was used to evaluate inspection plans for any system, 

further optimizing its cost [25]. 

Suleiman K et. al. (2013) dealt with applying a probabilistic strategy to analyze stochastic 

data and evaluate thermal power plant performance. According to the findings of the analysis, 

availability decreases as the failure rate rises, while availability rises as the repair rate rises and 

vice versa. The plant management can use the result-based system for system availability analysis 

[26]. Dewangan et. al. (2014) investigated the reliability of thermal power plant’s steam turbines. 

Investigation has been done based on failure database of five year. Failure modes and effect 

analysis (FMEA) used to categorize critical components. Based on investigation it has been 

concluded that well planning and regular scheduled maintenance can improve the reliability of 

plant [27]. Aggarwal et. al. (2015) proposed a performance model based on the Markov birth-death 

process for calculating RAM, dependability, MTBF and MTTR. Modeling has been done 

mathematically using Chapman-Kolmogorov differential equations and probabilistic 

considerations. Most critical subsystem pointed and suggested management to take utmost care 

[28] Talebborouane et. al. (2016) applied sophisticated fault tree and stochastic Petri Net

formalisms to examine the availability of safety-critical systems. Generalized stochastic Petri Nets

and fault tree driven Markov processes were utilized for analysis to get over the drawbacks of the

Markov process and Petri Nets. It concluded that Petri Net is better for modeling as compared to
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fault tree driven Markov process [29]. Kumar and Tewari (2017) utilized Particle Swarm 

Optimization (PSO) to optimize and analyse the performance of a beverage plant system. 

Exponential distribution is considered for repair and failure rate, and Markov approach is used for 

mathematical modelling. Results have been discussed with plant management for the 

improvement of system performance [30]. 

Malik and Tewari (2018) modeled and prioritized maintenance for a coal-fired thermal power 

plant's water flow system. Chapman-Kolmogorov equations were derived to obtain performance 

modelling using the Markov approach. The authors demonstrated the proposed approach to 

assisting in this kind of decision-making process through the case study [31]. Singhal and Sharma 

(2018) used the Markov process and generalized fuzzy numbers to analyse the availability of 

industrial systems. The uncertainty of data has been dealt with generalized fuzzy numbers. 

Availability analysis has been analysed through different arithmetic operations. The system 

analyst observed the impact of failure and repair rates on the system [32]. Velmurugan et. al. 

(2019) used Markov process to analyze the reliability, availability and maintainability of the 

forming industry. MATLAB software was used to solve mathematical functions. Based on the 

results, most critical subsystem was established. The best maintenance policy has also been 

provided to the maintenance manager for optimal maintenance [33] Elusakin and Shafiee (2020) 

estimated the reliability of subsea blowout preventers using advanced analysis method stochastic 

Petri Nets with different failure modes. MTBF, availability and reliability terms obtained and 

analyzed. Sensitivity analysis was carried out to assess the impact that the redundancy design and 

fault coverage factor have on system performance. Based on the results, it defined that system 

availability and MTBF were significantly influenced by fault coverage and redundancy [34]. Jagtap 

et. al. (2020)   optimized the availability of the boiler furnace system in coal-fired thermal power 

plant using Particle Swarm Optimization (PSO). The Markov method was used for the analysis of 

the system. Based on the results maintenance priority has been handed over to plant management 

[35].  

Maihulla et. al. (2021) utilized RAMD (Reliability, Availability, Maintainability and 

Dependability) analysis to evaluate the efficiency of the complex system of reverse osmosis water 

purification equipment. The primary objective was to optimize the economy. The components 

were determined through sensitivity analysis. The RAM of a subsystem (the high-pressure pump) 

has a substantial effect on the system's overall availability, it was found after the discovery [36]. 

Kumar et. al. (2021) utilized the Petri Nets modeling method to examine the performance of a 

complex manufacturing system in order to influence the actual behavioral patterns of the many 

subsystems deployed in the plant. Subsystem that has been severely impacted by availability has 

been determined by the results [37]. Parkash and Tewari (2022) conducted modeling using the 

Markovian method and employed a probabilistic approach to design the Decision Support System 

(DSS) for assembly line maintenance. Probabilities for the steady state were determined using a 

transition diagram and by solving differential equations. The most important subsystem was 

found and subsystem maintenance priorities were finalized [38]. Kumar and Tewari (2022) 

evaluated performability features of ash handling system of a coal based thermal power plant 

using Petri Nets based techniques. Failure and Repair rate impact has been determined. Stochastic 

Petri Nets (SPN) applied for modeling. Based on the results, vital part of system has been 

identified. Petri Nets were found to reduce the time-consuming computational efforts required by 

Markov and other modeling methods while also ensuring better results [39] Behnamfar et. al. 

(2023) presented a continuous Markov process-based reliability analysis of wireless power transfer 

for electric vehicle charging. To determine overall system reliability, five subsystems were 

individually analyzed on individual reliability. Based on the results, it was discovered that the 

system was highly reliable over a twenty-year lifespan, with 66.31% availability [40]. Malik et. al. 
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(2023) evaluated the performability of the veneer cutting system of the Plywood Plant using a 

stochastic approach, and Particle Swarm Optimization (PSO) was used for the optimization of the 

results. Based on the analysis, maintenance engineers get help optimizing overall maintenance 

costs and overall production costs [41]. 

III. Research Gaps

In this section, the RAM approach has been used to discuss the brief findings of a literature survey 

conducted over the last three decades. 

1. In this survey, it has been carried out that Researchers primarily focused on RAM

approaches however very limited work is reported regarding RAMD (Reliability,

Availability, Maintainability and Dependability) and RAMS (Reliability, Availability,

Maintainability and Safety). Researchers missed the importance of effect of Dependability

and Safety on Reliability. Safety is an important aspect of working in a safe environment; it

also increases the motivation of team members to work in any hazardous environment,

whereas dependability is also an important aspect or parameter which effected reliability in

positive way by accomplishing its assigned mission or services.

2. Several researchers discussed their efforts to increase plant availability through the use of

suitable maintenance procedures, policies, and different operational schedules. But very

few researchers reported the relation between cost and maintenance policies with

operations schedule. Factors which affected cost also need to be focused.

3. It is observed from the literature review that many techniques, including fault tree analysis,

Markov models, and Lambda tau technology, have been applied. Each of these techniques

has a variety of benefits and drawbacks. But there is a tool Markovian Petri Nets which can

make good balance between modeling and decision making power. Application of this kind

of tool is very limited in the literature survey.

IV. Concluding Remarks

Detailed overview of the literature illustrates various RAM issues, tools and techniques applied in 

various plants and process industries. In literature survey authors majorly focused on maintenance 

plan, lowering maintenance cost, production costs and increasing performability and productivity 

etc. In order to further improve the plant's performability, various RAM tools and techniques can 

be utilized in both the design and the operational stages. 

In order to ensure that the systems remain operational for an extended period of time, each 

plant is divided into a number of systems or subsystems for effective maintenance planning. 

Markov Analysis, Failure Mode and Effects Analysis (FMEA), Fault Tree Analysis, Reliability 

Growth Analysis, Fuzzy Model, Monte Carlo technique, Chapman Kolmogorov birth- death 

process, Stochastic Petri Nets, Particle Swarm Optimization (PSO) and other techniques were 

utilized for the analysis and modeling. The paper also discusses the advantages and disadvantages 

of each of these techniques. 
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Abstract

The differential entropy is a natural analog of the Shannon entropy for discrete distributions in respect to
absolutely continuous distributions (with density). In modern studies, many other kinds of entropy have
been introduced and analyzed, including various cumulative entropies, which are based not on the density
but on the (cumulative) distribution function of random variable. Such characteristics can be used, for
example, in computer vision, reliability theory, risk analysis, etc. We consider some generalizations of
cumulative entropy, for a wide class of entropy generators. We use the methods of probability theory,
calculus of variations and Cauchy–Bunyakovsky–Schwarz inequality. In the class of centered and
normalized random variables, exact and conditional bounds are found as well as the distributions on
which they are attained. By conditional bounds we understand bounds for one generalized cumulative
entropy given the value of another entropy (in the class of random variables with zero mean and unit
variance). This problem is analogous to the previously posed and partly solved problem on conditional
bounds for expectations of sample maxima when we know the expected maximum of a sample of another
size or expected maxima of two smaller samples.

Keywords: cumulativ e entr opy, exact bounds, conditional bounds, calculus of variations

1. Introduction

The differential entropy is a natural analog of the Shan non entr opy for discr ete distributions in
respect to absolutely continuous distributions [14, 6]. For a random variable X with probability
density function p(x), it is giv en by

H(X) = −
∫ +∞

−∞
p(x) ln p(x) dx.

For a giv en variance σ2, the dif ferential entr opy attains its maximum on Gaussian distributions
N (µ, σ2) [14, §20]; then

H(X) =
1 + ln(2πσ2)

2
.

In moder n studies, many other kinds of entr opy have been introduced and analyzed, in-
cluding various cumulative entropies, which are based not on the density but on the (cumulativ e)
distribution function. Such characteristics can be used, for example, in computer vision [13],
reliability theor y and risk analysis [4, 5], etc. Even medical applications have been noted [1].

In [13], for nonnegativ e random variables ther e w as introduced the cumulative residual entropy
(CRE)

E(X) = −
∫ +∞

0
F̄(x) ln F̄(x) dx,
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wher e F̄(x) = 1− F(x), F being the (cumulativ e) distribution function (CDF) of a random variable
X, and in [4] ther e w as introduced the cumulative entropy (CE)

CE(X) = −
∫ +∞

0
F(x) ln F(x) dx,

which w as after w ards also called the direct cumulativ e entr opy (in contrast to the residual one).
In such expr essions it is assumed that 0 ln 0 = 0.

It is clear that these functionals can be extended from nonnegativ e to arbitrar y random
variables by taking integrals over the entir e axis:

E(X) = −
∫ +∞

−∞
F̄(x) ln F̄(x) dx, CE(X) = −

∫ +∞

−∞
F(x) ln F(x) dx. (1)

In the general case, the integrals may both conv erge or div erge.
For these cumulativ e entr opies, ther e is symmetr y

E(X) = CE(−X). (2)

Note that cumulativ e entr opies (as well as the dif ferential entr opy) are traditionally written as
numerical characteristics of a random variable X, though they actually depend on its distribution
function F only.

In [3], repr esentations for E(X) and CE(X) through moments of order statistics (using the
power series expansion of the logarithm) have been obtained and upper bounds on these entr opies
were constructed assuming that X has mean µ and variance σ2 (taking into account classical
estimates for order statistics [7, 8]).

Namely , ther e were obtained the inequality [3, Theor em 1]

E(X) ≤
+∞

∑
n=1

σ

(n + 1)
√

2n + 1
≈ 1.21σ, (3)

which is also valid for CE(X) due to symmetr y (2), and the inequality [3, Theor em 3]

E(X) + CE(X) ≤
+∞

∑
n=1

σ
√

2
n
√

n + 1
≈ 3.09σ. (4)

Also, various classes of generalized cumulativ e entr opies have been consider ed [9, 10].
In particular , in [9] ther e were introduced the cumulative residual STM (Sharma–Taneja–Mittal)

entropy

SRα,β(X) =
1

β− α

∫ ∞

0
(F̄α(x)− F̄β(x)) dx, α, β > 0, α 6= β,

and the cumulative STM entropy

SPα,β(X) =
1

β− α

∫ ∞

0
(Fα(x)− Fβ(x)) dx, α, β > 0, α 6= β.

Clearly , they can also be extended from nonnegativ e to arbitrar y random variables:

SRα,β(X) =
1

β− α

∫ +∞

−∞
(F̄α(x)− F̄β(x)) dx,

SPα,β(X) =
1

β− α

∫ +∞

−∞
(Fα(x)− Fβ(x)) dx,

α, β > 0, α 6= β.

In [10], for a broad class of generalized cumulativ e entr opies, optim al distributions (with
giv en means and variances) that maximize these entr opies (i.e., giv e their exact upper limits) have
been obtained by methods of calculus of variations; however, the corresponding maximum values
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of the entr opies have not been deriv ed. If they are deriv ed, for example, for E(X), CE(X), and
E(X) + CE(X), it tur ns out that these bounds are stronger than (3) and (4).

We will consider for simplicity the class of distributions with zer o mean and unit variance.
Follo wing [10], one can easily deduce that the maximum value of E(X) is 1 and the maximum is
attained at the shifted exponential distribution with the CDF

F(x) = 1− e−(x+1), x ≥ −1; (5)

the maximum value of CE(X) is the same, and it is attained at the distribution with the CDF

F(x) = ex−1, x ≤ 1; (6)

and the maximum value of E(X) + CE(X) is π/
√

3 ≈ 1.81, the maximum being attained at the
logistic distribution with the CDF

F(x) =
eπx/

√
3

eπx/
√

3 + 1
. (7)

Next we for mulate a simple statement that allo ws us to obtain an upper bound on the
generalized cumulativ e entr opy without deriving the corresponding optimal distribution; we will
demonstrate it by an example of the cumulativ e residual STM-entr opy.

Then we solv e a new problem about the range in which one generalized cumulativ e entr opy
of a random variable can lie provided that another entr opy of this random variable is known (for
random variables with zer o mean and unit variance). Besides the general theor em, we in detail
analyze the case of the relationship of the entr opies E(X) and CE(X).

This problem is analogo us to the previously posed and partly solv ed problem on conditional
bounds for expectation of sample maxima when we know the expected maximum of a sample
of another size [11] or the expected maxima of tw o smaller samples [12]. In this case, the
corresponding characteristics are also expr essed as integral functionals of the distribution function.

From the point of vie w of calculus of variations, the arising problems belong to the class of
isoperimetric problems and are solv ed by the method of Lagrange multipliers (Euler –Lagrange
equations).

2. Main Results

Consider the class CN of center ed and normalized random variables, i.e.,

CN = {X : EX = 0, VarX = 1}.

It is clear that for all the abo ve-mentioned entr opies, in order to establish bounds, it suf fices
to consi der random variables in this class. Indeed, let a random variable X have mean µ and
variance σ2; then it admits a repr esentation X = µ + σX0 with X0 ∈ CN, and it follo ws from
definition (1) that E(X) = σE(X0), and so on.

Introduce a notation for the generalized inv erse distribution function (also called the quantile
function)

x(u) = inf{x : F(x) ≥ u}, u ∈ [0, 1],

wher e F is the CDF of the random variable X. Then

X d
= x(U),

wher e U is unifor mly distributed on [0, 1], and the condition X ∈ CN is equiv alent to the
follo wing constraints on x(u):

EX =
∫ 1

0
x(u) du = 0, VarX =

∫ 1

0
x2(u) du = 1,

wher e the function x(u), u ∈ [0, 1], is nondecr easing and right continuous.
We will consider functions g (entropy generators) satisfying the follo wing conditions:
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(∗) g(u) is a nonnegativ e continuous conc ave function on [0, 1] which is piece wise smooth on
(0, 1), with g(0) = g(1) = 0, and such that

G =
∫ 1

0

(
g′(u)

)2 du < ∞.

Introduce generalized cumulativ e entr opies repr esented by the integral (if it conv erges)

Eg(X) =
∫ +∞

−∞
g(F̄(x)) dx, (8)

wher e F is the CDF of the random variable X.
Using integration by parts and the change of variables u = F(x), we can obtain the follo wing

repr esentations:

Eg(X) = −
∫ +∞

−∞
x dg(F̄(x)) =

∫ 1

0
x(u)g′(1− u) du =

∫ 1

0
g(1− u) dx(u),

which giv es a particular case of the generalized cumulativ e Φ-entropy

CEΦ(F) =
∫ 1

0
Φ(u) dx(u)

introduced in [10], with the only dif ference that in [10] it w as not requir ed that Φ(0) = Φ(1) = 0
(though it w as actually the case in all examples consider ed ther e).

Definition (8) also implies Eg(X) = σEg(X0), X0 = (X− µ)/ σ, σ > 0.
Proposition 1. Let g satisfy condition (∗); then

max
X∈CN

Eg(X) =
√

G.

The proposition follo ws from the fact that accor ding to [10, Theor em 1] this maximum is
attained at the distribution with the inv erse CDF

x(u) =
g′(1− u)√

G
, u ∈ [0, 1].

Corollary 1. Let 1/ 2 < min{α, β} ≤ 1, α 6= β; then

max
X∈CN

SRα,β =

√
2αβ− α− β + 1

(2α− 1)(2β− 1)(α + β− 1)
, (9)

and the maximum is attained at the distribution with the inv erse CDF

x(u) =
α(1− u)α−1 − β(1− u)β−1

(β− α)
√

G
, u ∈ [0, 1]. (10)

In this case an optimal distribution F is not found explicitly , but it can be obtained, for example,
for α = 1 or β = 1, when all expr essions become simpler (this w as made in [10]).

Note that for min{α, β} > 1 the conca vity condition for g is violated, and for 0 < min{α, β} ≤
1/ 2 the entr opy SPα,β(X) may take infinitely large values on X ∈ CN (when the corresponding
integrals div erge).

Clearly , analogous statements hold as well for SPα,β, since SPα,β(X) = SRα,β(−X).

Theorem 1. Assume that g1 and g2 satisfy conditions (∗), the integrals

Gij =
∫ 1

0
g′i(u)g′j(u) du, 1 ≤ i, j ≤ 2,
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are introduced, and it is known that Eg2 (X) = t. Then for all X ∈ CN we have

Eg1 (X) ≤ 1
G22

(
G12t +

√
(G11G22 − G2

12)(G22 − t2)

)
, (11)

and this bound is tight if the function

x̃(u) = λ1g′1(1− u) + λ2g′2(1− u),

wher e

λ1 =

√
G22 − t2

G11G22 − G2
12

, λ2 =
t− λ1G12

G22
, (12)

is nondecr easing on (0, 1); then x̃(u) defines the distribution on which the bound is attained.

Note that by Proposition 1 we have E2
g2
(X) ≤ G22 , so the radicand is alw ays nonnegativ e. The

functions g′1(1− u) and g′2(1− u) are nondecr easing, and λ1 ≥ 0; however, the nondecr easing
condition for x̃(u) can be violated when λ2 < 0.

For the sequel, it would be conv enient to introduce the notation for the constant

p =
π2

6
− 1 ≈ 0.645.

Corollary 2. For all X ∈ CN we have

E(X) ≤ p CE(X) +
√
(1− p2)(1− CE2(X)), (13)

and this bound is tight if CE(X) ≥ p.

By symmetr y (2) of the entr opies, we also have

CE(X) ≤ p E(X) +
√
(1− p2)(1− E2(X)),

and this bound is tight if E(X) ≥ p. By inv erting the inequality , we can also obtain a lower bound

E(X) ≥ p CE(X)−
√
(1− p2)(1− CE2(X))

in the range CE(X) ≥
√

1− p2 ≈ 0.764 wher e this bound is nonnegativ e (but we cannot claim
that it is tight). Similarly , a lower bound for CE(X) can be found.

The question of what is the upper bound when x̃(u) is not nondecr easing remains open.
In this case we deal with a problem of not the calculus of variations but optimal contr ol (with
an additional condition x′(u) ≥ 0), which is much mor e complicated. One can also apply an
appr oach to establishing (not tight) bounds using special families of distributions, as w as done in
[11]. This appr oach is exploited in the proof of the follo wing theor em

Theorem 2. For any 0 < t < p we have

max
X∈CN, CE(X)=t

E(X) ≥
√

1− a
1 + a

(1− ln(1− a)),

wher e a is a unique solution on (0, 1) of the equation 1

− a(ln a− 1)− Li2(1− a) + 1√
1− a2

= t.

By symmetr y (2), an analogous estimate holds for CE(X) giv en E(X), whence one can obtain
a lower estimate for the maximum of E(X) giv en CE(X).

Figur e 1 repr esents plots of the obtained bounds for the entr opies E(X) and CE(X). In
bold, we highlight the inter val wher e the bound (13) is tight; the dotted line sho ws the bound
of Theor em 2. Points of the bound marked by the triangle, star, and circle correspond to the
distributions (5), (6), and (7). In the ranges CE(X) < p and E(X) < p, true bounds lie some wher e
in betw een the solid and dotted lines. Establishing them deser ves further inv estigation.

1Her e, Li m(z) = ∑∞
n=1 zn/ nm is the polylogarithm of order m.
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Figure 1: Plots of the bounds for the entropies E(X) and CE(X).

3. Proofs

Proof of Corollary 1. Let, for definiteness, α < β; then 1/ 2 < α ≤ 1. Put g(u) = (uα − uβ)/ (β−
α); then

g′(u) =
αuα−1 − βuβ−1

β− α
,

g′′(u) =
α(α− 1)uα−2 − β(β− 1)uβ−2

β− α
< 0, u ∈ (0, 1).

We obtain

G =
∫ 1

0

(
αuα−1 − βuβ−1

β− α

)2

du

=
1

(β− α)2

∫ 1

0
(α2u2α−2 − 2αβuα+β−2 + β2u2β−2) du

=
1

(β− α)2

{
α2

2α− 1
− 2αβ

α + β− 1
+

β2

2β− 1

}
=

2αβ− α− β + 1
(2α− 1)(2β− 1)(α + β− 1)

(14)

and equations (9) and (10).
Proof of Theorem 1. By considering the Lagrangian

L =
∫ 1

0

(
λ1x(u)g′1(1− u) + λ2x(u)g′2(1− u) + λ3x(u) + λ4x2(u)

)
du,

we obtain the Euler –Lagrange equation

λ1g′1(1− u) + λ2g′2(1− u) + λ3 + 2λ4x(u) = 0,

wher e we may without loss of generality takee λ4 = −1/ 2.
Thus, we will seek for a function

x̃(u) = λ1g′1(1− u) + λ2g′2(1− u) + λ3

satisfying the conditions∫ 1

0
x̃(u) du = 0,

∫ 1

0
x̃2(u) du = 1,

∫ 1

0
x̃(u)g′2(1− u) du = t.
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The first condition, taking into account that gi(0) = gi(1) = 0, i = 1, 2, giv es λ3 = 0; the
second and third yield a system of equations{

G11λ2
1 + 2G12λ1λ2 + G22λ2

2 = 1,
G12λ1 + G22λ2 = t;

by solving this system with respect to λ1 and λ2, we obtain (12).
Next, for any function x(u) corresponding to X ∈ CN, by the Cauchy–Buny ako vsky–S chw arz

inequality we obtain

∫ 1

0
x(u)x̃(u) du = λ1 Eg1 (X) + λ2t ≤

(∫ 1

0
x2(u) du

)1/ 2 (∫ 1

0
x̃2(u) du

)1/ 2
= 1, (15)

whence

Eg1 (X) ≤ 1− λ2t
λ1

=
G22 − (t− λ1G12)t

λ1G22
=

λ1G12t + G22 − t2

λ1G22

=
1

G22

(
G12t +

√
(G11G22 − G2

12)(G22 − t2)

)
.

If x̃(u) is nondecr easing and thus corresponds to some distribution, then with x(u) = x̃(u)
inequality (15) tur ns into equality , and the bound is attained.

Proof of Corollary 2. We apply Theor em 1 in the case of g1(u) = −u ln u and g2(u) =
−(1− u) ln(1− u); then, as we have alr eady obtained, G11 = G22 = 1, and we find

G12 = −
∫ 1

0
(ln u + 1)(ln(1− u) + 1) du = p;

plugging this into (11), we obtain (13). In this case we have

x̃(u) = λ1(−(ln(1− u) + 1)) + λ2(ln u + 1),

wher e

λ1 =

√
1− t2

1− p2 , λ2 = t− pλ1.

A necessar y and suf ficient condition for x̃(u) to be nondecr easing on (0, 1) is λ2 ≥ 0, which
happens to be equiv alent to the inequality t ≥ p.

Proof of Theorem 2. Consider a family of random variables X0
a , a ∈ [0, 1), whose distribution

is a mixtur e of zer o (with probability a) and the standar d exponential distribution (with probability
1− a). Then the inv erse CDFs take the for m

x0
a(u) =

0, 0 ≤ u < a;

− ln
1− u
1− a

, a ≤ u < 1.

We have

EX0
a = 1− a, E(X0

a)
2 = 2(1− a), VarX0

a = 2(1− a)− (1− a)2 = 1− a2.

Put

Xa =
X0

a − EX0
a√

VarX0
a

.

Then Xa ∈ CN, a ∈ [0, 1); X0 has distribution (5); and Xa
d−→ 0 as a→ 1− 0.
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Compute the corresponding entr opies for 0 < a < 1:

E(Xa) =
E(X0

a)√
1− a2

= − 1√
1− a2

∫ 1

a
ln

1− u
1− a

(ln(1− u) + 1) du

=
(1− a)(1− ln(1− a))√

1− a2
=

√
1− a
1 + a

(1− ln(1− a)),

CE(Xa) =
CE(X0

a)√
1− a2

=
1√

1− a2

∫ 1

a
ln

1− u
1− a

(ln u + 1) du

= − a(ln a− 1)− Li2(1− a) + 1√
1− a2

,

and CE(Xa) strictly decr eases in the inter val 0 < a < 1.
Thus, from the values of the entr opies on the family Xa, a ∈ (0, 1), we can obtain the estimate

of Theor em 2.
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Abstract

In this paper, we first study doubly truncated (interval) Tsallis entropy and suggest doubly truncated
(interval) cumulative residual Tsallis entropy (ICRT), which is an extension of cumulative residual
Tsallis entropy (CRT) and the dynamic CRT defined by the aid of Sati and Gupta and of Kumar, re-
spectively. We investigate some properties and characterization of this measure, such as its relation with
doubly truncated Shannon entropy, mean residual (past) life, and hazard rate (or reversed hazard rate).
Also, the twin measure, doubly truncated (interval) cumulative past Tsallis entropy, is determined, and
some of its properties are studied. Moreover, their monotonicity and related aging classes of distributions
are expressed, and the upper (lower) bound for them is acquired. In the end, we propose four nonpara-
metric estimators and compare their performance by utilizing simulation data. Also, being based on the
best-proposed estimator, a real data set is additionally examined.

Keywords: Doubly truncated (inter val) Tsallis entr opy, Doubly truncated (inter val) cumula-
tive residual Tsallis entr opy (ICRT), Doubly truncated (inter val) cumulativ e past Tsallis entr opy
(ICPT), Hazar d rate, Reversed hazar d rate, Mean residual life, Mean past life, Nonparametric
estimators

1. Introduction

The notion of entr opy, later generali zed to infor mation theor y and statistical mechanics, w as
initially created by physicists in the area of equilibrium ther modynamics. The most famou s one
is due to [22], that pla ys an essential role in measuring the average uncertainty of a random
variable. Entr opy pla ys an important role in meas uring the index of dispersion, volatility , or
uncertainty related to a random variable X. Her e and during this paper , X is an absolutely con-
tinuous nonnegativ e random variable, with probability density function (pdf) f (x) and sur viv al
function F̄(x) = P(X > x). Then the average amount of uncertainty associated with the random
variable X as giv en by Shannon entr opy, is

H(X) = −
∫ ∞

0
f (x) ln f (x)dx.

Although, in certain situations, the Shannon entr opy is not suitable wher e some generalized
for ms are of importance. Several generalized entr opy measur es are accessible in literatur e, which
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have many huge properties consisting of smoothness, big dynamic range with respect to certain
conditions, and many othe rs, which lead them to greater flexibility in practice. One prevalent
generalization is the Tsallis entropy, introduced by [24], deter mined as a generalization of the
Boltzmann–Gibbs entr opy. Inside the studying of statistical mechanics, Tsallis entr opy giv es a
much broader vie w of how disor der emer ges in macr oscopic systems. For a continuous nonneg-
ativ e random variable X, Tsallis entr opy is deter mined as

Tα(X) =
1

α − 1

(
1 −

∫ ∞

0
f (x)αdx

)
, (1)

wher e 0 < α ̸= 1. Clearly , when α → 1, we have Tα(X) → H(X). Tsallis exploited its nonexten-
siv e featur es, and it has more and mor e extensiv e applic ations in science and technolog y. This
entr opy measur e is extra flexible because of the param eter α, and it increases the scope of ap-
plication. Tsallis entr opy preser ves many signific ant characteristics of Shannon entr opy except
for the additivity property . From the years 2000 on, an increasingly wide spectrum of natural,
artificial, and socially complicated systems were ide ntified that verify the predictions and con-
clusions deriv ed from this nonadditiv e entr opy. Extensiv e or nonextensiv e statistical mechanics
deriv e from the additivity or nonadditivity of the corresponding entr opy measur es. The Tsallis
entr opy is broadly utilized in physics to examine the distribution characterizing the movement
of cold atoms in dissipativ e optical lattices [9] and signal processing [23]. More properties and
applications of Tsallis entr opy have been mentioned in [24, 25].
Considering the measur es based on residual lifetime random variable, Xt = (X − t|X ≥ t) has
an essential role in many grounds, including reliability theor y, sur viv al analysis, and infor ma-
tion theor y. So, [10, 6] defined the residual Tsallis entr opy (RT) based on the random variable Xt
by

RT(X; t) =
1

α − 1

(
1 −

∫ ∞

t
(

f (x)
F̄(t)

)αdx
)

.

The expected uncertainty inv olv ed in the remaining lifetime of a component is measur ed ba-
sically by RT. It is clear that RT(X; 0) = Tα(X). Lately , [10, 4] introduced an entr opy-based
measur e of uncertainty in past lifetime distributions and denominated it past Tsallis entr opy
(PT). The uncertainty of the idle time of a component or system that is based on past lifetime
random variable X∗

t = (t − X|X ≤ t) is indicated by PT, and it is giv en by

PT(X; t) =
1

α − 1

(
1 −

∫ t

0
(

f (x)
F(t)

)αdx
)

,

and also, PT(X; ∞) = Tα(X).
Curr ently , many resear chers adv anced new measur es of uncertainty to overcome the limi-

tations of traditional entr opy measur es and increase the applicability of infor mation measur es
in div erse areas of science and engineering. With this motiv ation, [18] studied an alter nativ e
to Shannon dif ferential entropy. The cumulativ e residual entr opy (CRE) is obtained by replac-
ing the pdf f (x) in H(X) with the sur viv al function F̄(x) = P(X > x), giv en by H(X) =
−
∫ ∞

0 F̄(x) ln F̄(x)dx. The CRE is regar ded to be greater stable due to the fact that the distri-
bution function is greater regular than the pdf, and it owns mor e mathematical properties and
special applications. Also, it is easily computable, alw ays nonnegativ e, and its definition is valid
in both the continuous and discr ete cases. Additionally , the distribution exists despite the fact
that the pdf does now not.

In infor mation theor y, numer ous attempts have been made by resear chers, and an eminent
amount of work has been done from both theor etical and application points of vie w for studying
and extending the notion of CRE. Motiv ed by the extensiv e applicability of H(X), a cumulativ e
version of (1) studi ed by [19], is dete rmined as the cumulativ e Tsallis entr opy (CRT)

CRT(X) =
1

α − 1

(
1 −

∫ ∞

0
F̄(x)αdx

)
.
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Although [19] denoted that CRT(X) tends to CRE(X) when α → 1, wher e CRE(X) = −
∫ ∞

0 F̄(x) ln (F̄(x)dx,
defined by [18], but [16] sho wed with a counter example that it is not true. The cumulativ e past
Tsallis entropy (CPT) has also been introduced and studied by [16] as follo ws:

CPT(X) =
1

α − 1

(
1 −

∫ ∞

0
F(x)αdx

)
.

[19] ga ve the dynamic version of cumulativ e residual Tsallis entr opy (DCRT), which is the CRT
of the residual random variable Xt and it is giv en by

DCRT(X; t) =
1

α − 1

(
1 −

∫ ∞

t
(

F̄(x)
F̄(t)

)αdx
)

,

and DCRT(X; 0) = CRT(X). Further mor e, [8] studied many properties of DCRT, and [16]
introduced the dynamic version of cumulativ e past Tsallis entr opy (DCPT) by

DCPT(X; t) =
1

α − 1

(
1 −

∫ t

0
(

F(x)
F(t)

)αdx
)

,

and DCPT(X; ∞) = CPT(X). Occasionally , in many conditions, we just possess infor mation
betw een tw o points. Thus, we have to look at the statistical me asur es (particularly in infor mation
theor y and reliability) under the case of doubly truncated random variables. For instance, in
reliability , if X indicates the lifetime of a unit, then the random variable Xt1 ,t2 = (X − t1|t1 ≤
X ≤ t2) is known as the doubly truncated residual lifetime. Note that the well-kno wn random
variable, Xt = (X − t|X ≥ t), is the particular case of Xt1 ,t2 when t2 tends to ∞. Also, doubly
truncated past lifetime is the random variable X∗

t1 ,t2
= (t2 − X|t1 ≤ X ≤ t2), which in the specific

case when t1 = 0, it is the past lifetime random variable X∗
t . Another generalization of Tsallis

entr opy is based on a doubly truncated (inter val) random variable [13], which reads as follo ws:

Tα(X; t1, t2) =
1

α − 1

(
1 −

∫ t2

t1
(

f (x)
F(t2)− F(t1)

)αdx
)

, (2)

wher e (t1, t2) ∈ D = {(t1, t2) : F(t1) < F(t2)} and Tα(X; 0, ∞) is the Tsallis entr opy Tα(X), and
Tα(X; t1, ∞) is the residual entr opy RT(X; t1) and also Tα(X; 0, t2) is the past entr opy PT(X; t2).
Also, w hen α → 1, we have Tα(X; t1, t2) → H(X; t1, t2) = −

∫ t2
t1

f (x)
F(t2)−F(t1)

ln( f (x)
F(t2)−F(t1)

).
The distribution function estimation is not only an inter esting problem by itself, but also it

emer ges naturally in actual problems of many scientific fields, consisting of seismology , hydrol-
ogy , envir onmental sciences, and so on. Curr ently , in those disciplines, numer ous methodologies
have appear ed for attacking statistical problems based on nonparam etric ideas. With this motiv a-
tion, the perfor mance of four nonparametric estimators of ICPT is compar ed, and also a real-life
data set is illustrated based on the best-pr oposed estimator .

In this paper , some properties of Tα(X; t1, t2) are introduced. Addition ally , we discuss the
doubly truncated (inter val) cumulativ e residual Tsallis entr opy (ICRT) and doubly truncated
(inter val) cumulativ e past Tsallis entr opy (ICPT), which can be general for ms of the preceding
findings. Some properties of ICRT and ICPT and their relationships with reliability measur es,
including hazar d rate (or reversed hazar d rate) and me an residual life (or mean past life), are
studied. Finally , we consider four empirical and ker nel-based estimators. Then, by using sim-
ulated data, we compar e the beha vior of the proposed estimators. In addition, a real data set
from envir onmental monitoring is studied.

2. Doubly truncated Tsallis entropy

In this section, we expr ess some properties and characterization results of Tα(X; t1, t2). First, for
the Tα(X; t1, t2), an upper inter val is acquir ed with respect to t2, for any fixed t1, in the next
theor em. [13] proved a result simil ar to the follo wing theor em, with respect to t1, for any fixed
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t2. Also, it should be noted that [11] introduced the generalized failur e rate (GFR) based on the
doubly truncated random variables by

h1(t1, t2) = lim
h→0+

[
P(t1 ≤ x ≤ t1 + h|t1 ≤ x ≤ t2)

h

]
=

f (t1)

F(t2)− F(t1)
(3)

and

h2(t1, t2) = lim
h→0−

[
P(t2 ≤ x ≤ t2 + h|t1 ≤ x ≤ t2)

h

]
=

f (t2)

F(t2)− F(t1)
, (4)

wher e their relationships with m(t1, t2) = E(X|t1 ≤ X ≤ t2) =
∫ t2

t1
x f (x)

F(t2)−F(t1)
dx for (t1, t2) ∈ D

are as follo ws:

h1(t1, t2) =

∂m(t1 ,t2)
∂t1

m(t1, t2)− t1
, (5)

h2(t1, t2) =

∂m(t1 ,t2)
∂t2

t2 − m(t1, t2)
. (6)

A lower (upper) bound for the ICRT(X; t1, t2) when increasing the ICRT property is acquir ed
in the next theor em, for 0 < α < 1(α > 1).

Theorem 1. The random variable X has increasing doubly truncated (inter val) Tsallis entr opy
property if and only if the follo wing inequalities are satisfied for all (t1, t2) ∈ D and 0 < α <
1(α > 1):

1
α − 1

1 − 1
α

 ∂m(t1 ,t2)
∂t2

t2 − m(t1, t2)

α−1
 ≤ (≥)Tα(X; t1, t2).

Proof. By dif ferentiating Tα(X; t1, t2) of the for m (2) with respect to t2, we have

∂Tα(X; t1 , t2)

∂t2
=

−1
α − 1

(
(

f (t2)

F(t2)− F(t1)
)α − α

f (t2)

F(t2)− F(t1)

∫ t2

t1

(
f (x)

F(t2)− F(t1)
)αdx

)
=

−1
α − 1

h2
α(t1 , t2) +

α

α − 1
h2(t1 , t2)(1 − (α − 1)Tα(X; t1 , t2))

= h2(t1 , t2)
−1

α − 1
h2

α−1(t1 , t2) +
α

α − 1
(1 − (α − 1)Tα(X; t1 , t2)).

So, after sui table substitution of equation (6) and simplifying the equation we have,

Tα(X; t1, t2) ≤ (≥)
1

α − 1
(1 − 1

α
(h2(t1, t2))

α−1),

the proof is complete. ■
We study the effect of increasing transfor mation on Tα(Y; t1, t2).

Lemma 1. Let X be a nonnegativ e continuous random variable with cumulativ e distrib ution
function (cdf) F, and take Y = ϕ(X), wher e ϕ(·) is a strictly increasing dif ferentiable functi on.
Then

Tα(Y; t1, t2) =
1

α − 1

(
1 −

∫ ϕ−1(t2)

max {0,ϕ−1(t1)}

(
f (x)

F(ϕ−1(t2))− F(ϕ−1(t1))

)α 1
(ϕ′(x))α−1 dx

)
.

If Z = aX + b, with a > 0 and b ≥ 0, so FaX+b(z) = FX(
z−b

a ), then

Tα(Z; t1, t2) =
aα−1 − 1

aα−1(α − 1)
+ (

aα−1 − 1
aα−1 )Tα(X;

t1 − b
a

,
t2 − b

a
).

Ther e are an identity and inequalities for doubly truncated (inter val) Tsallis entr opy based on
the assumptions of the follo wing proposition.
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Proposition 1. Let X be a random variable with support in [0, r] wher e r > 0 and symmetric
with respect to r

2 ; that is, F(x) = F̄(r − x) for 0 ≤ x ≤ r. Then

Tα(X; t1, t2) = Tα(X; r − t1, r − t2); 0 ≤ t1, t2 ≤ r.

Proof. We have

Tα(X; t1, t2) =
1

α − 1

(
1 −

∫ t2

t1
(

f (x)
F(t2)− F(t1)

)αdx
)

=
1

α − 1

(
1 −

∫ t2

t1
(

f (r − x)
F̄(r − t2)− F̄(r − t1)

)αdx
)

= − 1
α − 1

(
1 −

∫ r−t2

r−t1
(

f (y)
F(r − t1)− F(r − t2)

)αdy
)

=
1

α − 1

(
1 −

∫ r−t1

r−t2
(

f (y)
F(r − t1)− F(r − t2)

)αdy
)

= Tα(X; r − t1, r − t2).

■

Example 1. If X is unifor mly distributed in [0, r], then for 0 ≤ t1, t2 ≤ r, we have Tα(X; t1, t2) =
1

α−1 (t2 − t1)
1−α, which is in agr eement with Proposition 1.

Proposition 2. Let X be a nonnegativ e and absolutely continuous random variable. Then for
α > 1(0 < α < 1), we have

1 − (t2 − t1)(≤)Tα(X; t1, t2) ≤ (t2 − t1)− 1. (7)

Proof. The upper bound and lower bound giv en in (7) can be obtai ned from the well-kno wn
inequality ln x ≤ x − 1, wher e x > 0. Let x = f (x)

F(t2)−F(t1)
. Then xα−1 > 0 for α > 1(0 < α < 1),

and by using H(X; t1, t2) ≤ (t2 − t1)− 1 [15], the proof is complete. ■

Proposition 3. Let X be a nonnegativ e and absolutely continuous random variable with cdf F(x)
and pdf f (x). If f (x) is decr easing in x, then for 0 < α < 1(α > 1),

1 − hα
1(t1, t2)(t2 − t1)

(α − 1)
≥ (≤)Tα(X; t1, t2) ≥ (≤)

1 − hα
2(t1, t2)(t2 − t1)

(α − 1)
,

wher e h1(t1, t2) and h2(t1, t2) are defined in (3) and (4).

Proof. Let f (x) be decr easing in x. Then for t1 ≤ x ≤ t2, we have

f (t1)

F(t2)− F(t1)
≥ f (x)

F(t2)− F(t1)
≥ f (t2)

F(t2)− F(t1)
.

So, ∫ t2

t1
(

f (t1)

F(t2)− F(t1)
)αdx ≥

∫ t2

t1
(

f (x)
F(t2)− F(t1)

)αdx ≥
∫ t2

t1
(

f (t2)

F(t2)− F(t1)
)αdx.

Then

1 − hα
1(t1, t2)(t2 − t1) ≤ 1 −

∫ t2

t1
(

f (x)
F(t2)− F(t1)

)αdx ≤ 1 − hα
2(t1, t2)(t2 − t1).

Thus for 0 < α < 1(α > 1), afte r some calculations, the proof is complete. ■

Example 2. Let X be a nonnegat ive and absolute ly cont inuous random variable w ith cdf F(x) =

1 − e−x and pdf f (x) = e−x. Then, Tα(X; t1, t2) = 1
(α−1)

(
1 −

1
α (e

−αt1−e−αt2 )

(et1−et2 )α

)
, for all α > 1(0 <

α < 1) and t1, t2(t1 < t2), which is in agr eement with Proposition 2 and Proposition 3.

For increasing function f (x), the above proposition can be similarly proved.
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3. Interval cumulative residual and past Tsallis entropy

Let X be an absolutely continuous random variable and let D = {(x, y) : F(x) < F(y)}. Then we
define the ICPT and ICRT functions, respectiv ely, as follo ws:

ICPT(X; t1, t2) =
1

α − 1

(
1 −

∫ t2

t1
(

F(x)
F(t2)− F(t1)

)αdx
)

(8)

and

ICRT(X; t1, t2) =
1

α − 1

(
1 −

∫ t2

t1
(

F̄(x)
F̄(t1)− F̄(t2)

)αdx
)

, (9)

wher e (t1, t2) ∈ D. It is clear that, ICRT(X; 0, ∞) is CRT(X), and ICRT(X; t1, ∞) is DCRt(X; t1).
Also, ICPT(X; 0, ∞) is CPT(X), and ICPE(X; 0, t2) is DCPT(X; t2). The applications of clas ses
of life distributions can be demonstrated in dif ferent areas, including reliability , engineering,
biological science, maintenance, and biometrics. Hence, statisticians and reliability analysts are
inter ested in modeling sur viv al infor mation and classifications of life distributions based on a
few aspects of aging. For instance , we refer the reader to [15, 1, 26]. So, the corresponding aging
classes are defined as follo ws.

Definition 1. Consider the random variable X.

• X is said to have decr easing interval cumulativ e residual Tsallis entr opy (DICRT) property
if and only if for any fixed t2, ICRT(X; t1, t2) is decr easing with respect to t1.

• X is said to have increasing inte rval cumulativ e past Tsallis entr opy (IICPT) property if and
only if for any fixed t1, ICPT(X; t1, t2) is increasing with respect to t2.

An upper bound for ICRT(X; t1, t2) with the decr easing (increasing) ICRT property is ac-
quir ed in the next theor ems.

Theorem 2. The random variable X has decr easing (increasing) ICRT property if and only if the
follo wing inequality is satisfied for all (t1, t2) ∈ D and 0 < α < 1(α > 1):

ICRT(X; t1, t2) ≤ (≥)
1

α − 1

1 − 1
α
(

F̄(t1)

f (t1)
)α

1 + ∂µ(t1 ,t2)
∂t1

µ(t1, t2)

α−1
 .

Proof. By dif ferentiating ICRT(X; t1, t2) of the for m (9) wi th respect to t1, we have

∂ICRT(X; t1, t2)

∂t1
=

1
α − 1

(
(

F̄(t1)

F̄(t1)− F̄(t2)
)α

−α
f (t1)

F̄(t1)− F̄(t2)

∫ t2

t1
(

F̄(x)
F̄(t1)− F̄(t2)

)αdx
)

=
1

α − 1
(

F̄(t1)

f (t1)
)αh1

α(t1, t2)

− α

α − 1
h1(t1, t2)(1 − (α − 1)ICRT(X; t1, t2)).

By the definition of the GFR in (3) and (4), their relationships wit h µ(t1, t2) = E(X − t1|t1 ≤ X ≤
t2) and µ∗(t1, t2) = E(t2 − X|t1 ≤ X ≤ t2) are, respectiv ely, as follo ws:

h1(t1, t2) =
1 + ∂µ(t1 ,t2)

∂t1

µ(t1, t2)
, (10)

h2(t1, t2) =
1 − ∂µ∗(t1 ,t2)

∂t2

µ(t1, t2)
. (11)
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So, after suitable substitution of Eqs. (10) and (11) and simplifying the equations, we have

ICRT(X; t1, t2) ≤ (≥)
1

α − 1

(
1 − 1

α
(

F̄(t1)

f (t1)
)α(h1(t1, t2))

α−1
)

.

■

Example 3. Let X be distributed uniformly on (0, β), β > 0, then it can be easily verified that,

ICRT(X; t1, t2) =
1

α − 1
(1 − (β − t1)

α+1 − (β − t2)
α+1

(t2 − t1)
α(1 + α)

),

µ(t1, t2) =
t2 − t1

2
.

the differentiation of ICRT with respect to t1 is negative for all (t1, t2) ∈ D, which shows that
the uniform distribution hasDICRT property and theorem2 is satisfied.

There exist no nonnegative random variables with increasing ICRT(I ICRT) over the domain
[0, ∞), indicated in the following theorem.

Theorem 3. If X is a nonnegative nondegenerate random variable, then ICRT(X; t1, t2) cannot
be an increasing function with respect to t1 for any real fixed t2.

Proof. First note that, using lHopitals rule, we have

lim
t1→t2

ICRT(X; t1, t2) = lim
t1→t2

1
α − 1

(
1 −

∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)αdx

)

=
1

α − 1

1 − lim
t1→t2

∫ t2
t1

(F̄(x))αdx

(F̄(t1)− F̄(t2))
α


=

1
α − 1

(
1 − lim

t1→t2

(F̄(t1))
α

α f (t1)(F(t2)− F(t1))
α−1

)
= −∞.

Now, on the contrary, suppose that ICRT(X; t1, t2) is increasing in t1. Then for all t1 ≤ t2,
ICRT(X; t1, t2) ≤ ICRT(X; t2, t2) = −∞, which contradicts with the fact that ICRT(X; t1, t2) ∈ ℜ
for all (t1, t2) ∈ D. ■
In the following proposition, we obtain a lower bound, according to µ(X) =

∫ ∞
x

F(x)
F(t) dt, for

E(µ(X)|t1 ≤ X ≤ t2).

Proposition 4. Suppose that F is an absolutely continuous distribution function with ICRT(X; t1, t2) <
∞. Then, for 0 < α < 1

E(µ(X)|t1 ≤ X ≤ t2) ≥ (α − 1)ICRT(X; t1, t2)− 1.

Proof. By using E(µ(X)|t1 ≤ X ≤ t2) ≥ ICRE(X; t1, t2) [5], we have∫ t2

t1

F̄(x)
F̄(t1)− F̄(t2)

log(
F̄(x)

F̄(t1)− F̄(t2)
)dx

≤
∫ t2

t1

F̄(x)
F̄(t1)− F̄(t2)

(
(

F̄(x)
F̄(t1)− F̄(t2)

)− 1
)

dx

≤
∫ t2

t1

(
(

F̄(x)
F̄(t1)− F̄(t2)

)− 1
)

dx

≤
∫ t2

t1

(
(

F̄(x)
F̄(t1)− F̄(t2)

)α − 1
)

dx

=
∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)α − (t2 − t1)dx.
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Then

−
∫ t2

t1

F̄(x)
F̄(t1)− F̄(t2)

log(
F̄(x)

F̄(t1)− F̄(t2)
)dx

≥ −
∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)α + (t2 − t1)dx

≥ −
∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)αdx

= (α − 1)ICRT(X; t1, t2)− 1.

■
The following theorem tries to clarify the problem, achieving when the interval entropy

uniquely appoints the distribution function.

Theorem 4. Let X be a nonnegative and continuous random variable and let ICRT(X; t1, t2) be
increasing with respect to t1 and decreasing with respect to t2. Then ICRT(X; t1, t2) uniquely
determines F(x).

Proof. By differentiating ICRT(X; t1, t2) with respect to tj(j = 1, 2), we have

∂ICRT(X; t1, t2)

∂t2
=

1
α − 1

(
−(

F̄(t2)

F̄(t1)− F̄(t2)
)α

+α
f (t2)

F̄(t1)− F̄(t2)

∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)αdx

)
=

−1
α − 1

(
F̄(t2)

f (t2)
)αh2

α(t1, t2)

+
α

α − 1
h2(t1, t2)(1 − (α − 1)ICRT(X; t1, t2))

= −h2(t1, t2)

(
1

α − 1
(

F̄(t2)

f (t2)
)αh2

α−1(t1, t2)

− α

α − 1
(1 − (α − 1)ICRT(X; t1, t2))

)
,

and

∂ICRT(X; t1, t2)

∂t1
=

1
α − 1

(
(

F̄(t1)

F̄(t1)− F̄(t2)
)α

−α
f (t1)

F̄(t1)− F̄(t2)

∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)αdx

)
=

1
α − 1

(
F̄(t1)

f (t1)
)αh1

α(t1, t2)

− α

α − 1
h1(t1, t2)(1 − (α − 1)ICRT(X; t1, t2))

= h1(t1, t2)

(
1

α − 1
(

F̄(t1)

f (t1)
)αh1

α−1(t1, t2)

− α

α − 1
(1 − (α − 1)ICRT(X; t1, t2))

)
.

Thus, for fixed t2 and arbitrary t1, h1(t1, t2) is a positive solution to the following equation:

g(xt2) = xt2

(
1

α − 1
(

F̄(t1)

F̄(t1)
)αxt2

α−1 − α

α − 1
(1 − (α − 1)ICRT(X; t1, t2))

)
(12)

−∂ICRT(X; t1, t2)

∂t1
.
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Similarly, for fixed t1 and arbitrary t2, we have h2(t1, t2) as a positive solution to the following
equation:

γ(yt1) = yt1

(
1

α − 1
(

F̄(t2)

F̄(t2)
)αyt1

α−1 − α

α − 1
(1 − (α − 1)ICRT(X; t1, t2))

)
(13)

+
∂ICRT(X; t1, t2)

∂t2
.

By differentiating g and γ with respect to xt2 and yt1 , we get

∂g(xt2)

∂xt2

=
α

α − 1

(
(

F̄(t1)

f (t1)
)αxt2

α−1 − (1 − (α − 1)ICRT(X; t1, t2))

)
,

and

∂γ(yt1)

∂yt1

=
α

α − 1

(
(

F̄(t2)

f (t2)
)αyt1

α−1 − (1 − (α − 1)ICRT(X; t1, t2))

)
.

Furthermore, the second-order derivatives of g and γ with respect to xt2 and yt1 are α( F̄(t1)
f (t1)

)αxt2
α−2 >

0 and α( F̄(t2)
f (t2)

)αyt1
α−2 > 0, respectively. Then the functions g and γ are minimized at points xt2 =(

(1 − (α − 1)ICRT(X; t1, t2))(
f (t1)
F̄(t1)

)
α) 1

α−1
and yt1 =

(
(1 − (α − 1)ICRT(X; t1, t2))(

f (t2)
F̄(t2)

)
α) 1

α−1
, re-

spectively. In addition,

g(0) = −∂ICRT(X; t1, t2)

∂t1
< 0, g(∞) = ∞,

and

γ(0) = −∂ICRT(X; t1, t2)

∂t2
< 0, γ(∞) = ∞.

So, both functions g and γ first decrease and then increase with respect to xt2 and yt1 , respec-
tively, which conclude that equations (12) and (13) have unique roots h1(t1, t2) and h2(t1, t2), re-
spectively. Now, ICRT(X; t1, t2) uniquely determines GFRs and the distribution function, with
attention to Remark 3.1 [14]. ■
Similar to Theorems 2, 3, and 4 and Proposition 4, we have the following results:

• The random variable X has decreasing (increasing) ICRT property if and only if the follow-
ing inequality is satisfied for all (t1, t2) ∈ D and 0 < α < 1(α > 1):

ICPT(X; t1, t2) ≤ (≥)
1

α − 1

1 − 1
α
(

F̄(t2)

f (t2)
)α

1 − ∂µ∗(t1,t2)
∂t2

µ(t1, t2)

α−1
 .

• If X is a nonnegative nondegenerate random variable, then ICPT(X; t1, t2) cannot be a
decreasing function with respect to t2 for any real fixed t1.

• Suppose that F is an absolutely continuous distribution function with ICPT(X; t1, t2) < ∞,
then

E(µ∗(X)|t1 ≤ X ≤ t2) ≥ (α − 1)ICPT(X; t1, t2)− 1.

• Let X be a nonnegative and continuous random variable and let ICPT(X; t1, t2) be increas-
ing with respect to t1 and decreasing with respect to t2. Then ICPT(X; t1, t2) uniquely
determines F(x).

Example 4. Let X be distributed uniformly on (0, β), β > 0, then it can be easily verified that,

ICPT(X; t1, t2) =
1

α − 1
(1 − t2

α+1 − t1
α+1

(t2 − t1)
α(1 + α)

),

RT&A, No 1 (77)
 Volume 19, March 2024

456



S. Jalayeri, G.R. Mohtashami Borzadaran, M. Khorashadizadeh
SOME PROPERTIES OF TSALLIS ENTROPY

µ∗(t1, t2) =
t2 − t1

2
.

As the ICPT is increasing with respect to t2, X has I ICPT properties.

As in Lemma 1, the following theorem is proved by the same approach.

Lemma 2. Let X be a nonnegative continuous random variable with cdf F, and take Y = ϕ(X),
where ϕ(·) is a strictly increasing differentiable function. Then

ICRT(Y; t1, t2) =
1

α − 1

(
1 −

∫ ϕ−1(t2)

max{0,ϕ−1(t1)}

(
F̄(x)

F̄(ϕ−1(t1))− F̄(ϕ−1(t2))

)α

ϕ′(x)dx

)
.

Proposition 5. If Z = aX + b, with a > 0 and b ≥ 0, so F̄aX+b(z) = F̄X(
z−b

a ), then

ICRT(Z; t1, t2) =
1 − a
α − 1

+ aICRT(X;
t1 − b

a
,

t2 − b
a

).

There is an identity for doubly truncated (interval) CRT in the following theorem.

Theorem 5. Let X be a random variable with support in [0, r] and symmetric with respect to r
2 ,

that is, F̄(x) = F(r − x) for 0 ≤ x ≤ r. Then

ICRT(X; t1, t2) = ICPT(X; r − t2, r − t1), 0 ≤ t1, t2 ≤ r.

Proof. The theorem is proved by the following equation:

ICRT(X; t1, t2) =
1

α − 1

(
1 −

∫ t2

t1

(
F̄(x)

F̄(t1)− F̄(t2)
)αdx

)
=

1
α − 1

(
1 −

∫ t2

t1

(
F(r − x)

F(r − t1)− F(r − t2)
)αdx

)
= − 1

α − 1

(
1 −

∫ r−t2

r−t1

(
F(y)

F(r − t1)− F(r − t2)
)αdy

)
=

1
α − 1

(
1 −

∫ r−t1

r−t2

(
F(y)

F(r − t1)− F(r − t2)
)αdy

)
= ICPT(X; r − t2, r − t1).

■

Example 5. If X is uniformly distributed in [0, r], then for 0 ≤ t1, t2 ≤ r, we have ICRT(X; t1, t2) =

ICPT(X; r − t2, r − t1) =
1

α−1 (1 −
(r−t1)

α+1−(r−t2)
α+1

(t2−t1)
α(1+α)

), which is in agreement with Theorem 5.

Similar to Lemma 2, Proposition 5, and Theorem 5, we have the following results:
• Let X be a nonnegative continuous random variable with cdf F, and take Y = ϕ(X), where

ϕ(·) is a strictly increasing differentiable function. Then

ICPT(Y; t1, t2) =
1

α − 1

(
1 −

∫ ϕ−1(t2)

max{0,ϕ−1(t1)}

(
F(x)

F(ϕ−1(t2))− F(ϕ−1(t1))

)α

ϕ′(x)dx

)
.

• If Z = aX + b, with a > 0 and b ≥ 0, so FaX+b(z) = FX(
z−b

a ), then

ICPT(Z; t1, t2) =
1 − a
α − 1

+ aICPT(X;
t1 − b

a
,

t2 − b
a

).

• Let X be a random variable with support in [0, r] and symmetric with respect to r
2 , that is,

F(x) = F̄(r − x) for 0 ≤ x ≤ r. Then

ICPT(X; t1, t2) = ICRT(X; r − t2, r − t1); 0 ≤ t1, t2 ≤ r.
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Example 6. If X is unifor mly distr ibuted in [0, r], for 0 ≤ t1, t2 ≤ r, we have ICPT(X; t1, t2) =

ICRT(X; r − t2, r − t1) =
1

α−1 (1 − t2
α+1−t1

α+1

(t2−t1)
α(1+α)

), which is in agr eement with Remark4 (part 1).

Let X and Y be tw o random variables. Also, the distribution function and density function of
X are indicated by F(t) and f (t) and those of Y are denoted by G(t) and g(t), separately . Now
we compar e the tw o random variables X and Y based on doubly truncated (inter val) cumulativ e
residual and past Tsallis entr opy. So, we first need the follo wing definitions, which can be seen
in [20]

Definition 2. X is said to be less than or equal to Y in usual stochastic ordering, if f (x)
g(x) is

decr easing in x > 0. We write X
lr
≤Y.

Definition 3. X is said to be less than or equal to Y in likelihood ratio ordering, if F̄(x) ≤ Ḡ(x) ,

for all x > 0. We write X
st
≤Y.

Na varro and Rubio(2011) expr essed that The tw o random variables X and Y satisfy X
lr
≤Y if,

and only if, [X − t1|t1 ≤ X ≤ t2] ≤st [Y − t1|t1 ≤ Y ≤ t2], whenever(t1 < t2). Also, we compar e
tw o random variables X and Y based on the properties of (inter val) CRT and (inter val) CPT in
likelihood ratio ordering.

Theorem 6. Let X and Y be tw o nonnegativ e absolutely continuous random variables with sur -
viv al functions F̄(x) and Ḡ(x), respectiv ely. If X ≤(≥)lrY for all t1, t2 ≥ 0, then ICRT(X; t1, t2) ≤
(≥)ICRT(Y; t1, t2), for 0 < α < 1; other wise for α > 1, ICRT(X; t1, t2) ≥ (≤)ICRT(Y; t1, t2).

Proof. The assumption X ≤(≥)lrY implies that

F̄Xt1,t2
≤ (≥) ḠXt1,t2

,

(
F̄(x)

F̄(t1)− F̄(t2)
)α ≤ (≥) (

Ḡ(x)
Ḡ(t1)− Ḡ(t2)

)α,

1 −
∫ t2

t1
(

F̄(x)
F̄(t1)− F̄(t2)

)αdx ≥ (≤) 1 −
∫ t2

t1
(

Ḡ(x)
Ḡ(t1)− Ḡ(t2)

)αdx.

For α > 1, we have

1
α − 1

(
1 −

∫ t2

t1
(

F̄(x)
F̄(t1)− F̄(t2)

)αdx
)

≥ (≤)
1

α − 1

(
1 −

∫ t2

t1
(

Ḡ(x)
Ḡ(t1)− Ḡ(t2)

)αdx
)

,

ICRT(X; t1, t2) ≥ (≤) ICRT(Y; t1, t2).

For 0 < α < 1, it follo ws that

1
α − 1

(
1 −

∫ t2

t1
(

F̄(x)
F̄(t1)− F̄(t2)

)αdx
)

≤ (≥)
1

α − 1

(
1 −

∫ t2

t1
(

Ḡ(x)
Ḡ(t1)− Ḡ(t2)

)αdx
)

,

ICRT(X; t1, t2) ≤ (≥)ICRT(Y; t1, t2).

■

Theorem 7. Let X and Y be tw o nonnegativ e absolutely continu ous random variables with cdfs

F(x) and G(x), respectiv ely. If X
st
≤Y for all t1, t2 ≥ 0, then ICPT(X; t1, t2) ≥ ICPT(Y; t1, t2), for

0 < α < 1; other wise for α > 1, ICPT(X; t1, t2) ≤ ICPT(Y; t1, t2).
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Proof. The assumption that X
st
≤Y implies that

FXt1,t2
≥ GXt1,t2

,

(
F(x)

F(t2)− F(t1)
)α ≥ (

G(x)
G(t2)− G(t1)

)α,

1 −
∫ t2

t1
(

F(x)
F(t2)− F(t1)

)αdx ≤ 1 −
∫ t2

t1
(

G(x)
G(t2)− G(t1)

)αdx.

for α > 1, we have

1
α − 1

(
1 −

∫ t2

t1
(

F(x)
F(t2)− F(t1)

)αdx
)

≤ 1
α − 1

(
1 −

∫ t2

t1
(

G(x)
G(t2)− G(t1)

)αdx
)

,

ICPT(X; t1, t2) ≤ ICPT(Y; t1, t2).

For 0 < α < 1, it follo ws that

1
α − 1

(
1 −

∫ t2

t1
(

F(x)
F(t2)− F(t1)

)αdx
)

≥ 1
α − 1

(
1 −

∫ t2

t1
(

G(x)
G(t2)− G(t1)

)αdx
)

,

ICPT(X; t1, t2) ≥ ICPT(Y; t1, t2).

■

Example 7. Let

F̄(x) =

{
( x0

x )
β1 , x > x0,

1, x ≤ x0,
and

Ḡ(x) =

{
( x0

x )
β2 , x > x0,

1, x ≤ x0.

That is, X and Y have Par eto distributions with parameters β1 and β2, respectiv ely. If β1 ≥ β2

and 0 < β1, β2 ≤ 1
α , hence X

lr
≤Y for α > 1, then ICRT(X; t1, t2) ≥ ICRT(Y; t1, t2). Also, the

assumptions of the theor em hold, and ther efor e [X − t1|t1 ≤ X ≤ t2] ≤st [Y − t1|t1 ≤ Y ≤
t2], whenever(t1 < t2).

4. Empirical estimation of ICPT

By utilizing various empirical estimators of the cdf, we suggest four non-parametric estimators
ICPT(X; t1, t2) and also compar e the implementation of the proposed estimators. For an actual-
life fact set, we study the monotonicity of ICPT based totally on its ker nel-smoothed estimator .

First, we introduce four nonparametric estimators, by mentioning the name ICPT1(X; t1, t2),
ICPT2(X; t1, t2), ICPT3(X; t1, t2) and ICPT4(X; t1, t2), of ICPT through utilizing empirical dis-
tribution function, mean empirical distribution function, median empirical distribution function,
and ker nel-smoothed function and their implementation by the Monte–Carlo simulation. Let
X1, X2, . . . , Xn be an independent and identically distributed random sample dra wn from a pop-
ulation having distribution function F(x) and sur viv al function F̄(x). Now, the first nonparamet-
ric estimator of ICPT1(X; t1, t2) may be written as

ICPT1(X; t1, t2) =
1

α − 1

(
1 −

∫ t2

t1
(

F(1)
n (x)

F(1)
n (t2)− F(1)

n (t1)
)αdx

)
,

for 0 < α ̸= 1, wher e F(1)
n (x) = 1

n ∑n
i=1 I(Xi ≤ x), x ∈ R, is the empirical distribution function

and
I(Xi ≤ x) =

{
1 i f X ≤ x,
0 otherwise,
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is the indicator function of the event X ≤ x. Let X(1), X(2), . . . , X(n) be the order statistics of ran-
dom sample. Noting the sample values ly ing betw een t1 and t2 so that t1 ≤ x(j), x(j+1), . . . , x(k) ≤
t2, then

ICPT1(X; t1, t2) =
1

α − 1

(
1 −

k

∑
i=j

∫ x(i+1)

x(i)
(

F(1)
n (x)

F(1)
n (t2)− F(1)

n (t1)
)αdx

)

=
1

α − 1

(
1 − 1

(F(1)
n (t2)− F(1)

n (t1))α

k

∑
i=j

∫ x(i+1)

x(i)
(F(1)

n (x))αdx

)

=
1

α − 1

(
1 − 1

(F(1)
n (t2)− F(1)

n (t1))α

k

∑
i=j

(x(i) − x(i+1))(F(1)
n (x))α

)
. (14)

The second estimator of ICPT2(X; t1, t2) can be acquir ed by replacing mean empirical distribu-
tion function F(2)

n (x) in (14)as

ICPT2(X; t1, t2) =
1

α − 1

(
1 − 1

(F(2)
n (t2)− F(2)

n (t1))α

k

∑
i=j

(x(i) − x(i+1))(F(2)
n (x))α

)
, (15)

wher e the mean empirical distribution function is defined as

F(2)
n (x) =

1
n + 1

n

∑
i=1

I(Xi ≤ x), x ∈ R.

The third nonparametric estimator of ICPT3(X; t1, t2) can be achie ved by utilizing median em-
pirical distribution function in (14) as follo ws:

ICPT3(X; t1, t2) =
1

α − 1

(
1 − 1

(F(3)
n (t2)− F()

n (t1))α

k

∑
i=j

(x(i) − x(i+1))(F(3)
n (x))α

)
, (16)

wher e F(3)
n (x) = ∑n

i=1
I(Xi≤x)−0.3

n+0.4 , x ∈ R, is the median empirical distribution function.

The fourth estimator can be defined by utilizing Ker nel-smoothed estimator F(4)
n (x) of the

distribution function in (14) as follo ws:

ICPT4(X; t1, t2) =
1

α − 1

(
1 − 1

(F(4)
n (t2)− F()

n (t1))α

k

∑
i=j

(x(i) − x(i+1))(F(4)
n (x))α

)
, (17)

wher e F(4)
n (x), the ker nel-smoothed estimator of distribution function, is defined as

F(4)
n (x) =

1
n

n

∑
i=1

L(
x − Xi

h
),

wher e L is a distribution function of positiv e ker nel K, that is, L(u) =
∫ −∞

u K(t)dt and h is the
bandwidth of parameter . Now, we utilize the normal ker nel function K(u) = 1√

π
exp ( u2

2 ).

5. Simulation

It is widely recognized that the smoothed estimator has a better perfor mance compar ed to
a nonsmoothed estimator . To demonstrate the effectiv eness of the empirical and ker nel es-
timators, a Monte–Carlo simulation examination is accomplished. The estimated values are
computed based on 1000 simulations from Exp(0.5) (exponential distribution) each of size
n(n = 30, 35, 40, 50, 60) for dif ferent truncation limits and α = 0.2; 3.5. Bias and mean squar e
error (MSE) are also calcul ated. In Tables 1 and 2, we present the exact value, bias, and the
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MSE of the proposed estimators of ICPT. The MSE of the estimators corresponding to trunca-
tion limit (0.2, 4) and for α = 0.2, 3.5 is also displa yed in Figur e 1 for increasing sample size.

It is obvious that in nearly all cases ICPT4(X; t1, t2) (17) perfor ms w ay better with less MSE
than the other estimators as deter mined in (14) (15) and (16). Further ,for α = 0.2, ICPT1(X; t1, t2)
produces better result than ICPT3(X; t1, t2), while ICPT2(X; t1, t2) yields poor estimates as MSE
is higher in comparison with the other estimators of ICPT. Also, for α = 3.5, it can be seen that
ther e is a slight dif ference betw een the first, second and third estimators and The fourth estimator
is significantly better estimator . It is expected, one can depict from Tables 1 and 2 that ICPT as a
measur e of uncertainty declines for a shrinking inter val. Generally , we can conclude that ker nel
smoothed estimator giv es better estimates of ICPT than the other proposed estimators in ter ms
of MSE. Also, the values of MSE of the proposed estimators are reduced by increasing sample
size, which is caused by dependence of the MSE of the empirical estimators to the sample size.

It is obvious that, in nearly , all cases ICPT4(X; t1, t2) defined by (17) perfor m a w ay better
with less MSE than the other estimators, as deter mined in (14), (15), and (16). Further mor e, for
α = 0.2, ICPT1(X; t1, t2) produces a better result than ICPT3(X; t1, t2), while ICPT2(X; t1, t2)
yields poor estimates as the MSE is higher in comparison with the other estimators of ICPT.
Also, for α = 3.5, it can be seen that ther e is a slig ht dif ference betw een the first, second and
third estimators and The fourth estimator is significantly better estimator . It is expected that one
can depict from Tables 1 and 2 that ICPT, as a measur e of uncertainty , declines for a shrinking
inter val. Generally , we can conclude that the ker nel-smoothed estimator giv es better estimates
of ICPT than the other proposed estimators in ter ms of the MSE. Also, the values of MSE of the
proposed estimators are reduced by increasing sample size, which is caused by the dependence
of the MSE of the empirical estimators on the sample size.

Table 1: Bias and MSE of ICPT1(X; t1 , t2), ICPT2(X; t1 , t2), ICPT3(X; t1 , t2) and ICPT4(X; t1 , t2) for α = 3.5 and different truncation limits
(n = 30, 35, 40, 50, 60).

α = 3.5 ICPT1(X; t1, t2) ICPT2(X; t1, t2) ICPT3(X; t1, t2) ICPT4(X; t1, t2)
(t1, t2) n Exact value Bias1/ MSE1 Bias2/ MSE2 Bias3/ MSE3 Bias4/ MSE4

30 0.54832/0.325730 0.49378/0.28433 0.51636/ 0.30243 0.20438/0.17744
35 0.549833/0.32429 0.50497/0.28408 0.52796/ 0.30195 0.23830/0.16294

(0.1,4.5) 40 -0.50468 0.55001/0.32373 0.50943/ 0.28386 0.52995/0.29999 0.28788/0.16066
50 0.55571/0.32236 0.51445/0.28234 0.53018/0.29798 0.35550/0.17280
60 0.55720/0.32132 0.52253/ 0.28551 0.53218/0.29726 0.38246/0.17472
30 0.52237/0.33138 0.43733/0.27303 0.47260/0.29833 0.14750/0.25057
35 0.53415/0.32091 0.45608/0.26707 0.48867/0.28337 0.22450/0.21577

(0.2,4) 40 -0.53930 0.53631/0.31804 0.47334/0.26538 0.49120/0.27857 0.26394/0.20544
50 0.53835/0.31399 0.48180/0.26242 0.49168/0.27427 0.32690/0.19580
60 0.54001/ 0.31037 0.48255/ 0.25854 0.49838/0.27144 0.36282/0.17503
30 0.66016/0.59085 0.58444/0.46060 0.60264/0.49963 0.28883/0.38595
35 0.67913/0.52852 0.60971/0.44713 0.61856/0.46831 0.37049/0.37528

(0.3,3.9) 40 -0.71898 0.68008/ 0.50869 0.61383/ 0.43901 0.63064/0.45793 0.42447/0.34087
50 0.68175/0.49875 0.62145/ 0.43391 0.64163/0.45061 0.49303/0.33731
60 0.68447/0.49486 0.62355/0.42886 0.64253/0.44791 53037/0.33580

The nonparametric estimators of the distribution function are occasionally consider ed as
plotting positions because they supply the ordinate values in plotting the distribution function.
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Table 2: Bias and MSE of ICPT1(X; t1 , t2), ICPT2(X; t1 , t2), ICPT3(X; t1 , t2) and ICPT4(X; t1 , t2) for α = 0.2 and different truncation limits
(n = 30, 35, 40, 50, 60).

α = 0.2 ICPT1(X; t1, t2) ICPT2(X; t1, t2) ICPT3(X; t1, t2) ICPT4(X; t1, t2)
(t1, t2) n Exact value Bias1/ MSE1 Bias2/ MSE2 Bias3/ MSE3 Bias4/ MSE4

30 0.01443/0.62585 0.20562/0.85397 0.15292/0.84328 0.31217/0.46912
35 -0.08361/ 0.40997 0.10770/0.63329 0.03216/0.50496 0.19145/0.31041

(0.1,4.5) 40 3.81827 -0.13264/0.38650 0.01795/0.46097 0.00052/0.41305 0.12438/0.27354
50 -0.2265/0.21496 -0.12186/0.27259 -0.16442/0.23459 0.00011/0.15006
60 -0.26605/0.17343 -0.19538/0.20058 -0.20950/0.18536 -0.10140/0.11435
30 0.0668/ 0.45989 0.21781/0.60482 0.13608/ 0.55571 0.33128/0.50470
35 -0.02364/0.25232 0.091067/0.42669 0.07336/0.3542 0.17299/0.21602

(0.2,4) 40 3.19537 -0.04258/0.23084 0.02478/0.31252 0.00027/0.26733 0.11015/0.19296
50 -0.14634/ 0.12285 -0.05928/0.15386 -0.07653/0.13229 0.01410/0.11127
60 -0.15977/0.09937 -0.10696/0.13898 -0.14774/0.10505 -0.053750/0.07863
30 0.06254/0.52412 0.15421/0.42303 0.10033/0.45151 0.21734/0.35308
35 0.03341/0.27368 0.04638/ 0.23737 0.03507/0.26058 0.14486/0.22552

(0.3,3.9) 40 3.04031 -0.09178/0.21888 0.02148/0.15290 0.01607/0.18283 0.07261/0.20835
50 -0.15733/0.17706 -0.10894/0.11774 -0.11561/0.13794 0.04314/0.09471
60 -0.18802/0.10640 -0.15383/0.09217 -0.15181/0.10345 -0.10009/0.07318

Figure 1: Graphical showing of the MSE of four estimators. Sample size for fixed truncation limit (0.2, 4). (I) Plot of
the MSE for fixed truncation limit (0.2, 4) and α = 0.2 and (II) Plot of the MSE for fixed truncation limit
(0.2, 4) and α = 3.5.

6. Real data

In this part, an actual life data set is examined to illustrate the applicability and usefulness of the
best-pr oposed estimator of ICPT in actual status. For this pur pose, we have taken into account
the data set vinyl chloride acquir ed from clean upgradient groundw ater monitoring wells [2].
Vinyl chloride is an organic compound that is unstable . In envir onmental inv estigations, this
aspect is of extraor dinar y significance due to the fact that it is both anthr opogenic and carcino-
genic. Nonetheless, in lots of backgr ound monitoring wells, low levels of this component are
deter mined. This compound low surface detections in clean upgradient backgr ound monitoring
wells is because of cross pollution from air or gas or the analytic system itself . The data set is
provided as follo ws. Data Set (g/ l) : 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4,
2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2 has been fitted
with exponential distribution by [21]. They acclaimed that this data set follo ws Exp(0.5320814 )
(exponential distribution). To examine the beha vior of the ICPT, we have calculated estimated
values of ICPT4(X; t1, t2) by means of the use of its best-pr oposed estimator for dif ferent trunca-
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tion limits and α = 0.2, 3.5 as sho wn in Table 3. It has been deter mined that the estimated values
are decr easing in t1 and increasing in t2 for α = 0.2, 3.5. So, by increasing (decr easing) the fourth
estimator of ICPT(doubly truncated CPT), the amount of the dispersion of vinyl chloride ob-
tained from clean upgradient groundw ater monitoring wells increases (decr eases). As expected
for 0 < α = 1, ICPT is an increasing functi on of the inter val. It is worth noting that this result is
accor ding to the monotonicity of ICPT(X; t1, t2) for Exp(0.5320814 ) and α = 0.3, 1.5.

Table 3: Kernel estimates of ICPT4(X; t1 , t2)) for the Vinyl chloride data for different truncation limits (t1 , t2) and = 0.2; 3.5.

α\(t1, t2) (0.4,2.9) (0.6,2.9) (08,2.9) (1,2.9) (0.2,1.8) (0.2,2) (0.2,2.4) (0.2,2.8)
0.2 2.035697 1.84515 1.658554 1.47661 1.108958 1.073237 1.576643 1.94168
3.5 -0.419520 -0.508537 -0.641847 -0.919710 -1.837256 -1.312966 -0.754232 -0.437168

7. Conclusion

In infor mation theor y and also in reliability , ther e are several uncertainty measur es that pla y
a central role. In this paper , we first studied the notion of doubly truncated (inter val) Tsallis
entr opy and suggested the doubly truncated (inter val) cumulativ e residual Tsallis entr opy (ICRT)
and dou bly trun cated (interval) cumulativ e past Tsallis entr opy (ICPT) whose some of their
properties and their relations with hazar d rate (reversed hazar d rate) and mean residual (past)
life were studied. Also, we introduced ordering classes for ICRT and ICPT and ga ve some
characterization. In the end, we have proposed four nonparametric estimators and compar ed
their perfor manc e by utilizing simulation data. Also, based on the best-pr oposed estimator , an
actual data set w as additionally examined.

References

[1] Barlo w R.E. and Proschan F. Statistical theor y of reliability and life testing: probability
models, Florida State Univ Tallahassee,(1975).

[2] Bhaumik, D. K., Kapur , K., and Gibbons, R. D. (2009). Testing parameters of a gamma
distribution for small samples. Technometrics, 51(3):326–334.

[3] Ebrahimi, N. (1996). How to measur e uncertainty in the residual life time distribution.
Sankhy: The Indian Journal of Statistics, Series A, 48–56.

[4] Gupta, R. D. and Nanda, A. K. (2002). α- and β-entropies and relativ e entr opies of distribu-
tions. Journal of Statistical Theory and Applications, 1(3):177–190.

[5] Khorashadizadeh, M., Rezaei Roknabadi, A. H. and Mohtashami Borzadaran, G. R. (2013).
Doubly truncated (inter val) cumulativ e residual and past entr opy. Statistics & Probability
Letters, 83(5):1464–1471.

[6] Kumar , V. and Taneja, H. C. (2011). A generalized entr opy-based residual lifetime distribu-
tions. International Journal of Biomathematics, 4(02):171–184.

[7] Kundu, C. and Singh, S. (2020). On generalized inter val entropy. Communications in
Statistics-Theory and Methods, 49(8):1989–2007.

[8] Kumar , V. (2017). Characterization results based on dynamic Tsallis cumulativ e residual
entr opy. Communications in Statistics-Theory and Methods, 46(17):8343–8354.

[9] Lutz, E. (2003). Anomalous dif fusion and Tsallis statistics in an optical lattice. Physical
Review A, 67(5):051402.

[10] Nanda, A. K. and Paul, P. (2006). Some results on generalized residual entr opy. Information
Sciences, 176(1):27–47.

[11] Na varro, J. and Ruiz, J. M. (1996). Failur e-rate functions for doubly-truncated random
variables. IEEE Transactions on Reliability, 45(4):685–690.

[12] Na varro, J., and Rubio, R. (2011). A note on necessar y and suf ficient conditions for
ordering properties of coher ent systems with exchangeable components. Naval Research
Logistics (NRL), 58(5):478-489.

RT&A, No 1 (77)
 Volume 19, March 2024

463



S. Jala yeri, G.R. Mohtashami Borzadaran, M. Khorashadizadeh
SOME PROPER TIES OF TSALLIS ENTROPY

[13] Nourbakhsh M. and Yari G. Doubly truncated generalized entr opy, In Proceedings of the
1st Inter national Electr onic Confer ence Confer ence on Entr opy and its Applications, 3-21
November 2014,

[14] Misagh, F. (2012). Some Properties of Inter val Entr opy Function and their Applications.
World Applied Sciences Journal, 20(12):1666–1671.

[15] Moharana, R. and Kayal, S. (2020). Properties of Shannon Entr opy for Double Trun-
cated Random Variables and its Applications. Journal of Statistical Theory and Applications,
19(2):261–273.

[16] Mohamed, M. S. (2020). On Cumulativ e Tsallis Entr opy and Its Dynamic Past Version.
Indian Journal of Pure and Applied Mathematics, 51(4):1903–1917.

[17] Moharana, R. and Kayal, S. (2019). On shift-dependent generalize d entr opies for doubly
truncated random variable. Journal of Statistics and Management Systems, 22(5):923–942.

[18] Rao, M., Chen, Y., Vemuri, B. C. and Wang, F. (2004). Cumulativ e residual entr opy: a new
measur e of infor mation. IEEE Transactions on Information Theory, 50(6):1220–1228.

[19] Sati, M. M. and Gupta, N. (2015). Some characterization results on dynamic cumulativ e
residual Tsallis entr opy. Journal of Probability and Statistics, 8 pages, 287–294.

[20] Shaked M. and Shanthikumar J.G. (Eds.). Stochastic orders, Ne w York, NY: Springer Ne w
York, 2007.

[21] Shanker , R., Hagos, F., and Sujatha, S. (2015). On modeling of Lifetimes data using
exponential and Lindle y distribut ions. Biometrics & Biostatistics International Journal, 2(5):1–
9.

[22] Shannon, C. E. (1948). A mathematical theor y of communication. The Bell System Technical
Journal, 27(3):379–423.

[23] Tong, S., Bezerianos, A., Paul, J., Zhu, Y. and Thakor , N. (2002). Nonextensiv e entr opy
measur e of EEG follo wing brain injur y from cardiac arrest. Physica A: Statistical Mechanics
and its Applications, 305(3-4):619–628.

[24] Tsallis, C. (1988). Possible generalizati on of Boltzmann-Gibbs statistics. Journal of Statistical
Physics, 52(1):479–487.

[25] Tsallis, C. and Brigatti, E. (2004). Nonextensiv e statistical mechanics: A brief introduction.
Continuum Mechanics and Thermodynamics, 16(3):223–235.

[26] Zacks S. Introduction to Reliability Analysis Probability Models and Methods, Springer -
Verlag, Ne w York, 1992.

RT&A, No 1 (77)
 Volume 19, March 2024

464



Faryal Shabbir, Abdul Khalique 
GXED AND RELIABILITY ESTIMATION 

GENERALIZED X-EXPONENTIAL BATHTUB SHAPED 

FAILURE RATE DISTRIBUTION AND ESTIMATION 

OF RELIABILITY OF MULTICOMPONENT STRESS-

STRENGTH 

Faryal Shabbir, Abdul Khalique

• 

Department of Statistics National College  

of Business administration and Economics Lahore, Pakistan

faryalshab4@gmail.com 

a.khalique57@gmail.com

Abstract 

In an engineering setup, one is interested to know and determine the reliability of the system of 

different components.  These components are usually subjected to different kinds of stress, and the 

reliability of the components needs to be estimated under stress. In this paper, we aim to estimate the 

reliability of a multicomponent stress-strength model assuming that the components of the system 

are working independently with a common life distribution. The system follows a comparatively new 

distribution named as; Generalized X-Exponential bathtub failure rate distribution. This paper 

studies the usefulness of this distribution in terms of estimating the maximum likelihood estimate of 

the reliability parameter and its asymptotic confidence intervals. Paper uses methods of parametric 

estimation and reliability estimation. Results are computed using Monte Carlo simulation for small 

samples. Real data set is presented to evaluate the performance of Generalized X Exponential 

Distribution (GXED) reliability estimator. Findings show that with the usage of proposed 

distribution, estimator of reliability parameter fits very well to the real-world situations 

Key words: Generalized X -Exponential distribution, Multicomponent stress-

strength, Reliability, ML estimation, Average variance, Confidence intervals. 

I. Introduction

The X-Exponential distribution was introduced by Chacko [4], to add another model to the class of 

bathtub type failure rate distributions. When x is X-Exponential with parameters 𝞪 and 𝜆.  It has 

distribution function: 𝐹(𝑥) =  (1 − (1 + 𝜆𝑥2)𝑒(−𝜆𝑥))
𝛼

 with the corresponding density function:

𝑓(𝑥) = 𝛼𝑒−𝜆𝑥(𝜆2𝑥2 − 2𝜆𝑥 + 1)(1 − (1 + 𝜆𝑥2)𝑒(−𝜆𝑥))
𝑎−1

. Its properties and reliability applications

were studied by the author.  However, in order to get more flexibility to the model, Chacko and 

Deepthi [5] made a small change in the exponential part. The corresponding distribution is named 

as Generalized X-Exponential distribution. Basically, bathtub failure rate distribution’s curve 

illustrates three phases of a product’s life. First phase is known as early failure, next is a roughly 

prolonged intrinsic period and failure rate is approximately constant here. This stage is very 

important for reliability prediction of a product. And finally, there is a wear out failure phase, where 

failure rate increases. In the past several bathtub failure rate distributions have been studied by 

Kundu &Gupta, Srinivasa Rao [11] to carry out reliability testing by using single component stress 
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strength, as well as multi- component stress strength models. Since no substantial work has been 

done on reliability estimation of multicomponent stress strength by using a flexible distribution i.e., 

GXED, hence there was a need to study the reliability estimator of newly introduced Generalized X-

Exponential distribution having distribution function, 𝐹(𝑥) = (1 − (1 + 𝜆𝑥2)𝑒−𝜆(𝑥2+𝑥)
)

𝛼

, 𝑥 > 0, 𝜆 >

0 𝑎𝑛𝑑 𝛼 > 0.and the density function is:  

𝑓(𝑥) = 𝛼𝑒−𝜆(𝑥2+𝑥)
(𝜆(1 + 𝜆𝑥2)(2𝑥 + 1) − 2𝜆𝑥)((1 − (1 + 𝜆𝑥2)𝑒−𝜆(𝑥2+𝑥)

)
𝛼−1

;   𝛼 > 0, 𝜆 > 0 

(1) 

Failure rate=
𝛼𝑒−𝜆(𝑥2+𝑥)

(𝜆(1+𝜆𝑥2)(2𝑥+1)−2𝜆𝑥)((1−(1+𝜆𝑥2)𝑒−𝜆(𝑥2+𝑥)
)

𝛼−1

1−(1−(1+𝜆𝑥2)𝑒−𝜆(𝑥2+𝑥)
)

𝛼 ;     𝑥 > 0, 𝛼 > 0, 𝜆 > 0  

(2) 

The authors (Chacko and Deepthi) have investigated the properties and some reliability 

applications of the new model. Here we are interested in the reliability analysis of multicomponent 

system where the components are connected in parallel and function independently, with the same 

Generalized X -Exponential distribution GXED and stress too has the same distribution but with 

different parameters.    

Let the random samples 𝑌, 𝑋1,𝑋2,𝑋3, … . . 𝑋𝐾 be independent, G(y) be the continuous 

distribution function of Y, and F(x) be the common distribution function of𝑌, 𝑋1,𝑋2,𝑋3, … . . 𝑋𝐾 .The 

reliability in a multi component stress-strength model developed by Bhattacharyya and Johnson [2] 

is given by. 

𝑅𝑠,𝑘=P [at least s of the 𝑋1,𝑋2,𝑋3, … . . 𝑋𝐾exceed Y]

= ∑ (
𝑘
𝑖

)
𝑘

𝑖=𝑠
∫ [1 − 𝐹(𝑦)]𝑖+∞

−∞
[𝐹(𝑦)𝑘−𝑖]𝑑𝐺(𝑦)  

(3) 

Where𝑋1,𝑋2,𝑋3, … . . 𝑋𝐾identically and independently distributed (iid) are with common 

distribution function F(x) and subjected to random stress Y. The probability in (3) is called 

‘Reliability in a multicomponent stress –strength model’ Bhattacharyya and Johnson [2]. The 

survival probabilities of single component stress- strength version was considered by several 

authors for different distributions. Some of them are: Enis and Geisser [9], Downtown [8], Awad and 

Gharraf [1], McCool [18], Hanagal [12], Nandi and Aich [19], Surles and Padgett [27], Kundu and 

Gupta [15,16], Raqab et al. [26] and Kundu and Raqab [17]. More over Kotz & Pensky [14] studied 

the generalizations of stress strength model. 

Reliability in a multicomponent stress-strength model was developed by Bhattacharyya and 

Johnson [2]. Pandey & Burhan [21] computed the estimation of reliability for a multicomponent 

model using Burr distribution. Zimmer et al [29] studied the reliability analysis for Burr X11 

distribution. Estimation of reliability in models with correlated stress and strength has been studied 

by Balakrishnan &Lai [3]. Rao and Kantam [24] studied the estimation of reliability in a 

multicomponent stress- strength model for logistic distribution, Rao [23] also developed the 

procedure for the estimation of reliability in multicomponent stress-strength model based on 

Generalized exponential distribution. Ghitany et al. [10] studied the estimation of reliability of 

multicomponent model using Power Lindley distribution. Burr-X11 distribution for parametric and 

reliability estimation in a multicomponent stress-strength environment has been analyzed by Rao et 

al. [25]. Dey, S. et al [6] considered Bayesian and non-Bayesian estimation of multicomponent stress-

strength reliability using Kumaraswami distribution.  
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Dey, Raheem & Mukherjee [7] derived the form of stress-strength reliability parameter for 

transmuted Rayleigh distribution. Hassan [13] developed the procedure for the estimation of stress-

strength model using Lindley distribution. Estimation on Reliability in a multicomponent Stress-

strength model with Power Lindley distribution is carried out by Abbas Pak et al [22]. Similarly, a 

recent study has been conducted on the estimation of stress strength reliability for Akash 

distribution by Akhila. K. Varghese & V. M. Chacko [28].  

The aim of this paper is to estimate the reliability in a multi component stress-strength model 

based on ,X Y being two independent random variables, where X~GXED, (𝛼1, 𝜆) and 

Y~GXED (𝛼2, 𝜆). We use parametric estimation and estimation reliability. Suppose a system with k 

identical components, functions if at least s (1 ≤ 𝑠 ≤ 𝑘) components operate simultaneously. In its 

operating environment, the system is subjected to stress Y which is a random variable with 

distribution function G (.). The strengths of the components, that is the minimum stresses causing 

failure, are independently and identically distributed random variables with distribution function 

F(.).The reliability of the system can be obtained by (3). An attempt has been made here to study the 

estimation of reliability in a multicomponent stress-strength model with reference to two parameter 

GXED.  

The remainder of the paper is organized as follows. In section 2, research methodology and 

procedure for expression of 𝑅𝑠,𝑘. The asymptotic distribution and confidence interval of (3) are 

calculated using MLE. The results of small sample comparisons derived from Monte Carlo 

simulations and analysis of real data sets are described in section 3. Findings are discussed in section 

4. 

2. Maximum Likelihood Estimator of 𝑅𝑠,𝑘

  Let X~GXED (𝛼1, 𝜆) and Y~GXED (𝛼2, 𝜆) be independently distributed with unknown shape 

parameters (𝛼2, 𝜆)while common scale parameter𝜆. Using (3) the reliability in multicomponent 

stress-strength for two- parameter GXED distribution is as follows: 

𝑅𝑠,𝑘 = ∑ (
𝑘
𝑖

)

𝑘

𝑖=𝑠

∫ [1 − 𝐹(𝑦)]𝑖

+∞

0

[𝐹(𝑦)𝑘−𝑖]𝑑𝐺(𝑦) 

𝐹(𝑦) = (1 − (1 + 𝜆𝑥2)𝑒−𝜆(𝑥2+𝑥)
)

𝛼

;  𝑥 > 0, 𝛼 > 0, 𝜆 > 0 

1 − 𝐹(𝑦) = 1 − (1 − (1 + 𝜆𝑥2)𝑒−𝜆(𝑥2+𝑥))
𝛼

𝑑𝐺(𝑦) = 𝛼𝑒
−𝜆(𝑦2+𝑦)

(𝜆(1 + 𝜆𝑦2)(2𝑦 + 1) − 2𝜆𝑦)((1 − (1 + 𝜆𝑦2)𝑒−𝜆(𝑦2+𝑦)
)

𝛼−1

 𝑑𝑦 

 𝑅𝑠,𝑘 = ∑ (
𝑘
𝑖

)
𝑘

𝑖=𝑠
 𝜈 ∫ (1 − 𝑡)𝑖1

0
𝑡𝑘−1+𝑣−1𝑑𝑡 

where 𝑡 = 1 − (1 − (1 + 𝜆𝑥2)𝑒−𝜆(𝑦2+𝑦))
𝛼

 𝑎𝑛𝑑 𝑣 =
𝛼2

𝛼1

 After simplification we get 

𝑅𝑠,𝑘 = ∑ (
𝑘
𝑖

)
𝑘

𝑖=𝑠
 𝑣𝐵(𝑖 + 1, 𝑘 − 𝑖 + 𝑣)   (4) 

The probability in (4) is termed reliability in a multicomponent stress-strength model. It is 

important to mention here that MLE of 𝑅𝑠,𝑘depends on that of 𝛼1& 𝛼2.  Hence, we need to calculate 

MLE of the latter to derive that of the former. Similarly, to find the MLE of 𝛼1& 𝛼2and we need to 
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find the MLE of 𝜆 as well. Here we assume that 𝑋1,𝑋2, 𝑋3 … … 𝑋𝑛 is a random sample from GXED 

(𝛼1, 𝜆) and 𝑌1, 𝑌,2 𝑌3, … … . 𝑌𝑚 is a random sample from GXED (𝛼2, 𝜆). 

 The loglikelihood function LLF of these samples is expressed as: 

𝐿(𝛼1, 𝛼2, 𝜆)  =  𝑚ln𝛼1  +  𝑛ln𝛼2  −  (𝑚  +  𝑛)𝜆(𝑥𝑖
2  +  𝑥𝑖   +  𝑦𝑗

2  +  𝑦𝑗)   +

𝑚 ln ∑(𝜆(1 + 𝜆𝑥𝑖
2)(2𝑥𝑖   +  1) − 2𝜆𝑥𝑖  )

+ (𝛼1  −  1)∑(ln(1 − (1 + 𝜆𝑥𝑖
2)𝑒−𝜆(𝑥2 +𝑥)))   + 𝑛 ln ∑(𝜆(1 + 𝜆𝑦𝑗

2)(2𝑦𝑗 + 1) − 2𝜆𝑦𝑗)

+ (𝛼2 − 1)∑(ln(1 − (1 + 𝜆𝑦𝑖
2)𝑒−𝜆(𝑦2 +𝑦)))

(5) 

Thus, the MLE of 𝜆 is the solution of 

𝜕𝑙𝑜𝑔𝐿(𝛼1,𝛼2,𝜆)

𝜕𝜆
=  0  ⇒   − 𝛴𝑖=1

𝑚 (𝑥𝑖
2 + 𝑥𝑖)  + 𝛴𝑖=1

𝑚
((2𝑥𝑖+1)(1+2𝜆𝑥𝑖

2)−2𝑥𝑖)

(𝜆(1+𝜆𝑥𝑖
2)(2𝑥𝑖+1)−2𝜆𝑥𝑖)

+ (𝛼1 −

1)𝛴𝑖=1
𝑚 (1+𝜆𝑥𝑖

2)𝑒−𝜆(𝑥𝑖
2+𝑥𝑖)(𝑥𝑖

2+𝑥𝑖)−𝑒−𝜆(𝑥𝑖
2+𝑥𝑖)𝑥𝑖

2

(1−(1+𝜆𝑥𝑖
2)𝑒

−𝜆(𝑥𝑖
2+𝑥𝑖)

− 𝛴𝑗=1
𝑛 (𝑦𝑗

2 + 𝑦𝑗)

+𝛴𝑗=1
𝑛

((2𝑦𝑗+1)(1+2𝜆𝑦𝑗
2)−2𝑦𝑗)

(𝜆(1+𝜆𝑦𝑗
2)(2𝑦𝑗+1)−2𝜆𝑦𝑗)

+ (𝛼2 − 1)𝛴𝑗=1
𝑛

(1+𝜆𝑦𝑗
2)𝑒

−𝜆(𝑦𝑗
2+𝑦𝑗)

(𝑦𝑗
2+𝑦𝑗)−𝑒

−𝜆(𝑦𝑗
2+𝑦𝑗)

𝑦𝑗
2

(1−(1+𝜆𝑦𝑗
2)𝑒

−𝜆(𝑦𝑗
2+𝑦𝑗)

)

= 0 

(6) 

Similarly, the MLE of 𝛼1 can be obtained as the solution of 

𝜕𝑙𝑜𝑔𝐿(𝛼1,𝛼2,𝜆)

𝜕𝛼1
=  0   ⇒

𝑚

𝛼1
+ 𝛴𝑖=1

𝑚 log (1 − (1 + 𝜆𝑥𝑖
2)𝑒−𝜆(𝑥𝑖

2+𝑥𝑖)) = 0

(7) 

Also, for 𝛼2 

𝜕𝑙𝑜𝑔𝐿(𝛼1,𝛼2,𝜆)

𝜕𝛼2
=  0   ⇒

𝑛

𝛼2
+ 𝛴𝑗=1

𝑛 log (1 − (1 + 𝜆𝑦𝑗
2)𝑒−𝜆(𝑦𝑗

2+𝑦𝑗)
) = 0

(8) 

From (7) and (8) we obtain: 

𝛼1
^(𝜆) =

−𝑚

𝛴𝑖=1
𝑚 log(1−(1+𝜆𝑥𝑖

2)𝑒
−𝜆(𝑥𝑖

2+𝑥𝑖)
)

𝑎𝑛𝑑 𝛼2
^(𝜆) =

−𝑛

𝛴𝑖=1
𝑛 log(1−(1+𝜆𝑥𝑖

2)𝑒
−𝜆(𝑦𝑖

2+𝑦𝑖)
)

(9) 

Putting the values of 𝛼1
^(𝜆) 𝑎𝑛𝑑 𝛼2

^(𝜆)into equation (6), we got a function of 𝜆 which is nonlinear.

`ℎ(𝜆) = 𝜆     (10) 

𝛴𝑖=1
𝑚 4𝜆𝜒𝑖

3 + 2𝜆𝑥𝑖
2 + 1

2𝜆𝑥𝑖
2 + 2𝑥𝑖

2 + 1
+ 𝛴𝑗=1

𝑛 4𝜆𝑦𝑗
3 + 2𝜆𝑦𝑗

2 + 1

2𝜆𝑦𝑗
2 + 2𝑦𝑗

2 + 1

𝛴𝑖=1
𝑚 (𝑥𝑖

2 + 𝑥𝑖) + 𝛴𝑗=1
𝑛 (𝑦𝑗

2 + 𝑦𝑗) +
𝑚

∑ 𝑙𝑜𝑔𝑚
𝑖=1 (1 − (1 + 𝜆𝑥𝑖

2)𝑒−𝜆(𝑥𝑖
2+𝑥𝑖))

𝛴𝑖=1
𝑚 𝑥𝑖(1 + 𝜆𝑥𝑖

3 + 𝜆𝑥𝑖
2). 𝑒−𝜆(𝑥𝑖

2+𝑥𝑖))

(1 − (1 + 𝜆𝑥𝑖
2)𝑒−𝜆(𝑥𝑖

2+𝑥𝑖))

+
𝑛

∑ 𝑙𝑜𝑔𝑛
𝑗=1 (1 − (1 + 𝜆𝑦𝑗

2)𝑒−𝜆(𝑦𝑗
2+𝑦𝑗)

)
𝛴𝑗=1

𝑛
𝑦𝑗(1 + 𝜆𝑦𝑗

3 + 𝜆𝑦𝑗
2). 𝑒−𝜆(𝑦𝑖

2+𝑦𝑗)

(1 − (1 + 𝜆𝑦𝑗
2)𝑒−𝜆(𝑦𝑗

2+𝑦𝑗)
)

+
𝑛

∑ 𝑙𝑜𝑔𝑛
𝑗=1 (1−(1+𝜆𝑥𝑖

2)𝑒
−𝜆(𝑥𝑖

2+𝑥𝑖)
)

𝛴𝑖=1
𝑚 𝑥𝑖(1+𝜆𝑥𝑖

3+𝜆𝑥𝑖
2).𝑒

−𝜆(𝑥𝑖
2+𝑥𝑖)

)

(1−(1+𝜆𝑥𝑖
2)𝑒

−𝜆(𝑥𝑖
2+𝑥𝑖)

)

    (11) 

Here 𝜆^is a fixed-point solution of nonlinear equation (10). It can be obtained using a simple iterative 

procedure: 
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  ℎ𝜆(𝑗) = 𝜆(𝑗 + 1)  (12) 

Where 𝜆𝑗  is the 𝑗𝑡ℎ iteration of 𝜆^.During the simulation process, when the difference between 𝜆𝑗 and

𝜆(𝑗 + 1) becomes sufficiently small; then we stop the iterative process. Once we obtain 
^ , the 

parameters 𝛼1
^ 𝑎𝑛𝑑 𝛼2

^can be obtained from (9) as respectively. To obtain the asymptotic confidence

interval for 𝑅𝑠,𝑘 we proceed as follows. 

2.1 Asymptotic Variance and Confidence Intervals 

𝑉(𝛼1
^) = [𝐸(−𝜕2𝐿/𝜕𝛼1

2)]−1 =
𝛼1

2

𝑚
𝑎𝑛𝑑  𝑉(𝛼2

^) = [𝐸(−𝜕2𝐿/𝜕𝛼2
2)]−1 =

𝛼2
2

𝑛
  (13) 

The asymptotic variance AV of an estimate of 𝑅𝑠,𝑘 which is a function of two independent statistics 

𝛼1
^, 𝛼2

^ is established by Rao (1973):

𝐴𝑉(𝑅𝑠,𝑘
^ ) = 𝑉(𝛼1

^)(
𝜕𝑅𝑠,𝑘

𝜕𝛼1
)2 + 𝑉(𝛼2

^)(
𝜕𝑅𝑠,𝑘

𝜕𝛼2
)2          (14) 

Thus from (14), asymptotic variance in 𝑅𝑠,𝑘can be obtained for GXED. 

We obtain 𝑅𝑠,𝑘 and their derivatives for (s, k) = (1, 3) and (2, 4) separately: 

𝑅1,3
^ =

3𝑣2 + 9𝑣 + 6

(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)
𝑎𝑛𝑑 𝑅2,4

^ =
12(𝑣2 + 3𝑣 + 2)

(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)(𝑣 + 4)

𝜕𝑅1,3
^

𝜕𝛼1

=
3𝑣(𝑣4 + 6𝑣3 + 13𝑣2 + 12𝑣 + 4)

𝛼1[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)]2

𝜕𝑅1,3
^

𝜕𝛼2

=
−3𝑣(𝑣4 + 6𝑣3 + 13𝑣2 + 12𝑣 + 4)

𝛼1[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)]2

𝜕𝑅2,4
^

𝜕𝛼1

=
12𝑣(2𝑣5 + 19𝑣4 + 68𝑣3 + 115𝑣2 + 92𝑣 + 28)

𝛼1[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)(𝑣 + 4)]2
 𝑎𝑛𝑑 

𝜕𝑅2,4
^

𝜕𝛼2

=
−12(2𝑣5 + 19𝑣4 + 68𝑣3 + 115𝑣2 + 92𝑣 + 28)

𝛼1[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)(𝑣 + 4)]2

Therefore as  𝑛 → ∞  𝑎𝑛𝑑 𝑚 → ∞, (𝑅𝑠,𝑘
^ − 𝑅𝑠𝑘)/𝐴𝑉(𝑅𝑠,𝑘

^ ) N (0,1)

𝐴𝑉(𝑅1,3
^ ) =

9𝑣2(𝑣4 + 6𝑣3 + 13𝑣2 + 12𝑣 + 4)2(1/𝑚 + 1/𝑛)

[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)]4

𝑎𝑛𝑑 𝐴𝑉 (𝑅2,4
^ ) =

144𝑣2(2𝑣5 + 19𝑣4 + 68𝑣3 + 115𝑣2 + 92𝑣 + 28)2(1/𝑚 + 1/𝑛)

[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)(𝑣 + 4)]4

 

Where 𝑅𝑠,𝑘
^ +̅ 1.96√𝐴𝑉(𝑅𝑠,𝑘)is the asymptotic 95%confidence interval (C.I) of system

reliability 𝑅𝑠,𝑘 and asymptotic 95% C.I for 𝑅1,3 is given by: 

𝑅1,3
^ ∓ 1.96

3𝑣(𝑣4 + 6𝑣3 + 13𝑣2 + 12𝑣 + 4)√1/𝑚 + 1/𝑛

[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)]2

 and the asymptotic 95% confidence interval (C.I) for 𝑅2,4 is given by: 

𝑅2,4
^ ∓ 1.96

12𝑣(2𝑣5 + 19𝑣4 + 68𝑣3 + 115𝑣2 + 92𝑣 + 28)√1/𝑚 + 1/𝑛

[(𝑣 + 1)(𝑣 + 2)(𝑣 + 3)(𝑣 + 4)]2

3. Simulation Study

3.1 Results 
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5000 random samples are generated each of size 10(5)30 from stress and strength populations for 

different values of 𝛼1 𝑎𝑛𝑑 𝛼2: (2.0,2.5), (2.0,3.0), (2.0,3.5), (3.0,2.0), (3.0,2.5), (3.0,3.0). The MLE of scale 

parameter 𝜆 is estimated by the iterative method and using 𝜆 the shape parameters 𝛼1 and 𝛼2 are 

estimated from eq (8).  

These ML estimators of 𝛼1 𝑎𝑛𝑑 𝛼2are then substituted in   to obtain the multicomponent 

reliability for (s, k) = (1,3) and (2,4). The average bias and average MSE of reliability estimate over 

5000 replications are presented in Table 1 and Table 2. Average length of confidence interval and 

coverage probability of the simulated 95% CIs of 𝑅𝑠,𝑘 are given in Table 3 and Table 4. The true 

values of reliability in multicomponent stress -strength with given combinations of 𝛼1
^, 𝛼2

^ for (s, k) =

(1,3) are 0.7058824, 0.6666667, 0.6315789, 0.8181074, 0.7826768, 0.75, 0.7142857 and for (s, k) = (2,4) are 

0.5378151, 0.4848485, 0.4393593, 0.7011849, 0.6477772, 0.6, 0.5494505. 

Here it is seen that the true value of reliability in multicomponent stress-strength decreases 

as 𝛼2 is increased for a fixed value of 𝛼1,whereas reliability in multicomponent stress-strength also 

decreases as 𝛼1is increased for a fixed value of𝛼2 . Thus, the true value of reliability increases 

as 𝜐 decreases and vice versa.  

Table 1: Average bias of the simulated estimates of  𝑅𝑠,𝑘(𝛼1, 𝛼2) 

Results of Table 1 and Table 2 depicts that average bias and MSE decrease as sample size 

increases for both the cases of estimation of reliability. Bias is negative in all the combinations of 

parameters in both situations of (s, k). This shows the consistency of MSE. Also, absolute bias 

increases as 𝛼1increases for a fixed value of 𝛼2.While MSE decreases as  𝛼1 increases for a fixed value 

of 𝛼2 for both the cases of (s, k). Also, for fixed 𝛼1 and increasing 𝛼2 MSE increases for same sample. 

Table 2: Average MSE of the simulated estimates of 𝑅𝑠,𝑘(𝛼1, 𝛼2) 

s, k n, m 2.0,2.5 2.0,3.0 2.0,3.5 3.0,2.0 3.0,2.5 3.0,3.0 

1,3 10,10 .008420 .008347 .0105324 .005115 .005915 .010999 

15,15 .005872 .006666 .0071572 .002870 .004008 .008089 

20,20. .0049068 .004907 .0054370 .002320 .003011 .006478 

25,25 .0036479 .004291 .0045213 .001871 .002486 .005984 

30,30 .002805 .003195 .0037037 .001478 .002033 .005489 

2,4 10,10 .015654 .0154285 .0165471 .010602 .012716 .014210 

15,15 .010693 .010985 .0111963 .004762 .008500 .009423 

20,20. .0075629 .008428 .008489 .004305 .006470 .007210 

25,25 .006857 .006696 .0069927 .004016 .004969 .005663 

30,30 .005238 .005696 .0052105 .003354 .004067 .005053 

s, k n, m    2.0,2.5    2.0,3.0    2.0,3.5    3.0,2.0   3.0,2.5   3.0,3.0 

1,3 10,10 -.006581 -.0016484 -.007107 -.010848 -.017399 -.061099 

15,15 -.006425 -.0041552 -.003801 -.005277 -.005233 -.056924 

20,20 -.005644 -.0009021 -.002751 -.003377 -.003877 -.055159 

25,25 -.004301 -.0035697 -.002016 -.003189 -.003199 -.055473 

30,30 -.003075 -.0032642 -.001574 -.003726 -.002866 -.055240 

2,4 10,10 -.003129 -.0009622 0.000633 -.011485 -.007666 -.008216 

15,15 -.005138 -.0022865 -.001908 -.003719 -.008930 -.005695 

20,20 0.000287 0.0005562 -.000367 -.006453 -005077 -.004446 

25,25 -.000917 -.0003678 -.001444 -.001709 -.004725 -.005074 

30,30 -.000523 -.0020488 -.003957 -.002097 -.004196 -.003842 
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Table 3: Average Length of the simulated 95% confidence intervals of  𝑅𝑠,𝑘(𝛼1, 𝛼2) 

Table 3 and Table 4 findings show that as the sample size increases, length of CI also 

decreases and coverage probability in most the cases crossing 0.95 and for few it is 0.98, which shows 

the performance of CI using Generalized X- Exponential Distribution GXED is excellent and it covers 

most of the cases. Among the parameters, it is observed that length of CI increases for fixed value of 

 𝛼1 for (1,3) while for fixed value of 𝛼2 length of CI decreases.

Table 4: Average Coverage Probability of simulated 95% confidence intervals of 𝑅𝑠,𝑘(𝛼1, 𝛼2) 

s, k    n, m    2.0,2.5      2.0,3.0     2.0,3.5    3.0,2.0    3.0,2.5    3.0,3.0 

1,3 10,10 .891333 .968000 .936667 .910667 .969333 .987333 

15,15 .972667 .944444 .880000 .950000 .925084 .905333 

20,20. .905333 .980810 .914000 ..968667 .912052 .956667 

25,25 .951333 .912300 .949333 .969333 .946000 .966667 

30,30 .953815 .965333 .926000 .952667 .896360 .936667 

2,4 10,10 .964667 .957333 .9743178 .984000 .934667 .966677 

15,15 .962667 .966600 .953000 .970000 .942000 .967333 

20,20. .963333 .955746 .952667 .969425 .954000 .953333 

25,25 .946000 .936667 .953333 .983333 .970883 .948007 

30,30 .902000 .946666 .937333 .956000 .960667 .960667 

3.2 Data Analysis 

In this section, we will deal with two real data sets, will show how reliability in a multicomponent 

stress-strength model can be applied for GXED. Both data sets were discussed by Zimmer et al. 

(1998) and Lio et al. (2010) for Burr-X11 reliability analysis. They showed that Burr-X11 distribution 

fits quite well. For both the data sets, here we are using GXED. 

(X):0.19 ,0.78, 0.96, 0.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71 

and 72.89 

(Y):0.9, 1.5, 2.3, 3.2, 3.9, 5.0, 6.2, 7.5, 8.3, 10.4, 11.1, 12.6, 15.0, 16.3, 19.3, 22.6, 

24.8, 31.5 And 53.0. Iterative procedure was used to calculate the value of 𝜆 using (8) and then 

𝛼1 𝑎𝑛𝑑 𝛼2  were obtained by substituting the MLE of 𝜆 in (10). 

The final estimates of 𝛼1  = 0.844798 , 𝛼2  = 1.551717 and 𝜆 = 0.04642891. Based on these 

estimates the MLE of 𝑅1,3  turned out to be 0.620246 and 95% CI (.4704636, .770028) while for 𝑅2,4, 

came out to be 0.4250596; CI (.2752773,0.5748419). 

s, k n, m   2.0,2.5   2.0,3.0   2.0,3.5   3.0,2.0   3.0,2.5   3.0,3.0 

1,3 10,10 .350894 .378572 .390008 .263240 .299103 .322061 

15,15 .290262 .311732 .323802 .214849 .242167 0.26764 

20,20. .253883 .272129 .323815 .186494 .210426 .230430 

25,25 .228945 .243448 .254189 .166324 .188198 .206166 

30,30 .208672 .223215 .232022 .150368 .170951 .189016 

2,4 10,10 .475256 .483035 .485837 .392269 .428761 .453479 

15,15 .395910 .404009 .405260 .322269 .351963 .373558 

20,20. .346274 .357539 .354290 .280074 .308866 .327652 

25,25 .309512 .318022 .318480 .250861 .275602 .291288 

30,30 .285038 .291335 .292680 .230350 .252819 .269990 
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4. Discussion

In this paper, we analyzed the behavior of Generalized X-Exponential Distribution (GXED) in 

calculating the multicomponent stress-strength reliability estimates. We also calculated 95% CI & 

coverage probability for reliability estimates and results were excellent. Coverage probability 

touched up to 0.98, which shows GXED estimates, very accurately. 

The simulation results indicated that average bias and MSE decreased as the sample size 

increased for both the cases of 𝑅𝑠,𝑘.The real data sets also revealed GXED fits very well and provides 

quite close results. Hence, GXED can be used readily to calculate the reliability in a multicomponent 

stress- strength environment. 
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Abstract 

The article focuses on explosion and fire hazards at production facilities of enterprises where 

flammable liquids and gases, categorized by explosion and fire risks, are processed, handled, 

transported, and stored. The goal to be attained and the tasks to be solved towards this end are 

formulated in the article. Consolidated areas of knowledge, accumulating results of research into risk 

assessment within systems of integrated safety implemented at production facilities, are considered 

by the author. A model for development of a novel set of research and methodological instruments 

(methods, techniques, software and hardware) is presented for its further practical application. The 

problem of developing integrated safety systems for industrial facilities, posing explosion and fire 

hazards, as well as the solution, are presented by the author for the first time. The novelty of the 

solution lies in the computation of validity of the practical application of a novel set of research and 

methodological instruments. A reduction in damage from accidents and fires at production facilities 

is demonstrated. Ultimately, the socio-economic problem of reducing damage from accidents and fires 

is solved not only by Russian production facilities, but also by government agencies, including the 

EMERCOM of Russia (Ministry of the Russian Federation for Civil Defense, Emergencies and 

Elimination of Consequences of Natural Disasters), Ministry of Labor and Social Protection of 

Russia, and Federal Environmental, Industrial and Nuclear Supervision Service of Russia. 

Keywords: risk, explosion and fire hazard, integrated safety, integrated safety 

system, development model, target model 

I. Introduction

Analysis of statistics on accidents and fires at production facilities shows that the share of combined 

hazardous events (accidents and fires) reaches about 20% of the total number of accidents. Damage 

from combined events reaches about 46% of the total damage from accidents. Such events may cause 

injuries and fatalities to in-house personnel and third parties [1-3]. Explosion and fire hazards arising 

at production facilities are understood as the state of a facility characterized by the possibility of an 

explosion or a fire or, alternatively, the occurrence of fire followed by an explosion1. These are the conditions 

for several types of damage (material and economic damage, calculated in rubles; injuries and 

fatalities, calculated in units). Production facilities posing fire and explosion risks (hereinafter - 

1 Federal Law No. 123-FZ of 22.07.2008 Technical regulations on fire safety requirements. 

RT&A, No 1 (77)
 Volume 19, March 2024

474

mailto:%20evgvozdev@mail.ru


Evgeny Gvozdev 

DEVELOPMENT OF AN INTEGRATED SAFETY SYSTEM FOR PRODUCTION 

FACILITIES POSING FIRE AND EXPLOSION RISKS FOR ENTERPRISES 

PFPFER) are enterprises where flammable liquids and gases are processed, handled, transported, 

and stored. Such production facilities are categorized by explosion and fire risks2; they are 

categorized according to computations made for production premises and buildings. 

Substantial damage deals with combined hazardous events (accidents and fires) resulting from 

conditions triggering a fire or an explosion at a hydrocarbon processing facility. Thereafter, a 

secondary factor of explosion or fire is in place, and eventually large volumes of hydrocarbons 

(hydrocarbon gases) cause destruction and spread over the territory of a production facility (a gas 

spill). [4]. The article focuses on several types of damage (economic, material, and social damage) to the 

following three subsystems: the occupational safety subsystem (hereinafter - OS); the industrial 

safety subsystem (hereinafter - InS); the fire safety subsystem (hereinafter - FS), included in the 

integrated safety system (hereinafter - ISS) at PFPFER. The ISS at PFPFER should be understood as 

a set of interacting industry-wide subsystems (OS, InS, FS) needed to protect personnel, property, 

equipment and environment from accidents and fires. Integrated safety (hereinafter - IS) at PFPFER 

should be understood as industry-wide subsystems (OS, InS, FS) characterized by preventability of 

hazardous events (accidents and fires) that can damage the assets to be protected. According to item 

15 of Article 2 of Federal Law 123-FZ of 22.07.2008 titled Technical fire safety regulations, assets to 

be protected are products owned by natural persons or legal entities, government agencies or 

municipalities (including property items located in settlements, as well as buildings, structures, 

vehicles, process plants, equipment, assemblies, products and other property), that are subject to FS 

requirements for fire prevention and protection of people in case of fire. 

Reduction (elimination) of different types of damage depends on the availability of the required 

safety margin (figure 1), whose design value is determined using the following equation [5] 

𝑅(𝜏) =
𝑅𝑐(𝜏)

𝑛𝑅
, where               (1) 

𝑅𝑐(𝜏) is the boundary risk value (critical, threshold); 

 𝑛𝑅 is the safety margin value required to reduce (eliminate) the risk. 

The safety margin is understood as a set of factors characterized by the sufficiency of actions required 

to solve problems arising as a result of dangerous events (accidents and fires).  

Figure 1: Clustered focus areas for evaluation of factors affecting the safety margin needed to reduce (eliminate) risks 

2 Code of Regulations CR 12.13130.2009 Categorization of premises, buildings and outdoor installations by explosion and fire 

hazards 
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The key idea aimed at reducing damage from hazardous events is to ensure the availability of a well-

grounded safety margin designed to reduce (eliminate) various risks. Obviously, various 

applications and relationships determine the nature of the safety margin.  

The focus areas listed above are highly relevant. The author conducted an analytical study to 

develop well-grounded solutions pre-compared with other well-known actions3 aimed at improving 

the ISS at PFPFER to meet the principal requirement of point 10, Resolution 842, issued by the 

Government of the Russian Federation on September 24, 2013 “On Procedure for Awarding 

Academic Degrees". 

II. Analysis of fundamental areas for improving and developing integrated

safety at industrial enterprises 

Fundamental documents governing the vital activity of Russia, including its essential industrial 

infrastructure, include National Security Strategies of the Russian Federation, approved by Decrees of the 

President of the Russian Federation4, which govern the development of comprehensive actions towards 

their implementation.  

The outcome of a research project on IS problems, solved using the risk-oriented approach at 

industrial facilities, is consolidated areas of research that demonstrate valuable research findings 

(figure 2). 

Figure 2: Findings used to solve problems of integrated safety management at industrial facilities 

Research Area 1 (see Figure 2) considers theoretical fundamentals and their connection with the risk-

oriented methodology and its implementation to ensure the IS of industrial enterprises; the 

following fundamental principles are formulated: 

- using fundamental principles of risk analysis 𝑅(𝜏) in the three principal areas of vital activity (social

(N), natural (S) and technogenic (T) activities), conducted as a single complex socio-natural-

technogenic system of humans-nature-infrastructure during time 𝜏 [6]

𝑅(𝜏) = 𝐹𝑅{𝑅𝑁(𝜏), 𝑅𝑆(𝜏), 𝑅𝑇(𝜏)}:            (2) 

- developing a generalized model of risk assessment at industrial facilities that demonstrates

changes, triggered by the factor values of risks R(τ), or probabilities P(τ) of dangerous events

(accidents, fires, emergencies) and respective damage (economic damage, assessed in rubles; social

damage assessed in the number of people injured, killed, also known as casualties). These types of damage

are related to the main spheres of life, including the social sphere (N), the natural sphere (S), and the

3 URL:https://docs.cntd.ru/document/499047147 (Date of access: July 1, 2023) 
4 Decree of the President of the Russian Federation № 1666 issued on 02.07.2021 On National Security Strategy of the Russian 

Federation; Decree of the President of the Russian Federation № 400 issued on 19.12.2012 On the Strategy of the State National 

Policy of the Russian Federation for the Period through 2025. 
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technogenic sphere (T), that make up a single complex system, consisting of humans-nature-

infrastructure, during time 𝑡 [6]. 

𝑅(𝜏) = 𝐹𝑅{𝑃(𝜏), 𝑈(𝜏)};        (3) 

𝑅(𝜏) = 𝐹𝑅{𝑃(𝜏), 𝑈(𝜏)};        (4) 

𝑈(𝜏) = 𝐹𝑈{𝑈𝑁(𝜏), 𝑈𝑆(𝜏), 𝑈𝑇(𝜏)}:         (5) 

- drafting scenarios of events, occurring in a complex system, and making a quantitative assessment

of risks 𝑅(𝜏), using parameters of principal triggers and destructive factors of dangerous energies

𝐸(𝜏), substances 𝑊(𝜏), and information flows 𝐼(𝜏) [7]

𝑅(𝜏) = 𝐹𝑅{𝐸(𝜏), 𝑊(𝜏), 𝐼(𝜏)}:            (6) 

- complying with the fundamental requirement concerning the non-exceedance of acceptable risks

by calculated values of risks (formulas 2-6) in the process of implementing a risk-oriented approach

[8].

𝑅(𝜏) ≤ [𝑅(𝜏)], where        (7) 

[𝑅(𝜏)] is the parameter that has a limit value of an assessed acceptable risk. Applicable regulations 

(RLA, or regulatory legal acts, and RD, or regulatory documents) of the Russian Federation set the 

limit value of an assessed risk. 

Researchers from the Russian Academy of Sciences formulated the fundamental substantiation of 

acceptable risks [𝑅(𝜏)], whose calculated value is identified using the following equation [9] 

𝑅(𝜏) =
𝑅𝑐(𝜏)

𝑛𝑅
, where            (8) 

𝑅𝑐(𝜏)  is the threshold value of risk (critical, limit risk); 

𝑛𝑅 is the value of the safety margin used to reduce (eliminate) the risk considered above. The 

principle of choosing the reasonable rational safety margin is sufficiency of compensatory actions aimed at 

reducing (eliminating) risks (Figure 3). 

Figure 2: Assessment of factors, affecting the safety margin needed to reduce (eliminate) risks 
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The key approach to reducing damage from the impact of hazardous events encompasses a 

reasonable safety margin designed to reduce (eliminate) various risks. Obviously, the safety margin 

to be analyzed will be based on its application in different areas and considered using versatile 

methods of analysis in relation to risks (Figure 3). 

III. Existing and new proposed methods of risk assessment in the field of

integrated safety of industrial enterprises 

In the course of solving the problem, it was necessary to build awareness of approaches and 

techniques used in practice, as well as to provide more information about Research Areas 2 and 3 

(see Figure 1). Methods5, including risk assessment procedures (recommendations) applicable by 

production facilities, were used to assess the risks arising within subsystems (InS, FS, OT). 

Information about the results of analytical comparison is provided in Table 1. 

Table 1. Comparison between risk assessment methods, used to ensure practical integrated safety of industrial 

enterprises, and new methods, proposed and substantiated by the author of the article 

Methods of risk assessment within the framework of integrated safety of industrial facilities 

In the field of 

industrial safety 

In the field of fire safety In the field of occupational safety Original methods 

proposed by E.V. 

Gvozdev  

Methods belonging to the group of logical-graphical methods 

Event Tree 

Analysis; Failure 

Tree Analysis; 

"What - If" 

method 

Logical event trees Scenario Analysis; Decision Tree 

Analysis; Structured What-If 

Method (Swift) 

Bayesian Trust 

Networks (BTN) 

method 

Methods belonging to the group of expert analysis methods 

Check-List; 

Hazard and 

Operability 

Analysis (HOA); 

HAZID (Hazard 

Identification) 

method 

- Checklists; Bow-tie analysis; 

HAZOP (Hazard and Operability 

Study) method. 

Analysis of 

hierarchies and 

pairwise 

comparisons 

method (MAI) 

Methods belonging to the group whereby characteristics are calculated using individual weighting 

coefficients 

Failure Type and 

Consequence 

Analysis (FTCA); 

Safety actions 

analysis; 

quantitative 

accident risk 

assessment 

Determining the time of 

blocking evacuation 

routes in case of fire; 

determining the 

estimated evacuation 

time 

Cause-effect analysis; matrix 

method based on scoring; LOPA 

layers of protection analysis; HRA 

(Hyman Reliability Assessment); 

occupational disease risk 

assessment; cost effectiveness 

analysis (cost-benefit analysis) 

Method of complex 

numbers (Symb 

method) 

5 Order № 387 issued by Federal Environmental, Industrial and Nuclear Supervision Service of Russia on 

03.11.2022 On Approval of Safety Guidelines Titled Methodological Fundamentals for Hazard Analysis and 

Accident Risk Assessment at Hazardous Production Facilities; Order № 404 issued by the EMERCOM of Russia 

(Ministry of the Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural 

Disasters) on 10.07.2009 On Approval of the Methodology for Determining Estimated Fire Risk Values at 

Production Facilities; Order № 929 issued by the Ministry of Labor of Russia on 28.12.2021 On Approval of 

Recommendations for Selecting Methods of Assessing Occupational Risk Levels and Reducing Levels of Such 

Risks. 
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The table presents consolidated groups of methods used in the subsystems (InS, FS, OS). Their 

practical application allows obtaining results in the form of final (qualitative or quantitative) 

estimated risk values.  

Comparative results of the practical application of methods were obtained in the format of final 

(qualitative or quantitative) estimated risk values (Table 2). 

Table 2. Comparative results of final estimated risk values obtained in the course of risk assessment within the 

framework of integrated safety of industrial facilities 

Results of risk assessment within the framework of integrated safety of industrial facilities 

In the field of industrial safety In the field of fire 

safety 

In the field 

of 

occupational 

safety 

Results obtained 

using methods 

proposed by E.V. 

Gvozdev  

Results presented as qualitative values 

Risk prioritization based on 

categorization of hazards from 

accidents, risk priority value 

(1;2;3) 

- + Prioritization of risk 

based on a general 

ranked list, the value 

of the risk priority 

(1;2;...; n) depends on 

damage 

Risk values ranging from 

negligible to higher than 

acceptable risk, risk value (A; B; 

C; D) 

+ 

Risk values with criticality of 

deviations, risk value (high; 

medium; low) 

+ 

Results presented as quantitative values 

Risk values of the frequency of 

depressurization of engineering 

pipelines, risk value 10−n/year, 

where n is a power value 

+ - Risk values for the 

value of cause and 

effect relationships, 

risk value of the 

probability of 

implementation (1-

100%) 

Risk values of damage to 

people, risk value of the probability 

of implementation (1-100%), risk 

value 10−n/year, where n is a 

power value. 

Risk values needed 

to determine the 

estimated evacuation 

time, risk value (min.) 

- Risk values based 

on the calculation of 

the impact factor of 

services, risk value 

(0,001-0,475) 

IV. Purpose of the study

The purpose of the study is to substantiate the adequate practical use of a novel set of research and 

methodological instruments developed by the author and to make sure that the socio-economic 

effect of its application is higher than that of the ISS that are currently used by PFPFER, in other 

words, to confirm the feasibility of new methods (groups of methods) to be used to assess risks 

arising within this system. In this case, the assessment process will be based on the practical data 

backed by the experiments.  

To achieve this purpose, the author employed a methodology comprising the awareness of 

procedures, whose core elements are methods and methodology, contributed to the set of research and 

methodological instruments, used to solve problems of research and practice [10]. The following tasks 
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were to be solved: 

1. Presenting the statement of and the proposed solution to the problem of the future

development of ISS at PFPFER.

2. Presenting the case justifying the adequacy of this solution to confirm the practical

applicability of the proposed set of research and methodological instruments.

Below is a model for selecting a new risk assessment methodology required to develop ISS at

PFPFER (figure 4).

Figure 4: Development model required for risk assessment at PFPFER 

The proposed model (see figure 4) is not considered as a model with the same assessment criteria. It 

allows looking beyond the horizon of unexplored risks, developing a new set of research and 

methodological instruments (models, methods, techniques) for practical use. Each new solution to a 

research problem has new features added to research and methodological instruments (for example, 

a solution to the new formulation of a problem can result in a new solution to this problem) [11]. It 

will open the way for a transition to development of ISS that are currently in operation at PFPFER 

enterprises.  

V. Formulating and solving the problem of ISS development

at PFPFER enterprises 

The prospective development of ISS at PFPFER enterprises requires a safety margin composed of 

various resources (financial, material, information, energy, labor, and other types of resources) to be 

contributed to subsystems (OS; InS; FS) to reduce (eliminate) risks [12]. Figure 5 has a block scheme 

of the safety margin. 

Given that material, economic, labor, time, information, and other resources are the main 

constituents of the corporate safety margin for enterprises under consideration, identification of the 

nature and extent of risks and coordination of subsystems (OS, InS, FS) support, adjustable to ensure 

the highest socio-economic effect, is a challenging task [13 – 21]. 
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Figure 5. The block scheme of the safety margin needed to reduce (eliminate) risks of damage from hazardous events 

(accidents and fires) at PFPFER enterprises 

Problem formulation. Assume that management teams of the enterprises under consideration make 

a decision to develop ISS at PFPFER or to bring its operation to a new qualitative level within a pre-

set period of time. The management of these enterprises identifies a transition period, including the 

initial point of reference (𝑡0) and the point of goal achievement (𝑡1), included in the following model: 

∑ 𝑃𝜑𝑛1
(𝑡0)𝑁

𝑖=1 → ∑ 𝑃𝜑𝑛2
∗ (𝑡1)𝑁

𝑖=1 ,    (9) 

where 𝑃𝜑𝑛1
(𝑡0), 𝑃𝜑𝑛2

∗ (𝑡1) are values, describing the state of subsystems (OS, InS, FS) at the beginning

and at the end of the transition period; 

𝑛1; 𝑛2 are values of resources calculated for the initial point of reference (𝑡0) and the point of goal 

achievement (𝑡1). 

If these values change and became equal to 𝑃𝜑𝑛2
∗ (𝑡1) during period  (𝑡1) , total changes will be

calculated as follows: 

∑ |𝑃𝜑𝑛2
∗ (𝑡1) − 𝑃𝜑𝑛1

(𝑡0)|𝑁
𝑖=1 = ∆(𝑡1),                (10) 

where ∆(𝑡1) is the total difference in changes for all values over period 𝑡1; 

| … | is the sign showing the modulus of a number. 

The task is to substantiate calculations of efficiency of the practical application of a set of research 

and methodological instruments and to demonstrate a reduction in damage to subsystems under 

consideration. 

Solution. If the total difference ∆(𝑡1) showing changes in all values during period 𝑡1 is available, the 

value of the development change У(𝑡1) at the point of goal achievement (𝑡1) can be calculated using 

the following formula: 

У(𝑡1) =
∆(𝑡1) 

𝐸𝑛
,         (11) 

where 𝐸𝑛 is the efficiency of the volumetric contribution of resources to (1 − 𝑁) industry-focused 

subsystems (OS, InS, FS). It is the value whose calculation needs hundreds of different parameters. 

The following calculations must be made to find effective contributions of resources to the (1 − 𝑁) 

industry-specific subsystem (OS, InS, FS). 

Assume that actual (𝑃𝜑𝑛1
𝑅𝑖𝑠𝑘(𝑡0)) boundary and (𝑃𝜑𝑛1

Ср (𝑡0)) mean values of damage to subsystems (OS,
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InS, FS) are available for the previous period. Further, the target damage reduction value is identified 

for the forecast period (𝑡0 − 𝑡1) with account taken of the deviation of the actual damage values from 

the mean ones 

∑ |𝑃𝜑𝑛1

Ср (𝑡0) − 𝑃𝜑𝑛1
𝑅𝑖𝑠𝑘(𝑡0)|𝑛

𝑖=1 .         (12) 

Further, the rational target value 𝑃𝜑𝑛1

𝑃𝑟𝑜𝑔(𝑡1) of a reduction in damage to subsystems (OS, InS, FS) is 

found; it is subject to comparison as a ratio of values for current and projected periods (𝑡0 − 𝑡1), 

taking into account a deviation of mean values of damage from planned values of damage: 

∑ |𝑃𝜑𝑛1

𝑃𝑟𝑜𝑔(𝑡1) − 𝑃𝜑𝑛1

Ср (𝑡0)|𝑛
𝑖=1 ,  (13) 

where n is the total number of values used in the calculations.  

𝜆𝑛, the coefficient affecting a reduction in damage from accidents and fires at PFPFER, calculated for 

current values, can be written as follows: 

𝜆𝑛(𝑡0) =
∑ |𝑃𝜑𝑛1

Ср (𝑡0)−𝑃𝜑𝑛1
𝑅𝑖𝑠𝑘(𝑡0)|𝑛

𝑖=1

∑ |𝑃𝜑𝑛1

Ср (𝑡0)|𝑛
𝑖=1

.      (14) 

𝜆𝑛, the coefficient affecting a reduction in damage from accidents and fires at PFPFER, calculated for 

the ISS development period, can be formulated as follows: 

𝜆𝑛(𝑡1) =
∑ |𝑃𝜑𝑛1

𝑃𝑟𝑜𝑔
(𝑡1)−𝑃𝜑𝑛1

Ср (𝑡0)|𝑛
𝑖=1

∑ |𝑃𝜑𝑛1

Ср (𝑡0)|𝑛
𝑖=1

.    (15) 

The achieved target value of the ISS development at PFPFER (conventional period) У(𝑡1 − 𝑡0) will 

be calculated using the difference between coefficients 𝜆𝑛, affecting the reduction in damage from 

accidents and fires at these enterprises 

У(𝑡1 − 𝑡0) = 𝜆𝑛(𝑡1) − 𝜆𝑛(𝑡0).         (16) 

The proposed theoretical models of ISS at PFPFER, designed for the present and future systems, are 

characterized by numerous parameters requiring computations to be made for all risks. Hence, there 

is a need to develop the ISS designed for PFPFER, meaning that there is a need to develop a set of 

research and methodological instruments to ensure the availability of the safety margin to ensure 

the maintenance and development of subsystems (OS, InS, FS), and to improve the efficiency of ISS 

at the enterprises considered in this article. 

VI. The case substantiating ISS improvement at PFPFER through the use of a set of

research and methodological instruments 

Let's analyze the calculation made within the framework of an experiment to make verifications 

using formula (8) together with the data obtained using methods contributed to the software 

registered with the Federal Service for Intellectual Property6 (figure 6).  

6 Certificates of state registration of computer software: 

№ 2022614215 RF Calculator for evaluation of industrial and fire safety actions at oil and gas enterprises of Russia; published 

17.03.2022, by E.V. Gvozdev, B.S. Sadovsky, N.R. Ruppa, P.A. Butovchenko; 

RF № 2023611653. Rater for assessment of industrial and fire safety at oil and gas enterprises of Russia; published 24.01.2023 

E.V. Gvozdev, N.M. Migalchinsky, T.E. Koldin, D.S. Sinyakin.
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Figure 6. Ranked list of unfulfilled activities assessed by risk 

The sampling has minimum (from 0,001) and maximum (0,250) limit values of risk calculated for 

unimplemented actions, extracted from statistics of accidents and fires for the period of 9 years7.  

In the present-day environment Corporate Decision Makers (hereinafter - DMs) use their practical 

experience to distribute resources between ISS subsystems (OS, InS, FS). Thus, DMs rise the 

probability of errors in prioritizing factors of damage from accidents and fires on the ranked list of 

risks. 

In the course of experiments some factors were randomly disregarded (about 25% in total) according 

to the following procedure: every 2nd factor was disregarded for the 1st experiment; every 3rd factor 

was disregarded for the 2nd experiment; every 4th factor was disregarded for the 3rd experiment 

(figure 6). As for the sampling analyzed using a set of research and methodological instruments, 

factors 121 to 161 (about 25% in total) were disregarded. Calculation formulas are presented for each 

experiment in the form of a system of equations: 

{

𝐴1 = ∑ (𝑛1 + 𝑛2 + ⋯ + 𝑛161) − (𝑛1 + 𝑛3 + ⋯ + 𝑛79) ∈ (25%) = 𝜆𝑛𝐴1
(𝑡0)0,250

0,001

𝐴2 = ∑ (𝑛1 + 𝑛2 + ⋯ + 𝑛161) − (𝑛1 + 𝑛4 + ⋯ + 𝑛118) ∈ (25%) = 𝜆𝑛𝐴2
(𝑡0) ⇒0,250

0,001

𝐴3 = ∑ (𝑛1 + 𝑛2 + ⋯ + 𝑛161) − (𝑛1 + 𝑛5 + ⋯ + 𝑛157) ∈ (25%) = 𝜆𝑛𝐴3
(𝑡0)0,250

0,001

𝐴РЕЗ(𝑡0)    (17) 

𝐵 = ∑ (𝑛1 + 𝑛2 + ⋯ + 𝑛161) − (𝑛121 + 𝑛122 + ⋯ + 𝑛161) ∈ (25%) = 𝐵(𝑡1)

0,250

0,001

 

Experimental results for present and future ISS at PFPFER are shown in figure 7. 

The graph shows that the ISS can be improved at PFPFER, if a set of research and methodological 

instruments are employed. In other words, risks of damage from accidents and fires can be reduced 

by 18% during the period of the ISS development.  

7 Information about accidents and fires is available on the website of the Federal Environmental, Industrial and Nuclear 

Supervision Service of Russia at https://www.gosnadzor.ru/industrial/oil/lessons/index.php?sphrase_id=2569631, accessed 

15.08.2023 
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Figure 7. Experimental data for present and future ISS at PFPFER 

Figure 5 shows the ratio of the present-day target value of ISS at PFPFER, equaling У(𝑡0), to the 

achieved target development value of ISS at PFPFER, equaling У(𝑡1). A positive trend towards the 

reduction in damage from accidents and fires can be formulated as follows: 

𝑚𝜆(1−𝑛) = 𝐵(𝑡1) − 𝐴РЕЗ(𝑡0) ≈ 2,2 ,         (18) 

where 𝑚𝜆(1−𝑛) is the mathematical expectation of the total value, affecting the reduction in damage 

from accidents and fires, calculated using a set of research and methodological instruments; 

𝐴RES(𝑡0);  𝐵(𝑡1) are the final results based on the experimental data for the current and future ISS at 

PFPFER (figure 7). 

The total calculated value, affecting the reduction in damage from accidents and fires and 

immediately related to all damage from accidents and fires reported on the website of the Federal 

Environmental, Industrial and Nuclear Supervision Service for the period of 9 years, is shown in 

table 3. The value applies to all Russian oil and gas companies. 

Table 3. Ratio of one unit of damage to total damage from accidents and fires at Russian oil and gas enterprises 

in 2014-2022 

Category Total damage from 

accidents and fires 

according to reports 

Ratio of total damage to 

one unit of damage 

according to 

experimental data 

Fatalities, number of persons 49 4 

Injuries, number of persons 122 10 

Economic damage, billion 

rubles 

19,7 1,615 

Values of socio-economic damage can be reduced to a conventional unit based on the experimental 

data (table 1) using the ratio of total calculated damage from accidents and fires to different 

categories of assets to be protected (table 1), as well as to the total calculated value 𝜆𝑛𝑐𝑜𝑛𝑠𝑡 ≈ 12,2 

(figure 5). 

The socio-economic effect 𝐸(1−𝑛) can be calculated as follows to rise the ISS at PFPFER in the course 

of the development period: 

𝐸(1−𝑛) =
𝑚𝜆(1−𝑛)

У(𝑡1−𝑡0)
∗ ,        (19)
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where У(𝑡1−𝑡0)
∗  is the time frame (3 years and more) prescribed by the management of these

enterprises for the development of ISS at PFPFER. A conceptual solution to the problem of the 

present-day ISS development at PFPFER is found. It will bring socio-economic benefits in the future 

in case of a reduction in the number of accidents and fires at these enterprises.  

This case confirms the feasibility of the ISS development through the practical application of research 

and methodological instruments at PFPFER. The proposed approach to development of the current 

ISS at PFPFER, presented by the author in a formal form, can be applied at any other production 

facilities of the Russian Federation. 

VII. ISS development at Russian production facilities: the proposal to be made to

the management team 

Executives of Russian production facilities can consider different ISS development periods for 

PFPFER. Below is the projected socio-economic effect attainable during one development period 

equaling one year (figure 8). 

Figure 8. Target model describing the achievement of the socio-economic effect during one year 

Schedules outline the time horizon needed to achieve the strategic objective, which sets the time 

frame for achieving sub-objectives at tactical and operational levels. The case of time horizons is 

presented for forecasting purposes (figure 9). 

Figure 9. Time horizons for ISS development at Russian production facilities 
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The strategic objective is formulated by the management team for a long period of time, but its 

achievement should be broken down into steps (monthly or quarterly goals).  

At the tactical level, the horizon for scheduling future activities is limited to one year.  

At the operational level, all actions implemented within a month (a quarter) are taken and registered 

in the documents of target-oriented operational scheduling. 

Production facilities should take advantage of the main items (models, methods, techniques, etc.) 

from the set of research and methodological instruments, developed by the author of the article, to 

achieve their targets at the strategic level, including a major reduction in damage from accidents and 

fires at Russian production facilities. 

Conclusion 

1. The relevance of the ISS development at PFPFER is substantiated by the author. In the future, ISS

will be able to reach a qualitatively new level through the assessment of risks of damage from

combined hazardous events (accidents and fires). Consolidated improvement areas are identified,

and research results are available for practical application in this area of research.

2. The idea of a new category of combined risks of hazardous events (accidents and fires) is

presented. Its originality lies in the fact that the adjustment of the required safety margin should

take into account the state of subsystems and the effect of services (OS, InS, FS) on the state of ISS at

PFPFER. The author of the article presents a new research area that requires expanding the range of

methods used in practice to assess the state of subsystems (OS, InS, FS).

3. The formulation of and a solution to the problem of the future development of ISS at PFPFER is

presented. Its uniqueness lies in the fact that this solution can present an individual risk as a

quantitative value as a result of assessment of each action left unimplemented in the field of OS, InS,

and FS.

4. The case substantiating the adequacy of results is presented. It proves the practical usability of a

new set of research and methodological instruments, which (1) have a socio-economic effect for

Russian production facilities, and (2) lead a positive trend towards a smaller damage from accidents

and fires registered and reported by different government authorities, such as the Ministry of the

Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural

Disasters, the Ministry of Labor, and the Federal Environmental, Industrial and Nuclear Supervision

Service of Russia.
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Abstract

The transient and metaheuristic cost analysis of a MX/ G(a, b)/ 1 retrial queue with random failure
during an extended Bernoulli vacation with impatient clients is covered in this study. Any batch that
arrives and discovers the server is busy, down, or on vacation joins an orbit. In the alternative, only one
new customer from the group joins the service right away, while the others join the orbit. After providing
each service, the server either waits to serve the following customer with probability (1 − θ) or goes on
vacation with probability θ. It has been found that these systems express steady-state solutions and are
dependent on time probability generating functions in consideration of their Laplace transforms. We also
discuss a few exceptional and particular instances. After that, the impact of different parameters on the
system’s effectiveness is evaluated. We are also talking about ANFIS. Additional approaches employed in
this study to swiftly determine the system’s optimum cost include genetic algorithms (GA), artificial bee
colonies (ABC), and particle swarm optimization (PSO). We also examined the graph-based convergence
of several optimization algorithms.

Keywords: Batch arriv al, Retrial queues, Feedback, Extended Ber noulli Vacation, ANFIS, Cost
Optimization.

1. Introduction

For the de velopment, capacity planning, perfor mance assessment, and optimization of
numer ous real-w orld systems, queueing theor y offers a potent tool. Chaudhr y and Templeton[ 1]
provided a compr ehensiv e analysis of bulk queuing. Bulk arriv al analysis, a condensed for m of
customer examination, is a great place to start with customised models. Bulk ser vice queuing
models were created by Baile y [2]. He inv ented the process known as “fixed-batc ser vice”. The
ser ver continuously offers a specifi batch of ser vices to each set of users in fixed-batc ser vice
queueing systems (QS).

The “r etrial queueing”system, which is used when a customer enters and the ser ver is occu-
pied, requir es the customer to lea ve the appr opriate area and repeat his request after a certain
period of time. This property is essential for netw ork technologies, cognitiv e netw orks, online
computing systems, manufacturing systems, and other systems.

Sumitha and Uda ya Chandrika [3] inv estigated a retrial queuing system with starting failur e,
single vacation, and orbital sear ch. In batch arriv al retrial queues, Radha et al. [4] studied some
system perfor mance measur es are evaluated using the supplementar y variable technique (SVT)
and the steady-state (SS) probability generating function (PGF) for system size.

Gomez-Corral has talked a lot about a retrial QS with FCFS discipline and typical retrial
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periods. The M/G/1 retrial queue with feedback and starting failur es w as described by Krishna
Kumar et al. [5]. Yang, Tao, and Hui Li[6] inv estigated an M/G/1 retrial queue with a starting
failur e-pr one ser ver. An analysis of a feedbac k retrial queuing system with starting failur es and a
single vacation w as studied by Mokaddis et al. [7].

In a Vacation, queueing system the ser ver could be temporarily una vailable for a number of
reasons, including maintenance monitoring, tending to other queues, or simply taking a break.
When the ser ver is una vailable to users, that time period is referr ed to as a “v acation ”. A single
ser ver batch arriv al Ber noulli feedback QS with a w aiting ser ver, K-variant vacations, and anxious
clients w as examined by Bouchentouf et al. [8]. The transient beha viour of a batch arriv al feedback
retrial queue with starting failur e and Ber noulli vacation (BV) w as inv estigated by Ayy appan
and Sathiy a [9]. Assuming that repair , ser vice, and vacation times are randomly distributed, the
time-dependent PGF are also computed in relation to their Laplace transfor ms(LT).

Numer ous academics who have studied queueing techniques with interruptions have as their
primar y tenet that, in the event of a failur e, the ser vice channel will be promptly repair ed. A
transient analysis of the M[X1 ], M[X2 ]/ G1, G2/ 1 retrial QS’s with priority ser vices, working break-
down, start up/close down time, BV, reneging, and balking w as studied by Ayy appan et al. [10].
Kulkar ni et al. [11] established a retrial queue with a ser ver prone to failur es and maintenance.
Ayy appan and Shy amala [12] created an M[X]/ G/ 1 with Ber noulli schedule, ser ver vacation,
random break down and second optional repair . And also calculate the typical length of the line
and the typical w ait period in closed for m. When the repair is finished a number of consumers
who had previously used the ser vices w ait for the remainder to be provided. Jau-Chuan Ke et al.
[13] demonstrated a w aiting line with customers complaining and providing feedback the ser vers
malfunctioned. Further mor e, if all ser vers are alr eady in use when a customer arriv es, he will
either join a retrial orbit or decline. When a ser vice is finished the client can exit the system or
rejoin the retrial group to receiv e mor e ser vices. They can also design a cost function to deter mine
the system’s ideal parameter settings under the stability condition. Computer telecommunication
systems is a example of application for these types.

A consumer may try again until they are happ y if they are not satisfie with the ser vice
they receiv ed. Takacs [14] inv estigates this at first allo wing the consumer who has finishe the
ser vice to provide feedback to the rear of the line. An M/(G1, G2)/1 feedback retrial queue with
tw o phase ser vice, variant vacation policy under dela ying repair for impatient Customers w as
analysed by Rajadurai et al. [15].

Many real-w orld systems have impatient custome rs as a built-in featur e, particularly w hen the
customer is a human, a perishable product, or some moving object that can depart the ser vice area
and their w aiting period in the queue reaches certain pre-define threshold values. This clearly
explains why queueing literatur e frequently discusses the impatience phenomenon. Accounting
impatience is crucial in the setting of lines for group ser vice because a client could spend a
large amount of time in the system while w aiting for the accumulation of a suf ficien number of
customers.

More focus has been placed on the numer ous retrial lineups with non-persistent (impatient)
consumers. A discussion about the study of a retrial queue wi th group ser vice of impatient
clients inv olv ed D’rienzo et al. [16]. A batch arriv al retrial queuing model with starting failur es
and customer impatience w as addr essed by Nila and Sumitha [17]. Customers arriv e in batches
in line with the Poisson process. In certain situations, the clients refuse and break their promises.
The analysis of a retrial QS with priority ser vices, working breakdo wn, BV, admission contr ol,
and balking w as explained by Ayy appan et al. [18]. Ayy appan and Nir mala [19] explor ed an
analysis of customer ’s impatience on bulk ser vice QS’s with an unr eliable ser ver, setup time
and tw o types of multiple vacations. Sethi.R et al. [20] inv estigated the cost optimization and
ANFIS computing of an unr eliable M/M/1 queueing system with customers’ impatience under
n-policy . The ideal Cost Analysis for Discr ete-Time Recurr ent Queue with Ber noulli Feedback
and Emer gency Vacation w as described by M. Vaishna wi [21]. In order to calculate costs, PSO,
ABC, and GA are also used. To ensur e the best deal, these methods compar e and contrast the
outputs.
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The paper ’s structur e is as follo ws: Section 2 provides a detailed explanation of the mathemat-
ical model. Section 3 discusses the ideas and for mulae governing our system as well as how to
obtain the time-dependent solution of our model. The PGF for the queue length at each giv en
epoch and the SS perfor mance of the sy stem are explicitly deter mined in Section 4. In Section
5, the pertinent stability condition has been unco vered. In Section 6, we precisely estimate the
mean queue size, mean queue w aiting time, and efficienc featur es for each state of the system.
In Section 7, we present a practical illustration. We offer a numerical study and associated graphs
in Section 8. Further mor e, an ANFIS w as provided in Section 9. The Cost optimization is offered
by Section 10. The conclusion is presented in Section 11.

2. Model Description and Analysis

We suppose that the underlying queueing model is as follo ws:
Arrival process: Customers enter a poisson stream, and bulk ser vice is offered on an FCFS basis.
Considering that a batch of “i”customers enters the system, Λ > 0 repr esents the average batch
arriv al rate , and Λcidt(i ≥ 1) repr esents the firs order probability during the short inter val of
time (ϖ, ϖ + dϖ]. We defin a batch arriv al and a bulk ser vice as having a smallest batch size of
“a”and a highest batch size of “b”.
Retrial process: When a customer arriv es and disco vers that the ser ver is busy , una vailable, or
broken, the customer has tw o options: (1) lea ve the ser vice area with a probability of d and join a
pool of blocked customers known as an orbit; or (2) balk the system with a probability of d̄ in
accor dance with FCFS, which implies that only the customer at the head of the orbit queue is
per mitted access to the ser ver.
When the ser ver is idle, the customer at the head of the retrial queue engages with potential
primar y customers to see who can cancel their ser vice request and, with prob., g, either move up
in the retrial queue or lea ve the system with prob., (1 − g).
A general (arbitra y) distribution with the distribution function A(u) and the density function
a(u) deter mines the retrial inter val.
Let g(ς)dς be the conditional prob., density of completing the retrial within the range (ς, ς + dς],
wher e ς is the elapsed retrial time.

g(ς) =
a(ς)

1 − A(ς)

and ther efor e,

a(u) = g(u)e−
∫ u

0 g(ς)dς

Inter -retrial times have an arbitrar y dist., A(ς) with correponding Laplace-Stieltijes transfor ms
(LST) A∗(u).
Service process: The ser ver enters an idle state wher ever a fresh or retur ning user comes befor e
quickly resuming regular operations for the new comers. A generic (arbitrar y) distance with the
distance function B(ς) and the density function b(ς) follo ws the ser vice time.
Giv en the elapsed retrial time ς, defin ϕ(ς)dς as the conditional probability of ser vice completion
within the range (ς, ς + dς].

ϕ(ς) =
b(ς)

1 − B(ς)

and ther efor e,

b(ϖ) = ϕ(ϖ)e−
∫ ϖ

0 ϕ(ς)dς
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The random variable B with the dist., function B(ς) and LST B∗(ϖ) denotes the ser vice time.
Random failure: Failur es are anticipated to occur sporadically throughout the system and ought
to follo w a poisson stream with an average failur e rate of τ > 0. The repair times follo w a general
dist.„ which is repr esented by the random variable D and the dist., function D(ς), with the LST
D∗(ϖ).
The length of repairs is deter mine d by a general (arbitrar y) dist., with a dist., function D(ς)
and a density function d(ς). Giv en an elapsed repair time of ς, defin α(ς)dς as the conditional
probability of completing repairs within the range (ς, ς + dς].

α(ς) =
d(ς)

1 − D(ς)

and ther efor e,

d(ϖ) = α(ϖ)e−
∫ ϖ

0 α(ς)dς

Extended Bernoulli vacation:If ther e are any unfinishe parts of the ser vice, the ser ver has
tw o options: either accept the BV with a probability of θ or keep ser ving them with a probability
of (1 − θ). After the vacation is over, the ser ver either undertakes the second type of optional
extended Ber noulli vacation with a prob., of µ or continues to ser ve the remaining batches with a
prob., of (1 − µ).
The random variable F with the distance function F(ς) and LST F∗(ϖ) is emplo yed to repr esent
the ser ver ’s leisur e time. This arbitrar y variable F follo ws a general distribution.
The ser ver ’s vacation time follo ws a general(arbitrar y) dist., function F(ϖ) and density function
f (ϖ). Let β(ς)dς be the conditional prob., of a completion of a vacation during the inter val
(ς, ς + dς], giv en that the elapsed repair time is ς, so that

β(ς) =
f (ς)

1 − F(ς)

and ther efor e,

f (ϖ) = β(ϖ)e−
∫ ϖ

0 β(ς)dς

The system’s stochastic processes are all consider ed to be independent of one another .
Feedback Rule: Clients who are unhapp y with their offerings can re-join the line once they’v e
been completed, giv e feedback to receiv e another ser vice with minimal dif ficulty , or both p
(0 ≤ p ≤ 1), other wise the system must be ter minated with complement prob. q = (1 − p)

3. DEFINITIONS:

We defin
1. Pn(ς, ϖ)= Prob., that the ser ver will be idle at time ϖ with n(n ≥ 0) customers in the orbit and
ς for the customer ’s elapsed retrial time.
2. Qn(ς, ϖ)= Prob., that the ser ver will be busy at time ϖ with n(n ≥ 0) customers in the orbit
and η for the customer ’s elapsed retrial time.
3. Rn(ς, ϖ)= Prob., that at time ϖ, ther e are n(n ≥ 0) customers in the orbit and the ser ver is
offlin due to system repair and w aiting for repairs to start with elapsed repair time ς.
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4. Vn(ς, ϖ)= Prob., that ther e are n(n ≥ 0) consumers in orbit at time ϖ and the ser ver is on
vacation with elapsed vacation time ς.
5. Ther e are no customers in the orbit at time ϖ, and the ser ver is inactiv e but still available in the
system, accor ding to the probability P0(ϖ).
The follo wing dif ferential-dif ference equations regulate the model:

d
dϖ

P0(ϖ) = −ΛP0(ϖ) + (1 − θ)d̄
∫ ∞

0
Q0(ς, ϖ)ϕ(ς)dς + (1 − µ)

∫ ∞

0
V0(ς, ϖ)β(ς)dς (1)

∂

∂ς
Pn(ς, ϖ) +

∂

∂ϖ
Pn(ς, ϖ) = −[Λ + g(ς)]Pn(ς, ϖ), n ≥ 1 (2)

∂

∂ς
Q0(ς, ϖ) +

∂

∂ϖ
Q0(ς, ϖ) = −[Λ + τ + ϕ(ς)]Q0(ς, ϖ) (3)

∂

∂ς
Qn(ς, ϖ) +

∂

∂ϖ
Qn(ς, ϖ) = −[Λ + τ + ϕ(ς)]Qn(ς, ϖ) + Λ

n

∑
k=1

CkQn−k(ς, ϖ), n ≥ 1 (4)

∂

∂ς
R0(ς, ι, ϖ) +

∂

∂ϖ
R0(ς, ϖ) = −[Λ + α(ς)]R0(ς, ϖ), n = 0 (5)

∂

∂ς
Rn(ς, ι, ϖ) +

∂

∂ϖ
Rn(ς, ϖ) = −[Λ + α(ς)]Rn(ς, ϖ) + Λ

n

∑
k=1

CkRn−k(ς, ϖ), n ≥ 1 (6)

∂

∂ς
V0(ς, ϖ) +

∂

∂ϖ
V0(ς, ϖ) = −[Λ + β(ς)]V0(ς, ϖ), n = 0 (7)

∂

∂ς
Vn(ς, ϖ) +

∂

∂ϖ
Vn(ς, ϖ) = −[Λ + β(ς)]Vn(ς, ϖ) + Λ

n

∑
k=1

CkVn−k(ς, ϖ), n ≥ 1 (8)

The follo wing boundar y conditions must be met in order to answ er the giv en equation:

Pn(0, ϖ) =(1 − θ)d̄
∫ ∞

0
Qn(ς, ϖ)ϕ(ς)dς + (1 − θ)d

∫ ∞

0
Qn−1(ς, ϖ)ϕ(ς)dς

+
∫ ∞

0
Rn(ς, ϖ)α(ς)dς + (1 − µ)

∫ ∞

0
Vn(ς, ϖ)β(ς)dς, n ≥ 1 (9)

Q0(0, ϖ) =Λp(1 − g)
b

∑
r=a

a−1

∑
k=0

Ck

∫ ∞

0
Pn−k+b(ς, ϖ)dς

+ (1 − θ)p
b

∑
r=a

∫ ∞

0
Pr(ς, ϖ)g(ς)dς +

b

∑
r=a

∫ ∞

0
Vr(ς, ϖ)β(ς)dς (10)

Qn(0, ϖ) =Λp(1 − g)
a−1

∑
k=0

Ck

∫ ∞

0
Pn−k+b(ς, ϖ)dς + p

∫ ∞

0
Pn+b(ς, ϖ)g(ς)dς

+ Λg
∫ ∞

0
Pn+b(ς, ϖ)dς +

∫ ∞

0
Vn+b(ς, ϖ)β(ς)dς (11)

R0(ς, 0, ϖ) =τQ0(ς, ϖ), n = 0 (12)
Rn(ς, 0, ϖ) =τQn(ς, ϖ), n ≥ 1 (13)

Vn(0, ϖ) =θ
∫ ∞

0
Qn(ς, ϖ)ϕ(ς)dς, n ≥ 1 (14)

We presume that the system is initially empty of users and that the ser ver is idle. Thus, the initial
conditions are

Vn(0) = Rn(0) = Qn(0) = 0, n ≥ 0

P0(0) = 1, Pi
n(0) = 0, n ≥ 1 (15)
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Generating functions of the queue length (The time-dependent solution):

P(ς, Ψ, ϖ) =
∞

∑
n=0

ΨnPi
n(ς, ϖ); P(Ψ, ϖ) =

∞

∑
n=0

ΨnPn(ϖ)

Q(ς, Ψ, ϖ) =
∞

∑
n=0

ΨnQn(ς, ϖ); Q(Ψ, ϖ) =
∞

∑
n=0

ΨnQn(ϖ)

R(ς, ι, Ψ, ϖ) =
∞

∑
n=0

ΨnRn(ς, ι, ϖ); R(ς, Ψ, ϖ) =
∞

∑
n=0

ΨnRn(ς, ϖ)

V(ς, Ψ, ϖ) =
∞

∑
n=0

ΨnVn(ς, ϖ); V(Ψ, ϖ) =
∞

∑
n=0

ΨnVn(ϖ)

C(Ψ) =
∞

∑
n=1

CnΨn; Q(Ψ) =
a−1

∑
r=0

QrΨr (16)

which defin the LT of a function f (ϖ) as it conv erges within the circle define by z ≤ 1.

f̄ (s) =
∫ ∞

0
e−sϖ f (ϖ)dϖ, R(s) ≥ 0 (17)

Using (15) and the LT from equations (1) through (14), we arriv e at

(s + Λ) p̄0(s) = 1 + (1 − θ)d̄
∫ ∞

0
Q̄0(ς, s)ϕ(ς)dς + (1 − µ)

∫ ∞

0
V̄0(ς, s)β(ς)dς (18)

∂

∂ς
P̄n(ς, s) + [s + Λ + g(ς)]P̄n(ς, s) = 0, n ≥ 1 (19)

∂

∂ς
Q̄0(ς, s) + [s + Λ + ϕ(ς)]Q̄0(ς, s) = 0 (20)

∂

∂ς
Q̄n(ς, s) + [s + Λ + ϕ(ς)]Q̄n(ς, s) = Λ

n

∑
k=1

CkQ̄n−k(ς, s), n ≥ 1 (21)

∂

∂ς
R̄0(ς, ι, s) + [s + Λ + α(ς)]R̄0(ς, s) = 0 (22)

∂

∂ς
R̄n(ς, ι, s) + [s + Λ + α(ς)]R̄n(ς, s) = Λ

n

∑
k=1

CkR̄n−k(ς, s), n ≥ 1 (23)

∂

∂ς
V̄0(ς, s) + [s + Λ + β(ς)]V̄0(ς, s) = 0 (24)

∂

∂ς
V̄n(ς, s) + [s + Λ + β(ς)]V̄n(ς, s) = Λ

n

∑
k=1

CkV̄n−k(ς, s), n ≥ 1 (25)
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P̄n(0, s) = (1 − θ)d̄
∫ ∞

0
Q̄n(ς, s)ϕ(ς)dς + (1 − θ)d

∫ ∞

0
Q̄n−1(ς, s)ϕ(ς)dς

+
∫ ∞

0
R̄n(ς, s)α(ς)dς + (1 − µ)

∫ ∞

0
V̄n(ς, s)β(ς)dς, n ≥ 1 (26)

Q̄0(0, s) = Λp(1 − g)
b

∑
r=a

a−1

∑
k=0

Ck

∫ ∞

0
P̄n−k+b(ς, s)dς

+ (1 − θ)p
b

∑
r=a

∫ ∞

0
P̄r(ς, s)g(ς)dς +

b

∑
r=a

∫ ∞

0
V̄r(ς, s)β(ς)dς (27)

Q̄n(0, s) = Λp(1 − g)
a−1

∑
k=0

Ck

∫ ∞

0
P̄n−k+b(ς, s)dς + p

∫ ∞

0
P̄n+b(ς, s)g(ς)dς

+ Λg
∫ ∞

0
P̄n+b(ς, s)dς +

∫ ∞

0
V̄n+b(ς, s)β(ς)dς (28)

R̄0(ς, 0, s) = τQ̄0(ς, s), n = 0 (29)
R̄n(ς, 0, s) = τQ̄n(ς, s), n ≥ 1 (30)

V̄n(0, s) = θ
∫ ∞

0
Q̄n(ς, s)ϕ(ς)dς, n ≥ 1 (31)

By multiplying equations (19) through (31) by Ψn and adding the results over n, we can obtain
using the generating function mentioned in equation (16).

∂

∂ς
P̄(ς, Ψ, s) + [s + Λ + g(ς)]P̄(ς, Ψ, s) = 0 (32)

∂

∂ς
Q̄(ς, Ψ, s) + [s + Λ(1 − C(Ψ)) + ϕ(ς)]Q̄(ς, Ψ, s) = 0 (33)

∂

∂ς
R̄(ς, ι, Ψ, s) + [s + Λ(1 − C(Ψ)) + α(ς)]R̄(ς, Ψ, s) = 0 (34)

∂

∂ς
V̄(ς, Ψ, s) + [s + Λ(1 − C(Ψ)) + β(ς)]V̄(ς, Ψ, s) = 0 (35)

P̄(0, Ψ, s) = (1 − θ)(d̄ + dΨ)
∫ ∞

0
Q̄(ς, Ψ, s)ϕ(ς)dς +

∫ ∞

0
R̄(ς, Ψ, s)α(ς)dς

+ (1 − µ)
∫ ∞

0
V̄(ς, Ψ, s)βςdς − d̄(1 − θ)

∫ ∞

0
Q̄0(ς, s)ϕ(ς)dς

− (1 − µ)
∫ ∞

0
V̄0(ς, s)β(ς)dς, n ≥ 1 (36)

ΨbQ̄(0, Ψ, s) = Λ(1 − g)pC(Ψ)
∫ ∞

0
P̄(ς, Ψ, s)dς + p

∫ ∞

0
P̄(ς, Ψ, s)g(ς)dς

+ Λg
∫ ∞

0
P̄(ς, Ψ, s)dς +

∫ ∞

0
V̄(ς, Ψ, s)β(ς)dς (37)

R̄(ς, 0, Ψ, s) = τQ̄(ς, Ψ, s), n ≥ 1 (38)

V̄(0, Ψ, s) = θ
∫ ∞

0
Q̄(ς, Ψ, s)ϕ(ς)dς, n ≥ 1 (39)

Equation (18) in (36) giv es us

P̄(0, Ψ, s) = [1 − (s + Λ)P̄0(s)] + (1 − θ)(d̄ + dΨ)
∫ ∞

0
Q̄(ς, Ψ, s)ϕ(ς)dς

+
∫ ∞

0
R̄(ς, Ψ, s)α(ς)dς + (1 − µ)

∫ ∞

0
V̄(ς, Ψ, s)β(ς)dς

(40)
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Equation (32), when integrated betw een 0 and ς, yields

P̄(ς, Ψ, s) = P̄(0, Ψ, s)e−(s+Λ)ς−
∫ ς

0 g(ϖ)dϖ (41)

Once mor e, integrating equation (41) by parts with respect to ς yiedls,

P̄(Ψ, s) = P̄(0, Ψ, s)
[

1 − Ā(s + Λ)

s + Λ

]
(42)

wher e,

Ā(s + Λ) =
∫ ∞

0
e−(s+Λ)ςdA(ς)

When integrating equations (33) to (35) from 0 to ς, similar outcomes are found.

Q̄(ς, Ψ, s) = Q̄(0, Ψ, s)e−ζ(Ψ,s)ς−
∫ ς

0 ϕ(ϖ)dϖ (43)

R̄(ς, ι, Ψ, s) = R̄(ς, 0, Ψ, s)e−ζ(Ψ,s)ς−
∫ ς

0 α(ϖ)dϖ

R̄(ς, Ψ, s) = R̄(ς, 0, Ψ, s)
[

1 − D̄(ζ(Ψ, s))
ζ(Ψ, s)

]
(44)

V̄(ς, Ψ, s) = V̄(0, Ψ, s)e−ζ(Ψ,s)ς−
∫ ς

0 β(ϖ)dϖ (45)

wher e the values of P̄(0, Ψ, s),Q̄(0, Ψ, s),R̄(0, Ψ, s) and V̄(0, Ψ, s) are giv en by (37) to (40).
Taking into account ς yiedls, integrate equations (43) to (45) by parts once mor e.

Q̄(Ψ, s) = Q̄(0, Ψ, s)
[

1 − B̄(ζ(Ψ, s))
ζ(Ψ, s)

]
(46)

R̄(Ψ, s) = τQ̄(0, Ψ, s)
[

1 − B̄(ζ(Ψ, s))
ζ(Ψ, s)

] [
1 − D̄(ζ(Ψ, s))

ζ(Ψ, s)

]
(47)

V̄(Ψ, s) = V̄(0, Ψ, s)
[

1 − F̄(ζ(Ψ, s))
ζ(Ψ, s)

]
(48)

Wher e,

B̄(ζ(Ψ, s)) =
∫ ∞

0
e−ζ(Ψ,s)ςdB(ς)

D̄(ζ(Ψ, s)) =
∫ ∞

0
e−ζ(Ψ,s)ςdD(ς)

F̄(ζ(Ψ, s)) =
∫ ∞

0
e−ζ(Ψ,s)ςdF(ς)

are, in order, the LST of the follo wing values: retrial time A(ς), ser vice time B(ς), repair time
D(ς), and vacation time F(ς).
Now, multiplying both side of equations (41),(43) to (45) by g(ς),ϕ(ς),α(ς) and β(ς) and inte-
grating over ς, we obtain ∫ ∞

0
P̄(ς, Ψ, s)g(ς)dς = P̄(0, Ψ, s)Ā(s + Λ) (49)∫ ∞

0
Q̄(ς, Ψ, s)ϕ(ς)dς = Q̄(0, Ψ, s)B̄(ζ(Ψ, s)) (50)∫ ∞

0
R̄(ς, ι, Ψ, s)α(ς)dς = R̄(ς, 0, Ψ, s)D̄(ζ(Ψ, s)) (51)∫ ∞

0
V̄(ς, Ψ, s)β(ς)dς = V̄(0, Ψ, s)F̄(ζ(Ψ, s)) (52)
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Using equations (50) in (39)

V̄(0, Ψ, s) = θQ̄(0, Ψ, s)B̄(ζ(Ψ, s)) (53)

Using equations (49) in (37) and (38), we get

Q̄(0, Ψ, s) =
P̄(0, Ψ, s)

Ψb − θF̄(ζ(Ψ, s))B̄(ζ(Ψ, s))[
Λ(1 − g)pC(Ψ)

(
1 − Ā(s + Λ)

s + Λ

)
+ pĀ(s + Λ) + Λg

(
1 − Ā(s + Λ)

s + Λ

)]
(54)

R̄(ς, 0, Ψ, s) = τQ̄(0, Ψ, s)
(

1 − B̄(ζ(Ψ, s))
(ζ(Ψ, s))

)
(55)

Using equation (50) to (52) in (40) we get

P̄(0, Ψ, s) =
Nr(Ψ)

Dr(Ψ)
(56)

Nr(Ψ) =[1 − (s + Λ)P̄0(s)][Ψb − θF̄(ζ(Ψ, s))B̄(ζ(Ψ, s))]

Dr(Ψ) =Ψb − θF̄(ζ(Ψ, s))B̄(ζ(Ψ, s))

−
[

Λ(1 − g)pC(Ψ)

(
1 − Ā(s + Λ)

s + Λ

)
+ pĀ(s + Λ) + Λg

(
1 − Ā(s + Λ)

s + Λ

)]
[
(1 − θ)(d̄ + dΨ)B̄(ζ(Ψ, s)) + τD̄(ζ(Ψ, s))

(
1 − B̄(ζ(Ψ, s))

(ζ(Ψ, s))

)
+ θ(1 − µ)F̄(ζ(Ψ, s))B̄(ζ(Ψ, s))

]
wher e,

ζ(Ψ, s) = s + Λ(1 − C(Ψ))

Subs/- P̄(0, Ψ, s) from equation (56) into equation (53) to (55)

Q̄(0, Ψ, s) =

Λ(1 − g)pC(Ψ)
(

1−Ā(s+Λ)
s+Λ

)
+ pĀ(s + Λ) + Λg

(
1−Ā(s+Λ)

s+Λ

)
Ψb − θF̄(ζ(Ψ, s))B̄(ζ(Ψ, s))


[

Nr(Ψ)

Dr(Ψ)

]
(57)

R̄(ς, 0, Ψ, s) =τ

(
1 − B̄(ζ(Ψ, s))

(ζ(Ψ, s))

) [
Nr(Ψ)

Dr(Ψ)

]
Λ(1 − g)pC(Ψ)

(
1−Ā(s+Λ)

s+Λ

)
+ pĀ(s + Λ) + Λg

(
1−Ā(s+Λ)

s+Λ

)
Ψb − θF̄(ζ(Ψ, s))B̄(ζ(Ψ, s))

 (58)

V̄(0, Ψ, s) =θB̄(ζ(Ψ, s))
[

Nr(Ψ)

Dr(Ψ)

]
Λ(1 − g)pC(Ψ)

(
1−Ā(s+Λ)

s+Λ

)
+ pĀ(s + Λ) + Λg

(
1−Ā(s+Λ)

s+Λ

)
Ψb − θF̄(ζ(Ψ, s))B̄(ζ(Ψ, s))

 (59)

Updating equations (56) to (59) in (42), (46) to (48) We deter mine the PGF of various conditions
in the system under a transient condition.
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4. The Steady state’s findings:

To defin the SS prob., we disr egar d the argument ϖ wher ever it appears in the time-dependent
analysis.

lim
s→0

s f̄ (s) = lim
ϖ→∞

f (ϖ)

P(Ψ) = P(0, Ψ)

(
1 − Ā(Λ)

Λ

)
(60)

Q(Ψ) =

(
1 − B̄(ζ(Ψ))

ζ(Ψ)

)
P(0, Ψ) (61)Λ(1 − g)pC(Ψ)

(
1−Ā(Λ)

Λ

)
+ pĀ(Λ) + Λg

(
1−Ā(Λ)

Λ

)
Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))

 (62)

R(Ψ) = τ

(
1 − B̄(ζ(Ψ))

ζ(Ψ)

)(
1 − D̄(ζ(Ψ))

ζ(Ψ)

)

P(0, Ψ)

Λ(1 − g)pC(Ψ)
(

1−Ā(Λ)
Λ

)
+ pĀ(Λ) + Λg

(
1−Ā(Λ)

Λ

)
Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))

 (63)

V(Ψ) = θB̄(ζ(Ψ))

(
1 − F̄(ζ(Ψ))

ζ(Ψ)

)

P(0, Ψ)

Λ(1 − g)pC(Ψ)
(

1−Ā(Λ)
Λ

)
+ pĀ(Λ) + Λg

(
1−Ā(Λ)

Λ

)
Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))

 (64)

wher e,

P(0, Ψ) =
Nr(Ψ)

Dr(Ψ)

Nr(Ψ) = [1 − ΛP̄0][Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))]

Dr(Ψ) = Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))

−
[

Λ(1 − g)pC(Ψ)

(
1 − Ā(Λ)

Λ

)
+ pĀ(Λ) + Λg

(
1 − Ā(Λ)

Λ

)]
[
(1 − θ)(d̄ + dΨ)B̄(ζ(Ψ)) + τD̄(ζ(Ψ))

(
1 − B̄(ζ(Ψ))

(ζ(Ψ))

)
+θ(1 − µ)F̄(ζ(Ψ))B̄(ζ(Ψ))] (65)
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4.1. Queue sizes distribution at a certain epoch:

The PGF is a of the queue size dist., at a random inter val, is obtained by adding (60) to (63) with
the idle ter m.

K(Ψ) =
Nr(Ψ)

Dr(Ψ)
(66)

Nr(Ψ) = ΛP0ζ(Ψ)
(

Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))− [(1 − g)pC(Ψ) (1 − Ā(Λ)) + pĀ(Λ)

+g (1 − Ā(Λ))]

[
(1 − θ)(d̄ + dΨ)B̄(ζ(Ψ)) + τD̄(ζ(Ψ))

(
1 − B̄(ζ(Ψ))

(ζ(Ψ))

)
+θ(1 − µ)F̄(ζ(Ψ))B̄(ζ(Ψ))])− (1 − Ā(Λ))ζ(Ψ)[Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))

+ Λ [(1 − g)pC(Ψ) (1 − Ā(Λ)) + pĀ(Λ) + g (1 − Ā(Λ))]

[(1 − B̄ζ(Ψ)) + τ(1 − B̄ζ(Ψ))(1 − D̄ζ(Ψ)) + θB̄ζ(Ψ)(1 − F̄ζ(Ψ))]]

+ (1 − Ā(Λ))ζ(Ψ)[Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))

+ Λ [(1 − g)pC(Ψ) (1 − Ā(Λ)) + pĀ(Λ) + g (1 − Ā(Λ))]]

[(1 − B̄ζ(Ψ)) + τ(1 − B̄ζ(Ψ))(1 − D̄ζ(Ψ)) + θB̄ζ(Ψ)(1 − F̄ζ(Ψ))]]

Dr(Ψ) = ζ(Ψ)Λ
{

Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))− [(1 − g)pC(Ψ) (1 − Ā(Λ)) + pĀ(Λ)

+ g (1 − Ā(Λ))]

(
(1 − θ)(d̄ + dΨ)B̄(ζ(Ψ)) + τD̄(ζ(Ψ))

(
1 − B̄(ζ(Ψ))

(ζ(Ψ))

)
+θ(1 − µ)F̄(ζ(Ψ))B̄(ζ(Ψ)))

}

5. Stability Condition

The PGF needs to meet P(1)=1. Applying the L’Hopital rules and equating the expr ession to 1
results in the result that satisfie the requir ement.

b − [(1 − g)pE(I)(1 − Ā(Λ))][(1 − θ)(d + d̄) + θ(1 − µ)] + p(1 − g)(1 − Ā(Λ))

+ pĀ(Λ) + g(1 − Ā(Λ))[(1 − θ)(d + d̄)(1 − ΛE(I)E(B)) + τE(B)

− θΛ(1 − µ)E(I)A1] + ΛθE(I)A1

Now we can deter mine the prob., that are unkno wn. P(1)=1 is ther efor e fulfille if

Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))− [(1 − g)pC(Ψ) (1 − Ā(Λ)) + pĀ(Λ) + g (1 − Ā(Λ))][
(1 − θ)(d̄ + dΨ)B̄(ζ(Ψ)) + τD̄(ζ(Ψ))

(
1 − B̄(ζ(Ψ))

(ζ(Ψ))

)
+ θ(1 − µ)F̄(ζ(Ψ))B̄(ζ(Ψ))

]
> 0

ρ =

[(1 − g)pE(I)(1 − Ā(Λ))][(1 − θ)(d + d̄) + θ(1 − µ)] + [p(1 − g)(1 − Ā(Λ))
+pĀ(Λ) + g((1 − Ā(Λ))][(1 − θ)(d + d̄)(1 − ΛE(I)E(B))

+ τE(B)− θΛ(1 − µ)E(I)A1] + ΛθE(I)A1
b

(67)

then ρ < 1 is the condition to be satisfie for the existence of the SS for the model under
consideration.

6. Performance Evaluation:

This section includes system perfor mance metrics, a model stability study , and some unique
system prob., while the system is in various states.
We obtain the follo wing prob., if the system fulfill the stability requir ement ρ < 1.
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• Let P be the SS Prob., that the ser ver is idle during the retrial time.

P = lim
Ψ→1

P(Ψ) = P(1) =
(1 − θ)(1 − Λp0)(1 − Ā(Λ))

Λ(1 − θ)− [p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))]
[(1 − θ)(d + d̄) + θ(1 − µ)]

• If the ser ver is busy , let Q be the SS Prob.,

Q = lim
Ψ→1

Q(Ψ)

Q(1) =E(B)×
(1 − Λp0)[p(1 − g)(1 − Ā(Λ))E(I)]

b + ΛθE(I)A1 − [(1 − g)pE(I)(1 − Ā(Λ))][(1 − θ)(d + d̄) + θ(1 − µ)]
+[p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))]
(1 − θ)(d + d̄)(1 − ΛE(I)E(B)) + τE(B)− Λθ(1 − µ)E(I)A1


• R ought to indicate the SS Prob., that the ser ver is being repair ed.

R = lim
Ψ→1

R(Ψ)

R(1) =τE(B)E(D)×
(1 − Λp0)[p(1 − g)(1 − Ā(Λ))E(I)]

b + ΛθE(I)A1 − ([(1 − g)pE(I)(1 − Ā(Λ))][(1 − θ)(d + d̄) + θ(1 − µ)]
+[p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))]
[(1 − θ)(d + d̄)(1 − ΛE(I)E(B)) + τE(B)− Λθ(1 − µ)E(I)A1])


• Using V as the SS Prob., we may assume that the ser ver is on vacation.

V = lim
Ψ→1

V(Ψ)

V(1) =θE(F)E(I)×
(1 − Λp0)(−ΛE(B)p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))

+ p(1 − g)((1 − Ā(Λ))))

b + ΛθE(I)A1 − ([(1 − g)pE(I)(1 − Ā(Λ))][(1 − θ)(d + d̄) + θ(1 − µ)]
+[p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))][(1 − θ)(d + d̄)

(1 − ΛE(I)E(B)) + τE(B)− Λθ(1 − µ)E(I)A1])


6.1. Average queue length:

Computing at Ψ = 1 and dif ferentiating (65) with regar d to Ψ yields the mean number of users
in the queue (Lq) under SS conditions.

Lq = lim
Ψ→1

d
dΨ

P(Ψ)

P′(1) =
Nr′′(1)Dr′(1)− Dr′′(1)Nr′(1)

2(Dr′(1))2
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D
′
(1) = −Λ2E(I)

{
Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))− [(1 − g)pC(Ψ) (1 − Ā(Λ)) + pĀ(Λ)

+g (1 − Ā(Λ))]

[
(1 − θ)(d̄ + dΨ)B̄(ζ(Ψ)) + τD̄(ζ(Ψ))

(
1 − B̄(ζ(Ψ))

(ζ(Ψ))

)
+θ(1 − µ)F̄(ζ(Ψ))B̄(ζ(Ψ))]}

D
′′
(1) = −Λ2 {E(I(I − 1))[1 − θ − [p − g(p − 1)(1 − Ā(Λ))][1 − θµ]]

+2E(I)[b + ΛθE(I)A1 −
(
[(1 − g)pE(I)(1 − Ā(Λ))][(1 − θ)(d + d̄) + θ(1 − µ)]

+[p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))][(1 − θ)(d + d̄)(1 − ΛE(I)E(B))

+τE(B)− Λθ(1 − µ)E(I)A1])]}

N′(1) =− Λ2E(I)
{

1 − θ − [p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))][(1 − θ)(d + d̄)

+θ(1 − µ)]}+ (1 − Λ)
{
−ΛE(I)(1 − θ)(1 − Ā(Λ)) + Λ2E(I)E(B)

(p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))) + θΛE(I)E(F)
}

N′′(1) =− Λ2 {E(I(I − 1)) (1 − θ − A4(1 − θµ)) + 2E(I) (b + θΛE(I)A1 − A2(1 − θµ)

+A4[(1 − θ) (1 − ΛE(I)E(B))] + τE(B)− θΛ(1 − µ)E(I)A1)}
+ (1 − Λ)

{
(1 − Ā(Λ))[−(1 − θ)ΛE(I(I − 1))− ΛE(I)(b + θΛE(I)A1)]

+Λ2E(I)E(B)A2 + Λ2[E(I(I − 1))E(B) + E(I)E2(B)][p(1 − g)((1 − Ā(Λ)))

+pĀ(Λ) + g((1 − Ā(Λ)))]− θΛ2E(B)E(F)E(I)2

+Λθ[E(I(I − 1))E(F) + E(I)E2(F)]
}

wher e,

A1 =E(B) + E(F)

A2 =p(1 − g)E(I)((1 − Ā(Λ)))

A4 =p − g(p − 1)(1 − Ā(Λ))

• The Little’s formula (Wq) is used to deter mine how long an average customer w aits in
queue.

Wq =
Lq

ΛE(I)

7. Practical application of the model:

The fiel of telecommunications netw orks may be able to use the suggested model. This
system manages a lot of consumer telephone communications. Call takers are referr ed to as
ser vers and callers as customers in this context. A consumer may elect to exit the system if he
calls and disco vers that all the ser vers are occupied (impatience). Customers w ait in orbit while
the ser ver is overloaded, out of commission, or under going maintenance. If a ser ver has any
questions or concer ns that fall outside of their area of expertise, they may need to refer them
to other ser vers who are available or speak with a senior in order to acquir e the answ ers. A
ser vice failur e can be used to repr esent this circumstance. The speed at which the agent receiv es
responses from the expert in this case is known as the repair rate. Additionally , the ser ver may do
various maintenance procedur es known as "v acations." Additionally , after each customer ’s ser vice
is finished dissatisfie customers may re-join the line and be classifie as feedback consumers.

8. Numerical Results

In this section, we’ll use MATLAB to demonstrate how dif ferent parameters affect obser vations of
system beha vior . The batch size distanc e of the arriv als in this section is geometr y; with a mean
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of 2. Her e, the exponential distance is follo wed by the ser vice, vacation, and repair stages. By
creating erroneous assumptions about the parameters, we make sur e that the stability criterion is
satisfied Tables 1 to 3 present estimated values for our queueing system’s utilization factor (ρ),
average queue length (Lq), and average w aiting time (Wq).

Table 1: The effects of arrival rate (Λ) on ρ, Lq, and Wq

g = 0.5, p = 1.5, E = 0.6, G = 2.2, θ = 3, d = 3,
e = 0.6, µ = 0.9, B = 1.5,D = 1, F = 0.7, z = 1,b = 2, τ = 1.8

Arriv al rate (Λ) ρ Lq Wq

0.30 0.022680 3.505127 5.841879
0.31 0.096336 4.616984 7.446748
0.32 0.169992 6.010404 9.391256
0.33 0.243648 7.742148 11.730527
0.34 0.317304 9.878047 14.526540
0.35 0.390960 12.494169 17.848813
0.36 0.464616 15.678118 21.775164

Table 2: The effects of the service rate ϕ(ς) on ρ, Lq, Wq

g = 7.8, p = 0.7, E = 0.8, G = 6, θ = 1, d = 3, e = 4.6,
µ = 0.7, D = 1, F = 0.7, Λ = 0.3, z = 1, b = 2, τ = 1

ser vice rate (B) ρ Lq Wq

0.50 0.737200 0.223375 0.372292
0.51 0.687360 0.189247 0.315412
0.52 0.637520 0.160488 0.267480
0.53 0.587680 0.135989 0.226649
0.54 0.537840 0.114943 0.191572
0.55 0.488000 0.096748 0.161247
0.56 0.438160 0.080947 0.134912

Table 3: The effects of the Breakdown rate (τ) on ρ, Lq, Wq

g = 0.2, p = 0.7, E = 2.9, G = 9, θ = 1,
d = 7, e = 8.6, µ = 0.2, B = 7,D = 2, F = 0.7, Λ = 0.4,z = 2, b = 4

breakdo wn rate
(τ)

ρ Lq Wq

1.0 0.264592 5.619523 7.024404
1.1 0.303092 6.095933 7.619916
1.2 0.341592 6.575234 8.219042
1.3 0.380092 7.057428 8.821784
1.4 0.418592 7.542516 9.428145
1.5 0.457092 8.030500 10.038125
1.6 0.495592 8.521381 10.651727
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The tw o-dimensional graph that repr esents the system measur ement of perfor mance is sho wn
in Figur e 1 (a − c).

• The figu e 1 (a) demonstrates how the utilization factor (ρ), estimated queue length (Lq),
and expected w aiting time (Wq) all increase as the arriv al rate (Λ) does.

• The figu e 1 (b) sho ws that while the utilization factor (ρ) decr eases, the ser vice rate ϕ(ς)
rises. Expected w aiting time (Wq) and queue length (Lq) decr ease.

• The breakdo wn rate (τ), utilization factor (ρ), expected queue size (Lq), and expected
w aiting time (Wq) all sho w increasing trends in the figu e 1 (c).

The three-dimensional graph of the system indicators of perfor mance is sho wn in Figur e 2
(a − c).

• The surface in figu e 2 (a) sho ws the growth of the arriv al rate (Λ), estimated length of the
line (Lq), and estimated w ait time (Wq).

• Figur e 2 (b) sho ws that as the ser vice rate ϕ(ς) rises, the estimated queue size (Lq) and
w aiting time (Wq) both decr ease.

• Figur e 2 (c) sho ws that as the breakdo wn rate τ rises, expected queue lengths (Lq) and
w aiting times (Wq) also rise.

The numerical results abo ve allo w us to deter mine the influenc of attributes on the system’s
evaluation criteria, and we can be assur ed that they are repr esentativ e of realistic conditions.

(a) ρ, Lq , Wq verses arriv al rate Λ (b) ρ, Lq , Wq verses Service rate ϕ(ς)

(c) ρ, Lq , Wq verses Breakdo wn rate τ

Figure 1: 2D representation effects
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(a) ρ,Lq , Wq verses arriv al rate Λ (b) ρ,Lq , Wq verses Service rate ϕ(ς)

(c) ρ,Lq , Wq verses Breakdo wn rate τ

Figure 2: 3D representation effects

9. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS modal is actually applicable in a variety of fields such as modes of transport,
congestion, telecommuting, atmospheric resear ch, etc. Artificia neural netw orks are used in
communications netw orks to accomplish a variety of goals, including an increase in customers,
expense reduction, shorter w ait times, etc. With variations in arriv al rates while on vacation,
ser vice rates, repair rates, and repair to busy rates, the curr ent modal allo ws us to examine the
impatience of the client while they w ait for the ser vice.

A very helpful appr oach for ANFIS is created by combining soft computing methods, artificia
neural netw orks (ANNs), and fuzzy systems (FS). We are sho wing a simplifie idea of the ANFIS
architectur e by using the fuzzy parameters. We can implement an ANFIS input-output function
and input-output data pairs as fuzzy if-then logic. The fuzzy toolbox of MATLAB softw are can
be utilized for contrasting the computational finding with the implementation of an ANFIS
netw ork.

The input parameters and the membership function are assumed to be the Λ, ϕ(ς), and τ
Gaussian functions in order to produce computational results based on ANFIS. (see Fig. 3a, b,
c). It is assumed that the linguistic values are low, moderate, or high. Tick marks are placed
over the cur ves made for the results obtained analytically in Figur e 1a, 1b and 1c to indicate the
results produced by the ANFIS appr oach for the queue size. The figu es sho w that the numer -
ical outcomes produced using the Runge-Kutta method and the ANFIS results are nearly identical.
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(a) ρ, Lq , Wq verses arriv al rate Λ (b) ρ, Lq , Wq verses Service rate ϕ(ς)

(c) ρ, Lq , Wq verses Breakdo wn rate τ

Figure 3: ANFIS representation effects

10. Cost Optimization:

The ter m "optimization" describes the method of deter mining the set of parameters for an ob-
jectiv e function that produces the highest or lowest outcome. The continual, business-oriented
activity known as "cost optimization" aims to reduce expenditur es and costs while raising the
organization’s value. Standar dizing, streamlining, and rationalizing platfor ms, application de-
velopment, procedur es, and ser vices are all part of this process, along with establishing the
most competitiv e possible ter ms and prices for all business transactions. The operating cost and
profi of a system are closely tied in real-w orld situations. Ther efor e, the system’s designers or
managers place a lot of emphasis on reducing operational expenses per unit of time in order to
enhance the system’s ear nings. Our objectiv e is to identify the best cost per unit of time (TC)
characteristics. In order to do this and increase the cost-ef fectiv eness of our de veloped appr oach,
we will build our competence in this field
Ch - Holding expense for every user in the system per unit of time.
Cb - The cost for each unit of time the ser ver is tur ned on and used.
Cv - The cost imposed on the ser ver in vacation mode per unit of time.
Cr - The cost to repair the ser ver after its failur e, calculated per unit of time.
C1 - The cost per unit over a busy time.
C2 - Cost for each unit of time used over the vacation period.

TC = ChLq + CvV + CbQ + CrR + C1γb + C2γv
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The TC problem is solv ed using metaheuristic optimisation methods including PSO, ABC,
and GA. In vie w of the importance of cost optimisation, this study w as conducted using the
global sear ch optimisation algorithms particle sw arm optimisation (PSO), artificia bee colony
(ABC), and genetic algorithms (GA), each of which is separately described in three dif ferent
subsections of this section. If the algorithm’s assumptions are correct, local sear ch techniques
frequently offer the level of computer efficienc requir ed to fin the global optimal. Tables 5 to 7
displa y the effects of Λ, τ, and ϕ on TC* using PSO, ABC, and GA.

Table 4: Cost sets for optimal policy

Cost
sets

Ch Cv Cb Cr C1 C2

1 10 9 7 6 7 8
2 8 4 6 4 8 9
3 7 6 8 3 9 6

10.1. Particle Swarm Optimization (PSO)

One of the meta-heuristic methods used to solv e optimization issues is the particle sw arm
optimization (PSO) technique, which has been emplo yed successfully in a number of single
objectiv e optimization problems. Kennedy and Eber hart firs proposed this algorithm. The PSO
algorithm has the benefi of being simple to implement and apply for solving dif ferent function
optimization problems, which can be categorized as function minimization or maximization
problems.

Table 5: Effect of Λ, τ, ϕ(ς) on TC∗ using PSO

g = 0.2, p = 0.7, G = 9, θ = 0.95, d = 7, e = 8.6,
c = 0.2, B = 7, D = 2, τ = 1.6, b = 4

Cost sets TC∗

Cost set 1 Cost set 2 Cost set 3
0.4 149.1752 133.0711 127.2781

Λ 0.5 162.6882 143.5244 136.3697
0.6 173.5857 152.1798 143.7058
1.6 149.1752 133.0711 127.2781

τ 1.7 161.5959 141.8755 134.7960
1.8 175.6139 151.7985 143.2466
7 149.1752 133.0711 127.2781

ϕ(ς) 8 184.5033 159.0594 151.0219
9 230.2302 192.6975 181.7546

10.2. Artificial Bee Colony(ABC)

One of Der vis Karaboga’s most recent algorithms—cr eated in 2005—is called the Artificia Bee
Colony and w as modeled after the cunning beha viour of hone y bees. Basic process indicators like
colonies and highest levels are essentially all that are used. Like PSO and dif ferential evolutionar y
appr oaches, it is equally simple to compr ehend. The sear ch for huge areas of nectar -containing

RT&A, No 1 (77)
 Volume 19, March 2024

505



Rani R and Indhira K
METAHEURISTIC COST SCRUTINY OF MX/ G(A, B)/ 1 RETRI AL QUEUE

food sour ces, and ultimately the one with the most nectar , is the bees’ mai n goal. This population-
based sear ch appr oach is the main one used by ABC. The cost of the suggested structur e is
decr eased through a process known as ABC.

Table 6: Effect of Λ, τ, ϕ(ς) on TC∗ using ABC

g = 0.2, p = 0.7, G = 9, θ = 0.95, d = 7, e = 8.6,
c = 0.2, Λ = 0.4, D = 2, τ = 1.6, b = 4

Cost sets TC∗

Cost set 1 Cost set 2 Cost set 3
0.4 108.0030 108.8585 109.6965

Λ 0.5 112.6458 113.7397 114.0666
0.6 115.8805 117.2631 116.9601
1.6 108.0030 108.8585 109.6965

τ 1.7 112.4344 113.2737 114.1395
1.8 117.4656 117.8425 118.7674
7 108.0030 108.8585 109.6965

ϕ(ς) 8 120.7245 120.9982 122.5394
9 138.2173 134.5400 136.4184

10.3. Genetic Algorithm (GA)

The genetic algorithm, created in the 1960s and 1970s by Bremer mann, Holland, and their
colleagues, is a technique for addr essing optimization problems brought on by natural selection,
the mechanism that promotes evolution in biology . They are frequently emplo yed to deliv er
superior solutions to stochastic sear ch issues. The full procedur e ser ves as a repr esentation of the
criteria for choice that were used to select the people who would make the best par ents for the
coming human generation.

Table 7: Effect of Λ, τ, ϕ(ς) on TC∗ using GA

g = 0.2, p = 0.7, G = 9, θ = 0.95, d = 7, e = 8.6,
c = 0.2, Λ = 0.4, D = 2, B = 7, b = 4

Cost sets TC∗

Cost set 1 Cost set 2 Cost set 3
0.4 152.5341 131.8364 124.6592

Λ 0.5 163.2414 141.3111 131.8853
0.6 170.0165 148.0781 136.4720
1.6 152.5341 131.8364 124.6592

τ 1.7 167.5959 142.6723 133.7200
1.8 184.4744 154.7915 143.8279
7 152.5341 131.8364 124.6592

ϕ(ς) 8 192.8582 162.3320 151.7762
9 243.6750 200.7627 185.9493
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10.4. Analogy of PSO, ABC and GA

This section compar es the three appr oaches—particle sw arm optimization (PSO), artificia
bee colony (ABC), and genetic algorithm (GA)—to deter mine which has the least expense using
the corresponding MATLAB programs. Then, one by one, the MATLAB programs for each of
the afor ementioned algorithms are run. We found that all three programs generated values that
were nearly identical. Because of this, the three solutions are nearly comparable in ter ms of their
optimum results and the fewest associated costs. It proves the reliability (local) and potency of
these three simple techniques. Any technique can be used to calculate the optimal cost; however,
PSO outperfor ms all others in comparison to our model. Because PSO has so many adv antages,
we have found that it is the best appr oach out of all of them. It perfor ms well in global queries,
requir es a small number of arguments, is easy to configu e, and is unaf fected by design variable
scalability . In addition to suf fering sluggish conv ergence in a concentrated sear ching region, PSO
has a tendency to lead to swift and early conv ergence in mid-optimal locations (being able to
impair local sear ch capabilities).

10.5. Convergence in PSO, ABC and GA

After emplo ying an optimization methodology like PSO, ABC, or GA, it is crucial to compr ehend
whether a particle recovers to normal or not and when it will roam around in sear ch of a better
solution. As a result, conv ergence is a significan component of cost evaluation. A statistical
analysis (Fig. 4) of the outcomes demonstrates that ABC exceeds the PSO appr oach. For the whole
standar d optimization, ABC had fewer functional evaluations overall than PSO. The finding
demonstrate that PSO conv erges mor e quickly . ABC cannot be emplo yed if a speedy result is
requir ed for time-sensitiv e applications.

The study sho ws the applicability of our concept to real-w orld situations. Some of the
analysts’ financia issues will be partially overcome once they know how much the system will
cost overall. The curr ent situation may hea vily rely on the cost-benefi assessment that w as
produced, which ser ves to illustrate the logic of our strategy and aid netw ork administrators and
specialists in lowering the issue of communications ser vices that explicitly deal with blocking.

11. Conclusion:

This paper inv estigates the MX/ G(a, b)/ 1 retrial queue with random failur e and feedback
under extended Ber noulli vacation with impatient customers. The SVT is utilized to deter mine
indicators of efficiency for the various system stages. The efficienc of the system is then evaluated
after considering the effects of various parameters. Finally , we gave a thor ough explanation of the
ANFIS. PSO, ABC, and GA are also used to compute the total cost. In an effort to fin the best
offer, these techniques compar e and contrast the outcomes. The impetus for this study came from
the prospectiv e applications for the de veloped model, such as call centr es, wir eless netw orks, or
telecommunication infrastructur es, which might be powered by contr olled precision test queueing
systems to provide outstanding ser vice at low prices. The simple mail transfer protocol utilizes a
w ay to conv ey the messages betw een the mail ser vers. The recommended appr oach might be
used in an email system’s transfer model.
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Abstract 

A mathematical model, algorithm and program have been developed to study any types of complex 

asymmetric steady-state modes and transient processes of a multi-machine power system with a 

renewable energy source in phase coordinates, the results of which can be used in the operational 

control of power system operating modes with any type of emergency automation. The developed 

methodology and software package can also be used in industry to check the possibility of long-term 

operation in the considered asymmetrical mode from the point of view of the operating conditions of 

the system generators and electrical receivers, to determine the need to use baluns, to select their 

parameters and installation locations, to ensure the efficiency of asymmetrical modes , as well as for 

conducting various tests and analyzing accidents that have occurred.  

Keywords: power system, asymmetrical steady-state modes, transient processes, 

emergency automation, relay protection 

I. Introduction

At present, methods and algorithms for calculating steady-state and transition modes of 

complex power systems are used in the replacement scheme of a symmetrical three-phase system. 

When modeling switching processes in non-symmetrical short-circuit and incomplete phase 

modes, instead of asymmetry, it is performed by adding a shunt or additional resistance. In 

modern conditions, where the integration of renewable energy sources and digital technologies 

into the energy system takes place, solving the mentioned problem with traditional methods and 

algorithms becomes significantly more complicated, and sometimes in complex asymmetric 

modes, when the transposition of electric transmission lines is not considered, when the 

parameters of the line and other elements of the system differ in phase, in substations when three-

phase transformers are connected with special schemes, it is quite difficult and sometimes 

impossible to solve. At the same time, carrying out non-symmetric settled and transition modes in 

a fictitious two-axis coordinate system using transformation formulas significantly increases 

modeling and reporting errors and makes adequate decision-making difficult for mode control. 

Taking into account the above, the issue of expressing mode parameters in phase coordinates

),,( cba  during the calculation and study of steady and transition modes appears as an actual 
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solution [1-4]. 

It should be noted that the advantage of the ),,( cba  coordinate system over other calculation 

systems, especially the 0,,qd  system, is that all mode quantities correspond to real-time values, 

and re-transformation and calculation of the results are not required to obtain the phase quantities.  

The solution of the given problem in phase coordinates is quite universal, as the modeling of 

various types of non-symmetrical short-circuits and settled symmetric modes is relatively easy, 

and the simplicity of the reporting algorithm allows the use of modern high-performance 

computing systems. In this case, the main difficulty is to design a three-phase replacement scheme 

for the elements of the power system in non-symmetrical quasi-steady and transition modes. 

Therefore, the replacement schemes and mathematical models of the main elements of the power 

system (generator, transformer, power transmission line, load) for the calculation of non-

symmetric modes were presented in [5-11], respectively. 

In order to solve the problem posed in the conditions of integration of renewable energy 

sources, first, the calculation of the non-symmetrical settled mode is carried out in the phase 

coordinates, and here the pre-accident mode will differ significantly from the linear scheme of the 

mode due to the reasons we mentioned above. In the next stage, generators in a multi-machine 

complex energy system are combined with the algorithm of reporting transition processes in phase 

coordinates, taking into account the complete Park-Gorev equations [12-15]. 

In the work under review, the equations for the stator windings of conventional and wind 

generator machines are used in the ),,( cba coordinate system, and for the rotor quantities, the 

0,,qd  system is used. The periodic coefficients in the equations of synchronous and asynchronous 

machines are calculated as the angle between the stator and rotor axes in each interval of the 

mathematical solution of the equations. It should be noted that since their periodic coefficients are 

expressed as sin  and cos , their calculation does not cause any difficulties. 

In order to express each three-phase element in phase coordinates, their description with a 

suitable three-phase replacement scheme was used in the calculation methodology. In this case, the 

operation of the complex transformation coefficient in different branching cases is taken into 

account for voltage regulation in power transformers and autotransformers. For the purpose of 

reporting, a matrix of nodal equations is established for separate elements of the energy system, 

and based on it, the results of the report are used not only for tuning relay protection and 

automation devices but also for more complex issues, in other words, mode symmetrization. 

II. Solving the system of nodal equations in phase coordinates for the study of

symmetric and non-symmetric regimes of the complex energy system

The steady-state mathematical model of a three-phase network is analogous to the model of a 

single-line network and is a system of nonlinear mathematical equations with complex coefficients 

and variables. All known methods can be used to solve it [16-18]. 

The well-known Gauss-Seidel method was used to solve the system of nodal voltage 

equations in the form of a current balance and the system of nodal equations written in the form of 

a matrix. 

IUY  

Data for nodes is given as PL + jQL  load power for each phase, and for generators as PG + jQG  

corresponding to each phase or GG UP , .  As in a single-line circuit, a node is taken as a balancing

node, for which the emf’s are assumed to be 120º from each other in the three phases. The 

voltage  
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at the balancing node is determined according to the following expression: 
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here 3/201201 jea  ; 1Y , 2Y , 0Y – forward, reverse and zero sequence conductors; 321 ,, UUU

forward, reverse and zero sequence voltages; 321 ,, SSS the full powers of individual phases; 

bal

aE is the EMF of the balancing node. 

In this case, the following restrictions are taken into account according to voltage and power: 

,maxmin iGii PPP 

,maxmin iGii QQQ 

.maxmin iii UUU  

ni ,....,3,2,1

The allowable limits characterize the change of active power Pi, reactive power Qi and voltage 

modulus iU  at node i. The algorithm uses the procedure of accelerated accumulation of the

iteration process, where the new acceleration coefficient ωnew is recalculated depending on the 

given number of iterations of the old coefficient ω start.
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The value of the acceleration coefficient is taken in the range 21  . The iteration process 

ends after the given precision is met. 

Considering the given expression, an algorithm and software were developed for the 

calculation of asymmetric modes in multi-machine complex systems with renewable energy 

sources, according to which the equations of the energy system elements are expressed in phase 

coordinates. 

III. Determination of currents and voltages in phase coordinates in asymmetric

regimes of power systems 

Calculation of short-circuit currents and single-phase modes can be performed based on the 

results of calculating the previous short-circuit pre-emergency mode. In this case, you can 

simultaneously simulate any type of short circuit, including short circuit through impedance. Short 

circuits and phase breaks are taken into account directly when drawing up nodal equations. At the 
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same time, all the necessary information is entered into the computer, taking into account the 

capacitive conductivities of the corresponding component lines, the resistance of the component 

transformers (autotransformers); resistances included in the neutral of transformers, generators, 

etc. The phase discontinuity of a branch can also be replaced by including an infinitely large 

resistance in it [19,20]. 

In the conductivity matrix Y , the short circuit is quite simply taken into account through

transition resistance. To do this, it is enough to set the value of the contact resistance in the source 

data. When modeling a fault in the nodes of the system circuit, it is necessary to set a pre-provided 

code for the fault type. To calculate short-circuit currents and open-phase modes, the Gauss-Seidel 

method was used. 

IV. Modeling in phase coordinates of transient processes in complex regulated

power systems. 

The equations of synchronous machines are modeled using the full Park–Gorev equations and 

simplified Lebedev–Zhdanov equations, taking into account electromagnetic transient processes in 

the rotor circuits [21-26] 

The initial equations for calculating the modes of a synchronous machine in coordinates a, b, c 

are the following differential equations for the stator winding voltages: 
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where a , b , c – flux linkage of the stator winding phases; ai , bi , ci – stator winding phase 

currents; ar , br , cr – active resistance of stator winding phases; ae , be , ce – voltage at the terminals of

the generator stator phase windings;
d

d
p  – differentiation operator with respect to synchronous

time  ft 2 . 

To this system of equations one should add the stress equations for the rotor circuits and the 

rotor motion equations: 
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where 


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
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kqkdf

kqkdf

kqkdf

rrr

iii

,,
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,, 

– flux linkage of current and active resistance of the excitation winding and

damper circuits along the longitudinal and transverse axes; fe – voltage applied to the excitation

winding; S – slip; H – inertial constant in el. rad; mM – load torque on the shaft of a synchronous

machine; eM – electromagnetic torque of synchronous machine;  – working angle (angle between 
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the transverse axis of the rotor and the representing vector of phase voltages. 

To solve systems of equations (4) and (5) on a PC using any of the well-known numerical 

methods of Runge–Kutta, Adams Euler, etc. [3] it is necessary that the number of variables equals 

the number of equations. Experience shows that it is advisable to express all currents through the 

flux linkage of the circuits. For this purpose, well-known relationships obtained from calculations 

of symmetric modes using the Park–Gorev equations are used [3]. 
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where the coefficients khgfedcba ,,,,,,,,  are expressed through the machine parameters as 

follows: 
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The parameters included in these expressions represent the mutual or complete reactivity of 

the circuits. 
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To transition from stator currents di , qi , 0i to phase values ai , bi , ci  we use the known relations. 
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where 
3

2
  =120 for a machine with symmetrically arranged three-phase windings, 

2


  – the angle between the stationary axis of phase a and the rotating longitudinal axis

of the rotor. 

V. Modeling in phase coordinates of transient processes in complex regulated

power systems. 

The block diagram of the algorithm for calculating asymmetric modes and transient processes 

in phase coordinates is shown in Figure 1. 

As a result of calculating symmetrical or asymmetrical modes for each phase, the following 

are determined: modules and voltage angles in nodes, flows of active and reactive power along 

lines and transformers, losses in each element and in the system as a whole, generation of reactive 

power in those nodes where voltage modules are specified and other information if necessary. 

When calculating short circuit (SC) modes, the output information is also displayed on the 

display screen in tabular form and includes: currents at the short circuit point, residual voltages in 

the circuit nodes and their phases, currents or power flows along the branches, including losses in 

each element and in the system generally. 

In this work, it is possible to perform calculations during a short circuit at an intermediate 

point of a branch without introducing additional nodes into the design diagram. 

To illustrate the performance of the developed methodology and program for calculating 

symmetrical and complex-asymmetrical modes in complex multi-machine power systems, let us 

consider several examples for a specific circuit shown in Figure 2. As can be seen, a 10 MW wind 

turbine is integrated into the system through a T3 transformer. 

All necessary data for the system under study are presented in Tables 1  3. The values are 

presented in p. u. and reduced to MVASb 100 . Transformers T1-T3 have a connection diagram 

0/. Transformers T4 and T5 have three-phase-two-phase and star-zigzag connection schemes,

respectively.

Tables 4 and 5 present the results of calculating symmetrical and asymmetrical modes in 

phase coordinates, where the load was represented by const LL jQP . Note that the voltage 

values in the secondary windings of a three-phase-two-phase transformer are distributed as 

follows: 

)( 434112 UUU aa
  , )( 444212 UUU вв

  , where 

;83,860424,1996,76197,015,83855,012

 aaU

.05,3043,1166,175209,0011,5836,012

 ввU

A comparison of the calculation results presented in Tables 4 and 5 indicates that the levels of 

voltage values in the nodes are different due to the different representations of loads in the nodes 

of the circuit. 
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Figure 1: Block diagram of the algorithm for calculating power system modes in phase coordinates 
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Table 1: Initial data of power transmission lines of power systems (p.u.) 

art 

node 

End 

 node 

Positive sequence 

resistors 

Zero sequence 

resistances 

R1 X1 B1 R0 X0 B0 

10, 11, 12 22, 23, 24 0,0145 0,0660 0,0108 0,0456 0,1944 0,0058 

10, 11, 12 16, 17, 18 0,0110 0,0496 0,0080 0,0342 0,1458 0,0050 

16, 17, 18 19, 20, 21 0,0091 0,0413 0,0068 0,0285 0,1215 0,0043 

19, 20, 21 22, 23, 24 0,0056 0,0248 0,0041 0,0171 0,0729 0,0025 

19, 20, 21 13, 14, 15 0,0035 0,0155 0,0021 0,0114 0,0486 0,0027 

13, 14, 15 22, 23, 24 0,0013 0,0330 0,0054 0,0228 0,0972 0,0034 

7, 8, 9 33, 34, 35 0,0073 0,0330 0,0054 0,0228 0,0972 0,0034 

Table 2: Initial data of system generators (p.u.) 

Start 

node 

End 

 node 

Positive sequence resistors Zero sequence resistances 

R1 X1 R0 X0 

1, 2, 3 25, 26, 27 0,0 0,0967 0,0 0,0467 

4, 5, 6 29, 30, 31 0,0 0,17 0,0 0,085 

33, 34, 35 36, 37, 38 0,0 0,17 0,0 0,085 

The obtained results of calculating the asymmetric mode indicate that the noted violations of 

the symmetric mode do not cause deep violations of the level of asymmetry of the mode 

parameters in the network circuit and such a mode is acceptable. 

The calculation results for a single-phase short circuit at the generator terminals are presented 

in Figure 3, where a complete coincidence with the experimentally taken curves of the transition 

Figure 2: Scheme of the studied multi-machine power system with renewable energy sources 
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process was obtained. 

Table 3: Initial data of power transformers (p.u.) 
Start node End  node Connection type X 

1, 2, 3 10, 11, 12 0,0533 

4, 5, 6 13, 14, 15 0,12 

7, 8, 9 16, 17, 18 0,16 

22, 23, 24 41, 42, 43, 44 
0,09(Xм) 

0,16(Xr) 

19, 20, 21 
45, 46, 47 

48, 49, 50 
0,17 

Table 4: Calculation results of the symmetrical mode in phase coordinates 
Start 

node 

End 

node 

P  

(МW) 

Q  

(МVAr) 

Start 

 node 

End 

node 

P  

(MW) 

Q  

(MVAr) 

1 25 -32,373 -15,122 25 1 32,373 16,230 

2 26 -32,306 -14,879 26 2 32,306 15,976 

3 27 -32,497 -14,971 27 3 32,497 16,081 

4 29 -19,985 -9,405 29 4 19,985 10,151 

5 30 -20,105 -9,534 30 5 20,105 10,292 

6 31 -19,912 -9,582 31 6 19,912 10,329 

10 16 12,079 3,889 16 10 -12,063 -4,690

11 17 12,106 3,965 17 11 -12,090 -4,768

12 18 11,943 4,030 18 12 -11,926 -4,833

10 22 12,317 5,404 22 10 -12,292 -6,470

11 23 12,230 5,382 23 11 -12,207 -6,452

12 24 12,103 5,536 24 12 -12,077 -6,610

13 19 6,511 1,803 19 13 -6,509 -2,090

14 20 6,437 1,662 20 14 -6,436 -1,950

15 21 6,466 1,749 21 15 -6,465 -2,037

13 22 4,002 0,986 22 13 -4,001 -1,568

14 23 3,912 0,880 23 14 -3,911 -1,463

15 24 3,974 0,972 24 15 -3,973 -1,555

16 19 4,617 3,748 19 16 -4,614 -4,470

17 20 4,489 3,649 20 17 -4,487 -4,373

18 21 4,444 3,785 21 18 -4,440 -4,508

19 22 0,996 0,186 22 19 -0,996 -0,626

20 23 0,924 0,139 23 20 -0,924 -0,579

21 24 0,988 0,203 24 21 -0,988 -0,643

7 33 -3,966 -6,288 33 7 3,969 5,701 

8 34 -4,024 -6,332 34 8 4,028 5,745 

9 35 -3,837 -6,442 35 9 3,841 5,856 

33 36 -10,047 -8,021 36 33 10,047 8,272 

34 37 -10,074 -8,038 37 34 10,075 8,292 

35 38 -9,881 -8,178 38 35 9,880 8,428 
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Table 5: Calculation results for the asymmetric mode in phase coordinates 
Start 

node 

End 

node 

P  

(МW) 

Q  

(МVAR) 

Start 

node 

End 

node 

P  

(MW) 

Q  

(MVAR) 

1 25 -38,839 -21,470 25 1 38,839 23,199 

2 26 -32,511 -20,268 26 2 32,511 21,553 

3 27 -37,071 -15,517 27 3 37,072 16,920 

4 29 -24,543 -10,624 29 4 24,543 11,722 

5 30 -16,229 -12,413 30 5 16,229 13,057 

6 31 -19,228 -4,594 31 6 19,228 5,183 

10 16 12,622 4,220 16 10 -12,605 -5,008

11 17 15,593 5,171 17 11 -15,566 -5,913

12 18 13,322 7,676 18 12 -13,295 -5,419

10 22 11,936 5,932 22 10 -11,913 -6,993

11 23 14,615 6,308 23 11 -14,580 -7,324

12 24 12,881 8,829 24 12 -12,844 -9,824

13 19 8,625 1,825 19 13 -8,523 -2,105

14 20 4,315 2,852 20 14 -4,314 -3,139

15 21 5,362 -1,541 21 15 -5,361 1,260 

13 22 5,114 1,095 22 13 -5,111 -1,671

14 23 1,412 1,713 23 14 -1,411 -2,293

15 24 2,381 -2,027 24 15 -2,381 1,458 

16 19 3,321 4,121 19 16 -3,319 -4,942

17 20 5,276 3,489 20 17 -5,272 -4,203

18 21 4,866 5,752 21 18 -4,861 -6,446

19 22 1,068 0,315 22 19 -1,067 -0,753

20 23 -0,993 0,455 23 20  0,994 -0,892

21 24 -0,400 -1,603 24 21  0,400 1,175 

7 33 -3,408 -7,157 33 7 3,412 6,575 

8 34 -2,302 -5,661 34 8 2,305 5,068 

9 35 -4,268 -5,472 35 9 4,270 4,882 

33 36 -10,082 -9,145 36 33 10,083 9,429 

34 37 -8,970 -7,701 37 34 8,970 7,914 

35 38 -10,947 -7,463 38 35 10,947 7,732 
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VI. Conclusions

1. A mathematical model of a power system with a renewable energy source, an algorithm

and a program have been developed for studying any types of longitudinal-transverse, complex 

asymmetric steady-state modes, short-circuit modes and transient processes in phase coordinates 

and a dialogue complex created on its basis, which can be used in operational dispatch control 

operating modes of power systems for any type of emergency automation. 

2. The developed methodology and complex program can be used in industry to solve the

following practical problems: to test the possibility of long-term operation in the considered 

asymmetrical mode from the point of view of the operating conditions of EPS generators and 

power receivers; to determine the need to use baluns, to select their parameters and installation 

locations, to ensure the efficiency of asymmetrical modes; for carrying out various tests, analyzing 

accidents that have occurred; for selecting response parameters and assessing the sensitivity of 

relay protection devices, parameters of automation devices. 

3. The obtained comparative results of calculating the symmetrical and asymmetrical modes

of power systems indicate that the levels of voltage values in the nodes are different due to the 

different representations of loads in the nodes of the circuit. The noted violations of the 

symmetrical mode do not cause deep violations of the level of asymmetry of the mode parameters 

in the network circuit and such a mode is acceptable. 
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Abstract

The process capability index is an important tool used in quality control and process improvement.
Generally, the index is estimated under the assumption of a normal distribution, although some other
distributions are also recommended in the literature. This paper instead considers a three-parameter
Weibull distribution and obtains an estimate of the process capability index under the Bayesian framework.
Bayesian development is based on the use of non-informative priors and the posterior sample-based
inferences are drawn using an important Markov Chain Monte Carlo technique, namely, the Gibbs
sampler algorithm. Finally, a numerical illustration based on two real datasets is provided.

Keywords: Process capability index, Gibbs sampler, Three-parameter Weibull distribution

1. Introduction

With the advancement of technology, there is an ever-increasing demand for high-quality products
and services. Smart manufacturing process employing various advanced technologies facilitate
automation, enhance productivity, improve maintenance and monitoring and reduce scope of
human error. However, associated software products need to be examined for quality assurance.

The quality and reliability of the product can be assessed through various statistical tools,
among which, process capability index (PCI) has been found propitious by the manufacturers
as it is useful in assisting decision-making and boosting efforts in process performance. PCI is
a measuring tool for accurately analysing the potential of a process and its performance. For
quality control engineers, it is extremely important since it quantifies the relationship between the
process’s actual performance and the product’s predetermined parameters. The index ascertains
whether the process meets the defined manufacturing prerequisites. In this regard many capability
indices have been developed so far (see, for example, [31], [11], [14] and [5]). The first index put
forward in the literature was Cp, which simply calculates the span of the specifications relative
to the six-sigma spread in the process (see [31]). As per this index, the process mean is centred
between the lower and the upper specification limits. One of the major issues with this index is
that it does not take into account the location of the process mean relative to the specifications.
Moreover, if the process is not centred on the specification region, it would be possible to have a
substantial percentage of the products with characteristics outside the specification limit although
Cp may be high. In order to overcome this problem, [11] introduced another capability index, Cpk,
which takes process centring into account in addition to the spread of the specifications relative
to the six-sigma spread in the process. In other words, it measures the distance between the
specification limits closest to the average from the quality characteristic of interest. Mathematically,
Cp and Cpk can be defined as

523

mailto:sonamgubreley05@gmail.com


Sonam Gubreley, Ankita Gupta, S.K. Upadhyay
BAYES ESTIMATION OF CAPABILITY INDEX

RT&A, No 1 (77)
Volume 19, March 2024

Cp =
USL − LSL

6σp
, (1)

Cpk = min(Cpu, Cpl), (2)

where

Cpu =
USL − µp

3σp
, (3)

Cpl =
µp − LSL

3σp
, (4)

USL and LSL are the upper and lower specification limits, respectively, µp denotes the process
mean and σp represents the process standard deviation.

Both of these PCIs are defined under two important assumptions, that is, the process is under
statistical control and the quality characteristic of the process of interest is normally distributed
(see [31]). Perhaps, because of these assumptions, a bulk of literature is available on the estimation
of PCIs under the assumption of normality (see, for example, [1], [2], [13] and [23]). However,
industrial processes are often not normally distributed and, for such scenarios, the values of
conventional PCIs may be absurd and possibly misrepresent the quality of the product. For
example, one may refer to [10], [27] and [24] for a systematic and detailed coverage. In order to
remove this discrepancy, [3] proposed the quantile-based measure to estimate the capability index
for non-normal distributions, which is given as under.

Cpk = min

(
USL − M
Up − M

,
M − LSL
M − Lp

)
, (5)

where Up, Lp and M are the 99.865th, 0.135th, and 50th percentiles of the target distribution,
respectively, USL and LSL indicate upper and lower specification limits. A value of Cpk < 1 is
unfavourable and indicates that the process is incapable, whereas, a value of 1 ≤ Cpk ≤ 1.33
indicates that the process is barely capable and Cpk ≥ 1.33 shows that the process is capable to
meet the consumers’ requirements.

Besides normality assumption, several developments can be seen in literature on non-normal
assumptions as well. [3], [14], [17], [16], [22], [12], [9], [26] and [20] are some of the important
among other references where capability indices are estimated under the assumption of non-
normal distributions. A thorough literature review on the estimation of PCIs for non-normal
datasets reveals that most of the developments are done using classical framework and only a
few of them considered Bayesian approach for estimating capability index. Further, in statistical
process control, most of the datasets lie at a particular location, generally far from zero, and,
therefore, it becomes imperative to assess capability index by considering a model which has a
location parameter even if one is dealing with non-normal data. To the best of our knowledge,
there is no reference in the literature that entertains a non-normal model with location parameter
for estimating the capability index. To bridge this gap, this paper considers a three-parameter
Weibull distribution for estimating the capability index and performs a Bayes analysis of the
distribution.

The Weibull distribution is an important distribution that has received enough attention in
the field of reliability and quality control. Its versatility stems from the fact that it incorporates
increasing, decreasing and stable hazard rates for different values of its shape parameter (see
[18] and [15], etc). The literature on the analysis of Weibull distribution has considered both
two-parameter and three-parameter form of model where the former model is defined without a
threshold parameter. The two-parameter Weibull distribution is comparatively easier to deal with
as compared to three-parameter model form and, therefore, the literature on both classical and
Bayes analysis of two-parameter Weibull distribution is available in bulk (see, for example, [19],
[28], [15], [25], among others). On the other hand, the three-parameter Weibull distribution is
much richer because of the involvement of a threshold parameter although its analysis is slightly
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more challenging due to sometime unusual behaviour of the likelihood function, especially
when the shape parameter is less than unity (see also [30] and [32]). As a result, this model is
comparatively less entertained in the literature. [30], [32] and [28] are some of the important
references among others where this form of the model is explored.

As mentioned, this paper is an attempt to provide Bayes analysis of the three-parameter
Weibull distribution with ultimate objective of finding the estimate of PCI. The entire development
is done using non-informative priors for the model parameters. It is seen that the resulting
posterior is analytically intractable to draw exact posterior based inferences and, therefore, the
paper utilizes an important Markov Chain Monte Carlo (MCMC) procedure, namely the Gibbs
sampler algorithm, to simulate posterior samples and draw the sample based inferences including
those of PCI. Finally, the proposed methodology is numerically illustrated on the basis of two
real datasets from a juice manufacturing company.

The plan of the paper is as follows. The next section briefly describes the three-parameter
Weibull model and its Bayesian formulation. Section 3 provides numerical illustration based on
two real datasets. Finally, a brief conclusion is provided in the last section.

2. Model Formulation

2.1. Likelihood function

The probability density function (pdf) of the three-parameter Weibull distribution is

f (x|θ, β, µ) =
β

θ

(
x − µ

θ

)β−1

exp

[
−
( x − µ

θ

)β
]

, x > µ; θ, β, µ > 0 (6)

where θ, β and µ are the scale, shape and location parameters, respectively. The distribution
exhibits increasing hazard rate for β > 1, decreasing hazard rate for β < 1 and, for β = 1, the
distribution reduces to two-parameter exponential model possessing constant hazard rate. Let us
use the notation W(θ, β, µ) to denote the three-parameter Weibull distribution given in (6). The
reliability function and the hazard function of W(θ, β, µ) at time t are, respectively, given by

R(t) = exp

[
−
( t − µ

θ

)β
]

, (7)

and

h(t) =
β

θ

( t − µ

θ

)β−1
. (8)

Similarly, the expressions for Up, Lp and M for the model W(θ, β, µ) can be written as

Up = θ[2.86967]
1
β + µ, (9)

Lp = θ[0.00058]
1
β + µ, (10)

and
M = θ[ln 2]

1
β + µ, (11)

respectively.
Let us now assume that an experiment consisting of n units is being conducted and let x =

(xi; i = 1, 2, ..., n) be the resulting observations. Then, the likelihood function for the dataset x can
be expressed as

L(x|θ, β, µ) =

(
β

θ

)n n

∏
i=1

(
xi − µ

θ

)β−1

exp

[
−

n

∑
i=1

(
xi − µ

θ

)n]
. (12)
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2.2. Bayesian formulation

To conduct Bayesian analysis, it is essential to specify prior distribution for the parameters of
the entertained model. Several types of priors are proposed in the literature for the Weibull
parameters. The paper, however, considers joint non-informative prior as suggested by [32] and
the same is given as

g(θ, β, µ) ∝
1

θβ
. (13)

Obviously, the parameter µ is assigned a constant prior over the positive real space.
The updated belief in the form of posterior distribution can be obtained by combining the

prior distribution as specified in (13) with the likelihood function given in (12) via Bayes theorem.
The joint posterior up to proportionality can, therefore, be written as

p(θ, β, µ|x) ∝
βn−1

θnβ+1

n

∏
i=1

(xi − µ)β−1exp

[
−

n

∑
i=1

( xi − µ

θ

)β
]

; θ > 0, β > 0, µ < min(x). (14)

Obviously, the posterior given in (14) is analytically intractable and, therefore, one has to
proceed with some approximation or simulation based alternative approaches for drawing
the desired inferences from the posterior. As mentioned, this paper considers Gibbs sampler
algorithm, an important MCMC procedure, because of its straightforwardness and ease of
implementation. The algorithm requires specification of low-dimensional full conditionals for
simulating the high dimensional posterior where both full conditionals and the posterior need to
be specified up to proportionality only. The algorithm starts with the appropriately chosen initial
values for the variates and then simulates the full conditionals one by one in a cyclic fashion with
most recent available values for all the given variates at every stage. Obviously, the appropriately
chosen initial values are updated after the first cycle of iteration from all the full conditionals. The
process is continued for a large number of cycles until some systematic pattern of convergence
is achieved among the generating variates. Moreover, it can be easily seen that the posterior
(14) results in three one-dimensional full conditionals corresponding to θ, β and µ and these full
conditionals can be easily simulated resulting in an easy implementation of the Gibbs sampler
algorithm. For further details on the algorithm, one can refer to [7], [6] and [32], among others.

Coming on to the full conditionals derived from (14), it can be seen that the full conditional
for θ happens to be the kernel of gamma distribution after appropriate transformation and,
hence, θ can be easily generated from a gamma generating routine (see [4]). The full conditional
of β can be seen to be log concave and, therefore, β can be simulated using adaptive rejection
sampling procedure (see [8]). The generation of µ from its full conditional is based on the rejection

algorithm using the envelope density g1(µ|β, x1) =

(
β

xβ
1

)
(x1 − µ)(β−1); x1 > µ, where x1 is

minimum of (xi; i = 1, 2, ..., n) (see [32] for further details).

3. Numerical Illustration

For numerical illustration of the proposed formulation, the paper considers two real datasets on
the weights (in grams) of thirty juice packs of grape and strawberry flavours. In the discussion
that follows, the dataset on weights of juice packs of grape flavour is referred to as the Data1
whereas that of strawberry flavour is referred to as the Data2. The two datasets are presented
in Table 1 and these are actually collected to assess the process of filling powdered juice bags.
The two datasets were first reported by [21] where the authors analysed the datasets under the
assumption of normal distribution and evaluated Cpk by considering the specification limits
as: LSL= 18.0 and USL= 22.0. These specification limits were specified in accordance with the
guidelines provided by the National Institute of Metrology, Quality and Technology (INMETRO),
the Brazilian organisation responsible for the quality control.
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Before proceeding with the analysis of datasets, let us plot the control charts with the
specification limits of 18.0 and 22.0. The control charts are presented in Figure 1 where the red
line corresponds to Data1 and the blue line corresponds to Data2. Moreover, the specification
limits 18.0 and 22.0 suggest that the process must hover around the mean of these specification
limits although the Figure 1 clearly suggests that the process is not centred around its mean. In
fact, there are certain values that lie outside the provided range, which ultimately suggest that
the process is out of control.

Table 1: Data on weights (in grams) of juice packs

Data1
21.011 20.635 21.732 21.333 20.587
20.587 21.784 21.088 20.997 21.100
22.155 21.116 20.707 20.413 20.822
20.883 20.930 20.908 20.897 20.486
20.935 21.867 20.814 20.795 21.520
20.537 21.438 20.621 20.975 20.919

Data2
22.572 21.376 20.768 21.833 19.970
21.583 21.813 22.025 20.892 20.241
21.816 21.232 21.730 20.529 21.435
21.106 20.519 21.263 20.684 21.233
19.624 21.150 20.962 21.024 20.316
21.942 21.495 20.819 20.973 21.115

Figure 1: Control chart for the two datasets.

Further, before carrying out the Bayes analysis of the considered datasets, let us check the
compatibility of two datasets with the assumed model (6). The compatibility was examined based
on Kolmogorov-Smirnov (KS) test statistic which was evaluated using maximum likelihood (ML)
estimates of the model parameters. It may be noted that the ML estimates for θ, β and µ were
found to be 0.693, 1.475 and 20.391, respectively, for Data1 and 2.635, 4.244 and 18.737, respectively,
for Data2. Finally, for Data1, the KS statistic was found to be 0.110 with the corresponding p-
value as 0.860 while for Data2, the KS statistic was 0.066 with the corresponding p-value as 0.998.
Obviously, the two datasets provide good compatibility with the model W(θ, β, µ).

For performing the Bayes analysis, the Gibbs sampler algorithm was implemented on the
posterior (14) as per details given in subsection 2.2. Convergence monitoring was done using

527



Sonam Gubreley, Ankita Gupta, S.K. Upadhyay
BAYES ESTIMATION OF CAPABILITY INDEX

RT&A, No 1 (77)
Volume 19, March 2024

ergodic averages, obtained separately for each of the three variates, using a single long run of the
iterating chain. It was found that 50K iterations were good enough for getting stationarity be-
haviour of the ergodic averages. Once the convergence was assessed, equally spaced observations
at a gap of 10 were chosen to make auto correlation negligibly small. In this way, a posterior
sample of size 1K was taken from the marginal posterior of each of θ, β and µ (see also [29] and
[32]). Once the samples of θ, β and µ are obtained, the same can be used in (9)-(11) by substitution
to get the corresponding samples of size 1K from the posterior of each of Up, Lp and M. Finally,
the samples of Up, Lp and M so obtained can be used to get the posterior samples of size 1K
corresponding to Cpk given in (5).

Table 2: Estimated posterior summaries for θ, β, µ and Cpk

Estimated Posterior Summaries
Datasets Parameters Mean Median Mode 0.95 HPDI

Data1

θ 0.701 0.700 0.698 0.587 0.816
β 1.493 1.490 1.483 1.215 1.794
µ 20.384 20.386 20.391 20.350 20.412

Cpk 1.227 1.221 1.211 0.931 1.532

Data2

θ 2.663 2.589 2.439 1.770 3.725
β 4.259 4.139 3.901 2.522 6.242
µ 18.706 18.780 18.928 17.715 19.561

Cpk 0.870 0.869 0.867 0.695 1.053

Table 2 provides a few important posterior based summaries of different posterior charac-
teristics corresponding to various entertained model parameters, each estimated on the basis
of corresponding 1K posterior samples. These summaries are shown in the form of estimated
posterior mean, median, mode and the highest posterior density intervals with 0.95 coverage
probability (0.95 HPDI) for each of the two datasets. It can be observed from Table 2 that the
estimated posterior mean, median and mode corresponding to each parameter for both the
datasets are quite close to each other, implying that the posterior distributions are approximately
symmetric. Furthermore, the width of 0.95 HPDIs for all the parameters are quite small indicating
less variability in the estimated values of the parameters and, hence, ensuring the consistency of
the estimated values. An important finding presented in Table 2 is that 1 ≤ Cpk ≤ 1.33 for Data1,
indicating that the process is barely capable whereas for Data2 Cpk < 1 implying that the process
is incapable and requires further improvement. A similar conclusion was drawn on the basis of
control charts shown in Figure 1.

4. Conclusion

Technological advancements have typically led to an expansion of the industry, wherein the need
for high-quality goods and services is reinforced by a competitive environment. From this vantage
point, industries that deal with manufacturing are always susceptible to manufacturing process
failures leading to the products that may not meet the desired specifications. The manufacturing
sector has made extensive use of PCIs, providing a numerical gauge of a process’s ability to
produce goods that satisfy the factory-set quality standards. In estimating PCIs, more often the
assumption is made that the data are generated randomly using a normal model. Nonetheless,
asymmetric data are found in many circumstances. This paper has successfully demonstrated
the utility of the three-parameter Weibull model in estimating the aforesaid index. Further, the
Bayesian methodology developed in the paper is also found to offer the intended inferences in
a routine manner. The inferential results show that the process pertaining to Data1 is barely
capable while that of Data2 is incapable to offer the desired quality assurance.
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Abstract

Transportation Problem is a specific type of linear programming problem (LPP). Today, in the real
world, the decision maker handles the multi-objectives at the same time. Fuzzy Concepts are used in
LPP to handle the uncertainty and vagueness of data. This paper presents a new algorithm to solve
a special type of fuzzy transportation problem (FTP) with the generalized trapezoidal fuzzy numbers
(GTpFN) in which the decision maker is not certain about the exact value of transportation charge and
the availabilities and requirements are the real numbers. In this Proposed Algorithm first, the fuzzy
multi-objective transportation problem (FMOTP) is converted into a Crisp multi-objective transportation
problem (MOTP) by the Proposed ranking function, and then the Crisp MOTP is transformed into
a single objective transportation problem using the sum of objective functions values. The proposed
algorithm gives an efficient compromise solution of FMOTP. To elaborate the proposed algorithm, one
numerical example is solved.

Keywords: Ranking function, Multi-Objective Transportation Problem, Generalized Trapezoidal
fuzzy number.

1. Introduction

The transportation problem (TP) is a classical optimization problem in operations research and
logistics. To satisfy requirements and availabilities, it involves determining the most cost-effective
way to distribute a product from various providers to various consumers. TP aims to minimize
the total transportation cost. Traditional methods, including the Vogel approximation method,
the Matrix Minima approach, and the North West Corner method, are used to solve the TP. In the
real-world scenario, nowadays the decision maker can handle multiple objectives at a single time
in which the decision maker is unsure about the precise value of transportation cost, requirements,
and availabilities. The multi-objective transportation problem (MOTP) is a linear optimization
problem with several variable objectives and equality Constraints. Fuzzy concepts often deal with
such types of uncertainty and vagueness in the exact cost of transportation, availabilities, and
requirements. The Concept of fuzzy transportation problems (FTP) was developed to find the
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solution to the TP’s unpredictable parameters, such as fuel prices, weather conditions, product
supply, demands, etc. Trapezoidal fuzzy numbers (TpFN) are useful when modeling uncertain
parameters in transportation problems, such as requirements and availabilities quantities or
transportation costs, which are not precisely known but have a range of potential values.
The TP was developed by F.L. Hitchcock [1] originally in 1941. The TP was represented by a
standard LPP form that can be solved by the simplex method. Lotfi A. Zadeh [2] was given the
concept of fuzziness in 1965. Charnes and Cooper [3] developed The Stepping Stone approach
offers an alternative approach for obtaining information from the Simplex Method. Zimmermann
H.J. [4] was the first to use an appropriate membership function to solve an LP problem with
multiple objectives. Ringuest et al. [5] gave two interactive algorithms for solving MOTP. Bit et
al. [6] Solved TP problems with several criteria by using Fuzzy Programming. Chanas et al. [7]
Proposed a model based on fuzzy linear programming to solve TPs in which cost coefficients
are crisp values and supplies and demands are fuzzy values. Liu et al. [8] developed a method
that is based on the extension principle to solve FTPs. Kiruthiga, M., et al. [9] used Interval
arithmetic based on Alpha-cut to solve non-linear programming problems (NLP). M Afwat et
al. [10] introduced the Product Approach to find an efficient solution for MOTP. Gani and
Razak [11] presented a parametric approach for two-stage fuzzy cost-minimizing TP that has
supplies and demands in the form of a trapezoidal fuzzy number. Bagheri. M. et al. [12]
presented the DEA approach to solving FMOTP. Maity. G. et al. [13] studied the MOTP under
uncertain environments. Dinagar and Palanivel [14] studied the FTP with trapezoidal fuzzy
numbers. Pandian et.al [15] developed the zero-point method to find the fuzzy solution for the
FTP. Hamiden Abd El-Waheed Khalifa et.al. [16] Presented a fuzzy geometric programming
approach to find an optimal compromise solution for two-stage multi-objective TP. Srikanth
Gupta et. al. [17] Investigated the MOTP with capacitated restrictions that have some linear
objective functions and some that are fractional. Murshid Kamal et.al. [18] Studied the MOTP,
where the objective function is type-2 TpFN in which supply and demand follow various types of
probabilistic distributions. They used the fuzzy goal programming method to find an optimal
solution. M.A. Sayed et.al. [19] Developed a novel approach to solve intuitionistic Fuzzy fractional
MOTP. H. Adb E. Khalifa [20] proposed a signed distance ranking function method to obtain the
set of efficient solution fuzzy MOTP. Yi-Mang et al. [21] adopted two fuzzy ranking methods
based on their mean graded values and distance from the mean ranking function and proposed
a novel ripple-spreading algorithm to solve FMOLPP. Y Kacher et al. [22] presented a novel
two-step generalized parametric approach to solving different fuzzy parametric-based MOTP. SG
Bodke [23] introduced a method to solve fuzzy MOTP after converting it into Crisp MOTP which
is based on Zimmerman technique using the exponential membership function.
This paper presents a new algorithm for solving fuzzy MOTP with cost values as generalized
trapezoidal fuzzy numbers and requirements availabilities are the real numbers. In this algorithm,
firstly, the fuzzy MOTP is converted into Crisp MOTP by the proposed Ranking function. After
converting the fuzzy MOTP into Crisp MOTP, the Crisp MOTP is changed into the single objective
crisp transportation problem. The algorithm is based on row/column maximum and minimum.
Our proposed method directly obtained a unique, efficient solution, which leads to a Compromise
Solution of crisp and fuzzy MOTP.

2. Abbreviations

1. Linear Programming Problem - LPP

2. Transportation Problem - TP

3. Fuzzy Transportation Problem - FTP

4. Trapezoidal Fuzzy Number - TpFN

5. Generalized Trapezoidal Fuzzy Number - GTpFN
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6. Multi-Objective Transportation Problem - MOTP

7. Fuzzy Multi-Objective Transportation Problem - FMOTP

8. Decision Maker- DM

9. Fuzzy Transportation Cost - FTC

10. Minimum Transportation Cost - MTC

11. Single objective transportation problem - SOTP

3. Basic Definitions

1. Fuzzy Number: A fuzzy set Ã is said to be fuzzy number if its membership function Ã : R

→ ⌈0, 1⌉ has satisfy the following conditions:
Ã(λx1 + (1 − λ)x2) ≥ min{ ˜A(x1)}, ˜A(x2)
there exist a x ∈ R such that ˜A(x) = 1
Ã is piece-wise continuous

2. Generalized Trapezoidal Fuzzy Numbers (GTpFN): A fuzzy number Ã = (p1, p2, p3, p4; w)
where p1 < p2 < p3 < p4 and 0 < w ≤ 1 with membership function defined as:

µ ˜A(x) =


w{1 − p2−x

p2−p1
} if p1 ≤ x ≤ p2

w if p2 ≤ x ≤ p3

w{1 − x−p3
p4−p3

} if p3 ≤ x ≤ p4

0 Otherwise

3. Properties of Trapezoidal Fuzzy Numbers (TpFN): let Ã = (p1, p2, p3, p4; w1) and B̃ =
(q1, q2, q3, q4; w2) be any two GTpFNs. then
Ã + B̃ = (p1, p2, p3, p4; w1) + (q1, q2, q3, q4; w2) = (p1 + q1, p2 + q2, p3 + q3, p4 + q4; min(w1, w2))
Ã - B̃ = (p1, p2, p3, p4; w1) - (q1, q2, q3, q4; w2) = (p1 − q1, p2 − q2, p3 − q3, p4 − q4; min(w1, w2))
Ã× B̃ = (p1, p2, p3, p4; w1)× (q1, q2, q3, q4; w2) = {min(p1q1, p1q4, p4q1, p4q4), min(p2q2, p2q3, p3q2, p3q3),
max(p2q2, p2q3, p3q2, p3q3), max(p1q1, p1q4, p4q1, p4q4)}
σÃ = (σp1, σp2, σp3, σp4), where σ is any constant.

4. Proposed Ranking Method

The ranking method is used to compare the fuzzy numbers.Assuming that the natural order is
preserved, The ranking function R: T(R) → R defined on set of real numbers maps each fuzzy
number into a real number where T(R) is set of the fuzzy numbers.
the proposed ranking function for the Trapezoidal number Ã = (p1, p2, p3, p4; w) is given as

R(Ã) = 2p1+5w(p2+p3)+2p4
14

5. Properties of Ranking functions

Ã = (p1, p2, p3, p4; w1) and B̃ = (q1, q2, q3, q4; w2) be any two GTpFNs. then the properties of the
ranking function is given as:
Ã ≤ B̃ iff R(Ã) ≤ R(B̃)
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Ã ≡ B̃ iff R(Ã) ≡ R(B̃)
Ã ≥ B̃ iff R(Ã) ≥ R(B̃)

6. Mathematical model for FMOTP with GTpFN

The FMOTP with k objectives in mathematical form is given as:

Min Z̃k(x) = Σm
i=1Σn

j=1 ã(k)ij xij for k = 1,2,.....

Subject to
Σm

i=1xij = dj: for fixed j=1,2,......,n
Σn

j=1xij = si: for fixed i=1,2,......,m
xij ≥ 0

Where,
si = the product’s availability at the i-th source
dj = the product’s requirements at the j-th destinations

ã(k)ij = the fuzzy cost for transporting one unit of the given product from i-th source to j-th
destination of k-th objective
xij = Product’s quantity transported from i-th source to j-th destination.

ã(k)ij are the GTpFNs.

7. Efficient Solution

A feasible solution X0 = {x0
ij, i = 1, 2, ...., m, j = 1, 2, ....., n} is called an efficient solution to the

problem (T) is there does not exist any feasible solution Y of MOTP such that Z1(X) ≤ Z1(X0)
and Z2(X) ≤ Z2(X0).

8. Our Proposed Algorithm

The Compromise efficient fuzzy solution of fuzzy MOTP is obtained by the proposed algorithm.
The proposed algorithm’s steps are as follows:

Step I: In this step first, the fuzzy MOTP is converted into crisp MOTP by the proposed Rank-
ing Method. The proposed ranking method converted the fuzzy quantities into crisp quantities.
The crisp MOTP in mathematical form can be given as:

Min Zk(x) = Σm
i=1Σn

j=1a(k)ij xij for k = 1,2,.....

Subject to
Σm

i=1xij = dj: for fixed j=1,2,......,n
Σn

j=1xij = si: for fixed i=1,2,......,m
xij ≥ 0

Where
si = the product availability at the i-th source
dj = the product requirements at the j-th destinations

a(k)ij = the crisp cost for transporting one unit quantity of product from i-th source to j-th destina-
tion of k-th objective,
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xij = quantity of product transported from i-th source to j-th destination.

the crisp MOTP is represented in tabular form in Table 1.

Table 1: Tabular representation of Crisp MOTP

Destination → A1 A2 ...... An Availability
source ↓ {si}
B1 a(1)11 a(1)12 ...... a(1)1n s1

a(2)11 a(2)12 ...... a(2)1n
: : ...... :
a(k)11 a(k)12 ...... a(k)1n

B2 a(1)21 a(1)22 ...... a(1)2n s2

a(2)21 a(2)22 ...... a(2)2n
: : ...... :
a(k)21 a(k)22 ...... a(k)2n

: : : : : :
Bm a(1)m1 a(1)m2 ...... a(1)mn sm

a(2)m1 a(2)m2 ...... a(2)mn
: : ...... :
a(k)m1 a(k)m2 ...... a(k)mn

Requirement (dj) d1 d2 ...... dn

Step II: In this step the sum of the objectives is calculated.

tij = Σk
v=1C(r)

ij for 1 ≤ i ≤ m and 1 ≤ v ≤ k.

then the crisp Single-Objective Transportation Problem (SOTP) in tabular form is represented
in table 2.

Table 2: Tabular representation of Crisp SOTP

Destination → A1 A2 ...... An Availability
source ↓ {si}
B1 t11 t12 ...... t1n s1
B2 t21 t22 ...... t2n s2
: : : ...... :
Bm tm1 tm2 ...... tmn sm
Requirement (dj) d1 d2 ...... dn

Step III: Penalties of each row and columns

The Penalties for each row Bi : 1 ≤ i ≤ m is calculated as:
Row penalties µi = [maximum (t1r) - minimum (t1r)] for 1 ≤ r ≤ n, ∀i : 1 ≤ i ≤ m

Similarly, the penalties for each column Ap : 1 ≤ p ≤ n is calculated as:
Column Penalties ρj = [maximum (ts1) - minimum (ts1)] for 1 ≤ s ≤ m, ∀j : 1 ≤ j ≤ n .

The Crisp MOTP with penalties in given in table 3.
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Table 3: Tabular representation of Crisp SOTP with penalties

Destination → A1 A2 ...... An Availability Row penalties
source ↓ (si) (µi)
B1 t11 t12 ...... t1n s1 µ1
B2 t21 t22 ...... t2n s2 µ2
: : : ...... : : :
Bm tm1 tm2 ...... tmn sm µm
Requirement (dj) d1 d2 ...... dn
Column Penalties (ρj) ρ1 ρ2 ...... ρn

Step IV: In this step, the maximum penalty (δ) is calculated as:

δ = max {µi, ρj; 1 ≤ i ≤ m, 1 ≤ j ≤ n}
Select that Row/column which has a maximum penalty δ

Step V: In this step, select the cell that has minimum objective value in the row/column, that
is selected in step IV.

Step VI: The maximum requirement/availability is allocated to the cell that is selected in Step
V, and ignore that row/column that requirement/availability is satisfied.

Step VII: Repeat the process until all the requirements/availabilities are not fulfilled.

The flowchart of the proposed algorithm is given in figure 1.

To elaborate the proposed algorithm, a numerical example is considered.

Example: A fuzzy MOTP with three objective functions is considered.
Coe-efficient Matrix for a first objective function

C1 =


ã(1)11 ã(1)12 ã(1)13 ã(1)14 ã(1)15

ã(1)21 ã(1)22 ã(1)23 ã(1)24 ã(1)25

ã(1)31 ã(1)32 ã(1)33 ã(1)34 ã(1)35

ã(1)41 ã(1)42 ã(1)43 ã(1)44 ã(1)45



=


(9, 10, 11, 12; 0.8) (12, 13, 14, 18; 0.8) (8, 9.5, 11.5, 13; 0.8) (3, 7, 9, 8; 0.8) (5, 9, 12, 16; 0.8)
(6, 7, 8, 13; 0.8) (2, 3, 3.5, 6; 0.8) (5, 6.5, 8.5, 14; 0.8) (5, 6, 9, 14; 0.8) (4, 5, 6, 9; 0.8)
(4, 6, 7, 12; 0.8) (3, 4, 7, 10; 0.8) (7, 9, 12, 14; 0.8) (3, 14, 15, 16; 0.8) (2, 2.5, 4, 6; 0.8)
(2, 6, 9, 10; 0.8) (6, 9, 10, 12; 0.8) (3.5, 13, 16, 16.5; 0.8) (1, 1.5, 2.5, 5; 0.8) (1, 2, 2.5, 4; 0.8)


Coe-efficient Matrix for the second objective function

C2 =


ã(2)11 ã(2)12 ã(2)13 ã(2)14 ã(2)15

ã(2)21 ã(2)22 ã(2)23 ã(2)24 ã(2)25

ã(2)31 ã(2)32 ã(2)33 ã(2)34 ã(2)35

ã(2)41 ã(2)42 ã(2)43 ã(2)44 ã(2)45



=


(1, 2.5, 3.5, 4; 0.6) (10, 12, 13, 15.5; 0.6) (9.5, 10, 11, 15; 0.6) (0.5, 1, 1.5, 2.75; 0.6) (2.5, 5, 6, 9; 0.6)
(0.25, 1, 1.5, 3) (9, 11, 14, 16.5; 0.6) (8.5, 10, 15, 17; 0.6) (2.5, 7, 8, 10; 0.6) (1.5, 2, 3, 5; 0.6)

(4.5, 12, 13, 14; 0.6) (0.75, 1, 1.5, 2.5; 0.6) (4, 11, 14, 14.5; 0.6) (2, 4, 7, 9.5; 0.6) (3, 6, 9, 9.5; 0.6)
(1.5, 2, 3, 5; 0.6) (7, 8, 13, 17; 0.6) (2.5, 9, 10, 11; 0.6) (8, 10, 15, 17.5; 0.6) (6, 8, 13, 18.5; 0.6)


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Figure 1: Flowchart for the Proposed Algorithm
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Coe-efficient Matrix for the third objective function

C3 =


ã(3)11 ã(3)12 ã(3)13 ã(3)14 ã(3)15

ã(3)21 ã(3)22 ã(3)23 ã(3)24 ã(3)25

ã(3)31 ã(3)32 ã(3)33 ã(3)34 ã(3)35

ã(3)41 ã(3)42 ã(3)43 ã(3)44 ã(3)45



=


(0.5, 1, 2, 6; 1) (2.5, 3, 4, 8; 1) (4.5, 6, 10; 1) (1, 2, 4, 5; 1) (3, 4, 7, 11.5; 1)

(2, 2.5, 4.5, 8.5; 1) (6, 7, 8, 12.5; 1) (1, 2, 5, 9.5; 1) (7.5, 8, 9, 13; 1) (0.25, 1, 2, 6.25; 1)
(3.5, 4, 5, 9; 1) (1, 2.5, 3.5, 5; 1) (3, 4, 5, 9.5; 1) (2, 2.5, 3.5, 4; 1) (4, 4.5, 6.5, 10.5; 1)
(3.5, 5, 6, 11; 1) (7, 7.5, 9.5, 13.5; 1) (2.5, 4, 7, 12; 1) (1.5, 2.5, 3.5, 4.5; 1) (0.25, 0.5, 1.5, 1.75; 1)


Availabilities: s1 = 5, s2 = 4, s3 = 2, s4 = 9.

Requirements: d1 = 4, d2 = 4, d3 = 6, d4 = 2 d5 = 4

Step I: In this step, the fuzzy MOTP is transformed into crisp MOTP using the Ranking
function given above:
ã(1)11 = (9, 10, 11, 12; 0.8)
Here p1 = 9, p2 = 10, p3 = 11, p4 = 12 w = 0.8

R(ã(1)11 ) = 2×9+5×0.8(10+11)+2×12
14 = 9 = a(1)11

Similarly, all the fuzzy values ã(v)ij for 1 ≤ j ≤ 5, 1 ≤ i ≤ 4 and 1 ≤ v ≤ 3. can be converted in
crisp values by using ranking function.

The crisp MOTP is represented in tabular form in table 4.

Table 4: Tabular representation of Crisp MOTP

Destination → A1 A2 A3 A4 A5 Availability
source ↓ {si}
B1 9 12 9 6 9 5

2 9 8 1 4
2 4 6 3 6

B2 7 3 7 7 5 4
1 9 9 5 2
4 8 4 9 2

B3 6 5 9 11 3 2
8 1 8 4 5
5 3 5 3 6

B4 6 8 11 2 2 9
2 8 6 9 8
6 9 6 3 1

Requirement (dj) 4 4 6 2 4

Step II: In this step, the sum of objectives value is calculated.
t11 = Σ3

v=1a(v)11 = a1
11 + a2

11 + a3
11 = 9+2+3 = 13

Similarly,
t12 = Σ3

v=1a(v)12 =25, t13 = Σ3
v=1a(v)13 =23,t14 = Σ3

v=1a(v)14 =10, t15 = Σ3
v=1a(v)15 = 19

t21 = Σ3
v=1a(v)21 =12, t22 = Σ3

v=1a(v)22 =20,t23 = Σ3
v=1a(v)23 =20, t24 = Σ3

v=1a(v)24 = 21, t25 =Σ3
v=1a(v)25 = 9
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t31 = Σ3
v=1a(v)31 = 18, t32 = Σ3

v=1a(v)32 =9,t33 = Σ3
v=1a(v)33 =22, t34 = Σ3

v=1a(v)34 = 18, t35 =Σ3
v=1a(v)35 = 14

t41 = Σ3
v=1a(v)41 = 14, t42 = Σ3

v=1a(v)42 =25,t43 = Σ3
v=1a(v)43 =23, t44 = Σ3

v=1a(v)44 = 14, t45 =Σ3
v=1a(v)45 = 11

Then, Crisp SOTP is given in Table 5.

Table 5: Tabular representation of Crisp SOTP

Destination → A1 A2 A3 A4 A5 Availability
source ↓ {si}
B1 13 25 23 10 19 5
B2 12 20 20 21 9 4
B3 18 9 22 18 14 2
B4 14 25 23 14 11 9
Requirement (dj) 4 4 6 2 4

Step III: the penalties for each Row and Columns is calculated as:

Rows Penalties:
µ1 = [maximum(t1r) - minimum(t1r)] for 1 ≤ r ≤ 5
= [maximum(t11, t12, t13, t14, t15) - minimum(t11, t12, t13, t14, t15)]
= [maximum(13, 25, 23, 10, 19) - minimum(13, 25, 23, 10, 19)]
= 25-10 =15
Similarly, the remaining row penalties is
µ2 =12, µ3 =13, µ4 =14

Columns Penalties:
ρ1 = [maximum(ts1) - minimum(ts1)] for 1 ≤ s ≤ 4
= [maximum(t11, t21, t31, t41) - minimum(t11, t21, t31, t41)]
= [maximum(13, 12, 18, 14) - minimum(13, 12, 18, 14)]
= 18-12 =6
Similarly, the remaining column penalties is
ρ2 =16, ρ3 =3, ρ4 =11,ρ5 = 10
The tabular representation of SOTP with row and column penalties is given in Table 6.

Table 6: Tabular representation of Crisp SOTP With Penalties

Destination → A1 A2 A3 A4 A5 Availability row penalties
source ↓ {si} µi
B1 13 25 23 10 19 5 15
B2 12 20 20 21 9 4 12
B3 18 9 22 18 14 2 13
B4 14 25 23 14 11 9 14
Requirement (dj) 4 4 6 2 4
Column penalties (ρj) 6 16 3 11 10

Step IV: In this Step, the maximum penalty δ is calculated.
δ = max {µi, ρj; 1 ≤ i ≤ 4, 1 ≤ j ≤ 5}
= max {µ1, µ2, µ3, µ4, ρ1, ρ2, ρ3, ρ4, ρ5}
= max{15, 12, 13, 14, 6, 16, 3, 11, 10}
= 16 = ρ2
Here, Column A2 has a maximum penalty.
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Step V: In the table 6, in Column A2, the cell a32 (= 9) has the minimum objective value.

Step VI: Now, allocate min (2,4) = 2 to cell t32 and delete the Row B3 whose availability is
fulfilled.

Step VII : Apply the same procedure from Step II to Step VIII for making the possible alloca-
tion in the remaining rows and columns, hence the 2nd, 3rd, 4th, 5th,6th, 7th, and,8th allocations
as 2,4,3,1,2,2,4 at cells t14, t45, t11, t41, t22, t23, t43 positions respectively. the optimum allocation of
MOTP is given in Table 7.

Table 7: Final allocation table

Destination → A1 A2 A3 A4 A5 Availability
source ↓ {si}
B1 13(3) 25 23 10(2) 19 5
B2 12 20(2) 20(2) 21 9 4
B3 18 9(2) 22 18 14 2
B4 14 25 23(4) 14 11(4) 9
Requirement (dj) 4 4 6 2 4

9. Result Analysis

In this section, the results obtained from the example are analyzed. The final Solution table for
the example is shown in Table 8

Table 8: Final Solution table

Obtained Allocations x11 = 3, x12 = 0, x13 = 0, x14 = 2, x15 = 0
, x21 = 0, x22 = 2, x23 = 2, x24 = 0, x25 = 0, x31 = 0
,x32 = 2, x33 = 0, x34 = 0, x35 = 0, x41 = 1,
x42 = 0, x43 = 4, x44 = 0, x45 = 4

Fuzzy Compromise efficient solution of MOTP [(71, 137, 170, 206; 0.8), (76, 123.5, 169.5, 212.5; 0.6),
(34, 53, 87, 148 : 1)]

Crisp Compromise efficient solution of MOTP (127, 104, 76)
Nature of Crisp Compromise Crisp Solution Non-Degenerate

Physical Interpretation of the results: The obtained solution, as presented in Table 8, can be
physically interpreted as follows:

(I) For First Objective Function: using the proposed algorithm the minimum fuzzy transporta-
tion cost (FTC) is [(71,137,170,206;0.8)]. It has the following physical interpretation:

(i) In the decision-maker’s estimation, The minimum transportation cost (MTC) will be greater
than Rs. 71 and less than Rs. 206 units.

(ii) The decision-maker is 80% satisfied overall with the statement that transportation costs
will be 137-180.

(iii) The following values of the remaining minimum transportation cost can be used to
determine the decision-maker’s overall level of satisfaction:
If x is the MTC, then the overall decision-maker satisfaction level for x = µÃ(x)× 100
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Where

µ ˜A(x) =


0.8{1 − 137−x

66 } if 71 ≤ x ≤ 137
0.8 if 137 ≤ x ≤ 170
0.8{1 − x−170

36 } if 170 ≤ x ≤ 206
0 Otherwise

(II) For Second Objective Function: using the proposed algorithm the minimum FTP is
[(76,123.5,169.5,212.5;0.6)] It has the following physical interpretation:

(i) The MTC, in the decision-maker’s estimation, will be greater than Rs. 76 and less than Rs.
212.5 units.

(ii) The decision-maker is 60% satisfied overall with the statement that transportation costs
will be 123.5-169.5.

(iii) The following values of the remaining minimum transportation cost can be used to
determine the decision-makers overall level of satisfaction:
If x is the MTC, then the overall decision-maker satisfaction level for x = µÃ (x) ×100
Where

µ ˜A(x) =


0.6{1 − 123.5−x

47.5 } if 76 ≤ x ≤ 123.5
0.6 if 123.5 ≤ x ≤ 169.5
0.6{1 − x−169.5

43 } if 169.5 ≤ x ≤ 212.5
0 Otherwise

(III) For Third Objective Function: using the proposed algorithm the minimum FTC is
[(34,53,87,148;1)]. It has the following physical interpretation:

(i)The MTC in the decision-makers estimation, will be greater than Rs. 34 and less than Rs.
148 units.

(ii) The decision-maker is 100% satisfied overall with the statement that transportation costs
will be 53-87.

(iii) The following values of the remaining minimum transportation cost can be used to
determine the decision-makers overall level of satisfaction:
If x is the MTC, then the overall decision-maker satisfaction level for x = µÃ (x) ×100
Where

µ ˜A(x) =


1.0{1 − 53−x

19 } if 34 ≤ x ≤ 53
1.0 if 53 ≤ x ≤ 87
1.0{1 − x−87

61 } if 87 ≤ x ≤ 148
0 Otherwise

10. Conclusion

This paper presents a new algorithm for solving the fuzzy multi-objective transportation problem
(FMOTP) with objective function values as generalized trapezoidal fuzzy numbers, availabilities,
and requirements are given as real numbers. The proposed algorithm first converts the fuzzy
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MOTP into Crisp MOTP by ranking function after converting, the multi-objective MOTP is
converted into Single objective TP. The proposed algorithm gives an efficient compromise solution
and also provides a satisfaction level to the decision-maker in real-life situations. the proposed
algorithm is less time-consuming and simple to use.
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Abstract 

In any industry related to the construction of buildings and structures we have heard about the need 

to assess the technical condition of various objects to assess and analyze the risks associated with the 

possible collapse of buildings (structures), loss of life and high costs to eliminate these consequences. 

Since many objects fail over time, and in general to determine the wear and tear and the possible term 

of further safe operation, it is necessary to conduct a technical survey. The article describes the 

principle of operation of thermal imaging devices for determining the reliability of building structures 

in residential premises, and also raises problems, the solution of which can simplify the use of thermal 

imaging devices in the inspection of buildings and structures and reduce the economic costs of damage 

compensation in case of timely detection and elimination of any defects. 

Keywords: thermal imager, thermal imaging device, reliability of building 

structures, risk analysis, building collapse, economic costs, inspection of buildings 

and structures, hidden defects, energy audit, temperature, energy, air leakage 

I. Introduction

In the Russian Federation, the construction industry is developing quite rapidly, and new 

buildings and structures are constantly being constructed. Companies that build and monitor the 

safe operation of various facilities are obliged to assess and determine the category of the technical 

condition of buildings and structures, which assesses the current state of the object under study, its 

operational properties, including the condition of the foundation soils, based on a comparison of the 

actual values of the parameters under study with the values of the same parameters established by 

the project or regulatory document. 

II. Methods

During the inspection and assessment of the technical condition of buildings and structures we 

mainly fix only visible defects, but quite often, many different damages in the building structures of 

buildings and structures are hidden and directly affect the load-bearing capacity of objects. For the 

fastest detection of any damage, especially hidden damage, where the integrity of structural 
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elements has been violated, namely cracks, cavities, etc. in closed building structures, thermal 

imaging methods of control of buildings and structures are used [1]. Such methods involve the use 

of devices called thermal imaging cameras. This device is based on non-contact and remote scanning 

of various structural elements of buildings and structures, and is used to visually determine and 

evaluate the thermal insulation characteristics of a building or room in real time [2]. Thermal imagers 

differ from each other by their technical characteristics, such as matrix parameters, ergonomics 

parameters, range of infrared radiation capture. Such devices are used in various spheres of human 

activity, for example, in medicine, veterinary medicine, engineering, housing and utilities, 

firefighting, etc. This article deals with the application of thermal imaging in the field of construction 

and examines the inspection of window glazing with the help of a thermal imaging device Testo 875 

2i (Figure. 1). 

Figure 1: General view of the device - Testo 875 2i thermal imager [1]. 

The thermal imaging method is used to observe the temperature distribution of the surface 

being inspected, which is displayed as a color picture where different colors correspond to different 

temperatures [2]. There is a temperature difference between the interior and exterior surfaces, and 

with the help of different colors on the thermal imager screen it is possible to identify defects where 

there is an increased heat loss due to the violation of thermal insulation [3].  

Thermal imaging devices began to be used due to the fact that in 2009 came into force the federal 

law № 261 "On energy saving and energy efficiency" [4], and the subsequent introduction of thermal 

imaging devices in the field of energy saving and energy efficiency [4], and the subsequent order of 

the Ministry of Energy of the Russian Federation № 182 "On approval of requirements to the energy 

passport, compiled on the basis of the results of mandatory energy inspection" [5]. 

Thanks to the use of thermal imaging technology for inspection of the technical condition of 

structural elements of buildings and structures, it becomes possible to detect hidden defects at the 

early stages of their development, which makes it possible to prevent the transition of structural 

elements from "workable" technical condition to "limited-workable" or even "emergency" [6]. 

If we consider only the sphere of construction and architecture, it is possible with the help of 

thermal imaging devices: 

• detect hidden defects in building structures [7];

• visualize energy loss [7];

• detect missing or deformed insulation layers;

• locate air leaks;
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• detect mold, rotten or poorly insulated areas;

• identify temperature bridges;

• locate moisture penetration in flat roofs;

• find irregularities in piping and heating risers;

• find faults in electrical supply lines.

We have carried out energy audit of the installed double-glazed windows to determine their quality 

and tightness in the apartment of a residential building located in the Moscow region, Balashikha, 

Balashikha, Prospekt Lenina, 73 (Fig.2). Conducting an energy audit in the house is necessary to 

check the technical characteristics of the residential premises, its energy efficiency and cost-

effectiveness. The main purpose of the survey is to identify the causes of high costs for electricity, 

gas, heat and water, as well as to determine possible ways to reduce energy consumption [8,9]. 

Figure 2: Schematic of the location of the object under study 

The research was conducted using the following methods: 

• method of comparison, comparison of the data of submitted documents and

normative acts; 

• analysis of normative and technical sources.

• carrying out thermal imaging inspection.
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Figure 3: Analysis of the conducted thermal imaging inspection of the apartment window units 
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Figure 4: Analysis of the conducted thermal imaging inspection of the balcony door of the apartment 
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Figure 5: Analysis of the conducted thermal imaging inspection of the apartment window units

III. Results
According to the results of the data obtained by taking thermal imaging and instrumental 

parameters of window structures, the following conclusions were obtained:  

• the presence of voids (under the sill) was revealed;

• defects in filling the installation gaps during the construction of joints;

• thermal imaging inspection revealed air leakage both from the inside of the

premises and from the outside; 

• traces of condensation and mold formation on the slopes were revealed.

Customer 
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The reason of occurrence of available defects and shortcomings is low quality of manufacture 

of products and their installation. Translucent structures made of PVC profile installed in the 

apartment do not meet the basic requirement for windows of any design (tightness), it is not possible 

to use them for their intended purpose (operation) [10]. 

IV. Discussion
In conclusion, it can be concluded that non-destructive thermal imaging methods are an 

indispensable tool for locating hidden defects in structural elements of buildings and structures, 

because they can be effective even in areas inaccessible for other diagnostic methods, and they help 

to identify the causes of high costs for electricity, gas, heat and water, as well as to identify possible 

ways to reduce energy consumption. 
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Abstract

Parametric modeling of complex lifetime data characterized with nonmonotone hazard rate (NMHR)
has in recent years attract the interest of many researchers and practitioners. The three-parameter
improved Weibull-Weibull distribution introduced in 2022 has demonstrated a better NMHR modeling
potential in the analysis of several failure times identified with bathtub hazard rate (BHR). In this study,
we present the characterization, properties and two data sets’ applications of the distribution. Various
properties of the distribution obtained, include moment generating function, moments, skewness, kurtosis,
and some types of entropy. Numerical results for mean, variance, skewness, and kurtosis are computed
using simulation studies. Estimation of the distribution parameters is performed using the method of
maximum likelihood, and the estimation method is assessed by Monte Carlo simulation experiments. The
two illustrations further ascertain the capability of the model for modeling lifetime data from different
scientific investigation areas.

Keywords: Impr oved Weibull-W eibull distribution, non-monotone failur e rate, characterization,
maximum likelihood method, failur e time data.

1. Introduction

Weibull distribution is one of the leading and widely used classical distributions. It has pla yed a
vital role in solving many problems in applied areas, such as reliability engineering, rene w able
ener gy, weather forecast, and biological studies analysis. For example, the Weibull model is
used in modelling the failur e time of de vices [1], analysis of wind speed data to deter mine the
wind power density [2], further mor e,[3] applied the distribution to describe soil particle-size and
w as recently used for fatigue life prediction of mechanical parts [4]. Because of its positiv ely
and negativ ely ske wed density shapes, the distribution may be the first choice when modeling
monotone hazar d rates. One dra wback with Weibull is its inability to accommodate non-monotone
failur e rates, such as the bathtub and unimodal failur e rates [5]. For instance, the unimodal-shaped
failur e rate can be obser ved in the course of a successful sur ger y, wher e the patient is at high risk
initially due to infection and other complications. The bathtub-shaped failur e rate can be obser ved
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in the course of a population follo wed from birth or manufactur ed items with early failur e due
to faulty parts. Different new classes of distributions were de veloped based on modifications of
the Weibull distribution to cope with the non-monotonic failur e rates. Among others, are the
exponentiated Weibull by [6], modified Weibull by [7], odd Weibull by [8], beta modified Weibull
by [9], Weibull-W eibull by [10], Weibull-exponential by [11], odd generalized exponential-W eibull
by [12], new Weibull-W eibull by [13], exponentiated additiv e Weibull distribution by [14], on
monotonic and non-monotonic failur e rates by [15], Four -Parameter Weibull distribution by [16]
and flexible additiv e Chen-Gompertz by [17]. These distributions have one or mor e additional
parameter(s) compar ed to Weibull distribution that makes them mor e flexible for modeling
datasets with both monotone and non-monotone failur e rates. The impr oved Weibull-W eibull
(IWW3) distribution is a three-parameter model recently established by [18]. The distribution w as
proposed as an enhanced version of Weibull-W eibull (WW) distribution by [10] introduced in an
earlier study to widen its applicability in modeling dif ferent complex lifetime data distinguished
by various monotone and non-monotone hazar d rate (HR) shapes. The IWW3 distribution is
expr essed by the follo wing sur viv al/r eliability function as;

S(x) = exp
{
−
∫ ∞

0
h(t)dx

}
= exp

{
−
(

eζη − 1
)ϕ
}

, t > 0, (1)

wher e ζ = x
τ , η > 0 and ϕ > 0 are the tw o shape parameters, τ > 0 is the scale parameter of the

model, and h(x) repr esents the associated HR function (HRF) of the model, defined as

h(x) =
ηϕ

τ
ζη−1eζη

(
eζη − 1

)ϕ−1
. (2)

The HRF of IWW3 distribution w as characterized to have an increasing shape when ϕ, η ≥ 1, and
a decr easing patter n when ϕ, η < 1. Depending on the chosen values within the ranges of η > 1
and ϕη < 1, the HRF exhibits various bathtub cur ves. The HRF shapes are displa yed in Figur e 1,
which visually explains the three main for ms of the HFR shapes.

Figure 1: Curves describing various shapes of IWW3 hazard rate function at different values.

The probability density function (PDF) of the model is expr essed as

f (x) =
ηϕ

τ
ζη−1eζη

(
eζη − 1

)ϕ−1
exp

[
−
(

eζη − 1
)ϕ]

. (3)

The distribution w as demonstrated to provide a better fit in practice among several other tw o
to fiv e-parameter Weib ull and non-Weibull distributions. More specifically , the censor ed failur e
and running times of 30 de vices by[19] w as identified to exhibit bathtub-shaped HR. The findings
established the superiority of IWW3 distribution over some well-kno wn Weibull extensions,
including the exponentiated Weibull by [6], modified Weibull by [7], exponential Weibull by
[20], alongside the WW [10] and other distributions. Motiv ated by the IWW3 distribution
flexibility , and the original study by [18] only proposed the model, discussed its failur e rate
function and estimation methods. In this study , we present other important aspects of the
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distribution, including the model’s characterizations and some of its properties. Other real-life
data applications of the distributions are also demonstrated.

The rest of the paper is arranged as follo ws. Section 2 discuss some of the properties and
entr opies of the distribution. The characterization of the distribution by tw o truncated moments
and based on hazar d function are giv en in section 3. The estimation of the proposed distribution
parameters via the maximum likelihood method is presented in section 4. In sections 5 and 6, we
assessed the estimators numerically by simulation studies and applications of the model to tw o
lifetime data, respectiv ely. We conclude the paper in section 7.

2. Distribution properties

Her e, we discuss the moment generating function, moments, Rényi entr opy and Mathai-Houbold
entr opy. We obtained an appr oximation for the values of the mean, variance, ske wness and
kurtosis of X using Monte Carlo simulation technique.

2.1. Moment generating function and moments
Definition 1: Let X be a random variable with the IWW3 density function (3). Then the moment
generating function of X is giv en by

MX (s) = ϕ ∑
i≥0

∑
j≥0

(−1)i+jΓ (ϕ (i + 1))
i!j!Γ (ϕ (i + 1)− j) ∑

p≥0

τpspΓ (1 + p/ η )

p! (j− ϕ (i + 1))1+ p
η

(4)

The rth moment about origin of X is generated from (4) , and is define as follo ws.
Definition 2: Let X be a random variable with the IWW3 density function (3). Then the rth

(r > 0, real) generalized ordinar y moment of X is µr =
∫ ∞
−∞ xr f (x) dx. For X ∼IWW3 (η, ϕ, τ),

the rth moment from (4), is giv en as

µr = E (Xr) = ∑
i≥0

∑
j≥0

(−1)i+jΓ (ϕ (i + 1)) Γ (1 + r/ η ) τr ϕ

i!j!(j− ϕ (i + 1))1+r/ ηΓ (ϕ (i + 1)− j)
, r ∈ N (5)

In particular , the first four moments (for r = 1, . . . , 4) can be used to calculate the mean (µ1),
variance (σ2), ske wness (

√
β1) and kurtosis (β2) based on some well-kno wn results.

The Monte Carlo simulation w as perfor med for N = 1000 samples each of size n = 200 from
the IWW3(η, ϕ, τ) distribution, with Ψ = (η0, ϕ0, 1.5 )T - the vector of parameters, wher e
η = 0.7, 0.9, 1.5, 2.0 and 3.0, and ϕ = 0.5, 1.0, 1.5, 2.0 and 3.0. Table 1 listed the numerical
results for the mean, variance, ske wness and kurtosis with their standar d de viations (SDs) in
par enthesis. We can notice From the Table, that the estimates of these properties varies for various
combinations of the distribution parameters with a consistent decr ease in the SDs for the mean
and variance. The distribution shifted from right to left-ske wed distribution when ηϕ ≥ 2. The
ske wness and kurtosis plots are displa ys in Figur e 2 as a functions of η and ϕ. A decr ease in
the values of the ske wness and kurtosis are obser ved from the plots as values of the η and ϕ
increases.

2.2. Rényi and Mathai-Houbold entr opies
Definition 3: Let the random variable X have the density function giv en by (3). Then the Rényi
entr opy of X is giv en by

IT (α) =
1

1− α
log
(

Mi,j (α, Ψ)
)

(6)

wher e, Mi,j (α, Ψ) = ηα−1 ϕ

τα−1 ∑i≥0 ∑j≥0
(−1)i+jΓ(ϕ(i+1)−(α−1))Γ((η−1)(α−1)η−1+1 )

i!j!(j−ϕ(i+1))(η−1)(α−1)η−1+1 Γ(ϕ(i+1)−(α+j−1))
, α > 0 and α 6= 1.
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Table 1: Mean, variance, skewness and kurtosis with standard deviations between parentheses; τ = 1.5 and some
values of η and ϕ.

η ϕ Mean (µ′1) Variance (σ2) Skewness(
√

β1) Kurtosis(β2)

0.7

0.5
1.0
1.5
2.0
3.0

1.195 (0.128)
0.830 (0.057)
0.778 (0.038)
0.772 (0.030)
0.785 (0.021)

3.021 (0.635)
0.609 (0.091)
0.284 (0.033)
0.173 (0.018)
0.089 (0.008)

2.045 (0.408)
1.277 (0.273)
0.785 (0.197)
0.466 (0.163)
0.074 (0.143)

7.729 (3.268)
4.563 (1.598)
3.264 (0.833)
2.784 (0.510)
2.617 (0.275)

0.9

0.5
1.0
1.5
2.0
3.0

1.066 (0.094)
0.875 (0.048)
0.862 (0.034)
0.871 (0.027)
0.894 (0.019)

1.660 (0.263)
0.450 (0.053)
0.229 (0.022)
0.144 (0.013)
0.075 (0.007)

1.535 (0.257)
0.870 (0.186)
0.451 (0.151)
0.177 (0.139)
-0.160 (0.142)

5.099 (1.506)
3.295 (0.774)
2.690 (0.439)
2.560 (0.293)
2.711 (0.227)

1.5

0.5
1.0
1.5
2.0
3.0

1.007 (0.061)
1.001 (0.036)
1.030 (0.027)
1.054 (0.021)
1.086 (0.015)

0.710 (0.071)
0.259 (0.022)
0.140 (0.013)
0.088 (0.009)
0.045 (0.005)

0.780 (0.139)
0.231 (0.122)
-0.096 (0.127)
-0.304 (0.139)
-0.546 (0.164)

2.736 (0.400)
2.376 (0.231)
2.524 (0.190)
2.782 (0.234)
3.246 (0.372)

2.0

0.5
1.0
1.5
2.0
3.0

1.032 (0.050)
1.077 (0.031)
1.116 (0.022)
1.142 (0.018)
1.173 (0.012)

0.492 (0.041)
0.188 (0.016)
0.101 (0.010)
0.063 (0.007)
0.031 (0.004)

0.448 (0.116)
-0.062 (0.116)
-0.349 (0.135)
-0.522 (0.154)
-0.711 (0.182)

2.238 (0.217)
2.376 (0.162)
2.766 (0.232)
3.126 (0.334)
3.624 (0.500)

3.0

0.5
1.0
1.5
2.0
3.0

1.098 (0.039)
1.178 (0.024)
1.219 (0.017)
1.243 (0.013)
1.269 (0.009)

0.305 (0.023)
0.115 (0.011)
0.059 (0.007)
0.036 (0.004)
0.017 (0.002)

0.041 (0.104)
-0.416 (0.127)
-0.646 (0.158)
-0.772 (0.180)
-0.895 (0.206)

2.064 (0.117)
2.728 (0.231)
3.306 (0.392)
3.702 (0.521)
4.140 (0.683)

Figure 2: Plots of the Skewness and Kurtosis of the IWW3 as a function of η and ϕ, respectively.

Definition 4: Let X have the PDF giv en by (3). Then the Mathai-Houbold (M-H) entr opy of X
is giv en by

JMH (δ) =

( η
τ

)1−δ
ϕ2−δ M∗i,j (δ, Ψ)− 1

δ− 1
(7)
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wher e, M∗i,j (δ, Ψ) = ∑i≥0 ∑j≥0
(−1)i+j(2−δ)iΓ(ϕ(2−δ+i)−(1−δ))Γ((2−δ)−(1−δ)η−1)

i!j!(j−ϕ(2−δ+i))(2−δ)−(1−δ)η−1
Γ(ϕ(2−δ+i)−(1−δ+j))

, δ 6= 1 and δ < 2.

We presented some numerical values for the Rényi and Mathai-Houbold entr opies in Table 2.
We note a decr ease in the entr opy as the values of either η or ϕ increases for the Rényi. While
for the M-H, we obser ved that the entr opy increases with an increase in η and decr eases with
an increase in ϕ. It can further be seen that entr opy can take negativ e values, which may be
understood as a loss of infor mation in physical systems [21].

Table 2: Rényi and Mathai-Houbold entropies for some values of the parameters

η ↓ ϕ τ α Rényi ϕ ↓ η τ α Rényi
0.1
0.2
0.4
0.6
0.7
0.8
0.85

1.1 1.2 0.6

2.9245
1.2632
0.8462
0.7562
0.7243
0.6940
0.6790

0.7
0.9
1.2
1.4
1.6
1.8
2.0

0.5 1.2 0.6

1.1692
0.9486
0.7302
0.6229
0.5330
0.4549
0.3853

ϕ τ δ M-H η τ δ M-H
0.58
0.60
0.62
0.64
0.66
0.68
0.70

0.7 1.2 0.6

0.3928
0.6530
0.8740
1.0635
1.2278
1.3716
1.4986

0.68
0.70
0.72
0.74
0.76
0.78
0.80

0.5 1.2 1.6

2.0974
1.4760
0.9609
0.5311
0.1700
-0.1352
-0.3946

3. Characterization

Characterization guides an inv estigator in designing a stochastic model for a particular modelling
problem to know if the model fits the conditions of a specific underlying probability distribution.
The inv estigator will depend on the characterization of the chosen distribution. The technique
characterizes distribution and its random variable when the distribution conditions are similar to
those of the random variable. This section presents the IWW3 distribution characterization in tw o
dir ections (i) in ter ms of the simple relationship for the ratio of tw o truncated moments and (ii)
based on the hazar d function. We emplo yed a theorem due to [22], for the first characterization
(see Theor em 1). Note that the first characterization can be utilized even when the CDF’s
closed-for m does not exist.

3.1. Characterizations based on tw o truncated moments
Theorem 1. Let (Ω, Σ, P) be a giv en probability space and let H = [a1, a2], - be an inter val for
some a1 < a2 (a1 = −∞, a2 = ∞ might as well be allo wed). Let X : Ω −→ H be a continuous
random variable with the distribution function F and let q1 and q2 be tw o real functions defined
on H such that

E [q2(X)|X ≥ x] = E [q1(X)|X ≥ x] η(x), x ∈ H
is defined with some real function η. Assume that q1, q2 ∈ C1(H), η ∈ C2(H) and F is twice

continuously dif ferentiable and strictly monotone function on the set . Finally , assume that the
equation ηq1 = q2 has no real solution in the interior of H. Then F is uniquely deter mined by the
functions q1, q2 and η , particularly

F(x) =
∫ x

a c
∣∣∣∣ η′(u)
η(u)q1(u)− q2(u)

∣∣∣∣ exp [−s(u)] du
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wher e the function s is a solution of the dif ferential equation s′ = η′q1
ηq1−q2

and C is a constant
chosen to make

∫
H dF = 1 .

Proposition 1: Let X : Ω −→ (0, ∞) be a continuous random variable and let q1(x) = 1 and
q2(x) = exp [−κϕ], wher e κ = e(x/ τ)η

− 1 and x > 0. The random variable X has PDF (3), if and
only if the function η(x) defined in Theor em 1 has the for m

η(x) =
1
2

exp [−κϕ] , x > 0.
Proof. Let the random variable X has the PDF (3), then
(1− F(x))E [q1(X)|X ≥ x] = exp [−κϕ] , x > 0,
and
(1− F(x))E [q2(X)|X ≥ x] =

1
2

exp [−κϕ] , x > 0.
Further ,

η(x)q1(x)− q2(x) = −1
2

exp [−κϕ] < 0, for x > 0
Conv ersely , if η is giv en as abo ve, then

s′(x) =
η′(x)q1(x)

η(x)q1(x)− q2(x)
=

ηϕ

τ
(x/ τ)η−1(κ + 1)κϕ−1 =

f (x)
F̄(x)

, for x > 0

Ther efor e, accor ding to Theor em 1, X has PDF (3).

Corollary 1. Let X : Ω −→ (0, ∞) be a continuous random variable and let q1(x) be as in
Proposition 1. The PDF of X is (3) if and only if ther e exist functions q2(x) and η(x) defined in
Theor em 1 satisfying the dif ferential equation

η′(x)q1(x)
η(x)q1(x)− q2(x)

=
ηϕ

τ
(x/ τ)η−1(κ + 1)κϕ−1, wher e κ = e(x/ τ)η

− 1 and x > 0

Remark 1. The general solution of the dif ferential equation in Corollar y 1 is

η(x) = exp [−κϕ]

[
−
∫ ∞

0

ηϕ

τ
(x/ τ)η−1(κ + 1)κϕ−1 exp [−κϕ] (q1)

−1 q2dx + D
]

wher e D is a constant. Note that one set of functions satisfying the dif ferential equation is
giv en in Proposition 1 with D = 0.

3.2. Characterization based on hazar d function
The hazar d function, h(x) of a twice dif ferentiable distribution function, F(x), satisfy the follo wing
first order dif ferential equation

f ′(x)
f (x)

=
h′(x)
h(x)

− h(x) (8)

Proposition 2: Let X : Ω −→ (0, ∞) be a continuous random variable. The random variable X
has PDF (3), if and only if its hazar d function h(x) satisfy the follo wing dif ferential equation

h′(x)−
{

η

τ
(x/ τ)(η−1) +

(η − 1)
τ

(x/ τ)(−1)
}

h(x) =
η2(ϕ− 1)

τ2 (x/ τ)2(η−1)(κ + 1)2

× κϕ−2

under the boundar y conditions h(0) ≥ 0n and κ = e(x/ τ)η
− 1.

Proof. If random variable X has the hazar d function giv en in (2), then

h′(x) =
η2(ϕ− 1)

τ2 (x/ τ)2(η−1)(κ + 1)2κϕ−2 +
η2 ϕ

τ2 (x/ τ)2(η−1)(κ + 1)κϕ−1

+
η(η − 1)ϕ

τ2 (x/ τ)(η−2)(κ + 1)κϕ−1
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and hence,

h′(x)
h(x)

− h(x) =
η(ϕ− 1)

τ
(x/ τ)(η−1)(κ + 1)κ−1 +

η

τ
(x/ τ)(η−1) +

(η − 1)
τ

(x/ τ)(−1)

− η

τ
(x/ τ)(η−1)(κ + 1)κϕ−1

(9)

Similarly ,

f ′(x) = f (x)
{

η(ϕ− 1)
τ

(x/ τ)(η−1)(κ + 1)κ−1 +
η

τ
(x/ τ)(η−1) +

(η − 1)
τ

(x/ τ)(−1)
}

− ηϕ

τ
(x/ τ)(η−1)(κ + 1)κϕ−1 f (x)

and thus,

f ′(x)
f (x)

=
η(ϕ− 1)

τ
(x/ τ)(η−1)(κ + 1)κ−1 +

η

τ
(x/ τ)(η−1) +

(η − 1)
τ

(x/ τ)(−1)

− ηϕ

τ
(x/ τ)(η−1)(κ + 1)κϕ−1

(10)

Equations (9) and (10) satisfied the dif ferential equation (8), and hence, the IWW3 random variable
X has the hazar d function (2).

4. Parameter estimation

In this section, we use the method of maximum likelihood to estimate the unkno wn parameters
of the distribution for complete dataset. Let x1, x2, . . . , xn be a random sample of size n from
the IWW3 model with the vector of parameters Ψ = (η, ϕ, τ). Then the log-likelihood function
of Ψ from the PDF (3) is

`(Ψ) =nlog
(ηϕ

τ

)
+ (η − 1)

n

∑
i=1

log (zi) + ϕ
n

∑
i=1

zi
η + (ϕ− 1)

n

∑
i=1

log
(

1− e−zi
η
)

−
n

∑
i=1

(
ezi

η − 1
)ϕ

wher e, zi =
xi
τ . The estimate Ψ̂ = (η̂, ϕ̂, τ̂)T of Ψ = (η, ϕ, τ)T is deter mined by maximizing

the log-likelihood function ` (Ψ) with respect to each of the IWW3 parameters. Thus, we have
follo wing scor e functions.

∂` (Ψ)

∂η
=

n
η
+

n

∑
i=1

log zi − ϕ
n

∑
i=1

(
ezi

η − 1
)ϕ−1

ezi
η
zi

η log (τzi) + ϕ
n

∑
i=1

zi
η log (τzi)

+ (ϕ− 1)
n

∑
i=1

zi
η log (τzi)

(
ezi

η − 1
)−1

(11)

∂` (Ψ)

∂ϕ
=

n
ϕ
−

n

∑
i=1

(
ezi

η − 1
)ϕ

log
(

ezi
η − 1

)
+

n

∑
i=1

zi
η +

n

∑
i=1

log
(

1− e−zi
η
)

(12)

and

∂` (Ψ)

∂τ
= −η

τ

[
n + ϕ

n

∑
i=1

zi
η

(
1− ezi

η
(

ezi
η − 1

)ϕ−1
)
− (ϕ− 1)

n

∑
i=1

zi
η
(

ezi
η − 1

)−1
]

(13)

Solving equations (11)-(13) analytically may be intractable. Thus, a numerical appr oach is adopted
to obtain the maximum likelihood estimates (MLEs) of the parameters Ψ = (η, ϕ, τ)T with a good
set of initial values using R statistical package. To obtain the asymptotic inter val estimation of
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Ψ = (η, ϕ, τ), we deter mine the obser ved Fisher infor mation matrix. The 3× 3 Fisher infor mation
matrix is

J (Ψ) = −

 Jηη(Ψ) Jηϕ(Ψ) Jητ(Ψ)
Jϕη(Ψ) Jϕϕ(Ψ) Jϕ(Ψ)
Jτη(Ψ) Jτϕ(Ψ) Jττ(Ψ)


wher e the expr essions of JΨi ,Ψj =

∂2`(Ψ)
∂Ψi∂Ψj

, i, j = 1, 2, 3. Thus, the appr oximate variance of Ψ =

(η, ϕ, τ) can be obtain as

J−1 (Ψ̂) =
 var(η̂) cov(η̂, ϕ̂) cov(η̂, τ̂)

cov(ϕ̂, η̂) var(ϕ̂) cov(ϕ̂, τ̂)
cov(τ̂, η̂) cov(τ̂, ϕ̂) var(τ̂)


Hence, the 100(1 − α)% asymptotic confidence inter vals of Ψ = (η, ϕ, τ) are giv en by η̂ ±
Z α

2

√
var(η̂), ϕ̂± Z α

2

√
var(ϕ̂), and τ̂ ± Z α

2
var(τ̂).

wher e Zα is the upper αth per centile of the standar d normal distribution.

5. Simulation results

The main objectiv e in this section is to evaluate the perfor mance of the maximum likelihood
method for estimating the IWW3 distribution parameters for a complete dataset via Monte Carlo
simulation. For this pur pose, we used six dif ferent combinations of the distribution parameters,
including (1.8, 0.5, 0.5), (1.8, 0.7, 0.5), (1.8, 0.9, 0.5), (2, 0.5, 0.5), (2, 0.7, 0.5), and (2, 0.9, 0.5). The
process is repeated 1000 times for four sample size s n = 100, 150, 200, and 300. Table 3 presents
the MLEs, Biases, and Mean Squar e Errors (MSEs) of the parameters. Based on the results, we
obser ve that the ML method perfor ms well for estimating the distribution parameters. Also, as
the sample size increases, the biases and the MSEs of the MLEs decr eases as expected.

6. Applications

In this section, we analyze tw o dif ferent datasets to assess the potentiality of the IWW3 distribution
in practice. The datasets are Aarset data [23] and Meeka and Escoba data [19]. Both the tw o
datasets have a bathtub-shaped hazar d rate. We compar ed the results of the IWW3(Ψ) with
Weibull and other Weibull extended models, including the exponentiated Weibull (EW) by [6],
Weibull-W eibull(WW) by [10], Weibull-exponential (WE) by [11] and new Weibull-W eibull (NW-W)
by [13]. To accomplish the pur pose, We manage the maximum `(Ψ̂),Akaike Infor mation Criterion
(AIC), Consistent Akaike Infor mation Criterion (CAIC) and Bayesian Infor mation Criterion (BIC).
The Kolmogor ov-Smir nov (K-S) test is used to measur e the closeness betw een the em pirical and
the fitted distribution.Generally , the smaller the value of these statistics, the better the model fit
the dataset. All computations were done using RStudio 1.2.5042 softw are.

6.1. Aarset data
Her e, we emplo yed Aarset data [23], which is consider ed by many authors, such as [6], as
standar d data for assessing distributions with bathtub-shaped FR. It repr esents the failur e times
of fifty components placed on life test at time zer o. The data revealed a bathtub-shaped FR, as
sho wn by the TTT-plot in Figur e 3. Table 4 presents the MLEs of the parameters of IWW3(Ψ)
together with that of EW, WE, W, WW, and NW-W for the Aarset data. From Table 5, the IWW3(Ψ)
has the smallest −`(Ψ̂), AIC, CAIC, and BIC values, thus, the IWW3 model provide a best fit
for the Aarset data. For the non-parametric goodness-of-fit statistics, the IWW3 model has the
smallest K-S value with the highest p-v alue, which suggests that the IWW3 model has a better fit
for the data set than the other competing models.
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Table 3: MLEs, Biases, and MSEs of the distribution parameters.

Estimates Biases MSEs
n η ϕ

η̂ ϕ̂ τ̂ η̂ ϕ̂ τ̂ η̂ ϕ̂ τ̂

100 1.8 0.5
1.8 0.7
1.8 0.9
2.0 0.5
2.0 0.7
2.0 0.9

1.9714
2.0089
2.0485
2.1910
2.2326
2.2756

0.5414
0.9619
1.5201
0.5405
0.9666
1.5279

0.5263
0.6985
0.8309
0.5189
0.6548
0.7601

0.1714
0.2089
0.2485
0.1910
0.2326
0.2756

0.0414
0.2619
0.6201
0.0405
0.2666
0.6279

0.0263
0.1985
0.3309
0.0189
0.1548
0.2601

0.4260
0.7313
1.1138
0.5269
0.9076
1.3719

0.1539
2.2978
3.2315
0.0671
1.3555
2.1311

0.1529
2.2686
2.9566
0.0658
1.3084
1.8045

150 1.8 0.5
1.8 0.7
1.8 0.9
2.0 0.5
2.0 0.7
2.0 0.9

1.9050
1.9312
1.9570
2.1184
2.1458
2.1742

0.5146
0.7964
1.1864
0.5147
0.7968
1.1878

0.5039
0.5378
0.6115
0.5037
0.5304
0.5875

0.1050
0.1312
0.1570
0.1184
0.1458
0.1742

0.0146
0.0964
0.2864
0.0147
0.0968
0.2878

0.0039
0.0378
0.1115
0.0036
0.0304
0.0875

0.2569
0.4453
0.6846
0.3217
0.5492
0.8443

0.0013
0.2475
0.7578
0.0012
0.1516
0.4836

0.0011
0.2397
0.6882
0.0010
0.1431
0.4085

200 1.8 0.5
1.8 0.7
1.8 0.9
2.0 0.5
2.0 0.7
2.0 0.9

1.8735
1.8896
1.9039
2.0825
2.1005
2.1154

0.5085
0.7463
1.0521
0.5083
0.7456
1.0523

0.5027
0.5112
0.5388
0.5024
0.5090
0.5315

0.0735
0.0896
0.1039
0.0825
0.1005
0.1154

0.0085
0.0463
0.1521
0.0083
0.0456
0.1523

0.0027
0.0112
0.0388
0.0024
0.0090
0.0315

0.1610
0.2781
0.4310
0.1995
0.3430
0.5321

0.0007
0.0263
0.1530
0.0006
0.0145
0.1015

0.0006
0.0243
0.1314
0.0005
0.0125
0.0793

300 1.8 0.5
1.8 0.7
1.8 0.9
2.0 0.5
2.0 0.7
2.0 0.9

1.8509
1.8621
1.8712
2.0558
2.0688
2.0790

0.5050
0.7222
0.9718
0.5053
0.7222
0.9729

0.5018
0.5037
0.5136
0.5016
0.5033
0.5126

0.0509
0.0621
0.0712
0.0558
0.0688
0.0790

0.0050
0.0222
0.0718
0.0053
0.0222
0.0729

0.0018
0.0037
0.0136
0.0016
0.0033
0.0126

0.1077
0.1887
0.2973
0.1321
0.2327
0.3669

0.0004
0.0011
0.0362
0.0003
0.0010
0.0366

0.0004
0.0006
0.0313
0.0003
0.0005
0.0315

Figur e 4 presents the plots of the fitted PDFs (see Figur e 4, Fitted PDFs) and the estimated
CDFs (see Figur e 4, estimated CDFs), which equally illustrate that the IWW3 model has fitted
the data well compar e to the other competing models. Moreover, Figur e 4 (estimated hazar d
rate function) has indicated that the hazar d rate function is bathtub shaped, and hence, has
ascertained the actual beha vior of the data.

Table 4: MLEs and their standard errors (in parentheses) for the models fitted to the Aarset data.

Models η̂ ϕ̂ τ̂ θ̂ â
EW

WE

W

WW

NW-W

IWW3

0.0109
(0.0009)
0.1742
(0.0621)
0.9488
(0.1196)
0.2705
(0.0700)
0.4929
(0.0893)
5.4238
(0.0040)

4.6713
(0.0246)
0.3851
(0.1029)
44.847
(6.9313)
0.2558
(0.0584)
0.0021
(0.0004)
0.1363
(0.0230)

0.1450
(0.0217)
0.0778
(0.0257)

0.0066
(0.0059)
1.4560
(0.0690)
61.067
(3.6212)

1.6026
(0.2263)
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Table 5: The values of `(Ψ̂), AIC, CAIC, BIC, K-S(with its p-value) statistics for the models fitted to the Aarset data.

Models −`(Ψ̂) AIC CAIC BIC K-S p-
value

EW
WE
W
WW
NW-W
IWW3

229.136
225.6185
241.0019
220.902
230.2974
218.3491

464.272
457.2371
486.0037
449.804
466.5948
442.6982

464.7937
457.7588
486.259
450.6929
467.1166
443.2199

470.008
462.9731
489.8278
457.4521
472.3309
448.4342

0.2057
0.1289
0.1933
0.1308
0.2040
0.1192

0.0291
0.3774
0.0477
0.3598
0.0312
0.4762

Figure 3: TTT plot for Aarset data

Figure 4: Fitted PDFs (left panel), estimated CDFs (center panel) and estimated hazard rate function (right panel) for
some of the fitted models to Aarset data.

6.2. Meeker and Escobar data
The second data used is [19] data, which repr esents the failur e and running times of n = 30
de vices. It has been analyzed by many authors, including [24]. The data revealed a bathtub-
shaped FR, as sho wn by the TTT-plot in Figur e 5. Table 6 lists the MLEs of the parameters of
IWW3(Ψ) together with that of EW, WE, W, WW, and NW-W for the data. From Table 7, it is note
that the IWW3(Ψ) has the smallest −`(Ψ̂), AIC, CAIC, and BIC values, thus, the IWW3 model
provide a better fit for the data. For the for mal non-parametric goodness-of-fit statistic, the IWW3
model has the smallest value for K-S, with the highest p-v alue, which also ascertains the IWW3
model well fits the Meeker and Escoba data.
Figur e 6 presents the plots of the fitted PDFs (see Figur e 6, Fitted PDFs) and the estimated CDFs
(see Figur e 6, estimated CDFs), which illustrate that the IWW3 model has fitted the data well
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compar e to the other competing models. Additionally , Figur e 6 (estimated hazar d rate function)
has indicated that the hazar d rate function is bathtub shaped, and hence, has ascertained the
actual beha vior of the data.

Table 6: MLEs and their standard errors (in parentheses) for the models fitted to the Meeker and Escobar data.

Models η̂ ϕ̂ τ̂ θ̂ â
EW

WE

W

WW

NW-W

IWW3

0.0030
(0.0002)
0.1258
(0.0669)
1.2550
(0.2043)
0.0860
(0.0409)
0.8785
(0.1653)
6.9601
(0.0085)

5.5320
(0.2077)
0.4976
(0.2022)
180.652
(26.8740)
0.4936
(0.1760)
0.0020
(0.0003)
0.1479
(0.0297)

0.1620
(0.0319)
0.0187
(0.0093)

0.0539
(0.0304)
1.0669
(0.0371)
239.38
(14.149)

0.8357
(0.1147)

0.5886
(0.1375)

Table 7: The values of `(Ψ̂), AIC, CAIC, BIC, K-S(with its p-value) statistics for the models fitted to the Meeker and
Escobar data.

Models −`(Ψ̂) AIC CAIC BIC K-S p-
value

EW
WE
W
WW
NW-W
IWW3

177.9146
177.1573
184.35
178.0157
180.3075
170.804

361.8293
360.3145
372.6999
364.0313
366.6149
347.608

362.7524
361.2376
373.1443
365.6313
367.538
348.5311

366.0329
364.5181
375.5023
369.6361
370.8185
351.8116

0.2159
0.1724
0.2358
0.1650
0.2234
0.1425

0.1219
0.3347
0.0712
0.3873
0.1001
0.576

Figure 5: TTT plot for Meeker and Escoba data.
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Figure 6: Fitted PDFs (left panel), estimated CDFs (center panel) and estimated hazard rate function (right panel) for
some of the fitted models to Meeker and Escoba data.

7. Conclusion

This paper defined and studied a new generalized Weibull distribution called the Impr oved
Weibull-W eibull (IWW3) distribution. It is a three-parameter flexible distribution with the ability
to accommodates monotone and non-monotone failur e rates lifetime data. We obtain explicit
expr essions for the moment generating function, moments, quantile function, Rényi entr opy, and
Mathai-Houbold entr opy. Numerical results for median, Rényi entr opy, Mathai-Houbold entr opy
and conduct a Monte Carlo simulation study to obtain some numerical results for the mean,
variance , ske wness, and kurtosis of the distribution. We also characterize the IWW3 model based
on tw o truncated moments and in ter ms of the hazar d function. Estimation of the distribution
parameters is perfor med using the method of maximum likelihood, and the estimation method is
assessed by Monte Carlo simul ation experiments which yield consistent estimates in the samples
consider ed. Two failur e time data having non-monotone failur e rate functions are analyzed to
demonstrate the potentiality of the distribution.
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Abstract 

In this study, a new three-parameter distribution is introduced by extending the two-parameter Alpha Power 

Inverse Rayleigh distribution using Marshall-Olkin G approach. The proposed Marshall-Olkin Generalized 

Alpha Power Inverse Rayleigh (MOAPIR) distribution generalizes the Marshall-Olkin Inverse Rayleigh, Alpha 

Power Inverse Rayleigh, and Inverse Rayleigh distribution. The characterization and statistical properties of the 

proposed distribution such as hazard rate function, reversed hazard rate function, quantiles, moments, and order 

statistics were derived. The estimation of the MOAPIR distribution parameters is derived using the maximum 

likelihood estimation method. The performance of the proposed distribution was compared with other competing 

distribution using two real-life data. The goodness of fit criteria and the distribution function curve showed that 

the proposed distribution provides a better fit than other competing distributions of the same family of heavily 

positive skewed distribution. 

Keywords: Marshall-Olkin G family, Alpha Power Inverse Rayleigh distribution, 

Skewed distribution, distribution function, Statistical properties. 

I. Introduction
Marshal-Olkin G method of generalization (MO-G) proposed by Marshall and Olkin [1] is often used 

to generate a new family of distributions. Using the cumulative distribution function (CDF) of any 

distribution of a random variable X, the cumulative function of the new family of distributions is 

obtained by 

���;�� =  ��	�
���

���	�   � > 0, � ∈ ℜ (1)
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where �  is the location parameter. 

Its corresponding probability density function (PDF) is 

���; �� =  
��	�[
���

���	�]�  � > 0, � ∈ ℜ (2) 

Many authors such as; Ghitany [2], Ghitany et al.[3], Alice and Jose [4], Okasha and Kayid 

[5], Okasha et al. [6], Salah et al. [7], Gui [8], Krishna et al. [9], Al-Saiari et al. [10], Mahdavi and 

Kundu [11], Javed et al. [12], Maxwell et al. [13], Okasha et al. [14], Okasha et al. [15], Haj Ahmad 

and Almetwally [16], Abdul-Hadi et al. [17], Klakattawi et al. [18], and Aako et al. [19] have used 

MO-G to extend some base distributions by adding parameters to a well-established family of 

distribution to generate a new distribution.   

This article proposes the generalization of APIR distribution proposed by Malik and Ahmad 

[20] based on the MO-G which we hereafter called the Marshall-Olkin Generalized Alpha Power

Inverse Rayleigh (MOAPIR) distribution. The special cases and the statistical properties of MOAPIR

were also presented. Furthermore, the method of maximum likelihood estimation was used to

estimate the parameters of the proposed distribution and two data sets were used to demonstrate

the performance of the proposed distribution in comparison with other competing distribution of

the same family of distributions.

2. The Proposed Distribution

Let ��, ��, … be a sequence of independent and identically distributed random variables from the

APIR distribution.  

The cdf and pdf of the APIR distribution are presented in (3) and (4), respectively. 

�������;  , �� = !"# $%� 
�!
�   ,  � > 0,  ≠ 1, � > 0 ,  (3) 

�������;  , �� = ()�!!
� �*	+ ,
 $%� -# $%� ,  � > 0,  ≠ 1, � > 0  (4) 

where   ./0 � are shape and scale parameters, respectively.

We applied the MO-G to the APIR distribution by inserting (3) into (1) and inserting (4) into 

(2) to have the CDF and PDF respectively, of a new generated distribution called the MOAPIR

distribution.

If X is a random variable from MOAPIR distribution, we shall denote as  �~234567� , 8, ��.
The CDF of MOAPIR is  

�:;������� =
⎩⎪⎨
⎪⎧ !"#�%#�
�


�!
�����

�@!"#�%#�#AB ,  � > 0,  ≠ 1, � > 0, � > 0 
0, = 1

 (5) 

and the corresponding PDF of MOAPIR distribution is 
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�:;������� =  
⎩⎪⎨
⎪⎧�!
���*
 CDE�!�	#+-#�%#�!"#�%#�

F�!
��
���

�@!"#�%#� 
�BG�  � > 0,  ≠ 1, � > 0, � > 0
0, = 1

 (6) 

To have a useful linear representation of the pdf of the proposed distribution, we used the 

generalized binomial expansion (GBE) in (7) and the power series in (8) 

�1 − I�� = ∑ �K + 1�I�, |I| < 1,OPQR  (7) 

 S = ∑ �log� ��WIW�WQR   (8) 

Applying the concept of GBE and power series in (7) and (8) into (6) if (α >0 and α≠ 1), then 

we have  

�:;������;  , �, �� = ∑ ∑ ∑ XP,Y,W2��[ + 1��
\,
�W����	#� ,OWQRPYQR�PQR   (9) 

 where 

XP,Y,W =
⎩⎪⎨
⎪⎧�−1�Y ]PY^ �K + 1� �

��_�P
Y���`�CDE�!��`aA


_aA�!
��_aA�W���! ,  � > 1 
�−1�Y ]PY^ �K + 1� ��

�_�Y���`�CDE�!��`aA


_aA�!
��_aA�W���! ,       0 < � < 1 
 (10) 

For some selected values of the parameters of MOAPIR, the cumulative distribution 

function and probability distribution function curves are presented in Figure 1. This is to show 

patterns of the behaviour of the parameters of the proposed distribution. 
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Figure 1: Plots of the PDF and CDF of MOPAIR distribution for selected values of the parameters 

Figure 1 shows that MOAPIR is a skewed and unimodal distribution, in addition, the CDF values 

lies between 0 and 1 is an indication that MOAPIR has a true PDF. 

2.1    Sub-models of MOAPIR Distribution 
To show that the proposed MOAPIR distribution is a generalisation distribution of family of 

distributions, we varied the value of the parameters of the distribution.  

If we substitute α =1 in (6), then the expression will become 

�:;����; �, 8� =  28��
\,
�	#�
c� + �1 − ��,
�	#�d�  � > 0, � > 0, � > 0

which is the pdf of the Marshall-Olkin Inverse Rayleigh (MOIR). 

Similarly, if  θ =1, then the expression in (6) will become 

�����e��;  , �� = fg�  − 1 28�\ ,
 *	� -# $%�  � > 0,  ≠ 1, � > 0 

which is the pdf of the Alpha Power Inverse Rayleigh (APIR) distribution proposed by Malik and  

Ahmad [20]. Also, when α = θ = 1, (6) will be reduced to the pdf of Inverse Rayleigh (IR) distribution 

proposed by Srinivasa, et al. [21] which is given by 

�����; 8� = 28�\ ,
��
	�  �, 8 > 0 

Thus, the proposed MOAPIR has been proven to be a generalization distribution of the APIR 

family of distributions. 

2.2 Reliability Analysis 
2.2.1  Survival Function 

The survival function of MOAPIR distribution denoted by RMOAPIR(x) is derived using the expression 

presented in (11) 
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Substituting G(x) in (5) into (11), we have the Survival function of MOAPIR to be 

7:;������� �
⎩⎪⎨
⎪⎧ pqr�
!"#�%#�#As


�!
�����

�@!"#�%#� 
�B ,       � � 0,  & 1, � � 0, � � 0
0,                                                     � 1

 (12) 

2.2.2 Hazard Rate Function (HRF) 

Let X be a random variable with pdf, ���� and cdf, ����, then the hazard rate function (HRF) is

derived by solving  
��	���	�. 

Thus, if X is a MOAPIR random variable, then the HRF of the random variable X denoted 

by ℎ:;������� is

ℎ:;�������   �
⎩⎪⎨
⎪⎧ �p
���u CDE�p�	#+-#�%#�!"#�%#�#A

F
�!
�����

�@!"#�%#� 
�BG@�
!"#�%#� #AB   � � 0,  & 1
0, � 1

 (13) 

where � � 0, � � 0.

The pattern of the survival function and hazard rate function of the proposed distribution 

for various selected values of the distribution parameters are presented in Figure 2 

Figure 2: The Survival Function and Hazard Rate Function Curves of MOAPIR distribution 
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2.2.3 Reversed Hazard Rate Function 

The reversed hazard rate (RHR) function of a random variable X from MOAPIR ( ,�, �) distribution

denoted as  v:;������� is derived to be:

v:;������� =
⎩⎪⎨
⎪⎧ �p
���u CDE�p�	#+-#�%#�!"#�%#�

F
�!
�����

�@!"#�%#� 
�BG@!"#�%#� 
�B � > 0,  ≠ 1 
0, = 1

 (14) 

where � � 0, � > 0
Figure 3 represents the RHRF curves for the MOAPIR ( , �, 8) distribution for selected

values of the distribution parameters 

Figure 3: RHRF Curve of the MOAPIR distribution for some selected parameters values. 

2.3 Statistical Properties 
In this section, we derived the statistical properties of the MOAPIR distribution. The properties 

derived are quantiles, median, mean, variance, order statistics, and range. 

2.3.1 Quantiles 

Quantiles explain how many values in a distribution are above or below a certain limit and define 

special part of a data set. The quantile of any distribution of a random variable X is given by solving 

the expression in (15) 

�w�xy � z, 0 < z < 1  (15) 

The qth quantile function is obtained by solving (16) 

 z = !"#�%#� 
�

�!
�����

�@!"#�%#� 
�B  (16) 

Hence, 

x{ � G
��q� � ~�u log r CDE�p�
CDE]Aa���#A��Aa��#A�� ^s�
A�

 (17) 

Using (17), we obtained the median, skewness, and kurtosis by determining the quantile of the 

MOAPIR distribution. 
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To obtain the First Quantile, substituting q = 0.25 in (17), then we obtained 

xR.�� � G
��0.25�    = ~�u log r CDE�p�
CDE]�.��a�.�����.��a�.��� ^s�
A�

 (18) 

For the Median = Q2 = P50, we use q = 0.50 in (17) and obtained 

Median = �R.� = G
��0.5� = ~�u log r CDE�p�
CDE]Aa��Aa� ^s�
A�

 (19) 

For the Third Quantile = Q3 = P75, we use q = 0.75 in (17) and obtained 

Q\ � xR.�� � G
��0.75�    = ~�u log r CDE�p�
CDE]�.��a�.�����.��a�.��� ^s�
A�

 (20) 

Using (18), (19) and (20), the Skewness (�P) and Kurtosis (�:;����� of the MOAPIR distribution were

obtained respectively as  

�P:;���� = �#A�R.���
��#A�R.����#A�R.����#A�R.���
�#A�R.���   (21) 

and 

�:;���� = �#A�R.����
�#A�R.����
�#A�R.\�����#A�R.�����#A�R.���
�#A�R.���  (22) 

2.3.2 Moments  

Let X be a random variable that has MOAPIR ( , � , �� distribution, the rth moments of X is defined

as �[��] = � ������0�OR  (23) 

= � �� �!
���*
 CDE�!�	#+-#�%#�!"#�%#�
F�!
��
���

�@!"#�%#� 
�BG�  0�OR  (24) 

Using linear expressions of �:;������� in (9) and (10), we have

�[��] = � �� ∑ ∑ ∑ XP,Y,W2��[ + 1��
\OWQRPYQR�PQR  0�OR  (25) 

= ∑ ∑ ∑ XP,Y,Ww�[ + 1��y��� ]1 − ��^OWQRPYQR�PQR   (26) 

From (25) and (26), the mean and variance of a random variable X from MOAPIR 

distribution are: 

�[�] = ∑ ∑ ∑ XP,Y,Ww�[ + 1��yA�� ]��^ OWQRPYQR�PQR  (27) 

and 

���� � ∑ ∑ ∑ XP,Y,Ww�[ + 1��yOWQRPYQR�PQR − @� ]��^ ∑ ∑ ∑ XP,Y,Ww�[ + 1��yA�OWQRPYQR�PQR B�
 (28) 

2.3.3  Order statistics 

The pdf of the ith order statistics Xi: n of a random sample ��, ��,  … , ��  is
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��!��
��! �����������
��1 − ����]�
� ,    � >  0,   >  0, � >  0  (29) 

From (29), the pdf of the ith order statistics Xi: n of MOAPIR distribution is obtained to be 

��:���� = ����
��!��
��! ∑ ∑ ∑ XPA,YA,Y��
\,*	#� �� �
YA�����PA Y��,*	#���PA
Y�QR�
�YAQR�PAQR  (30) 

 where 

XPA,   YA,   Y� = �−1�YA�Y� @/ − ��� B @� + K� − 1�� B Γ�n + k� + 1�k�! �� − 1�PA
�����PA

2.3.4 Range of MOAPIR 

Let ����, ����, ��\�, … , ����,  be the order statistics from the sample  ��, ��, �\, … , �� of size n from a

random variable that is of MOAPIR distribution, then the distribution of the range of the random 

variable X, R(x) can be obtained  by solving 7��� = ��:���� − ��:����
Using (30), the range of MOAPIR random variable is derived to be  

7��� =  ����
��! �∑ ∑ XPA,Y��
\,*	#� ���PA
Y��,*	#���PA
�Y�QROPAQR −
 ∑ ∑ ∑ XPA,YA,Y��
\,*	#� ��
�
YA�����PA
Y��,*	#��PAY�QR�
�YAQR�PAQR   (31) 

2.4. Estimation of Parameters of MOAPIR Distribution 

The parameters of the proposed distribution were derived using the maximum likelihood estimation 

approach. Let X1, ..., Xn be a random sample of size n from MOAPIR distribution, then the likelihood 

function of the MOAPIR distribution, ¡��/ , 8, �� is

¡��/ , 8, �� = ∏ ����� = �!
��¤�CDE�!��¤u¤�¤q¤-#�∑ ¥¦¤¦§A !∑ "#�%¨#�¤¦§A ∏ ©¦#+¤¦§A
∏ ~�!
��
���

�r!"#�%¨#� 
�s��¤¦§A

��Q�  (32) 

 By taking logarithm of the likelihood function, we have 

ℓ��/ , 8, �� = /fg�w� − 1� log� � 2��y −  �∑ ��
� + log� ���Q� ∑ ,
�	¨#�  −«¬Q� 3 ∑ log�x¬�«�Q� H 2 ∑ log F� H 1�� + �1 − �� @ -#�%¨#� − 1  BG��Q�  (33) 

To obtain the MLEs of α, � and �, we differentiate the expression in (33) with respect to α, � and �.

Thus, we have  

®ℓ®! = �!
� + �! CDE�!� + �! ∑ ,
�	¨#���Q� − 2 ∑ 
���

�-#�%¨#�!"#�%¨#� 
�
�!
��
���

�r!"#�%¨#�
�s

��Q�  (34) 

®ℓ®� = �* − ∑ ��
���
� − log� � ∑ ��
�,
�	¨#� − 2 ∑ ��
q� CDE�p�	¨#�-#�%¨#�!"#�%¨#�
�!
��
���

�r!"#�%¨#� 
�s

«¬Q���Q�  (35) 

and 

®ℓ®
 = �
 − 2 ∑ !
!"#�%¨#�
�!
��
���

�r!"#�%¨#�
�s

��
�       (36)
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 Solving (34), (35) and (36) by equating them to zero, we have 

�!
� + �! CDE�!� + �! ∑ ,
�	¨#���Q� H 2 ∑ 
���

�-#�%¨#�!"#�%¨#�
�
�!
��
���

�r!"#�%¨#� 
�s � 0 ��Q�  (37) 

�* − ∑ ��
���
� − log� � ∑ ��
�,
�	¨#� − 2 ∑ ��
q� CDE�p�	¨#�-#�%¨#�!"#�%¨#�
�!
��
���

�r!"#�%¨#�
�s = 0 «¬Q���Q�  (38) 

and 

�
 − 2 ∑ !
!"#�%¨#�
�!
��
���

�r!"#�%¨#� 
�s = 0��
�   (39) 

The MLE of  , 8 and � can not be obtained by solving (37), (38), and (39) analytically. Hence

the Newton-Raphson iterative method would be used to accomplish the task of estimating the 

parameters. 

3.Determination of Flexibility of the Proposed Distribution

To access the flexibility of the proposed distribution, the MOAPIR distribution is compared with 

three competing distributions by using two real life data sets. The distributions considered in this 

study are the Marshall Olkin Alpha Power Inverse Exponential (MOAPIE), Alpha Power Inverse 

Rayleigh (APIR), and Inverse Rayleigh (IR) distributions.  

Data Set I is on life of fatigue fracture of Kevlar 373/epoxy that are subjected to constant 

pressure at the 90% stress level until all had failed (Ogunde et al. [22]) and Data Set II is on the relief 

times of twenty patients receiving an analgesic as reported by Gross and Clark [23]. 

The summary statistics of the two datasets are presented in Table 1 and the density plot of 

the datasets along with the empirical density plots of the considered distributions are presented in 

Figures 4.   

Table 1: Summary Statistics of Datasets 

Data set Min Q1 Median Q3 Mean Variance Max Skewness Kurtosis 

I (n=76) 0.0251 0.0905 1.7361 2.2960 1.9590 2.4774 9.0960 1.9406 4.9474 

II (n=20) 1.10 1.475 1.7 2.05 1.90 0.4958 4.10 1.5924 2.3465 
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Figure 4: Density Plot of Datasets I and II With MOAPIRD and other competing Distributions. 

3.1 Parameter Estimation and Goodness of Fit Test 

Four criteria, namely, the log-likelihood values (-LL), Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC) and Hannan-Quinn information criterion (HQIC) are used to select the 

best fitted model to the two data sets under consideration. The model with minimum value of each 

of the four criteria is adjudged as the best fit for the datasets under study. The estimated values of 

the parameters of the four distributions and the goodness of fit criteria are presented in Table 2. 
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Table 2: Estimated parameters and Criteria for goodness of fit 

Parameters - LL AIC BIC HQIC 

Data set Distribution α λ θ

I 

MOAPIR 

MOAPIE 

APIR 

IR 

7.652 

1253 

6883 

- 

0.001136 

0.2375 

0.0293 

0.1406 

853.4 

0.5040 

- 

- 

124.84 

139.90 

6007.67 

211.48 

255.69 

285.80 

12019.33 

424.96 

262.67 

292.79 

12024.0 

427.29 

258.5 

288.6 

12021.2 

425.89 

II 

MOAPIR 

MOAPIE 

APIR 

IR 

51.84 

1.114 

1 

- 

7.5567 

10.80 

1.801 

1.1749 

0.0071 

0.0017 

- 

- 

15.51 

15.65 

694.52 

28.27 

37.02 

37.29 

1393.05 

58.54 

40.01 

40.27 

1395.03 

59.54 

37.6 

37.86 

1393.43 

58.73 

* the bold number represents the smallest value for each criterion.

4.Discussion

The cumulative distribution function and probability density function of the proposed MOAPIR 

distribution were given in (5) and (6) respectively. Figure 1 illustrates the shape of the distribution 

when its parameters were varied and it was clear that the distribution is a positively heavily skewed, 

unimodal and a true distribution function. The survival function curve reflected that higher value 

of λ, ( λ>0.4) will destruct the expected shape of the hazard function. Similarly, it is crystal clear that 

the value of θ has no significant effect on the shape of the hazard function (see Figure 2). However, 

it was observed that variations in the values of the parameters significantly affect the pattern of the 

hazard rate function and the reversed hazard rate function (see Figure 2 and 3).  Further analysis 

shows that  � and 8 have no significant effects on the skewness and kurtosis of the distribution but

have influence on the mean, median and variance of the distribution. The summary statistics in Table 

1 shows that the two data sets are heavily positively skewed data. Furthermore, the density plot in 

Figure 4 for both data sets indicated that the two data sets are heavily positively skewed. The fitted 

distributions as shown in Figure 4, reflected that the proposed MOAPIR is a more suitable 

distribution than all other competing distributions considered in this study. The results from the 

performance indices namely, -LL, AIC, BIC and HQIC confirmed that the proposed MOAPIR best 

fit the two data sets considered in this paper than the MOAPIE, APIR and IR distributions.  

5.Conclusion

In this paper, a new distribution called Marshall Olkin Alpha Power Inverse Rayleigh (MOAPIR) 

distribution was introduced. The pdf and cdf of the distribution were derived and some of its 

properties, such as hazard rate function, reversed hazard rate function, quantiles, moments, and 

order statistics were studied. The parameters of the proposed distribution were estimated using the 

Maximum likelihood estimation method. To access the flexibility of the proposed MOAPIR 

distribution with three competing distributions of the same family, namely the MOAPIE, APIR and 

IR distributions, two data sets were used. The results showed that the proposed MOAPIR 

distribution has minimum value of -LL, AIC, BIC and HQIC, and then, adjudged to be the best fit 

for the two data sets considered in this study. Therefore, the proposed distribution provides a better 

fit than other competing distributions of the same family of heavily positively skewed distribution. 

Hence, for a heavily positive skewed data, the MOAPIR is a good distribution model to be 

used for further analysis.  
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Abstract 

This paper aims to propose six methods of parameter estimation in order to examine the 

behavior of the new Type I Half Logistic Topp-leone Exponential distribution. The 

methods taking into consideration are Maximum Likelihood, Anderson_Darling, Least 

Squares, Cramer_von_Mises, Maximum Product of Spacing, and Weighted Least 

Squares Methods. The results show that all the methods are consistent, since the estimates 

approach the true value of the parameters for all the methods. The bias, mean square error 

and mean relative estimates decay as the sample size is raised. The estimates of the six 

methods obtained for the model, indicated that MPS estimates is the closest to the true 

value of the parameters across the low, moderate and high sample sizes, invariable, the 

MPS produces the least biasness. Buttress more, the MPS produces the least MSE all 

through and remain the best estimator for low, moderate and high sample size of the 

model. Conclusively, MPS is the most consistent among the estimators for the model. 

Keywords: Type I Half Logistic Topp-leone Exponential distribution, maximum 

likelihood, Anderson_Darling, least squares and weighted least squares Methods, 

Cramer_von_Mises, Maximum Product of Spacing 

I. Introduction

Exponential (Exp) distribution is an important and commonly explored probability distribution 

both in univariate, bivariate and multivariate cases. The Type I Half Logistic Topp-leone 

Exponential (TIHLTLExp) distribution was proposed by [1] as a generalized distribution. The 

distribution is characterized with two shape parameters and a scale parameter. The hazard rate 

shapes of the distribution are monotonically increasing, monotonically decreasing and bathub in 

feature. It was revealed from the TIHLTLExp distribution analysis that the distribution potentiality 

is awesome in modeling a good number of life time data sets. 

On the other hand, Exp distribution has witness different generalization where one or 

more shape parameter are introduced to extend it flexibility such can be found in the work of [2] 

where sine family was adopted to generalized the Exp distribution, in [3], the Type I half logistic 

exponentiated family was used to improve the Exp distribution. Other generalization of Exp  
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distribution includes Half logistic-truncated exponential distribution [4], A new extension named 

Lehmann type–II G class of distributions: Exp distribution [5] Lomax Exp distribution [6], 

Lehmann Type II-Lomax Distribution [7], Exponentiated Gamma Exp Distribution [8], 

Exponentiated Weibull Exp distribution [9], Topp-Leone generalized Exp power series distribution 

[10], new extension of Exp distribution [11], Type II Half Logistic Exp Distribution [12], Gamma-

exponentiated Exp distribution [13], and the Type II half logistic exponentiated family [14] to 

mention but few.  

Various methods have been developed and applied to estimate the some newly developed 

distribution. No particular estimation method is the best all round. However, some methods 

perform better than the other depending on the behavior of the distribution parameters. Six 

different classical methods are considered in this article. The classical approaches such as 

Maximum Likelihood Estimator (MLE), Anderson–Darling Estimator (ADE), Cramér–von Mises 

(CVM), Maximum Product Spacing (MPS), Least Square Estimator (LSE), and Weighted Least 

Square Estimator (WLSE) are explored. Articles that adopted some estimation methods includes, 

type II exponentiated half-logistic-PLo (TIIEtHL-PLo) distribution by [15], Parameter estimation 

methods adopted are MLE, LSE, WLSE, MPS, CVM, and ADE in the study. Inference on Kavya–

Manoharan Kumaraswamy distribution by [16], estimation of polynomial Exp family of 

distributions by [17], estimation comparison for extreme value distribution by [18], Classical and 

Bayesian Approach Estimation of Weibull-Exp Distribution by [19], estimation preference inverse 

rayleigh frechet model by [20], estimation methods in Tasks of processing measurement results by 

[21], comparison of estimation methods for the (Three-Parameter) Lindley distribution by [22]. 

MLE, OLS, WLS, MPS, and CVM methods, different estimation approaches for Type I half-logistic 

topp–leone distribution by [23], comparative study of estimation for Pareto distribution by [24], 

some estimation methods for lindley distribution, estimation methods include MME, MLE, 

resulting identification of MLE to be the best estimator by [25], also, the weibull distribution 

parameters, three methods such as the MLE, MME and LSE regression method were considered 

and compared, from the result, the MME method was superior [26], LSE of distribution functions 

[27], MPS estimation with preference to the lognormal distribution [28] and parameters estimation 

for the (three-parameter) Reflected Weibull model. The MME, MLE, Location and Scale Parameters 

free ML estimator (LSPEE). The data transformation is the basis for LSPEE, Mont Carlo simulations 

show that the LSPEE outperform MME and MLE. The TIHLTLExp distribution was a newly 

distribution developed, however, only two methods MLE and MPS were used for parameter 

estimation. 

This paper aims to investigate the behaviour of the TIHLTLExp model parameters using 

six estimation methods. The motivation for this study is the determination of the best model 

parameter’s estimator for low, moderate and high sample size of the TIHLTLExp distribution.  

II. Methods

2.0 Method of parameter estimation of TIHLTLExp distribution 

In this section, we introduced the cumulative distribution function (cdf) and probability density 

function (pdf) of the Type Half Logistic Topp-leone Exponential Distribution. 
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The method employed to be used to estimate the parameter include: MLE, ADE, CVM, MPS, LSE, 

and WLSE 

2.1 Maximum Likelihood Estimation (MLE) 

MLE is one of the widely explored estimation approaches. It is adopted in estimating the 

parameters of the TIHLTLExp model. if we randomly sampled iX  where =1,...,i n , obtained from 

the TIHLTLExp distribution with parameter   = , , . The log-likelihood function ( )L  of (1) is

obtained as 
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By differentiating ( )L in (3) with respect to  ,  and  , and the results set to zero will provide 

the estimators. Thus, 
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2.2 Anderson–Darling Estimates (ADE) 

The ADE was introduced by [30]. Applying ADE method for the TIHLTLExp distribution 

parameter   = , ,
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Thus, the estimates can be easily obtained by differentiating (8) with respect to.  , and   set the 

results to zero. 
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2.3 Cramér-von Mises Estimators. (CVM) 
CVM was proposed [31]. The concept of this approach is to minimize the following function with 

respect to parameter   = , , . The CVM distance function for TIHLTLExp distribution is defined 

by 
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           (18) 

Thus, the estimates of the TIHLTLExp distribution parameter under CVM method is obtained by 

differentiating the (18) with respect to  , and  and set it to zero. 
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are defined in (12), (13) and (14) respectively. The (31) 

provides more details 

2.3 Maximum Product of Spacing (MPS) 

The MPS approach of estimating the TIHLTLExp distribution parameters   = , , are produced 

by maximizing the equations below with respect to the parameters: 
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Where 
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

MPS estimates are obtained by differentiating the equation (22) with respect to the

parameters 

where 
( )( )  ; , ,

TIHLTLExp i
F x is the cdf of the TIHLTLExp distribution defined in (1) 
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2.4 Least Square Estimates (LSE) 

LSE was introduced by [32]. The LSE of the TIHLTLExp distribution parameters   = , , are 

obtained by minimizing, the equation below. The LSE function is defined by 
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Thus, the LSE can be obtained by differentiating equation [23] with respect to the  ,  and  , and 

set it to zero 
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are defined in (12), (13) and (14) respectively. 

2.5 Weighted Least Square Estimates (WLSE) 

Similarly, the WLSE was introduced by [32]. The WLSE of the TIHLTLExp distribution parameters 

  = , ,  are produced by minimizing the equation below with respect to the  ,  and  . The 

WLSE function is defined by 
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are defined in (12), (13) and (14) respectively. 

III. Results

3.1       Simulation study 

Now, the performance of the MLE, ADE, CVM, MPS, LSE and WLSE method is investigated for 

TIHLTLExp parameters through Monte Carlo simulation study while considering 10,000 

replications. Data were generated with different sample sizes (10,30,50,100,200). The estimates, 

Bias, Mean square error (MSE) and Mean relative estimate were obtained by R software. Thus, 

obtained as follows  

Table 1:  Estimates of different estimation methods for parameter lambda=1.5, theta=1 and beta=1 

Estimation methods 

n MLE AD CVM MPS LS WLS 

10 1.65  1.71  1.45 1.63  1.39  1.33 1.80  2.28  1.48 1.42  1.18  1.14 1.57  1.55  1.29 1.55 1.38 1.34 

30 1.46  1.19  1.22 1.46  1.17  1.21 1.50  1.21  1.23 1.43  1.07  1.07 1.48  1.18  1.19 1.36 1.15 1.28 

50 1.42  1.13  1.20 1.42  1.11  1.18 1.49  1.15  1.17 1.45  1.06  1.05 1.46  1.12  1.16 1.29 1.10 1.33 

100 1.40  1.08  1.17 1.40  1.07  1.17 1.45  1.09  1.15 1.47  1.04  1.04 1.44  1.08  1.14 1.27 1.08 1.31 

200 1.40  1.06  1.14 1.41  1.05  1.14 1.43  1.06  1.14 1.48  1.03  1.03 1.43  1.05  1.11 1.24 1.05 1.32 

Table 2: Bias of different estimation methods for parameter lambda=1.5, theta=1 and beta=1 

Estimation methods 

n MLE AD CVM MPS LS WLS 

10 0.61  0.71  0.45 0.47  0.39  0.33 0.61  1.28  0.48 0.29  0.19 0.14 0.38  0.55  0.29 0.44 0.38 0.34 

30 0.29  0.19  0.22 0.26  0.18  0.21 0.27  0.21  0.23 0.15  0.07  0.07 0.23  0.18  0.19 0.31 0.15 0.28 

50 0.24  0.13  0.20 0.19  0.10  0.18 0.21  0.15  0.17 0.11  0.06  0.05 0.19  0.12  0.16 0.33 0.11 0.33 

100 0.19  0.08  0.17 0.18  0.07  0.17 0.16  0.09  0.15 0.07  0.04  0.04 0.15  0.08  0.14 0.31 0.08 0.31 

200 0.16  0.06  0.14 0.15  0.05  0.14 0.14  0.06  0.14 0.05  0.03  0.03 0.12  0.05  0.11 0.32 0.05 0.32 
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Table 3: Mean square error of different estimation methods for parameter lambda=1.5, theta=1 and beta=1 

Estimation methods 

n MLE AD CVM MPS LS WLS 

10 2.22  2.57  0.81 1.02  0.81  0.45 3.26  2.18  0.92 0.21  0.26  0.10 0.55  0.59  0.39 1.01 1.18 0.43 

30 0.16  0.12  0.18 0.15  0.12  0.17 0.18  0.17  0.21 0.05  0.03  0.03 0.12  0.14  0.16 0.16 0.10 0.19 

50 0.11  0.05  0.14 0.08  0.04  0.11 0.10  0.08  0.13 0.02  0.02  0.01 0.09  0.06  0.11 0.17 0.04 0.23 

100 0.08  0.01  0.10 0.07  0.02  0.10 0.06  0.03  0.09 0.01  0.01  0.01 0.06  0.02  0.09 0.14 0.02 0.20 

200 0.06  0.01  0.08 0.06  0.01  0.07 0.05  0.01  0.08 0.01  0.00  0.00 0.04  0.01  0.06 0.15 0.01 0.19 

Table 4: Mean relative estimates of different estimation methods for parameter lambda=1.5, theta=1 and beta=1 

Estimation methods 

n MLE AD CVM MPS LS WLS 

10 0.41  0.71  0.45 0.31  0.39  0.33 0.40  1.28  0.48 0.19  0.19  0.14 0.26  0.60  0.29 0.29  0.38  0.34 

30 0.20  0.19  0.22 0.18  0.18  0.21 0.18  0.21  0.23 0.10  0.07  0.07 0.16  0.18  0.19 0.21  0.15  0.28 

50 0.16  0.13  0.20 0.13  0.10  0.18 0.14  0.15  0.17 0.07  0.06  0.05 0.13  0.12  0.16 0.22  0.11  0.33 

100 0.13  0.08  0.17 0.12  0.07  0.17 0.10  0.09  0.15 0.05  0.04  0.04 0.10  0.08  0.14 0.21  0.08  0.31 

200 0.11  0.06  0.14 0.10  0.05  0.14 0.09  0.06  0.14 0.03  0.03  0.03 0.08  0.05  0.11 0.21  0.05  0.32 

Table 5: Mean square error ranking for different estimation methods for parameter lambda=1.5, theta=1 and beta=1 
Estimation methods 

n MLE AD CVM MPS LS WLS 

10 5+5+6=165 4+4+3=114 6+6+5=176 1+1+1=31 2+2+2=62 3+3+4=103 

30 4.5+3.5+4=125 3+3.5+3=9.53 6+6+6=186 1+1+1=31 2+5+2=92 4.5+2+5=11.54 

50 5+3+4=124 2+1.5+2.5=62 4+5+4=135 1+1+1=31 3 +4+2.5=9.53 6+1.5+6=13.56 

100 5+1.5+4.5=113.5 4+4+4.5=12.55 2.5+6+2.5=113.5 1+1.5+1=3.51 2.5+4+2.5=92 6+4+6=166 

200 4.5+4+4.5=135 4.5+4+3=11.53.5 3+4+4.5=11.53.5 1+1+1=31 2+4+2=82 6+4+6=166 

Table 6: Best estimation methods based on the Monte Carlo simulation study 

Estimation methods 

Rank/n    10     30  50       100        200 

1st  MPS   MPS   MPS  MPS  MPS 

2nd  LS  LS   AD      LS     LS 

3rd  WLS  AD  LS   MLE/CVM  AD/CVM 

4th   AD  WLS  MLE  MLE/CVM  AD/CVM 

5th    MLE  MLE  CVM   AD  MLE 

6th     CVM   CVM   WLS  WLS    WLS 

IV. Discussion

Table 1-6 is the illustration of simulation study conducted. The six methods (MLE, ADE, CVM, 

MPS, LS, WLS) explored in this article. The Table 1 reveals various estimates for the TIHLTLExp 

parameters across the six methods explored. The estimates of the estimation methods approach the 

true value of the parameters as the sample sizes increases. Table 2 illustrate the biases of the 

different methods explored, one can deduced that the biases reduces as the sample sizes increases. 

Table 3 illustrates the mean square error MSE, the MSE values decay as the sample sizes increases.  

It is evidenced that the Mean relative estimates of different estimation methods decay as the 

sample sizes increasing, this is illustrated in Table 4. It is evidence from the results that the six 

estimators possess consistency property.  

The ranking of the performance of methods explored in this article is achieved in the Table 

4. In Table 5, summation of the rank is done across the three parameters of the distribution. The

preference of estimation methods is summarized in table 6 and the sample size are categorized as

low (10,30), moderate (50) and finally high (100, 200). For the low, moderate and high sample sizes,

the MPS is the best. The second best estimator for low and high sample sizes is LS and the second
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best estimator for moderate sample size is AD. However, the worst estimator for low sample size is 

CVM, while the worst estimator for moderate and high sample sizes is WLS.  Conclusively, since 

MPS outperform other estimation methods at low, moderate and high sample sizes, it is suggested 

that MPS should be adopted for analyzing the TIHLTLExp model. Alternatively, LS could be 

consider for estimating low and high sample size while AD for moderate sample size. 
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Abstract

This paper introduces the two-parameter q-Rayleigh distribution, a powerful extension of the classical
Rayleigh model for analysing real-world data. Compared to the Rayleigh, the q-Rayleigh incorporates a
novel pathway parameter q, offering greater flexibility in capturing diverse data patterns. We delve into
the mathematical properties of the q-Rayleigh, including its hazard rate function and quantile function,
and explore parameter estimation through maximum likelihood methods. We demonstrate its superior
fit compared to the widely-used Rayleigh distribution for real-world data. Moreover, we explore its
application in reliability analysis. This comprehensive study makes the q-Rayleigh a compelling choice for
modelling data exhibiting gradual transitions and enhanced flexibility.

Keywords: q-Rayleigh distribution, Statistical properties, Parameter estimation, Modelling data

1. Introduction

The Rayleigh distribution, originally introduced by Rayleigh [13], is a notable probability dis-
tribution that serves as a specialized model and a modified variant of the Weibull distribution.
Widely applicable across diverse disciplines, including medicine, engineering, finance, astronomy,
and physics, the Rayleigh distribution has garnered significance due to its versatile utility in
modelling various phenomena. Its pivotal role has led to extensive research, resulting in the
proposal of several extensions by numerous scholars. Noteworthy examples include the truncated
Rayleigh distribution, explored by Khalaf and Al-Kadim [8], and the Rayleigh Gamma-Gompertz
distribution, investigated by Al-Noor and Asri [4]. Additionally, Rahman [12] introduced the
Cubic Transformed Inverse Rayleigh distribution, and Adnan et al. [1] developed the Weibull
Lindley Rayleigh distribution. These extensions and modifications reflect the adaptability and
applicability of the Rayleigh distribution in different contexts. The probability density function
(pdf) and cumulative distribution function (cdf) of the Rayleigh distribution are given respectively,
by

f (x; σ) =
x

σ2 e−
x2

2σ2 ; σ > 0, x ⩾ 0 (1)

F(x; σ) =1 − e−
x2

2σ2 ; σ > 0, x ⩾ 0 (2)

The q-distribution, a concept integral to mathematical physics and probability theory, exhibits
a broader generality compared to classical distributions. Originating from the pioneering work
of Tsallis [19], the landscape of probability distributions has expanded significantly through
the introduction of q-type distributions. This extension involves incorporating the q Tsallis
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parameter, setting the stage for an extensive body of research on this topic. A notable array of
q-type distributions has emerged as a result, showcasing the versatility of this concept. Notable
examples include the q-exponential distributions proposed by Amari and Ohara [3], q-Gaussian
distributions elucidated by Sato [16], and the q-Gamma distribution investigated by Zhang et al.
[20]. Additionally, q-Weibull distributions have been introduced by researchers such as Picoli et
al. [10]. These q-type distributions represent a rich and diverse set of mathematical formulations,
contributing to the enhanced understanding and modelling of complex phenomena in various
scientific disciplines. The cornerstone of q-type distributions is the q-exponential function:

expq(x) =

{
[1 + (1 − q)x]

1
1−q , 1 + (1 − q)x > 0

0 otherwise
(3)

This function introduces a parameter q, that bestows a remarkable degree of adaptability in
shaping the distribution, empowering it to effectively model non-trivial data patterns that often
elude conventional approaches. Building upon this foundation, we introduce the q-Rayleigh
distribution, a q-analogue poised to potentially expand the scope of modelling possibilities for
intricate data relationships.

Recently, Gül [6] introduced the q-Rayleigh distribution for the case of q < 1 and discussed
the estimation of unknown parameters through maximum likelihood and least squares methods.
In this paper, we extend the exploration of mathematical properties to two cases: q < 1 and
1 < q < 2. The analysis encompasses the survival function, hazard rate function, quantile function,
limiting behaviour, and moments of the distribution. Furthermore, we delve into intriguing
results concerning extreme value properties associated with the q-Rayleigh distribution. We
employ the maximum likelihood estimator for parameter estimation in this new distribution.
To assess its performance, we compare the q-Rayleigh distribution with the standard Rayleigh
distribution using diverse real-life time data sets.

The rest of the paper is organised as follows. Section 2 introduces the novel q-Rayleigh
distribution, providing a comprehensive exploration of its specific cases. Section 3 delves into the
mathematical and statistical properties of this distribution, elucidating its asymptotic behaviours.
Section 4, meticulously elucidates the method of maximum likelihood estimation. In Section 5,
we employ the newly proposed model on two distinct datasets concerning the treatment of head
and neck cancer patients with radiation plus chemotherapy, as well as COVID-19 mortality rates
data from Italy. A comparative analysis with the q-Rayleigh and Rayleigh models is conducted,
affirming the superior fit of the q-Rayleigh model. The conclusive Section brings together the
findings, summarizing the key insights and implications derived from the exploration of the
innovative q-Rayleigh distribution.

2. The q-Rayleigh distribution

2.1. Distributional characteristics

The pdf of the q-Rayleigh distribution is defined as

fq(x) = (2 − q)
x

σ2 expq

[
− x2

2σ2

]
, x > 0 (4)

where σ > 0 and q < 2 are shape parameters, and η > 0 is a scale parameter.
By introducing β = σ−2 and using expq(x) in equation (3), the pdf of the q-Rayleigh distribu-

tion, for x > 0 and for q < 1, can be rewritten as

fq(x) = (2 − q)βx
[

1 − (1 − q)
βx2

2

] 1
1−q

, q < 1 and x ∈
[

0,
(

β

2
(1 − q)

)−1/2
]

(5)
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For x > 0 and q > 1, the pdf of the q-Rayleigh distribution is expressed as:

fq(x) = (2 − q)βx
[

1 + (q − 1)
βx2

2

]− 1
q−1

, 1 < q < 2 and x ∈ [0,+∞) (6)

The cumulative distribution function (cdf) of the q-Rayleigh distribution, when q < 1 is defined as

Fq(x) = 1 −
[

1 − (1 − q)
βx2

2

] 2−q
1−q

(7)

If 1 < q < 2, the cdf function of the q-Rayleigh distribution, formulated as follows:

Fq(x) = 1 −
[

1 + (q − 1)
βx2

2

] q−2
q−1

(8)

2.2. Survival function

In the context of the q-Rayleigh distribution, the survival function (sf), denoted by S(x), represents
the probability that an individual or entity survives beyond time t. Its mathematical expression is
as follows

S(x) = P(X > t) = 1 − F(x)

Sq(x) =
[

1 − (1 − q)
βx2

2

] 2−q
1−q

, for q < 1,

Sq(x) =
[

1 + (q − 1)
βx2

2

] 2−q
1−q

, for 1 < q < 2

2.3. Hazard function

The concept of risk within the context of survival analysis is characterized by the hazard rate
function (hrf), h(x). This function measures the immediate risk of an event (e.g., death) for an
individual who has survived until that time. Its formal representation is as follows

h(x) = P(X > t) =
f (x)
S(x)

The hrf of q-Rayleigh distribution for q < 1 is defined as

hq(x) =
(2 − q)βx

1 − (1 − q) βx2

2

In the case of 1 < q < 2, the hrf of q-Rayleigh distribution is characterized by

hq(x) =
(2 − q)βx

1 + (q − 1) βx2

2

2.4. Cumulative hazard function

The probability of an event occurring before a given time is quantified by the cumulative hazard
function (chf), presented below

H(x) = − ln(1 − F(x))

The chf for the q-Rayleigh distribution, with q < 1, is expressed as follows

Hq(x) =
2 − q
q − 1

ln
[

1 − (1 − q)
βx2

2

]
.
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For the case where 1 < q < 2, the chf of the q-Rayleigh distribution is given by

Hq(x) =
2 − q
q − 1

ln
[

1 + (q − 1)
βx2

2

]

2.5. Graphical Study of q-Rayleigh distribution under various functions

Driven by a desire to understand the nuanced behaviour of the q-Rayleigh distribution, we
embark on a detailed exploration of its key functions (pdf, cdf, sf, and hrf) across a range of
parameter values. By meticulously analysing the illustrative figures presented below, we uncover
fascinating insights into how varying parameters sculpt the behaviour of this versatile distribution.
Complementing our theoretical exploration, we presented illustrative figures to visually depict
the distribution’s characteristics, enhancing accessibility and understanding.
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Figure 1: Graphical representation of the key functions of the q-Rayleigh distribution: q < 1
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Figure 2: Graphical representation of the key functions of the q-Rayleigh distribution: 1 < q < 2

Figures 1 and 2 showcase the graphical representation of the key functions of the q-Rayleigh
distribution for cases where q < 1 and 1 < q < 2, respectively. Examining the probability
density function graphs (1(a), 1(b), 7(a),and 7(b)), it becomes evident that the distribution exhibits
skewness and a high degree of adaptability to diverse parameter values.

In Figures 1(c), 1(d), 2(c) and 2(d), we observe cumulative density plots that serve to validate
the distribution’s suitability as a probability distribution. Additionally, Figures 1(e) and 2(e)
portray the survival function, revealing distinct patterns of fast and slow decreases. The hazard
rate function graphs (1(f), 2(f)) further contribute to the distribution’s versatility, showcasing a
range of shapes including increasing, decreasing, and constant. This variability allows for the
effective fitting of datasets with diverse forms, a characteristic that the q-Rayleigh distribution
adeptly demonstrates. In essence, our exploration underscores the distribution’s capability to
accommodate different data sets, making it a valuable tool in statistical analysis.
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3. Properties

This section delves into the mathematical and statistical characteristics of the q-Rayleigh distribu-
tion.

3.1. Limiting Behaviour

Lemma 1. As the parameter q approaches 1, the pdf of the q-Rayleigh distribution, (denoted as
fq(x)), converges to the standard Rayleigh distribution.

Proof. For q < 1, the limiting pdf for q = 1 is

lim
q→1

fq(x) =βx lim
q→1


[

1 − (1 − q)
βx2

2

] −1
(1−q)βx2/2


−βx2/2

=βx exp
(
− βx2

2

)
a Rayleigh pdf.

The established proof methodology can be directly applied to the range 1 < q < 2, yielding
an analogous conclusion. ■

3.2. Quantile Function

The quantile function of X, denoted as Q(u) and defined as Q(u) = F−1(u), can be derived by
inversely solving equations (7) and (8) as follows

Qq(x) =
[

2
β(1 − q)

(
1 − (1 − u)

1−q
2−q

)] 1
2

, for q < 1,

Qq(x) =
[

2
β(q − 1)

(
−1 + (u − 1)

1−q
2−q

)] 1
2

, for 1 < q < 2

3.3. Moments

This section presents the moment function for the q-Rayleigh distribution, where moments serve
as quantitative indicators associated with the function’s shape. The moments of the q-Rayleigh
distribution can be derived as follows:

E(Xs) =
∫ +∞

0
xs fq(x)dx

If q < 1,

E(Xs) =
∫ ( β

2 (1−q)
)−1/2

0
xs(2 − q)βx

[
1 − (1 − q)

βx2

2

] 1
1−q

dx

=
2 − q

(1 − q)1+s/2

(
2
β

)s/2
B
(

1 + s
1 − q

, 1 +
s
2

)
where,

B(p, q) =
∫ 1

0
tp−1(1 − t)q−1 dt =

∫ +∞

0

tp−1

(1 + t)p+q dt
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denotes the beta function. It follows that the mean and variance of the q-Rayleigh random variable
when q < 1 are

E(X) =
2 − q

(1 − q)1+1/2

(
2
β

)1/2
B
(

2
1 − q

,
3
2

)
Var(X) =

2(2 − q)
(1 − q)β

[
B
(

3
1 − q

, 2
)
− 2 − q

(1 − q)3/2 B2
(

2
1 − q

,
3
2

)]
If 1 < q < 2,

E(Xs) =
∫ +∞

0
xs(2 − q)βx

[
1 + (q − 1)

βx2

2

]− 1
q−1

dx

=
2 − q

(q − 1)1+s/2

(
2
β

)s/2
B
(

1
q − 1

− s
2
− 1,

s
2
+ 1
)

provided
1

q − 1
− s

2
> 1. Consequently, the mean and variance of the q-Rayleigh random variable

can be expressed as follows

E(X) =
2 − q

(q − 1)1+1/2

(
2
β

)1/2
B
(

1
q − 1

− 3
2

,
3
2

)
Var(X) =

2(2 − q)
(q − 1)β

[
B
(

1
q − 1

− 2, 2
)
− 2 − q

(q − 1)3/2 B2
(

1
q − 1

− 3
2

,
3
2

)]

3.4. Extreme value properties

Theorem 1. Let {Xi, i = 1, ..., n} be independent and identically distributed random variables
(r.v.) following the q-Rayleigh distribution, then U = min

1⩽i⩽n
Xi has also the same distributional

form.

Proof. For q < 1 the survival function is Sq(x) =
[

1 − (1 − q)
βx2

2

] 2−q
1−q

. Then,

Sq(x) = P
[

min
1⩽i⩽n

Xi > x
]

=
n

∏
i=1

P [Xi > x]

=
n

∏
i=1

[
1 − (1 − q)

βx2

2

] 2−q
1−q

=

[
1 − (1 − q)

βx2

2

]n 2−q
1−q

−→ e−n βx2
2 as q −→ 1

For 1 < q < 2 the survival function is Sq(x) =
[

1 + (q − 1)
βx2

2

] 2−q
1−q

. Then,

Sq(x) =
[

1 + (q − 1)
βx2

2

]−n 2−q
q−1

−→ e−n βx2
2 as q −→ 1

■

Theorem 2. Let {Xi, i = 1, ..., n} be independent and identically distributed random variables
(r.v.) following the q-Rayleigh distribution, then V = max

1⩽i⩽n
Xi has also the same distributional

form.
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Proof. For q < 1 the cdf is Fq(x) = 1 −
[

1 − (1 − q)
βx2

2

] 2−q
1−q

. Then,

Fq(x) = P
[

max
1⩽i⩽n

Xi ⩽ x
]

=
n

∏
i=1

P [Xi ⩽ x]

=
n

∏
i=1

1 −
[

1 − (1 − q)
βx2

2

] 2−q
1−q

=

1 −
[

1 − (1 − q)
βx2

2

] 2−q
1−q

n

−→
[

1 − e−
βx2

2

]n
as q −→ 1

Similarly for 1 < q < 2 the cdf of V is

Fq(x) =

1 −
[

1 + (q − 1)
βx2

2

] q−2
q−1

n

−→
[

1 − e−
βx2

2

]n
as q −→ 1

■

4. Estimation of Parameters

This section explores the estimation of the unknown parameters in the q-Rayleigh distribution
through the application of the maximum likelihood estimation method (MLE).

Let x1, x2, . . . , xn represent a random sample obtained from the q-Rayleigh distribution. The
subsequent expression outlines the logarithm of the likelihood function corresponding to the pdf
represented in equation (5) for q < 1 is

ln L = n ln(2 − q) + n ln β +
n

∑
i=1

ln (xi) +
1

1 − q

n

∑
i=1

ln

(
1 − (1 − q)

βx2
i

2

)
(9)

The maximum likelihood estimates of the parameters (q, β) are found by taking a partial derivative
of ln L with respect to q and β, equating the derivatives to zero, and evaluating them at q̂, β̂

∂ ln L
∂q

=− n
2 − q

+
1

(1 − q)2

n

∑
i=1

ln

(
1 − (1 − q)

βx2
i

2

)
+

1
1 − q

n

∑
i=1

βx2
i

2 − (1 − q)βx2
i

∂ ln L
∂β

=
n
β
−

n

∑
i=1

x2
i

2 − (1 − q)βx2
i

In the range where 1 < q < 2, the log-likelihood corresponding to the pdf in equation (6) takes
the form

ln L = n ln(2 − q) + n ln β +
n

∑
i=1

ln(xi)−
1

q − 1

n

∑
i=1

ln

(
1 + (q − 1)

βx2
i

2

)
(10)

Upon differentiating the log-likelihood function in terms of the parameters q and β, one obtains
the following expressions:

∂ ln L
∂q

=− n
2 − q

+
1

(q − 1)2

n

∑
i=1

ln

(
1 + (q − 1)

βx2
i

2

)
− 1

q − 1

n

∑
i=1

βx2
i

2 + (q − 1)βx2
i

∂ ln L
∂β

=
n
β
−

n

∑
i=1

x2
i

2 + (q − 1)βx2
i

RT&A, No 1 (77)
 Volume 19, March 2024

595



Ibrahim Sadok
ON THE Q-RAYLEIGH DISTRIBUTION AND ITS APPLICATIONS

The partial derivatives of the log-likelihood function with respect to q and β are non-linear in both
cases (q < 1 and 1 < q < 2). This non-linearity poses a challenge for directly finding closed-form
solutions for the MLEs of q and β. While closed-form solutions involve expressing the estimates
as explicit mathematical expressions in terms of the data, numerical optimization methods often
involve iterative algorithms to find approximate solutions.

max ln L

s.t. q < 2,

β > 0, (11)

Despite theoretical challenges in rigorously proving the uniqueness of the solution to optimization
problem (11), empirical evidence suggests a strong case for its singularity. Employing a specific
optimization algorithm across a wide range of initial parameter values consistently yielded
convergence to the same solution, demonstrating remarkable robustness and providing compelling
support for uniqueness in practical applications. While a formal proof remains elusive, this
robust empirical evidence bolsters the validity of the solution for practical applications within
this domain.

5. Application to real life data

In this section, we have employed various sets of real-life failure time data to demonstrate the
appropriateness of the q-Rayleigh distribution. Additionally, we have conducted a comparative
analysis with the conventional Rayleigh distribution, highlighting the advantages and nuances
of our proposed model. This exploration not only showcases the versatility of the q-Rayleigh
distribution but also provides valuable insights into its performance in comparison to the widely
accepted standard Rayleigh distribution.

To assess the flexibility of the proposed distribution, we utilized several model selection
criteria, such as -log-likelihood (-LL), Kolmogorov–Smirnov (KS) statistics, and associated p-
values. The analyses were carried out using Matlab software. It is important to note that a
superior distribution is identified by smaller values of -LL and KS statistics. Additionally, a
more favourable distribution, particularly in terms of p-values, is characterized by a significance
level that aligns with the chosen threshold (<0.005), further contributing to the comprehensive
evaluation of the proposed distribution’s fit to the data.

Dataset 1: In medical research, the assessment and comparison of treatment regimens are
commonplace. A deeper comprehension of cancer genetics has broadened the spectrum of
treatment options for various cancers falling under the umbrella of head and neck cancers,
including those affecting the oral cavity, throat, larynx, para-nasal sinuses, and salivary glands.
The three primary types of cancer treatments encompass primary, adjuvant, and palliative
approaches. Within these categories, diverse treatment regimens such as surgery, radiation,
chemotherapy, hormone therapy, immune therapy, and targeted drug therapy are employed.

Efron [5] conducted a randomized clinical trial comparing two treatment arms for head and
neck cancer patients: radiation therapy alone (Arm A) and radiation plus chemotherapy (Arm B).
The study recorded survival times (in days) for 51 patients in Arm A and 44 patients in Arm B. In
this investigation, we specifically focus on the data from Arm B, examining the appropriateness
of fitting the data to the q-Rayleigh distribution. The results are subsequently juxtaposed with
those obtained using the standard Rayleigh distribution for a comprehensive evaluation.

37 84 92 94 112 119 127 130 133 140 146
155 159 169 173 179 194 195 209 249 281 319
339 432 469 519 528 547 613 633 725 759 817
1092 1245 1331 1557 1771 1776 1897 2023 2146 2297

Table 1: Database of Arm B (Sample size 44).
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Model
Estimated Parameters Model Selection

q̂ β̂ -LL KS p-value
q-Rayleigh 1.6462 38.8526 37.1631 0.10769 0.033834
Rayleigh - 1.9505 69.9683 0.50856 1.8308 ×10−6

Table 2: Estimates of fitted distribution for Arm B data.

Table 2 outlines estimates for fitted distributions of Arm B data, comparing the q-Rayleigh and
Rayleigh models. The negative log-likelihood values, are substantially lower for the q-Rayleigh
model than for the Rayleigh model, suggesting superior fit for the former. Additionally, the KS
statistic is smaller for the q-Rayleigh model compared to the Rayleigh model, reinforcing the
notion that the former provides a more accurate representation of the data. The associated p-value
for the KS statistic is also notably smaller for the q-Rayleigh model, underscoring its statistical
significance in capturing the observed data distribution.
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Figure 3: Convergence of Newton-Raphson Method for Parameters Estimations q (a) and β (b) for Arm B
data.

Figure 3 illustrates the convergence of the Newton-Raphson method for parameter estimations
of q and β. The convergence is achieved within 31 iterations.
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Figure 4: PP plot for fitted q-Rayleigh (a) and Rayleigh (b) for Arm B data.
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Figure 4 represents the Probability-Probability (PP) plot for fitted q-Rayleigh (a) and Rayleigh
distribution. the PP plot for the q-Rayleigh model provides a more accurate representation of
the data which implies that the former is considered better than that of the Rayleigh model.
A visually superior alignment of points along the line in the PP plot for the q-Rayleigh model
compared to the Rayleigh model indicates that the former better captures the distributional
characteristics of the data, reinforcing the notion that the q-Rayleigh model is a more suitable fit
for the observed dataset.
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Figure 5: Empirical, Rayleigh, and q-Rayleigh cdf’s for Arm B data.

In Figure 5, the cdf’s of the Empirical, Rayleigh, and q-Rayleigh models are presented. A
superior fit for the q-Rayleigh model is suggested when examining these cdf’s, signifying its
enhanced capability to accurately represent the observed data in comparison to the conventional
Rayleigh model. This might be evidenced by a closer alignment of the q-Rayleigh cdf to the
empirical cdf, suggesting that the additional parameter q improves the model’s ability to capture
the nuances in the data distribution.

Dataset 2: Authentic data pertaining to COVID-19 mortality rates in Italy is utilized to
assess the goodness of fit of the q-Rayleigh distribution. The dataset spans a period of 59 days,
commencing from February 27 to April 27, 2020, capturing the temporal evolution of mortality
rates during this critical period. The detailed information, including date-specific mortality rates,
is organized and presented in Table 4, forming the basis for conducting a rigorous statistical
analysis to evaluate the appropriateness of the q-Rayleigh distribution in modelling the observed
COVID-19 mortality trends in Italy.
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4.571 7.201 3.606 8.479 11.410 8.961 10.919 10.908 6.503 18.474 11.010 17.337
16.561 13.226 15.137 8.697 15.787 13.333 11.822 14.242 11.273 14.330 16.046 11.950
10.282 11.775 10.138 9.037 12.396 10.644 8.646 8.905 8.906 7.407 7.445 7.214
6.194 4.640 5.452 5.073 4.416 4.859 4.408 4.639 3.148 4.040 4.253 4.011
3.564 3.827 3.134 2.780 2.881 3.341 2.686 2.814 2.508 2.450 1.518

Table 3: COVID-19 Data in Italy from February 27 to April 27, 2020.

Model
Estimated Parameters Model Selection

q̂ β̂ -LL KS p-value
q-Rayleigh 0.91949 3.0717 18.7225 0.14996 0.0068288
Rayleigh - 3.6895 18.7643 0.7544 1.2615 ×10−22

Table 4: Estimates of fitted distribution for COVID-19 data.

Table 4 compares two distribution models applied to COVID-19 data: the q-Rayleigh and Rayleigh
distributions. The q-Rayleigh model exhibits a lower negative log-likelihood value and a smaller
KS statistic compared to the Rayleigh model. Additionally, the q-Rayleigh model has a notably
lower p-value, indicating a better fit to the observed COVID-19 data. These collective indicators
of model performance suggest the superiority of the q-Rayleigh distribution in capturing the
underlying distribution of the COVID-19 dataset during the specified period.
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Figure 6: Convergence of Newton-Raphson Method for Parameters Estimations q (a) and β (b) for
COVID-19 data.

Figure 6 demonstrates the convergence of the Newton-Raphson method in estimating the
parameters q and β. The convergence is successfully attained after 34 iterations.
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Figure 7: PP plot for fitted q-Rayleigh (a) and Rayleigh (b) for COVID-19 data.

Figure 7 displays the PP plots illustrating the fitted q-Rayleigh and Rayleigh distributions
concerning COVID-19 data. The PP plots provide a compelling visual diagnosis. The q-Rayleigh’s
points align closely with the diagonal, indicating a superior fit and capturing the nuances of the
observed distribution. Conversely, the Rayleigh’s deviations highlight potential inaccuracies in
its representation. This comparative analysis, therefore, underscores the q-Rayleigh’s superior
efficacy in describing the intricacies of COVID-19 data.
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Figure 8: Empirical, Rayleigh, and q-Rayleigh cdf’s for COVID-19 data.

Figure 8 offers a compelling insight into the process of selecting models for COVID-19 data
analysis. The empirical cdf serves as the reference, with the q-Rayleigh model demonstrating
a remarkable level of fidelity. Its curve closely follows the trajectory of the observed data,

RT&A, No 1 (77)
 Volume 19, March 2024

600



Ibrahim Sadok
ON THE Q-RAYLEIGH DISTRIBUTION AND ITS APPLICATIONS

contrasting with the Rayleigh model’s comparatively less precise fit. Consequently, the q-Rayleigh
model emerges as the preferred choice, providing a more accurate and insightful representation
of the pandemic’s patterns.

6. Conclusion

In this research paper, we have introduced a novel category of two-parameter distributions
termed as the "q-Rayleigh distribution". This distribution is formulated by utilizing the Rayleigh
distribution as the foundational distribution and incorporating the q-exponential function as the
generator function. To evaluate the characteristics of the model, we derived survival, hazard,
and cumulative hazard functions for the q-Rayleigh distribution, analysing them graphically.
Additionally, we explored extreme value properties.

The graphical examination of the q-Rayleigh distribution, employing various functions with
diverse parameter values, demonstrated that the proposed distribution exhibits favourable
properties in terms of its density function. We applied mathematical and statistical properties to
assess the q-Rayleigh distribution, confirming its adherence to the aforementioned characteristics.
The parameters of the q-Rayleigh distribution were estimated through the maximum likelihood
estimation method.

To validate the goodness of fit, we employed the KS test, p-value and PP plot. Additionally,
we conducted a comparison by examining the empirical cdf against those of the q-Rayleigh and
Rayleigh distributions. Furthermore, we applied the q-Rayleigh distribution to cancer mortalities
and COVID-19 data. The proposed distribution outperformed other distributions based on model
selection criteria. In light of these findings, the q-Rayleigh distribution emerges as more adaptable
and flexible in fitting real-life failure time data. We anticipate that this proposed distribution will
find broader applications across diverse research domains, including reliability analysis, medical
engineering, economics, and beyond.
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Abstract 

The data mining is a tool of searching information from the data warehouse. Several mining algorithms 

exist in literature, one of the most common is the usual K-mean procedure. This generates centroids after 

every round of iteration. It is assumed that sample data is completely cleaned and noise free before the start 

of execution of the usual K-mean algorithm. If α% values are missing in sample data then after cleaning 

only (100-α)% values are available for the execution of the usual K-mean algorithm. Such bears a loss of 

information that affects the decision. This paper considers this problem and resolves such issue by replacing 

the missing data through imputed values calculated by the available values, called Mean Imputation (MI). 

It helps in financial risk analysis quite a lot because of risk prediction being taken on a larger sample 

(cleaned and imputed both). Several imputation procedures are available in literature. This paper considers 

the financial risk data as sample where the missing values of sample are imputed by the usual Mean-

Imputation (MI) method and then on complete sample. Proposed MI-K-mean strategy is compared with no 

imputation usual procedure and found more efficient over the four-evaluation criterion of cluster formation 

while applying on risk data analysis. 

Keywords: Missing Data, Mean Imputation (MI), Credit card risk, K-mean clustering, Big 

data 

1. Introduction

Financial risk calculation is used to bifurcate the customer as per the account information in a bank. 

It is the possibility of potential losses in direct investments caused by the effects of corporate credit, 

tax financing, other economic factors and corresponding economic shocks. Risk computation is an 

important method to provide the general description about a customer as per the credit score, which 

helps to the bank manager for taking the decision about distributing the loan. Financial risk is a 

measure to identify and analyze the existing financial risk factors, determine the likelihood and 

severity of probable new risks, and it provide scientific basis for risk for evaluation prevention and 

control [18]. Loan risk analysis plays a vital role among banking system where bank can identify the 

customer those who are exposed with good and bad risk. For the decision-making process the human 

analysis is more complex for large amount of financial data. Financial risk [23] includes risk 

identification, risk assessment and risk treatment. Risk identification and assessment is a part 

relating to evaluate the account of a customer for the financial risks and their sources through 

account details. Moreover, qualitative and quantitative methods are important to measure the size 

of the risk and generating the risk warning. 
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Data mining provides the general description of the data for the analysis to predict the values and 

to forecast the solution for making the decisions on it [31]. Data pre-processing is an important step 

for data analysis used to clean the data for removing the noise. This is time-consuming task to 

perform some calculation over data.  

Missing data calculation is very tedious task for finding the location and manage them. For missing 

data handling, the imputation is the process for substituting the value in place of missing value [9]. 

Imputation methods can be included with various statistical methods like mean, median and mode. 

Imputation [10] is commonly used in computer science and related fields for several reasons such as 

handling non responded data, preprocessing data, maintaining dataset integrity, improving model 

performance and data analysis for visualization. Maintaining Dataset Integrity, in many 

applications, maintaining the integrity of the dataset is vital. Removing rows or columns with 

missing values [14] might result in a significant loss of data, reducing the representativeness and 

potential insights that can be obtained. Imputation allows for retaining the maximum amount of 

information available in the dataset. Imputation can also lead to improved model performance by 

reducing the potential bias and noise introduced by missing data. By imputing missing values [26], 

models can utilize the complete dataset to learn patterns, relationships, and make more accurate 

predictions. 

Clustering is a technique to find the homogeneity of the particular group of objects. Cluster analysis 

is very useful in big data to category of studied object is not known in advance, to group the 

similarities into a particular category based on the degree of affinity therefore the same category can 

achieve the maximum similarity and minimize the dissimilarities. Moreover, the different categories 

achieve the maximum homogeneity and minimum heterogeneity. Cluster model selection is the 

process involved as per objective of the problem [25]. Objective of the problem define as per domain 

and may be vary as per the model selection so that the model selection is important concern for the 

prediction. Clustering analysis method can be categorized into three different types: trying to 

calculate an optimal data partition [15] to divide the given data into a specific number of clusters; 

trying to find out a method for the cluster structure; and trying to find a method based on statistical 

model for potential cluster modelling.  

The K-means [12] cluster analysis technique effectively ignore the subjective negative impact caused 

by the artificial threshold value and ignores the missing data aspect, therefore it can more accurately 

and objectively describe the state intervals of different financial risks. On the basis of previous 

summary  and analysis, this paper provide the current research status and significance of financial 

risk using the imputation and k-means [17] algorithm, elaborated the development background, 

current status and future challenges of the K-means clustering algorithm using imputation method, 

introduced the related works of similarity measure and item clustering with imputation[13], 

proposed a financial risk indicator system based on the K-means[20] clustering algorithm, performed 

evaluation parameter and data processing, constructed a financial risk based model based on the K-

means [28] clustering algorithm with imputation [19], the dataset stored the values in credit card 

[33]. Study results of this paper provide a reference for further researches on financial risk based on 

K-means [22] clustering algorithm with imputation and the removal of the data in big data mining.

This paper is organized in nine sections. Second contains technical part of background of big data, 

imputation, clustering and evaluation methodologies. The third section is based on main problem 

undertaken in the paper while fourth section is based on motivation and hypothesis creation of 

research. The solution as in the form of proposed procedure is in section 5 whereas section 6 is with 

a new MI-K mean algorithm which is crux of this study. Section 7 reveals the flow of execution of 

this new algorithm and Section 8 supports the outcomes with numerical data. The last section 9 

contains conclusion of all findings in a nutshell. 
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2. Background Technical Aspect

2.1 Big Data 

Big Data cluster is a term for a collection of datasets who are so large and complex that it becomes 

difficult to process using on-demand database management tools or using traditional data 

processing applications [21]. Big data can be classified mainly in three basic categories like 

Volume, Variety and Velocity. This large volume of data continuously increases day by day by 

using electronic gadgets and through web-based platforms. The social media is a major source of 

big data [24] and others sources are like medical, insurance, marketing, weather forecasting etc. 

The main source are social media like Facebook, WhatsApp, Twitter etc. where at every second 

the volume of data increases drastically. In a day data generate with different forms of text 

messages, audio-recording, images, videos, log files etc. Big data parameter is important to 

discuss along with challenges [13] of this technology. 

2.2 Missing Data types, Techniques and Classification 

Data collection and analysis is the major part in for research and development. This step be 

performed very carefully however due to the large data there is chance to miss any value 

for the entry or missing due to any other reason [7]. Missing observation has mainly three 

patterns MAR, MCAR, MNAR [32]. For handling the missing values in datasets various 

strategies exist like try to find out the missing data [9], leave out the incomplete data and go-

ahead for the next step, replace the missing data [27] as per the mean value etc.  

Missing Values 

   MAR     MCAR      MNAR 

  Figure 1. Missing Data Types 

(a) MAR (Missing at Random): MAR [30] values give the same value in the particular group

which it is belongs to the observed data.

(b) MCAR (Missing Completely at Random): In MCAR [32] finding the missing values in the

same for all cases where the values are not available in the observation.

(c) MNAR (Missing Not at Random): MNAR is the missing value unknown to us, it is very

difficult to finding in the observation.

 

Figure 2: Classification of Missing data handling techniques 
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2.3 Data Clustering 

Clustering is the method of a given data points, partition them into a set of groups which are as 

similar as possible. Data Clustering technique to find the complete or incomplete data clustering 

[8], is a data exploration technique used in various fields, including data science and machine 

learning. It involves grouping a set of data points into clusters, objects are similar to each other 

and performed the Big data clustering [11] in the dataset. The K-means [14] algorithm is the most 

frequently used clustering method. Moreover K-means [16] clustering algorithm is to select K 

data as the initial centroid of each category and divide them into K categories according to the 

principle of one category with the smallest distance, and then further the divided mean values 

are judged according to the square error criterion function. 

Thakur and Shukla [1] proposed the missing data estimation based on the chaining technique in 

survey sampling. The method section included estimation, missing data, chaining, imputation, 

bias, mean squared error (MSE), factor type (F-T), chain type estimator, double sampling.  

Thakur et al. [5] presented some new concept on mean estimation with imputation using two- 

phase sampling design. In this paper a imputation using in a sample survey in presence of 

missing data and one of the substitution techniques of missing observations is applied.   

Shukla et al. [2] proposed some new aspects on imputation using sampling. Methods included 

estimation, missing data, imputation, bias, mean squared error (m.s.e.), compromised estimator, 

factor-type compromised imputation (FTCI). The number of causes that affect the quality of 

survey and missing data is one of such that keeps sample incomplete.  

Pandey and Shukla [3] deployed a new approach on stratified linear systematic sampling-based 

clustering approach for detection of financial risk group by mining of big data. Risk analysis is 

beneficial for taking the business decision for finding the unknown risks such as credit risk, debit 

risk, operational risk and financial risk. 

Jager et al. [6] integrated a benchmark for data imputation methods. This paper provides the 

detailed information about the missing data and its categories such that MAR, MCAR and 

MNAR. The method section included data quality, data cleaning, imputation, missing data, 

benchmark, MCAR, MNAR, MAR. The data preprocessing method selection for automated data 

quality improvement.  

Pandey et al. [4] employed max-min distance sort heuristic-based initial centroid method 

of partitional clustering for big data mining. The methods included big data clustering, Initial 

centroid algorithm, convergence speed, stratified sampling, K-means, K-means++, MDSHK-

means.  

2.4 Cluster Evaluation Parameters 

(a) Silhouette Score: The silhouette score is a measurement of how similar an object is to its own

cluster (cohesion) compared to other clusters (separation). For the calculation using the mean

intra-cluster distance (a) and the mean nearest-cluster distance (b) for each sample.

Silhouette Coefficient = (b - a) / max (a, b) 

Percentage Gain =  
|Strategy B score –  Strategy A Score |

Strategy A
 × 100 

(b) Devies Bouldon Score (DBS): This Devies Bouldon Score is calculated as the average similarity

measure of each cluster with its most similar cluster, where similarity is the ratio of within-cluster

distances to between-cluster distances, which is simply the average of the similarity measures
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of each cluster with a cluster most similar.  

Percentage Gain =  
|Strategy A score –  Strategy B Score |

Strategy A
 × 100 

(c) Mutual Information Score (MIS): Mutual Information is a measure of the similarity between

two labels of the same data. Where |Ui| is the number of the samples in cluster Ui and |Vj| is

the number of the samples in cluster Vj, the Mutual Information between clustering U and V is

given below.

Percentage Gain =  
|Strategy B score –  Strategy A Score |

Strategy A
 × 100 

(d) Rand Index Score: Rand Index is calculating a similarity between two cluster results by taking

all points identified within the same cluster. This value is equal to 0 when points are assigned

into clusters randomly and it equals to 1 when the two cluster results are same.

RI =  
Number of pairs in same cluster(actual) X Number of pairs in same cluster(predicted)

Total number of possible pairs

Percentage Gain =  
|Strategy B score –  Strategy A Score |

Strategy A
 × 100 

(e) Adjusted Rand Index (ARI): ARI  is used to measure the similarity between two clustering

by considering all the pairs of the n samples and calculating the counting pairs of the assigned

in the same or different clusters in the actual and predicted. E is indicating Expected.

ARI =  
Number of pairwise true positive prediction − E[RI]

Average number of pairs in same cluster for actual and predicated − E[RI]

Percentage Gain =  
|Strategy B score –  Strategy A Score |

Strategy A
 × 100 

2.5 Mean Imputation (MI) 

      Step I: Take sample of n observations. 

      Step II: Find missing values in dataset (out of n). 

      Step III: Let k (k<n) values of dataset are found missing. 

      Step IV: Find mean of (n-k) values in sample data. Let it is denoted as x*. 

      Step V: Replace all missing values in the dataset by x*. 

3. Problem Undertaken

This paper aims to explore about the application of imputation techniques over clustering methods 

applicable to financial risk calculation in the big data environment. Cluster evaluation parameters 

evaluates the cluster accuracy and provide the efficient result for creating the clusters. This paper 

aspires to contribute the existing literature by providing efficient evidence and theoretical insights 

for data cluster calculation in the financial risk data setup when missing data is replaced by the 

imputed values. In view of combination of clustering and imputation need new algorithm which is 

a problem considered herein what follows. 
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4. Motivation

The data cleaning procedure reduces the sample size of financial risk data by eliminating noise 

presence therein. Noise may be in the term of missing values. One can think of that if such are 

replaced using the known values by an appropriate imputation method then larger sample size will 

be available for applying the usual K-mean algorithm which may produce efficient result of financial 

risk clustering. The financial risk is dangerous and require large data size for prediction. 

4.1. Hypothesis 

(a) Is there significant effect of imputed data against missing observations on the cluster

evaluation parameters?

(b) Comparing risk reduction for imputed sample with the cleaned sample.

(c) Is the risk a decreasing function of imputed values in sample?

5. Proposed Procedure

Two strategies are given below. 

Strategy A: A new algorithm is proposed named after “MI-K-mean algorithm” which considers 

entire sample data n (using imputation). 

Strategy B: Usual K-mean algorithm applicable over only cleaned data which is less in sample 

size due to cleaning.  

This paper presents a comparison between Strategy A (Proposed) and Strategy B (usual method) for 

data mining. The step-wise execution of algorithm is as under: 

        Figure 3: Basic Model for workflow of proposed method with imputation and usual method 
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The figure 3 contains two strategies A and B for the cluster formation by K-means algorithm on 

financial risk data. Strategy A uses replacement of missing values by an appropriate imputation 

method (MI-imputation) while strategy B contains cleaned data after eliminating the missing. The 

sample size for B is smaller that strategy A.  

6. Proposed MI-K-mean Algorithm (Step-wise)

 Imputation and clustering based proposed strategy A in order to find cluster is as under 

(i) Input

1. N = {a1, a2, a3, ……………………an} is the data points to the financial risk-based D dataset 

2. K= Required number of clusters.

(ii) Output

     C = {c1, c2, c3 ………………………cn} 

(iii) Dataset Description

1  Dataset Head: data.head() [35] 

2  Dataset Shape: data.shape() [35] 

3  Dataset Statistical description: data.describe() [35] 

(iv) Missing values Identification

   Method for finding missing values (null values) in dataset: data.isnull.sum() [35] 

(v) Dropping the Missing Values (Removal of the data)

 Methods for deleting the missing data 

(a) Row wise deletion: data.dropna(axis=0) [35]

(b) Column wise deletion: data.dropna(axis=1) [35]

(vi) Imputation: Mean Imputation

       data[‘Column_name’]= data[‘Column_name’].fillna(data[‘Column_name’].mean()) [35] 

(vii) Clustering K-mean algorithm

     1 K-Means Clustering (Un-supervise Clustering Method)  

     2 Select k random values 

     3 Find out the optimality of clusters using Elbow or Silhouette method 

     4 Calculate the cluster centers and centroid 

      5 Find out the clusters 

(viii) Cluster Evaluation

  1 Calculation of Silhouette Score (SC) for the cluster evaluation 

  2 Calculation of Devies Bouldon Score (DBS) for the cluster evaluation 

  3 Calculation of Mutual Information Score (MIS) for the cluster evaluation 

  4 Calculation of Rand Index (RI) for the cluster evaluation 

  5 Calculation of Adjusted Rand Index (ARI) for the cluster evaluation 
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7. Implementation Procedure of MI-K-algorithm

Model for implementation of the proposed Strategy A needs several steps in data cleaning process 

such as missing value identification and performed imputation methods to obtain clusters on 

financial risk data. 

Figure 4: Implementation model for proposed method (Strategy A) 

8. Empirical Analysis

An Empirical study has been performed for applying efforts on the computing environment, 

datasets, existing algorithm, evaluation criteria and results. 

(A) Experiment Environment and Credit Card General Loan Risk Dataset [34]

Table 1: Description of the Credit Card General Dataset 

ID Dataset Objects Attributes Class Data source 

data CC General 8950 18 2 www.kaggle.com 
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(B) Computing Environment

The computing environment for the proposed clustering approach using mean imputation

technique is developed in Anaconda Navigator (anaconda 3) Jupyter and Google Collab

notebook. The experimental environment is configured with an Intel(R) Core (TM) i5-

2430M CPU @ 2.40GHz, 256 GB SSD, 4GB DDR3 RAM, Windows 10 Pro, Python 3.10.11,

Microsoft Edge browser.

(C) Results and Discussion

Table 2: Original Dataset Credit Card General Data Analysis 

Table 2 shows the description of the sample dataset [ Total 19 columns and five rows result using 

head() method]. Actual analysis performed over 8950 rows. 

Table 3: Data Size 

data.shape Rows 

Before Removal Shape Size 8950 

After Removal Shape Size 8636 

Table 3 shows that there are total 8950 row and after noice removal (cleaning) 8636 rows remained. 

Table 4: Reduced data for analysis 

index CUST_ID BALANCE CREDIT_LIMIT PAYMENTS MINIMUM_PAYMENTS TENURE 

0 10001 40.90 1000 201.80 139.50 12 

1 10002 3202.46 7000 4103.03 1072.34 12 

2 10003 2495.14 7500 622.06 627.28 12 

3 10004 1666.67 7500 0 NaN (Missing) 12 

4 10005 817.71 1200 678.33 244.791 12 

Table 4 shows that only six columns have been taken for analysis besides that all area available. 

Table 5: Descriptive analysis of dataset 

index CUST_ID BALANCE CREDIT_LIMIT PAYMENTS MINIMUM_PAYMENTS TENURE 

count 8636 8636 8636 8636 8636 8636 

mean 14477.9188 1601.225 4522.091 1784.478 864.3049 11.5343 

std 2565.75979 2095.571 3659.24 2909.81 2372.566 1.3109 

min 10001 0 50 0.0495 0.0191 6 

25% 12267.75 148.0952 1600 418.5592 169.1635 12 

50% 14469.5 916.8555 3000 896.6757 312.4523 12 

75% 16698.25 2105.196 6500 1951.142 825.4965 12 

max 18950 19043.14 30000 50721.48 76406.21 12 

Table 5 shows descriptive analysis of data after removal of missing data. 
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Table 6: Count of missing values in sample data 

CUST_ID 0 

BALANCE 0 

CREDIT_LIMIT 1 (Missing Values) 

PAYMENTS 0 

MINIMUM_PAYMENTS 313 (Missing Values) 

TENURE 0 

Table 6 provides information about the total number of missing fields(values) among six columns. 

Table 7: Statistic description of the data 

index CUST_ID BALANCE CREDIT_LIMIT PAYMENTS MINIMUM_PAYMENTS TENURE 

count 8950 8950 8949 8950 8637 8950 

mean 14475.5 1564.475 4494.449 1733.144 864.2065 11.517 

std 2583.787 2081.532 3638.816 2895.064 2372.447 1.338 

min 10001 0 50 0 0.019163 6 

25% 12238.25 128.2819 1600 383.2762 169.1237 12 

50% 14475.5 873.3852 3000 856.9015 312.3439 12 

75% 16712.75 2054.14 6500 1901.134 825.4855 12 

max 18950 19043.14 30000 50721.48 76406.21 12 

Table 7 provides descriptive analysis statistics after the imputation of missing data (using mean imputation) 

Table 8: Silhouette Method for finding the optimal cluster 

k(clusters) (Strategy A Proposed) (Strategy B)(Usual) 

k=2 0.4155 0.4000 

k=3 0.3681 0.3691 

k=4 0.2788 0.2810 

k=5 0.2792 0.2812 

k=6 0.1937 0.1919 

k=7 0.1875 0.18771 

k=8 0.1311 0.1089 

k=9 0.1358 0.1234 

k=10 0.1147 0.1245 

Table 8 shows the optimal cluster is obtained at k=5 using Silhouette Method 

Figure 1. Strategy A (Elbow method)   Figure 2. Strategy B (Elbow method) 
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Fig.1 and 2 reveals that graphical representation of the cluster optimality using strategy. Using 

Elbow method at k=5 the proposed strategy A is better than strategy B. 

Table 9: Centroid or cluster center calculation 

S.No  Strategy A Strategy B 

Cluster Centers or Centroids Cluster Centers or Centroids 

1 [12751.36, 2347.60] [ 6487.49, 1460.97] 

2 [ 2113.72, 892.23] [13822.78, 22720.13] 

3 [13775.00 , 22802.04] [ 7121.49, 7406.53] 

4 [13775.00 , 22802.04], [12731.04, 2403.48] 

5 [ 6482.10, 1394.93] [ 2103.22 , 923.39] 

Table 9 reveals that Centroid obtained for five clusters (k=5) where k denotes the optimal number of clusters 

Figure 3: Strategy A (Cluster representation)               Figure 4: Strategy B (Cluster representation) 

Comparing figure 3 and 4 one can observe that figure 3 is showing betterment (strategy A) in 

comparison to figure 4(strategy B) plotted using Matplotlib library. 

Figure 5: Strategy A                                                                Figure 6: Strategy B 

Considering figure 5 and figure 6, the strategy A is better than B plotted using Seaborn library. 

Table 10: Cluster evaluation parameters Strategy A and Strategy B 

Cluster Evaluation Strategy A Strategy B Percentage Gain (%) 

Silhouette Score 0.287495857 0.303354945 5.51% 

Devies Bouldon Score 1.283730623 1.013587896 21.04% 

Mutual Information Score 1.075392591 0.381224234 64.55% 

Rand Index Score 1 0.655464085 34.45% 

Adjusted Rand Index 1 0.276573174 72.34% 
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Table 10 shows percentage gain due to five evaluation parameters of clusters by Silhouette, Devies 

Bouldon, Mutual Information, Rand Index and Adjusted Rand Index Score. There is significant 

percentage gain in four cluster evaluation criterions.  

  Figure 7: Strategy A  Figure 8: Strategy B 

Figure 7 and 8 have graphical representation of the evaluation criterion on five parameters. Only 

first criteria (Silhouette score) bearing the low value but all other four evaluations showing gain, so 

strategy A is better than strategy B. 

Figure 9: Combined Graph for cluster evaluation parameters 

Figure 9 have a combined graphical representation of the evaluation criterion showing betterment 

for the proposed strategy A.  
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Figure 10: Percentage Gain between the Strategy A and Strategy B 

Figure 10 reveals the percentage gain due to strategy A over the strategy B. So using the mean 

imputation (MI) of missing data one can find better result by using proposed algorithm (Strategy A) 

9. Conclusion

This paper has presented a new algorithm named after MI-K-mean algorithm for the analysis of 

financial risk data. When risk factor exists then more input data values are required to reach the 

better decision. So, for such situation, the usual K-mean algorithm fail to form creating the efficient 

clusters. The proposed algorithm MI-K-mean (Strategy A) found efficient over the four cluster 

evaluation parameters while applying over the financial risk data. Table 10, figure 7, figure 8, figure 

9 and figure 10 are supporting this fact. The MI-K-mean algorithm contain a new imputation-based 

approach which is unique feature. It opens bright avenues for further research while dealing with 

the risk data. 
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Abstract 

This paper proposed a novel distribution parameterized by four parameters. This is achieved 

by compounding the potentials properties of the Type I half logistic topp-leone generalized 

distribution family with the properties of the inverse lomax distribution to form the novel 

Type I half logistic topp-leone inverse lomax distribution. The novel distribution is 

potentially capable of extending classical inverse lomax distribution. The potentiality of the 

shape of the probability density function of the novel distribution is worth recognizing since 

it produces right skewed, approximately normal, left skewed and a reverted J-shaped. 

Decreasing life failure shape is also observed. Distinctive features of the novel distribution 

such as moments, entropy, moment generating function, reliability and hazard function 

were derived. The estimation method explored in this study is maximum likelihood 

estimation. It is adopted to estimate the novel distribution unknown parameters. Real life 

data set was adopted to investigate the potentiality and applicability of the novel model. The 

type I half logistic topp-leone inverse lomax distribution outperform the recent models.      

Keywords: Type I Half Logistic Topp-leone-G family, Inverse Lomax, Maximum 

Likelihood Estimation.   

I. Introduction

Extension of the classical models have received tremendous attention, and the new extension is 

applicable to real life problems ranging from medical science, environmental, economics, 

demography, engineering, industrial statistics, biological sciences, and actuary science. There are 

several approaches to improve the classical distribution. However, the recent approaches provide the 

parents distributions with more shapes capacities and model flexibility through the generalized 

distribution families. 

The type I half logistic Topp-leone –G (TIHLTL-G) distribution family was proposed by [1]. 

The family is characterized with two shapes, and the hazard rate shape which includes increasing, 

decreasing and bathtub shapes.  The family is seen with potentiality capable of improve the classical 

model such as exponential model. On the other hand, the Lomax (L) distribution [2] sometimes 

refers to as Pareto type II distribution, coined from the second kind of generalized beta distribution.  

The L distribution is purposely applied to solve problems in insurance, biological sciences,  
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economics, reliability modeling, lifetime and engineering and other areas [3]. According to [4], the L 

distribution is an excellent distribution with potential of modeling survival complexity, and life-

experimentation (engineering) and survival analysis.  

The Inverse Lomax (IL) distribution is an excellent replacement for some closely related 

distributions like Inverse Weibull, Lomax, Gamma, Weibull distribution. Reason being that IL 

distribution possesses decreasing and upside-down bathtub hazard rate shape. Researchers, analysts 

and statistician found the IL distribution has a viable model useful in modeling diverse data sets. 

The [5] illustrated that IL distribution is among the inverted distribution family with noticeable 

flexibility in modeling various data sets, especially the non-monotonic failure rate. The IL 

distribution has also witness diverse extension, as it can be seen in [5], [6], [7], [8], [9], [10], [11], [12] 

and [13].  

The author, [14] study reliability data using generalized IL distribution. The breaking stress 

of carbon fibres data was investigated by [15], the statistical methods for reliability data was study 

by [16], the [17] analyzed competing  risks  survival data, the reliability assessment under extended 

Chen distribution by [18] 

In a scenario where a random variable X emanated from IL distribution, with cumulative 

distribution function (cdf) and probability density function (pdf) is expressed as: 

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The cdf likewise the pdf of the TIHLTL-G by [1] are distinctly stated below 
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 (4) 

The justification for this study lies in the fact that the IL distribution is noticed to have 

suffered from lack of pliability in the tail and peak features. This call for extensions of the IL 

distribution, diverse extensions has been witnessed. However, some of the extensions lack good 

flexibility. This motivates us to introduce a new attractive extension with TIHLTL-G with two shape 

parameters which can offer additional flexibility and improve the goodness of fit of the IL 

distribution.  

II. Methods

2.1 Type I Half Logistic Toppleone Inverse Lomax (TIHLTL-IL) Distribution 

This section introduces the novel TIHLTL-IL distribution cdf and pdf. The pdf plots, densities 

expansion, and statistical features of the novel distribution. This characterization of this new 

distribution will be revealed and evaluated. The cdf and pdf of the novel TIHLTL-IL distribution is  
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obtained as: 
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 where 0x   , 0a   scale and   , , 0b  are shape parameters. 

Figure 1: Pdf and cdf plots of TIHLTL-IL distribution with various parameters’ choices. 

From Figure 1, it is noticeable that the TIHLTL-IL distribution pdf can be seen as reversed J, 

approximately symmetric, right-skewed shaped. The additional plus observed in the new 

model is that, it revealed different forms of shapes with certain versatility in skewness, 

kurtosis and mode. The pdf is capable of modeling a heavy tailed and approximately 

symmetric data. The plus observed from the new model cannot be attributed to the IL 

distribution. The cdf plot of the novel TIHLTL-IL distribution converges to one. Its 

probability values range from zero to one. This implies that the novel TIHLTL-IL is a valid 

distribution.  

2.2.1 Density expansion of TIHLTL-IL distribution 

Consider the generalized binomial expansion expressed below 
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 Now consider the pdf given in (6) for expansion. 
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now, consider this term for expansion using the generalized binomial expansion in (7) and (8) 
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Following similar approach of expansion, we obtained the simplified version of the pdf. 

Hence the pdf is rewritten as  
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Similarly, cdf expansion goes same way. 
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Now, we expand this using the generalized binomial expansion in (8) and (9) 
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Following similar approach of expansion, we obtained the simplified version of the cdf. 

Hence the   
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2.3 Properties of TIHLTL-IL distribution 

In this section, derivation of the TIHLTL-IL distribution statistical properties is done. Properties 

explored are moments, probability weighted moment, entropy, reliability function, hazard function 

and quantile function. 

2.3.1 Moments 

Moments of any distributions avails researcher the chance to investigate and reveal some important 

properties such as kurtosis, skewness, dispersion and central tendency. Assuming z is a random 
variable. 
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To obtain the Ms of the TIHLTL-IL distribution, we substitute (9) and (10) in (11). Then we have 
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2.3.2 Probability Weighted Moments (PWMs) 

The PWMs generally represented mathematically as: 
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In order to obtained the PWMs of the TIHLTL-IL distribution, we substitute (9) and (10) in (13) and 

make k s . Then we have,  
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2.3.3 Entropy 

Entropy is applied as a metric of uncertainty or randomness, which exists in a random observation of 

its real population composition. A larger value of entropy signifies greater uncertainty in the data. It 

follows that continuous random variable X under the Shannon entropy is expressed as:  
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2.3.4 Reliability Function 

The reliability function generally represented mathematically as: 

   1R z F z  (17) 

Now, the reliability function for TIHLTL-IL distribution can be obtained from (17) as  
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2.3.5 Hazard function 

The hazard function is generally represented mathematically as: 
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Figure 2: Plots of hazard rate and reliability function of TIHLTL-IL distribution with various parameter choices 
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2.3.6 Quantile Function 

The quantile function of the TIHLTL-IL distribution is expressed below 
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2.3.7 Maximum Likelihood Estimation (MLE) 

MLE is an approach channeled towards parameter estimation which has gained spread in terms of 

usage. This article adopted this method to estimate the parameters of the TIHLTL-IL model. 

Consider a randomly sampled iX  from the TIHLTL-IL distribution with parameter ( , , , )a b    , 

where 1, , ,i n . The log-likelihood function for TIHLTL-IL model  L  is obtained as
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    (22) 

By differentiating  L in (22) with respect to  , ,a  andb , the resulting equation is set to zero will

produce the MLE estimates.  
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   (26)

2.3.8 Information Criterion 

The information criteria considered in this study include Bayesian (BIC), Akaike’s (AIC), Hannan-

Quinn (HQIC) and lastly, Consistent Akaike’s (CAIC) Information Criterion. Their statistics are 

expressed mathematically as follow; 
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 (27) 

Where q and n are the number of distribution’s estimated parameters, and the observations size, 

while  represents the log-likelihood (maximized) of the parameter vector ( , , , )a b   . The 

preferred model according to this criterion is the one with least values estimated from the model 

 
0 0

log
log 2 1 0

1

n n

i i

L n K
K K

K







   


      
   

 

 

626

RT&A, No 1 (77)
 Volume 19, March 2024



A. A. Adepoju, S. S. Abdulkadir, D. Jibasen, J. S. Olumoh
TYPE I HALF LOGISTIC TOPP-LEONE INVERSE LOMAX 
DISTRIBUTION 

III. Results

3.1      Application 

This section provides application to real-life data sets, demonstrating the applicability and flexibility 

of the TIHLTL-IL distribution against its comparators such as exponentiated generalized inverse 

lomax (EGIL) distribution [14] and half logistic inverse lomax (HLIL) distribution [9]. The choice of 

the distribution with most applicability and flexibility is determined by the distribution with the 

large likelihood’s values and the lowest information criteria’s values.  

Figure 3: Boxplot, kernel density, violin and histogram of the data set. 

The boxplot reveals information on the data set given below. It provides us with the necessary 

overview of the dispersion and the location of the data set. First of all, three outliers (171.1 181.7 

200.8) are revealed from the data set, same is seen from the histogram, the minimum and maximum 

(28.0, 156.6) without outliers), first and third quartiles (43.80, 88.95) and the median (57.9) of the 

distribution. The kernel density and the histogram revealed that the data set is positively skewed, 

meaning that, bulk number of the observations is concentrated in left side of the distribution. 
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The data set represents the represents the sum of skin folds in 202 athletes collected at the  

Australian Institute of Sports, it was previously studied by [19]. 

The data set is: 

28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2, 98.1, 57.0, 43.1, 

71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9, 56.5, 104.6, 74.9, 90.4, 54.6, 

131.9, 68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 106.9, 88.2, 33.8, 47.6, 42.7, 41.5, 34.6, 30.9, 100.7, 

80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8, 44.0, 56.8, 75.2, 76.2,101.1, 47.5, 46.2, 38.2, 49.2, 49.6, 

34.5, 37.5, 75.9, 87.2, 52.6, 126.4, 55.6, 73.9, 43.5, 61.8, 88.9, 31.0, 37.6,52.8, 97.9, 111.1, 114.0, 62.9, 36.8, 

56.8, 46.5, 48.3, 32.6, 31.7, 47.8, 75.1, 110.7, 70.0, 52.5, 67, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 77.0, 

62.6, 41.1, 58.9, 60.2, 43.0, 32.6, 48, 61.2, 171.1, 113.5, 148.9, 49.9, 59.4, 44.5, 48.1, 61.1, 31.0, 41.9, 75.6, 

76.8, 99.8, 80.1, 57.9, 48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 80.3, 156.6, 109.6, 50.0, 33.7, 54.0, 54.2, 

30.3, 52.8, 49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 44.7, 41.8, 38.0, 43.2, 70.0, 97.2, 123.6, 181.7, 136.3, 

42.3, 40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 99.9, 91.2, 71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 96.9, 57.7, 125.9, 

49.0, 143.5, 102.8, 46.3, 54.4, 58.3, 34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9. 

Table 1:  The descriptive statistics of the data set 

N Min Max median Mean Var Skewness Kurtosis 

202 28 200.8 58.6 69.0218 106.0501 1.1659 1.3220 

Table 2:  The Estimates of the MLE based on data set 

Models   a b

TIHLTL-IL 4.7115 26.0005 1.1422 2.7533 

EG-IL 12.1005 17.9792 1.2394 2.6083 

TIHL-IL - 0.0401 7.5925 12.5563 

Table 3: The Performance evaluation based on data set 

Models AIC AICC BIC HQIC 

TIHLTL-IL -954.0944 1916.18l9 1916. 392 1929.422 1921.543 

EG-IL -1094.129 2196.258 2196.461 2209.491 2201.612 

TIHL-IL -963.0500 1932.100 1932.251 1942.025 1936.116 

Figure 4: Fitted pdfs plot for the TIHLTL-IL, EGIL and HLIL distribution to the data set
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IV. Discussion

This paper introduced a novel model called the Type I Half Logistic Topp-leone Inverse Lomax 

TIHLTL-IL model. The model’s properties was defined and studied. We explored some useful 

statistical features of this novel model, including probability weighted moment, moments, moment 

generating functions, entropy, reliability functions, hazard function and the quantile functions. In 

order to have an insight of the model and to buttress our study, different plots were constructed such 

as the Pdf and cdf plots of TIHLTL-IL model, one can deduced that the model displays capability of 

handling data set with left and right skewed shape, reverse J-shape and approximately symmetric 

shape while the cdf plot confirmed the validity of the model. Investigation was conducted to 

visualize the data set using boxplot kernel density, violin and histogram, mainwhile, the boxplot 

suggest that there are three outliers in the data set, violin and histogram show a direction of the 

extreme values, indicating a positively skewed data set. The hazard shape reveals that the model can 

handle data set with monotonic decreasing life failure. We present MLE method, in order to estimate 

the unknown model’s parameters. We delve in the applicability and flexibility of the novel model 

using a real life data set. The information criterion reveals that the proposed TIHLTL-IL model 

outclassed the related models. This claim is also supported by the fitted pdf plot. 
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Abstract

In Heating, Ventilation, and Air Conditioning (HVAC) systems, faults can be occurred due to various
reasons such as drift deviation, valve/fan failure,water clogging,air filter obstruction, temperature sensor
failure and so on. Similarly in electrical machineries faults can be occurred due to multiple causes such as
phase reversal, over or under voltage, starter open/short circuit, bearing problems, insulation breakdown,
overloading, thermal unbalance, environmental as well as other technical issues. The faults analysis
at various stages of electrical systems are critically important for reliable operation of the system. In
view of reliability and safety operations of modern sophisticated electrical systems, faults analysis and its
diagnosis are necessary to avoid unaccountable losses. The faults at various stages, its causes, methods of
detection and diagnosis, fault classifications are included in this work. The comment on effectiveness
methods of detection of fault and diagnosis are included for electrical systems. In the industries, systems
are incorporated with monitoring capacity for detection of faults at easy and early stage. This paper
mainly focused on advancements in fault detection and diagnosis (FDD) methods with short review of
various recent methods. This includes system information representation,methods of FDD, description of
faults, fault classification, and decision actions related to maintenance, providing a systematic overview
of the current state of FDD. Furthermore, the paper underscores the pivotal roles of FDD in electrical
systems, emphasizing its effectiveness in identifying faulty states and taking pre-emptive actions against
potential failures or accidents. The discussion extends to developments of current research in FDD
approaches for electrical machineries with system monitoring, accompanied by short review of diverse
and valuable FDD methodologies. The study concludes by addressing comments on recent trends, future
directions, challenges, and prospective solutions in the hybrid and dynamic landscape of FDD.

Keywords: Fault types and classification, Fault detection and diagnosis (FDD), HVAC, Electrical
machines, Energy buildings, Reliability

1. Introduction

In the era of Industry 4.0, processes are evolving smart systems these are well equipped with
advanced sensing devices to collect process related data for fault detection and process monitoring.
As industries embrace full automation, meticulous supervision, involving process maintenance,
control and corrective actions, becomes imperative to ensure operational efficiency [1]-[2]. Main-
taining reliable and optimal performance in industrial processes is a challenge, often susceptible
to various faults, is a key challenge. Among the array of FDD in process supervision techniques,
is important issue of control methodology. Industries seek to enhance their process performance
by leveraging advanced FDD capabilities, which primarily involve monitoring process behavior
and uncovering faults, their characteristics, and root causes [3]- [4]. Efficient and accurate de-
tection and diagnosis tools are crucial for sustaining high process yield and throughput. FDD
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has garnered substantial attention across diverse industrial sectors and academia over several
decades, offering benefits such as cost reduction, improved quality, and enhanced productivity
[5]. This is particularly evident in safety-critical applications like robotics, autonomous vehicles,
surveillance, and manufacturing systems, where FDD plays a pivotal role in ensuring human
safety and preventing infrastructure loss. Modern systems and equipment demand the integration
of FDD not only for safety but also for increased production and reliable operation. A robust
FDD system, as highlighted in recent research, encompasses overall system health monitoring,
diverse malfunction handling, and precise fault identification and localization for safe component
removal. Over the past three decades, extensive work has been conducted on FDD, resulting in
various techniques. These range from approaches of model based such as structural graphs and
observer-based to approaches of data-driven employing classification, pattern recognition, and
neural networks. Model-based FDD relies on accurate mathematical models, making it suitable
for smaller systems with explicit models but susceptible to disturbances and uncertainties. In
contrast, method of data-driven extract information from predicted signals to predict faults,
with approaches of signal-based divided into statistical methods. The advent of technology has
brought intelligent systems to the forefront, posing challenges in developing knowledge bases
from raw historic information. The representation of information based includes knowledge
explicit through production rules or expert systems and knowledge implicit in machine learning
(ML) classifiers. Earlier reviews, have focused on model-based or data-driven FDD techniques,
spectral approaches, and deep learning. This review provides a comprehensive overview, encom-
passing both traditional and signal processing based FDD approaches, with a specific emphasis
on artificial intelligence-based methods. Covering the fundamental elements of FDD systems and
prevalent techniques, this article contributes valuable insights to the FDD field for HVAC and
electrical machineries. Challenges in real-time datasets includes the presence of outliers, which are
often detected using unsupervised methods. In the approach of semi supervised learning which
leverages both unlabelled and labelled data, providing a better choice. Data-driven FDD methods
have gained significant attention across diverse industries, playing a pivotal role in monitoring of
complex industrial process. The effectiveness of these approaches relies on the quality of historical
data and the analytical models employed [6]. While various data-driven FDD methods exist,
PCA-based and PLS-based approaches stand out for their simplicity and efficiency in detecting
and diagnosing process faults. In literature of data-driven methodologies, it has been focused on
PLS-based and PCA-based monitoring of process schemes. Many academicians have addressed
modifications necessary for successful implementation and proposed an integrated adaptive resid-
ual generation technique to address uncertainty issues. The control techniques of fault-tolerant
and data driven based FDD methods have been developed by Wang et al. [7], discussing their
advances and general developments. In the work, researcher presented application example and
outlined direction of research work, highlighting issues of FDD [8]. It is details by the Yin et.
al [9] that data driven process was fundamental monitoring and diagnosis of faults including
PLS, PCA, ICA and FDA. The study covered characteristics, computational complexities, design,
and algorithms of these data-driven methods. In another work of Qin [11] provided data driven
approaches and applications. In the study of it has been discussed the modelling on the basis of
latent variable and fault detection work which are approaches for diagnosis and identification.
Sensors are often limited to data transmission and sensing capabilities. Periodically, they send
sensed data to a remote node that houses FDD blocks. They then wait for that node to make a
determination on the presence of faults. With the aforementioned limitations in mind, we suggest
a distributed sensor-fault detection and diagnosis system such that, immediately following data
sensing, the sensor’s fault detection block starts to function. This will conserve the energy used for
periodic data transfer to and from a remote node in addition to providing a speedy determination
regarding the existence of a malfunction. Additionally, this plan will offer chances to alert users
or automatically halt system operations prior to a monetary loss or harm to human life. On the
other hand, a central node implements the fault diagnosis block. Due to the fact that diagnosis is
not time-sensitive, data exchanges between nodes may cause delays in the system. The use of this
strategy minimizes the sensor’s computing burden. In actuality, diagnosis is computationally
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expensive because, in contrast to detection models that just distinguish between normal and
abnormal conditions, the model must learn higher-level representations in order to distinguish
among the fault types. A central node hosts problem diagnostics in the suggested distributed
system design, whereas sensor nodes handle fault detection. The fault detection and reliability or
model operation are active area not only in the industrial systems but also in the multidisciplinary
fields[10]-[11].

This paper organised into the following sections: Section 1, included the introduction about
the fault classification, FDD methods with overview of general faults category. Section 2, where
a short discussion made on the work of fault categorization and various methods if FDD for
general applications which includes categories from the general industrial processes. The survey
on the major techniques for HVAC and energy buildings is included in Section 3 while Section 4
contains survey of electrical machineries. The paper ends with some remarks and conclusions
which is part of Section 5.

2. Fault Categorisation and Detection Methods

Beyond system representation and redundancy, the selection of an appropriate FDD system is
heavily influenced by the nature of faults. A primary classification categorizes faults into software,
hardware, communication and networking faults. Hardware faults encompass sensor, actuator,
plant/process, and structural faults. Software faults include bit-flips, subroutine execution
failures,runtime issues, and other software malfunctions. Networking and communication faults
involve protocol incompatibility, packet transmission failures, and non-recoverable data packets.
The general block diagram of industrial process control system is shown in Fig. 1. In the
control theory, various academicians had been contributed to control the process using modified
controller [12, 13, 14], with advances in control strategies [15, 16]. There are many types of faults
and malfunctions which are based on industrial systems and described below in short

• Sensor Category
In sensor category, there are faulty components due to current/voltage sensor, speed,
position sensor, absolute encoder type sensors or in general the fault components because
of sensors which are used in industrial systems. The fault descriptions may include one or
more reasons such as additive and/or multiplicative fault, abrupt voltage, power failure
dropout, encoder fault, open circuit fault, multiple hard and soft failures and so on.

• Actuator or final control element category
This category can be based on electrical, mechanical or hydraulic or pneumatic elements.
Faults can be because of armature and field winding, fault in stator winding, defect in
insulation, rotor and bearing faults, rotor axis misalignment, gear box defects, fault in
electrohydrostatic aerospace actuators. The description of actuators can be found by means

Figure 1: General block diagram of industrial process with faults and/or disturbance points
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of drift, open and short circuit faults, magnetic fields degradation associated with windings.
There can be loss of effectiveness of actuators, defects or faults in inner-race, outer-race
and ball problem/ damage, excessive wear of bearing, less lubrication and problem in axis
of rotor. Also, mechanical imbalance of rotor and broken motor bar are causes of faults.
Friction and leakage losses are also said to be cause of regular faults in case of mechanical
systems.

• Controller or Control action category
Transient faults arise from sudden changes within the system and can be disappear af-
ter some time. Permanent faults cause lasting damage, requiring repair or replacement.
Intermittent faults cycle between active and inactive states, while incipient faults exhibit
gradual or slowly changes in the state variables of faulty components. This comprehensive
categorization aids in understanding and addressing various types of problems in faults
and malfunctions that may impact systems.

• Plant/Process category
The faulty components under the category of plant/ process includes engine, part of plant,
intelligent in automatic wind turbine, robotic manipulator, centrifugal pump malfunction,
chemical/petrochemical plant or any specific units etc. The fault description includes
various reasons such as misconduct of diagnosis in engine, leakage in tank, disengagement
in DC motor, mechanical and electrical motor faults, transducers, final control elements and
faults in torque converter additive magnitude joint faults, bearing defects, open and short
circuit faults, duct and damper leaking fan and sensor failures.

• Software and hardware category
The faults may be bit-flips, execution failure in routine functioning, faults of structural
functioning in network, faults in communication network. The bit-flips can cause detection
as well as correction of mainly leading faults and dependently faults, error probe and
fault prone attributes. The network part is due to network faults on chip switches. The
faulty nodes in source to destination transmission leads to communication faults which can
be main reason to loss of signal or information. Any faulty controller output, electronic
throttle controller and electric power steering controller included in this category. Fault
description of controller response is partial loss of control effectiveness, degradation of
throttle damping and return spring and friction loss prognosis. Another classification
focuses on the dynamics and nature of faults, distinguishing between permanent, transient,
incipient and intermittent faults.

In view of system representation,information and redundancy considerations, the next crucial
factor in selecting appropriate FDD systems is the categorization of faults. A common classification
divides faults into software,hardware communication and networking faults. Hardware faults
encompass sensor, actuator, plant/process, and structural faults. Software faults include bit-flips,
sub-routine execution failures, runtime issues, and other software malfunctions. Networking
and communication faults involve protocol incompatibility, packet transmission failures, and
non-recoverable data packets. The recent work of FDD methods are summarized in Table 1 with
short remark and applicable domain. The FD methods available in the literature are shown in
Fig.2.

Intelligent manufacturing has garnered substantial interest from both academia and industry
in recent times. Intelligence is essential to the chemical and petroleum industries for both
productivity and safety. This explains the recent decades’ rapid development of FDD. A vast
amount of measurement data is accessible to extract the useful information for process monitoring
and optimization schemes because of the use of advanced computer and information technologies.
Numerous applications involve the installation of sensors in hard-to-reach locations, which makes
tasks like battery replacement or recharging challenging. In actuality, certain locations such as
deep within woods to track weather patterns and identify fires or other possible calamities are
more frequently equipped with limited-resource sensors than easily accessible ones. Furthermore,
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Figure 2: Fault detection methods

their battery life, memory, and processing power are all constrained. Therefore, while building
FDD systems for such sensors, the following issues should be met.

• Smart Fault Detection: It is important to find errors as soon as they arise and before they
cause significant losses. If these errors could be predicted, that would be much better for
reliable operation of the system.

• Low Computation Cost: Because sensors have limited energy and computational capacity,
FDD systems must operate effectively using the available resources.

3. Domestic and HVAC Applications

For more than 20 years, there has been active study into FDD for applications involving air
conditioning (AC) systems. Still, the vast majority of techniques were created for commercial
structures. Although a lot of this work is applicable to the domestic marketplace, there are certain
possibilities and problems specific to this industry that should be thought to be apart of the
industrial refrigeration and commercial HVAC systems. A fault in the measurement of mixed air
temperature, for instance, could affect the data gathered by fans,coils, dampers and elements of
airflow loop, thereby affecting the condition of the indoor environment. The anomalous airflow
supply to building zones caused by the problems related to the chilled water supply could have
an adverse effect on the chiller water supply by means of the control loop. Additionally, it’s
feasible that other subsystems servicing the same zone make up for the effects of one system
defect (such as an inadequate air supply to the zone). With the exception of fault propagation,
identification and compensation, there are some fault symptoms become more difficult to identify
and isolate than others because they are less evident than others. One instance is the faults of the
Variable air volume (VAV) terminals, which could be hard to find because there aren’t enough
sensors [51], [52]. Finally, the possibility of many faults occurring simultaneously during HVAC
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system operation makes FDD more difficult to understand because of contradicting or mutually
worsening fault symptoms.

3.1. Domestic Applications

This subsection reviews various methods of FDD for AC systems with fault types and evaluates
it with appropriate methods. Opportunities for advancement exist in the field of applying these
techniques to the domestic and residential market, such as: (a) Taking into account the degree of
fault diagnosis (FD) that is most economical in the residential market. (b) Reducing the number of
sensors needed for FDD. The two most widely acknowledged advantages of accurately identifying
and treating issues with AC systems are: (1) lower energy usage and (2) lower maintenance
expenses. But even with these advantages, the expense of applying FDD techniques in the
domestic AC industry has not been considered worthwhile. This study is primarily focused on
developing cutting edge FDD techniques for domestic air conditioning systems and exploring
ways to lower costs of these methods. But the goal of this subsection is to lay out a more thorough
grasp of the advantages that efficient FDD offers. The person living in the house stands to
gain the most from lower energy usage, and the owner benefits most from lower maintenance
expenses. Nonetheless, FDD offers the owner and occupant additional significant advantages. The
home-owner may gain more from the contented tenants than from lower maintenance expenses,
and the tenant may profit more from the dependable comfort that FDD may offer than from
lower electrical bills. Moreover, there is a lengthy value chain for ACs, and the home-owner
and occupant are just two of the participants. FDD does, however, also help a great deal of
other organizations. A straightforward illustration of the AC value chain and the advantages

Table 1: Short summary of data driven and knowledge/model based approaches for FDD

Approach Method Literature work Remark/Applicability
Data driven PCA/ICA [17, 18, 19, 20, 21] Complex processes

Nonlinear fault diagnosis
Minimization of false alarms

- CVA [22], [23],[24, 25], [25] Time domain approach
Consistent performance

- Data type [26], [27],[28],[29] Biochemical/nuclear
ANN& Wavelet transform
Very complex systems

Model based Observer type [30],[31],[32] Sliding mode observer
Non linear processes
Parameter varying processes

- Parity equation [33],[34],[35] Parity relation of input-output
Use of optimisation
Time varying system

- Supervised [36],[37],[38],[39] Use of support vector machine
learning Grid search,genetic algorithm

Efficient algorithms
- Unsupervised [40],[41],[42] Online fault detection

learning Use of CNN
Hybrid fault detection

- AI based [43],[44],[45],[46] Real time systems
Smart NN based approach
Predicted fault detection

- Knowledge [47],[48],[49],[50] Neuro-fuzzy and BN approach
based Use of fault isolation

Advanced algorithm for FDD

RT&A, No 1 (77)
 Volume 19, March 2024

636



MS Patil & GM Malwatkar
A COMPRESSIVE STUDY ON FDD FOR RELIABLE OPERATION...

Figure 3: Benefits of automated FDD methods in HVAC applications[53]

that FDD offers to its different organizations can be found in Fig. 3. Peak demand will drop
as a result of lower AC loads, which will substantially reduce the demands on the companies
that generate, transmit, and distribute power. Efficient FDD techniques may also enhance the
commissioning of AC systems and give personnel a way to confirm the efficacy of their work.
Home-owners may reduce the burden on the AC service sector during the hot/summer by
identifying problems before they become apparent and taking appropriate action during the
shoulder seasons. In addition, the home-owner’s repair expenses would go down. Effective FDD
techniques could offer input on system design and sales to the dealer and manufacturer, allowing
them to determine which systems have a track record of dependability and where improvements
can be made. Lastly, by lowering carbon emissions from power plants and refrigerant leakage,
better AC operations have a major positive environmental impact. In order for FDD to be widely
adopted in the domestic cum residential sector, it is necessary to comprehend the advantages
of this diagnosis at every stage of the value chain. The increased costs of the FDD system must
be covered by someone, and if these benefits are attained, several parties may have to split the
cost. Electric grid operators can, for instance, offer consumers who install the FDD system a
financial rebate as a sort of incentive. Manufacturers may also provide the dealer with a cheaper
FDD-enabled system. In order to get input, the dealer, installer, and service provider may also
provided access to the available FDD data. The research described below shows that there is
scope for considerable progress in the areas considering following points.

• Reduced maintenance costs
In Downey and Proctor’s work [72], almost 13,000 air conditioners, both home and commer-
cial, were examined. The study’s took into account a number of variables pertaining to the
state of air conditioners, including performance and operational parameters, indoor envi-
ronmental conditions, and interior building circumstances where cooling constraints were
important considerations among other things. The authors concluded that whereas 57%
of the systems did not meet refrigerator level specifications, 65% of domestic/residential
and 71% of light commercial systems needed maintenance as well as repairing. Breuker
and Braun’s work examined frequent rooftop AC defects and their effects, and it assessed
the relative cost of servicing for each fault through analysis of record. The influence of
performance indicators in terms of simple issue detection and timely, affordable repair was
the author’s main concern. It was determined that the average impact of the faults on
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cooling capacity and coefficient of performance (COP) indices were significant because they
raise energy costs and/or cause building occupants to feel less comfortable and because
they offer a standard measurement for comparing the effects of various faults. Additionally,
according to a database available in the literature of 6000 separate fault cases, it was noted
that 24% of total repair expenses were attributable to compressor faults.

• Reduced electricity costs
According to Proctor and Downey’s analysis in [73], normal HVAC servicing practices fail
to address two crucial parameters that affect equipment performance, which is why air
conditioners and heat pumps perform below their designed capacity and efficiency. Two
factors that the authors examined were inadequate airflow and an inaccurate refrigerant
charge. Researchers have noted that domestic air conditioners work at least 17% less
efficiently than what is stated on their efficiency ratings. According to the authors of
[74], duct leakage, poor indoor air flow, and inaccurate refrigerant charges were among
the most common errors. Furthermore, the authors found that only fixing issues with
charges and ventilation might result in an average 16% boost in efficiency. According to [73],
residential air conditioners function at a minimum of 17% less efficiently than their rated
capacity. According to the authors of [74], duct leakage, poor indoor air flow, and inaccurate
refrigerant charges were among the most common errors. Furthermore, the authors found
that only fixing issues with charges and ventilation might result in an average 16% boost in

Table 2: Short summary of recent work (2020-2024)on FD methods for AC systems

Fault Method Ref. System
Drift deviation Kernel PCA [54] HVAC

and double layer
long-short term memory

Coil valve dampers ANN,GA & multilinear [55] AHU
regression

Leakage and fouling On field measurement [56] Heat pumps
Gas & liquid line CPA [57] AC with microtube
restrictions condenser
Failures in valve PCA & hybrid data mining [58] VRF AC
Liquid floodback(compressor)
Compressor liquid & SVM,shallow NN [59] VRF AC
refrigerant charge deep learning
Fan failure, damper stuck COP-deep learning [60] AC
water clogging, air duck leakage SVM,multilayer perception
Several faults IoT & cyber [61] HVAC

physical system
Refrigerant charge faults Virtual sensors & fault [62] HVAC
& condenser fouling impact
Valve,fan, temp sensors Grey box [63] HVAC
Air temperature sensors Hybrid approach [64] HVAC
Air filter obstruction Physical based [65] HVAC
Chiller faults AI-twin architecture [66] HVAC
Valve & temperature learning based [67] chilled beam
chiller faults Convolutional network [68] HVAC chiller
Condenser/evaporator fouling ML [69] Roof top units
Fouling of condenser Adaptive NN [70] Chiller
reduced water flow,refrigerant
Condenser fouling Feature recognition [71] Chiller
reduced water flow,refrigerant Spectral regression
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efficiency.

• Improved commissioning
Commercial and industrial buildings were analyzed by Rogers and Rasmussen [75] for
power usage and 15-minute peak demands. The writers noted that a specific and effective
side The refrigerant charge is wrong in over 60% of domestic ACs [73]. Furthermore, 47%
of home systems are excessive, in comparison to the suggested sizing computation [74].

• Reduced peak demand
Reduced efficiency results in higher levels of peak demand and total energy consumption.
The summertime peak demand levels in Texas are approximately 25 % greater than the
wintertime peak levels [75], mostly because of chiller loads and air conditioning.

The specifics of FDD techniques based on quantitative models are provided in [76]. Process fault
diagnosis has a plethora of literature covering anything from statistical techniques to artificial
intelligence (AI) and analytical procedures. From a modeling standpoint, certain techniques
necessitate precise process models, semi-quantitative models, or qualitative models. On the other
side of the spectrum, some methods just use historical process data and do not require any kind of
model information. Furthermore, based on process information, various search strategies can be
used to carry out diagnostics. Any candidate who is not an expert in these tactics will frequently
find it challenging to navigate such a confusing array of alternatives and methodologies. The
fault diagnosis techniques are categorized into three main types and are covered in three sections.
According to [76], there are three types of model-based approaches: process history, quantitative
model, and qualitative model. The researchers also provided a general mathematical framework
that included a multi-step, complete FDD algorithm in addition to this categorization. In addition,
it examined unprocessed measurements to produce helpful characteristics that were applied
to identify certain issues. In general, the three-part review is a useful tool for comprehending
the whole FDD methodology. Nevertheless, the review lacked relevant application-related
information. According to [77], equipment that is not adequately maintained, deteriorated, or
managed wastes between 15 and 30 percent of the energy utilized in commercial buildings. A
large portion of this waste might be avoided if automated condition-based maintenance were
widely used. The foundation for condition-based maintenance of engineered systems is provided
by prognostics and automated FDD. Applications for energy building systems, such as HVAC
and refrigeration have been researched and showcased. However, a plenty of of research and
development has been done in the past ten years with the goal of creating FDD techniques
for HVAC and refrigeration systems. In the work of [78] provides an overview of automated
FDD research conducted since 2004 that is pertinent to the commercial building industry. The
evaluation divides automated FDD techniques into three categories and updates an earlier review
that was carried out in 2004. A selection of automated FDD examples from the major category are
examined in order to determine which approaches are best suited for system construction and
to comprehend the advantages and disadvantages of each approach. Additionally described in
the dispersion of studies based on HVAC systems and automated FDD techniques. The current
article can be used as a reference by industries and researchers to choose an acceptable automated
FDD approach.

3.2. Applications in Energy Buildings

There must be Recognize the difficulties and complexity of FDD. There are three levels of
complexity associated with this FDD problem: (1) building complexity, which arises from the
existence of different building types and characteristics; (2) HVAC complexity, which arises
from the intricate coupling of components of HVAC to meet various building needs; and (3)
fault complexity of HVAC system, which arises from complex and variable fault symptoms.
More than 40% of a building’s energy is used by the HVAC system, one of the most significant
mechanical systems. Problems with HVAC system operation can lead to interior environmental
problems, such as low indoor air quality and thermal comfort, which can have an impact on
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occupant health and productivity. [79], [80], and [[81]]. The study conducted by Jasmin et
al. [79] examined the impact of a flexible space layout design on energy demand and thermal
comfort within a contemporary open-plan office setting. The scholars evaluated the suitability
of four control zoning methodologies in conjunction with three distinct HVAC systems, radiant
ceiling,mechanical ventilation and a thermally active building system using dynamic thermal
modelling. According to their findings, mechanical ventilation systems required a more intricate
control plan to maintain thermal comfort, whereas thermally active and radiant ceilings building
systems offer potential options for flexible office spaces for a typical location.

In the meantime, broken or malfunctioning HVAC systems waste a lot of energy and reduce
the energy efficiency of buildings. According to estimates, problems with the HVAC system
and lighting systems together might raise the use of these sectors by 4 % which is ≈ 18%, or
0.35 and 1.7 quads of US yearly consumption, respectively [82]. Given the complexity in HVAC
systems with several coupling components and the intricate interactions between HVAC systems,
buildings, and inhabitants, maintaining fault-free functioning of HVAC systems is difficult.
The development of computer methods,such as the emergence of deep learning methods and
building management systems which are utilizing more affordable sensors to support building
operations allowing for the potential application of FDD. A promising method for guaranteeing
HVAC system faultlessness. FDD techniques are typically categorized into three types : process
history based, quantitative model-based, as well as qualitative model-based [83]. Simplified or
detailed physics based models are typically useful in quantitative model based approaches to
monitor variations between measured system status and anticipated system operation conditions.
Qualitative model based techniques typically follow expert guidelines or fundamental FDD
concepts. Process history based techniques rely on data, as they examine system sensing data
directly to identify and diagnose HVAC system operating conditions. More broadly, knowledge-
based approaches can be b roadly defined as quantitative and qualitative model based methods
that draw from engineering or physics knowledge in FDD. Data-driven techniques can be defined
as FDD methods that solely rely on system sensing data. Zhao et al.s work [84] includes a
thorough literature review of AI based fault detection and diagnosis (FDD) methods for energy
systems built in the 20 years between 1998 and 2018, summarizing the benefits and drawbacks of
the available AI-based techniques and outlining the most crucial areas for future research.

There are numerous types of structures for both residential and commercial purpose, including
multi-family or single-family and cottages type (e.g., office, school, shopping center). These
buildings serve a variety of purposes, which contributes to different building operation patterns
throughout the day. Additionally, the physical characteristics of buildings vary greatly between
designs and vintages, including window-to-wall ratios, zone configurations, and insulation levels.
Ultimately, the behaviour of building occupants varies and is stochastic, resulting in a variety
of characteristics for the load profile. Each of these results in distinct patterns and demands
for heating and cooling; hence, building with HVAC interactions change, which in turn adds to
the inherent FDD complexity. Examples of applications of FDD include campus buildings [85],
manufacturing buildings [86], commercial buildings in hot [87], [88], mild [89], uncertain climates
[[90]], etc. The intricacy of HVAC systems needs to be examined, as they have different types,
capacities, and modes of operation that are driven by the growth of HVAC techniques and the
various requirements for preserving the indoor environment [91]. Variable air volume, variable
refrigerant flow, and direct expansion systems are common system types found in existing
buildings; Table 2 provides examples of these systems to which FDD has been applied. These
days, HVAC systems are typically made up of a broad range of closely coupled sub-systems (such
as air handling units chillers, cooling towers, air distribution systemsand so on.) to effectively
maintain the typical indoor environment of buildings [92], [93]. Therefore, in order to achieve
FDD, the established technique must take into account the interdependencies, or mutual influence
caused by controlling feedback loops which couple HVAC sub-systems, in addition to properly
handling probable software and hardware errors within the sub-systems. The inconsistent design
of the HVAC system, its real functioning, and the FDD mechanism further exacerbate the issue.
HVAC systems frequently operate under unanticipated circumstances while they are in use (such
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as an oversized or undersized system). Moreover, rather of being used for FDD, the sensor
elements in HVAC systems are made for feedback control of HVAC during regular operation.
Each of them adds to the FDDs HVAC system’s complexity. The symptom complexity of system
problems is a direct outcome of the buildings and HVAC systems. In particular, the process of
detecting and diagnosing faults with symptom propagation and compensation is complicated by
the interdependencies between sub-systems and within sub-system components [85], [93].

The significance of FDD in HVAC systems for ensuring building energy performance and
occupant service has garnered attention from the building HVAC research community on a
regular basis. The developed FDD techniques were summarized and categorized in a number
of previous assessments. For instance, in their FDD application, Katipamula and Brambley had
divided FDD techniques into the three categories previously described and have included a
brief discussion of the advantages and disadvantages of each kind of method [77]. There was
also discussion on how these methods could be applied to particular HVAC & R(Refrigeration)
areas. In a further investigation, Yu et. al. and colleagues have integrated and synthesized FDD
research from 2005 to 2017 with the identical classification [94]. Yu et al [94] have examined
analytical-based, knowledge based, and data driven approaches specifically for FDD of Air
Handling Units (AHUs). Frank and colleagues [95] evaluated the obstacles and difficulties facing
FDD in small commercial buildings. In their analysis of the progress made in each stage of the
FDD process data sources, feature creation, fault detection, and fault diagnosis Shi and Brien
[96] have identified a number of issues that need to be resolved in subsequent FDD studies. The
applications of AI-based methods in FDD have garnered a lot of attention lately, and numerous
writers have talked about the crucial next research projects in the subject of FDD. Mirnaghi and
Haghighat [97] have examined data-driven methods that combine supervised, unsupervised, and
hybrid learning for large-scale HVAC system fault diagnosis and repair. Li and neill [98] have
concentrated on examining FDDs fault modeling for HVAC systems.

4. Applications in electrical machinery

In industrial processes, dependability and safety are essential components. Numerous industries
depend heavily on rotating machinery, which is prone to malfunction because of its lengthy
operating lifespan and difficult working circumstances [99]. The various faults occurs in electrical
machineries is enlisted in Fig. 4 and the detailed information is enlisted in the work of Asad
et. al. [100] and [101]. The vibration signals of rolling element bearings always appear as
low signal noise ratio, nonstationary statistical parameters while operating under demanding
conditions (such as time-varying speed and load, high shocks), which makes diagnostic techniques
challenging. To ensure smooth functioning under erratic situations, faults in various electrical
machinery components must be found. A few instances of rotating machinery parts are motors,
engines, shafts, bearings, gears, pumps, and blades. Qu et al. [102] have developed and tested
AE-based methodologies and acoustic emission (AE) sensors for gearbox failure diagnosis. For the
diagnosis of gearbox faults, AE-based methods demand far larger sampling rates than vibration
analysis-based methods. It is therefore debatable whether, at the same sampling rate, an AE-based
technique would perform better or at least as well as vibration analysis-based techniques. The first
known attempt to compare the gearbox fault detection performance of AE and vibration analysis
based methodologies using the same sampling rate was made by the authors in their comparative
study for gearbox tooth damage level diagnostics using AE and vibration measurements. The
study also mentioned that the lab experiments are conducted using a gearbox test rig to seed
and test partial tooth cut faults. After conducting a comparative analysis, the authors concluded
that, as compared to the vibration-based technique, the AE-based approach has the ability to
distinguish between different levels of gear tooth damage. Mechanical resonance can easily
impair vibration signals, but AE signals operate more steadily. The researcher concludes that
vibration signal condition indicators are inconsistent with the extent of gear tooth damage because
vibration is less sensitive than AE to minute tooth damage in the low speed range, making it
challenging to identify gear faults.
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Sakthivel et al.’s work [103] focuses on vibration-based problem diagnostics for single-block
centrifugal pumps. Experiments have been conducted on the pump under various fault scenarios
as well as in good working order. Drawn pump characteristic graphs show discharge vs. efficiency
under both ideal and unfavorable situations. Aithors noted that the pump’s efficiency is high
when everything is working properly, and for any malfunction, it falls into a range of values
that is significantly lower than when everything is working properly. It is clear that if any of
the study’s studied pump flaws were present, the pump’s efficiency would drop precipitously.
Therefore, it is imperative that this fault identification investigation be completed. Additionally,
in the same work, a mono-block monoblock centrifugal pump is used to model six classical states:
normal, bearing fault, impeller fault, seal fault, impeller and bearing fault together, and cavitation.
Using the C4.5 decision tree approach, a set of features has been retrieved and classified in the
simulation. It is noted that based on the discussion and findings, it is safe to conclude that
the C4.5 algorithm and vibration signals are suitable options for real-world defect diagnosis of
monoblock centrifugal pumps. By Haidong et al. [104], a novel technique for rolling bearing fault
diagnosis termed deep wavelet auto-encoder (DWAE) with extreme learning machine (ELM) was
presented for intelligent rolling bearing fault detection. The study utilized wavelet function as a
nonlinear activation function to create a wavelet auto-encoder (WAE) that is capable of efficiently
capturing signal properties. To improve the capacity for unsupervised feature learning, a DWAE
including several WAEs was built, and ELM was chosen as the classifier to precisely identify
various bearing problems. The technique was used to examine the experimental vibration signals
from the bearings. According to the authors’ data, the created method is more effective than
both standard deep learning methods and traditional methods in eliminating the need for human
feature extraction. Haidong et al. [104] note that combining the wavelet function with deep
learning and extreme learning machine improves fault diagnosis of rotating bearings greatly.
Vibration signature analysis has historically been used to identify shafting system misalignments.
The temperature increase at the source is also caused by these misalignments. couplings and
bearings. Mohanty et al.’s contribution [105] describes an experimental investigation that used
a thermal imaging camera to measure the shaft couplings’ temperature in order to discover
misalignment in systems early on. In order to identify flaws, the effects of load, speed, and
misalignment on the different types of couplings and their temperature rise have been investigated.
Before the temperature of the coupling achieves its steady state value, it is utilized to measure
the misalignment in the system. In order to correlate with the thermal imaging, vibration

Figure 4: Fault types in electrical machines [100]
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measurements at the bearing locations under various load and speed circumstances were also
made using accelerometers and single point laser vibrometers. The recorded transient spatial
temperature distribution on the couplings, the researchers discovered, also points to the shafting
system’s misalignment. The approach can be applied to automated thermography-based detection
systems to identify misalignments from far-off places where traditional vibration monitoring
would be challenging. Notably, the method can be applied to windmill gearbox problem detection
at elevated positions where traditional contact type instrumentation would be very laborious.

Kubiak and colleagues conducted the failure analysis of the 150 MW gas turbine blades
[106]. The 150 MW gas turbine used as the study’s basis experienced a forced breakdown due
to abnormally strong vibrations, which reduced output power to nearly nil. The analyzers’
diagnostic task is to identify the primary reason behind the blades’ failure. Additional research
revealed that low cycle fatigue was the initial cause of the blade failure, which resulted in a crack
that spread throughout the securing pin hole (stress raiser) at the blade’s root.A few suggestions
are made in light of the study to prevent gas turbineblades faults and failures. In light of the
need for and impact of condition monitoring and fault diagnosis in induction motors (IMs) as
well as the need for further study, Choudhary et al. [107] provided a state-of-the-art review
that details various IM fault types and their corresponding diagnostic approaches. Numerous
surveillance The methods that are available for diagnosing IM faults have been noted and shown.
The researchers announced that there is a lot of potential for the use of non-invasive data
collection methods in autonomous, timely maintenance scheduling and failure aspect prediction
of dynamic machinery.The shortcomings of traditional sensors and monitoring schemes will
be addressed by the use of non-invasive type instruments, which will remove the requirement
to attach the sensor on the machine and provide speedy measurement, non-intrusiveness, and
high accuracy. The thermal imaging approach is thought to be an effective tool for online
instant messaging monitoring without human intervention when compared to other non-invasive
techniques. For practical applications, combining infrared thermal imaging techniques with
artificial intelligence-based methods can speed up decision-making even more.

An oil monitoring approach for engine wear evaluation was examined in the work of Bin Fan
et al. [108]. The oil samples underwent quick on-site analysis using online visual ferrograph
(OLVF). The wear debris concentration for the abnormal engines was discovered to have a low
index of particle coverage area (IPCA) by the authors. Large debris was also infrequently seen on
OLVF ferrrograms, which was congruent with the findings of analytical ferrography. The cause
of this was examined and addressed. In order to reduce the number of manual confirmations
that require disassembling the oil pans, the researchers looked into an oil monitoring technique
of wear evaluation for the 9-min engine hot tests. Oil samples from engines are quickly analyzed
on-site using OLVF. However, the authors also mentioned that it is challenging to collect the
larger wear debris by sampling at half of the oil level because of the short operating duration
and the elimination of wear debris. Low concentration of the small wear debris is also a sign of
abnormal wear during the 9-min hot test. The amount of small debris in the oil samples from the
normal engines is greater than that of the abnormal engines.

5. CONCLUSIONS

In this study, FDD approaches for typical applications of electrical applications is reviewed to
study the impact of early diagnosis of the faults. The various approaches of FDD for domestic
applications, HVAC and electrical machineries applications are studied with the contributions
of academicians and researchers from the literature. A disturbance or fault rejection strategy is
main focus of the this paper for the reliable and maintaince free operation of the HVAC and
electrical machines. In this study, recent techniques has been incorporated in view to design and
implement the FDD methods. The approaches of FDD included are admittance as per earlier
techniques due to fast FD algorithm with use of computational facilities on the ground of soft
faults. Recent algorithms have improved fault detection strategy which will not affected due to
parameter uncertainties and model mismatch in operational reliability of the system or modelling.
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The study uses to generates minimum fouling in the system performance by considering the
sensor, actuator and control signal.

The presented review includes

• The work which have been contributed for domestic applications in recent years

• The work which focuses on FDD of HVAC systems and its major failures due to non
maintenance/repairing of the systems.

• The contribution which clearly mention that the routine maintenance can reduce the cost of
expenses to avoid replacing the equipment.

• The study includes typical faults and its mitigation by advanced FDD methods with

It has been mentioned that the performances of the any system obtained through FDDs have
been interest of reliability operation of the systems. The detection of fault can be made by parallel
simulations or by means of dynamic identifications either through data driven or knowledge
based approach. The FDD implied dynamically for the HVAC or any other devices to avoid any
malfunction would be interest of the researcher through the use of advanced techniques such as
deep learning, machine learning or AI approaches. In future work, the hybrid concepts can be
useful for the FDD of sensors and other components of the industrial complex systems. There
are the opportunities and challenges for the real time applications at micro level in the focused
domains including defence, sensitive chemical and petrochemical as well as other industries.
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Abstract

This paper demonstrates an M/M/C queuing model with Multiple working vacations and also single
working vacation under encouraged arrival with impatient customers. The queuing model with the
servers adopting multiple working vacation policy and single working vacation are determined separately
and it is observed that the servers during working vacation(s) will be serving the customers at a slower
service rate when compared during regular busy period. In addition to the above conditions, if there is a
rapid increase in the customers’ arrival i.e, if encouraged arrival occurs and due to this sudden growth
of the queue, there may be a impatience in the behaviour of the customer. With these considerations,
an M/M/C Queuing model is analysed with two vacation policies separately by applying PGF method
and thus the performance measures for an M/M/C Queue with Multiple Working Vacations and Single
Working Vacation under Encouraged arrival with impatient customers are evaluated.

Keywords: Multiple Working Vacations(MWV), Single Working Vacation (SWV),Encouraged
Arriv al, Impatient beha viour ,Perfor mance Measur es

1. Introduction

In our daily life, we meet up with the scenario of w aiting in queues to get our work done, for
example - to make bank deposit, ma il a package, obtain food in cafeteria etc. Waiting in queue is
a matter of personal anno yance and it also costs the amount of time that we w aste by w aiting
in queue s. It may affect the efficienc of the ser vice provided and is a major factor in both the
quality of life and also affecting the efficienc of a nation’s economy . Great inef ficiencies also
occur because of w aiting.

For example, making machines w ait to be repair ed may result in less production, dela y in
telecommunication transmission due to saturated lines may cause data glitches etc. In fact, we
have become accustomed to considerable amounts of w aiting. Origin of Queuing theor y in
resear ch w as contributed by Agner Krarup Erlang, who created models to describe the system of
incoming calls at the Copenhagen Telephone Exchange Company .

An M/M/s queuing system in which the ser vers under going vacation w as analysed in [7].
In Queuing vacation policy , an overvie w of some general decomposition results were attained
and the methodology used to obtain those results for tw o vacation models were analysed in [3].
Moreover, the literatur e on statistical analysis of queuing systems were briefl discussed in [2].

It can be obser ved that in numer ous industrial sector , the concept of Queuing with ser vers’
vacation is implemented. An M/G/1 Queue with vacation policy used in the scenarios like
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maintenance of production systems, wher e machines or equipment mainly degrade while being
operated were evaluated and for such queuing model,an explicit expr ession for the distribution
of the time it takes until the specifie amount of work has been ser ved were deriv ed in [1].

In General, Systems with vacations are usually modeled and analyzed by queuing theor y. An
appr oach for modeling and analyzing finite-sou ce multi-ser ver systems with single and multiple
vacations of ser vers or all stations were presented using the Generalized Stochastic Petri nets
model in [11]. During any ser vice,the ser vers may under go breakdo wn simultaneously both in
regular busy peri od and working vacation period due to the failur e of a main contr ol unit. This
scenario w as discussed by modeling and analysing a Marko vian multiser ver finite buf fer queue
under synchr onous working vacation policy in [5].

A multiser ver queuing system with customers ′ impatience until the end of ser vice under
single and multiple vacation policies were examined in [6]. Situations like arriv al of the customers
follo wing Poisson distribution but the general distribution follo wed by the administration render -
ing ser vice with various vacations were detailedly discussed in [10].

The concept of impatient beha viours like balking and reneging with the availability of heter o-
geneous ser vers in an M/M/c queue w as analysed in [16]. Moreover, the time-dependent system
size probabilities were deriv ed explicitly using generating function and also the time-dependent
mean, variance, busy period distribution and steady-state probabil ities were also obtained. In
addition to this, perfor mance of an M/M/c/K Queuing Models applied in Healthcar e Things for
Medical Monitoring were evaluated in [14].

The impatient natur e of the customer during any ser vice may be expr essed if ther e is a dela y
in the ser vice and the dela y may be due to lack of ser vers or slow ser vice provided. Queues with
slow ser vers and impatient customers were consider ed and the the mean queue size were deriv ed.
Also, Several extr eme cases were inv estigated and numerical results are presented in [12].

An M/M/1 queue with single and multiple working vacations with impatient customers
were studied and Closed-for m solutions and various perfor mance measur es like, the mean queue
lengths and the mean w aiting times were deriv ed and the stochastic decomposition properties
were verifie for both multiple and single working vacation cases in [13]. Likely , the impa tient
beha viour of the customers with with single and multiple synchr onous working vacations in an
M/M/C queue w as analysedin [9]. Perfor mance natur e of a Marko vian Queue with Impatient
Customers and Working Vacation were deriv ed in [8].

It is obvious that in the case of any discounts or offers provided during any sale or if any
sudden demand is created for a product or a ser vice, then ther e will be a rapid growth in the
arriv al of the customers, which is ter med as encouraged arriv al. The concept of encouraged
arriv al in an M/M/c/N queuing systems with reneging, retention and Feedback customers were
discussed in [15]. The stationar y system size probabilities were obtained recursiv ely for the abo ve
model, while the steady state beha vior of the M/M/1/N queuing model with encouraged or
discouraged arriv als and impatient customers are obtained in [4].

With the aid of the abo ve discussed concepts, an M/M/C Queuing model during encouraged
arriv al under going single working vacation and multiple working vacations with impatient
beha viour of the customers are analysed separately .

In this paper , betw een the tw o vacation policies analysed,multiple working vacation is con-
sider ed firs in which if a ser ver retur ns to an empty queue, then he goes for another vacation
immediately ,thus working vacation occurs multiple times. Wher eas, in the later vacation policy ,
the ser ver takes only a single vacation each time. Thus for an M/M/C Queue during encouraged
arriv al with impatient beha viour under going multiple working vacation is deriv ed with explicit
for mulations follo wed by the same queuing model with single working vacation.

2. Methods

An M/ M/ c queuing model with encouraged arriv al follo wing multiple working vacations with
impatient custome rs is consider ed. Customers arriving to be ser ved follo w Poisson process and
the arriv al rate is denoted by the parameter λw. If ther e is a sudden increase in the arriv al of
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the customers,i.e., encouraged arriv al occuring in the system follo ws poisson process with the
encouraged arriv al rate λw(1 + δ).

Since the consider ed model denotes ’c’ ser vers, ther e may be maximum of ’c’ ser vers available,
to ser ve the customers accor ding to FCFS rule. When a customer arriv es and find all the ser vers
in the system are busy , then he needs to w ait until he gets ser ved and thus the w aiting line or the
queue begins.

The time taken for each ser ver to complete the work during regular busy period follo ws
exponential distribution and denoted with the ser vice rate µw. Thus the traf fi intensity or the
stability of the system during regular busy period is consider ed as ρ = λw(1+δ)

cµw
< 1

After completion of a ser vice, if ther e is no customer in the system,then all the ’c’ ser vers will
take vacation promptly and the duration of working vacation for each ser vers is exponentially
distributed with parameter η′. As all the ser vers in the system under go vacation, even if a single
customer arriv es,then any one of the ser ver will retur n from his vacation and start ser ving the
arriv ed customer .Thus the concept of working even during vacation for the arriv al of customers
is ter med as working vacation period, and the ser vice rate follo wing exponential process during
working vacation period is µwv and it is obser ved that the ser vice rate during working vacation is
slower than the regular busy period i.e., µwv < µw

It is obvious that if the ser vers retur n from their vacation and when the system is non empty ,
the ser vice rate of the ser vers changes from µwvtoµv indicating that the regular busy period
begins. Suppose, if the ser vers fin no customer w aiting in the queue after retur ning from their
vacation, they immediately lea ve for another vacation. In such cases,if a customer w aits in the
queue for a longer time, as all the ’c’ ser vers are in working vacation period,he may become
impatient in w aiting and the impatient beha viour of the customer at the time T is is exponentially
distributed with parameter γw which is consider ed to be independent of the customers in that
moment.

The customer w aiting in the queue may exit the queue and never retur ns if its ser vice has not
been completed befor e the time T expir es. The inter arriv al times, ser vice times, vacation duration
times and impatient time are all taken to be mutually independent. To construct this system, we
defin a tw o dimensional continuous time discr ete state Marko v chain as {(M(t), N(t)), t ≥ 0}
with state space s = {(0, 0) ∪ {(n, j)}, n ≥ 1, j = 0, 1}

Wher e M(t) denotes the total number of customers in the system at time t and N(t) denotes
the state of the system at time t with

N(t) = {1 when the ser vers are in non-v acation period at time t } and
N(t) = {0 when the ser vers are in working vacation period at time t }.

2.1. Steady State Equations and its Solutions for Multiple Working Vacations
Model:

The steady state transition probabilities are define by
Pnj = P{M(t) = n, N(t) = j}, n ≥ 0, j = 0, 1

Now, the set of balance equations as

λw(1 + δ)P00 = (µwv + γw)P1,0 + µwP1,1 , (1)

[λw(1 + δ) + η′ + n(µwv + γw)]Pn,0 = λw(1 + δ)Pn−1,0 + (n + 1)((µwv + γw)Pn+1,0 , i f n ≥ 1,
(2)

(λw(1 + δ) + µw)P1,1 = η′P1,0 + 2µwP2,1 , (3)

(λw(1 + δ) + nµw)Pn,1 = λw(1 + δ)Pn−1,1 + (n + 1)µwPn+1,1 + η′Pn,0 , i f 2 ≤ n ≤ c − 1, (4)

(λw(1 + δ) + cµw)Pn,1 = λw(1 + δ)Pn−1,1 + cµwPn+1,1 + η′Pn,0 i f n ≥ c. (5)

By letting the probability generating functions as

P0(z) =
∞

∑
n=0

znPn,0 ,
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P1(z) =
∞

∑
n=1

znPn,1 .

with P0(1) + P1(1) = 1 and P
′
0(z) = ∑∞

n=1 nzn−1Pn,0 .
Now, By Multiplying Eq(2) with zn and adding over ’n’ and rearranging the ter ms, the

dif ferential equation is attained as :

(µwv + γw)(1 − z)P
′
0(z) = [λw(1 + δ)(1 − z) + η′]P0(z)− (η′P0,0 + µwP1,1). (6)

Likely multiplying Eq(4) and Eq(5) by zn and adding over ’n’, the follo wing equation is
obtained,

(1 − z)(λw(1 + δ)z − cµw)P1(z) = η′zP0(z)− (η′P0,0 + µwP1,1)z + µw(1 − z)
c

∑
n=1

(n − c)znPn,1 . (7)

Let us consider ,

A = η′P0,0 + µwP1,1 . (8)

Then, for z ̸= 1,

P
′
0(z)− [

λw(1 + δ)

(µwv + γw)
+

η′

(µwv + γw)(1 − z)
]P0(z) = − A

(µwv + γw)(1 − z)
.

(9)

Eq(9) is an ordinar y linear dif ferential equation with constant coef ficients To solv e the equa-
tion, an integrating factor can be consider ed as

I.F = e−
∫
[ λw(1+δ)
(µwv+γw)

+
η′

(µwv+γw)(1−z) ]dz
= e−

λw(1+δ)z
(µwv+γw) (1 − z)

η′
(µwv+γw)

The General solution to Eq(9) is giv en by:

d
dz

[e−
λw(1+δ)z
(µwv+γw) (1 − z)

η′
(µwv+γw) ]P0(z) = [

−A
(µwv + γw)(1 − z)

]e−
λw(1+δ)z
(µwv+γw) (1 − z)

η′
(µwv+γw) . (10)

Now, integrating from 0 to z, follo wing equation is attained,

P0(z) = [e
λw(1+δ)z
(µwv+γw) (1 − z)−

η′
(µwv+γw) [Po(0)− A

(µwv + γw)

∫ z

0
e−

λw(1+δ)z
(µwv+γw) (1 − x)

η′
(µwv+γw)

−1dx]. (11)

then,

P0(1) = e
λw(1+δ)
(µwv+γw) [Po(0)− A

(µwv + γw)

∫ 1

0
e−

λw(1+δ)z
(µwv+γw) (1 − x)

η′
(µwv+γw)

−1dx] lim
z→1

(1 − z)
−η′

(µwv+γw) . (12)

Since 0 ≤ P0(1) =
∞

∑
n=0

znPn,0 ≤ 1and lim
z→1

(1− z)−
η′

(µwv+γw) = ∞, and thus the existing ter m is as follo ws
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P0,0 = P0(0) =
A

(µwv + γw)
L (13)

Wher e L =
∫ 1

0
e−

λw(1+δ)z
(µwv+γw) (1 − x)

η′
(µwv+γw)

−1dx. (14)

Defin Z(λw(1 + δ), η′) = −λw(1 + δ)−η′ e−λw(1+δ)(−Γ(η′, −λw(1 + δ)) + Γ(η′)) (15)

wher e Γ(z) is the Γ function which is repr esented as

Γ(z) =
∫ ∞

0
e−ttz−1dt (16)

and Γ(y, z) =
∫ ∞

z
e−tty−1dt. (17)

some calculations giv e

L = Z(
λw(1 + δ)

(µwv + γw)
,

η′

(µwv + γw)
). (18)

By Eq(8) and Eq (13), it is obser ved that

P0,0 =
η′P0,0 + µwP1,1
(µwv + γw)

L =
Lµw

µwv + γw − η′L
P1,1 . (19)

Now, using the value of A from Eq(13) in Eq(11), P0(z) is obtined as

P0(z) =
e

λw(1+δ)z
(µwv+γw)

(1 − z)
η′

(µwv+γw)

[1 − 1
L

∫ z

0
e−

λw(1+δ)z
(µwv+γw) (1 − x)

η′
(µwv+γw)

−1dx]P0,0 . (20)

By applying L’Hospital’s rule to Eq(20), we get

P0(1) =
(µwv + γw)

η′L
P0,0 (21)

and now substituting the value ofP0,0 from Eq(19), the follo wing relation is obtained

η′P0(1) = η′P0,0 + µwP1,1 . (22)

From Eq(7), P1(z) is attained as,

P1(z) =
[η′P0(z)− A]z

(λw(1 + δ)z − cµw)(1 − z)
− µw

(λw(1 + δ)z − cµw)
F(z), (23)

wher e,

F(z) =
c

∑
n=1

(n − c)znPn,1 . (24)

It is clear from Eq(20) that P0(z) is a function of P0,0 and the ratio betw een the time of the
ser vers on working vacation and the system is empty . Similarly from Eq(23), P1(z) is a function of
P0(z), A and F(z). Hence, if P0,0 and P j,1(j=1,2,...c) are obtained, P0(z) and P1(z) can be deter mined
completely .
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2.2. Perfor mance Measur es

By using L’Hospital’s rule in Eq(23), we get

P1(1) =
[η′P0(1)− A] + η′P

′
0(1)

cµw − λw(1 + δ)
+

µw

cµw − λw(1 + δ)
F(1), (25)

wher e

F(1) =
c

∑
n=1

(c − n)Pn,1 . (26)

Using Eq(22) and Eq(8) in Eq(25),w e get,

P1(1) =
η′

cµw − λw(1 + δ)
E(L0) +

µw

cµw − λw(1 + δ)
F(1). (27)

Now, by applying L’hospital’s rule to Eq(6), we have

E(L0) = lim
z→1

P
′
0(z) =

−λw(1 + δ)P0(1) + η′P
′
0(1)

−(µwv + γw)
=

−λw(1 + δ)P0(1)− E(L0)

(µwv + γw)
which implies

(28)

P0(1) =
η′ + µwv + γw

λw(1 + δ)
E(L0). (29)

As P0(0) + P0(1) = 1, from Eq(27) and Eq(29),the expected number of customers during
working vacation period is obtained as

E(L0) =
λw(1 + δ)(1 − ρ)

η′ + µwv(1 − ρ) + γw(1 − ρ)
−

λw(1+δ)
c

η′ + µwv(1 − ρ) + γw(1 − ρ)
F(1). (30)

On substituting Eq(30) in Eq(29), the probability that the system in working vacation period is
as

P(J = 0) = P0(1) =
(1 − ρ)(η′ + µwv + γw)

η′ + µwv(1 − ρ) + γw(1 − ρ)
−

η′+µwv+γw
c

η′ + µwv(1 − ρ) + γw(1 − ρ)
F(1) (31)

and the probability that the system is in busy period is found as

P(J = 1) = P1(1) = 1− P0(1) =
(η′ρ)

η′ + µwv(1 − ρ) + γw(1 − ρ)
+

η′+µwv+γw
c

η′ + µwv(1 − ρ) + γw(1 − ρ)
F(1).

(32)
E(L1) can be obtained by dif ferentiating Eq(23) and using L’Hospital’s rule,

i.e., E(L1) = lim
z→1

P
′
1(z)

= lim
z→1

{−λw(1 + δ)[z(−A + η′P0(z))
(1 − z)(λw(1 + δ)z − cµw)2 +

−A + η′P0(z) + zη′P
′
0(z)]

(1 − z)(λw(1 + δ)z − cµw)

+
z(−A + η′P0(z)

(1 − z)2(λw(1 + δ)z − cµw)
+ µw

[(cµw − λw(1 + δ)z)F′(z) + λw(1 + δ)F(z)]
(cµw − λw(1 + δ)z)2 } (33)

=
η′(cµw − λw(1 + δ)E(L0(L0 − 1)) + 2cµwη′E(L0)

2(cµw − λw(1 + δ)z)2 +
F′(1)

c(1 − ρ)
+

ρF(1)
(c(1 − ρ)2 (34)

wher e
F′(1) =

dF(z)
dz

at z=1
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=
c

∑
j=1

(c − j)Pj,1 (35)

Now, the value of P
′′
0 (1) is obtained on dif ferentiating Eq(6) twice on both sides as

(η′ + γw)(1 − z)P
′′
0 (z) + 2λw(1 + δ)P

′
0(z) = [λw(1 + δ)(1 − z) + η′ + 2(µwv + γw]P

′′
0 (z) (36)

wher e

P
′′′
0 (z) =

d3P0(z)
dz3

By letting z=1 in Eq(36),w e get P
′′
0 (1) =

2λw(1 + δ)

η′ + 2(µwv + γw)
P

′
0(1) (37)

.

or it can also be denoted as, E(L0(L0 − 1)) =
2λw(1 + δ)EL0

η′ + 2(µwv + γw)
. (38)

Now, substituting, Eq(38) into Eq(34),the Mean number of customers, when the system in
regular busy period is obtained as

E[L1] =
ρη′

(1 − ρ)
[

1
η′ + 2(µwv + γw)

+
1

λw(1 + δ)(1 − ρ)
]E[L0] +

1
c(1 − ρ)

F′(1) +
ρ

c(1 − ρ)2 F(1)

(39)
Hence, E[L] = E[L0] + E[L1]

= 1 +
ρη′

(1 − ρ)
[

1
η′ + 2(µwv + γw)

+
1

λw(1 + δ)(1 − ρ)
][

λw(1 + δ)(1 − ρ)− λw(1+δ)
c F(1)

η′ + µwv(1 − ρ) + γw(1 − ρ)
]

+
1

c(1 − ρ
F′(1) +

ρ

c(1 − ρ)2 F(1) (40)

Substituting Eq(31) in Eq(21) results in P(0,0) =
η′k

(µwv+γw)
P0(1)

=
η′k

(µwv + γw)
[

(1 − ρ)((η′ + µwv + γw)

η′ + µwv(1 − ρ) + γw(1 − ρ)
−

(η′+µwv+γw)
c

η′ + µwv(1 − ρ) + γw(1 − ρ)
]F(1). (41)

Suppose, the state of the system is (n,1),then the ser vice rates of the ser vers are nµw for n ≤ c
and cµw for n > c respectiv ely.

In this manner , the expected number of customers ser ved per unit of time is giv en by

Ns =
c

∑
n=1

nµwPn,1 +
∞

∑
n=c+1

cµwPn,1 = µw[cP1(1)− F(1)] (42)

and the proportion of customers ser ved per unit of time is giv en by

Ps =
Ns

λw(1 + δ)
=

1
cρ

[cP1(1)− F(1)] (43)

wher e P1(1)isgivenbyEq(32).
If the state of the system is (n,1), n≥ 1, the rate of customer abandonment of a customer due to

impatience is nγw. Thus the mean rate of the customer abandonment due to impatience is giv en by

Ra =
∞

∑
n=1

nγwPn,0 = γwE[L0]. (44)

Thus an M/M/c Queuing model with Multiple Working Vacations under encouraged arriv al
with impatient beha viour is evaluated.
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2.3. Single Working Vacation Model:

A Single working Vacation policy define that the ser ver(s) in the queuing system takes vacation
immediately , when he find no customers w aiting in the queue. At the end of the working
vacation, if the ser ver find the system non empty , then he starts his regular busy period by
shifting his ser vice rate from µwv to µw. If not,the ser ver will remain idle in the system itself than
going for vacation and w aits until the customer arriv es for the new busy period. To construct
this system, we defin a Marko v chain as {(M(t), N(t)), t ≥ 0} with state space as in Multiple
Working Vacations for Single Working Vacation also. s = {(n, j)}, n ≥ 0, j = 0, 1}

Wher e M(t) denotes the total number of customers in the system at time t and N(t) denotes
the state of the system at time t with

N(t) = {1 when the ser vers are in non-v acation period at time t} and
N(t) = {0 when the ser vers are in working vacation period at time t}.

2.4. Steady State Equations and its Solutions for Single Working Vacation
Model:

Now, the set of balance equations as

(λw(1 + δ) + η′)P00 = (µwv + γw)P1,0 + µwP1,1 , (45)

[λw(1 + δ) + η′ + n(µwv + γw)]Pn,0 = λw(1 + δ)Pn−1,0 + (n + 1)((µwv + γw)Pn+1,0 , i f n ≥ 1,
(46)

(λw(1 + δ))P0,1 = η′P0,0 , (47)

(λw(1 + δ) + nµw)Pn,1 = λw(1 + δ)Pn−1,1 + (n + 1)µwPn+1,1 + η′Pn,0 , i f 1 ≤ n ≤ c − 1, (48)

(λw(1 + δ) + cµw)Pn,1 = λw(1 + δ)Pn−1,1 + cµwPn+1,1 + η′Pn,0 i f n ≥ c. (49)

By letting the probability generating functions as

R0(z) =
∞

∑
n=0

znPn,0 ,

R1(z) =
∞

∑
n=1

znPn,1 .

with R0(1) + R1(1) = 1 and R
′
0(z) = ∑∞

n=1 nzn−1Pn,0 .
Now, By Multiplying Eq(46) with zn and adding over ’n’ and rearranging the ter ms, the

dif ferential equation is attained as :

(µwv + γw)(1 − z)R
′
0(z) = [λw(1 + δ)(1 − z) + η′]R0(z)− (µwP1,1). (50)

Likely multiplying Eq(48) and Eq(49) by zn and adding over ’n’, the follo wing equation is
obtained,

(1− z)(λw(1+ δ)z− cµw)R1(z) = η′zR0(z)− (η′P0,0 +µwP1,1)z+ z2η′P0,0 +µw(1− z)
c

∑
n=1

(n− c)znPn,1 .

(51)
Then, for z ̸= 1,

R
′
0(z)− [

λw(1 + δ)

(µwv + γw)
+

η′

(µwv + γw)(1 − z)
]R0(z) = − µwP1,1

(µwv + γw)(1 − z)
.

(52)

Solving the dif ferential equation, as in Multiple Working Vacations Model we get,

RT&A, No 1 (77)
 Volume 19, March 2024

657



Prakati P, Julia Rose Mar y K
M/M/C QUEUE WITH MWV & SWV UNDER EA

R0(z) =
e

λw(1+δ)z
(µwv+γw)

(1 − z)
η′

(µwv+γw)

[1 − 1
L

∫ z

0
e−

λw(1+δ)z
(µwv+γw) (1 − x)

η′
(µwv+γw)

−1dx]P0,0 . (53)

Thus a similar expr ession for R0(z) as in Multiple Working Vacations Model and her e we
arriv e at,

R0(0) = P0,0 =
(µwP1,1)

(µwv + γw)
L (54)

R0(1) =
(µwv + γw)

η′L
P0,0 (55)

and from Eq(54) and Eq(55), the follo wing relation is obtained

η′R0(1) = µwP1,1 . (56)

From Eq(51), R1(z) is attained as,

R1(z) =
[η′R0(z)− A]z + z2η

′
P0,0

(λw(1 + δ)z − cµw)(1 − z)
− µw

(λw(1 + δ)z − cµw)
F(z), (57)

wher e,

F(z) =
c

∑
n=1

(n − c)znPn,1 . (58)

It is clear from Eq(53) that R0(z) is a function of P0,0 and the ratio betw een the time of the
ser vers on working vacation and the system is empty . Similarly from Eq(57), R1(z) is a function
of R0(z), A and F(z). Hence, if P0,0 and P j,1(j=1,2,...c) are obtained, P0(z) and P1(z) can be
deter mined completely .

2.5. Perfor mance Measur es

By using L’Hospital’s rule in Eq(57), we get

R1(1) =
[η′E(L)0] + B

cµw − λw(1 + δ)
+

µw

cµw − λw(1 + δ)
F(1) (59)

wher e

B = η′(2 − c)P0,0 and F(1) =
c

∑
n=1

(n − c)Pn,1 . (60)

Using Eq(22) and Eq(8) in Eq(25), the follo wing equation is obtained,

P1(1) =
η′

cµw − λw(1 + δ)
E(L0) +

µw

cµw − λw(1 + δ)
F(1). (61)

Now, applying L’hospital’s rule to Eq(6), we have

E(L0) = lim
z→1

P
′
0(z) =

−λw(1 + δ)P0(1) + η′P
′
0(1)

−(µwv + γw)
=

−λw(1 + δ)P0(1)− E(L0)

µwv + γw
which implies

(62)

P0(1) =
η′ + µwv + γw

λw(1 + δ)
E(L0). (63)
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As P0(0) + P0(1) = 1, from Eq(27) and Eq(29), is the expected number of customers during
working vacation period is obtained as

E(L0) =
λw(1 + δ)(1 − ρ)

η′ + µwv(1 − ρ) + γw(1 − ρ)
− −ρη′(2 − c)P0,0

η′ + µwv(1 − ρ) + γw(1 − ρ)
−

λw(1+δ)
c

η′ + µwv(1 − ρ) + γw(1 − ρ)
F(1).

(64)

On substituting Eq(30) in Eq(29), the probability that the system in working vacation period is
as

P(J = 0) = R0(1) = (1−ρ)(η′+µwv+γw)
η′+µwv(1−ρ)+γw(1−ρ)

− ρη′(η′+µwv+γw)(2−c)P0,0
λw(1+δ)[η′+µwv(1−ρ)+γw(1−ρ)]

−
η′+µwv+γw

c
η′ + µwv(1 − ρ) + γw(1 − ρ)

F(1)

wher e
X =

ρη′(η′ + µwv + γw)(2 − c)P0,0
λw(1 + δ)[η′ + µwv(1 − ρ) + γw(1 − ρ)

, then

P(J = 0) = R0(1) =
(1 − ρ)(η′ + µwv + γw)

η′ + µwv(1 − ρ) + γw(1 − ρ)
− X −

η′+µwv+γw
c

η′ + µwv(1 − ρ) + γw(1 − ρ)
F(1) (65)

and the probability that the system is in busy period is as follo ws
P(J = 1) = R1(1) = 1 − R0(1) = (η′ρ)

η′+µwv(1−ρ)+γw(1−ρ)
+

ρη′(η′+µwv+γw)(2−c)P0,0
λw(1+δ)[η′+µwv(1−ρ)+γw(1−ρ)]

+
η′+µwv+γw

c
η′ + µwv(1 − ρ) + γw(1 − ρ)

F(1).

since we know that,

X =
ρη′(η′ + µwv + γw)(2 − c)P0,0

λw(1 + δ)[η′ + µwv(1 − ρ) + γw(1 − ρ)
,

we get

P(J = 1) = R1(1) = 1−R0(1) =
(η′ρ)

η′ + µwv(1 − ρ) + γw(1 − ρ)
+X+

η′+µwv+γw
c

η′ + µwv(1 − ρ) + γw(1 − ρ)
F(1).

(66)
Now, E(L1) can be obtained by dif ferentiating Eq(58) and using L’Hospital’s rule,

E(L1) = lim
z→1

R
′
1(z)

= lim
z→1

{−λw(1 + δ)[z(−A + η′R0(z)) + z2η′P0,0 ]

(1 − z)(λw(1 + δ)z − cµw)2 +
−A + η′R0(z)) + 2zη′P

′
0(z) + zη′R

′
0(z)

(1 − z)(λw(1 + δ)z − cµw)

+
z(−A + η′R0(z) + z2η′P0,0
(1 − z)2(λw(1 + δ)z − cµw)

+ µw
[(cµw − λw(1 + δ)z)F′(z) + λw(1 + δ)F(z)]

(cµw − λw(1 + δ)z)2 } (67)

=
η′(cµw − λw(1 + δ)E(L0(L0 − 1)) + 2cµwη′E(L0) + 2η′[(2(cµw − λw(1 + δ)− cλw(1 + δ)]P0,0

2(cµw − λw(1 + δ)z)2

+
F′(1)

c(1 − ρ)
+

ρF(1)
(c(1 − ρ)2 (68)

wher e
F′(1) =

dF(z)
dz

atz = 1
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=
c

∑
j=1

(c − j)Pj,1 (69)

Now, the value of R
′′
0 (1) is obtained on dif ferentiating Eq(50) twice on both sides and proceed-

ing similarly as in Multiple Working Vacations, We get

E(L0(L0 − 1)) =
2λw(1 + δ)

η′ + 2(µwv + γw)
E(L0). (70)

Now, substituting, Eq(70) into Eq(69),the Mean number of customers, when the system in
regular busy period is obtained as

E[L1] =
ρη′

(1 − ρ)
{[ 1

η′ + 2(µwv + γw)
+

1
λw(1 + δ)(1 − ρ)

]E[L0] + [
1

λw(1 + δ)
− 1

µw(1 − ρ)
]P0,0}

+
1

c(1 − ρ)
F1 +

ρ

c(1 − ρ)2 F(1). (71)

E[L] = E[L0] + E[L1]

= {1 +
ρη′

(1 − ρ)
[

1
η′ + 2(µwv + γw)

+
1

λw(1 + δ)(1 − ρ)
][

λw(1 + δ)(1 − ρ)− ρB − λw(1+δ)
c F(1)

η′ + µwv(1 − ρ) + γw(1 − ρ)
]}

+Y +
1

c(1 − ρ)
F′(1) +

ρ

c(1 − ρ)2 F(1) (72)

wher eY =
ρη′

(1 − ρ)
[

1
λw(1 + δ)

− 1
µw(1 − ρ)

]P0,0

Substituting Eq(65) in Eq(55) results in P(0,0) =
η′k

(µwv+γw)
R01

=
η′k

(µwv + γw)
[
λw(1 + δ)(1 − ρ)((η′ + µwv + γw)− (λw(1+δ)η′+µwv+γw)

c

η′ + µwv(1 − ρ) + γw(1 − ρ) + kη′2ρ(2−c)(η′+µwv+γw)
(µwv+γw)

]. (73)

Suppose, the state of the system is (n,1),then the ser vice rates of the ser vers are nµw for n ≤ c
and cµw for n > c respectiv ely.

Thus, the expected number of customers ser ved per unit of time is giv en by

Ns =
c

∑
n=1

nµwPn,1 +
∞

∑
n=c+1

cµwPn,1 = µw[cP1(1)− F(1)] (74)

and the proportion of customers ser ved per unit of time is giv en by

Ps =
Ns

λw(1 + δ)
=

1
cρ

[cP1(1)− F(1)] (75)

wher eP1(1) is giv en by Eq(66).
If the state of the system is (n,1), n ≥ 1, the rate of customer abandonment of a customer due to

impatience is nγw. Thus the mean rate of the customer abandonment due to impatience is giv en by

Ra =
∞

∑
n=1

nγwPn,0 = γwE[L0]. (76)

Hence, an M/M/c Queuing model with Multiple Working Vacations under encouraged arriv al
with impatient beha viour is evaluated.

RT&A, No 1 (77)
 Volume 19, March 2024

660



Prakati P, Julia Rose Mar y K
M/M/C QUEUE WITH MWV & SWV UNDER EA

3. Results

In this paper ,an M/M/C Queuing model under Multiple working vacations and single working
vacation with impatient beha viour of the customer during encouraged arriv al are analysed. It is
obser ved that for the system of steady state equations, perfor mance measur es like Mean Queue
length (E[L]), Probability that the system is in working vacation period (P[J=0]), Probability that
the system is in regular busy period (P[J=1]) are evaluated for the tw o dif ferent vacation policies
separately .

4. Discussion

On comparing the perfor mance measur es betw een the tw o vacation policies, from Eq (65) and
Eq(31),it is obser ved that the dif ference betw een the probability of the system (P[J=0]) in single
working vacation and that during multiple working vacations, we notice that by reducing the ter m
"X" from the probability of the system in multiple working vacations, we attain the probability
of the system in single working vacation . Likely , from Eq (66) and Eq(32),it is clear that the
probability of the system in regular busy period during single working vacation is obtained by
adding the ter m "X" to the probability of the system in regular busy period during multiple
working vacation. Moreover, while comparing the mean queue length during the tw o dif ferent
vacation policies, we obser ve that from Eq (72) and Eq(40), E(L) in single working vacation is the
addition of the ter m "Y" and the ter m ρB to the existing mean queue length of multiple working
vacations.

5. Conclusion

As the M/M/c Queuing model with Multiple and single working vacation with impatient
beha viour of the customers during encouraged arriv al is analysed, apart from deriving the
explicit for mulations, some of the characteristic measur es are also discussed. It can be concluded
that, with the impact of the ter ms "X","Y" and"B" in multiple working vacations an M/M/C
Queuing model with impatient beha viour of the customer during encouraged arriv al can be
shifted to Single working vacatio n.Ho wever,for an efficient functioning of the queue a single
working vacation can be suggested. In futur e work, numerical examples may be evaluated to
evident the obtained result.
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Abstract

This study aims to optimize the productivity of the plywood manufacturing system within the wood
industry. A Petri nets simulation-based technique has been used to evaluate the availability analysis
of the plywood manufacturing system. A Petri nets model is created to represent the modeling of the
plywood system. The model is subsequently simulated using the licensed program Petri Nets (PN) GRIF
2023.7. This simulation is used to evaluate the performance of the system. In the PN simulation model,
timed transitions are fired based on the failure and repair rate of the system. Immediate transitions, on
the other hand, have their own guard function for firing which is coded using a logical AND-OR gate.
This study also assesses the impact of the repairman on the system’s availability. The system’s availability
is optimized by increasing the number of repairmen. However, once a specific number of repairmen is
reached, the system’s availability remains constant. This research is highly valuable for determining the
optimal number of maintenance staff needed for the wood industrial system.

Keywords: Availability, Maintenance, Performance, Petri-Nets, Repairman, Simulation.

1. Introduction

In the context of engineering, reliability is the average time between failures (MTBF), which
indicates how consistently a system performs without malfunctioning. To attain a high level
of reliability and availability, it is necessary to implement a strong design, utilize high-quality
components, and employ effective fault detection methods to reduce the amount of time that
the system is not operational. These indicators are essential in sectors where system failures can
have major effects on the economy and public safety, such as manufacturing and energy. Prior
studies have extensively investigated diverse facets of designing industrial systems in the realm of
reliability, applying varied methodologies to enhance system performance. The subsequent part
presents a concise overview of the literature that encompasses the study undertaken by several
scholars in the domain of reliability.
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Tan and Kramer [1] provided an approximation for the financial impact of an unexpected plant
shutdown, stating that it results in a revenue loss ranging from 500 to 100,000 USD per hour.
Angela and David [2] have presented a method utilizing the Petri Net approach to analyze
the dependability and safety of an industrial-scale production system. Regattieri and Bellom
[3] implemented the Innovative lay-up system in the plywood production process leading to
a substantial boost in productivity (about 19%) and a significant reduction in the number of
personnel (-54%). Bansal and Tyagi [4] assessed the reliability of the screws mill production system
by employing a combination of standby and parallel arrangement, and using the orthogonal
matrix strategy. Kumar Amit et al. [5] maximized the efficiency of the ethanol manufacturing
system and conducted a comparative analysis between the genetic algorithm (GA) and particle
swarm optimization algorithm (PSO). The findings indicate that the PSO method outperforms the
genetic algorithm in optimizing the system. Kumar Narendra et al. [6] enhanced the efficiency
and assessed the reliability of milk pasteurization by the utilization of a probabilistic Petri net
methodology. Narendra et al. [7] assessed the efficiency of the veneer gluing system using a
stochastic Petri net methodology and determined that the thermal press is the most important
component in this system. Malik and Tewari [8] utilized the particle swarm optimization technique
to enhance the efficiency of the coal handling system. They achieved a performance improvement
of 99.33% with an average population of 40 and 93.31% with an average generation size of 70.
Tyagi et al. [9, 10] assessed the availability of every component in the leaf spring production
facility by utilizing the matrix method and Markov birth-death methodology. They employ the C
programming language to solve mathematical problems. Kalaivani and Kannan [11] evaluating
reliability properties of a linear consecutive k-out-of-n: The F system in this uses asymptotic
confidence intervals, mean time to failure, and reliability function for different sample sizes and
parameter combinations using likelihood estimation, Monte Carlo (MC) training, and real data
visualization. Chaudhary and Bansal [12] evaluated the reliability of the hydroelectric power
station using the Laplace transformation method. Kumar Sudhir and Tewari [13] utilized the
Petri module of GRIF to assess the performance of the coal handling system by manipulating
the failure and repair rates. Subsequently, the performance was optimized using the particle
swarm optimization strategy. Godara and Bansal [14] assessed the availability of a multi-state
machine using an artificial neural network methodology, where neural weights are determined
based on the system’s failure and repair rate. Tyagi and Bansal [15] enhanced the efficiency of the
wastewater treatment process by employing the Runge-Kutta numerical technique. They develop
a mathematical model utilizing a probabilistic strategy and a Markovian technique. Rathi et al.[16]
assessed the dependability of the parallel and cold standby unit in the system. Godara and Bansal
[17] assessed the dependability as well as the availability of the steam turbine generating facility
using a neural network methodology and boolean function technology. Urvashi and Shikha
Bansal [18] assessed the dependability factor and availability of the threshing machine plant
system using both a general and copula distribution. They found that the copula distribution
yielded superior results compared to the general distribution.
The research provides a comprehensive examination of the behavior and performance of the
standby plywood manufacturing system. In this work, the performance of the system is enhanced
through the utilization of the stochastic Petri nets simulation method. After enhancing the
system’s performance, an analysis is conducted to determine the impact of the number of
repairmen on the system’s availability. The goal is to identify the optimal number of repairmen
required to efficiently repair the system and maximize its availability.
The subsequent sections of this paper are structured in the following way: Section 2 provides a
comprehensive overview of the plywood manufacturing system, including a detailed explanation
of each subsystem within the system. Section 3 explains how the system is modeled using Petri
nets. This section specifically details the process of formulating the Petri nets model for the
plywood system. Section 4 focuses on optimizing the performance of the system. This is achieved
by varying the failure repair rate and increasing the number of repairmen to enhance system
performance. The conclusion of this research is provided in Section 5.
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2. System description

The plywood system plays a crucial role in the wood industry. Plywood is a flexible type of
manufactured wood that is created by bonding together small pieces or pieces of wood, referred
to as layers or sheets. The layers are often arranged with their grain horizontal to neighboring
layers, so augmenting the reliability and stability of the eventual product. The manufacture of the
plywood system involves multiple processes and steps.
Figure 1 displays the schematic representation of this. The subsystems of this system are organized
in a hybrid structure, with each subsystem described as follows.

Figure 1: Block Diagram of Plywood Manufacturing System

• Log Shorting and Whittle (LSW) :- This is the first phase of the plywood production
process, wherein a carefully chosen log of high-quality wood is picked based on the desired
type of plywood to be produced. This piece of wood is commonly referred to as whittle.
The whittle is straight and has a substantial size, making it ideal for creating an enormous
amount of layers.

• Veneer Drying (VD) :- This subsystem is essential in the plywood fabrication process as its
main objective is to decrease the wetness of the wood layers. Effectively dry veneers are
crucial for guaranteeing the excellence, durability, and constancy of the ultimate hardwood
goods. This subsystem consists of two types of drier equipment: a spinning dryer and
a continuous veneer dryer. These dryers are designed to achieve consistent drying by
controlling the heat and airflow. This subsystem consists of four units that are arranged in a
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standby configuration.
• Glue Mixing (GM) :- The veneer layers in this subsystem are bonded together through

the use of adhesive or glue. The subsystem consists of two machines, namely the glue
distributors and the blending machine, which is arranged in standby mode.

• Pressing :- Once the veneer layer is bonded using glue, it is subjected to pressure and heat
in a machine. Specifically, three machines are arranged in a standby configuration for this
purpose.

• Quality Assurance and Evaluation (QSE) :- This subsystem consists of two units that are
arranged in standby mode, wherein the plywood’s quality and grade are checked and
evaluated. This part of the system contains the methodical evaluation of the plywood
products according to specified requirements and standards. By conducting a thorough
examination, flaws such as empty spaces, separation, blemishes, and other irregularities are
detected and categorized.

• Finishing :- This subsystem entails creating art, coloring, varnishing, or laminating the
plywood sheets with a variety of coatings and finishes. By enhancing plywood’s aesthetic
appeal and functional qualities, the finishing subsystem plays a crucial role in raising the
value of the finished product and enhancing its overall quality. There is only one unit in
this subsystem, and it is arranged in series with other subsystems.

3. Petri nets modeling

The Petri nets has developed as an effective graphical modeling tool that encompasses both the
static and dynamic behavior of systems. Petri nets are essentially directed graphs that are bipartite
and have powerful mathematical representations that allow allocation, timing, and concurrency.
They are made up of places, transitions, arcs, and tokens, which are denoted by circles, rectangular
bars, arrows, and large circular dots that are centered in the places, respectively.

Figure 2: Petri Nets Model of Plywood Manufacturing System

Figure 2 displays the Petri net structure model of the plywood manufacturing system. The black
dots, referred to as Tokens in this model, serve to represent the status and availability of the
system/sub-systems and maintenance facility, correspondingly.
Places: In the Petri net are denoted by the circle at P=(P1toP12); these are the only tokens that are
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provided based on the subsystem’s unit number.
Timed Transition: This model represents VD-fail VD-rec, GM-fail GM-rec, P-fail P-rec, QGE-fail
QGE-rec, and F-fail F-rec. The timed transitions are connected to the variable failure Ωi, which
follows an exponential distribution.
Immediate Transition: Immediate transitions possess a personal guard function. In this model
represents GF1, GF2, GF3, GF4, GF5, GF6, GF7, GF8 and GF9. The immediate transitions are
connected to the variable repair Ψi, which follows an exponential distribution.
The following are special notations used in the plywood Petri net model:

• Sys_Full Cap. indicate that the plywood system is in a fully functional state.
• Sys_red indicate the lower capacity state of the system.
• Sys_Available represent the system available for working.
• Sys_failed indicate that the plywood system is in a failed state.

4. Performance Optimization

Appropriate performance optimization is essential in the plywood industry since it directly affects
manufacturing expenses and the utilization of resources. An efficiently optimized system facili-
tates improved coordination across different phases of production, ranging from the acquisition
of raw materials to the distribution of the final product. This leads to enhanced overall efficiency
and strength in the market.

This section evaluates the system’s availability and provides information on the system’s
behavior or performance. To assess the system’s availability or performance, a mathematical
model of the system has been developed using stochastic Petri nets simulation. This modeling
was conducted using the licensed GRIF2023.7 the program’s software. Failure and repair rate
parameters of each subsystem affect the availability of the system.
The parameters were obtained from the maintenance history sheet, and their range is defined
by Ω1 ∈ (0.0035, 0.0173) Ψ1 ∈ (0.51, 1.1), Ω2 ∈ (0.005, 0.014) Ψ2 ∈ (0.7, 2), Ω3 ∈ (0.0028, 0.0058)
Ψ3 ∈ (0.21, 0.82), Ω4 ∈ (0.0059, 0.0128) Ψ4 ∈ (0.57, 1.19), Ω5 ∈ (0.007, 0.01) Ψ5 ∈ (0.61, 1.2). The
influence of the failure rate (Ωi) and repair rate (Ψi) of each subsystem on the availability of the
system is illustrated in Table 1 to Table 5.

The effect of the system performance due to variation in failure and repair rate parameters of
the veneer drying subsystem is shown in Table 1.

Table 1: The Effects of Veneer Drying Subsystem Repair and Failure Rates on System Availability

Repair rate Ψ1

Failure rate Ω1 0.51 0.71 0.91 1.1 Constant Parameters

0.0035 0.9615 0.9635 0.9646 0.9652 Ω2 = 0.005, Ω3 = 0.0028
0.0081 09604 0.9623 0.9636 0.9644 Ω4 = 0.0059, Ω5 = 0.0071
0.0127 0.9514 0.9559 0.9585 0.9600 Ψ2 = 0.7, Ψ3 = 0.21
0.0173 0.9366 0.9457 0.9507 0.9539 Ψ4 = 0.57, Ψ5 = 0.61

Upon analyzing the data in Table 1, it is evident that when the failure rate of the veneer drying
subsystem increases from 0.0035 to 0.0173, the availability of the plywood system reduces from
0.9615 to 0.9366, in a comparable way the repair rate of this subsystem increases from 0.51 to
1.1, and the availability of the system increases from 0.9615 to 0.9652. The system’s availability
is reduced by 2.49% due to fluctuations in the failure rate of the veneer drying subsystem.
Conversely, the system’s availability is increased by 0.37% due to variations in the repair rate of
this subsystem. The graphical representation of the effect of variations in the parameter of the
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veneer drying subsystem on system availability is depicted in Figure 3.

Figure 3: Effect of Veneer Drying Variation in FRR on Plywood System Performance

The impact of changes in the failure and repair rate parameter of the glue mixing subsystem
on the system availability is demonstrated in Table 2.

Table 2: The Effects of Glue Mixing Subsystem Repair and Failure Rates on System Availability

Repair rate Ψ2

Failure rate Ω2 0.7 0.9 1.1 2 Constant Parameters

0.005 0.9615 0.9630 0.9639 0.9659 Ω1 = 0.0035, Ω3 = 0.0028
0.008 09610 0.9626 0.9635 0.9655 Ω4 = 0.0059, Ω5 = 0.0071
0.011 0.9602 0.9619 0.9630 0.9653 Ψ1 = 0.51, Ψ3 = 0.21

0.0173 0.9535 0.9572 0.9595 0.9641 Ψ4 = 0.57, Ψ5 = 0.61

Upon observation, it has been determined that when the failure rate of this subsystem increases
from 0.005 to 0.0173, the system’s availability reduces from 0.9615 to 0.9535. This corresponds to
a decrease in system availability of 0.8% as a result of the fluctuation in the failure rate of this
subsystem. The system’s availability is enhanced from 0.9615 to 0.9659 as a result of the repair
rate of this subsystem increasing from 0.7 to 2. This corresponds to a 0.44% gain in availability
due to the higher repair rate of this subsystem. Figure 4 displays a graphical depiction of the
relationship between the system’s availability and changes in the parameter of the glue mixing
subsystem.

The influence of variations in the Pressing subsystem on the failure and repair rate parameters
has been demonstrated in Table 3, illustrating its effect on the system availability.
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Figure 4: Effect of Glue Mixing Variation in FRR on Plywood System Performance

Table 3: The Effects of Pressing Subsystem Repair and Failure Rates on System Availability

Repair rate Ψ3

Failure rate Ω3 0.21 0.42 0.61 0.82 Constant Parameters

0.0028 0.9615 0.9696 0.9722 0.9736 Ω1 = 0.0035, Ω2 = 0.005
0.0038 0.9587 0.9682 0.9712 0.9729 Ω4 = 0.0059, Ω5 = 0.0071
0.0048 0.9587 0.9682 0.9712 0.9729 Ψ1 = 0.51, Ψ2 = 0.7
0.0058 0.9570 0.9674 0.9706 0.9724 Ψ4 = 0.57, Ψ5 = 0.61

The analysis of Table 3 reveals that when the repair rate of this subsystem is increased from
0.21 to 0.82, the system’s availability increases from 0.9615 to 0.9736. Similarly, when the failure
rate of this subsystem increases from 0.0028 to 0.0058, the availability of this subsystem decreases
from 0.9615 to 0.9570.
The pressing subsystem’s improved repair rate resulted in a 1.21% gain in system availability,
while this subsystem’s increased failure rate caused a 0.45% drop in system availability. Figure 5
provides a graphical depiction of how variations in the pressing subsystem parameter impact
system availability.
Table 4 demonstrates that the system’s availability is influenced by the fluctuation in the failure

and repair rate parameter of the Quality Assurance and Evaluation subsystem.
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Figure 5: Effect of Pressing Variation in FRR on Plywood System Performance

Table 4: The Effects of Quality Assurance and Evaluation Subsystem Repair and Failure Rates on System Availability

Repair rate Ψ4

Failure rate Ω4 0.57 0.77 0.97 1.19 Constant Parameters

0.0059 0.9615 0.9638 0.9652 0.9661 Ω1 = 0.0035, Ω2 = 0.005
0.0079 0.9591 0.9620 0.9638 0.9650 Ω3 = 0.0028, Ω5 = 0.0071
0.0099 0.9541 0.9582 0.9607 0.9624 Ψ1 = 0.51, Ψ2 = 0.7
0.0128 0.9514 0.9569 0.9601 0.9624 Ψ3 = 0.21, Ψ5 = 0.61

Upon observation, it has been determined that when the failure rate of this subsystem grows
from 0.0059 to 0.0128, the system availability reduces from 0.9615 to 0.9514, representing a
1.01% decrease. Similarly, when the repair rate of the subsystem grows from 0.57 to 1.19, the
system availability improves from 0.9615 to 0.9661, representing a 0.46% increase. The graphical
representation of this observation is depicted in Figure 6.
The finishing subsystem is a crucial component of the plywood system. The probability of failure

for this subsystem is low due to its singular unit configuration. Table 5 displays the impact of
system availability as a result of changes in subsystem E’s failure and repair rate parameters.

Analysis is based on the finding that when the Finishing subsystem failure rate rises from
0.0071 to 0.01 the system’s availability falls from 0.9944 to 0.9970; likewise, when this subsystem’s
repair rate rises from 0.61 to 1.2 the system’s availability rises from 0.9944 to 0.9977. The
availability of the system is lowered by 0.74% due to the variability in the failure rate of subsystem
D, while the availability is increased by 0.27% due to the variability in its repair rate. Figure
7 depicts the graphical representation of the fluctuations in the failure and repair rate of this
subsystem, and how these fluctuations impact the availability of the system.
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Figure 6: Effect of Quality Assurance and Evaluation Variation in FRR on Plywood System Performance

Table 5: The Effects of Finishing Subsystem Repair and Failure Rates on System Availability

Repair rate Ψ5

Failure rate Ω5 0.61 0.73 0.91 1.2 Constant Parameters

0.0071 0.9944 0.9953 0.9962 0.9971 Ω1 = 0.0035, Ω2 = 0.005
0.0083 0.9935 0.9946 0.9956 0.9967 Ω3 = 0.0028, Ω4 = 0.0059
0.0091 0.9870 0.9891 0.9913 0.9934 Ψ1 = 0.51, Ψ2 = 0.7

0.01 0.9970 0.9891 0.9913 0.9934 Ψ3 = 0.21, Ψ4 = 0.57

In the Petri nets simulations approach, the availability of the system is also influenced by
the presence of a repairman or repair facility. System availability fluctuates with the presence
of repair personnel, making it a critical factor. Based on this, we recommend that industries or
engineers determine the required number of repair personnel. Table 6 illustrates the correlation
or impact of system availability on the presence of a repair technician.

Table 6: The Effects of Overall Performance of the System due to Repair Man

Repairman 1 2 3 4 5

Availability 0.9615 0.9631 0.9631 0.9631 0.9631

By examining the correlation between the availability of the system and the number of re-
pairmen, it is observed that the initial availability of the system is 0.9615 when there is only one
repairman. As the number of repairmen increases, the availability of the system also increases.
However, after a certain threshold, the availability remains constant. The plywood manufacturing
system’s availability is now steady at 0.9631 after two repairmen. The impact of repairmen on the
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Figure 7: Effect of Finishing Variation in FRR on Plywood System Performance

system’s availability is visually depicted in Figure 8.

Based on their observation, it is advised to the engineer that two repairmen are sufficient
for repairing the plywood manufacturing system.

5. Conclusion

The current case study’s findings indicate that the plywood manufacturing process is the most
important component of the wood industry system and needs the highest maintenance level.
Petri nets simulation modeling is utilized for this purpose in order to examine the system’s
performance behavior.
Performance matrices 1 through 4 present the findings about the impact of varying failure and
repair periods on system availability throughout a range of system operating capacities. Based on
the observation, it is determined that the veneer drying subsystem is the most crucial component
of this system. This is because any fluctuations in the failure rate of this subsystem result in a
reduction of the system’s availability by 2.49%. This subsystem must give priority to maintenance
with a greater level of importance. The order of maintenance priority of all the subsystems in this
plywood system is listed in the following order:

1. Veneer Drying (VD) Subsystem.

2. Quality Assurance and Evaluation (QSE) Subsystem.

3. Glue Mixing (GM) Subsystem.

4. Finishing Subsystem.

5. Pressing Subsystem.
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Figure 8: Improving Availability with Additional Repair Capacity

Repairmen impact the system’s availability. An analysis reveals that the initial availability of
the system grows as the number of repairmen increases. When there are two repairmen, the
availability of the system is measured at 0.9631. If there is a rise in the number of repairs beyond
two, the system availability remains at 0.9631. The premise of this study is that it is advisable for
the engineer to employ a team of only two repairmen to address any issues with the plywood
manufacturing system.
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Abstract

In both industrial and military fields, many systems are phase mission systems (PMSs) which execute
mission composed of different phases in sequence. The structure, failure behaviour, and working condition
of such a system may change from phase to phase. Maintenance actions comprising corrective and
preventive maintenance schemes studied in the literature are aimed at retaining the maintained system
in a proper condition and improving its availability and extending its life. The present paper deals
with finding optimal periodic inspection time using multi-objective criteria comprising objectives of
minimizing expected maintenance cost incurred due to predictive, breakdown and periodic maintenance
of a PMS , and maximizing its expected residual lifetime. The predictive maintenance is condition-based
preventive maintenance that anticipates system failures in order to plan timely interventions on the
system and hence improve its performance. The dependency is modelled using Gumbel-Haugaard copula.

An aircraft flight PMS comprising Taxiing phase, Take-Off phase, Cruising phase and Landing phase
has been used to illustrate the method developed.

Keywords: phased mission system, reliability , Gumbel-Haugaar d copula, predictiv e maintenance,
periodic maintenance, mean residual life, cost optimization, cumulativ e exposur e model

1. Introduction

The reliability of a supply chain depends on the reliability of all the equipment inv olv ed including
transportation vehicles, sophisticated machines and computer -based infor mation systems in
netw ork of suppliers , manufactur ers and distributors whose sole aim is to provide goods and
ser vices in a timely manner . The reliability of such equipment in tur n depends on their design,
maintenance and subsequent repairs. Reliability engineering is ther efor e part and par cel of
operations management.

In real life, systems such as coal transportation systems [1][2], aircrafts [3], avionic parts of
airbor ne weapon systems [4], machining line [5], and nuclear plants are requir ed to execute
missions sequentially . Such systems called phased mission systems (PMSs) are subject to multiple,
consecutiv e, non-overlapping operation phases. Failur es of these systems during the mission
may cause great economic losses to enter prises, serious security threats to personnel, or extensiv e
damage to the envir onment. Some maintenance activiti es need to be undertaken during the
mission break to reduce the probability of system failur e of a PMS in the succeeding mission.

Unlike a non-repairable PMS in a repairable PMS, the state of the system depends not only on
failur e characteristics of its components but also on maintenance conducted during the mission.

Further , the system reliability depends on its age and the maintenance policy applied. It
usually decr eases as components deteriorate. Perfor ming proper maintenance actions is necessar y
to keep the reliability of a system at a desir ed level. Maintenance is classifie into tw o main cate-
gories: correctiv e maintenance (CM) and preventiv e maintenance (PM). Corr ectiv e maintenance
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is generally perfor med after the system breakdo wn. Preventiv e maintenance corresponds to the
scheduled actions which are perfor med while the system is still operational. It aims at keeping
the system in available state by impr oving the condition of its components. Usually , preventiv e
maintenance is mor e adv antageous as it may prevent catastr ophic losses due to unpr edicted
failur es [6][7][8][9][10][11][12][13]. The PM actions are usually perfor med at predeter mined points
in time to keep the reliability of the system at a desir ed level.

Predictiv e maintenance (PdM) also known as condition-based maintenance is meant to mini-
mize unscheduled equipment failur es, lost production, and maintenance costs. It inv olv es the
use of infor mation such as maintenance logs and sensor data to predict maintenance needs in
adv ance. PdM pla ys a very important role in the airline industr y by helping in reducing dela ys
and costs, while impr oving and maintaining aircraft operational reliability .
The aim of this paper is to deter mine optimal periodic inspection time using multi-objectiv e
criteria of minimizing the expected ma intenance cost due to predictiv e, breakdo wn and periodic
maintenances, of the PMS, and maximizing its mean residual lifetime. The decision variable is
the length of the periodic inter val, T, subject to the constraints that the reliability of each phase
does not exceed the pre-specifie values.

The paper is organized as follo ws: Section 2 is a brief literatur e revie w. The model of Predictiv e
maintenance cost is explained in Section 3. In Section 4 the phased mission system is explained.
Traditional maintenance models inv olving periodic and breakdo wn maintenances, and integrated
models inv olving predictiv e maintenance besides periodic and breakdo wn maintenances are
discussed in Section 5. The concept of Remaining Useful Life (RUL) is highlighted in Section 6,
and multi-objectiv e optimization problem is for mulated in Section 7. In Section 8, the proposed
method is explained using an aircraft fligh PMS. The concluding remarks have been made in the
last section.

2. Literature Review

The maintenance models used in the literatur e predict problems that can help timely replacement
or repair of an equipment befor e it fails for a single system. The resear chers have used knowledge
about degradation state of the equipment for prediction pur pose [14] out-of-contr ol condition
using statistical process contr ol [15][16][17][18][19][20] and on-line sensors [21][22] for prediction
pur pose for a single system. Maintenance at system-le vel of a PMS without considering predictiv e
maintenance has been studied by [23]. The present paper deals with maintenance of a PMS taking
into account predictiv e, periodic and breakdo wn maintenances along with its mean residual
lifetime. It is assumed that the components are dependent within a phase, and all the phases
inv olv ed are dependent. The dependency is modelled using Gumbel-Hougaar d copula.

3. Predictive Maintenance Model

Defin fPMS (t) as the density function that specifie the probability of failur e of a PMS at time
t and g(s | t) as the conditional density function that specifie the probability that the signal
of a potential failur e is receiv ed at time s giv en that the actual failur e would have occurr ed at
time t. The conditional density , g(s | t), define the capability (i.e., accuracy and precision) of the
prediction system.

The choice of the distribution for m for the prediction signal, conditional on the equipment
failur e, is based on the concept of “P-F cur ves” for prediction systems [24] as well as diagnosis of
the sensor equipment by the concer ned technician(s).
Thus

g (s | t) =
{

k (1 − β) sk−1t−k 0 ≤ s ≤ t
β s > t

G (s | t) =

{
(1 − β)

( s
t
)k 0 ≤ s ≤ t

1 s > t
,
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wher e s is the time of the signal, t is the time of failur e if no replacement is made, k is the
prediction precision, (1 − β) is the prediction accuracy and k ≥ 1, 0 ≤ β ≤ 1 ,
are respectiv ely, the conditional density and distribution function used for the pur pose.
This for m of the conditional distribution function characterizes the featur es of typical signal and
failur e times seen in industr y [22]).

In this paper , the objectiv e is to minimize the expected maintenance cost of a PMS per unit
time. The maintenance costs include costs of periodic and predictiv e replacements and that of
failur es. It is assumed that the PMS will go for maintenance after completing the mission and
restor ed to “as good as new” condition, ther efor e, using rene w al rew ard process the expected
maintenance cost per period is:

E[Predictive Maintenance cost + Breakdown cost + Periodic maintenance cost]
E[Time until maintenance]

(See for refer ence [25]).

4. Phased Mission System (PMS)

A phased mission system (PMS) is define as a system comprising multiple, consecutiv e, and non-
overlapping phases. During each phase, a PMS needs to complete a specifie task without failur e.
In these phases, the system may be subject to dif ferent working conditions and envir onmental
stresses, as well as dif ferent perfor mance requir ements. For example, in a twin-engine air plane
with tw o phases, namely , taxiing phase and take-of f phase, one engine is requir ed in the for mer
phase, and both the engines are necessar y in the latter phase. In contrast to the other phases
of the fligh profile the engines are mor e prone to failur e during the take-of f period due to
enor mous pressur e they under go during this period [26][27]. So in dif ferent phases, the system
configurations and the components, failur e rates and even failur e criteria could be vastly dif ferent.

Let Tmn denote lifetime of component m of phase n with reliability Hmn (t). Let Fm1 (t) , Fm2 (t) ,
. . . and Fmn (t) be the reliability of phase 1, phase 2, . . . and phase n, respectiv ely. Then, reliability
of PMS is:

FPMS (t) =



Fm1 (t) , 0 ≤ t ≤ τ1
Fm2 (t) , τ1 ≤ t ≤ τ2

.

.

.
Fmn (t) , τn−1 ≤ t ≤ τn,

(1)

wher e (τn−1, τn) repr esents time-duration of functioning of phase n of the phased mission
system n = 1, 2, 3, 4, . . . , n, τ0 = 0.

Since considering phase n has m dependent components and reliability of phase n dnoted by
Fmn (t) so dependency is modelled using Gumbel-Haugaar d copula [28] giv es,

Fmn (t) = C
(

H1n (t) , H2n (t) , . . . , Hmn (t)
)

. (2)

And , reliability of PMS is:

FPMS (t) = C
(

Fm1 (τ1) , Fm2 (τ2) , Fm3 (τ3) , . . . , Fmn (τn)
)

. (3)

The cumulativ e exposur e model [29] is used in equation (2), to obtain the reliability of phase
n at τn. We obtain,

Fmn (τn) = C
(

H1n (τn − τn−1 + l1n) , H2n (τn − τn−1 + l2n) , . . . , Hmn (τn − τn−1 + lmn)
)

(4)

lmn , wher e m denotes the components and n denotes the phase of the system, m = 1, .., m, & n =
1, .., n, is deter mined in such a w ay that [30])
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Hmn (lmn) = Hmn−1 (τn−1 − τn−2 + lmn−1) , and l1n−1 = 0,
wher e C

(
H1n (t) , H2n (t) , H3n (t) , . . . , Hmn (t)

)
is the m-dimensional Gumbel-Hougaar d.

Thus,

C
(

H1n (t) , H2n (t) , H3n (t) , . . . , Hmn (t)
)
=

exp
[
−
((

−log
(

H1n (t)
))θ

+
(
−log

(
H2n (t)

))θ
+

(
−log

(
H3n (t)

))θ
+ · · ·+

(
−log

(
Hmn (t)

))θ
)1/ θ

]
.

5. Maintenance Model

The present section focuses on the trad itional periodic maintenance model (TM) and integrated
model.(IM)

5.1. Traditional Model

In TM no predictiv e maintenance is used, periodic maintenance is conducted if ther e has been no
failur e prior to time T, and breakdo wn maint enance is conducted if the equipment fails prior to
time T.

For the TM, the decision variable is the periodic inter val T and the objectiv e function value is
as follo ws:

CTM (T) =
E[ CBP]

E[ CT1 ]
, (5)

wher e
E[CBP] = Mb

[∫ T

0
fPMS (t) dt

]
+ Mp

[∫ ∞

T
fPMS(t)dt

]
,

is sum of expectation of breakdo wn maintenance costs and periodic maintenance cost,
and

E [ CT1 ] =

[∫ T

0
t fPMS(t)dt

]
+ T

[∫ ∞

T
fPMS(t)dt

]
,

is mean time betw een failur e (replacement).

5.2. Integrated Model (IM)

The second model utilizes both predictiv e and periodic maintenance and is referr ed to as the
Integrated Model. For IM, the decision variable is the periodic inter val, T, and the objectiv e
function is:

CIM (T) =
E[ CPdBP]

E[ CT2 ]
, (6)

wher e,

E[CPdBP] = Mpd

[
(1 − β)

∫ T

0
fPMS(t)dt +

∫ ∞

T
G(T | t) fPMS(t)dt

]
+ Mb

[
β
∫ T

0
fPMS(t)dt

]
+ Mp

[∫ ∞

T
[1 − G(T | t)] fPMS(t)dt

]
,
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is sum of expectation of predictiv e maintenance cost, breakdo wn maintenance costs and periodic
maintenance cost, Mpd is predictiv e maintenance cost, Mb is breakdo wn maintenance and Mp is
periodic maintenance,
and

E [ CT2 ] =

[∫ T

0

∫ t

0
sg (s | t) fPMS(t)dsdt +

∫ ∞

T

∫ T

0
sg (s | t) fPMS(t)dsdt

]
+

[
β
∫ T

0
t fPMS(t)dt

]
+

[
T
∫ ∞

T
[1 − G (T | t)] fPMS(t)dt

]
,

is sum of expected time betw een replacement with signal and without signal.

6. Remaining Useful Life (RUL)

RUL is the residual life time of a system used to perfor m its functional capabilities befor e failur e.
It is a key metric and critical for predicting the failur e of a machine in the production line,
and is used by engineers to decide whether to do maintenance or dela y it due to production
requir ements [31].

Let TPMS be the time to failur e of the phased mission system, and suppose the phased mission
system has sur viv ed until time t. Then the “conditional” random variable

XPMS = TPMS − t(TPMS > t),

i.e., the remaining time to failur e, is called “RUL ” of the phased mission system.
The conditional reliability function

FPMS (t) = PPMS (XPMS > x) = P (TPMS − t > x|TPMS − t) , x ≥ 0,

incor porates all the information rele vant for prediction and futur e planning. The mean
residual life (MRL) used as a point estimate of RUL or a prediction inter val for RUL is define as:

µPMS (t) = EPMS[XPMS] = E [[TPMS − t|TPMS > t] .

Then, µPMS (0) = µPMS = E[T] and

µPMS (t) =
∫ ∞

0
FPMS (x) dx =

∫ ∞
t FPMS (x) dx

FPMS (t)
. (7)

7. Optimization Problems

Amongst various appr oaches used to solv e a multi-objectiv e optimization problem, one of the
commonly used appr oach is to combine the objectiv es inv olv ed into one single composite objectiv e
so that the traditional mathematical programming method can be used for the propose.

In this paper , the weighted sum multi-objectiv e optimization problem is used to minimize
the expected maintenance cost per unit time and maximize mean residual lifetime function for
the PMS subject to the constraints that the reliability of the each phase does not exceed the
pre-specifie values, Ri, i = 1, 2, . . . , n.

Let T1 be the periodic inspection time for the traditional model and T2 be that for the
Integrated Model.

The optimization problem is for mulated as:
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7.1. Optimizing CT M

Min Z1 = w1CTM (T1) + w2(−µPMS (T1))

subject to, T1 ≥ τn,
1 ≥ Fmi (T1) ≥ Ri, i = 1, 2, . . . , nCTM ≥ 0.

7.2. Optimizing CIM

Min Z2 = w1CIM (T2) + w2(−µPMS (T2))

subject to, T2 ≥ τn,
1 ≥ Fmi (T2) ≥ Ri, i = 1, 2, . . . , nCIM ≥ 0.

Mathematica 11.0 has been used for solv e the optimization problem.

8. Numerical Illustrations

In this section aircraft fligh PMS used for the illustrativ e pur pose, Figur e 1(a)-(d), sho ws reliability
block diagrams for the four - phase aircraft flight comprises The firs phase is taxiing in which
the navigation system, one out of the four engines and all three landing gears are needed, the
second phase is take-of f wher e in all four engines, the navigation system and all three landing
gears are needed, the third phase is cruising in which the navigation system and three of the four
engines are requir ed. Finally , the fourth phase is landing comprising the navigation system, tw o
of the four engines and all three landing gears.

8.1. Reliability of Air craft Flight PMS system

Let T1denote lifetimes of navigation with reliability H1n (t). T2, T3, T4 and T5 denote life-
times of the four engines E1, E2, E3 and E4 with reliabilities H2n (t) , H3n (t) , H4n (t) and
H5n (t), respectiv ely, and T6, T7 and T8 denote lifetimes of landing gear 1 (G1), landing gear
2 (G2) and landing gear 3 (G3) with reliabilities H6n (t) , H7n (t)and H8n (t), respectiv ely. Let
Fp1 (t) , Fp2 (t) , Fp3 (t) , and Fp4 (t) be the reliability of subsystems in phase 1, phase 2, phase 3
and phase 4, respectiv ely. Then, reliability of 4-PMS is:

FPMS (t) =


Fp1 (t) , 0 ≤ t ≤ τ1
Fp2 (t) , τ1 ≤ t ≤ τ2
Fp3 (t) , τ2 ≤ t ≤ τ3
Fp4 (t) , τ3 ≤ t ≤ τ4.

(8)

.
PHASE-1(Taxiing Phase)
Let H11(t) be life distribution of navigation, H21(t), H31(t), H41(t) & H51(t) be life distribution of
components ‘E′

1, ‘E′
2, ‘E′

3 & ‘E′
4, respectiv ely further let H61(t), H71(t) & H81(t) be life distribution

of components ‘G′
1, ‘G′

2 & ‘G′
3, respectiv ely.

Reliability of navigation,

F11 (t) = p [T1 > t] .

Reliability of engines,
F21 (t) =
p [T2 > t, T3 ≤ t, T4 ≤ t, T5 ≤ t]+ p [T2 ≤ t, T3 > t, T4 ≤ t, T5 ≤ t]+ p [T2 ≤ t, T3 ≤ t, T4 > t, T5 ≤ t]+
p [T2 ≤ t, T3 ≤ t, T4 ≤ t, T5 > t]+ p [T2 > t, T3 > t, T4 ≤ t, T5 ≤ t]+ p [T2 > t, T3 ≤ t, T4 > t, T5 ≤ t]+
p [T2 > t, T3 ≤ t, T4 ≤ t, T5 > t]+ p [T2 ≤ t, T3 > t, T4 > t, T5 ≤ t]+ p [T2 ≤ t, T3 > t, T4 ≤ t, T5 > t]+
p [T2 ≤ t, T3 ≤ t, T4 > t, T5 > t]+ p [T2 > t, T3 > t, T4 > t, T5 ≤ t]+ p [T2 > t, T3 > t, T4 ≤ t, T5 > t]+
p [T2 > t, T3 ≤ t, T4 > t, T5 > t]+ p [T2 ≤ t, T3 > t, T4 > t, T5 > t]+ p [T2 > t, T3 > t, T4 > t, T5 > t] .
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Figure 1: 1(a)-(d) Reliability Block Diagrams for the four- phase aircraft flight[32]

RT&A, No 1 (77)
 Volume 19, March 2024

681



Preeti Wanti Sriv asta va and Saty a Rani
PREDICTIVE MAINTENANCE SCHEME FOR PMSS

Reliability of landing gear ,

F31 (t) = p [T6 > t, T7 > t, T8 > t] .

Thus, Reliability of phase-1,

Fp1 (t) = F11 (t) .F21 (t) .F31 (t) . (9)

PHASE-2 (Take-Off Phase)
Let H12(t) be life distribution of navigation, H22(t), H32(t), H42(t) & H52(t) be life distribution of
components ‘E′

1, ‘E′
2, ‘E′

3 & ‘E′
4, respectiv ely further let H62(t), H72(t) & H82(t) be life distribution

of components ‘G′
1, ‘G′

2 & ‘G′
3, respectiv ely.

Reliability of navigation,

F12 (t) = p [T1 > t] .

Reliability of engines,

F22 (t) = p [T2 > t, T3 > t, T4 > t, T5 > t] .

Reliability of landing gear ,

F32 (t) = p [T6 > t, T7 > t, T8 > t] .

Thus, Reliability of phase-2,

Fp2 (t) = F12 (t) .F22 (t) .F32 (t) . (10)

PHASE-3 (Cruising Phase)
Let H13(t) be life distribution of navigation, H23(t), H33(t), H43(t) & H53(t) be life distribution of
components ‘E′

1, ‘E′
2, ‘E′

3 & ‘E′
4, respectiv ely further let H63(t), H32(t) & H83(t) be life distribution

of components ‘G′
1, ‘G′

2 & ‘G′
3, respectiv ely.

Reliability of navigation,

F13 (t) = p [T1 > t] .

Reliability of engines,
F23 (t) = p [T2 > t, T3 > t, T4 > t, T5 ≤ t] + p [T2 > t, T3 > t, T4 ≤ t, T5 > t] +

p [T2 > t, T3 ≤ t, T4 > t, T5 > t]+ p [T2 ≤ t, T3 > t, T4 > t, T5 > t]+ p [T2 > t, T3 > t, T4 > t, T5 > t] .

Thus, Reliability of phase-3,

Fp3 (t) = F13 (t) .F23 (t) . (11)

PHASE-4 (Landing Phase)
Let H14(t) be life distribution of navigation, H24(t), H34(t), H44(t) & H54(t) be life distribution of
components ‘E′

1, ‘E′
2, ‘E′

3 & ‘E′
4, respectiv ely further let H64(t), H74(t) & H84(t) be life distribution

of components ‘G′
1, ‘G′

2 & ‘G′
3, respectiv ely.

Reliability of navigation,

F14 (t) = p [T1 > t] .

Reliability of engines,
F24 (t) = p [T2 > t, T3 > t, T4 ≤ t, T5 ≤ t] + p [T2 > t, T3 ≤ t, T4 > t, T5 ≤ t]

+ p [T2 > t, T3 ≤ t, T4 ≤ t, T5 > t]+ p [T2 ≤ t, T3 > t, T4 > t, T5 ≤ t]+ p [T2 ≤ t, T3 > t, T4 ≤ t, T5 > t]+
p [T2 ≤ t, T3 ≤ t, T4 > t, T5 > t]+ p [T2 > t, T3 > t, T4 > t, T5 ≤ t]+ p [T2 > t, T3 > t, T4 ≤ t, T5 > t]+
p [T2 > t, T3 ≤ t, T4 > t, T5 > t]+ p [T2 ≤ t, T3 > t, T4 > t, T5 > t]+ p [T2 > t, T3 > t, T4 > t, T5 > t] .
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Reliability of landing gear ,

F34 (t) = p [T6 > t, T7 > t, T8 > t] .

Thus, Reliability of phase-2,

Fp4 (t) = F14 (t) .F24 (t) .F34 (t) . (12)

Reliability of Air craft fligh PMS system using equation (3), we have

F (t) = C
(

Fp1 (t) , Fp2 (t) , Fp3 (t) , Fp4 (t)
)

(13)

equations(9), (10), (11) and (12) giv e reliability of the four phases in PMS.
After using p [AB] + p [ABc] = p[A] and Gumbel-Hougaar d copula equation (2) in abo ve

equations we get,

F11 (t) = H11 (t) ,

F21 (t) = C
(

H21 (t) , 1, 1, 1
)
+ C

(
1, H31 (t) , 1, 1

)
+ C

(
1, 1, H41 (t) , 1

)
+ C

(
1, 1, 1, H51 (t)

)
−C

(
H21 (t) , H31 (t) , 1, 1

)
−C

(
H21 (t) , 1, H41 (t) , 1

)
−C

(
H21 (t) , 1, 1, H51 (t)

)
−C

(
1, 1, H41 (t) , H51 (t)

)
− C

(
1, H31 (t) , 1, H51 (t)

)
− C

(
1, H31 (t) , H41 (t) , 1

)
+ C

(
H21 (t) , H31 (t) , H41 (t) , 1

)
+ C

(
H21 (t) , H31 (t) , 1, H51 (t)

)
+ C

(
H21 (t) , 1, H41 (t) , H51 (t)

)
+ C

(
1, H31 (t) , H41 (t) , H51 (t)

)
− C

(
H21 (t) , H31 (t) , H41 (t) , H51 (t)

)
,

F31 (t) = C
(

H61 (t) , H71 (t) , H81 (t)
)

,

F12 (t) = H12 (t) ,

F22 (t) = C
(

H22 (t) , H32 (t) , H42 (t) , H52 (t)
)

,

F32 (t) = C
(

H62 (t) , H72 (t) , H82 (t)
)

,

F13 (t) = H13 (t) ,

F23 (t) = C
(

H23 (t) , H33 (t) , H43 (t) , 1
)
+ C

(
H23 (t) , H33 (t) , 1, H53 (t)

)
+C

(
H23 (t) , 1, H43 (t) , H53 (t)

)
+C

(
1, H33 (t) , H43 (t) , H53 (t)

)
− 3C

(
H23 (t) , H33 (t) , H43 (t) , H53 (t)

)
,

F14 (t) = H14 (t) ,

F24 (t) = C
(

H24 (t) , H34 (t) , 1, 1
)
+ C

(
H24 (t) , 1, H44 (t) , 1

)
+ C

(
H24 (t) , 1, 1, H54 (t)

)
+ C

(
1, 1, H44 (t) , H54 (t)

)
+ C

(
1, H34 (t) , 1, H54 (t)

)
+ C

(
1, H34 (t) , H44 (t) , 1

)
− 2C

(
H24 (t) , H34 (t) , H44 (t) , 1

)
− 2C

(
H24 (t) , H34 (t) , 1, H54 (t)

)
− 2C

(
H24 (t) , 1, H44 (t) , H54 (t)

)
− 2C

(
1, H34 (t) , H44 (t) , H54 (t)

)
+ 3C

(
H24 (t) , H34 (t) , H44 (t) , H54 (t)

)
,

F34 (t) = p [T6 > t, T7 > t, T8 > t] = C
(

H64 (t) , H74 (t) , H84 (t)
)

.

The cumulativ e exposur e model is used in abo ve equations, to obtain the reliability of
subsystems in phase 1, phase 2, phase 3 and phase 4 at τ1, τ2, τ3 and τ4, respectiv ely.
Thus,
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F11 (τ1) = H11 (τ1) ,

F21 (τ1) = C
(

H21 (τ1) , 1, 1, 1
)
+ C

(
1, H31 (τ1) , 1, 1

)
+ C

(
1, 1, H41 (τ1) , 1

)
+ C

(
1, 1, 1, H51 (τ1)

)
− C

(
H21 (τ1) , H31 (τ1) , 1, 1

)
− C

(
H21 (τ1) , 1, H41 (τ1) , 1

)
− C

(
H21 (τ1) , 1, 1, H51 (τ1)

)
− C

(
1, 1, H41 (τ1) , H51 (τ1)

)
− C

(
1, H31 (τ1) , 1, H51 (τ1)

)
− C

(
1, H31 (τ1) , H41 (τ1) , 1

)
+C

(
H21 (τ1) , H31 (τ1) , H41 (τ1) , 1

)
+C

(
H21 (τ1) , H31 (τ1) , 1, H51 (τ1)

)
+C

(
H21 (τ1) , 1, H41 (τ1) , H51 (τ1)

)
+ C

(
1, H31 (τ1) , H41 (τ1) , H51 (τ1)

)
− C

(
H21 (τ1) , H31 (τ1) , H41 (τ1) , H51 (τ1)

)
,

F31 (τ1) = C
(

H61 (τ1) , H71 (τ1) , H81 (τ1)
)

,

F12 (τ2) = H12 (τ2 − τ1 + l12) ,

F22 (τ2) = C
(

H22 (τ2 − τ1 + l22) , H32 (τ2 − τ1 + l32) , H42 (τ2 − τ1 + l42) , H52 (τ2 − τ1 + l52)
)

,

F32 (τ2) = C
(

H62 (τ2 − τ1 + l62) , H72 (τ2 − τ1 + l72) , H82 (τ2 − τ1 + l82)
)

,

F13 (τ3) = H13 (τ3 − τ2 + l13) ,

F23 (τ3) = C
(

H23 (τ3 − τ2 + l23) , H33 (τ3 − τ2 + l33) , H43 (τ3 − τ2 + l43) , 1
)

+ C
(

H23 (τ3 − τ2 + l23) , H33 (τ3 − τ2 + l33) , 1, H53 (τ3 − τ2 + l53)
)

+ C
(

H23 (τ3 − τ2 + l23) , 1, H43 (τ3 − τ2 + l43) , H53 (τ3 − τ2 + l53)
)

+ C
(

1, H33 (τ3 − τ2 + l33) , H43 (τ3 − τ2 + l43) , H53 (τ3 − τ2 + l53)
)

− 3C
(

H23 (τ3 − τ2 + l23) , H33 (τ3 − τ2 + l33) , H43 (τ3 − τ2 + l43) , H53 (τ3 − τ2 + l53)
)

,

F14 (τ4) = H14 (τ4 − τ3 + l14) ,

F24 (τ4) = C
(

H24 (τ4 − τ3 + l24) , H34 (τ4 − τ3 + l34) , 1, 1
)
+C

(
H24 (τ4 − τ3 + l24) , 1, H44 (τ4 − τ3 + l44) , 1

)
+C

(
H24 (τ4 − τ3 + l24) , 1, 1, H54 (τ4 − τ3 + l54)

)
+C

(
1, 1, H44 (τ4 − τ3 + l44) , H54 (τ4 − τ3 + l14)

)
+ C

(
1, H34 (t) , 1, H54 (t)

)
+ C

(
1, H34 (t) , H44 (t) , 1

)
− 2C

(
H24 (t) , H34 (t) , H44 (t) , 1

)
− 2C

(
H24 (t) , H34 (t) , 1, H54 (t)

)
− 2C

(
H24 (t) , 1, H44 (t) , H54 (t)

)
− 2C

(
1, H34 (t) , H44 (t) , H54 (t)

)
+ 3C

(
H24 (t) , H34 (t) , H44 (t) , H54 (t)

)
,

F34 (τ4) = p [T6 > t, T7 > t, T8 > t] = C
(

H64 (t) , H74 (t) , H84 (t)
)

.

It is assumed that a component’s life distribution in a phase is Weibull with reliability function:
Hmn (t) = exp

[
−(t/ αmn)

γ] , t > 0; αmn > 0; γ > 0; n = 1, 2, 3, 4, m = 1, 2, 3, 4, 5, 6, 7, 8.

To illustrate the abo ve model, assume that each of the phase- Taxiing and Take-Of f has
duration of 15 minutes, cruising phase has duration of 130 minutes and landing phase has
duration of 20 minutes. Components of the aircraft follo w weibull distribution with γ = 1.8 with
αmn = 1000 hours for navigation system, αmn = 950 hours for engines and αmn = 925 hours for
the landing gear . The value of Mp=10000, Mpd=Mp, Mb = 5.500 ∗ Mp, β = 0.260, k = 2.00 [22].
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Tables 1.1- 1.4 are obtained using these data for both the optimization problems for mulated in
Section 7, with Ri = 0.995, i = 1, 2, . . . , 4

Table 1.1: Values of Multi-objective functions and T (in minutes) for θ = 1.0 with different weights
w1 w2 CTM (T1) RUL1 C IM (T2) RUL2 T1 T2
1/2 1/2 22309.9 123841 7091.89 123841 4033.45 4033.45
1/3 2/3 22309.9 123841 7729.81 124301 4033.45 3894.98
1/4 3/4 22309.9 123841 8005.13 124416 4033.45 3839.89
2/3 1/3 22309.9 123841 7091.89 123841 4033.45 4033.45
3/4 1/4 22309.9 123841 7091.89 123841 4033.45 4033.45

Table 1.2: Values of Multi-objective functions and T (in minutes) for θ = 1.182 with different weights
w1 w2 CTM (T1) RUL1 C IM (T2) RUL2 T1 T2
1/2 1/2 12647.6 121420 4352.71 123822 4832.62 3917
1/3 2/3 15018.8 123150 5135.21 124046 4085.97 3817.32
1/4 3/4 16155.5 123620 5250.38 124094 3977.96 3781.49
2/3 1/3 12082.4 120810 4360.13 123125 4426.73 4091.04
3/4 1/4 12082.4 120810 3998.01 122226 4426.73 4242.69

Table 1.3: Values of Multi-objective functions and T (in minutes) for θ = 2.182 with different weights
w1 w2 CTM (T1) RUL1 C IM (T2) RUL2 T1 T2
1/2 1/2 4207.26 121771 2847.66 123458 4207.26 3818.37
1/3 2/3 11723.3 122956 3755.75 123547 3986.95 3755.75
1/4 3/4 12465.1 123263 3012.93 123566 3899.44 3733.48
2/3 1/3 8159.79 118946 2652.79 123170 4546.32 3929
3/4 1/4 6953.79 115971 2499.36 122789 4818.2 4025.64

Table 1.4: Values of Multi-objective functions and T (in minutes) for θ = 3.182 with different weights
w1 w2 CTM (T1) RUL1 C IM (T2) RUL2 T1 T2
1/2 1/2 9877.32 121727 2649.01 123346 3814.62 4192.79
1/3 2/3 11438.3 122870 2769.67 123436 3976.54 3751.94
1/4 3/4 12150.9 123165 2814.46 123165 3890.79 3729.71
2/3 1/3 7992.92 118990 2453.59 123057 4526.04 3925.37
3/4 1/4 6821.02 116098 2299.76 122675 4793.23 4022.06

Table 1.1- Table 1.4 giv es optimal cost and optimal residual useful life for the tw o models
using dif ferent weight combinations. It is obser ved that the integrated model in almost all the
cases yields lower cost and higher RUL with smaller periodic inspection time. Table 1.1 sho ws
that for IM the minimum cost is obtained when w1 = 1/ 4 and w2 = 3/ 4 and the optimal periodic
insepection time is T2 = 3839.89 implying that four -phase aircraft fligh needs to be send for
maintenance after every 21 cycles. Similar inter pretation holds for data depicted in Table- 1.2 to
Table 1.4

9. Conclusion

In this paper predictiv e maintenance frame work is proposed for a phased missio n system. The
multi-objectiv e problem is used wher ein weighted sum of expected maintenance cost and mean
residual life function of the PMS is minimized subject to the constraints that the reliability of
each phase doesn’t exceed the pre-specifie values. The decision variable is the length of the
periodic inter val. The optimal solution obtained using IM model is compar ed with traditional
model (TM). For illustrativ e pur pose aircraft fligh PMS composed of four phases, namely;
taxiing, take-of f, cruising, and landing is used with dependency betw een components of each
phase modelled using Gumbel-Haugaar d copula. The cumulativ e exposur e model is used to
deter mine the reliability of the PMS. It is found that the integrated model yields lower cost
and higher RUL with smaller periodic inspection time. Thus, the use of predictiv e tools with
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periodic maintenance reduces overall equipment maintenance costs with higher mean residual life.
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Abstract 

Juice is a non-fermented beverage that is obtained by squeezing fruits to increase immunity. 

Generally, juice contains calcium, vitamin, iron, etc. to give the refresh tests. There are multiple 

steps to store the juice at large levels such as storing, grinding pasteurization, etc. In this paper, the 

performance and reliability measures of a juice plant are discussed. The juice plant has three 

distinct units. Unit A has washing and storage tank, unit B has grinding, blending, evaporation 

and pasteurization, and unit C has bottling, labeling and packing units. If any unit partially fails 

then the system works to a limited extent. A technician is always available to repair the failed unit. 

The system fails when one unit completely fails. In this paper, the failure time and repair time 

follow general distributions. The regenerative point graphical technique is used to explore the 

reliability measures. 

Keywords: Reliability measures, juice plant, evaporation and pasteurization. 

I. Introduction

Manufacturers must constantly innovate their products in order to keep up with the rising 

demand for their products, which is made feasible by optimizing their manufacturing processes. 

The MTSF, availability and profitability of a juice factory with priority in repair are discussed in 

this study by utilizing the regenerating point graphical technique under specific circumstances. 

          Barlow et al. [2] investigated the reliability theory with redundancy and system availability 

while taking into account the significance of individual system components. The reliability study 

of a single unit system with non-repairable spare units and its optimization applications was 

covered by Nakagawa and Osaki [12]. Balagurusamy [1] described the terms related to the 

system’s meantime, failure, repair, redundancy, maintainability, availability, etc. Tuteja and Malik 

[16] examined the dependability of two distinct single-unit models with three operating modes

and various repair procedures applied to the repairman. Malik [11] examined a single-unit system

with a server under inspection. Pawar et al. [13] threw light on an operating system under different

climates having repair at varying levels of damages subject to inspection.

Gupta [4] talked about employing a base state to analyze a single-unit system. The reliability 

analysis of a one-unit system with finite vacations was examined by Liu and Liu [10]. The 

dependability metrics of a repairable stochastic model on the production of printed circuit boards 

were given by Kumar and Batra [9]. Chaudhary et al. [3] studied the valuable parameters for the 

nature of the distillery system having three distinct units and a single server facility using the 
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regenerative point graphical technique. Kumar et al. [8] threw light on the preventive maintenance 

of a sustainable one unit system under degradation facilities. Sharma and Goel [15] described the 

nature of whole-grain flour mills having two units using base state and regenerative point 

techniques. Kumar and Saini [5] described the fault detection concept in stochastic computing 

device under repair and replacement by an expert repairman. A redundant system with a first 

come, first served repair policy was examined by Kumar et al. [7] under different weather. Sengar 

and Mangey [14] analyzed the reliability measures of a complex manufacturing system with an 

inspection facility. Kumar et al. [6] analyzed the reliability and performance of two unit system 

under inspection facility. 

II. System Assumptions

To describe the juice plant, there are following assumptions 

• The juice plant consists of three distinct units A, B and C.

• It is considered that units A and B may be in a complete failed state through

partial failure mode but unit C is in only partially failed state.

• Unit A has washing and storage tank.

• Unit B has grinding, blending, evaporation and pasteurization.

• Unit C has bottling, labeling and packing units.

• Failure rate and repair rate are generally distributed and are independent.

• The repaired unit functions just like a brand-new one.

III. System Notations

To explain the juice plant, there are following notations 

ji
rS
⎯⎯→⎯ rth directed simple path from state ‘i’ to state ‘j’ where ‘r’ takes the positive 

integral values for different directions from state ‘i’ to state ‘j’.  

i
ffs
⎯⎯ →⎯ A directed simple failure free path from state ξ to state ‘i’. 

cyclem − A circuit (may be formed through regenerative or non regenerative / failed 

state) whose terminals are at the regenerative state ‘m’.  

cyclem − A circuit (may be formed through the unfailed regenerative or non 

regenerative state) whose terminals are at the regenerative ‘m’ state.  

kkU ,
Probability factor of the state ‘k’ reachable from the terminal state ‘k’ of ‘k’ 

cycle. 

kk
U

,
The probability factor of state ‘k’ reachable from the terminal state ‘k’ of 

cyclek .  

i Mean sojourn time spent in the state ‘i’ before visiting any other states. 

i Total unconditional time spent before transiting to any other regenerative state 

while the system entered regenerative state ‘i’ at t=0. 

i Expected waiting time spent while doing a job given that the system entered to 

the regenerative state ‘i’ at t=0. 

aAA // First unit is in the operative state/reduced state/failed state. 

bBB // Second unit is in the operative state/reduced state/failed state. 

cCC // Third unit is in the operative state/reduced state/failed state. 

321 ,,  Fixed partial failure rate of the unit A/B/C respectively. 

54 , Fixed complete failure rate of the unit A/B respectively. 
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321 ,, www Fixed repair rate of the unit A/B/C after partial failure respectively. 

54 ,ww Fixed repair rate of unit A/B after the complete failure respectively. 

  /     / Upstate/ reduced state/ failed state. 

IV. Circuits Descriptions

Primary, secondary and tertiary circuits are used to find the base state such that 

Table 1: Circuit Descriptions 

i (C1) (C2) (C3) 

0 (0,1,0), (0,2,0), (0,3,0) 

(0,1,4,0), (0,2,5,0) 

Nil Nil 

1 (1,0,1) (0,2,0), (0,3,0) Nil 

2 (2,0,2) (0,1,0), (0,3,0) Nil 

3 (3,0,3) (0,1,0), (0,2,0) Nil 

4 (4,0,1,4) (0,1,0), (0,2,0) 

(0,3,0), (1,0,1) 

(2,0,2), (3,0,3) 

5 (5,0,2,5) (0,1,0), (0,2,0) 

(0,3,0), (2,0,2) 

(1,0,1), (3,0,3) 

Figure 1 State Transition Diagram 

where,  ABCS =0 ,  BCAS =1 ,  CBAS =2

 CABS =3 ,  aBCS =4 ,  CbAS =5
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V. Transition Probabilities

There are following transition probabilities 

)/( 32111,0  ++=p , )/( 32122,0  ++=p , )/( 32133,0  ++=p

)/( 4110,1 += wwp , )/( 4144,1  += wp , )/( 5220,2 += wwp      

)/( 5255,2  += wp , 10,50,40,3 === ppp  (1) 

It has been conclusively established that 

10301 =+ pp , 1141210 =++ ppp ,  12721 =+ pp , 13831 =+ pp

14541 =+ pp  ,  1867656 === ppp , 1
)65(8.3131 =+ npp

1
)56(4.114.111210 =+++ npppp , 1

)65(7.2121 =+ npp  (2) 

VI. Mean Sojourn Time

Time taken by a system in a particular state becomes, dttTPm
j

jii  ==


0
, )( . 

)/(1 3210  ++=

)/(1 411  += w  , )/(1 522  += w

)/(1)( 33 wt = , )/(1 44 w= , )/(1 55 w=    (3) 

VII. Evaluation of Parameters

Using the circuit table, ‘0’ is used as the base state to calculate the reliability using the regenerative 

point graphical technique. The probability factors of all the reachable states from the base state ‘0’ 

are given below 

1)0,3,0()0,2,0()0,1,0(0,0 =++=U , 
321

1
1,0





++
=U , 

321

2
2,0





+++
=U ,  

)( 321

3
3,0





++
=U

))(( 41321

41
4,0





+++
=

w
U , 

))(( 52321

52
5,0





+++
=

w
U

I. Mean Time to System Failure

The regenerative un-failed states (i=0, 1, 2, 3) to which the system can transit (with initial state 0) 

before entering to any failed state (using base state ξ=0) then MTSF becomes 
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II. Availability of the system

The system is available for use at regenerative states j=0, 1, 2, 3 with ξ=0 then the availability of 

system is defined as  
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III. Busy Period of the Technician

The Technician is busy due to repair of the failed unit at regenerative states j= 1, 2, 3, 4, 5 with ξ = 0 

then the fraction of time for which the server remains busy is defined as 
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IV. Estimated number of visits made by the Technician

The technician visits at regenerative states j= 1, 2, 3 with ξ=0 then the number of visits by the 

repairman is defined as  
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V  (7) 

V. Profit Analysis

The profit function may be used to do a profit analysis of the system and it is given by 

020100 VEBEAEP −−=       (8) 

  where, =0E 25000 (Revenue per unit uptime of the system) 

=1E 500 (Cost per unit time for which technician is busy due to repair) 

=2E 200 (Cost per visit of the technician)  

VIII. Discussion

Tables 2, 3 and 4 described the nature of mean time to system failure, availability and profit values 

Table 2: MTSF vs. Repair Rate (w2) 

2w 1=0.3, 2=0.4

3=0.25, 4=0.35

5=0.5, w1=0.4

w3=0.5, w4=0.5

w5=0.6 

1=0.4 2=0.5 3=0.3

0.4 3.628692 3.333333 3.090278 3.037974 

0.45 3.675035 3.368794 3.132184 3.062553 

0.5 3.720609 3.403509 3.173516 3.086409 

0.55 3.765432 3.4375 3.214286 3.109568 

0.6 3.809524 3.47079 3.254505 3.197278 

0.65 3.852901 3.503401 3.294183 3.153901 

0.7 3.895582 3.535354 3.333333 3.175126 

0.75 3.937583 3.566667 3.371965 3.195751 

0.8 3.97892 3.59736 3.410088 3.2158 

0.85 4.019608 3.627451 3.447712 3.235294 
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Table 3: Availability vs. Repair Rate (w2) 

2w 1=0.3, 2=0.4

3=0.25, 4=0.35

5=0.5, w1=0.4

w3=0.5, w4=0.5

w5=0.6 

1=0.4 2=0.5 3=0.3

0.4 0.623324 0.604782 0.542904 0.58624 

0.45 0.628307 0.609813 0.547959 0.591319 

0.5 0.633159 0.614717 0.552904 0.596275 

0.55 0.637887 0.619499 0.557741 0.601111 

0.6 0.642494 0.624164 0.562476 0.605834 

0.65 0.646985 0.628716 0.56711 0.610447 

0.7 0.651365 0.633159 0.571646 0.614953 

0.75 0.655637 0.637497 0.576089 0.619357 

0.8 0.659806 0.641734 0.58044 0.623662 

0.85 0.663876 0.645873 0.584703 0.62787 

Table 4: Profit vs. Repair Rate (w2) 

2w 1=0.3, 2=0.4

3=0.25, 4=0.35

5=0.5, w1=0.4

w3=0.5, w4=0.5

w5=0.6 

1=0.4 2=0.5 3=0.3

0.4 2438.338 2386.076 2019.52 2333.814 

0.45 2467.262 2415.876 2049.467 2364.49 

0.5 2495.431 2444.927 2078.759 2394.423 

0.55 2522.874 2473.257 2107.417 2423.64 

0.6 2549.618 2500.892 2135.461 2452.166 

0.65 2575.691 2527.857 2162.912 2480.023 

0.7 2601.117 2554.178 2189.787 2507.239 

0.75 2625.919 2579.875 2216.104 2533.831 

0.8 2650.121 2604.972 2241.881 2559.823 

0.85 2673.744 2629.49 2267.135 2584.836 

of the juice plant having an increasing trend corresponding to repair rate (w2). In these tables, the 

values of parameters 1=0.3, 2=0.4, 3=0.25, 4=0.35, 5=0.5, w1=0.4, w3=0.5, w4=0.5, w5=0.6 

respectively taking as constant for the simplicity. When 1=0.3 changing into 1=0.4; 2=0.4 

changing into 2=0.5 and 3=0.25 changing into 3=0.3 then MTSF, availability and profit values 

have decreasing trends.  

IX. Conclusion

The performance of the juice plant is discussed using the regenerative point graphical technique. 

The above tables explore that when the repair rate increases then the MTSF, system's availability 

and profit values also increase but when the failure rate increases then the MTSF, availability and 

profit values decrease. It is clear that RPGT is helpful for industries to analyze the behaviour of the 

products and components of a system.  
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X. Future Scope

It is analyzed that the role of the regenerative point graphical technique for the juice plant will be 

beneficial and also used by the management, manufacturers and the persons engaged in reliability 

engineering and working on analyzing the nature and performance analysis of the system.  

       References 
[1] Balagurusamy, E. (1984). Reliability Engineering. Tata McGraw-Hill Education.

[2] Barlow, R. E., Proschan, F. and Hunter, L. C. (1965). Mathematical Theory of Reliability

John Wiley and Sons Inc. New York, 4, 927-929. 

[3] Chaudhary, N., Goel, P. and Kumar, S. (2013). Developing the reliability model for

availability and behaviour analysis of a distillery using Regenerative Point Graphical Technique. 

International Journal of Informative and Futuristic Research, 1(4), 26-40. 

[4] Gupta, V. K. (2011). Analysis of a single unit system using a base state. Aryabhatta Journal

of Mathematics & Informatics, 3(1), 59-66. 

[5] Kumar, A. and Saini, M. (2018).  Stochastic modeling and cost-benefit analysis of

computing device with fault detection subject to expert repair facility. International Journal of 

Information Technology,10, 391-401. 

[6] Kumar, A., Garg, R., & Barak, M. S. (2023). Reliability measures of a cold standby system

subject to refreshment. International Journal of System Assurance Engineering and Management, 14(1), 

147-155.

[7] Kumar, A., Pawar, D. and Malik, S. C. (2020). Reliability analysis of a redundant System

with ‘FCFS’ repair policy subject to weather conditions. International Journal of Advanced Science and 

Technology, 29(3), 7568-7578. 

[8] Kumar, J., Kadyan, M. S., Malik, S. C. and Jindal, C. (2014). Reliability measures of a

single-unit system under preventive maintenance and degradation with arbitrary distributions of 

random variables. Journal of Reliability and Statistical Studies, 77-88. 

[9] Kumar, R. and Batra, S. (2012). Economic and reliability analysis of a stochastic model on

printed circuit boards manufacturing system considering two types of repair facilities. International 

Journal of Electrical Electronics and Telecommunication Engineering, 43(10), pp. 432-435. 

[10] Liu, R. and Liu, Z. (2011). Reliability analysis of a one-unit system with finite vacations. In

MSIE, 248-252. 

[11] Malik, S. C., Chand, P. and Singh, J. (2008). Stochastic analysis of an operating system

with two types of inspection subject to degradation. Journal of Applied Probability and

Statistics, 3(2), 227-241. 

[12] Nakagawa, T. and Osaki, S. (1976). Reliability analysis of a one unit system with

unrepairable spare units and its optimization applications. Journal of the Operational Research  

society,  27(1), 101-110. 

[13] Pawar, D., Malik, S. C. and Bahl, S. (2010). Steady state analysis of an operating system

with repair at different levels of damages subject to inspection and weather conditions. 

 International Journal of Agriculture and Statistical Sciences, 6(1), 225-234. 

[14] Sengar S. and Mangey R. (2022). Reliability and performance analysis of a complex

manufacturing system with inspection facility using copula methodology. Reliability Theory & 

Applications, 17(71): 494-508.  

[15] Sharma S. and Goel, P. (2015). Behavioral Analysis of Whole Grain Flour Mill Using

RPGT. International Journal of Engineering Technology, Management and Applied Sciences, 3, 194-201. 

[16] Tuteja, R. K. and Malik, S. C. (1992). Reliability and profit analysis of two single unit

models with three modes and different repair policies of repairmen who appear and disappear 

randomly. Microelectronics Reliability, 32(3), 351-356. 

RT&A, No 1 (77)
 Volume 19, March 2024

695



V. Narmadha, P. Rajendran
DEVELOPMENT OF QUEUEING NETWORKS

A LITERATURE REVIEW ON DEVELOPMENT OF 

QUEUEING NETWORKS  

V. Narmadha1, P. Rajendran2,*

• 
1,* Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, 

Vellore, Tamil Nadu 632014, India. 

 1narmadha.v@vit.ac.in, 2,*prajendran@vit.ac.in 

Abstract 

This study conducts a quantitative research survey on the development of queueing networks over 

years. Development is a process of gradual change that takes place over many years, during which a 

theory slowly progress and attain a good state. Queueing theory has been through many 

developments which made its existence inevitable in every field. Queueing networks can be 

considered as a collection of nodes, where each node stands for a service facility. It has been proved 

to be a powerful and versatile tool for modelling facilities in manufacturing units and 

telecommunication networks. This paper presents the development in Queueing networks and its 

types over years. This paper's main objective is to give all the analysts and researchers the 

knowledge about the evolution that happened in Queueing networks over years.  

Keywords: Quazi-reversible Queueing networks (QRQN), Stationary 

distribution, Automated Manufacturing Systems(AMS), Recurrent neural 

networks(RNN). 

1. Introduction

The goal of queuing theory is to create efficient, cost-effective systems that can serve customers 

promptly and effectively. Agner Krarup Erlang, a Danish mathematician, statistician and engineer 

conducted an analysis of the Copenhagen telephone exchange in the early 1900s, which is where 

queuing theory first emerged. His work paved the way for the development of telephone network 

assessment and the Erlang concept of effective networks. The notion of queues is used to locate 

and eliminate bottlenecks in a process. Owing to the fact that queueing models only need a little 

amount of data and are easy to implement, it is a very effective and useful technique. They can be 

used to instantly examine and compare different service delivery solutions because of their 

simplicity and speed. Queuing models can be effective in obtaining insights on the degree of 

specialisation or flexibility for the utilization of resources in an organisation, which goes beyond 

the most fundamental task of predicting how much resource is required to accomplish a specific 

service level. Because of this, there are several prospects for its implementation in several 

industries. 
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2. Queueing networks (QN) and its types

In simple words QN are nothing but the jobs moving between interconnected queues in a 

continuous flow. In some cases, it may be simpler to describe a complex service environment as a 

queueing network in order to more accurately represent how the service is actually delivered.  

Telecommunication networks, machine shop problems and computer system are some of the 

instances of QN. 

2.1. Types of QN 

Based on the capacity of the Queue’s component there are two types of QN 

Some of the blocking models in QN are listed below 

 Rejection blocking

The blocked jobs will be forced to leave the system and it is only applicable for open

networks.

 Transfer blocking

The blocked job will wait at source line Ki until the job is accepted at destined line Kj. 

 Repetitive service blocking

The blocked job will again dwell in Ki for another service  and the process will be repeated

until the job can move out of Ki.

 Blocking before service

At Ki, the service starts for the job only when the destined line Kj is free and is ready to

accept the jobs from Ki.

3. Literature Review

The queueing theory has undergone numerous developments, which draws scholars to use it in 

the best way possible. The Erlang formula, which became a cornerstone of contemporary 

Open queueing networks

•The network must be
open for each job class if it
has multiple job classes.

Closed queueing networks

•The network must be
closed for each job class if
it has several job classes.

Mixed queueing networks

•The network contains a
variety of job classes,
some of which are open
while the others are
closed.

Blocking 

•This happens in a network, when there are one or perhaps
more queues with finite capacities.

No blocking

•This happens in a network, when there are many queues of
infinite capacity.
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telecommunication network studies, was developed as a result of Erlang's 1920 publication of 

telephone waiting times [1], which examined the use of local, exchange, and trunk telephone lines 

in a close knit community to interpret the empirical needs of an efficient network. One model 

combines and extends a number of distinct results from open, closed, and mixed network of 

queues with various kinds of clients [2]. To determine the generic model's equilibrium state 

probability, this study integrates past results from networks of queues with different customer 

classes across a range of service areas and a large spectrum of estimated time distributions.QN 

with individuals from various groups [3] are viewed as a generalisation of mechanisms that enable 

customers in a particular queue to be heterogeneous. The robustness of QN where customers may 

be of various types is the subject of this study. QN [4] examines how networks behave when they 

are in an equilibrium, and in some instances it is demonstrated that the status of one queue does 

not rely on the condition of the overall network. Since the processes in this study are irreversible, 

the restrictions placed on the potential customer paths by earlier writers are further loosened. The 

link between regional balance and product form in QN [5] seems to provide insight into why some 

domains yield product form answers to problems for queues and networks using nonexponential 

service domains compared to others. A queueing regimen satisfies station balance if the pace at 

which customers receive service at every position in the queue is proportionate to the possibility 

that a customer also could appear at that position. The paper's conclusions extrapolate past 

research on local balance to any stochastic, differentiable service distribution endeavours that 

would result in regional balance and product form characterization. In steady state, the state’s 

distribution has the product form, and interconnections of markov chains and QRQN [6] 

demonstrate that a network created by joining queues, each of which is QR when taken separately, 

is also QR. An aspect of convergence of the source performance function component in a closed 

Jackson network(JN) is enabled by the sample's convergence property in closed Jackson queuing 

networks [7] research. This finding offers some fresh perspectives on QN theory that might not be 

found in the well-known product form solution. A category of QN with rejection inhibition has a 

product form steady state flow pattern, and the overall population is insensitive, according to 

Exact Solutions for Open, Closed, and Mixed QN with Rejection Blocking [8]. The outcomes are 

startlingly comparable to those for conventional (non-blocking) networks. The stability of open QN 

[9] only requires the additional assumption that service time ranges have finite first moments in

order to prove stability for the open network. It is permitted for the inter - arrival time distribution

to have an infinite first instant. The results are expanded to include multi-server nodes, non-

Markovian routing, and Markov modulated arrivals. Recent developments in QN: a survey with

applications to AMS [10] highlighted the use of QN models for the performance assessment of

AMSs, separately addressing the problems of computing larger parts of performance metrics,

blocking events, and analysing an open network of AMS model’s multiqueues.

     Using the Right-continuous Markov processes(MP) with values theory which provides a single 

method for finding both optimal and suboptimal feedback control laws in some QN [11]. This 

method can be used with QN made up of machines and buffers. The results of single-server QN 

under optimal control [12] provide effective ways to compute the indices. The greatest remaining 

index approach is presented in its general form in this publication. We can now locate every index 

for our universal single server QN model. Unique features of the optimum static routing solution 

in open BCMP QN [13] determine the relay nodes of the underlying optimal policy and 

demonstrate that they may not be strange, but the overall  determination of the usage of each 

repair facility is unique. We also take into account a policy that is individually optimal and routes 

jobs. If each job is aware of the average time delay for each path, it can feel as though its own 

anticipated response time is decreased The iterative process for a class of Batch-movement QN, 

which is a natural generalisation of the mean-value analysis of JN, was illustrated in [14].  The 

recurrence relations used in this approach can be easily extended to the generic group of product-
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form batch-movement QN/petrinets with equilibrium probability distribution. Using the Z-

transform, computing the normalisation constants in QN is made easier [15]. 

    The computation required by the proposed strategy in [16] is  relatively simpler than that in 

Gordon's paper in the scenarios of networks with numerous repair queues or with a single server 

queue and equal traffic levels. Numerous forms of monotone routing strategies for limited capacity 

QN have successfully used perfect simulation of index-based routing QN. This research could be 

expanded to batch arrival or batch services as well as monotone network events more broadly. 

Through the use of current approximate inference methods from graphical models, probabilistic 

inference in QN [17] provided a new family of tools for studying queueing models. Networks and 

queueing systems, models, and applications in [18] uses traditional Markovian systems in 

queueing systems that combines individual service , an exponential service times and a Poisson 

arrival procedure. Given that academics are interested in using queueing systems and QN to 

modelling human performance, it provides an architecture known as the Queueing Network-

Model Human Processor. In order to represent an industrial system, a four-input, three-stage QN 

technique was used [19]. This approach computed the best route that results in the shortest 

reaction times for the delivery of products to the end destination along the three phases of the 

network. Modeling a supply chain using a QN , a supply chain is shown as a two-input, three-

stage QN [20]. The goal of this study is to determine the minimal response time required to deliver 

products to their destination along the network's three stages. The total number of products that 

can be distributed with this quickest response period makes up the QN's maximum capacity. 

    QN and graphical models are combined in the innovative perspective of reasoning and 

acquiring knowledge in networks of queues [21], which enables the use of Markov chain Monte 

Carlo. We use actual data from a standard web application to show how successful the sample is. 

In order to maximise the throughput of single server, generic QN, a multiobjective technique was 

devised, called throughput maximisation of QN with concurrent reduction of service rates and 

buffers [22]. It should be investigated further to see whether more optimum conditions in finite 

QN can be found using this methodology. Stability in constrained network architectures with 

queueing lags, queue-storage, blocking back, and control [23] has presented numerous techniques 

for spatial queuing appropriately without using dynamic assignment, hence the strategy is 

alternative to the methodology used by Bliemer et al (2012). QN with a single shared server: light 

and high traffic [24] provide a significant two-fold contribution. First, we examine the system 

under consideration's precise heavy-traffic  asymptotics. Second, based on an approximation 

between the light-traffic  and high-traffic limitations, we construct a closedform approximation for 

the average lag for random loads. The analysis presented in this work can be expanded in a 

number of ways, for as by considering various server configuring policies or service standards. 

However, these results are not explored because of compactness. An approximation technique for 

the assessment of a finite open QN with Transfer blocking and feedback was described in a 

restricted open QN application to healthcare systems [25]. An unbounded topology network with a 

focus on a single server finite capacity model based fertility clinic healthcare system is discussed 

which uses an expansion approach to determine each node's performance measures and 

throughput. Deadlock in open restricted QNs has been studied in  [26]. It has been demonstrated 

that analysing the corresponding state digraph of a QN is sufficient to identify stalemate. Three 

deadlocking QN Markov models have been created. The open two-node, multi-server restricted 

queueing network requires the development of a Markov model with paths between nodes and 

feedback loops. Modeling urban taxi services with e-hailings: a QN strategy [27] places an 

emphasis on the macro-interactions between the urban roadway and taxi systems, but it leaves out 

the intention of changing speed of the individuals and how they react to the taxi prices. Future 

research will generalise the suggested QN to take into account the complete dynamics of the taxi 

market and individual behaviour, giving us keen insight into system control. In a single-class open 
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QN with Markovian routing, infinite waiting space, and the first-come, first-served   , A Robust 

Queueing Network Analyzer Based on Indices of Dispersion(RQNA-IDC) [28] offers practical 

algorithms to approximate the performance metrics of the steady state. Future research should 

focus on a number of excellent directions, such as (i) approximations for flows that use multi-

dimensional robust models than one dimensional robust models and (ii) expanding RQNA-IDC to 

additional open QN models, such as models with more than one servers and other service 

domains. 

    It has been demonstrated that there is a direct correlation between the architecture of the QN 

fluid estimation and the typical activation functions and layers of an recurrent neural 

networks(RNN) in [29]. As far as we are aware, this is the first method that formally unites the 

vividness of quantitative performance models with the learning potential of machine learning, 

favourably contributing to the discussion of whether ‘AI will be at the centre of performance 

engineering’. Using stock critical intensities in a QN , handling shared mobility systems [30] 

investigates a closed JN taking into account nodes for stops and paths. Focusing on the Mean 

Value Analysis(MVA) approach, a genetic algorithm was created to solve the issue, and an 

approximation method was offered to determine the crucial parts from the answer. The model can 

be expanded to take into account static or dynamic equilibrium techniques as part of additional 

studies. Hospitals can utilise workflow forecasting to manage healthcare systems in practise, as 

demonstrated by Simulation and betterment of Patients' Workload in cardiac clinics during 

COVID-19 pandemic using Timed Colored petri nets [31]. This method would be helpful in these 

trying times because nosocomial transmission puts the health of the personnel and other patients 

at danger. A new approach to reducing flight delay rates in airports was presented in Reduction of 

Delay Rate in Open QN[32] in conjunction with deterministic timed petri nets (DTPN) and open 

QN. The Federal Aviation Administration's performance is evaluated using the flight delay 

information gathered by the Operations Network (ON). A numerical example is used to 

demonstrate the significant reduction in the delay rate. A fresh approach to the problem of 

multistage semi-open queuing networks(SOQN) i.e., A innovative and all-encompassing method 

for estimating the work departure process parameters from a SOQN is shown with an application 

in shuttle-based compact storage systems [33], which adds to the body of knowledge in this area. 

An accurate assessment of the work departure process from the SOQN is very difficult to perform 

when the work inter-arrival and service times exhibit broad distributions. As a result, it suggest a 

practical two-moment approximation method in this study. 

4. Developmental analyses

It all began with an infinite series to determine whether a call has to be shut out or allowed. Then a 

number of queues were taken into consideration which paved way for the rise of QN. When same 

kind of queues are taken into account for research, over time researchers started combining 

different types of queues which resulted in open, closed and mixed networks with distinct clients. 

It further paved way for letting customers within a particular queue to be heterogeneous. The next 

noteworthy development in QN is the product form networks where the state probabilities are 

given by the products of functions of number of jobs in the queues. This gave rise to Jackson 

networks which showed that any arbitrary open QN with k servers that follows an exponentially 

distributed service time has a product form solutuion. Following this BCMP network was 

described by Baskett, Chandy, Muntz and Palacios which is an extension of Jackson networks. 

Based on the capacity of queue’s components it is further classified into Blocking and no blocking 

QN. Supply chain has been combined with QN to efficiently manage organisations. QN’s 

development has paved a way for its application in various fields which includes healthcare sector, 

transport system and banking sector etc. 
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5. Applications

QN’s development has paved a way for its application in various fields which includes healthcare 

sector, transport system and banking sector etc. 

 QN is applied in a variety of different domains, including computer science, civil

engineering, and operations research.

 It is also utilised in computer science to optimise communication network performance

and to model the behaviour of computer systems.

 QN is used in civil engineering to optimise traffic flow and model the behaviour of traffic

networks.

 On the other hand, QN is applied in operations research to enhance the effectiveness of

business processes and optimise resource allocation.
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Abstract

In this manuscript, a new probability model named as Sine Power Rayleigh distribution (SPRD) is
proposed using a Sine-G function as generator. Various statistical properties of this new distribution were
investigated, including the survival function, hazard function, reverse hazard rate, cumulative hazard
function, mills ratio , quantile function, moments, moment generating function, conditional moments
, entropy, and order statistics. The parameters of the proposed distribution were estimated using the
method of maximum likelihood estimation. To assess the model’s versatility and applicability, we conduct
analyses on two real life data sets. The outcomes affirm the superior performance of the newly proposed
model SPRD as compared to existing models .

Keywords: Sine G family, Rayleigh distribution, Sine Rayleigh distribution, Reliability Analysis,
Entropy, Order Statistics, Maximum Likelihood Estimation.

1. Introduction

The concept of probability distribution has shown to be quite helpful in managing both small
and large data sets. Probability distribution models are essential and widely utilised in many
domains, including as physics, medicine, business management, engineering, and food. The field
of probability distributions has advanced steadily due to the wide range of domains in which
they are applied.Over the past few decades, researchers have used a variety of ways to introduce
numerous novel probability distributions. New distributions are needed to address the problem
more precisely and effectively, even though there are numerous existing ways for handling
real-world data. From an applied and practical perspective, the new family of distributions
modifies some of the current distributions to make them more flexible, which serves key purposes
in the generalisation of distributions. There are several ways to create new models, including
exponentiation, compounding, and changing and adding constants to well-known distributions.

The Rayleigh distribution (RD), named after Lord Rayleigh [15] is prominent lifetime prob-
ability model concerned with describing skewed data. The probability density function (PDF)
associated with random variable x > 0 having RD with scale parameter θ is given by

f (x; θ) =
x
θ2 exp

(
− x2

2θ2

)
; x > 0, θ > 0
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and the corresponding cumulative distribution function (CDF) is given as

F(x; θ) = 1 − exp
(
− x2

2θ2

)
; x > 0, θ > 0

In the statistical literature, numerous extensions of Rayleigh distribution (RD) have been pro-
posed. Surless and Padgett[17] introduced the two parameter Burr type X distribution and named
it as exponentiated Rayleigh distribution (ERD) or generalized Rayleigh distribution. Kundu
and Raqab [11] studied and estimated the parameters of the generalized Rayleigh distribution
using different estimation techniques. Ahmed et al. [2] used the square error loss function and
Al-Bayyati’s loss function to perform a Bayesian analysis of RD. Ajami and Jhansi [3] discussed
the parameter estimation of weighted Rayleigh distribution. Ahmad et al. [1] proposed the
Weibull-Rayleigh distribution and studied its characterization and parameter estimation using the
transformed transformer technique. Bhat and Ahmad [6] proposed a new extension of exponenti-
ated Rayleigh distribution and studied its various properties and demostrated its applicability by
considering different datasets. Bhat and Ahmad [5] studied mathematical properties of mixture
of Gamma and Rayleigh distributions. Kilai et al. [8] proposed a new versatile modification
of the Rayleigh distribution for modeling COVID-19 mortality rates. Various researchers have
introduced generalised distributions and their applications, see Mahmood et al. [12] , Muse et al.
[13] and Ahmed et al. [15]. Bhat et al. [7] proposed a new extension of odd lindley power rayleigh
distribution, studied its properties and evaluated parameter estimation techniques using both
classical and Bayesian methods. Bhat and Ahmad [4] recently introduced a new generalization of
the Rayleigh distribution using power transformation technique with PDF and CDF respectively
given by

g(x; β, θ) =
β

θ2 x2β−1 exp
(
− x2β

2θ2

)
; x > 0, β, θ > 0 (1)

and the corresponding cumulative distribution function (CDF) is given as

G(x; β, θ) = 1 − exp
(
− x2β

2θ2

)
; x > 0, β, θ > 0 (2)

In the present manuscript, we proposed a new extension of Power Rayleigh distribution (PRD)
using the Sine G family of generated distributions. The proposed distribution is named as Sine
Power Rayleigh distribution (SPRD). It is more flexible and exhibits more complex shapes of
density and hazard rate functions. Also, the proposed model outclass some well established
models in terms of two real life data sets. The rest of the article is unfolded as : In section 2, the
Ratio Transformation (RT) method is discussed. In Section 3, the PDF and CDF of the proposed
model i.e., SPRD are defined. Section 4 deals with the reliability measures of the SPRD. The
expansion of PDF and CDF is discussed in Section 5. Some of important statistical properties are
explored in Section 6. The parameter estimation is discussed in Section 7. The simulation study
and applicability of the model is debated in section 8 and 9 respectively. Finally, some conclusion
are provided in Section 10.

2. SINE G FAMILY OF DISTRIBUTIONS

The CDF and PDF of the Sine G family of distributions proposed by [10] are defined by the
following equations respectively:

F(x; ζ) = sin
[π

2
G(x; ζ)

]
; x ∈ R (3)

f (x; ζ) =
π

2
g(x; ζ) cos

[π

2
G(x; ζ)

]
; x ∈ R (4)
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Where G(x; ζ) and g(x; ζ) in equation (3) and (4) are the CDF and PDF of the base line
distribution with parameter vector ζ, respectively.

3. SINE POWER RAYLEIGH DISTRIBUTION (SPRD)

The PDF of the newly proposed probability distribution Sine Power Rayleigh Distribution (SPRD)is
obtained as

f (x; β, θ) =
π

2
β

θ2 x2β−1e−
x2β

2θ2 cos
[

π

2

(
1 − e−

x2β

2θ2

)]
; x ∈ R+, β, θ > 0 (5)

The CDF of the newly proposed probability distribution Sine Power Rayleigh Distribution
(SPRD) is obtained as

F(x; β, θ) = sin
[

π

2

(
1 − e−

x2β

2θ2

)]
; x ∈ R+, β, θ > 0 (6)

The plots of density function of SPRD for different parameter combinations are presented in
Figure 1 . It is clear from the density function plots that the proposed distribution is unimodal,
decreasing, symmetric and positively skewed.
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Figure 1: Density plots of SPRD for different combinations of β and θ.

4. RELIABILITY ANALYSIS OF THE SINE POWER RAYLEIGH
DISTRIBUTION (SPRD)

This section focuses on obtaining the reliability (survival function), hazard rate (failure rate),
reverse hazard function, cumulative hazard function and mills ratio expressions respectively for
SPRD.

4.1. Survival function

The survival function or reliability function is defined as the probability that a system will survive
beyond a specified time and is obtained for the SPRD as

R(x; β, θ) = 1 − F(x; β, θ) = 1 − sin
[

π

2

(
1 − e−

x2β

2θ2

)]
(7)
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4.2. Hazard Rate

The Hazard rate evaluates a lifetime component’s likelihood of failure or expiration based on
the completed portion of its life, and consequently, it finds diverse applications in the analysis of
lifetime distributions. Using equation (5) and (7), the expression for the hazard rate of SPRD is
obtained as

h(x; β, θ) =
f (x; β, θ)

R(x; β, θ)
=

π
2

β

θ2 x2β−1e−
x2β

2θ2 cos
[

π
2

(
1 − e−

x2β

2θ2

)]
1 − sin

[
π
2 (1 − e−

x2β

2θ2 )

] (8)

Figure 2 depicts graphs of the hazard rate of the SPRD for different parameter values. Figure
2 suggests that the proposed distribution is quite flexible in nature and can exhibit variety of
shapes such as constant, decreasing, increasing and j-shaped shaped over the parameter space.
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Figure 2: Hazard rate plots of SPRD for different combinations of β and θ.

4.3. Reverse Hazard function

The concept of reversed hazard rate of a random life is defined as the ratio between the life
probability density to its distribution function . It is expressed as

hr(x; β, θ) =
f (x; β, θ)

F(x; β, θ)
=

π
2

β

θ2 x2β−1e−
x2β

2θ2 cos
[

π
2

(
1 − e−

x2β

2θ2

)]
sin
[

π
2

(
1 − e−

x2β

2θ2

)]

4.4. Cumulative Hazard function

The cumulative hazard function can be thought of as providing the total accumulated risk of
experiencing the event of interest that has been gained by progressing to time t. The cumulative
hazard function for the SPRD is defined as

ΛSPRD(x; β, θ) = − log R(x; β, θ) = − log
{

1 − sin
[

π

2

(
1 − e−

x2β

2θ2

)]}
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4.5. Mills Ratio

The mills ratio for the SPRD is defined as

M.R =
F(x; β, θ)

R(x; β, θ)
=

sin
[

π
2

(
1 − e−

x2β

2θ2

)]
1 − sin

[
π
2

(
1 − e−

x2β

2θ2

)] (9)

4.6. Quantile function

The quantile function for the SPRD is given by

x =

[
−2θ2log

(
1 − 2

π
sin−1 u

)] 1
2β

(10)

The first quartile (Q1), median (Q2), and third quartile (Q3) can be derived by setting u = 1
4 , 1

2 ,
and 3

4 in equation (10) respectively.

5. Expansion of PDF and CDF

Various statistical properties can be easily deduced by using mixture representation of PDF and
CDF of the proposed model.

expansion of cos
[

π
2

(
1 − e−

x2β

2θ2

)]
can be expressed as

cos
[

π

2

(
1 − e−

x2β

2θ2

)]
=

∞

∑
l=0

(−1)l

2l!
π2l

22l

(
1 − e−

x2β

2θ2

)2l

Also
(

1 − e−
x2β

2θ2

)2l

can be expressed as

(
1 − e−

x2β

2θ2

)2l

=
∞

∑
m=0

(−1)m
(

2l
m

)
e−

mx2β

2θ2

expansion of sin
[

π
2

(
1 − e−

x2β

2θ2

)]
can be expressed as

sin
[

π

2

(
1 − e−

x2β

2θ2

)]
=

∞

∑
p=0

(−1)p

(2p + 1)!
π2p+1

22p+1

(
1 − e−

x2β

2θ2

)2p+1

Also
(

1 − e−
x2β

2θ2

)2p+1

can be expressed as

(
1 − e−

x2β

2θ2

)2p+1

=
∞

∑
q=0

(−1)q
(

2p + 1
q

)
e−

qx2β

2θ2

Thus, the PDF and CDF of the proposed model can be written in the mixture representation
respectively as

f (x; β, θ) =
β

θ2 x2β−1
∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1 e−
(m+1)x2β

2θ2 (11)

F(x; β, θ) =
∞

∑
p=0

∞

∑
q=0

(−1)p+q

(2p + 1)!

(
2p + 1

q

)
π2p+1

22p+1 e−
qx2β

2θ2 (12)
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6. STATISTICAL PROPERTIES OF SPRD

Some of the mathematical properties such as the rth moment, moment generating function,
conditional moments and associated measures, the entropy and order statistics are derived.

6.1. Moments

The rth moment of the SPRD can be evaluated directly by extending the PDF given in equation (11)

E(Xr) =

∞∫
0

xr f (x; β, θ)dx ,r = 1, 2, ..

where f(x ) is the PDF of the SPRD given in equation (11), thus

E(Xr) =
β

θ2

∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

∞∫
0

xr+2β−1e−
(m+1)x2β

2θ2 (13)

Using integration via substitution method in equation (13), we perform the following operations.

let (m+1)x2β

2θ2 = z =⇒ x = ( 2θ2z
m+1 )

1
2β , such that dx = 1

2β (
2θ2

m+1 )
1

2β (z)
1

2β −1

Thus, simplifyingequation (13) yields

E(Xr) = (2θ2)
r

2β

∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

(
1

m + 1

) r
2β +1

Γ(
r

2β
+ 1) (14)

where,

Γ( r
2β + 1) =

∞∫
0

z(
r

2β +1)−1e−zdz

setting r = 1 in equation (14) the mean of the model is computed as

E(X) = (2θ2)
1

2β

∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

(
1

m + 1

) 1
2β +1

Γ(
1

2β
+ 1) (15)

Similarly for r = 2, 3 and 4 in equation (14) ,the second, third and fourth moment about origin are
respectively calculated as

E(X2) = (2θ2)
1
β

∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

(
1

m + 1

) 1
β +1

Γ(
1
β
+ 1) (16)

E(X3) = (2θ2)
3

2β

∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

(
1

m + 1

) 3
2β +1

Γ(
3

2β
+ 1) (17)

E(X4) = (2θ2)
2
β

∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

(
1

m + 1

) 2
β +1

Γ(
2
β
+ 1) (18)
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6.2. Moment Generating function of SPRD

we can calculate moment generating function based on the rth moment of SPRD as given by

MX(t) =
∞

∑
r=0

tr

r!
E(Xr) (19)

MX(t) = (2θ2)
r

2β

∞

∑
r=0

∞

∑
l=0

∞

∑
m=0

tr

r!
(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

(
1

m + 1

) r
2β +1

Γ(
r

2β
+ 1) (20)

6.3. Conditional moments and associated measures

In this section, the expression for conditional moments is acquired. But first we will introduce an
important lemma which will be applied in the next section.

Lemma 1. Let us suppose a random variable X follows SPRD (β, θ) with PDF given in equation
(11) and let φr(z) =

∫ z
0 xr f (x; β, θ) dx denotes the rth incomplete moment, then we have

φr(z) = (2θ2)
r

2β

∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

(
1

m + 1

) r
2β +1

γ

((
r

2β
+ 1
)

,
(m + 1)z2β

2θ2

)
(21)

where γ(a, b) =
b∫

0
za−1e−zdz denotes the lower incomplete gamma function.

Proof: Using the PDF of SPRD given in equation (11) , we have

φr(z) =
z∫

0

xr f (x; β, θ)dx =
β

θ2

∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

z∫
0

xr+2β−1e−
(m+1)x2β

2θ2 (22)

On Simplification, we obtain

φr(z) = (2θ2)
r

2β

∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

(
1

m + 1

) r
2β +1

γ

((
r

2β
+ 1
)

,
(m + 1)z2β

2θ2

)
(23)

Setting r=1 in equation (23) will yield first incomplete moment as given by

φ1(z) = (2θ2)
1

2β

∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

(
1

m + 1

) 1
2β +1

γ

((
1

2β
+ 1
)

,
(m + 1)z2β

2θ2

)
(24)

6.3.1 Lorenz and Bonferroni inequality Curves

The Lorenz and Bonferroni inequality curves are an important application of the first incomplete
moment. For a given probability distribution, they are defined by

Lp =
1

E(X)

∫ t

0
x f (x; β, θ) dx =

φ1(t)
E(X)

RT&A, No 1 (77)
 Volume 19, March 2024

709



Aadil Ahmad Mir , S.P.Ahmad
MODELING AND ANALYSIS OF SINE POWER
RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

Lp =
∑∞

l=0 ∑∞
m=0

(−1)l+m

2l! (2l
m)

π2l+1

22l+1

(
1

m+1

) 1
2β +1

γ
((

1
2β + 1

)
, (m+1)t2β

2θ2

)
∑∞

l=0 ∑∞
m=0

(−1)l+m

2l! (2l
m)

π2l+1

22l+1

(
1

m+1

) 1
2β +1

Γ( 1
2β + 1)

Similarly,

BP =
1

pE(X)

∫ t

0
x f (x; β, θ) dx =

φ1(t)
pE(X)

BP =
∑∞

l=0 ∑∞
m=0

(−1)l+m

2l! (2l
m)

π2l+1

22l+1

(
1

m+1

) 1
2β +1

γ
((

1
2β + 1

)
, (m+1)t2β

2θ2

)
p ∑∞

l=0 ∑∞
m=0

(−1)l+m

2l! (2l
m)

π2l+1

22l+1

(
1

m+1

) 1
2β +1

Γ( 1
2β + 1)

6.3.2 rth Conditional Moment and rth Reversed Conditional Moment of SPRD

The rth conditional moment of the SPRD is calculated by

E [Xr|x > t] =
1

R(t)

∫ ∞

t
xr f (x; β, θ) dx =

1
R(t)

[E(Xr)− φr(t)]

where R(t) is the reliability of SPRD at time t.
Inserting the value of equation (7), (14) and (23), we obtain

E [Xr|x > t] =

(
2θ2) r

2β ∑∞
l=0 ∑∞

m=0
(−1)l+m

2l! (2l
m)

π2l+1

22l+1

(
1

m+1

) r
2β +1 [

Γ
(

r
2β + 1

)
− γ

((
r

2β + 1
)

, (m+1)t2β

2θ2

)]
1 − ∑∞

p=0 ∑∞
q=0

(−1)p+q

(2p+1)! (
2p+1

q )π2p+1

22p+1 e−
qt2β

2θ2

Similarly, the rth reversed conditional moment of the SPRD is defined by

E [Xr|x ≤ t] =
1

F(t)

∫ t

0
xr f (x; β, θ) dx =

φr(t)
F(t)

E [Xr|x ≤ t] =
(2θ2)

r
2β ∑∞

l=0 ∑∞
m=0

(−1)l+m

2l! (2l
m)

π2l+1

22l+1

(
1
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) r
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γ
((

r
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p=0 ∑∞
q=0

(−1)p+q

(2p+1)! (
2p+1

q )π2p+1

22p+1 e−
qt2β

2θ2

6.3.3 Mean Residual Life (MRL) and Mean Waiting Time (MWT)

The MRL is defined as

µ(t) =
1

R(t)

[
E(t)−

∫ t

0
x f (x; β, θ) dx

]
− t =

1
R(t)

[E(t)− φ1(t)]− t

After inserting the value of equation (7), (15) and (24), we obtain the required expression for
mean residual life as

µ(t) =

(
2θ2) 1

2β ∑∞
l=0 ∑∞

m=0
(−1)l+m

2l! (2l
m)

π2l+1

22l+1

(
1

m+1

) 1
2β +1 [

Γ
(

1
2β + 1

)
− γ

((
1

2β + 1
)

, (m+1)t2β

2θ2

)]
1 − ∑∞

p=0 ∑∞
q=0

(−1)p+q

(2p+1)! (
2p+1

q )π2p+1

22p+1 e−
qt2β

2θ2

− t
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The MWT is defined as

µ(t) = t − 1
F(t)

∫ t

0
x f (x; β, θ) dx = t − φ1(t)

F(t)

µ(t) = t −
(2θ2)

1
2β ∑∞

l=0 ∑∞
m=0

(−1)l+m

2l! (2l
m)

π2l+1

22l+1

(
1

m+1

) 1
2β +1

γ
((

1
2β + 1

)
, (m+1)t2β

2θ2

)
∑∞

p=0 ∑∞
q=0

(−1)p+q

(2p+1)! (
2p+1

q )π2p+1

22p+1 e−
qt2β

2θ2

6.4. Renyi entropy

The entropy of a random variable is defined as the average amount of information lost during
a random experiment. The Renyi entropy, which Alfred Renyi introduced [16] and generalises
Shannon’s measure of information, is defined as

Rη =
1

1 − η
log

∫ ∞

−∞
f η(x; β, θ) dx, η > 0, η ̸= 1

Using the PDF given in equation (11), we have

Rη =
1

1 − η
log
(

β

θ

)η
(

∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

)η ∞∫
0

xη(2β−1)e−
η(m+1)x2β

2θ2

Rη =
1

1 − η
log
(

β

θ

)η 1
2β

(
∞

∑
l=0

∞

∑
m=0

(−1)l+m

2l!

(
2l
m

)
π2l+1

22l+1

)η (
2θ2

η(m + 1)

) η(2β−1)+1
2β

Γ
(

η(2β − 1) + 1
2β

)

6.5. Order Statistics of SPRD

The order statistics connected to the SPRD is devoted in this section. Let x(r;n) be the rth order
statistics with the random sample x(1), x(2), x(3), ...x(n) derived from the SPRD having the PDF
f (X; , β, θ) and CDF F(X; β, θ). Therefore, the PDF and CDF of x(r;n) say f(r;n)(x) and F(r;n)(x)
are respectively defined as

f(r;n)(x) =
1

B(n, n − r + 1)
[F(x; β, θ)]r−1 [1 − F(x; β, θ)]n−r f (x; β, θ) (25)

F(r;n)(x) =
n

∑
j=r

(
n
j

)
[F(x; β, θ)]j [1 − F(x; β, θ)]n−j (26)

Using equation (5) and equation (6) in equation (25) and equation (26), the PDF and CDF of rth

ordered statistics for the SPRD are derived and are expressed as

f(r;n)(x) =

π
2

β
θ2 x2β−1e−

x2β

2θ2 cos
[

π
2

(
1 − e−

x2β

2θ2

)]
B(n, n − r + 1)

{
sin
[

π

2

(
1 − e−

x2β

2θ2

)]}r−1 {
1 − sin

[
π

2

(
1 − e−

x2β

2θ2

)]}n−r
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F(r;n)(x) =
n

∑
j=r

(
n
j

){
sin
[

π

2

(
1 − e−

x2β

2θ2

)]}j {
1 − sin

[
π

2

(
1 − e−

x2β

2θ2

)]}n−j

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the beta function.

7. Estimation of Parameters

The goal of this study is to estimate the unknown parameters β and θ of the SPRD using Maximum
Likelihood Estimation (MLE). we assume that x1, x2, ..., xn be a random sample of n observations
drawn from the SPRD (β, θ) with unknown parametric vector Θ = (β, θ)T .

7.1. Maximum Likelihood Estimation (MLE)

Here, Maximum Likelihood Estimation (MLE) approach is used to obtain the estimators of the
unknown parameters of SPRD (β, θ) . The likelihood function is given by

L(Θ) =

[
πβ

2θ2

]n
e−∑n

i=1
x2

k β

2θ2
n

∏
k=1

x2β−1
k cos

π

2
(1 − e−

x2β
k

2θ2 )


For the parametric vector (Θ) = (β, θ)T , the logarithm likelihood function is expressed as

ℓ = n log
(π

2

)
+ n log(β)− 2n log(θ)− 1

2θ2

n

∑
k=1

x2β
k + (2β − 1)

n

∑
k=1

log xk

+
n

∑
k=1

log cos

π

2

1 − e−
x2β

k
2θ2

 (27)

The elements of the score vector U(Θ) =(Uβ, Uθ) are obtained by partially differentiating
Equation (27) with respect to the model parameters and are given by

∂ℓ

∂β
=

n
β
+ 2

n

∑
k=1

ln(xk)−
1

2θ2

n

∑
k=1

x2β
k ln(xk)−

π

4θ2

n

∑
k=1

tan

π

2

1 − e−
x2β

k
2θ2

 e−
x2β

k
2θ2 x2β

k ln(xk)

∂ℓ

∂θ
=

−2n
θ

+
1
θ3

n

∑
k=1

x2β
k +

π

2θ3

n

∑
k=1

tan

π

2

1 − e−
x2β

k
2θ2

 e−
x2β

k
2θ2 x2β

k

The likelihood estimates of the model parameters can be obtained by setting the score vector U(Θ)
= 0 . Since, the above equations are non-linear and hence the model parameters are estimated
using Newton-Raphson algorithm.

8. SIMULATION ILLUSTRATION

In this section, we carry out simulation study using R software to examine the behaviour of MLE’s
for various sample sizes.We generate the random samples of size 25, 75, 150, 300 and 500 from
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SPRD and repeat the process for 1000 times in R software.Various combinations of parameters
are chosen as (1.5, 1.35) and (0.5, 2.2) with relation to the standard order (β, θ). The average
MLE values, bias, and related empirical mean squared errors (MSEs) were determined for each
scenario. Tables 1 exhibits the ML estimates, bias and MSE. We observe from table 1 that the
agreement between theory and practice improves as the sample size n increases. MSE and bias of
the estimators suggest that the estimators are consistent and the maximum likelihood estimator
of the parameters perform quite well and the results are precise and accurate. The MSE decreases
with increasing sample size under all conditions.

Table 1: MLE,Bias and MSE for the parameters β and θ

sample size Parameters MLE Bias MSE
n β θ β̂ θ̂ β̂ θ̂ β̂ θ̂

25 1.5 1.35 1.58963 1.38116 0.21193 0.15622 0.07685 0.04192

75 1.52863 1.36292 0.11586 0.08563 0.02170 0.01211

150 1.51474 1.35744 0.07911 0.05752 0.00999 0.00543

300 1.50528 1.35236 0.05462 0.03945 0.00459 0.00248

500 1.50487 1.35130 0.04267 0.03108 0.00278 0.00153

25 0.5 2.2 0.53233 2.39244 0.07177 0.40725 0.00960 0.36239

75 0.50767 2.24504 0.03767 0.20412 0.00222 0.06987

150 0.50439 2.22579 0.02799 0.14628 0.00126 0.03659

300 0.50299 2.21458 0.01852 0.10195 0.00054 0.01658

500 0.50085 2.20587 0.01432 0.07776 0.00034 0.00967

9. APPLICATION

This section is devoted to illustrate the flexibility, adaptability, and suitability of the SPRD, by
means of two real data sets . We compare the proposed distribution with the following models :

• Power Rayleigh distribution (PRD) With PDF given as

f (x; β, θ) =
β

θ2 x2β−1 exp
(
− x2β

2θ2

)
; β, θ > 0

• Weighted Rayleigh Distribution (WRD) with PDF given as

f (x; β, θ) =
xβ+1 exp

(
− x2

2θ2

)
θβ+22

β
2 Γ
(

β
2 + 1

) ; β, θ > 0

• Rayleigh distribution (RD) with PDF given as

f (x; θ) =
x
θ2 exp

(
− x2

2θ2

)
; θ > 0

Here, several goodness of fit criterion such as -2ll, Akaike Information Criterion (AIC), Bayesian In-
formation Criterion (BIC), Akaike Information Criterion Corrected (AICC) , Kolmogorov-Smirnov
(KS) and P value statistics are used. The statistic with the lowest value of -2ll, AIC, BIC, AICC,K-S
and maximum value of P value is considered the best fit.
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9.1. Data Set 1

Data set 1:The first data is on the breaking stress of carbon fibres of 50 mm length (GPa). The
data has been previously used by [4] and [14] . The data is as follows:
0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41,
2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95,
2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60,
3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90

Table 2: Estimates (standard errors), -2ll, AIC, BIC, AICC, K-S statistic and P-value for Data-set 1.

Model β̂ θ̂ −2ll AIC BIC AICC K-S P-value

SPRD
1.6366 5.8515 171.6825 175.6825 180.0618 175.8730 0.0791 0.8029

(0.1595) (1.2057)

PRD
1.7205 4.8502 172.1352 176.1352 180.5145 176.3256 0.0823 0.7625

(0.1654) (1.0369)

WRD
2.5727 1.3551 175.7107 179.7107 184.0900 179.9012 0.1104 0.3963

(0.7452) (0.1234)

RD
2.0491 196.4168 198.4168 200.6065 198.4793 0.2265 0.0022

(0.1261)
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Figure 3: Fitted density plots for dataset 1

9.2. Data set 2

Data set 2: Consider the following data set in Johnson and Kotz [9] and represent the survival
times (in years) after diagnosis of 43 patients with a certain kind of leukemia.
0.019, 0.129, 0.159, 0.203, 0.485, 0.636, 0.748, 0.781, 0.869,1.175, 1.206, 1.219, 1.219, 1.282, 1.356,
1.362, 1.458, 1.564, 1.586, 1.592, 1.781, 1.923, 1.959, 2.134, 2.413, 2.466, 2.548, 2.652, 2.951, 3.038, 3.6,
3.655, 3.745, 4.203, 4.690, 4.888,5.143, 5.167, 5.603, 5.633, 6.192, 6.655, 6.874
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Table 3: Estimates (standard errors), -2ll, AIC, BIC, AICC,K-S statistic and P-value for Data-set 2.

Model β̂ θ̂ −2ll AIC BIC AICC K-S P-value

SPRD
0.5887 1.6864 162.9906 166.9906 170.5130 167.2906 0.0869 0.901

(0.0736) (0.2041)

PRD
0.6198 1.3094 163.2203 167.2203 170.7427 167.5203 0.0903 0.8744

(0.0766) (0.1647)

WRD
0.0010 2.2409 181.9592 185.9592 189.4816 186.2592 0.2423 0.0128

(0.3799) (0.2728)

RD
2.2415 181.9277 183.9277 185.6889 184.0252 0.2421 0.0128

(0.1709)
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Figure 4: Fitted density plots for dataset 2

The results obtained in Table 2 and Table 3 reveal that SPRD has the least value of all the
comparison criterions, hence SPRD can be considered a strong competitor to other distributions
compared here for fitting data. The plots of the fitted models are displayed in figure 3 and 4.
Also, from these plots , it is evident that SPRD provides a close fit to the two data sets.

10. CONCLUSION

In this paper, a new life time distribution namely Sine Power Rayleigh distribution (SPRD) is
proposed and studied. The SPRD model is an expansion that incorporates the Sine-G family
of distributions introduced by [10] resulting in a novel trigonometric distribution. The new
distribution is more flexible and its hazard rate function exhibits complex shapes. The study
derives various properties of the proposed distribution, including the survival function, hazard
rate function, reverse hazard function, cumulative hazard function, moments, moment generating
function, quantile function, Lorenz and Bonferroni inequality curves, Renyi entropy and order
statistics.The parameters of the proposed distribution are estimated using the maximum likeli-
hood method and a simulation study is conducted to assess the performance of the maximum
likelihood estimators (MLEs) for these parameters. Furthermore, the effectiveness of the proposed
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distribution is evaluated by applying it to two distinct real life datasets and comparing it with well
known standard distributions such as the Rayleigh distribution, Power Rayleigh distribution and
Weighted Rayleigh distribution. The results demonstrate that the Sine Power Rayleigh distribution
(SPRD) surpasses its competitors in terms of fitting the two datasets.
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Abstract 

Over-dispersed models are commonly utilized when the variation is more than what the model 
actually predicts. Since one of the reasons for over-dispersion is the large number of zeros, we 
employ zero-inflated models instead of more traditional ones to handle this observed occurrence. We 
present a zero-inflated version of a discrete distribution that was developed in 2021 in our research. 
Significant statistical characteristics of the suggested model have been identified, such as moments, 
the over-dispersion feature, generating functions, and related measures, among others. We have 
carried the parametric estimation using the maximum likelihood estimate. Maximum likelihood 
estimates are checked for usefulness in a simulation exercise. We evaluated the applicability of our 
developed model using three real-world data sets,  

Keywords: Over-dispersion, Zero-inflation, Discrete distribution, Simulation, 
Goodness-of-fit, Testing of hypothesis. 

I. Introduction

To perform statistical analysis, statisticians use one of several methods, and these methods are the 
building blocks of statistical models. Mathematical representations of observable data are provided 
by statistical models. We choose statistical modeling of data for the purpose of understanding a 
wide range of random events across disciplines. Its applications are not limited to mathematical 
and statistical studies; rather, they permeate a wide variety of fields of study. Count data plays an 
important role in almost every scientific study, no matter how big or small. This data is used to 
draw inferences in relation to the population from which it is collected but, typically this data 
exhibits more variation than what is predicted by our hypothesized model. More precisely, this 
observable fact is called as over-dispersion (variance goes beyond mean). One cause of over-
dispersion in count data is the presence of many more zeros than predicted by a statistical model. 
This phenomenon of finding excessive number of zeros is referred to as zero-inflation, and in order 
to model such dilemma, we use zero-inflated models rather than the more often used standard 
models. 

Over-dispersion in count data due to zero-inflation is common, thus researchers are always 
developing new ideas and methods to shed light on this phenomenon. In order to deal with an 
excessive amount of zeros in count data, Lambert developed a new model called as zero-inflated 
Poisson (ZIP) regression model [7]. She used this model to investigate manufacturing flaws and 
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found that ZIP regression model is both simple and effective. Böhning argued that ZIP distribution 
is usually capable of easily dealing with the situation where there is an excessive quantity of zero 
counts [3]. To deal with count data containing an excessive number of zeros and ones, Melkersson 
& Olsson offered an improved version of the ZIP distribution, which he named as the zero-one 
inflated Poisson (ZOIP) distribution [9]. Yau et al. presented a mixed regression model of zero-
inflated Negative Binomial (ZINB) to examine pancreatic disorder Length of Stay (LOS) times that 
account for same-day discharges [17]. Gilthrope et al. took into account biological count data with 
an excessive quantity of zeros, and he sought to address variety of factors [5]. An overview of the 
field of statistical modeling of over-dispersed data was provided by discussing its antecedents, 
motivations, pioneering contributions, major milestones, and practical uses [16]. Zhang et al. made 
an effort to investigate the characteristics and patterns of ZOIP distribution [19]. In order to 
evaluate the capacity to incorporate zero-inflation and over-dispersion in count data, Pittman et al. 
evaluated a number of methods, including ZIP, ZINB, and Hurdle Poisson (HUP) regression 
model [10]. Tüzen et al. analyzed the implementation of count data models using simulated data, 
which allowed for a wide range of outliers and zero-inflation scenarios [14]. They considered 
Poisson, Negative-Binomial, ZIP, ZINB, HUP and Negative-Binomial Hurdle models to check the 
compatibility of these models in presence of outliers and excess zeros. Bodhisuwan & Kehler 
proposed a new distribution called the zero-inflated Negative-Binomial-Exponential (ZINB-E) 
distribution [2]. To address the issue of too many zeros in count data, Rivas & Campos introduced 
the zero-inflated Waring (ZIW) distribution [11]. If the Waring distribution can’t sufficiently 
characterize the behavior of the data, as is often the case when there is a large frequency of 
observed zeros, then the ZIW distribution is thought to be a better bit. Young, Roemmele & Shi 
evaluated a study that provided a snapshot of the current level of knowledge in the field of zero-
inflation [18]. Ahmad & Wani introduced a compound model for handling over-dispersed count 
data. They used four different data sets and compared the fit with several potential models of 
interest. The fitting results showed the flexibility of the devised model in handling over-dispersed 
count data [1]. One of the recent works in zero-inflation aspect of the count data is by Wani & 
Ahmad [15]. They put forward the zero-inflated version of Poisson-Akash distribution. Much 
advancement has been made in this field of statistical modeling, yet there is still a consistent need 
for new models to be created. These new models are driven by the regular emergence of 
unexpected patterns in count data. We intend to extend this contribution by a devising a new zero-
inflated model with a very clear-cut Probability function. 

2. Zero-Inflated Discrete Distribution

A discrete distribution (DD) was proposed by Jain et al. in 2021 by discretization of a continuous 
distribution [6]. If Z follows the DD, then the probability mass function (PMF) of the Discrete 
Distribution is given as follows 

 ...,3,2,1,0,1;
1

)(
1




  zzZP
z





  (1) 

The Discrete distribution (1) is itself an over-dispersed model but it also suffers at times to handle 
the excessive number of zeros in count data. We have thus made an effort to put forward the zero-
inflated version of Discrete distribution. If X is a random variable following the Discrete 
distribution with parameter θ >1 and α (0< α <1) is the extra amount added to the proportion  of 
point zero (zero-inflated distribution), then the probability mass function (PMF) of zero-inflated 
Discrete distribution (ZIDD) can be written as follows 
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The Cumulative distribution function (CDF) of ZIDD can be expressed as 

1

1
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xx XF
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  (3) 

It can be seen from the plots of PMF given in Fig. 1 that the model has mode at point zero. 
Furthermore, it is positively skewed and the tail shows a rapid decrease as parameters take higher 
values. 

Fig. 1: Plots of Probability mass function of ZIDD for different choices of parameter values 

3. Statistical Properties

In this section, we have derived some vital statistical characteristics of the newly developed model. 

3.1 Generating Functions 

When dealing with discrete random variables, the Probability Generating Function (PGF) is 
important tool. Its major benefit is that it makes it straightforward for us to explain the distribution 
of X+Y when they are independent. The PGF of ZIDD can be obtained as 
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In equation (4), take t= et, that will yield the Moment Generating Function of ZIDD as 

follows 
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3.2 Moments and Related Characteristics 

The r th moment about origin (Raw Moment) of ZIDD is obtained by employing its PMF (2). It 
follows that  
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With PDD (X=x) and EDD (Xr) representing the PMF and the r th Raw Moment of the baseline model 
respectively. 
As a result, the mean and variance of ZIDD comes out to be as follows 
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Some of the statistical properties of our proposed model can be expressed by means of Raw and 
Central moments. These properties include Index of Dispersion (IOD), Coefficient of Variation 
(C.V), Coefficient of Skewness and Coefficient of Kurtosis.  
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From the plots of Coefficient of Skewness and Kurtosis given in Fig. 3, it can be noted that both of 
these increase monotonically for greater values of the parameter. Moreover, our proposed model 
possesses positive skewness and a leptokurtic shape. 
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Fig. 2: Plots of Coefficient of Variation, Skewness and Kurtosis for some values of parameters 

A significant characteristic enjoyed by our proposed model lies in the fact that it is always over-
dispersed i.e., variance is always going to surpass the mean. We have 
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The second term is obviously positive as θ >1 and α (0< α <1). This proves the over-dispersion 
property of ZIDD. The Index of Dispersion has also been plotted (see Fig. 3) for a choice of 
parameter values, which graphically demonstrates the over-dispersion of the model. 

Fig. 3: Index of Dispersion plots for various values of parameters 

4. Parametric Inference

The foundation for estimation is in actual fact clear-cut. Knowing the parameter put forwards 
information concerning the entire population when sampling is done from a population that is 
represented by a specific distribution. So, it makes sense to carry out the estimation of parameters. 
The maximum likelihood estimation (MLE) is more often used for the reason that it enjoys greater 
efficiency and improved numerical stability. MLE is a statistical technique for estimating the 
parameters of a probability distribution that is assumed given some observed data.  
The likelihood function of ZIDD can be defined as follows if x1, x2, . . . xn is the random sample of 
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In this study we have used firdistrplus in R-software to obtain the ML estimates [4]. 
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5. Simulation Study

A simulation study has been undertaken in this part to evaluate the finite sample performance of 
the ML estimates of ZIDD. We attempt the Monte Carlo Simulation study by employing the 
discrete inverse transform method. In order to calculate Average Values (AVs), Average Biases (ABs), 
Mean Square Errors (MSEs), Mean Relative Estimates (MRESs), Mean Relative Errors (MRERs), 
and Average Dispersion Indices (AVDIs), we considered four different values for parameter  and 
repeated the course of action N=1000 times starting from a small sample to large sample (n=25, 75, 
100, 300, 600). The results are provided in Table 1. As it can be seen from Table 1, the ML estimates 
are asymptotically unbiased and consistent. 

Table 1: Simulation results for maximum likelihood estimates of parameters of proposed model 

θ෠ αෝ

AVs ABs MSEs MRESs MRERs AVs ABs MSEs MRESs MRERs 
n Parameter Set 1: θ=1.5   α =0.4 
25 1.614 0.114 0.175 1.076 0.163 0.387 0.012 0.035 0.968 0.3903 
75 1.508 0.008 0.011 1.005 0.055 0.401 0.001 0.010 1.004 0.2049 
100 1.529 0.029 0.012 1.019 0.056 0.385 0.014 0.007 0.984 0.1713 
300 1.503 0.003 0.002 1.002 0.024 0.398 0.001 0.002 0.996 0.0876 
600 1.504 0.004 0.001 1.002 0.021 0.395 0.004 0.000 0.998 0.0213 
n Parameter Set 2: θ=1.8  α =0.4 
25 1.959 0.159 0.527 1.088 0.214 0.380 0.019 0.049 0.950 0.462 
75 1.856 0.056 0.046 1.031 0.094 0.396 0.003 0.018 0.992 0.263 
100 1.793 0.006 0.036 0.996 0.087 0.387 0.012 0.011 0.967 0.221 
300 1.809 0.009 0.009 1.005 0.039 0.396 0.003 0.003 0.991 0.114 
600 1.809 0.009 0.007 1.005 0.039 0.403 0.003 0.001 1.007 0.089 
n Parameter Set 3: θ=2.0  α =0.2 
25 2.238 0.238 0.574 1.110 0.235 0.172 0.027 0.034 0.862 0.819 
75 2.028 0.028 0.066 1.014 0.089 0.186 0.013 0.017 0.933 0.532 
100 2.022 0.022 0.064 1.011 0.090 0.205 0.005 0.015 1.027 0.528 
300 2.017 0.017 0.024 1.008 0.0621 0.188 0.011 0.007 0.943 0.329 
600 1.994 0.005 0.006 0.997 0.0333 0.209 0.009 0.002 1.049 0.186 
n Parameter Set 4: θ=2.5  α =0.3 
25 2.674 0.174 1.501 1.069 0.260 0.288 0.011 0.054 0.960 0.667 
75 2.495 0.044 0.204 0.998 0.157 0.306 0.006 0.038 1.023 0.565 
100 2.542 0.042 0.171 1.016 0.130 0.306 0.006 0.017 1.021 0.354 
300 2.565 0.035 0.083 1.026 0.095 0.296 0.003 0.012 0.988 0.317 
600 2.511 0.011 0.027 1.004 0.055 0.299 0.001 0.005 0.997 0.190 

6. Data Fitting

Real life datasets from different fields have been employed to test the compatibility of our 
proposed model in presence of over-dispersion caused by zero-inflation. In addition to this, we 
compared the fitting results from our proposed model with other statistical models of competing 
interest. The models with which we have compared our devised models include Poisson 
distribution (PD), zero-inflated Poisson distribution (ZIPD), zero-inflated Negative-Binomial 
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distribution (ZINBD), Discrete Weibull distribution (DWD) and Discrete distribution (DD). In 
order to estimate the parameters of each distribution, we used maximum likelihood estimation 
method. 

6.1 Data set 1 

This dataset stands for the observed number of households according to total number of migrants 
[13]. The data is expressed in Table 2 and the performance of fitting this data is summarized in 
Table 3. From the fitting results, it is obvious that our model performs better than other competing 
models of interest. The plots for observed an expected frequencies under different models given in 
Fig. 4 provides a clearer view of the fitting results.  

Table 2: Data set 1 
Number of Households 0 1 2 3 4 5 6 7 8 
Observed Frequency 242 82 38 17 11 7 3 2 0 

Table 3: Fitting results of Data set 1 

Model 2 d.f p-value L AIC BIC 

PD 118.64 3 0.0001 -555.060 1112.121 1116.117 
ZIPD 16.80 2 0.0002 -501.796 1007.592 1015.585 

ZINBD 3.29 2 0.1930 -492.597 991.195 1003.185 
DWD 1.57 4 0.8141 -492.362 988.724 996.717 
DD 9.41 4 0.0516 -495.785 993.571 997.567 

ZIDD 1.51 4 0.8248 -492.030 988.060 996.053 

Fig. 4: Observed and expected frequencies plots for PD, ZIPD, ZINBD, DWD, DD, and ZIDD for Data set 1 
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6.2 Data set 2 

This dataset presents the number of spots in southern beetle [8]. The data is presented in Table 4 
and the fitting results are given in Table 5. The performance measures indicate that our model 
suffers minimum loss compared to other models and the value of Chi-square is comparatively 
smaller. Moreover, the plots for observed and expected PMFs are given in Fig. 5. 

Table 4: Data set 2
Number of 

Spots 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Observed 

Frequency 
1169 144 92 54 29 18 10 12 6 9 3 2 0 0 1 0 0 0 0 1 

Table 5: Fitting results of Data set 2

Model 2 d.f p-value L AIC BIC 

PD 1361.80 4 0.0001 -2291.139 4584.277 4589.623 

ZIPD 184.65 5 0.0001 -1648.989 3301.978 3312.670 

ZINBD 9.94 6 0.1272 -1554.612 3115.223 3131.261 

DWD 14.30 7 0.0460 -1560.532 3125.064 3135.756 

DD 432.62 5 0.0001 -1757.427 3516.855 3522.201 

ZIDD 7.96 7 0.3361 -1554.001 3112.002 3122.694 

Fig. 5: Plots of observed and expected PMFs under PD, ZIPD, ZINBD, DWD, DD, and ZIDD for Data set 2 

6.3 Data set 3 

This dataset represents the number of units of Brand K of Chatfield bought by numbers of 
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the fitting results of this data set. The results from the fitting table prove that the devised model 
shows better fitting compared to other competing models. In addition to this, the expected 
frequencies are closer to observed frequencies in case of our model (see Fig. 6). 

Table 6: Data set 3

Brand K 0 1 2 3 4 5 6 7 8 9 
Number of Consumers 1671 43 19 9 2 3 1 0 0 2 

Table 7: Fitting results of data set 3

Model 2 d.f p-value L AIC BIC 

PD 221.99 1 0.0001 -612.908 1227.8171 1233.2840 
ZIPD 6.28 2 0.0433 -439.794 883.5894 894.5241 

ZINBD 1.40 1 0.0942 -429.660 865.3218 881.7239 
DWD 2.48 2 0.2893 -429.407 862.8156 873.7504 

DD 118.40 1 0.0001 -537.381 1076.763 1082.230 
ZIDD 0.48 2 0.7866 -429.334 862.6682 873.6030 

Fig. 6: Observed and expected frequency plots for Data set 3 under PD, ZIPD, ZINBD, DWD, DD, and ZIDD 

7. Testing of Hypothesis

In order to test the significance of the zero-inflation parameter of our proposed model, we take on 
different test statistics to test the null hypothesis given as follows 

H0 : α =0 vs. the alternative hypothesis H1 : α >0 

7.1 Likelihood Ratio test 

The Likelihood ratio test (LRT) evaluates the ratio of two log-likelihood functions in order to test 
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the null hypothesis H0 against an alternative hypothesis H1. In case of LRT, the test statistic is 

,)]ˆ,ˆ()ˆ([2  LLLRT 

where )ˆ(L and )ˆ,ˆ( L  are the maximum log-likelihood under DD and ZIDD respectively. The 

LRT test statistic is asymptotically distributed as Chi-square with one degree of freedom. The LRT 
for all the three datasets is respectively given as 

LRT1=7.51, LRT2=406.852,  LRT3=216.094. 

7.2 Wald test 

This test is used to determine the presence or absence of an effect. In this section, we will construct 
a Wald test for the effect of zero-inflation parameter in our proposed model. The test statistic 
under Wald test is given by 

,
)ˆ(

ˆ 2




 Var
Wald 

where )ˆ(Var represents the pertinent diagonal component of the Fisher information matrix 

calculated at  ˆ  and  ˆ . The Wald test statistic is asymptotically distributed as Chi-square 
with one degree of freedom. The Wald test statistic value for all the three datasets can be 
correspondingly given as 

Wald1=9.53,  Wald2=1014.12,  Wald3=517.44. 

On comparing the LRT and Wald test values from all data sets with the critical value (3.84), we 
reject the null hypothesis in case of all the three tests and draw the conclusion that the zero-
inflation parameter in our proposed model is of significant importance. 

8. Conclusion

In this research we have made an effort to present a new zero-inflated count data model. It was 
investigated how the probability mass function behaves for varied values of parameters. We 
discussed some important statistical properties of our proposed model. Simulation study was 
carried out to test the performance of maximum likelihood estimates and the results were pretty 
much significant. For the testing the compatibility of our proposed model, we tested the proposed 
distribution on real datasets using different performance metrics like Chi-square Goodness-of-fit, 
AIC, BIC etc. Moreover, we compared the fitting results of our devised model with other 
competing models. The results verified that our proposed model is adaptable and can be 
considered for handling over-dispersion in count data caused by zero-inflation. Finally, we carried 
out the Likelihood Ratio test and the Wald test on all datasets to see the significance of zero-
inflation parameter and the results were significant. 
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Abstract 

In the present paper the reliability model for availability analysis of mushroom plant is developed in 

three sub-units like water pump, winter cold standby unit A.C., and packing machine. We assume a 

doctor of mushroom and workers are available who examines and repairs the elements as when we 

need.  A mathematical model of the system is developed by using all these considerations. MTSF, 

Availability, server of busy period and expected number of servers visit of mushroom plant are 

determined with the assistance of RPGT. Graphs and tables are draw to depict the behavior of various 

parameters such as MTSF, Availability, server of busy period and expected number of servers visits 

and the effect of various parameters of the plant is analyzed when repair and failure rate both are vary 

and also when one of them is constant 

Keywords: Availability, MTSF, RPGT, Straw. 

1. Introduction

In Modern time, Production have vided variety from modest to complicate; So, mushroom 

manufacturer must have superior strategy of optimum accessibility for optimum grouping elements. 

In The era of competition, all mushroom manufacturer face challenges for assurance ideal 

manufacturing charges and nominal period to achieve implementation and reliability. Mushroom 

plants need extremely hard work for production [1]. For production of mushroom, we need storage 

rooms and in a storage room, wooden beds are required to put the bags of raw food of mushrooms 

on them. To prepare fertilize for mushroom we need wheat straw which is easily available 

everywhere. In alternate of wheat straw, we use rice straw, mustard straw, lentils straw and guar 

straw and other things which can be used in preparing of compost are bran, chicken beet, urea, 

gypsum and water as shown in figure 1. Bihar is top most state for producing mushroom. Mushroom 

contains components calcium, phosphorus, Potassium, iron and copper [2]. In winter season (sept. 

to march), two types of crops of mushroom are there. For increasing quality and production of 

mushroom Govt. has open mushroom centre at Solan collaborating with UNDP and the purpose of 

this centre is to provide technical knowledge about production and creating interest in farmers. The 

cost of this project is Rs. 1.26 crore with the following objectives: To make availability of quality 

spawn and compost, provide the latest production technologies for mushroom farming and provide 

marketing facilities for cultivation and distribution [3]. Govt. provide financial help to increase the 

production of mushroom in the form of subsidies and provide free training to farmers for production 

of mushroom. Nowadays, Mushroom production become popular in whole of the world [4]. 
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3.92%

9.89%

24.49%2.94%

58.77%

 Wheat Straw

 Bran

 Chicken Beet

 Urea

 Gypsum

Figure 1. Compost for Mushroom

Approximately six days are required to prepare fertilize. After this procedure production of 

mushroom take approximate 20 days. For our discussion, we take three units like water pump, 

winter cold standby unit and packing machine. A Doctor is required for examining whole activity 

[5]. In winter, demand of mushroom increases due to the benefits of mushroom for our health like 

decreases the risk of cancer, promote lower cholesterol, protect brain health, provide the source of 

vitamin D and support a healthy immune system [13][14]. Keeping in view the defective and 

maintenance charges are fixed while fluctuate other charges, their influence on grouping activity 

elements is shown by illustrating tables and charts, precede by discussions [6][7]. 

2. Assumptions and Notations

 Facility of doctor of mushroom is always available.

 Workers are available as required as we need.

 Repairs and failures are not dependent numerically [15].

 After Repairing, system is fully worked as the new one.

 The system is discussed in steady-state situations.

Table 1. Notations Used 

Symbol Represent 

Working state 

Regenerative state 

Failed state 

 gi Repair rate 

 hi Failure rate 
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3. System Description

The sub-system and their working are described as given below 

 Water Pump (A): Water Pump for watering mushroom.

 Winter cold stand by unit A.C. (B): Production of mushroom required low temperature.

For this purpose, mushroom produces in winter and in summer for this purpose uses of A.C. Button 

mushroom requires 200-280for vegetative growth 12-180 C for reproductive growth [16]. 

 Packing Machine (M): Seiler are used for packing mushroom.

4. Transition Diagrams

By taking all the described notations and assumptions [8-9], the Transition Diagram of the system is 

shown in Figure 2. 

Figure 2. Transition Diagram 

where, 

S1 = ABB’, S2 = AbB’, S3 = aBB’,  S4 =aBB’M, 

S5 = AbB’M, S6 = abB’, S7 = abB'M,  S8 = Abb’, 

S9 = Abb’M, 

5. Model Description

A mushroom plant contains of following sub-units water pump(A), Winter (B) with cold standby 

unit B’, Packing Machine (M). Implication order to repair the elements and system are M >A> B. In 

the start the sub-unit is in state S1[ABB’] where unit ‘B’, it’s cold standby sub-unit, unit ‘A’ and server 

are in good operational condition, hence the framework works in full volume. The cold redundant 

sub-unit when decent is shown in (’) which is prepared online directly with the assistance of a perfect 

switch over framework upon the disappointment of chief sub-unit ‘B’. From stage S1 upon the 

disappointment of online unit ‘B’, disappointment rate of which is g1, framework enters the stage S2 

[AbB’], here framework again works at full capacity as cold standby sub-unit is mode online. From 
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stage S2 upon repair of fizzled sub-unit, repair rate of which is h1, framework again joins stage S1. In 

stage S1, if unit ‘A’ flops of which rate is g2, upon its repair (repair rates h2) over the framework come 

again into the stage S1 while in stage S3 if it fails with failure rate g3, framework enters the stage S4 

[aBB’M] upon its repair (repair rate h3) framework re-enters the stage S3. In stage S2 [AbB’] if online 

unit ‘B’ bombs at rates, the framework enters the stage S8 [Abb’], upon repair of unit ‘B’ at rate h1. 

The scheme come again into stage S2 though in stage S8 if the M unit fails (whose disappointment 

rate is g3) structure joins the failed stage S9 [Abb’M] upon its repair, behavior of the structure rejoins 

the stage S8, where its resumes repairing the fizzled sub-unit ‘B’. Also, in stage S2 if unit ‘A’ fizzled 

at rate g2, the framework takes stage S6 [abB’] upon repair of unit ‘A’ structure rejoins the stage S2 

while in stage S6. If associated fails at rate g3, the framework takes the stage S7 [abB'M], upon its 

reparation as it is assumed top priority, the structure rejoins the stage S6. In state S2 if the server failed 

the structure joins the stage S5 [AbB’M], here the structure continues to work of full volume, as the 

attendant is given top priority in repair, so upon its repair the structure rejoins stage S2, in stage S5 if 

online sub-unit ‘B’ at rate g1, the structure joins the stage S9 and if the sub-unit ‘A’ then the structure 

joins the stage S7. 

Table 2. Transition Probabilities 

qi,j(t) pij=∫ 𝑞𝑖𝑗(𝑡)𝑑𝑡
∞

0
 

𝑞1,2(𝑡) = 𝑔1 𝑒−(𝑔1 + 𝑔2)𝑡 p1, 2 = g1/ (g1 + g2) 

𝑞1,3(𝑡) = 𝑔2 𝑒
−(𝑔1 + 𝑔2)𝑡 p1, 3 = g1/ (g1 + g2) 

𝑞2,1(𝑡) = ℎ1 𝑒−(𝑔1  + 𝑔2 + 𝑔3 + ℎ1)𝑡 p2, 1 = g1/ (g1 + g2 + g3 + h1) 

𝑞2,5(𝑡) = 𝑔3 𝑒−(𝑔1 + 𝑔2 + 𝑔3 + ℎ1)𝑡 p2, 5 = g3/ (g1 + g2 + g3 + h1) 

𝑞2,6(𝑡) = 𝑔2 𝑒−(𝑔1 + 𝑔2 + 𝑔3 + ℎ1)𝑡 p2, 6 = g2/ (g1 + g2 + g3 + h1) 

𝑞2,8(𝑡) = 𝑔1 𝑒−(𝑔1 + 𝑔2 + 𝑔3 + ℎ1)𝑡 p2, 8 = g1/ (g1 + g2 + g3 + h1) 

𝑞3,1(𝑡) = ℎ2 𝑒−(ℎ2 + 𝑔3)𝑡 p3, 1 = h2/ (h2 + g3) 

𝑞3,4(𝑡) = 𝑔3 𝑒−(ℎ2 + 𝑔3)𝑡 p3, 4 = g3/ (h2 + g3) 

𝑞4,3(𝑡) = ℎ3 𝑒−ℎ3𝑡  p4, 3 = 1 

𝑞5,2(𝑡) = ℎ3 𝑒 −(𝑔1 + 𝑔2 + ℎ3)𝑡 p5, 2 = h3/ (g1 + g2 + h3) 

𝑞5,7(𝑡) = 𝑔2 𝑒−(𝑔1  + 𝑔2 + ℎ3)𝑡 p5, 7 = g2/ (g1 + g2 + h3) 

𝑞5,9(𝑡) = 𝑔1 𝑒−(𝑔1 + 𝑔2 + ℎ3)𝑡 p5, 9 = g1/ (g1 + g2 + h3) 

𝑞6,2(𝑡) = ℎ2 𝑒−(𝑔3 + ℎ2)𝑡 p6, 2 = h2/ (g3 + h2) 

𝑞6,7(𝑡) = 𝑔3 𝑒−(𝑔3  + ℎ2)𝑡 p6, 7 = g3/ (g3 + h2) 

𝑞7,6(𝑡) = ℎ3 𝑒−ℎ 3𝑡  p7, 6 = 1 

𝑞8,2(𝑡) = ℎ1 𝑒 −(𝑔3 + ℎ 1)𝑡 p8, 2 = h1/ (h1 + g3) 

𝑞8,9(𝑡) = 𝑔3 𝑒−(𝑔 3 + ℎ 1)𝑡 p8, 9 = g3/ (h1 + g3) 

𝑞9,8(𝑡) = ℎ3 𝑒−ℎ 3𝑡 p9, 8 = 1 

Table 3. Mean Sojourn Times 

𝑹𝒊(t)  µi =∫ 𝑹𝒊(𝑡)𝑑𝑡
∞

0
 

𝑅1 (t) =  𝑒−(𝑔1  + 𝑔2)𝑡 µ1 = 1/(g1 + g2) 

𝑅2 (t) =  𝑒−(𝑔1 + 𝑔2 + 𝑔3  + ℎ1)𝑡 µ2 = 1/(g1 + g2 + g3 + h1) 

𝑅3 (t) =  𝑒−(ℎ2 + 𝑔3)𝑡 µ3 = 1/(h2 +  g3) 

𝑅4 (t) =  𝑒−ℎ 3𝑡  µ4 = 1/h3 

𝑅5 (t) =  𝑒−(𝑔1 + 𝑔2  + ℎ3)𝑡 µ5 = 1/(g1 + g2 + h3) 

𝑅6 (t) =  𝑒−(𝑔3 + ℎ2)𝑡 µ6 = 1/(g3 + h2) 

𝑅7 (t) =  𝑒−ℎ 3𝑡  µ7 = 1/h3 

𝑅8 (t) =  𝑒−(ℎ1 + 𝑔3)𝑡 µ8 = 1/(h1 + g3) 

𝑅9 (t) =  𝑒−ℎ 3𝑡  µ9 = 1/h3 

RT&A, No 1 (77)
 Volume 19, March 2024

732



Shakuntla Singla, Sonia, Poonam Panwar 
STOCHASTIC OPTIMIZATION AND RELIABILITY ANALYSIS… 

5.1 Evaluation of Path Probabilities 

Applying RPGT and use ‘1’ as initial-stage of the structure, we detect all transition possibilities 

aspects of all accessible stages from initial stage ‘ξ’ = ‘1’ [10] [11]. 
We will discover probabilities after state ‘1’ to various vertices which are defined as follows: 

V1, 1 = 1 (Verified) 

V1, 2 = (1, 2)/ {1 - (2, 5, 2)} [1 - (2, 6, 2)/{1 - (6, 7, 6)}][1 - (2, 8, 2)/{1 - (8, 9, 8)}] 

= p1, 2/(1 – p2, 5 p5, 2)[1 - {(p2, 6 p6, 2/(1 – p6, 7 p7, 6)}] [1 - {(p2, 8 p8, 2/(1 – p8, 9 p9, 8)}] 

V1, 3 = (1, 3)/ {1 - (3, 4, 3)} 

= p1, 3/ (1 – p3, 4 p4, 3) 

V1, 4 = (1, 3, 4)/ {1 - (3, 4, 3)} 

= p1, 3 p3, 4/ (1 – p3, 4 p4, 3) 

V1, 5 = (1, 2, 5)/{1 - (2, 5, 2)} [1 - (2, 6, 2)/ {1 - (6, 7, 6)}] [1 - (2, 8, 2)/{1 - (8, 9, 8)}] 

= p1, 2 p2, 5/ (1 – p2, 5 p5, 2) [1 - {(p2, 6 p6, 2/(1 – p6, 7 p7, 6)}] [1 - {(p2, 8 p8, 2/(1 – p8, 9 p9, 8)}] 

V1, 6 = (1, 2, 6)/{1 - (2, 5, 2)}[1 - (2, 6, 2)/{1 - (6, 7, 6)}] [1 - (2, 8, 2)/{1 - (8, 9, 8)}]{1 - (6, 7, 6)} 

= (1, 2, 5, 7, 6)/ {1 - (2, 5, 2)} [1 - (2, 6, 2)/ {1 - (6, 7, 6)}] [1 - (2, 8, 2)/{1 - (8, 9, 8)}] {1 - (6, 7, 6)} 

= p1, 2 p2, 6 / (1 – p2, 5 p5, 2) [1 - {(p2, 6 p6, 2/(1 – p6, 7 p7, 6)}] [1 - {(p2, 8 p8, 2/ (1 – p8, 9 p9, 8)}] (1 – p6, 7 p7, 6) 

= p1, 2 p2, 5 p5, 7 p7, 6/(1 – p2, 5 p5, 2)[1 - {(p2, 6 p6, 2/(1 – p6, 7 p7, 6)}] [1 - {(p2, 8 p8, 2/(1 – p8, 9 p9, 8)}] (1 – p6, 7 p7, 6) 

V1, 7 = (1, 2, 5, 7)/ {1 - (2, 5, 2)} [1 - (2, 6, 2)/{1 - (6, 7, 6)}] [1 - (2, 8, 2)/{1 - (8, 9, 8)}] {1 -  (8, 6, 8)} 

= (1, 2, 6, 7)/{1 - (2, 5, 2)} [1 - (2, 6, 2)/{1 - (6, 7, 6)}] [1-(1,7,1)/{1-(7,8,7)}]{1-(5,6,5)} 

= p1, 2 p2, 5 p5, 7/ (1 – p2, 5 p5, 2) [1 - {(p2, 6 p6, 2/(1 – p6, 7 p7, 6)}] [1 - {(p2, 8 p8, 2/(1 – p8, 9 p9, 8)}] (1 – p7, 6 p6, 7) 

= p1, 2 p2, 6 p6, 7/(1 – p2, 5 p5, 2)[1 - {(p2 ,6 p6, 2/(1 – p6, 7 p7, 6)}] [1- {(p2, 8 p8, 2/(1 – p8, 9 p9, 8)}] 

(1 – p6, 7 p7, 6) 

V1, 8 = (1, 2, 8)/{1 - (2, 5, 2)} [1 - (2, 6, 2)/{1 - (6, 7, 6)}] [1 - (2, 8, 2)/{1 - (8, 9, 8)}] {1 - (8, 9, 8)} 

= (1, 2, 8, 9, 8)/ {1 - (2, 5, 2)}[1 - (2, 6, 2)/{1 - (6, 7, 6)}] [1 - (2, 8, 2)/{1 - (8, 9, 8)}] {1 -  (8, 9, 8)} 

= p1, 2 p2, 8/(1 – p2, 5 p5, 2) [1 - {(p2, 6 p6, 2/(1 – p6, 7 p7, 6)}] [1 - {(p2, 8 p8, 2/(1 – p8, 9 p9, 8)}] (1 – p8, 9 p9, 8) 

= p1, 2 p2, 5 p5, 9 p9, 8/ (1 – p2, 5 p5, 2)[1 - {(p2, 6 p6, 2/(1 – p6, 7 p7, 6)}] [1 - {(p2, 8 p8, 2/(1 – p8, 9 p9, 8)}] (1 – p8, 9 p9, 8) 

V1, 9 = (1, 2, 5, 9)/{1 - (2, 5, 2)}[1 - (2, 6, 2)/{1 - (6, 7, 6)}] [1 - (2, 8, 2)/{1 - (8, 9, 8)}] {1 - (9, 8, 7)} 

= (1, 2, 8, 9)/{1 - (2, 5, 2)}[1 - (2, 6, 2)/{1 - (6, 7, 6)}] [1 - (2, 8, 2)/{1 - (8, 9, 8)}] {1 - (9, 8, 9)} 

= p1, 2 p2, 5 p5, 9/(1 – p2, 5 p5, 2) [1 - {(p2, 6 p6, 2/ (1 – p6, 7 p7, 6)}] [1 - {(p2, 8 p8, 2/(1 – p8, 9 p9, 8)}] (1 – p9, 8 p8, 9) 

= p1, 2 p2, 8 p8, 9/(1 – p2, 5 p5, 2) [1 - {(p2, 6 p6, 2/(1 – p6, 7 p7, 6)}][1 - {(p2, 8 p8, 2/(1 – p8, 9 p9, 8)}] 

(1 – p9, 8 p8, 9) 

Transition stage possibilities from base stage ‘2’ are 

V2, 1 = (2, 1)/[{1 - (1, 3, 1)}/{1 - (3, 4, 3)}] 

= p2, 1/{(1 – p1, 3 p3, 1)/(1 – p3, 4 p4, 3)} 

V2, 2 = 1  

V2, 3 = (2, 1, 3)/[{1 - (1, 3, 1)}/{1 - (3, 4, 3)}]{1 - (3, 4, 3)} 

= p2, 1 p1, 3/[{(1 – p1, 3 p3, 1)/(1 – p3, 4 p4, 3)}(1 – p3, 4 p4, 3)] 

V2, 4 = (2, 1, 3, 4)/ [{1 - (1, 3, 1)}/ {1 - (3, 4, 3)}]{1 - (3, 4, 3)} 

= p2, 1 p1, 3 p3, 4/ [{(1 – p1, 3 p3, 1)/(1 – p3, 4 p4, 3)}(1 – p3, 4 p4, 3)] 

V2, 5 = (2, 5) 

      = p2, 5 

V2, 6 = (2, 6)/{1 - (6, 7, 6)} + (2, 5, 7, 6) 

= p2, 6/(1 – p6, 7 p7, 6) + p2, 5 p5, 7 p7, 6 

V2, 7 = (2, 5, 7)/[{1 - (7, 6, 7)}/{1 - (6, 2, 6)}]  +  (2, 6, 7) 

= p2, 5 p5, 7/{(1 – p6, 7 p7, 6)/(1 – p6, 2 p2, 6) + p2, 6 p6, 7 

V2, 8 = (2, 8)/{1 - (8, 9, 8)} + (2, 5, 9, 8) 

= p2, 8/(1 – p8, 9 p9, 8) + p2, 5 p5, 9 p9, 8 

V2, 9 = (2, 8, 9)/{1 - (8, 9, 8)} +  (2,   5,  9) 

= p2, 8 p8,  9/(1 – p8, 9  p9, 8) + p2, 5 p5, 9 
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6. Modeling System Parameters by using RPGT

6.1. Mean time to system failure (T0) 

Regenerative working stages [12], where the framework can transit (base stage ‘2’), earlier incoming 

into failed stage are: ‘i’ = 1, 2, 5 attractive ‘ξ’ = ‘1’ [12] 

T0 = (V1, 1 μ1 + V1, 2 μ2 + V1, 5 μ5)/ {1 - (1, 2, 1)} 

6.2 Availability of the system (A0) 

Regenerative stages, where the framework is accessible are ‘i’ = 1, 2, 5 attractive ‘ξ’ = ‘1’ whole 

fraction of time for which the framework is accessible is assumed by  

A0 = (V2, 1 µ1 + V2, 2 µ2 + V2, 5 µ5)/Z1 

∴Z = V1, 1 µ1 + V1, 2 µ2 + V1, 3 µ3 + V1, 4 µ4 + V1, 5 µ5 + V1, 6 µ6 + V1, 7 µ7 + V1, 8 µ8 + V1, 9 µ9 

∴ Z1 = V2, 1 µ1 + V2, 2 µ2 + V2, 3 µ3 + V2, 4 µ4 + V2, 5 µ5 + V2, 6 µ6 + V2, 7 µ7 + V2, 8 µ8 + V2, 9 µ9 

6.3 Server of busy period (B0) 

Regenerative stages where repairman is busy are 2  ≤  j  ≤  9, whole fraction of time for which server 

remains eventful is by equation: 

B0 = (V1, 2 µ2 + V1, 3 µ3 + V1, 4 µ4 + V1, 5 µ5 + V1, 6 µ6 + V1, 7 µ7 + V1, 8 µ8 + V1, 9 µ9)/D 

= 1 - (µ1/ D) 

6.4 Expected number of server visit’s (V0) 

Regenerative stages, where repair man do this job are j = 2, 5 number of visit by repair man is given 

by: 

V0 = (V1, 2 + V1, 5)/ D 

7. Behavior Analysis (Particular Cases: - hi = h; gi = g)

7.1 Mean Time to System Failure (MTSF) 

 By taking values of repair and failure rates as gi’s and hi’s, Value of MTSF is calculated by RPGT 

Table 4. MTSF (T0) 

h = .55 h = .65 h = .75 

g = .15 5.32 5.25 5.05 

g = .25 4.49 4.42 4.37 

g = .35 3.53 3.49 3.42 
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Figure 3. MTSF 

From the above Figure 3 and Table 4 demonstrations the performance of MTSF Vs Repair rate of the 

sub-unit of the framework for various values of the disappointment rate. From the above Figure 3 

one can determine that MTSF is increasing which must be so once the repair rate amassed and 

decreases when the disappointment rate rises which should be so in practical situations.    

7.2 Availability of the system (A0): 

Table 5: Availability of the system 

h = .55 h = .65 h = .75 

 g = .15 .84 .88 .93 

g = .25 .72 .75 .79 

g = .35 .62 .67 .72 
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g
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Figure 4: Availability of the system 

The above Table 5 shows that the Availability is increasing when the repair rate is increasing and 

decrease with the rise in disappointment rate, which ought to be actually. 
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7.3 Server of the busy period (B0): 

Table 6: Server of the busy period 

h = .50 h = .60 h = .70 

g = .15 .65 .62 .59 

g = .25 .69 .65 .62 

g = .35 .74 .69 .67 

0.1 0.2 0.3 0.4

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

B
0

g
i

 h=.50

 h=.60

 h=.70

Figure 5: Server of the busy period 

It can be concluded from the above Figure 5 that the values of server of busy period shows the 

expected trend for various values of disappointment rate, as server of busy period decreases with 

the rise in the values of repair rate. 

7.4 Expected number of server visits (V0): 

Table 7: Expected number of server visits 

h = .55 h = .65 h = .75 

g = .15 .34 .38 .42 

g = .25 .39 .44 .48 

g = .35 .43 .48 .52 
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Figure 6: Expected number of server visits 

It can be concluded from the above Figure 6 and Table 7 that the values of Expected number of server 

visits demonstrations the expected trend for various values of disappointment rate, as Expected 

number of server visits increases with the rise in the values of repair rate. 
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8. Effect of Repair Rates on System (Keeping Failure Rates Fixed)

8.1  Effect on MTSF (T0) parameters 

Table 8: MTSF 

hi  h1 h2 h3 

0.75 6.58 6.58 6.58 

0.85 6.58 6.58 6.58 

0.95 6.58 6.58 6.58 

0.7 0.8 0.9 1.0

5

6

7

8

M
TS

F

h
i

Figure 7: MTSF 

From the above Table 8 in affecting in rows, from the 1st row it is understood that, MTSF is similar 

for secure and server. From the subsequent row it is determined that MTSF is constant when repair 

rate of server is increase. On associating the columns, it is experimental that MTSF constant at higher 

rates as growing repair rate of server. From the Figure 7, it is determined that MTSF is constant in 

repair rates. 

8.2 Effect on Availability of the system (A0) 

Table 9: Availability of the system 

hi h1 h2 h3 

0.75 0.925 0.920 0.915 

0.85 0.930 0.925 0.920 

0.95 0.935 0.930 0.925 
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Figure 8: Availability of the system 

From the Figure 8 and Table 9, it is realized there is not much implication change in value of 

Availability of the system parallel to rise in repair rates of sub-units and server. However, from the 

Figure 8 and Table 9 it is determined that to have extreme value of Availability of the system repair 

rate of server must be supreme. 

8.3 Effect on Server of the busy period (B0) 

Table 10. Server of the busy period 

hi h1 h2 h3 

0.75 0.218 0.224 0.243 

0.85 0.211 0.218 0.229 

0.95 0.206 0.213 0.218 

0.7 0.8 0.9 1.0

0.205

0.210

0.215

0.220

0.225

0.230

0.235

0.240

0.245

B
0
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i

Figure 9. Server of the busy period 

Observing in columns of Table 10, one sees that Server of the busy period reductions with the rise in 

repair rates which is applied but it decreases less, increasing the comparative repair rate of sub-unit. 

Same is the opinion while examining the values in rows.  

RT&A, No 1 (77)
 Volume 19, March 2024

738



Shakuntla Singla, Sonia, Poonam Panwar 
STOCHASTIC OPTIMIZATION AND RELIABILITY ANALYSIS… 

8.4 Effect on Expected number of server visits (V0) 

Table 11. Expected number of server visits 

hi h1 h2 h3 

0.75 0.212 0.227 0.241 

0.85 0.201 0.212 0.226 

0.95 0.185 0.202 0.212 

0.7 0.8 0.9 1.0

0.18
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0.20

0.21

0.22

0.23

0.24
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0

h
i

Figure 10. Expected number of server visits 

From the Figure 11 and Table 10 it is seen that cost of Expected number of server visits is optimal 

repair rate of sub-unit ‘is 0.95 and associating the rates it is seen there is no significant, hence to keep 

assessment of Expected number of server visits lowest for minimum cost sub-unit need more care 

in terms of maintenance facilities. 

9. Effect of Change of Failure Rates (Keeping Repair Rate Fixed)

9.1 MTSF 

Table 12. MTSF 

gi g1 g2 g3 

0.15 3.27 3.35 3.42 

0.25 3.19 3.27 3.34 

0.35 3.13 3.19 3.27 
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Figure 11. MTSF 

For an ideal structure value of MTSF must be biggest possible from the Figure 11 and Table 12. It is 

determined that value of MTSF is supreme when disappointment rates of all sub-units and server 

are least and go as reducing as the disappointment rates of units rise. But value of MTSF decreases 

more quickly with rise in failure rate of first sub-unit over another sub-units, hence necessity be 

taken care of in terms of disappointment rate over another sub-units and server for greatest value of 

MTSF. 

9.2 Availability of the system(A0) 

Table 13. Availability of the system 

gi g1 g2 g3 

0.15 0.927 0.948 0.963 

0.25 0.907 0.927 0.945 

0.35 0.886 0.906 0.927 

0.1 0.2 0.3 0.4

0.88

0.90

0.92

0.94

0.96

A
0

g
i

Figure 12. Availability of the system 
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An ideal structure value of Availability of the system ought be supreme from the 1st row of above 

Table 13  and Figure 12 , it is understood that  Availability of the system is best when disappointment 

rate of sub-units and server are smallest on associating the columns Availability of the system 

decreases more quickly with the rise in disappointment of units, hence Availability of the system 

value of Availability of the system biggest, it is optional that that first sub-unit needs more care for 

upkeep facilities. 

9.3 Server of the busy period (B0) 

Table 14. Server of the busy period 

gi g1 g2 g3 

0.15 0.246 0.205 0.179 

0.25 0.289 0.246 0.205 

0.35 0.321 0.287 0.246 

0.1 0.2 0.3 0.4
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Figure 13. Server of the busy period 

To do study with esteem to value of Server of the busy period in the exceeding Table 14, it is decent 

to keep value of Server of the busy period minimum, on associating the columns, it is experimental 

that Server of the busy period have similar values for disappointment rate of server in assessment 

to units first and second unit.  

9.4 Expected number of server visits (V0) 

Table 15. Expected number of server visits 

gi g1 g2 g3 

0.15 0.312 0.299 0.275 

0.25 0.319 0.312 0.301 

0.35 0.325 0.321 0.312 
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Figure 14. Expected number of server visits 

A structure will be named Table 15 free if the Expected number of server visits are small foam the 

table and Figure 14, it is optional that for small value of Expected number of server visits, 

disappointment rates of sub-units and server to be kept smallest i.e., sub-units and server must be 

best in enterprise and quality, however value of Expected number of server visits rise proportional 

less in assessment to increasing disappointment rate of server. Thus, online sub-units need more 

upkeep the whole server. In all to keep reduced value of cost and that V0, disappointment rates of 

sub-units and server to be kept small. 

10. Results

 Value of MTSF(T0) is decreased with increasing of repair and failure rate and T0 is fix when

failure rate is fixed and T0 is increased when repair rate is fixed.

 Availability of the system(A0) is increased with increasing of failure rate and decreased with

increasing of repair rate and when failure rate is fixing value of A0 is increased with the value of

repair rate and in case when repair rate is fixing value of A0 is decreased with the value of rising

failure rate.

 Server of busy period(B0) is increased with increased of repair rate and decreased with the

increasing of failure rate and when failure rate is fixed value of B0 is decreased with the

increasing of repair rate and in case if repair rate is fixed then value of B0 is increased with the

increasing of failure rate.

 Expected number of server visit(V0) is increased with the increasing of repair and failure rate

and when failure rate is fixed the value of V0 is decreased with increasing of repair rate and in

case if repair rate is fixed then value of V0 is fixed with the increasing of failure rate.
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Abstract

The retrial queueing inventory system with working vacation, flush out, balking, breakdown, and repair,
as well as a constant retrial rate and orbital client collision are all examined in this study. We made
the assumption that customers arrive through a Markovian arrival process and that they would get
phase-type services from the server. The inventory is replenished using a (s, S) and (s, Q) strategy, and it
is expected that the replenishment time will follow an exponential distribution. If there are zero inventory
items, no customers in the orbit, or both, the server will go into working vacation mode. When a customer
retries an orbit while the server is serving arriving customers, the orbital customer may collide with the
arriving customer during that retry, in which case both of them will be shifted back into orbit; otherwise,
the orbital customer may avoid colliding with the arriving customer and may rejoin the orbit for another
retry. The number of customers in the orbit and the inventory level may be found in the steady state.
A cost analysis is produced along with the establishment of various important performance measures.
Moreover, some numerical examples are provided to clarify our mathematical notion.

Keywords: Marko vian arriv al process, PH-distribution, working vacation, collision of orbital
customers, flus out.

AMS Subject Classification (2010): 60K25, 68M30, 90B22.

1. Introduction

Retrial queues occur when initial consumers identify all ser vers and/or w aiting space full. They
may choose to try again after a random length of time or abandon the system per manently . RQ
models have been thor oughly resear ched in a significan num ber of papers. Artalejo et al. [3]
introduced the concept of retrial requests for inv entor y. They assumed that demand points are
Poisson processes, wher eas lead and retrial time points are exponential. They thought that the
orbit’s size is limitless. Manuel et al.[8] proposed a retrial inv entor y system that includes a ser vice
facility . They assumed clients come accor ding to a Marko vian arriv al process (MAP), that ser vice
time for each client follo ws a phase-type distribution (PH), that lead time, lifetime of each item,
and retrial times follo w an exponential distribution.

Customers arriv e at the single ser ver retrial queueing-inv entor y system under consideration
in this study using a Marko vian Arriv al Process, also known as the flexibl point process. The
MAP tries to accomplish significan generalisation of the Poisson process while keeping it
tractable. Many real-w orld applications do not requir e a rene w al procedur e befor e arriving. As
a result, the most useful tool for simulating rene w al and non-rene w al appearance situations is
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the MAP. We can have realistic arriv al patter ns in this model because of the MAP, which also
accounts for correlations and dependencies betw een arriv als. Further mor e, the continuous-time
case is necessar y, even though the MAP is define for both discr ete and continuous periods.
See Chakra varthy [5] and Neuts [10] for further details on the MAP and its properties.

The notion of ser ver vacation w as firs presented in the retr y inv entor y system by Siv akumar[ 17].
For lead, inter -trial, inter -demand, and ser ver vacation durati ons, he made the assumption that
the distributions would be exponential. He also belie ved that these incidents are unr elated to one
another . He instituted a programme of repeated vacations. A tw o-commodity substitutable retrial
inv entor y system with a shar ed ordering strategy w as examined by Siv akumar [15]. Siv akumar
[16] examined a system of perishable inv entor y that had requests for retrials. The exponentially
distributed lead periods for orders, the finit sour ce of requests, the exponentially distributed life
durations for stor ed objects, and the exponentially distributed inter -retrial inter vals have all been
assumed by the author . A tw o-commodity stochastic inv entor y technique with a complement
item w as proposed by Jeganathan et al. [11] in the context of a traditional retrial facility . When
the primar y item is out of supply , each new client will immediately enter an orbit of infinit
capacity .

A M/ M/ 1 retrial queue under (s, S) policy with a storage system w as examined by Shajin
and Krishnamoorthy [14]. The authors use the assumption that when the ser ver is inactiv e, the
exter nal arriv als immediately enter an orbit and that the time betw een tw o successiv e retrials
has an exponential distribution. Only the client at the head of the orbit is allo wed to reach
the ser ver. In contrast to the traditional method of emplo ying just one vendor , Chakra varthy
and Hayat [6] established the idea of multiple vendors responsible for replacing inv entories.
This w ay, replenishment happens via tw o vendors. The authors used the MAM to analyse the
model in steady-state under the assumptions of a tw o-vendor system, wher e the lead times
are exponentially distributed with a parameter that depends on the vendor , the demands occur
accor ding to a MAP, and the ser vice times are PH. Ther e are also inter esting numerical examples
giv en, such as a comparison of the systems with one and tw o vendors.

A queueing inv entor y model in which a new customer comes and w aits for ser vice when
the ser ver is una vailable due to vacation w as examined by Y Zhang et al. [19]. The model
included the ser ver ’s multiple vacations and dissatisfie clients. They were able to extract
some significan perfor mance metrics and fin the matrix geometric solution of the steady-state
probability by using the truncated appr oximation appr oach. Using numerical analysis, the impact
of the probability and impatience rate on a few perfor mance metrics w as examined. Using the
genetic algorithm, the authors calculated the best possible policy and cost and arriv ed at the ideal
ser vice rate. Ayy appan et al. [4] studied the notions of working breakdo wn, collision, vacation,
and reneging in a non-pr eemptiv e priority retrial queueing system with immediate feedback.
They applied the supplementar y variable technique to their model and also provided particular
cases.

Service interruptions were originally implemented in an inv entor y model by Krishnamoorthy
et al. [7]. They also belie ved that orders are processed instantly and that ther e is no limit to the
amount of disruptions that can happen during a single ser vice. Ushakumari [18] examined a (s, S)
inv entor y system with recurr ent demands for unfulfille requests from the orbit and a random
lead time. In their paper [1], Amirthakodi and Siv akumar spoke about retrial inv entor y queueing
with a single ser ver and customer feedback, wher e the orbit size is finite.Th retrial queueing
model with exponential ser vice time, Poisson arriv al, and dela yed feedback w as examined by
Meliko v et al. [9]. They used both (s, S) and (s, Q) replenishment policies for their study . In their
analysis of an M/ M/ 1/ N queuing system with reverse balking, Kumar et al. [13] incor porate
the idea of reverse reneging. Customers’ input is used by Kumar and Som [?] in an M/ M/ 1/ N
queuing system with reverse balking, reverse reneging, and retention of reneged customers. They
calculate the system size stationar y probability .
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2. Model Description

• We examine a single-ser ver retrial queueing inv entor y model in which customers arriv e
at the system as repr esented by MAP, with D0 and D1 matrices as its dimension m. The
ser vice times, denoted as (γ, U) of order n, are assumed to follo w the PH-distribution with
U0 + Ue = 0.

• If the ser ver is available, he ser ves the customer right aw ay upon their arriv al. If not,
the customer must enter the orbit of infinit . Every customer retries from the orbit at a
constant rate, despite the size of the orbit. The inter -retrial times follo w an exponential
distribution with parameter δ.

• If the orbit is empty , the inv entor y is zer o, or both, then the ser ver goes on vacation
after ser ving the customer . Additionally , the vacation periods are expected to follo w a
η-parameter exponential distribution. In the event that a customer arriv es during vacation
time, the ser ver will start char ging the customer less for ser vices than usual. Additionally , it
is expected that the ser vice times throughout the vacation period follo w the PH distribution,
denoted as (γ, θU), with 0 < θ < 1. If the ser ver examines the customer who is w aiting in
the system after completing this vacation, he will begin a normal busy period. Other wise,
he is dor mant.

• The incoming customer may enter the orbit for a retr y with probability q1 or balk the system
with probability p1 during the ser vice deliv ery, repair , and no inv entor y items, ensuring
that p1 + q1 = 1.

• When a customer retries an orbit while the ser ver is ser vicing incoming customers, ther e is
a chance that the orbital customer and the incoming customer will collide and be shifted to
the orbit with a probability of q2; if not, the orbital customer may not collide and will rejoin
the orbit for a subsequent retr y with a probability of p2, such that p2 + q2 = 1.

• During regular busy periods, the ser ver may get breakdo wn. As a result, the customer
getting ser vice at the moment must enter the orbit of limitless capacity . The ser ver goes into
idle mode when the repair operation is complete d. The breakdo wn times are exponentially
distributed with parameter ψ, wher eas the repair times are PH-distributed with rate (α, T).

• All the customers in the orbit are flushe out periodicall y and the flus out times follo w
exponential distribution with parameter σ. The schematic pictur e of this model is provided
in Figur e 1.

• ⊗ - Kronecker product of tw o matrices of dif ferent dimensions. ⊕ - Kronecker sum of tw o
matrices of dif ferent dimensions. e - Column vector has an suitable size with each of its
entries as 1. 0 - It denotes zer o matrices in the suitable order.

3. Analysis

In the follo wing section, we establish the queueing-inv entor y system’s transition rate matrix.
Assume that N(t), J(t), I(t), R(t), S(t), A(t) describe the total customers in the orbit, status of
ser ver, stock level, repair phases, ser vice phases, arriv al phases, respectiv ely.

J(t) =



0, ser ver is idle in normal ser vice mode,
1, ser ver is busy in normal ser vice mode,
2, ser ver is idle in WV mode,
3, ser ver is busy in WV mode,
4, ser ver is repair mode.

Consider X(t) = {N(t), J(t), I(t), R(t), S(t), A(t)} is a CTMC with state space

Φ = ϕ(0)
∞⋃

i=1
ϕ(i). (1)

wher e
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Figure 1: Schematic representation

ϕ(0) ={(0, 0, u1, u4) : 0 ≤ u1 ≤ S, 1 ≤ u4 ≤ m}
∪ {(0, 1, u1, u3, u4) : 1 ≤ u1 ≤ S, 1 ≤ u3 ≤ n, 1 ≤ u4 ≤ m}
∪ {(0, 2, u1, u4) : 0 ≤ u1 ≤ S, 1 ≤ u4 ≤ m}
∪ {(0, 3, u1, u3, u4) : 1 ≤ u1 ≤ S, 1 ≤ u3 ≤ n, 1 ≤ u4 ≤ m}
∪ {(0, 4, u1, u2, u4) : 1 ≤ u1 ≤ S, 1 ≤ u2 ≤ l, 1 ≤ u4 ≤ m}

and for i ≥ 1,

ϕ(i) ={(i, 0, u1, u4) : 0 ≤ u1 ≤ S, 1 ≤ u4 ≤ m}
∪ {(i, 1, u1, u3, u4) : 1 ≤ u1 ≤ S, 1 ≤ u3 ≤ n, 1 ≤ u4 ≤ m}
∪ {(i, 2, u1, u4) : 0 ≤ u1 ≤ S, 1 ≤ u4 ≤ m}
∪ {(i, 3, u1, u3, u4) : 1 ≤ u1 ≤ S, 1 ≤ u3 ≤ n, 1 ≤ u4 ≤ m}
∪ {(i, 4, u1, u2, u4) : 1 ≤ u1 ≤ S, 1 ≤ u2 ≤ l, 1 ≤ u4 ≤ m}

3.1. Construction of the QBD process for Model 1

The generator matrix of the Marko v chain under (s, S) policy is giv en by:

Q =



A00 A01 0 0 0 0 . . . . . .
A10 F1 F0 0 0 0 . . . . . .
A F2 F1 F0 0 0 . . . . . .
A 0 F2 F1 F0 0 . . . . . .
A 0 0 F2 F1 F0 . . . . . .
...

...
...

. . . . . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . . . .


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The entries in the block matrices of Q are define as follo ws,

A00 =


A11

00 A12
00 0 0 0

0 A22
00 A23

00 0 0
A31

00 0 A33
00 A34

00 0
0 A42

00 A43
00 A44

00 0
A51

00 0 0 0 A55
00

 ,

wher e

A11
00 =



C1 0 0 . . . 0 0 . . . 0 C2
0 C3 0 . . . 0 0 . . . 0 C2
0 0 C3 . . . 0 0 . . . 0 C2
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C3 0 . . . 0 C2
0 0 0 . . . 0 C4 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C4 0
0 0 0 . . . 0 0 . . . 0 C4


,

A22
00 =



C5 0 0 . . . 0 0 . . . 0 C6
0 C5 0 . . . 0 0 . . . 0 C6
0 0 C5 . . . 0 0 . . . 0 C6
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C5 0 . . . 0 C6
0 0 0 . . . 0 C7 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C7 0
0 0 0 . . . 0 0 . . . 0 C7


,

wher e C1 = (D0 + p1D1)− βIm, C2 = βIm, C3 = D0 − βIm, C4 = D0,
C5 = U ⊕ (D0 + p1D1)− (ψ + β)Inm, C6 = βInm, C7 = U ⊕ (D0 + p1D1)− ψInm.
A23

00 = IS ⊗ U0 ⊗ Im, A31
00 = IS+1 ⊗ η Im,

A12
00 =

[
0

IS ⊗ γ ⊗ D1

]
,

A33
00 =



C8 0 0 . . . 0 0 . . . 0 C9
0 C10 0 . . . 0 0 . . . 0 C9
0 0 C10 . . . 0 0 . . . 0 C9
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C10 0 . . . 0 C9
0 0 0 . . . 0 C11 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C11 0
0 0 0 . . . 0 0 . . . 0 C11


,

wher e C8 = (D0 + p1D1)− (η + β)Im, C9 = βIm, C10 = D0 − (η + β)Im, C11 = D0 − η Im.
A42

00 = IS+1 ⊗ η Inm, A43
00 = IS ⊗ θU0 ⊗ Im,
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A34
00 =

[
0

IS ⊗ γ ⊗ D1

]
, A44

00 =



C12 0 0 . . . 0 0 . . . 0 C13
0 C12 0 . . . 0 0 . . . 0 C13
0 0 C12 . . . 0 0 . . . 0 C13
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C12 0 . . . 0 C13
0 0 0 . . . 0 C14 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C14 0
0 0 0 . . . 0 0 . . . 0 C14


,

wher e C12 = θU ⊕ (D0 + p1D1)− (η + β)Inm, C13 = βInm, C14 = θU ⊕ (D0 + p1D1)− η Inm.

A51
00 =

[
0 IS ⊗ T0 ⊗ Im

]
, A55

00 =



C15 0 0 . . . 0 0 . . . 0 C16
0 C15 0 . . . 0 0 . . . 0 C16
0 0 C15 . . . 0 0 . . . 0 C16
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C15 0 . . . 0 C16
0 0 0 . . . 0 C17 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C17 0
0 0 0 . . . 0 0 . . . 0 C17


,

wher e C15 = T ⊕ (D0 + p1D1)− βIlm, C16 = βIlm, C17 = T ⊕ (D0 + p1D1).

A01 =


A11

01 0 0 0 0
0 A22

01 0 0 A25
01

0 0 A33
01 0 0

0 0 0 A44
01 0

0 0 0 0 A55
01

 ,

A11
01 =

[
q1D1 0

0 0

]
, A22

01 = IS ⊗ In ⊗ q1D1, A25
01 = IS ⊗ enα ⊗ ψIm, A33

01 =

[
q1D1 0

0 0

]
,

A44
01 = IS ⊗ In ⊗ q1D1, A55

01 = IS ⊗ Il ⊗ q1D1,

A10 =


A11

10 A12
10 0 0 0

A21
10 0 0 0 0
0 0 A33

10 A34
10 0

0 0 A43
10 0 0

0 0 0 0 A55
10

 ,

wher e

A11
10 = IS+1 ⊗ σIm, A12

10 =

[
0

IS ⊗ δγ ⊗ Im

]
, A21

10 =
[
0 IS ⊗ en ⊗ σIm

]
, A33

10 = IS+1 ⊗ σIm,

A34
10 =

[
0

IS ⊗ δγ ⊗ Im

]
, A43

10 =
[
0 IS ⊗ en ⊗ σIm

]
, A55

10 = IS ⊗ σIlm.

F1 =


F11

1 F12
1 0 0 0

F21
1 F22

1 F23
1 0 0

F31
1 0 F33

1 F34
1 0

0 F42
1 F43

1 F44
1 0

F51
1 0 0 0 F55

1

 ,
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wher e F11
1 =



C18 0 0 . . . 0 0 . . . 0 C19
0 C20 0 . . . 0 0 . . . 0 C19
0 0 C20 . . . 0 0 . . . 0 C19
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C20 0 . . . 0 C19
0 0 0 . . . 0 C21 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C21 0
0 0 0 . . . 0 0 . . . 0 C21


,

wher e C18 = (D0 + p1D1)− (σ + β)Im, C19 = βIm, C20 = D0 − (δ + σ + β)Im,

C21 = D0 − (δ + σ)Im. F12
1 =

[
0

IS ⊗ γ ⊗ D1

]
, F21

1 =

[
0 0 0
0 IS−1 ⊗ U0 ⊗ Im 0

]
,

F23
1 =

[
U0 ⊗ Im 0

0 0

]
, F22

1 =



C22 0 0 . . . 0 0 . . . 0 C23
0 C22 0 . . . 0 0 . . . 0 C23
0 0 C22 . . . 0 0 . . . 0 C23
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C22 0 . . . 0 C23
0 0 0 . . . 0 C24 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C24 0
0 0 0 . . . 0 0 . . . 0 C24


,

wher e C22 = U ⊕ (D0 + p1D1) + [(q2δ − δ)− (ψ + σ + β)]Inm, C23 = βInm,
C24 = U ⊕ (D0 + p1D1) + [(q2δ − δ)− (ψ + σ)]Inm, F31

1 = IS+1 ⊗ η Im,

F34
1 =

[
0

IS ⊗ γ ⊗ D1

]
, F33

1 =



C25 0 0 . . . 0 0 . . . 0 C26
0 C27 0 . . . 0 0 . . . 0 C26
0 0 C27 . . . 0 0 . . . 0 C26
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C27 0 . . . 0 C26
0 0 0 . . . 0 C28 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C28 0
0 0 0 . . . 0 0 . . . 0 C28


,

wher e C25 = (D0 + p1D1)− (σ + η + β)Im, C26 = βIm, C27 = D0 − (σ + δ + η + β)Im,
C28 = D0 − (σ + δ + η)Im, F42

1 = IS+1 ⊗ η Inm, F43
1 =

[
IS ⊗ θU0 ⊗ Im 0

]
,

F44
1 =



C29 0 0 . . . 0 0 . . . 0 C30
0 C29 0 . . . 0 0 . . . 0 C30
0 0 C29 . . . 0 0 . . . 0 C30
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C29 0 . . . 0 C30
0 0 0 . . . 0 C31 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C31 0
0 0 0 . . . 0 0 . . . 0 C31


,

wher e C29 = θU ⊕ (D0 + p1D1) + [(q2δ − δ)− (σ + η + β)]Inm, C30 = βInm,
C31 = θU ⊕ (D0 + p1D1) + [(q2δ − δ)− (σ + η)]Inm.
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F51
1 =

[
0 IS ⊗ T0 ⊗ Im

]
, F55

1 =



C32 0 0 . . . 0 0 . . . 0 C33
0 C32 0 . . . 0 0 . . . 0 C33
0 0 C32 . . . 0 0 . . . 0 C33
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C32 0 . . . 0 C33
0 0 0 . . . 0 C34 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C34 0
0 0 0 . . . 0 0 . . . 0 C34


,

wher e C32 = T ⊕ (D0 + p1D1)− (σ + β)Ilm, C33 = βIlm, C34 = T ⊕ (D0 + p1D1)− σIlm.

F0 =


F11

0 0 0 0 0
F21

0 F22
0 0 0 F25

0
0 0 F33

0 0 0
0 0 F43

0 F44
0 0

0 0 0 0 F55
0

 ,

F11
0 =

[
q1D1 0

0 0

]
, F21

0 =
[
0 IS ⊗ en ⊗ p2δIm

]
, F22

0 = IS ⊗ In ⊗ q1D1, F25
0 = IS ⊗ enα ⊗ ψIm,

F33
0 =

[
q1D1 0

0 0

]
, F43

0 =
[
0 IS ⊗ en ⊗ p2δIm

]
, F44

0 = IS ⊗ In ⊗ q1D1, F55
0 = IS ⊗ Il ⊗ q1D1.

F2 =


0 F12

2 0 0 0
0 0 0 0 0
0 0 0 F34

2 0
0 0 0 0 0
0 0 0 0 0

 ,

wher e F12
2 =

[
0

IS ⊗ δγ ⊗ Im

]
, F34

2 =

[
0

IS ⊗ δγ ⊗ Im

]
,

A =


A11 0 0 0 0
A21 0 0 0 0
0 0 A33 0 0
0 0 A43 0 0
0 0 0 0 A55

 ,

wher e A11 = IS+1 ⊗ σIm, A21 =
[
0 IS ⊗ en ⊗ σIm

]
, A33 = IS+1 ⊗ σIm,

A43 =
[
0 IS ⊗ en ⊗ σIm

]
, A53

10 =
[
0 IS ⊗ el ⊗ σIm

]
. A55 = IS ⊗ σIlm,

Stability condition for Model I

To discuss the stability condition, we firs consider the generator matrix F = F0 + F1 + F2. If
χ = (χ0, χ1, χ2, χ3, χ4)=(χ00 , χ01 , . . . , χ0s, χ0s+1, . . . , χ0S, χ11 , χ12 , . . . , χ1s, χ1s+1, . . . , χ1S, χ20 ,
χ21 , . . . , χ2s, χ2s+1, . . . , χ2S, χ31 , χ32 , . . . , χ3s, χ3s+1, . . . , χ3S, χ41 , χ42 , . . . , χ4s, χ4s+1, . . . , . . . , χ4S).

The vector χ repr esents the inv ariant vector of matrix F. Consequently , we have the relations
χF = 0 and χe = 1. For the Marko v process with a QBD structur e to exhibit stability , our model
must satisfy the condition χF0e < χF2e. This condition is both necessar y and suf ficien for the
stability of the queueing model under study and reduces to the inequality λ < µ.
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3.2. QBD process for Model II

In accor dance with the assumptions outlined in the "Model Description" section, we will now
examine Model II, while solely modifying the ordering policy from (s, S) to (s, Q). The generator
matrix of the process for the (s, Q) policy takes on the follo wing for m:

Q̃ =



Ã00 A01 0 0 0 0 . . . . . .
A10 F̃1 F0 0 0 0 . . . . . .
A F2 F̃1 F0 0 0 . . . . . .
A 0 F2 F̃1 F0 0 . . . . . .
A 0 0 F2 F̃1 F0 . . . . . .
...

...
...

. . . . . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . . . .


The entries in the block matrices of Q̃ are define as follo ws,

Ã00 =


Ã11

00 Ã12
00 0 0 0

0 Ã22
00 Ã23

00 0 0
Ã31

00 0 Ã33
00 Ã34

00 0
0 Ã42

00 Ã43
00 Ã44

00 0
Ã51

00 0 0 0 Ã55
00

 ,

Ã11
00 =



C1 0 0 . . . 0 0 . . . C2 0 . . . 0 0
0 C3 0 . . . 0 0 . . . 0 C2 . . . 0 0
0 0 C3 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . C3 0 . . . 0 0 . . . 0 C2
0 0 0 . . . 0 C4 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . C4 0 . . . 0 0
0 0 0 . . . 0 0 . . . 0 C4 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . 0 0 . . . C4 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 C4



,

Ã12
00 =

[
0

IS ⊗ γ ⊗ D1

]
, Ã23

00 = IS ⊗ U0 ⊗ Im, Ã31
00 = IS+1 ⊗ η Im,

Ã22
00 =



C5 0 0 . . . 0 0 . . . C6 0 . . . 0 0
0 C5 0 . . . 0 0 . . . 0 C6 . . . 0 0
0 0 C5 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . C5 0 . . . 0 0 . . . 0 C6
0 0 0 . . . 0 C7 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . C7 0 . . . 0 0
0 0 0 . . . 0 0 . . . 0 C7 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . 0 0 . . . C7 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 C7



,
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Ã33
00 =



C8 0 0 . . . 0 0 . . . C9 0 . . . 0 0
0 C10 0 . . . 0 0 . . . 0 C9 . . . 0 0
0 0 C10 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . C10 0 . . . 0 0 . . . 0 C9
0 0 0 . . . 0 C11 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . C11 0 . . . 0 0
0 0 0 . . . 0 0 . . . 0 C11 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . 0 0 . . . C11 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 C11



,

Ã34
00 =

[
0

IS ⊗ γ ⊗ D1

]
, Ã42

00 = IS+1 ⊗ η Inm, Ã43
00 = IS ⊗ θU0 ⊗ Im, Ã51

00 =
[
0 IS ⊗ T0 ⊗ Im

]
,

Ã44
00 =



C12 0 0 . . . 0 0 . . . C13 0 . . . 0 0
0 C12 0 . . . 0 0 . . . 0 C13 . . . 0 0
0 0 C12 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . C12 0 . . . 0 0 . . . 0 C13
0 0 0 . . . 0 C14 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . C14 0 . . . 0 0
0 0 0 . . . 0 0 . . . 0 C14 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . 0 0 . . . C14 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 C14



,

Ã55
00 =



C15 0 0 . . . 0 0 . . . 0 C16
0 C15 0 . . . 0 0 . . . 0 C16
0 0 C15 . . . 0 0 . . . 0 C16
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C15 0 . . . 0 C16
0 0 0 . . . 0 C17 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C17 0
0 0 0 . . . 0 0 . . . 0 C17


,

F̃1 =


F̃11

1 F̃12
1 0 0 0

F̃21
1 F̃22

1 F̃23
1 0 0

F̃31
1 0 F̃33

1 F̃34
1 0

0 F̃42
1 F̃43

1 F̃44
1 0

F̃51
1 0 0 0 F̃55

1

 ,

wher e
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F̃11
1 =



C18 0 0 . . . 0 0 . . . C19 0 . . . 0 0
0 C20 0 . . . 0 0 . . . 0 C19 . . . 0 0
0 0 C20 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . C20 0 . . . 0 0 . . . 0 C19
0 0 0 . . . 0 C21 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . C21 0 . . . 0 0
0 0 0 . . . 0 0 . . . 0 C21 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . 0 0 . . . C21 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 C21



,

F̃12
1 =

[
0

IS ⊗ γ ⊗ D1

]
, F̃21

1 =

[
0 0 0
0 IS−1 ⊗ U0 ⊗ Im 0

]
, F̃23

1 =

[
U0 ⊗ Im 0

0 0

]
,

F̃31
1 = IS+1 ⊗ η Im, F̃34

1 =

[
0

IS ⊗ γ ⊗ D1

]
,

F̃22
1 =



C22 0 0 . . . 0 0 . . . C23 0 . . . 0 0
0 C22 0 . . . 0 0 . . . 0 C23 . . . 0 0
0 0 C22 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . C22 0 . . . 0 0 . . . 0 C23
0 0 0 . . . 0 C24 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . C24 0 . . . 0 0
0 0 0 . . . 0 0 . . . 0 C24 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . 0 0 . . . C24 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 C24



,

F̃33
1 =



C25 0 0 . . . 0 0 . . . C26 0 . . . 0 0
0 C27 0 . . . 0 0 . . . 0 C26 . . . 0 0
0 0 C27 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . C27 0 . . . 0 0 . . . 0 C26
0 0 0 . . . 0 C28 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . C28 0 . . . 0 0
0 0 0 . . . 0 0 . . . 0 C28 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . 0 0 . . . C28 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 C28



,

F̃42
1 = IS+1 ⊗ η Inm, F̃43

1 =
[
IS ⊗ θU0 ⊗ Im 0

]
,
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F̃44
1 =



C29 0 0 . . . 0 0 . . . C30 0 . . . 0 0
0 C29 0 . . . 0 0 . . . 0 C30 . . . 0 0
0 0 C29 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . C29 0 . . . 0 0 . . . 0 C30
0 0 0 . . . 0 C31 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . C31 0 . . . 0 0
0 0 0 . . . 0 0 . . . 0 C31 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . 0 0 . . . C31 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 C31



,

F̃51
1 =

[
0 IS ⊗ T0 ⊗ Im

]
,

F̃55
1 =



C32 0 0 . . . 0 0 . . . C33 0 . . . 0 0
0 C32 0 . . . 0 0 . . . 0 C33 . . . 0 0
0 0 C32 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . C32 0 . . . 0 0 . . . 0 C33
0 0 0 . . . 0 C34 . . . 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . C34 0 . . . 0 0
0 0 0 . . . 0 0 . . . 0 C34 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 . . . 0 0 . . . C34 0
0 0 0 . . . 0 0 . . . 0 0 . . . 0 C34



,

Stability condition for Model II

To discuss the stability condition, we firs consider the generator matrix F = F0 + F̃1 + F2. If
χ = (χ0, χ1, χ2, χ3, χ4)=(χ00 , χ01 , . . . , χ0s, χ0s+1, . . . , χ0Q, . . . , χ0S, χ11 , χ12 , . . . , χ1s, χ1s+1, . . . , χ1Q . . . ,
χ1S, χ20 , χ21 , . . . , χ2s, χ2s+1, . . . , χ2Q, . . . , χ2S, χ31 , χ32 , . . . , χ3s, χ3s+1, . . . , χ3Q, . . . , χ3S, χ41 , χ42 , . . . ,
χ4s, χ4s+1, . . . , χ4Q, . . . , χ4S). Considering the QBD structur e of the Marko v process, stability
exists in our model if it satisfie the condition χF0e < χF2e. This condition is both necessar y and
suf ficien for the stability of this queueing model under study , and it reduces to λ < µ.

3.3. The stationar y probability vector

Let X be the stationar y probability vector of the infintesima generator Q of the process {X(t):
t ≥ 0}. The subdivision of X = (x0, x1, x2, ...), wher e x0 is of dimension 2(S + 1)m + 2Snm and
x1, x2, ... are of dimension 2(S + 1)m + 2Snm + Slm. As X is a vector satisfie the relation XQ = 0
and Xe = 1. The probability vector X follo ws a matrix geometric structur e under the steady state
is

xj = x1Rj−1, j ≥ 2 (2)
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wher e R is the quadratic equation’s lowest non-negativ e solution R2F2 + RF1 + F0 = 0 and the
vector x0, x1 are obtained with the help of succeeding equations:

x0 A00 + x1 A10 +
∞

∑
i=2

xi A = 0, (3)

x0 A01 + x1[F1 + RF2] = 0, (4)

subject to a condition normalization

x0e2(S+1)m+2Snm + x1[I − R]−1e2(S+1)m+2Snm+Slm = 1. (5)

The rate matrix R can be computed with the help of the follo wing iteration formula which has
been suggested by Neuts [10] R(n + 1) = −F0F−1

1 − R2(n)F2F−1
1 for n ≥ 0 wher e R(0) = 0.

Since F−1
1 and (F0 + R2F2) are positiv e, the rate matrix R will conv erge and so the entries of R

will increase monotonically in the successiv e iterations. Iteration may be ter minated when the
condition maxi,j[Rij(n + 1)− Rij(n)] < e is attained. Her e, e denotes the degr ee of accuracy and
R(n) indicates the value of the rate matrix at the n-th iteration.

4. System characteristics

• Probability that the ser ver is idle in regular process
PINM = ∑∞

i=0 ∑S
u1=0 ∑m

u4=1 xi0u1u4 .
• Probability that the ser ver is idle in working vacation process

PIWV = ∑∞
i=0 ∑S

u1=0 ∑m
u4=1 xi2u1u4 .

• Probability that the ser ver is busy in regular process
PBNM = ∑∞

i=0 ∑S
u1=1 ∑n

u3=1 ∑m
u4=1 xi1u1u3u4 .

• Probability that the ser ver is busy in working vacation
PBWV = ∑∞

i=0 ∑S
u1=1 ∑n

u3=1 ∑m
u4=1 xi3u1u3u4 .

• Probability that the ser ver is breakdo wn
PBD = ∑∞

i=1 ∑S
u1=1 ∑l

u2=1 ∑m
u4=1 xi4u1u2u4 .

• Expected number of customers in the orbit
Eorbit = ∑∞

i=1 ixie.
• Probability that the ser ver is busy

PBusy = PBNM + PBWV .
• Expected number of customers in the system

Esystem = Eorbit + PBusy.
• Expected number of items in the inv entor y level

EIL = ∑∞
i=0 ∑S

u1=1 ∑m
u4=1 u1xi0u1u4 + ∑∞

i=0 ∑S
u1=1 ∑n

u3=1 ∑m
u4=1 u1xi1u1u3u4

+ ∑∞
i=0 ∑S

u1=1 ∑m
u4=1 u1xi2u1u4 + ∑∞

i=0 ∑S
u1=1 ∑n

u3=1 ∑m
u4=1 u1xi31u1u2u3u4

+ ∑∞
i=1 ∑S

u1=1 ∑l
u2=1 ∑m

u4=1 u1xi4u1u2u4 .
• Expected reorder rate

ER = ∑∞
i=0 ∑n

u3=1 ∑m
u4=1 xi1(s+1)u3u4

(U0 ⊗ Im)e + ∑∞
i=0 ∑n

u3=1 ∑m
u4=1 xi3(s+1)u3u4

(θU0 ⊗ Im)e.
• The effectiv e retrial rate

∆ = δ ∑∞
i=1 ∑S

u1=1 ∑m
u4=1 xi0u1u4 + δ ∑∞

i=1 ∑S
u1=1 ∑m

u4=1 xi2u1u4 .

5. Cost Analysis

The total cost for our model is giv en belo w, with the cost elements (per unit time) related
to various system measur es.

TC = cwEsystem + chEIL + csER

wher e
• TC: Total cost (per unit time)
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• ch: The inv entor y holding cost (per unit time)
• cw: Waiting cost of a customer in the system (per unit time)
• cs: Setup cost (per order)

6. Numerical Implementation

To compute numerical outcomes, we have emplo yed div erse MAP demonstrations for the incom-
ing arriv al in a manner that ensur es their mean values are 1, as recommended by [5].

• Erlang arrival (ERA):

D0 =

[
−2 2
0 −2

]
D1 =

[
0 0
2 0

]
• Exponential arrival (EXA):

D0 = [−1]D1 = [1]

• Hyper exponential arrival (HEXA):

D0 =

[
−1.90 0

0 −0.19

]
D1 =

[
1.710 0.190
0.171 0.019

]
Consider the follo wing PH-distributions for the ser vice and repair progr ession:
• Erlang service (ERS):

γ = [1, 0] U =

[
−2 2
0 −2

]
• Erlang repair (ERR):

α = [1, 0] T =

[
−2 2
0 −2

]
• Exponential service (EXS):

γ = [1] U = [−1]

• Exponential repair (EXR):
α = [1] T = [−1]

• Hyper exponential service (HEXS):

γ = [0.8, 0.2] U =

[
−2.8 0

0 −0.28

]
• Hyper exponential repair (HEXR):

α = [0.8, 0.2] T =

[
−2.8 0

0 −0.28

]

Illustration 1

For this both policies, it w as assumed that values of all parameters of the QIS were fixe except
the ser vice rate µ: λ = 1, η = 3, θ = 0.6, τ = 2, β = 2, ψ = 1, δ = 3, σ = 0.5, p1 = p2 = 0.6,
q1 = q2 = 0.4, s = 5, S = 15.
Her e, we compar e and analyse the tw o policy (s, S) and (s, Q) as follo ws in tables 1-6:

• First, we obser ve that both Esystem and Eorbit in Table 1-6 under varying ser vice rate µ , it is
gradually decr eases as µ increase for both (s, S) and (s, Q) but the notable is (s, S) policy
giv e the minimum for both Esystem and Eorbit.

• Obser ve the ser vice times, Esystem and Eorbit are decr eases highly in HEXS and slowly
decr ease in ERS than all other ser vice times. Like wise, from the vie w point of arriv al times,
Esystem and Eorbit are decr eases highly for HEXA compar ed to other arriv al times.
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Table 1: Service rate (µ) vs Esystem and Eorbit - ERA

ERS EXS HEXS

µ Esystem Eorbit Esystem Eorbit Esystem Eorbit

15 0.081396697 0.047355675 0.116583261 0.046932851 0.060209747 0.031898478

16 0.075864324 0.043882684 0.109224350 0.043648505 0.057304727 0.030565025

17 0.071064407 0.040901610 0.102739862 0.04079181 0.054674483 0.029325579

18 0.066854402 0.038311241 0.096982359 0.038284564 0.052279029 0.028171817

19 0.063128015 0.036037241 0.091835886 0.036066509 0.050086560 0.027096253

20 0.059803954 0.034023538 0.087207964 0.034090466 0.048071247 0.02609211

21 0.056818744 0.032226894 0.083023918 0.032318974 0.046211764 0.025153247

22 0.054121959 0.030613354 0.079222779 0.030721913 0.044490267 0.024274106

23 0.051672939 0.029155827 0.075754267 0.029274789 0.042891663 0.023449656

24 0.049438484 0.027832404 0.072576547 0.027957481 0.041403065 0.022675351

Table 2: Service rate (µ) vs Esystem and Eorbit - EXA

ERS EXS HEXS

µ Esystem Eorbit Esystem Eorbit Esystem Eorbit

15 0.093658859 0.057831180 0.125620027 0.057370051 0.077226462 0.047628434

16 0.087616380 0.053656465 0.117884279 0.053393412 0.073004243 0.044783511

17 0.082319352 0.050040468 0.111041640 0.049917853 0.069231262 0.042257589

18 0.077636049 0.046878488 0.104946594 0.046856002 0.065837924 0.039999559

19 0.073464370 0.044090388 0.099483485 0.044139417 0.062768568 0.037968788

20 0.069723889 0.041613800 0.094559255 0.041713775 0.059978093 0.036132537

21 0.066350351 0.039399467 0.090098203 0.039535447 0.057429527 0.034464111

22 0.063291771 0.037407970 0.086038129 0.037569008 0.055092251 0.032941515

23 0.060505619 0.035607397 0.082327459 0.035785419 0.052940673 0.031546455

24 0.057956750 0.033971637 0.078923079 0.034160655 0.050953225 0.030263586
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Table 3: Service rate (µ) vs Esystem and Eorbit - HEXA

ERS EXS HEXS

µ Esystem Eorbit Esystem Eorbit Esystem Eorbit

15 0.130072755 0.085272901 0.140741030 0.072324015 0.085907558 0.047067013

16 0.118644770 0.076620377 0.131673874 0.066854199 0.080218556 0.043713552

17 0.109278270 0.069644502 0.123722961 0.062135811 0.075394726 0.040903528

18 0.101432497 0.063889862 0.116692238 0.058026255 0.071233209 0.03850289

19 0.094745436 0.059054418 0.110429349 0.054416549 0.06759258 0.036419856

20 0.088964620 0.054929433 0.104814044 0.051222021 0.064370838 0.034589272

21 0.083908013 0.051365737 0.099750091 0.048375934 0.061492291 0.032963458

22 0.079440679 0.048253720 0.095159543 0.045824997 0.058899399 0.031506611

23 0.075460231 0.045510930 0.090978563 0.043526164 0.056547500 0.030191241

24 0.071887408 0.043074081 0.087154360 0.041444300 0.054401305 0.02899583

Table 4: Service rate (µ) vs Esystem and Eorbit - ERA

ERS EXS HEXS

µ Esystem Eorbit Esystem Eorbit Esystem Eorbit

15 0.082004602 0.047355519 0.116584109 0.046933442 0.060824563 0.031913956

16 0.076429926 0.043882824 0.109225231 0.043649085 0.057874696 0.030578216

17 0.071593705 0.040901916 0.102740765 0.040792375 0.055206267 0.029336964

18 0.067352119 0.038311641 0.096983274 0.038285111 0.052777843 0.028181749

19 0.063597952 0.036037694 0.091836807 0.036067038 0.050556568 0.027104999

20 0.060249224 0.034024019 0.087208889 0.034090977 0.048515832 0.026099873

21 0.057241938 0.032227388 0.083024844 0.032319470 0.046633719 0.025160188

22 0.054525258 0.030613851 0.079223704 0.030722393 0.044891928 0.024280350

23 0.052058203 0.029156322 0.075755191 0.029275254 0.043275004 0.023455306

24 0.049807313 0.027832894 0.072577470 0.027957933 0.041769774 0.022680491
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Table 5: Service rate (µ) vs Esystem and Eorbit - EXA

ERS EXS HEXS

µ Esystem Eorbit Esystem Eorbit Esystem Eorbit

15 0.094342828 0.057831783 0.125622511 0.057371230 0.077912574 0.047638686

16 0.088262387 0.053657353 0.117886912 0.053394652 0.073653585 0.044793161

17 0.082931496 0.050041572 0.111044412 0.049919149 0.069847634 0.042266700

18 0.078217783 0.046879757 0.104949496 0.046857350 0.066424553 0.040008185

19 0.074018636 0.044091787 0.099486509 0.044140813 0.063328223 0.037976979

20 0.070253213 0.041615303 0.094562394 0.041715216 0.060513165 0.036140334

21 0.066856921 0.039401053 0.090101450 0.039536929 0.057942099 0.034471552

22 0.063777495 0.037409625 0.086041476 0.037570530 0.055584149 0.032948633

23 0.060972173 0.035609109 0.082330902 0.035786976 0.053413507 0.031553280

24 0.058405612 0.033973398 0.078926612 0.034162246 0.051408424 0.030270142

Table 6: Service rate (µ) vs Esystem and Eorbit - HEXA

ERS EXS HEXS

µ Esystem Eorbit Esystem Eorbit Esystem Eorbit

15 0.131245994 0.085194321 0.14075261 0.072332391 0.087390312 0.047182656

16 0.119735103 0.076569695 0.131688802 0.066864727 0.081577421 0.043823642

17 0.110296386 0.069612267 0.123740628 0.062148038 0.076649406 0.041007718

18 0.102387591 0.063870343 0.116712188 0.058039850 0.072399139 0.03860134

19 0.09564524 0.059043966 0.110451236 0.054431263 0.068682030 0.036512935

20 0.089815602 0.054925634 0.104837597 0.051237669 0.065393700 0.034677418

21 0.084715599 0.051366937 0.099775098 0.048392369 0.062456649 0.033047113

22 0.080209444 0.048258756 0.095185831 0.045842105 0.059811936 0.031586194

23 0.07619406 0.045518963 0.091005993 0.043543856 0.057413806 0.030267136

24 0.072589624 0.043084494 0.087182817 0.041462502 0.055226098 0.029068385

Illustration 2

We picturise the consequences of the breakdo wn rate ψ against the Pbusy. Fix λ = 1, µ = 15,
θ = 0.6, η = 3, τ = 5, β = 2, δ = 3, σ = 0.5, p1 = p2 = 0.6, q1 = q2 = 0.4, s = 5, S = 15,
these values satisfy the condition for stability . From the figu es 2 - 4: we can explor e that
while increasing the ser ver ’s breakdo wn rate (ψ), Pbusy decr eases for all feasible provisions of
incoming arriv al and ser vice patter ns. As increase in breakdo wn rate indicates that customers
will frequently be unable to access the ser ver, which is decr eases of Pbusy is higher for HEXA and
lower for ERA. Like wise, it is higher for ERS and lower for HEXS.
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Illustration 3

To inv estigate the impact of the TC on both the ser vice (µ) and repair (τ) rates in the Figur es
5-13. Fix λ = 1, σ = 0.2, θ = 0.6, β = 3, δ = 3, p1 = p2 = 0.6, q1 = q2 = 0.4, s = 5, S = 15,
CH = 70, CI = 110, CR = 120, such that the system lefto vers stable.
From the vie wpoint of Figur es 5-13, we maximize both the ser vice and repair rates for all possible
groups of arriv al and ser vice times, we notice that the TC decr eases. Consider the ser vice times,
TC decr eases exceedingly for ERS and decr eases moderately for EXS. Ther efor e, TC decr eases
slowly for ERA and rapidly for HEXA.
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Figure 4: Breakdown rate vs. Pbusy Figure 5: Service and repair rates vs. TC

Figure 6: Service and repair rates vs. TC Figure 7: Service and repair rates vs. TC
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Figure 8: Service and repair rates vs. TC Figure 9: Service and repair rates vs. TC

Figure 10: Service and repair rates vs. TC Figure 11: Service and repair rates vs. TC

Figure 12: Service and repair rates vs. TC Figure 13: Service and repair rates vs. TC

7. Conclusion

A retrial inv entor y model with MAP arriv als, PH-distributed ser vice, working vacations, collision
of orbital customers, flus out, balking, breakdo wn and repair has been inv estigated. The
peculiarity of this model is that the ser ver can offer ser vice even in the vacation period and the
system is alw ays stable because of the flus out of the system. We have consider ed MAP for
arriv als and would like to extend our models by considering BMAP for arriv als which is best
suited for modelling arriv als which come in batches.
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Abstract

The present paper deals with a class of Lorentzian almost paracontact metric manifolds namely
Lorentzian para-Kenmotsu (briefly LP-Kenmotsu) manifolds. We study and have shown that a quasi-
conformally flat Lorentzian para-Kenmotsu manifold is locally isomorphic with a unit sphere Sn(1).
Further it is shown that an LP-Kenmotsu manifold which is φ-conharmonically flat is an η-Einstein
manifold with the zero scalar curvature. At the end, we have shown that a φ-projectively flat LP-
Kenmotsu manifold is an Einstein manifold with the scalar curvature r = n(n − 1).

Keywords: Lor entzian para-Kenmotsu manifold, Weyl-pr ojectiv e cur vatur e tensor , confor mal
cur vatur e tensor , Einstein manifold.
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I. Introduction

In 1989, K. Matsumoto [3] introduced the notion of Lor entzian paracontact and in particular ,
Lor entzian para- Sasakian (briefly LP-Sasakian) manifolds. Later , these manifolds have been
widely studied by many geometers such as Matsumoto and Mihai [5], Mihai and Rosca [6],
Mihai, Shaikh and De [7], Venkatesha and Bage w adi [16], Venkatesha, Pradeep Kumar and Bage-
w adi [17, 18] and obtained several results of these manifolds.

In 1995, Sinha and Sai Prasad [14] defined a class of almost paracontact metric manifolds namely
para-Kenmotsu (briefly P-Kenmotsu) and Special Para-Kenmotsu (briefly SP- Kenmotsu ) mani-
folds in similar to P-Sasakian and SP- Sasakian manifolds. In 2018, Abdul Haseeb and Rajendra
Prasad defined a class of Lor entzian almost paracontact metric manifolds namely Lor entzian
para-Kenmotsu (briefly LP- Kenmotsu) manifolds [1]. As an extension, Rajendra Prasad et
al., [10] have studied φ-semisymmetric LP-Kenmotsu manifolds with a quarter -symmetric non-
metric conne ction admitting Ricci solitons.

On the other hand, In 1970, Pokhariy al and Mishra [9] introduced new tensor fields, called
the Weyl-pr ojectiv e cur vatur e tensor P(X, Y)Z of type (1, 3) and the tensor field E on a Rie-
mannian manifold. Further many geometers have studied the properties of these tens or fields
[2, 4, 8, 11, 12, 13, 15] as they pla y an important role in the theor y of projectiv e transfor mations
of connectio ns.
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The projectiv e cur vatur e tensor P (X, Y) Z, with respect to the Riemannian connection on a Rie-
mannian manifol d (Mn, g), is giv en by:

P(X, Y)Z = R(X, Y)Z +
1

n − 1
[g(X, Z)QY − g(Y, Z)QX],

wher e QX = (n − 1)X, and the Riemannian Christof fel cur vatur e tensor R of type (1, 3) is
giv en by:

R(X, Y)Z=∇X∇YZ−∇Y∇XZ−∇[X,Y]Z. (1)

Her e ∇ is said to be the Le vi-Civita connection.

In the present work, we study a class of LP-Kenmotsu manifolds and it is organized as follo ws.
Section 2 is equipped with some prerequisites about Lor entzian para-Kenmotsu manifolds. In
section 3, we study the quasi-confor mally flat Lor entzian para-Kenmotsu manifolds. Sections 4
and 5 respectiv ely deals with φ-conhar monically flat and φ-projectiv ely flat LP-Kenmotsu mani-
folds.

II. Preliminaries

An n-dimensional dif ferentiable manifold Mn admitting a (1, 1) tensor field ϕ, contra variant
vector field ξ, a 1-form η and the Lor entzian metric g (X, Y) satisfying

η (ξ) = −1, (2)

ϕ2X = X + η (X) ξ, (3)

g (ϕX, ϕY) = g (X, Y) + η (X) η (Y) , (4)

g (X, ξ) = η (X) , (5)

ϕξ = 0, η (ϕX) = 0, rank ϕ = n − 1; (6)

is called Lor entzian almost paracontact manifold [3].

In a Lor entzian almost paracontact manifold, we have

Φ(X, Y) = Φ(Y, X) where Φ(X, Y) = g(ϕX, Y). (7)

A Lor entzian almost paracontact manifold Mn is called Lor entzian para-Kenmotsu manifold if
[1]

(∇Xϕ)Y = −g (ϕX, Y) ξ − η (Y) ϕX, (8)

for any vector fields X and Y on Mn, and ∇ is the operator of covariant dif ferentiation with
respect to the Lor entzian metric g.

It can be easi ly seen that in a LP-Kenmotsu manifold Mn, the follo wing relations hold [1]:

∇Xξ = −ϕ2X = −X − η (X) ξ, (9)

(∇Xη)Y = −g (X, Y) ξ − η (X) η (Y) , (10)

for any vector fields X and Y on Mn.

Also, in an LP-Kenmotsu manifold, the follo wing relations hold [1]:

g(R(X, Y)Z, ξ) = η(R(X, Y)Z) = g(Y, Z)η(X)− g(X, Z)η(Y) (11)
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R(ξ, X)Y = g(X, Y)ξ − η(Y)X, (12)

R(X, Y)ξ = η(Y)X − η(X)Y, (13)

S(X, ξ) = (n − 1)η(X), (14)

S(ϕX, ϕY) = S(X, Y) + (n − 1)η(X)η(Y), (15)

S (X, Y) = ag (X, Y) + b η (X) η (Y) ; (16)

for any vector fields X, Y and Z, wher e R is the Riemannian cur vatur e tensor and S is the Ricci
tensor of Mn.

III. LP-Kenmotsu manifolds with C̃ (X, Y) Z = 0

The quasi-confor mal cur vatur e tensor C̃ is defined as

C̃(X, Y)Z=aR(X, Y)Z+b{S(Y, Z)X−S(X, Z)Y+g(Y, Z)QX

−g(X, Z)QY}− r
n

(
a

n−1
+2b

)
{g(Y, Z)X−g(X, Z)Y}

(17)

wher e a,b are constants such that ab ̸=0 and

S (Y, Z) =g (QY, Z) .

From (17), we get

R(X, Y)Z= − b
a{S(Y, Z)X−S(X, Z)Y+g(Y, Z)QX

−g(X, Z)QY}+ r
n
( a

n−1+2b
)
{g(Y, Z)X−g(X, Z)Y}. (18)

Taking Z=ξ in (18) and on using (5), (13), (14), we get

η(Y)X−η(X)Y= − b
a
{η(Y)QX−η(X)QY}

{
r

an

(
a

n−1
+2b

)
− b

a
(n−1)

}
{η(Y)X−η(X)Y}.

(19)
Taking Y=ξ and applying (2) we have

QX=
{ r

bn
( a

n−1+2b
)
−(n−1)− a

b
}

X
+
{ r

bn
( a

n−1+2b
)
− a

b−2(n−1)
}

η(X)ξ. (20)

Contracting (20), we get after a few steps

r=n(n−1). (21)

Using (21) in (20), we get
QX= (n−1)X. (22)

Finally , usi ng (22), we find from (18)

R(X, Y)Z=g(Y, Z)X−g(X, Z)Y.

Thus, we state

Theorem 3.1:A quasi-confor mally flat LP-Kenmotsu manifold is locally isometric with a unit
spher e Sn(1).
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IV. LP-Kenmotsu manifolds with φ-conharmonically flat curvature

tensor

The conhar monic cur vatur e tensor K is defined as

K (X, Y) Z=R (X, Y) Z− 1
n−2

[S (Y, Z) X−S (X, Z)Y+g (Y, Z) SX−g (X, Z) SY] .

A dif ferentiable manifold (Mn, g) , n> 3, satisfying the condition

φ2K(φX, φY)φZ= 0 (23)

is called φ-conhar monically flat.

In this secti on, we study LP-Kenmotsu manifolds with the condition (23).

Theorem 4.1:Let Mn be an n-dimensional, (n> 3),φ-conhar monically flat LP-Kenmotsu mani-
fold. Then Mn is an η-Einstein manifold with the zer o-scalar cur vatur e.

Proof: Assume that (Mn, g) , n> 3, is a φ-confor mally flat LP-Kenmotsu manifold. It can be
easily seen that φ2K(φX, φY)φZ= 0 holds if and only if

g(K(φX, φY)φZ, φW) = 0,

for any X, Y, Z, W∈χ (Mn).

g(R(φX, φY)φZ, φW) = 1
n−2 [g(φY, φZ)S(φX, φW)−g(φX, φZ)S(φY, φW)

+g(φX, φW)S(φY, φZ)−g(φY, φW)S(φX, φZ)].
(24)

We suppose that {e1, . . . ,en−1, ξ} is a local orthonor mal basis of vector fields in Mn. By using the
fact that {φe1, . . . ,φe2n, ξ} is also a local orthonor mal basis, if we put X=W=ei in (23) and sum
up with respect to i, then

∑n−1
i=1 g (R (φei, φY) φZ, φei) =

1
n−2 ∑n−1

i=1 [g(φY, φZ)S (φei, φei)
−g (φei, φZ) S (φY, φei) +g (φei, φei) S(φY, φZ)−g (φY, φei) S (φei, φZ)] ,

(25)

wher e
n−1

∑
i=1

g (R (φei, φY) φZ, φei) =S (φY, φZ) +g (φY, φZ) , (26)

n−1

∑
i=1

S (φei, φei) =r+n−1, (27)

n−1

∑
i=1

g (φei, φZ) S (φY, φei) =S(φY, φZ), (28)

n−1

∑
i=1

g (φei, φei) =n+1. (29)

So, by the use of (26)-(29) the equation (25) tur ns into

−S(φY, φZ) = (r+1)g(φY, φZ). (30)

Then by using (4) and (15), from equation (30) we get

S(Y, Z) = −(r+1)g(Y, Z)− (n+r)η(Y)η(Z), (31)

which giv es us, from (16), Mn is an η-Einstein manifold. Hence on contracti ng (31) we obtain
nr= 0, which implies the scalar cur vatur e r= 0, which proves the theor em.
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V. LP-Kenmotsu manifolds with φ-projectively flat curvature tensor

A dif ferentiable manifold (Mn, g) , n> 3, satisfying the condition

φ2P(φX, φY)φZ= 0 (32)

is called φ-projectiv ely flat, wher e P (X, Y) Z is the Weyl-pr ojectiv e cur vatur e tensor of (Mn, g).

Theorem 5.1: Let Mn be an n-dimensional, (n> 3), φ-projectiv ely flat LP-Kenmotsu manifold.
Then Mn is an Einstein manifold with the scalar cur vatur e r=n(n−1).

Proof:It can be easily seen that φ2P(φX, φY)φZ= 0 holds if and

g(P(φX, φY)φZ, φW) = 0,

for any X, Y, Z, W∈χ (Mn).

g(R(φX, φY)φZ, φW) =
1

n−2
[g(φY, φZ)S(φX, φW)−g(φX, φZ)S(φY, φW). (33)

By choosing {e1, . . . ,en−1, ξ} as a local orthonor mal basis of vector fields in Mn and using the fact
that {φe1, . . . ,φe2n, ξ} as a local orthonor mal basis, on putting X=W=ei in (33) and summing up
with respect to i, we have

n−1

∑
i=1

g (R (φei, φY) φZ, φei) =
1

n−2

n−1

∑
i=1

[g(φY, φZ)S (φei, φei)−g (φei, φZ) S (φY, φei)] . (34)

Ther efor e, by using (26)-(29) into (34) we get

nS (φY, φZ) =rg (φY, φZ) .

Hence by vi rtue of (4) and (15) we obtain

S(Y, Z) =
r
n

g(Y, Z)+
( r

n
−(n−1)

)
η(Y)η(Z). (35)

Ther efor e from (35), by contraction, we obtain

r=n(n−1). (36)

Then by substituting (36) into (35) we get

S (Y, Z) = (n−1) g (Y, Z) ,

which implies Mn is an Einstein manifold with the scalar cur vatur e r= n(n−1).
This completes the proof of the theor em.
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Abstract 

In this work, a novel bounded three-parameter power Lomax distribution termed the unit power Lomax 

(UPLoD) is presented. The UPLoD is capable of handling data with left and right skewed shapes according 

to its probability density function. Additionally, according to the hazard rate function, the distribution may 

be used to analyse data containing J-shaped hazard rates. It is possible to determine some of the distribution's 

mathematical characteristics like moments, probability-weighted moments, incomplete moments, residual and 

reversed residual life, quantile function, stress strength model, and entropy (Rényi, Havrda and Charvát, 

Tsallis, and Arimoto) measures. The Cramér–von Mises, weighted least squares, maximum likelihood, 

Anderson–Darling, maximum product of spacing, and least squares approaches are among the conventional 

estimating techniques that are taken into account. The performance of the resulting estimates is compared 

using a Monte Carlo simulation based on some precision metrics. An actual data application is presented 

using water capacity data, and data about the Susquehanna River's maximum flood levels to show the 

importance of the new distribution compared to several other known distributions. 

Keywords: Unit Power Lomax distribution, Entropy measures, Parameter estimation, 

Goodness-of-fit test. 

1 Introduction 
The Lomax distribution (LoD), sometimes referred to as the Pareto II distribution, was first presented 

by Lomax [1] to model business failure data, but it has since been widely used in a wide range of 

applications. Harris [2] utilized the LoD for data on wealth and income, In the case of severely tailed data, 

Bryson [3] suggested employing it in place of the exponential distribution. Atkinson and Harrison [4] used 

it to model data on business failure. It was utilized in the biological sciences and even for modeling the 

distribution of server computer file sizes, as mentioned by Holland et al. [5]. The LoD has been used to 

model a variety of data that many writers have explored. 

Rady et al. [6] presented the power Lomax distribution (PLoD) as a generalization of the LoD that 

includes an additional shape parameter. The PLoD has been used in many applications and fields, like 
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those pertaining to biological sciences, engineering sciences, medical research, econometrics, and life 

testing. The PLoD's probability density function (PDF) is provided by: 

( ) ( ) ;

1
1 1 1; 1 0,f x x x x


    

− −
− − −= +  (1) 

where ( , , )   =  is the set of parameters, 0   and 0   are shape parameters and 0   is the scale 

parameter. The following defines the PLoD's cumulative distribution function (CDF) 

( ); 1 1 ; 0.
x

F x x







−
 

= − +  
 
 

(2) 

On the other hand, statistics professionals have recently become interested in the creation and the 

development of novel probability distributions that can provide models that fit datasets ranging from zero 

to one. To model proportions, percentages, and probabilities, bounded distributions are required. The 

study of datasets on (0, 1) regard to parametric or semi-parametric regression models is crucial in applied 

fields. Additionally, unit distributions add more flexibility over the course of the unit interval without 

changing the core distribution's properties. When modeling proportions that are typically seen in industry, 

medical applications, and risk analysis, unit distributions are an essential tool.  

Here are a few of the most significant unit distributions with varying numbers of parameters. The log 

Lindley distribution (Gómez-Déniz et al. [7]), unit-Gompertz distribution(UGoD) (Mazucheli et al. [8]), unit 

Lindley distribution (ULD) (Mazucheli et al. [9]), unit modified Burr-III distribution (Haq et al. [10]), unit 

generalized half normal distribution (Korkmaz [11]), unit-Weibull distribution (UWD) (Mazucheli et al. 

[12]), unit Gamma/Gompertz distribution (UG/GD) (Bantan et al. [13]), unit log logistic distribution (ULLD) 

Ribeiro-Reis [14]), unit Burr-XII distribution (UBXIID) (Korkmaz and Chesneau [15]), unit half-logistic 

geometric distribution (Ramadan et al. [16]), unit power-skew-normal distribution (Martínez-Flórez et al. 

[17]), unit exponentiated half logistic distribution (Hassan et al. [18]), unit Teissier distribution (Krishna et 

al. [19]), unit Xgamma distribution (Hashmi et al. [20]), unit-exponentiated Pareto distribution (UEPD) (Haj 

Ahmad et al. [21]), unit exponentiated Lomax (Fayomi et al. [22]), Kumaraswamy unit-Gompertz 

distribution (Akata et al. [23]), unit inverse exponentiated Weibull distribution  (Hassan and Alharbi [24]) 

and unit–power Burr X distribution (Fayomi et al. [25]).  

The main goal of this work is to present a new and adaptable probabilistic model for the PLoD with a 

domain (0,1). This model refers to the unit PLoD (UPLoD) that can be used to evaluate a wide range of data 

sets with values ranging from zero to one. The UPLoD is presented in light of the following details: 

a) To offer a new distribution that is specified on (0,1) to compete with the current bounded

distributions.

b) There are several possible forms for the density function: symmetric, unimodal, reversed J-shaped,

left- and right-skewed. Furthermore, J-shaped and rising hazard rate function (HF) plots of the

UPLoD are possible.

c) Statistical characteristics are given, including quantile function, stress strength (SS) reliability

model, moments, incomplete moments (IMs), probability-weighted moments (PWMs), residual

and inverted residual lives, and entropy measures.

d) The performance of parameter estimate for the UPLoD is assessed and compared using six

traditional estimation techniques: least squares (LS), weighted LS (WLS), maximum likelihood

(ML), maximum product spacing (MPS), Anderson-Darling (AD), and Cramer-von Mises (CvM).

e) To evaluate the validity of different estimates, simulation research is conducted. The Susquehanna

River's maximum flood level and water capacity data are used to evaluate the UPLoD's usefulness

to a number of alternative models.
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The structure of the article is as follows: A new bounded distribution is shown in Section 2. In Section 

3, the statistical characteristics of the UPLoD are covered. The model parameter estimators based on ML, 

LS, CvM, WLS, AD, and MPS methods are derived in Section 4. In order to make sense of the findings in 

Section 5, a simulation study is conducted. In Section 6, two real data sets are used to demonstrate the 

UPLoD's utility. Section 7 presents the conclusions. 

2 Unit Power Lomax Distribution 
In this section, a new lifetime model called the UPLoD is introduced and investigated. The UPLoD is 

obtained by using the exponential function transformation in the form e XY −=  where X has the PLoD 

with density function (1), hence the UPLoD’s PDF is provided by: 

( ) ( ) ( )( )
1

1 1; ln 1 ln ;f y
y

y y
 

 


− −
− −= − + − 0 1;y  , , 0,    (3) 

where ( , , )   =  is the set of parameters, where   and   are shape parameters, while   is scale 

parameter. The CDF of the UPLoD is provided as follows: 

( ) ( )( ) ,
11; lnF y y




−
−+= − 0 1.y  (4) 

The survival and HF of the UPLoD, for 0< y <1, are given, in that order, by

( ) ( )( ) ,
1; 1 1 lnS y y




−
−= − + −

and, 

( )
( ) ( )( )

( )( )

1
1 1

11

ln 1 ln
; .

1 ln

y y
h y

y y

 












− −
− −

−
− 

− 
  

− + −
=

+ −

Figure 1 represents the PDF plots of the UPLoD for selected parameter values. It shows that the UPLoD 

exhibits symmetric, unimodal, reversed J-shaped, left-skewed and right-skewed shapes. Also, the HF  plots 

of UPLoD for some values of parameters are increasing and J-shaped. 

Figure 1: Plots of the PDF and HF for the UPLoD 

The quantile function of a random variable Y has the UPLoD is obtained. The quantile function of the 

UPLoD, say y = Q(p) = F−1(p), where p~ uniform (0,1) can be obtained by inverting CDF (4) as follows: 

( )1 ln1 .yp





 
 
 

−
− −= +

Then, the quantile function of the UPLoD takes the following form 
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( )
1

1 1( ) 1
.( ) e

p
Q p


 


−− −

=
(5) 

The first quantile (Q1) is obtained by setting p = 0.25 in (5); the median (Q2) is obtained by setting p = 0.5 in 

(5); and the third quantile (Q3) is obtained by setting p = 0.75 in (5). 

3 Some Statistical Properties 
In this section, some statistical properties of the UPLoD, including, the rth moment, PWMs, IMs, and 

moments of residual, some entropy measures, and SS reliability are derived. 

3.1 Moments & Some Measures 

Ordinary moments can be used to gain a large number of a UPLoD's significant properties and attributes. 

It is simple to extract the UPLoD's rth moment from PDF (3) in the manner that follows 

where 
( )

( )
!

h h

h
r

A
h




−
= and B(.,.) is the Beta function. Certain numerical values of mean ( 1  ),

variance ( 2 ), skewness ( 3 ), kurtosis ( 4 ) and coefficient of variation (CV) are mentioned in Table 1 for 

some selected parameter values. 
Table 1: Some moments measures of the UPLoD 

τ η κ 
1

  2 CV 3 4

1 

0.7 7 0.337 0.011 0.031 -0.113 3.317 

0.9 9 0.361 0.006 0.015 -0.049 3.709 

1.1 11 0.373 0.003 0.009 0.093 3.853 

2 

0.7 7 0.302 0.010 0.034 0.009 3.280 

0.9 9 0.333 0.006 0.016 0.022 3.684 

1.1 11 0.350 0.003 0.0095 0.137 3.859 

3 

0.7 7 0.283 0.009 0.035 0.084 3.285 

0.9 9 0.317 0.005 0.017 0.066 3.679 

1.1 11 0.337 0.003 0.0097 0.164 3.866 

Table 1 indicates that when the values of   and   rises while the value of   remain constant, the values 

of 2  and CV fall and the values of the other measures increase. It is therefore possible to draw the 

conclusion that, as the value of   rises for predetermined values of   and  , then the values of the mean 

and variance decrease, while the values of other measures increase. Thus, it can be claimed that the 

distribution is skewed to right and left, according to the values of skewness. Finally, according to values of 

4 in Table 1, the UPLoD is leptokurtic.

i. The probability-Weighted Moments
It was Greenwood et al. [26] who proposed the PWM. Estimators of parameters and the quantile function 

of the generalized distributions expressible in inverse form are derived using the PWM. Given two positive 

integers, s and r, the PWM of a random variable Y is defined as 

( )

,

1
1

1 1

0

0

( ) ( ln ) 1 ( ln )

( ) 1, ;

r r

h
h

E Y y y y
y

h h h
A B

dy


 




  
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− −
− −



=

− + −

 
+ −  

 

=

= 


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 , ( ) ( ) .y
rs

s r F y f y dy



−

=  (6) 

Using PDF (3) and CDF (4) in (6), the PWM of the UPLoD is derived as follows 

( ) ( )

( )

1 ( 1) 1
1 11

,

0

0

ln 1 ln

( 1)
1, ( 1) .

!

y

r
s

s r

h
h h

h

y y dy

s h h
r

h
B








 


 





 
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 

− + −
− −−



=

= − + −

−  
= + + − 
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ii. The incomplete Moments
Understanding a distribution's form as well as its mean is vital for the solutions to many important 

economic concerns. This is made clear throughout the study of econometrics (for instance, asymmetric error 

terms cannot continue to be produced by the widely held spherical distributions). The rth IM of the UPLoD 

is obtained as follows by utilizing PDF (3)  

( ) ( )( )
1

1 11

0

1

0

( ) ln 1 ln

( ln )
( )B 1, , 1 ,

y

x
r

r

h
h

x y y dy

h h x
A


 




 



 
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− −
− −−

−


=

= − + −

  − = + − + 
     





where B(.,.,x) is incomplete Beta function.

 

iii. Residual and Reversed Residual Life’s

Residual life and reversed residual life random variables are often used in risk analysis. As a result, 

Balkema and De Haan [27] looked into some related statistical functions, including the survival function, 

mean, and variance. The residual life is defined as the interval between time t and the time of failure for 

the conditional random variable. The rth moment of the residual life, say Ir (t) is defined as follows: 

0 0

1 1
( ) ( ) ( ) ( ) ( ) .

( ) ( )

r r
r nr n

r
n nt t

r
I t y t f y dy t y f y dy

S t S t n

 
−

= =

 
− − 

 
= =   (7) 

Additionally, by combining PDF (3) into (7), the rth moment of residual life of the UPLoD can be obtained 

as follows: 

11 1
1 1

0

1
( ) ( ) ( ln ) 1 ( ln ) .

( ; )

r
r n n

r
n t

r
I t t y y y dy

S t n






 




− −
−

− − −

=

  
= − − + −  

   
 

After some manipulation, Ir (t) takes the following form 

( )
1

,
0

1
( ) B 1, , 1 ( ln ) ,
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r
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Further, the rth moment of reversed residual life of the UPLoD is derived as follows: 
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which is the incomplete beta function, and takes the following form 
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3.2 Some Entropy measures 

In research on reliability and risk assessment, entropy measures are essential. It has been used in many 

biological applications and in the physical and medical domains. Entropy measures how much the 

uncertainty associated with a random variable Y's distribution fluctuates. Some entropy measures of the 

UPLoD as Rényi, Havrda and Charvat, Tsallis and Arimoto are obtained here. 

The Rényi entropy, of order 0 and 1,    for the UPLoD is defined by: 

( ) .
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The Rényi entropy of the UPLoD is obtained by using PDF (3) in (8) as follows: 

( ) .

1 ( 1)
1 ( 1) 1

0

)(1 log ( ln ) 1 ( ln )yR y y dy
  

  
  

−
− +

− − −
  
  
   

= − − + −

Hence, the Rényi entropy of the UPLoD takes the following form 
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Shannon's entropy was extended by Havrda and Charvát [28]. Havrda and Charvat (HC) of the UPLoD is 

obtained from PDF (3) as follows 

.

1
( 1)

( 1) 1
1

0

1
( ln ) 1 ( ln ) 1

2 1
y y dy

y
HC


 

  
 





 
 
 

− +
− −

−

  
 − + − − 
 −   

= 

Using the same procedure in Rényi entropy, then, the UPLoD's HC entropy has the following structure. 
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Tsallis [29] proposed an extension of Shannon's entropy. Tsallis entropy of the UPLoD is acquired as 

follows from PDF (3) 
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By the similar way used above, hence the UPLoD's Tsallis entropy has the following structure 
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An alternative entropy metric with comparable qualities to the Shannon entropy measure was proposed 

by Arimoto [30] and named the Arimoto's entropy. The following is how to derive Arimoto's entropy of 

the UPLoD from PDF (3). 
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In the same vein used above, the UPLoD's Arimoto’s entropy has the following structure 
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Certain numerical values of some entropy measures of the UPLoD are mentioned in Table 2 for some 

predetermined values of the parameters. 
Table 2: A selection of entropy measures of the UPLoD 

 τ η κ R T HC A

0.3 

0.5 

0.5 1 -0.1550 -0.1469 0.2675 0.1301 

2 2 -0.1168 -0.1122 0.2043 0.1023 

5 3 -0.5033 -0.4242 0.7724 0.2961 

7 4 -0.6937 -0.5495 1.0006 0.3436 

9 5 -0.8420 -0.6362 1.1584 0.3685 

11 6 -0.9676 -0.7029 1.2799 0.3837 

0.5 

0.5 1 -0.3397 -0.3125 0.5334 0.2880 

2 2 -0.1780 -0.1703 0.2908 0.1631 

5 3 -0.6263 -0.5377 0.9179 0.4654 

7 4 -0.8295 -0.6790 1.1591 0.5637 

9 5 -0.9916 -0.7818 1.3347 0.6290 

11 6 -1.1300 -0.8633 1.4737 0.6770 

0.8 

0.5 1 -1.1101 -0.9955 1.5380 0.9694 

2 2 -0.2502 -0.2440 0.3770 0.2425 

5 3 -0.7354 -0.6839 1.0566 0.6718 

7 4 -0.9504 -0.8655 1.3372 0.8459 

9 5 -1.1235 -1.0062 1.5546 0.9795 

11 6 -1.2709 -1.1222 1.7339 1.0888 

Table 2 indicates that when the values of   increases while the value of , , ,    remain constant the values 

of the T  and R decrease and values of the other measures increase. Consequently, it can be deduced that 

when the value of   and   grow for constant values of   and  , then the values of the T  and R  fall 

and values of the other measures rise. 
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3.3 Stress-Strength Reliability 

The SS model, say R = P [ Y< X], where X is the strength and Y is the stress of the system, is widely used in 

several fields such as engineering, statistics, and biostatistics. A few real-world examples include buildings, 

the deterioration of rocket engines, the aging of concrete pressure vessels, and the fatigue failure of aircraft 

structures.  For more applications and examples (see [31-33]). Assume that X be the system's strength and 

Y stress, where X and Y are independent random variables having UPLoD 1( , , )    and UPLoD 2( , , ),    

respectively, then the SS reliability is given as follows 
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Hence, the stress strength of the UPLoD takes the following form 
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

 
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+

4 Parameter Estimation 
In this section, six different estimation methods for estimating model parameters are presented. These 

methods are ML, LS, WLS, CvM, AD and MPS. 

4.1 Maximum Likelihood Estimator 

The estimation of the UPLoD parameters is deemed using the ML method. Let y1, y2…ym be a random 

sample of size m from the UPLoD, the log-likelihood function, pointed by ln M  , is given by
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An alternative to previous equation, we obtain the ML equations as below: 
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By numerically solving ln 0,M   =  ln 0,M   = and ln 0,M   = based on optimization 

algorithm as optim using R program, the ML estimates (MLEs) of , ,   and   are produced. 

4.2  Least Squares & Weighted Least Squares 

Let y1, y2,…,ym be a random sample of size m from the UPLoD. Suppose that y(1) <y(2)<…< y(m) denotes the 

corresponding ordered sample. Minimizing the sum squares error yields the LS and WLS estimators of the 

unknown parameters of the UPLoD. 
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Alternatively, the LS estimates (LSEs) of , , ,   can be obtained by setting 1r =  in (9). Similarly, the WLS 

estimates (WLSEs) of unknown parameters are obtained from (9) by putting 
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estimates can also be obtained by solving the following non-liner equations using an optimization 

algorithm  
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4.3 Maximum Product Spacing 

The ML approach can be replaced by the MPS method, which approaches the Kullback-Leibler information 

metric. Although ML estimation is the most popular and extensively used approach, it does not work well 

in some situations involving big samples and complex continuous distributions. The spacing between the 

values of the CDF at consecutive data points is the foundation of the MPS approach. The MPS has been 

used in several applications such as pure mathematics, statistics, hydrology, econometrics, magnetic 

resonance imaging and others. Let Y(1) <Y(2)<…< Y(m) be the ordered statistics from the distribution with 

sample size m, and y(1) <y(2)<…< y(m) be the ordered observed values. Cheng and Amin [34] introduced the 

MPS method serving as an alternative to the ML method.  

Let y(1) <y(2)<…< y(m) are ordered random samples from the UPLoD having CDF(4). The uniform spacings 

can be defined as follows, based on a size m random sample from the UPLoD. 

( ) ( ) ( )( ) ( 1) , 1,2,..., 1r r rD F y F y r m  −= − = + , 
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The MPS estimate (MPSE) for the UPLoD is given by maximizing the geometric mean of the spacings 
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The MPSE of , ,   and  are obtained by solving the following non-liner equations technique 
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where ( )( | )k ry  , k =1, 2 and 3 are given in Equation (10). Also, ( 1)( | )k ry − , k =1, 2 and 3 are given 

in (10) by replacing (r) with (r−1). 

4.4 Cramer-von Mises & Anderson-Dalring Estimators 

The CvM  estimates (CvMEs) and AD estimates (ADEs) of set parameters of ( , , ),   =  are obtained by 

minimizing the following functions:  
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with respect to ,   and .  

5 Numerical Study 
In this section, a numerical analysis was conducted to assess and compare the performance of the 

estimates with regard to their relative absolute biases (RAB), chosen parameter values and mean squared 

errors (MSEs) for different sample sizes. The following steps provide a description of the numerical 

techniques: 

Step 1: A random sample is created from the UPLoD by using the inverse transformation (5) with sample 

sizes 𝑚 = (50, 75, 100, 125, 150, and 175). 

Step 2: Some parameter values are selected as, Set1: ( 2, 0.8, 0.05),  = = = Set2:

( 2.5, 0.8, 0.05),  = = = Set3: ( 3, 0.67, 0.05),  = = = Set4: ( 3.5, 0.67, 0.05),  = = = Set5:

( 3, 0.8, 0.05),  = = = and Set 6: ( 3.5, 0.8, 0.05).  = = =  

Step 3: Obtain the parameter estimates of , ,   using the provided estimation methods for the selected

sample sizes. 
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Step 4: Steps 1 through 4 are repeated 1000 times for each sample size and the chosen parameter values. 

Then, the MSEs and RABs of different estimates of , ,   are computed. The MSEs and RABs have the

following formulas 
1000
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k k
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=

−
=  , ( )

1000
2

1

1
ˆ( ) .

1000 k k
k
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=

= −

Step 5: The numerical results of the simulation study are listed in Tables (3−8). 

The findings obtained regarding the behavior of the estimated parameters from the UPLoD are as follows: 

1. The RABs of all estimates decrease with increasing sample sizes based on different estimation techniques

(see Tables (3–8)).

2. The MSEs for the   estimate increase as value of   increases and the MSEs for the   estimate decrease as

the value of   increases, for all estimation methods (see Tables 3, 7 and 8).

3. From Tables 5 and 7 it is observed that the RAB of   estimate generally increase and the RAB of   

estimate generally decrease when   increases for all estimation methods.

4. From Tables 4 and 8 it is observed that the RAB of ,   estimates generally constant when   increases for

all estimation methods.

5. The RAB of   estimate generally decreases when  and   increase.

6. For all selected sets of parameters, the MSEs of all estimates based on various approaches decrease as

sample size grows (see Figures 2 and 3).

Figure 2: The MSEs of the LSE and WLSE for the UPLoD for all values of m 

Figure 3: The MSEs of ADE and MPSE for the UPLoD for all values of m 

7. It can be seen from Figure 4 that the MSE of   estimates from AD and WLS methods gets the least

value followed by the ML method compared to other methods for set 3 and set 4.
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Figure 4: The MSEs for different  estimates of the UPLoD for all m values 

8. For sets 2 and 6, the MSE of   estimates based on the AD and WLS techniques yields the lowest

values, followed by the ML approach in comparison to other methods (see Figure (5)).

Figure 5: The MSEs of different   estimates of the UPLoD for all values of m 

Table 3: MSEs and RABs of different estimates for η = , κ =, τ = 

m 
ML MP LS WLS AD CvM 

MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB 

50 

η 0.425 0.074 0.586 0.129 0.369 0.046 0.0339 0.004 0.333 0.059 0.402 0.073 

κ 1.872 0.436 2.803 0.607 2.635 0.476 2.226 0.443 1.777 0.408 3.206 0.545 

τ 0.001 1.276 0.002 1.303 0.001 1.362 0.002 1.449 0.001 1.36 0.001 1.226 

75 

η 0.227 0.049 0.291 0.085 0.259 0.045 0.216 0.039 0.212 0.048 0.272 0.64 

κ 0.81 0.252 1.507 0.363 2.286 0.433 0.641 0.216 0.911 0.228 2.466 0.419 

τ 0.0009 1.067 0.0009 1.025 0.001 1.188 0.001 1.014 0.001 0.944 0.001 1.15 

100 

η 0.144 0.034 0.171 0.06 0.184 0.035 0.146 0.028 0.14 0.035 0.197 0.049 

κ 0.481 0.172 0.658 0.243 1.363 0.287 0.368 0.151 0.268 0.125 1.349 0.294 

τ 0.0007 0.845 0.0007 0.827 0.0011 1.093 0.0008 0.905 0.0007 0.792 0.0011 1.031 

125 

η 0.109 0.029 0.125 0.049 0.153 0.031 0.114 0.024 0.109 0.03 0.159 0.043 

κ 0.171 0.108 0.367 0.169 0.779 0.214 0.23 0.115 0.179 0.095 0.781 0.223 

τ 0.0005 0.673 0.0005 0.671 0.0009 0.971 0.0006 0.742 0.0005 0.654 0.0009 0.923 

150 

η 0.087 0.021 0.099 0.039 0.127 0.025 0.093 0.019 0.089 0.023 0.133 0.034 

κ 0.38 0.112 0.286 0.145 0.368 0.159 0.172 0.097 0.149 0.084 0.376 0.166 

τ 0.0003 0.552 0.0004 0.544 0.0009 0.947 0.0004 0.617 0.0003 0.526 0.0008 0.905 

175 

η 0.073 0.019 0.083 0.033 0.109 0.023 0.079 0.018 0.078 0.021 0.114 0.031 

κ 0.13 0.077 0.153 0.108 0.281 0.117 0.123 0.068 0.107 0.061 0.264 0.12 

τ 0.0003 0.455 0.0003 0.439 0.0006 0.728 0.0003 0.492 0.0003 0.432 0.0006 0.713 
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Table 4: MSEs and RABs of different estimates for η = , κ =, τ = 

m 
ML MP LS WLS AD CvM 

MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB 

50 

η 0.742 0.079 1.09 0.14 0.784 0.064 0.638 0.052 0.606 0.066 0.86 0.095 

κ 1.883 0.45 2.249 0.563 1.941 0.419 1.297 0.369 1.209 0.362 2.36 0.47 

τ 0.026 1.082 0.031 1.189 0.03 1.205 0.027 1.127 0.027 1.139 0.03 1.151 

75 

η 0.385 0.053 0.497 0.09 0.491 0.054 0.376 0.042 0.352 0.049 0.529 0.074 

κ 0.495 0.215 1.342 0.356 1.43 0.326 0.738 0.217 0.695 0.211 1.421 0.336 

τ 0.018 0.084 0.018 0.807 0.018 0.84 0.017 0.794 0.017 0.763 0.019 0.826 

100 

η 0.226 0.034 0.267 0.06 0.317 0.038 0.232 0.029 0.222 0.036 0.328 0.052 

κ 0.479 0.172 0.716 0.246 1.309 0.279 0.368 0.151 0.268 0.125 1.242 0.282 

τ 0.011 0.621 0.012 0.632 0.015 0.738 0.012 0.623 0.011 0.577 0.015 0.715 

125 

η 0.176 0.031 0.204 0.052 0.266 0.035 0.183 0.025 0.176 0.031 0.28 0.046 

κ 0.279 0.113 0.235 0.148 0.461 0.179 0.174 0.103 0.141 0.087 0.49 0.189 

τ 0.007 0.447 0.008 0.485 0.015 0.722 0.009 0.524 0.008 0.444 0.015 0.702 

150 

η 0.139 0.022 0.161 0.041 0.216 0.027 0.15 0.019 0.144 0.024 0.224 0.036 

κ 0.194 0.097 0.189 0.127 0.264 0.14 0.133 0.088 0.118 0.077 0.274 0.147 

τ 0.006 0.386 0.006 0.389 0.011 0.619 0.007 0.44 0.006 0.388 0.011 0.584 

175 

η 0.118 0.019 0.134 0.035 0.18 0.025 0.127 0.018 0.124 0.022 0.186 0.033 

κ 0.097 0.07 0.115 0.096 0.195 0.102 0.096 0.062 0.086 0.056 0.199 0.107 

τ 0.005 0.311 0.005 0.318 0.008 0.469 0.005 0.327 0.004 0.293 0.008 0.456 

Table 5: MSEs and RABs of different estimates for η = , κ =, τ = 

m 
ML MP LS WLS AD CvM 

MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB 

50 

η 1.187 0.089 1.661 0.154 0.959 0.051 0.873 0.048 0.851 0.064 1.065 0.082 

κ 0.726 0.325 0.905 0.427 1.201 0.416 1.566 0.431 0.549 0.288 1.306 0.443 

τ 0.002 1.393 0.002 1.355 0.002 1.497 0.002 1.509 0.001 1.386 0.002 1.438 

75 

η 0.607 0.059 0.802 0.103 0.671 0.051 0.552 0.043 0.536 0.05 0.712 0.071 

κ 0.328 0.174 0.402 0.237 0.699 0.279 0.301 0.169 0.237 0.152 0.797 0.304 

τ 0.0009 1.009 0.0009 0.902 0.001 1.154 0.0009 1.075 0.0008 0.938 0.001 1.088 

100 

η 0.379 0.042 0.463 0.074 0.474 0.039 0.367 0.031 0.358 0.039 0.501 0.054 

κ 0.136 0.112 0.152 0.141 0.267 0.161 0.131 0.104 0.104 0.089 0.285 0.173 

τ 0.0006 0.776 0.0006 0.691 0.0009 0.995 0.0007 0.842 0.0006 0.757 0.0009 0.943 

125 

η 0.282 0.035 0.334 0.06 0.394 0.036 0.287 0.027 0.275 0.032 0.413 0.047 

κ 0.09 0.08 0.099 0.104 0.195 0.131 0.086 0.079 0.076 0.069 0.202 0.139 

τ 0.0005 0.62 0.0004 0.569 0.0009 0.962 0.0006 0.723 0.0005 0.626 0.0009 0.936 

150 

η 0.221 0.026 0.26 0.047 0.319 0.028 0.234 0.021 0.225 0.025 0.336 0.038 

κ 0.073 0.072 0.082 0.092 0.119 0.104 0.069 0.069 0.063 0.062 0.123 0.109 

τ 0.0003 0.494 0.0003 0.462 0.0007 0.831 0.0004 0.579 0.0003 0.511 0.0006 0.795 

175 

η 0.186 0.022 0.216 0.041 0.279 0.027 0.198 0.019 0.194 0.023 0.288 0.034 

κ 0.049 0.053 0.057 0.069 0.088 0.074 0.051 0.048 0.047 0.045 0.089 0.079 

τ 0.0003 0.428 0.0003 0.388 0.0005 0.676 0.0003 0.478 0.0003 0.437 0.0005 0.647 
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Table 6: MSEs and RABs of different estimates for η = , κ =, τ = 

m 
ML MP LS WLS AD CvM 

MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB 

50 

η 1.589 0.089 2.271 0.153 1.31 0.052 1.182 0.048 1.168 0.068 1.412 0.079 

κ 0.729 0.325 0.904 0.426 1.623 0.464 1.493 0.418 0.549 0.288 1.674 0.487 

τ 0.002 1.393 0.002 1.353 0.002 1.498 0.002 1.509 0.001 1.386 0.002 1.438 

75 

η 0.84 0.06 1.106 0.103 0.909 0.051 0.761 0.043 0.725 0.052 0.966 0.07 

κ 0.328 0.174 0.403 0.237 0.62 0.27 0.301 0.168 0.237 0.152 0.775 0.302 

τ 0.0009 1.009 0.0008 0.903 0.001 1.153 0.0009 1.075 0.0009 0.957 0.001 1.088 

100 

η 0.516 0.042 0.629 0.074 0.647 0.039 0.506 0.031 0.482 0.038 0.686 0.055 

κ 0.136 0.112 0.152 0.141 0.424 0.179 0.131 0.104 0.104 0.089 0.385 0.187 

τ 0.0006 0.775 0.0006 0.692 0.0009 0.996 0.0007 0.842 0.0006 0.757 0.0009 0.943 

125 

η 0.383 0.035 0.454 0.06 0.528 0.036 0.389 0.027 0.376 0.033 0.56 0.047 

κ 0.09 0.08 0.099 0.104 0.195 0.131 0.086 0.079 0.076 0.069 0.202 0.139 

τ 0.0005 0.62 0.0005 0.588 0.0009 0.963 0.0006 0.723 0.0005 0.626 0.0009 0.936 

150 

η 0.302 0.026 0.354 0.047 0.436 0.028 0.319 0.021 0.307 0.025 0.462 0.038 

κ 0.073 0.072 0.082 0.092 0.119 0.104 0.069 0.069 0.063 0.062 0.123 0.109 

τ 0.0003 0.494 0.0003 0.462 0.0007 0.831 0.0004 0.579 0.0003 0.511 0.0006 0.795 

175 

η 0.254 0.023 0.293 0.041 0.374 0.026 0.269 0.019 0.264 0.023 0.394 0.034 

κ 0.049 0.053 0.057 0.069 0.087 0.074 0.051 0.048 0.047 0.045 0.089 0.079 

τ 0.0003 0.428 0.0003 0.388 0.0005 0.676 0.0003 0.478 0.0003 0.437 0.0005 0.647 

Table 7: MSEs and RABs of different estimates for η = , κ =, τ = 

m 
ML MP LS WLS AD CvM 

MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB 

50 

η 1.074 0.079 1.617 0.141 1.122 0.064 0.914 0.052 0.861 0.066 1.24 0.095 

κ 1.885 0.451 2.241 0.563 1.9 0.411 1.296 0.369 0.899 0.453 2.247 0.471 

τ 0.026 1.082 0.031 1.189 0.03 1.204 0.027 1.127 0.098 1.046 0.0301 1.151 

75 

η 0.549 0.052 0.707 0.089 0.712 0.054 0.546 0.042 0.499 0.049 0.747 0.073 

κ 0.495 0.215 1.345 0.356 1.429 0.326 0.739 0.217 0.695 0.211 1.438 0.339 

τ 0.018 0.84 0.018 0.807 0.018 0.84 0.017 0.794 0.017 0.763 0.019 0.837 

100 

η 0.337 0.036 0.402 0.063 0.471 0.039 0.344 0.029 0.329 0.036 0.498 0.054 

κ 0.282 0.148 0.416 0.209 0.857 0.24 0.374 0.146 0.205 0.113 0.77 0.241 

τ 0.011 0.615 0.01 0.579 0.014 0.701 0.011 0.604 0.01 0.55 0.014 0.678 

125 

η 0.253 0.031 0.293 0.051 0.384 0.035 0.264 0.025 0.253 0.031 0.404 0.046 

κ 0.279 0.113 0.235 0.148 0.461 0.179 0.174 0.103 0.141 0.087 0.491 0.189 

τ 0.007 0.447 0.009 0.504 0.015 0.722 0.009 0.524 0.008 0.444 0.015 0.603 

150 

η 0.201 0.002 0.231 0.041 0.31 0.027 0.216 0.019 0.208 0.024 0.328 0.037 

κ 0.194 0.097 0.188 0.128 0.264 0.14 0.133 0.088 0.118 0.077 0.274 0.147 

τ 0.006 0.386 0.006 0.39 0.011 0.619 0.007 0.44 0.006 0.388 0.011 0.584 

175 

η 0.169 0.019 0.193 0.035 0.259 0.025 0.183 0.018 0.179 0.022 0.269 0.033 

κ 0.097 0.07 0.115 0.096 0.195 0.102 0.096 0.062 0.086 0.056 0.199 0.107 

τ 0.005 0.311 0.005 0.318 0.008 0.469 0.004 0.327 0.004 0.293 0.008 0.456 
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Table 8: MSEs and RABs of different estimates for η = , κ =, τ = 

m 
ML MP LS WLS AD CvM 

MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB MSE RAB 

50 

η 1.462 0.079 2.179 0.141 1.521 0.064 1.233 0.051 1.164 0.065 1.698 0.095 

κ 1.888 0.451 2.242 0.563 1.958 0.42 1.297 0.369 1.215 0.362 2.245 0.471 

τ 0.026 1.082 0.029 1.171 0.03 1.205 0.027 1.127 0.027 1.139 0.03 1.151 

75 

η 0.745 0.052 0.969 0.089 0.984 0.055 0.739 0.042 0.696 0.05 1.028 0.073 

κ 0.495 0.215 1.347 0.356 1.432 0.326 0.733 0.216 0.695 0.221 1.433 0.339 

τ 0.018 0.84 0.018 0.807 0.018 0.84 0.017 0.794 0.017 0.762 0.0195 0.837 

100 

η 0.459 0.036 0.547 0.063 0.638 0.039 0.468 0.029 0.447 0.036 0.681 0.054 

κ 0.282 0.148 0.414 0.209 0.858 0.241 0.375 0.146 0.205 0.113 0.769 0.241 

τ 0.011 0.616 0.01 0.58 0.014 0.701 0.011 0.604 0.01 0.55 0.014 0.678 

125 

η 0.344 0.031 0.399 0.052 0.517 0.034 0.359 0.025 0.346 0.031 0.538 0.046 

κ 0.279 0.113 0.237 0.148 0.461 0.179 0.174 0.103 0.141 0.087 0.49 0.189 

τ 0.007 0.447 0.008 0.485 0.015 0.722 0.009 0.524 0.008 0.444 0.014 0.602 

150 

η 0.274 0.022 0.315 0.041 0.415 0.027 0.294 0.019 0.282 0.024 0.438 0.036 

κ 0.194 0.097 0.188 0.182 0.264 0.14 0.133 0.088 0.118 0.077 0.274 0.147 

τ 0.006 0.386 0.006 0.39 0.011 0.619 0.007 0.44 0.006 0.388 0.011 0.584 

175 

η 0.231 0.019 0.262 0.035 0.354 0.025 0.248 0.018 0.244 0.022 0.368 0.033 

κ 0.097 0.07 0.115 0.096 0.195 0.102 0.096 0.062 0.087 0.056 0.199 0.107 

τ 0.005 0.311 0.005 0.318 0.008 0.469 0.005 0.327 0.004 0.293 0.008 0.456 

6 Applications to Real Data 
In this section, a data analysis is provided in order to examine the goodness-of-fit of the UPLoD when 

compared to some other models, namely UWD, ULD, UGoD, ULLD, UBXIID, UG/GD, Kumaraswamy 

distribution (KumD) (Kumaraswamy [35]) and Toppe-Leone distribution (TLD) (Nadarajah and Kotz [36]). 

i. First Data Set
The first real data set represents 20 observations of comprised water capacity month-wise from the Shasta 

reservoir in California in the month of February from 1991-2010. Hashmi et al. [20] provided the dataset. 

The following are the data details 

0.0833 0.0833 0.1167 0.1167 0.1167 0.15 0.1833 0.2167 0.2167 

0.25 0.25 0.25 0.25 0.2833 0.3167 0.35 0.3833 0.4167 

0.4167 0.45 0.4833 0.4833 0.7167 0.7167 0.75 0.75 0.85 

0.9167 

Some of the data's values can be summarized as follows: Q1 =0.208, Q2 =0.300, Q3 =0.483, mean=0.377, 

3 0.765, =  and 4 2.421. =  The MLEs and standard errors (SEs) for all models are given in Table 9. The 

measures of fit statistic using the maximized log-likelihood (-2logL), Akaike information criterion (E1), 

Bayesian information criterion (E2), the correct Akaike information criterion (E3), Hannan-Quinn 

information criterion (E4), the Kolmogorov Smirnov (KS) statistic values along with P-value, CvM test 

(CvMT) and AD test (ADT) are calculated in Table 9. The model with minimum values for -2logL, E1, E2, E3 

and E4 can be selected as the model that best fits the data. 
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Table 9: MLEs and SEs of all model parameters for the first data 

Models 

UBXIID UG/GD UPLoD UWD KumD TLD 


SE 

1.765 

(0.254) 

28.097 

(8.125) 

3.833 

(0.427) 

1.57 

(0.248) 
 ــــــ ـ ــــــ ـ



SE 
5.856 

(1.549) 

0.168 

(0.069) 

0.589 

(0.165) 

4.207 

(1.12) 

4.489 

(2.041) 
 ــــــ ـ



SE ــــــ ـ 
63.538 

(67.518) 

0.003 

(0.002) 
 ــــــ ـ

6.347 

(1.558) 

0.867 

(1.938) 

Table 10: The statistical measures for the first data 

Measures 
Models 

UBXIID UG/GD UPLoD UWD KumD TLD 

-2log L -11.744 -15.366 -16.272 -10.957 -13.475 -11.587

E1 -19.488 -24.732 -26.543 -17.914 -22.949 -21.175

E2 -17.497 -21.744 -23.556 -15.922 -20.958 -20.179

E3 -18.783 -24.149 -25.043 -17.208 -22.244 -20.953

E4 -19.099 -24.149 -25.96 -17.525 -22.561 -20.981

KS 0.225 0.192 0.1504 0.242 0.221 0.255 

P-value 0.224 0.399 0.701 0.1638 0.245 0.124 

CvMT 0.295 0.174 0.105 0.332 0.241 0.313 

ADT 1.701 1.081 0.726 1.874 1.425 1.786 

The results show that the UPLoD provides a significantly more suited compared to the other five 

models. The left panel of Figure 6 shows that the box plots is left-skewed. Also, the right panel of Figure 6 

shows that the total time on test (TTT) plot is concave; that is, TTT plot was obtained and compared the 

hazard line, which is an increasing function. Figure 7 shows the probability-probability (PP) plots, also 

referred to as "parametric plots," and the CDF line empirically (red) utilizing the projected CDF line (black) 

of the UPLoD of monthly water capacity from the Shasta reservoir in California for the month of February 

from 1991 to 2010 to illustrate the empirical findings reported in Table 10. 

Figure 6: Boxplot and TTT plots of the UPLoD for the first data 

RT&A, No 1 (77)
 Volume 19, March 2024

785



Amal S. Hassan, Asma M. Khalil and Heba F. Nagy  
DATA ANALYSIS AND CLASSICAL ESTIMATION METHODS OF 
THE BOUNDED POWER LOMAX DISTRIBUTION 

Figure 7: The CDF plot with line empirically, fitted PDF and PP plots for the first data 

ii. Second Data Set
The second data set represents 20 observations of the maximum flood level (in millions of cubic feet per 

second) for the Susquehanna River at Harrisburg, Pennsylvania. The data set was taken from Mazucheli et 

al. [8]. The data are as below: 

0.26 0.27 0.3 0.32 0.32 0.34 0.38 0.38 0.39 0.4 

0.41 0.42 0.42 0.42 0.45 0.48 0.49 0.61 0.65 0.74 

Here's a summary of some of the data's values: Q1 =0.335, Q2 =0.405, Q3 =0.458, mean=0.423, 3 1.07, =  and

4 3.66. =  The MLEs and SEs for all models are given in Table 11. The measures of fit are calculated in 

Table 12. The model with minimum values for the proposed measures can be chosen as the best model to 

fit the data. 
Table 11: MLEs and SEs of all model parameters for the second data 

Models 

UBXIID ULLD UG/GD UPLoD KumD TLD 


SE 

1.646 

(0.37) 

5.274 

(1.023) 

4.021 

(1.134) 

3.967 

(0.741) 

12.005 

(5.474) 
 ــــــ ـ



SE 
4.848 

(0.918) 
 ــــــ ـ

2.019 

(1.859) 

27.109 

(70.70) 

3.377 

(0.604) 
 ــــــ ـ



SE ــــــ ـ 
0.894 

(0.064) 

76.349 

(48.889) 

25.757 

(68.84) 
 ــــــ ـ

2.241 

(0.501) 

Table 12: The statistical measures for the second data 

Measures 
Models 

UBXIID ULLD UG/GD UPLoD KumD TLD 

-2log L -14.747 -13.853 -15.162 -16.100 -12.973 -7.381

E1 -25.494 -23.707 -24.324 -26.200 -21.241 -12.763

E2 -23.102 -21.715 -21.337 -23.213 -21.241 -11.767

E3 -24.608 -23.007 -22.824 -24.700 -21.132 -12.541

E4 -25.105 -23.318 -23.741 -25.617 -21.558 -12.568

KS 0.1882 0.1604 0.204 0.147 0.2175 0.3409 

P-value 0.4777 0.6823 0.374 0.781 0.3005 0.0191 

CvMT 0.0930 0.1197 0.061 0.059 0.1673 0.1195 

ADT 0.5765 0.7323 0.29 0.353 0.9747 0.7111 

The results show that the UPLoD provides a significantly more suited compared to the other five 

models. The left panel of Figure 8 shows that the box plots is right skewed. Also, the right panel of Figure 

8 shows that the TTT plot is concave. Figure 9 illustrates the empirical finding given in Table 12 by showing 
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the PP plots, and the CDF line empirically (red) utilizing the projected CDF line (black), for the UPLoD of 

the maximum flood level cubic feet per for the Susquehanna River. 

Figure 8: Boxplot and TTT plot of the UPLoD for the second data 

Figure 9: The CDF plot with line empirically, fitted PDF and PP plots employing the second data 

7 Conclusion 
We offer a new bounded distribution in this study, which we term the unit power Lomax distribution, 

as an alternative to several new bounded distributions. The UPLoD captures several kinds of density and 

hazard functions. Moments, incomplete moments, PWM, residual and inverted residual lives, quantile 

function, and entropy measurements are some of the mathematical characteristics of the proposed UPLoD. 

Some metrics of entropy have also been determined. The unknown parameters of the proposed UPLoD are 

estimated using the ML, LS, CvM, WLS, AD, and MPS techniques. The asymptotic behaviour of the 

parameter estimates for the UPLoD was investigated using a simulated study. The findings of the 

simulation indicate that the WLS and AD approaches are better than the others. Two real-data examples 

demonstrate that the UPLoD outperforms all competitors in fitting this type of data set.  
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Abstract

The paper investigates the limit cycle of length two in the Rikker model. It is established that the
dependence of the ratio of the maximum value of the cycle to the minimum depends monotonously and
almost linearly on the growth coefficient of the Rikker model. Models of the parity shift of the limit
cycle of length two are constructed, which is provided by a simultaneous sharp decrease/increase in the
growth coefficient. On the example of the Amur salmon in 1994 It is shown that a decrease in the growth
coefficient, leading to a shift in the parity of the cycle of length two, is accompanied by a low temperature
during the life cycle of pink salmon, when the pink salmon population is in a state of spawn and when
the young are rolling.

Keywords: the limit cycle of length tw o, the parity shift of the cycle and its conditions, the growth
coef ficient of the Rikker model.

1. Introduction

In chaos theor y, and specifically in population dynamics, the Riker model is a population growth
model [1]. In ichthy ology resear ch, it aroused the inter est of mathematicians in deter mining the
length of limit cycles depending on the value of the growth coef ficient (Malthusian parameter) [2]
- [5]. Despite numer ous studies of the Rikker model, the analysis of limit cycles of length tw o
may lead to new results.

In this paper , the ratio of the maximum value of the limit cycle of length tw o to the minimum
is inv estigated. With the help of computational experiments, it is sho wn that this ratio depends
monotonously and almost linearly on the growth coef ficient for almost the entir e range of
values. This result may be applied to solving an important applied problem for mulated by A.A.
Gor yaino v, an emplo yee of the Tinro Center [6], [7] on changing the parity of the limit cycle of
length tw o in the Rikker model. If the maximum value of a cycle of length tw o is taken in even
(odd) years, then a change in parity is understood as such a change in the cycle in which the
maximum value begins to be taken in odd (even) years.

The task of changing the parity is important for predicting significant changes in populations,
the dynamics of which is subject to the Rikker model. Such parity changes occur very rarely
and are the result of a significant influence of exter nal (hydro meteor ological) conditions on
population dynamics. A featur e of the method for solving the problem of parity change is the
consideration of the Rikker model at an extr eme value of the growth coef ficient, which makes
it possible to deter mine the conditions for parity shift from hydro meteor ological data. It is
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sho wn that the very shift of the cycle of length tw o at the minimum point of the cycle leads to
a significant decr ease in catches. On the contrar y, at the maximum point of the cycle, a very
high growth coef ficient is requir ed for its implementation. These circumstances allo w us to point
out an analogy betw een the parity shift (number/catch of pink salmon) and the failur e of the
technical system.

2. Methods

Consider the Rikker model xn+1 = anxn exp (−bxn), n ≥ 0. Using the standar d substitution
yn = bxn, we arriv e at a recurr ent sequence

yn+1 = f (yn) = αnyn exp (−yn), n ≥ 0. (1)

Her e αn = an/ b is the growth coef ficient and cn = yn+1/ yn is the retur n coef ficient. It follo ws
from the for mula (1) that the equality αn = cn exp (yn) is fulfilled, linking the growth coef ficient
αn with the retur n coef ficient cn and with yn.

Let’s focus on the case when αn ≡ α. In this case, the follo wing classification of stable limit
modes in the Rikker model [1] - [4] is known. For 0 < α < β0 = 1, the sequence yn, n ≥ 0, has a
stable rest point Y1 = 0. At β0 < α < β1 ≈ e2 ≈ 7, 39 the sequence yn, n ≥ 0, has a stable rest
point Y2 = Y2(α) > 0. At β1 < α < β2 ≈ 12.49 the sequence yn, n ≥ 0, has a stable limit cycle of
length tw o. At β2 < α < β3 ≈ 14.68 the sequence yn, n ≥ 0, has a stable limit cycle of length four,
etc.

Let’s calculate the components of the limit cycle of length tw o Y, f (Y), defined for Y > 0 by
the relations

Y = f ( f (Y)) ⇒ 1 = α2 exp (−Y(1 + αe−Y)) ⇒ ϕ(Y) = ψ(Y), (2)

ϕ(Y) = 2 ln α, ψ(Y) = Y(1 + αe−Y).

Numerical calculations of the roots of the equation (2) sho w that for β1 < α < β2 this
equation has three roots, because the function ψ(Y) has both a minimum and a maximum.
Moreover, the minimum root Ymin and the maximum root Ymax are related by the relations
Ymax = f (Ymin), Ymin = f (Ymax). The root Ymid = ln α, contained betw een the minimum and
maximum roots, corresponds to the unstable rest point of the sequence yn, n ≥ 0, (see Fig. 1).

Figure 1. Graphs of functions ϕ(Y) (red line), ψ(Y) (blue line) at α = β2.

The results of calculating the roots of the equation (2) are presented in Table 1.
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Table 1. The values of the roots Ymin, Ymin, Ymax and the ratio Ymax/ Ymin depending on the
growth coef ficient α, β1 < α < β2.

α Ymax/ Ymin Ymin Ymid Ymax
7.39 1.02807 1.97244 2.00013 2.02781

8 2 1.38629 2.07944 2.77259
9 3 1.09861 2.19722 3.29584

10 3.92745 0.934596 2.30259 3.67057
11 4.83672 0.821659 2.3979 3.97413
12 5.74133 0.737215 2.48491 4.2326

12.15 5.87697 0.726287 2.49733 4.26837
12.3 6.01263 0.715737 2.5096 4.30346

12.45 6.14831 0.705543 2.52172 4.3379
12.49 6.1845 0.702882 2.52493 4.34697

From the table 1 it can be seen that the ratio Ymax/ Ymin increases with the growth coef ficient
α increases from a value close to one at α ≈ β1 to a significantly larger unit (≈ 6.1845) value at
α ≈ β2. This is sho wn in mor e detail in Fig. 2.

Figure 2. Graph of the dependence of Ymax/ Ymin on the growth coef ficient of α at β1 < α < β2.

As a result, it has been empirically established that on the segment β1 < α < β2 the ratio
Ymax/ Ymin depends on the growth coef ficient α almost linearly (except for a small tail on the left).
Moreover, this fact cannot be established analytically .

Using these estimates and for mulas (1), (2), we giv e one example of the parity shift of a
stable cycle at the minimum point (see Fig. 3). Let αn = β2, 0 ≤ n ≤ 9, n 6= 4, α4 = β∗2 =
exp (0.702882 ) ≈ 2.01956, and the sequence yn, 0 ≤ n ≤ 9, n 6= 4 coincides with a stable cycle of
length tw o y0 = y2 = y4 = y5 = y7 = y9 = 0, 702882, y1 = y3 = y6 = y8 = 4, 34697. However, at
n = 4, ther e is a shift in the parity of the stable cycle.
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Figure 3. The graph of the parity shift in the Rikker model at the minimum point.

This calculation giv es some idealized example of the parity shift of a cycle of length tw o. To
achie ve such a shift, it is necessar y at the moment n = 4 to signific antly reduce the growth
coef ficient, namely , by β2/ β∗2 ≈ .6, 184 times.

In tur n, the graph of the parity shift of the limit cycle of length tw o at the maximum point is
possible at the point n = 3 at α3 = β∗∗2 = exp (4, 34697) ≈ 77, 244. Let αn = β2, 0 ≤ n ≤ 9, n 6=
3, α3 = β∗∗2 , and the sequence yn, 0 ≤ n ≤ 9, n 6= 3 coincides with a stable cycle of length tw o:
y0 = y2 = y5 = y5 = y7 = y9 = 0.702882, y1 = y3 = y4 = y6 = y8 = 4.34697. However, at n = 3,
a steady cycle parity shift occurs. To achie ve such a shift, we need to greatly increase the growth
coef ficient, namely , by β∗∗2 / β2 ≈ .6,184 times.

Figure 4. The graph of the parity shift in the Rikker model at the maximum point.

Thus, in the idealized parity shift model of the limit cycle of length tw o, it is necessar y to
significantly (6, 184 times) simultaneously reduce/incr ease the growth coef ficient. Ther efor e, a
mor e realistic procedur e is to reduce the growth coef ficient and the corresponding shift of the
limit cycle of length tw o at the minimum point.
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3. Results

Let’s focus on the meteor ological conditions that ensur e a parity shift at the minimum point of the
limit cycle for the dynamics of the Amur pink salmon population. Similar studies have previously
been conducted for the Seaside pink salmon [8]. Detailed ichthy ology studies sho w that negativ e
meteor ological effects leading to a parity shift are possible in tw o periods of the pink salmon life
cycle. The first period is incubation: in Januar y, when the pink salmon population is in a state of
caviar . The second period is in June-July during the decline of young pink salmon. Table 2 shows
data on the air temperatur e in Nikolae vsk on Amur in the first period and in the second period
on the w ater temperatur e in the Tatar Strait. These data sho w that the parity shift of the length
tw o cycle occurs at suf ficiently low temperatur es during the specified periods of the Amur pink
salmon life cycle.

Table 2. Temperatur e data for 1994.

Month HMS Air Temperatur e Water Temperatur e in
Nikolae vsk-on-Amur Tatar Strait

Januar y -6.4 0.5
Februar y 3.3 0.3

Mar ch 0.1 0.3
April -0.8 0.1
May -2.2 -0.6
June -1.5 -0.9
July -0.9 0.1

August 1.2 0.9
September 0.5 0.2

October 0.9 0.2
November -0.8 0.1
December -2.8 0.5

4. Discussion

The problem of shifting the parity of a cycle of length tw o on the one hand is of serious theor etical
and practical inter est. When solving it, we have to limit ourselv es to cycles of length tw o in
order to compr ess the initial biological and hydrometeor ological infor mation. Of course, this
appr oach to analyzing the sour ce infor mation allo ws for a certain appr oximation. But such an
appr oximation can be justified by setting the problem of shifting the parity of a cycle of length
tw o. Moreover, when solving this problem, it is necessar y to analyze in detail the life cycle of the
Amur pink salmon and identify critical moments in it.

5. Conclusion

In conclusion, it should be noted that the idealized model of the parity shift of a cycle of length
tw o is not alw ays implemented in practice. The parity shift can occur in states wher e the ratio of
the maximum cycle value to the minimum value is close to one. Ne vertheless, even in this case,
ther e is a decr ease in the growth coef ficient caused by adv erse meteor ological conditions.
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Abstract 

There are many real-life situations, where data require probability distribution function which have 

decreasing or upside-down bathtub (UBT) shaped failure rate function. The inverse power burr hatke 

distribution consists both decreasing and UBT shaped failure rate functions. Here, we address the 

different estimation methods of the parameter and reliability characteristics of the inverse Pareto 

distribution from both classical and Bayesian approaches. We consider classical estimation procedures 

to estimate the unknown parameter of inverse power burr-hatke distribution, such as maximum 

likelihood. Also, we consider Bayesian estimation using squared error loss function based joint priors. 

The Monte Carlo simulations are performed to compare the performances of the obtained estimators 

in mean square error sense. Finally, the flexibility of the proposed distribution is illustrated 

empirically using one real-life datasets. The analyzed data shows that the introduced distribution 

provides a superior fit than some important competing distributions such as the Weibull, inverse 

Pareto and Burr-Hatke distributions.  

Keywords: Burr-Hatke Distribution, Inverse Power Burr- Hatke Distribution, 

Type II censoring, Bayesian estimation, Lindley’s Approximation technique. 

I. Introduction

Statistical distributions can be used to model many real-life scenarios, such as reliability, actuarial 

science, survival analysis and lifetime data. Different lifetime distributions have been introduced in 

the statistical literature to provide greater flexibility in modelling data in these applied sciences. One 

of the important features of generalized distributions is their capability for providing superior fit for 

various life-time data encountered in the applied fields. Hence, the statisticians have been interested 

in constructing new families of distributions to model such data. 

Recently, several new distributions and regression models to provide inferences on these 

distributions have been developed for modeling health and biomedical data, among other fields. 

Some distributions and classes of distributions developed include exponentiated Burr XII Poisson 

distribution by da Silva et al. [1], Weibull Burr XII (WBXII) distribution by Afify et al. [2], odd log 

logistic Topp–Leone G family of distributions by Alizadeh et al. [3], Burr-Hatke exponential (BHE) 
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distribution by Abouelmagd [4] and  Yadav et al. [5], odd generalized gamma-G family of 

distributions by Nasir et al. [6], Chen-G family of distributions by Anzagra et al. [7], inverse-power 

Burr-Hatke distribution by Afify et al. [8], harmonic mixture Weibull-G family of distributions  by 

Zamanah et al.  [9], harmonic mixture G family of distributions by Kharazmi et al. [10] and 

Alshenawy R. [11] studied Progressive Type-II Censoring Schemes of Extended Odd Weibull 

Exponential Distribution with Applications in Medicine and Engineering. Ahmed et. al. [12] studied 

Bayesian and Classical Inference under Type-II Censored Samples of the Extended Inverse 

Gompertz Distribution with Engineering Applications. Hassan [13] studied Statistical Inference of 

Chen distribution Based on Two Progressive Type-II Censoring Schemes. 

Burr Hatke model provides only a decreasing hazard rate (HR) shape; hence, its use will be limited 

to modelling the data that exhibits only increasing failure rate. IPBH model can accommodate right-

skewed shape, symmetrical shape, reversed J shape and left-skewed shape densities. Its hazard rate 

(HR) can be an increasing shape, a unimodal shape, or a decreasing shape. IPBH distribution 

provides more accuracy and flexibility in fitting engineering and medicine data. The IPBH 

distribution was constructed using the inverse-power (IP) transformation. The aim of this article is 

to develop the classical and Bayesian estimation procedures for the parameters of the IPBH. 

The rest of the article is organized as follows: IPBH is discussed in Section 2. Also, mathematical 

formulation is given for type II censoring with failure and censoring time distributions in this 

section. Section 3 deals with the maximum likelihood estimation and asymptotic confidence 

intervals of the parameters. Section 4 describes asymptotic confidence interval. Sections 5 describe 

the formulation of Bayes estimation procedure using Markov chain Monte Carlo (MCMC) methods 

under SELF loss function using gamma informative priors. Section 6 deals with a Monte Carlo 

simulation study to explore the properties of various estimates developed in this article.  Real life 

dataset is analyzed for illustration purposes in Section 7. Finally, conclusive remarks are given in 

section 8. Also, it is essential to mention that the statistical software R 3.5.2, [R Core Team (2018)] is 

used for computation purposes throughout the article. 

II. The Model

If a random variable X follows IPBH with parameter (λ, θ) the cdf is given by: 

𝐹(𝑥: 𝜆, 𝜃) =  
exp(−𝜆 𝑥−𝜃)

𝑥−𝜃+1
,    𝜆, 𝜃 > 0  (2.1)        

Therefore, the corresponding probability density function is given by 

𝑓(𝑥: 𝜃, 𝜆) =
𝜃 𝑒𝑥𝑝(−𝜆𝑥−𝜃)[𝜆 + (1 + 𝜆)]𝑥−𝜃

𝑥(𝑥𝜃 + 1)2
 ,   𝜆, 𝜃 > 0  (2.2) 

Where θ and λ are shape parameters, respectively. 

Figure 1. Possible density shapes of the IPBH distribution for several values of λ and θ.  
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The survival function (SF) and HR function of the IPBH distribution take the following forms, 

respectively: 

𝑆(𝑥: 𝜆, 𝜃) = 1 −
𝑥𝜃 exp(−𝜆 𝑥𝜃)

𝑥−𝜃+1
 (2.3) 

ℎ(𝑥: 𝜆, 𝜃) =
𝜃[𝜆 + (𝜆 + 1)𝑥−𝜃]

𝑥(𝑥𝜃 + 1)[(𝑥𝜃 + 1) exp(−𝜆𝑥−𝜃) − 𝑥𝜃]
 (2.4) 

Figure 2. Possible failure rate shape of the IPBH distribution for  values of λ =0.75 and θ = 3 

Figure 3. Possible failure rate shape of the IPBH distribution for  values of λ =0.5 and θ = 0.25 

Figure 4. Possible failure rate shape of the IPBH distribution for  values of λ = 10 and θ = 0.75 
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III. Maximum Likelihood Estimation

In the literature, Several censoring schemes have been discussed. Even though, Type-I and Type- II 

censoring schemes are most popular censoring.Consider a life test where n independent units taken 

from a IPBH distribution are placed under observation and failure time of each unit is 

recorded.Suppose that the test is terminated when rth, (1 ≤ r ≤ n), r is prefixed unit fails.These 

observed failure times, say (𝒙𝟏, 𝒙𝟐, … . . , 𝒙𝒓) is a Type-II censored sample of size r. In this censoring 

scheme n-r units remain unobserved and survive beyond the time of termination.In Type-II 

censoring the time of termination is a random variable nad the likelihood function based on 

(𝒙𝟏, 𝒙𝟐, … . , 𝒙𝒓) is given by Cohen [14]. 

 𝐿(𝜆, 𝜃|𝑥) =
𝑛

(𝑛 − 𝑟)
∏ 𝑓(𝑥𝑖)[1 − 𝐹(𝑥(𝑟))]

𝑛−𝑟𝑟

𝑖=0
 (2.5) 

Assume that n independent observed values taken of IPBH distribution as presented in (2) are put 

on a test.Using the Type-II censoring, we obtained the ordered r failures. If the ordered r failures are 

then (𝐱𝟏, 𝐱𝟐, … . . , 𝐱𝐫)  the likelihood function of (λ,θ) under Type-II censored data drawn of an IPBD 

distribution, is obtained as follows: 

𝐿(𝜆, 𝜃|𝑥) =
𝑛

(𝑛 − 𝑟)
∏ 𝑓(𝑥𝑖)[1 − 𝐹(𝑥(𝑟))]

𝑛−𝑟𝑟

𝑖=0

𝐿(𝜆, 𝜃|𝑥) = 𝑟𝑙𝑜𝑔(𝜃) − 𝜆 ∑ 𝑥𝑖
−𝜃 + ∑ log[𝜆 + (𝜆 + 1)𝑥𝑖

𝜃] − 2 ∑ log(𝑥𝑖
𝜃 + 1) − ∑ log(𝑥𝑖) − 𝜂

𝑟

𝑖=1

𝑟

𝑖=1

𝑟

𝑖=1

𝑟

𝑖=1

MLEs of λ and θ is a solution of equation (2.5) accomplished by addressing the first partial 

derivatives of the total log-likelihood to be zero.So,we consider the equation as follows, 

𝑑𝑙𝑜𝑔𝐿

𝑑𝜆
= ∑

𝑥𝑖
𝜃 + 1

𝜆 + (𝜆 + 1)𝑥𝑖
𝜃

𝑟

𝑖=1

+ ∑ 𝑥𝑖
𝜃 +

(𝑛 − 𝑟)

(𝑥(𝑟)
𝜃 + 1)𝑒𝜆𝑥(𝑟)

−𝜃

− 𝑥(𝑟)
𝜃

𝑟

𝑖=1

𝑑𝑙𝑜𝑔𝐿

𝑑𝜃
= −𝜆 ∑ 𝑥𝑖

−𝜃 𝑙𝑜𝑔(𝑥𝑖) + ∑
(𝜆 + 1)𝑥𝑖

𝜃log (𝑥𝑖)

𝜆 + (𝜆 + 1)𝑥𝑖
𝜃

− 2 ∑
𝑥𝑖

𝜃log (𝑥𝑖)

𝑥𝑖
𝜃 + 1

+ 𝜂1(𝑥)

𝑟

𝑖=1

𝑟

𝑖=1

𝑟

𝑖=1

The closed form solutions to the nonlinear Equations are difficult to reach and a numerical method 

must be applied to solve these simultaneous equation for obtaining the MLE of λ and θ. 

IV. Asymptotic Confidence Intervals

The maximum likelihood estimators of the unknown parameters are not in closed form, it is not easy 

to drive the exact distributions of the MLEs. Thus, we use the asymptotic distribution of MLEs for 

the constructions of asymptotic confidence intervals of the parameters based on observed Fisher 

information matrix. Let 𝛼̂= ( 𝜆̂, 𝜃̂), be the MLE of 𝛼 = (𝜆, 𝜃).The observed Fisher information matrix 

is given by: 

𝐼(𝛼) = [

∂lnL(θ, λ)

∂λ2

∂lnL(θ, λ)

∂λ ∂θ
∂lnL(θ, λ)

∂θ ∂λ

∂lnL(θ, λ)

∂θ2

] 

∂lnL(θ, λ)

∂λ2
= ∑

(𝑥𝑖
𝜃 + 1)

2

((𝜆 + (𝜆 + 1)𝑥𝑖
𝜃))

2 +
(𝑛 − 𝑟)(𝑥(𝑟)

𝜃 + 1)𝑥(𝑟)
𝜃 𝑒𝜆𝑥(𝑟)

−𝜃

(𝑥(𝑟)
𝜃 − (𝑥(𝑟)

𝜃 + 1)𝑒𝜆𝑥(𝑟)
−𝜃

)
2

𝑟

𝑖=1

∂lnL(θ, λ)

∂θ ∂λ
= ∑ (

𝑥𝑖
−𝜃log (𝑥𝑖)

𝜆 + (𝜆 + 1)𝑥𝑖
𝜃

−
(𝜆 + 1)𝑥𝑖

𝜃(𝑥𝑖
𝜃 + 1)log (𝑥𝑖)

(𝜆 + (𝜆 + 1)𝑥𝑖
𝜃)

2 )

𝑟

𝑖=1

− ∑ 𝑥𝑖
−𝜃(− log(𝑥𝑖))

𝑟

𝑖=1

Thus, the observed variance-covariance matrix becomes 𝐼−(𝛼̂).The asymptotic distribution of MLE  
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𝛼̂ is a bivariate normal distribution as 𝛼̂N (0, 𝐼−(𝛼̂)). Consequently, two sided equal tailed 100(1−η) 

asymptotic confidence intervals for the parameters λ and θ are given by [𝜆̂ + 𝑍𝜂

2

√𝑣𝑎𝑟(𝜆̂)] and

[𝜃̂ + 𝑍𝜂

2

√𝑣𝑎𝑟(𝜃̂)] respectively. Here, Var (𝜆̂) and Var (𝜃̂) are diagonal elements of the observed

variance-covariance matrix  𝐼−(𝛼̂) and 𝑍𝜂

2
  is the upper (𝑍𝜂

2
)

𝑡ℎ

percentile of the standard normal 

distribution. 

V. The Bayesian Estimation

In this section, we discuss the Bayes estimators of the unknown parameters of the model in (2) under 

square error loss function (SELF). In order to select the best decision in decision theory, an 

appropriate loss function must be specified. SELF is generally used for this purpose. The use of the 

SELF is well justified when over estimation and under estimation of equal magnitude has the same 

consequences. When the true loss is not symmetric with respect to over estimation and under 

estimation, asymmetric loss functions are used to represent the consequences of different errors. If all 

parameters of the model are unknown, a joint conjugate prior for the parameters does not exist. In 

such conditions there are numerous ways to choose the priors. Hence, we choose to consider the 

piecewise independent priors. The proposed priors for the parameters λ and θ may be taken as: 

𝑔1(𝜆) = 𝜆𝑎1−1𝑒−𝜆𝑏1 ,  𝑎1, 𝑏1 > 0 

𝑔2(𝜃) = 𝜆𝑎1−1𝑒−𝜆𝑏1 ,  𝑎2, 𝑏2 > 0 

Thus, the joint prior distribution of λ and θ can be written as: 

       𝑔(𝜆, 𝜃) = 𝜆𝑎1−1𝜃𝑎1−1 𝑒−(𝜆𝑏1+𝜃𝑏1)                                                                  (4.1) 

Now we derive the Bayes estimators for the unknown parameters λ and θ under squared error loss 

function. If μ is the parameter to be estimated by an estimator 𝜇̂ then the squared error loss function 

is defined as 𝐿𝑠(μ, 𝜇̂ ) =(μ − 𝜇̂)2. The joint posterior distribution of λ and θ after simplification is:

Π(𝜆, 𝜃|𝑥) =

𝑛
(𝑛 − 𝑟)

𝜆𝑎1−1𝜃𝑎2−1𝑒(𝜆𝑏1 + 𝜃𝑏2) ∏ 𝑓(𝑥𝑖)(1 − 𝐹(𝑥))𝑛−𝑟𝑟
𝑖=0

∫ ∫
𝑛

(𝑛 − 𝑟)
𝜆𝑎1−1𝜃𝑎2−1𝑒(𝜆𝑏1 + 𝜃𝑏2) ∏ 𝑓(𝑥𝑖)(1 − 𝐹(𝑥))𝑛−𝑟𝑟

𝑖=0 𝜕𝜆𝜕𝜃
∞

0

∞

0

 (4.2) 

Therefore, the Bayes estimator of any function of  𝜆 and 𝜃, say 𝛼(𝜆̂,𝜃̂ ) under squared error loss 

function is. 

I. Subsection One
Lindley’s Approximation 

It is difficult to compute Eq. (4.2) analytically. Lindley’s [15] approximation is used to compute the 

ratio of integrals of the form Eq. (4.3). Based on Lindley’s approximation, the approximate Bayes 

estimator of λ under the squared error loss function is: 

 λ̂lindley = λ̂ +
1

2
[μ1(2ρ1σ11 + 2ρ2σ21 + σ11

2 L111 + 2σ12σ21L111 + σ11σ22L211 + σ12σ22L222)]      (4.4)         

θ̂lindley = θ̂ +
1

2
[μ2(2ρ2σ22 + 2ρ1σ21 + σ22

2 L222 + 2σ12σ11L111 + 3σ12σ22L122)]  (4.5) 

Here L(𝜆, 𝜃) is the log-likelihood and 𝜌(𝜆, 𝜃) is the log of prior distribution 𝜋(𝜆, 𝜃), 𝜆̂ and 𝜃̂ are the 

MLEs of λ and θ respectively. 

VI. Simulation Study

This section deals with a Monte Carlo simulation study. Here, we compare various estimators 

developed in the previous sections with the help of Monte Carlo simulation study. Six different 

sample sizes n = 50, 60, 70, 80 and 90 are considered in the simulation study. Following combination  
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of the true values of the parameters (λ, θ) = (0.5, 1) and (λ, θ) = (1.5, 1) are taken. In each case the ML 

and Bayes estimates of the unknown parameters are computed. The whole process is simulated 1000 

times. Tables 1–2 report the simulation results including Average Estimate (AE), MSE of the IPBH 

parameters. 

Table 1: Bayes estimate of the parameter λ and θ when θ = 1 and λ = 0.5 

n r Prior1 Prior2 Prior1 Prior2 

𝛌̂ 𝛉̂

AE MSE AE MSE AE MSE AE MSE 

50 46 0.5332 0.018 0.5714 0.0152 1.0862 0.0082 1.0778 0.2459 

50 48 0.5321 0.0137 0.5318 0.0142 1.0571 0.0715 1.0754 0.0821 

60 56 0.5263 0.0124 0.5268 0.0122 1.0655 0.00615 1.0553 0.00567 

60 58 0.5195 0.0102 0.5257 0.0099 1.0525 0.0516 1.0529 0.0588 

70 66 0.5173 0.0089 0.5224 0.0091 1.0491 0.0506 1.0551 0.0511 

70 68 0.5171 0.0084 0.5223 0.0092 1.0468 0.0485 1.0492 0.0492 

80 76 0.5168 0.0071 0.5152 0.007 1.0423 0.0447 1.0468 0.0429 

80 78 0.5156 0.0061 0.5187 0.0074 1.0387 0.0394 1.0271 0.0366 

90 86 0.5078 0.0054 0.5162 0.0063 1.0311 0.0343 1.0327 0.0364 

90 88 0.5115 0.0049 0.511 0.0053 1.0296 0.0316 1.0329 0.0349 

Table 2: Bayes estimate of the parameter λ and θ when θ = 1 and λ = 1.5 

n r  Prior1 Prior2 Prior1 Prior2 

𝛌̂ 𝛉̂

AE MSE AE MSE AE MSE AE MSE 

50 46 1.7311 0.464 1.7088 0.394 1.0504 0.0528 1.0498 0.0492 

50 48 1.6536 0.2447 1.6543 0.2456 1.0369 0.0407 1.0439 0.0423 

60 56 1.6038 0.1654 1.6382 0.1643 1.0295 0.0313 1.0453 0.0338 

60 58 1.5855 0.1197 1.5290 0.1250 1.0244 0.0286 1.0306 0.0298 

70 66 1.5841 0.1195 1.5771 0.1181 1.0258 0.0248 1.0221 0.0258 

70 68 1.5723 0.0956 0.1181 0.0922 1.0243 0.0244 1.0202 0.0231 

80 76 1.5636 0.0958 1.5771 0.1127 1.0143 0.0199 1.0285 0.0237 

80 78 1.573 0.0856 1.5639 0.0827 1.0228 0.0198 1.0191 0.002 

90 86 1.5614 0.0821 1.5587 0.0792 1.0186 0.0182 1.0162 0.0198 

90 88 1.5534 0.0712 1.5489 0.0710 1.0199 0.0171 1.0276 0.0175 

VII. Real-Life Applications

In this section, we illustrate estimation procedures discussed in the previous sections with the help 

of one real datasets. Here, we consider a real dataset namely the strengths of glass fibres The Data I, 

respectively are given below: 

Data set: 

This dataset consists of 63 observations which are generated to simulate the strengths of glass fibres 

[18].The 63 observations of the dataset are as follows: “1.014, 1.081, 1.082, 1.185, 1.223, 1.248, 1.267, 

1.271, 1.272, 1.275, 1.276, 1.278, 1.286, 1.288, 1.292, 1.304, 1.306, 1.355, 1.361, 1.364, 1.379, 1.409, 1.426, 

1.459, 1.460, 1.476, 1.481, 1.484, 1.501, 1.506, 1.524, 1.526, 1.535, 1.541, 1.568, 1.579, 1.581, 1.591, 1.593,  
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1.602, 1.666, 1.670, 1.684, 1.691, 1.704, 1.731, 1.735, 1.747, 1.748, 1.757, 1.800, 1.806, 1.867, 1.876, 1.878, 

1.910, 1.916, 1.972, 2.012, 2.456, 2.592, 3.197, and 4.121”. 

We calculate MLEs of the unknown parameters together with some useful measure of goodness-of 

fit tests for one dataset, namely, the negative log likelihood function −lnL, the Akaike information 

criterion denoted by AIC = 2k–2lnL, proposed by Akaike [16] and Bayesian information criterion 

denoted by BIC = kln(n)–2lnL, proposed by Schwarz [17], where k is the number of parameters in 

the model, n is the number of observations in the given datasets, L is the maximized value of the 

likelihood function for the estimated model and Kolmogorov-Smirnov (K-S) statistic with its p-

value. The best distribution corresponds to the lowest –lnL, AIC, BIC and K-S statistic and the 

highest p values. The K-S statistic with its p-value is obtained using ks test function in statistical 

software R. The results of the MLEs and measures of goodness-of-fit tests are reported in Tables 3 

and 4, respectively. These results show that IPBH distribution is the best choice for the considered 

datasets. However, for Data I, according to K-S test IPBH is better than the BH. 

Table 3: Data Summary for the Data Set 

Table 4: Goodness of Fit criterions on the data set 

VIII. Conclusion

This article deals with the classical and Bayesian estimation procedures for parameters of inverse 

power Burr-Hatke distribution using second type censoring. The maximum likelihood estimators 

and corresponding asymptotic confidence intervals based on observed Fisher information matrix of 

the unknown parameters were derived. The Bayes estimates of the parameters under square error 

loss function were approximated using Lindley’s approximation. The performance of these 

estimators was examined by extensive Monte Carlo simulation study, which indicated that the MLEs 

can be obtained easily and quickly with satisfactory estimates. For more efficient estimators, Bayes 

estimation method with available prior information or convenient non-informative priors in the 

absence of prior information is recommended. 
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Abstract 

This research study provides a comprehensive comparison of two critical approaches to inventory 

modelling- deterministic and stochastic. The deterministic model employs traditional optimization 

techniques to optimize complex systems, while the stochastic model leverages Particle Swarm 

Optimization (PSO) simulations to tackle the challenges posed by uncertain dynamics. This approach 

enables us to develop effective strategies for optimizing complex systems. After conducting sensitivity 

analyses, it was found that the deterministic model oversimplifies demand dynamics, whereas the 

stochastic model more adeptly captures market uncertainties. As a result, this study suggests that 

businesses adopt stochastic approaches to inventory management to better engage in adaptive 

decision-making, contingency planning, optimal resource allocation, risk mitigation, and realistic 

performance metrics. The research provides valuable insights for businesses seeking to navigate the 

complexities of modern supply chains. 

Keywords: Inventory, Deterioration, Stochastic optimization, Risk analysis, 

Particle swarm optimization (PSO). 

MSC Classification: 90B05, 90B30, 90B50, 91B70, 93E20 

I. Introduction

Inventory modelling plays an integral role in contemporary supply chain management. A 

comprehensive understanding of the relationship between inventory dynamics and market 

uncertainties is essential, prompting a comprehensive exploration of deterministic and stochastic 

approaches. This research delves into the core of this dichotomy, aiming to provide invaluable 

insights for businesses grappling with the challenges of unpredictable market conditions. In the 

global marketplace, businesses encounter continuous volatility and uncertainty. The traditional 

deterministic approach to inventory modelling, relying on fixed parameters and constant demand 

assumptions, has limitations in capturing the fluidity of real-world markets. A sudden surge in 

market trends or an unforeseen external event, such as a pandemic, can disrupt this equilibrium, 

leaving the inventory misaligned with actual demand. This mismatch results in potential revenue 

loss due to stockouts or excessive holding costs and underscores the urgency for a more adaptive 

and resilient approach. On the other hand, the stochastic paradigm acknowledges the inherent 

variability in market dynamics. In a world where demand fluctuations are normal, businesses cannot 

afford to disregard the impact of uncertainty on inventory management. For example, a 

manufacturing company that utilizes stochastic modelling may adjust its production levels 

dynamically based on probabilistic demand forecasts. This approach allows for real-time 
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responsiveness to market shifts, minimizing the risks associated with stockouts, excess inventory, 

and subsequent financial repercussions. 

To address this problem, a meticulous methodology has been crafted, leveraging both 

classical optimization techniques for deterministic modelling and Particle Swarm Optimization 

(PSO) simulations for the stochastic scenario. The deterministic approach involves traditional 

optimization algorithms, aiming to find the optimal solution based on fixed parameters. While this 

method is widely used, it often must account for the inherent uncertainties in dynamic markets. In 

contrast, the stochastic approach utilizes PSO, a nature-inspired optimization algorithm that mimics 

the social behavior of particles to search for optimal solutions in a multidimensional space. In the 

context of inventory modelling, PSO enables the exploration of diverse demand scenarios, 

considering the stochastic nature of the objective function. By simulating multiple scenarios, PSO 

provides a more realistic representation of the potential outcomes in uncertain market conditions. 

The application of PSO in stochastic modelling is particularly relevant when dealing with complex 

and dynamic objective functions influenced by stochastic variables, such as fluctuating demand 

patterns. This approach allows the model to adapt and evolve as market conditions change, 

providing decision-makers with a versatile tool for strategic inventory planning. 

This study holds significant importance as it has the potential to revolutionize the way 

businesses approach inventory management. It presents a paradigm shift from rigid and 

deterministic methods to adaptable and stochastic techniques. Given supply chains' growing 

interconnectedness and susceptibility to global disruptions, the need for a responsive and agile 

inventory modelling framework is increasingly crucial. From a managerial perspective, this study 

empowers decision-makers to make informed decisions amidst uncertainty. By highlighting the 

limitations of deterministic models and the benefits of stochastic approaches, it encourages 

managers to adopt adaptive strategies that align with the ever-evolving nature of modern markets. 

For example, a retail manager equipped with insights from stochastic modelling can proactively 

adjust inventory levels based on probabilistic demand forecasts, thereby minimizing the impact of 

unforeseen events such as stockouts or excess inventory. Furthermore, the study contributes to 

academic discourse by comparing deterministic and stochastic inventory modelling 

comprehensively. By contrasting classical optimization techniques with advanced optimization 

algorithms such as PSO, it provides a holistic understanding of the strengths and weaknesses of each 

approach. This nuanced understanding is essential for researchers and academicians seeking to 

advance the theoretical foundations of inventory management. The study's real-world applicability 

extends beyond conventional industries to emerging sectors like e-commerce, where demand 

patterns are subject to rapid and unpredictable changes. By highlighting the adaptability and 

effectiveness of stochastic modelling, the study provides a roadmap for businesses navigating the 

complexities of a digital economy. 

Altogether, this research aims to redefine the contours of inventory management, 

transcending the limitations of deterministic paradigms. By combining real-world context, 

meticulous methodologies, and a profound understanding of the problem at hand, this study aims 

to guide businesses in navigating the uncertainty of modern supply chains. 

II. Literature Review

The recent literature encompasses diverse studies, highlighting the ongoing debate between 

stochastic and deterministic approaches in various operations research and management domains. 

The work on crude oil price forecasting ([17]) emphasizes the advantages of their stochastic pruning 

DE-DL method and shows superior results compared to deterministic counterparts. Using a two-

stage stochastic programming model, [6] explores the ability of Industrial Symbiosis networks to 
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withstand fluctuations in demand, revealing their resilience. Adopting a stochastic perspective [2], 

this article demonstrates the efficacy of their modified particle swarm optimization algorithm within 

a rolling horizon framework for contributing to aggregate production planning under uncertainty. 

A two-stage stochastic programming model is presented for disaster preparedness [9], which 

considers uncertainties in emergency demand and road network congestion. Proposing a two-stage 

stochastic programming model, [14] advocates for smaller initial networks to adapt to future 

uncertainties in district cooling network design. A study on forecasting intermittent demand ([20]) 

uses genetic algorithms and particle swarm optimization, highlighting the stochastic nature of these 

optimization methods. 

Modelling the hot deformation ([16]) of multiphase steels requires advanced numerical 

models for deterministic and stochastic approaches. A stochastic inventory model that incorporates 

quadratic price-sensitive demand ([12]). The effects of different probability distributions are 

compared. Genetic Algorithms is advocated for optimizing inventory management, favoring their 

efficiency over traditional deterministic systems ([4]). In conversion processes, [11] explore 

homogeneous and heterogeneous scenarios, acknowledging the stochastic nature of optimal 

conversion timing, quantity, cost, and time considerations and optimizes using a metaheuristic 

algorithm. The collective findings suggest a growing preference for stochastic approaches, 

recognizing their ability to capture and address uncertainties inherent in real-world operational 

scenarios. The contributions to the comparative study between stochastic and deterministic 

approaches in inventory control ([4]), particularly in a pharmaceutical distribution setting. Their 

conceptual model, rooted in modern control theory, addresses practical supply chain constraints. 

The dynamic mathematical model considers multiple products, variable lead time, deterministic and 

stochastic demand, and various ordering policies. Objective functions maximize planned versus 

realized inventory levels and minimize stock-out situations. Real-life data validate the model, 

providing a comprehensive solution to pharmaceutical supply chain inventory challenges. 

Exploring the intricate relationship between inventory and demand, [19] proposes a logistic growth 

model for inventory-dependent demand rates. The study begins with a deterministic optimal control 

problem, optimizing the present value of total net profit over an infinite horizon. It then extends to 

the stochastic version, solving the associated Hamilton-Jacobi-Bellman equation and demonstrating 

optimal inventory levels in a stochastic context. A study ([3]) investigates how prices and production 

are jointly determined over multiple periods in the face of non-stationary stochastic demand. Their 

study considers limited production capacity and discretionary sales, comparing partial planning or 

delayed strategies. The analysis, incorporating deterministic approximations, provides insights into 

the effectiveness of delayed production versus delayed pricing, with heuristics achieving a high 

percentage of the corresponding optimal strategy. 

 A deterministic inventory model is presented for a single item with two storage facilities 

([10]). The model addresses linearly time-dependent demand over a fixed and finite time horizon. 

The model, applicable to scenarios like food grain production, offers a general solution through the 

gradient method, highlighting its versatility in products with periodic production and linearly 

increasing demand. Tackling the inventory control problem of nonstationary stochastic demand by 

incorporating a certainty-equivalent mixed integer linear programming model using the (R, S) policy 

([18]). The study provides numerical examples and demonstrates the model's application through a 

piecewise linear approximation to handle non-linear cost functions. The focus is on inventory 

planning in closed-loop supply chains ([8]), specifically in equipment-intensive service industries. 

The planning approach is tactical, which is concerned with short-term decisions rather than long-

term strategy. Their mixed-integer programming model, addressing conflicting business objectives, 

is accompanied by a metaheuristic approach to solution. Experimental evaluations demonstrate the 

model's effectiveness, emphasizing the impact of cost weightings on different planning strategies. A 

stochastic inventory model is presented ([13]), considering price-dependent demand, probabilistic 
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lead time, and allowances for shortages in a finite time horizon. The study emphasizes the financial 

implications of advance payment on unit prices, deriving an expected average profit expression. 

Numerical examples and solution techniques, such as the generalized reduced gradient technique 

and stochastic search genetic algorithm, show the model's applicability and benefits. 

Inspired by these studies, the current research endeavors to conduct a comprehensive 

comparative analysis between deterministic and stochastic approaches in inventory management. 

The aim is to derive insights into each approach's trade-offs, advantages, and practical implications, 

contributing to the ongoing discourse in the field. 

III. Notations

The following notations are used in subsequent discussions, in accordance with usual tradition: 

Parameters 

𝐼(𝑡) : Instantaneous inventory level 

𝑎 : Demand potential  

𝑏 : Time dependent parameter 

𝑐 : Time sensitive parameter 

𝜃 : Constant deterioration rate per unit per unit of time 

𝑄 : Stock replenishment quantity 

ℎ𝑐 : Per unit holding cost  

𝐶𝑠 : Per unit shortage cost 

𝐶0 : Per unit purchasing cost 

Decision Variable 

𝑡′ : Stock ending time 

𝑇 : Inventory cycle time 

𝑝 : Per unit price 

𝜋(𝑇, 𝑡′, 𝑝): Total profit per cycle 

IV. Model Formulation with Deterministic Approach

Consider the initial stock size at time 𝑡 = 0 is 𝑄. As the business begins, the stock experiences 

depletion over time. The demand is price and time-dependent, expressed as 𝐷(𝑝, 𝑡) = 𝑎 − 𝑏𝑡 −

𝑐𝑝, where 𝑎, 𝑏, 𝑐 > 0. Here, 𝑎 represents the base demand, 𝑏 is time dependent parameter, and 𝑐 

reflects the price sensitivity parameter of demand. After the time 𝑡′ stock will be end and then 

shortage begins. It is assumed that the shortage is fully backlogged during stock out time till the 

time 𝑇. 

Based on this condition, the rate of the declining of the inventory level (𝐼(𝑡)), due to demand and 

per unit deterioration rate 𝜃, is given as:  

𝑑𝐼

𝑑𝑡
 =  {

−(𝑎 − 𝑏𝑡 − 𝑐 𝑝) − 𝛳 𝐼(𝑡),  0 ≤  𝑡 ≤  𝑡’ 

−(𝑎 − 𝑏𝑡 − 𝑐𝑝)  𝑡’ ≤  𝑡 ≤  𝑇
  (1) 

with the conditions 𝐼(𝑡’) =  0, 𝐼(0)  =  𝑄. 

Solving the differential equation we have, 
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𝐼(𝑡)  =  {

1

𝛳
[𝑒𝛳 𝑡′(𝑎 − 𝑏𝑡’ − 𝑐𝑝) − 𝑒𝛳𝑡(𝑎 − 𝑏𝑡 − 𝑐 𝑝)]  0 ≤  𝑡 ≤  𝑡’

(𝑎𝑡’ − 
𝑏𝑡′2

2
– 𝑐 𝑝 𝑡’) − (𝑎𝑡 −  

𝑏𝑡2

2
− 𝑐 𝑝 𝑡)  𝑡’ ≤  𝑡 ≤  𝑇

      (2) 

Based on these inventory equations, there are several costs associated with the profit function. The 

cost incurred in holding the products with per unit holding cost ℎ𝑐 is given as: 

𝑇𝐻𝐶 =  ℎ𝑐  ∫ 𝐼(𝑡)𝑑𝑡
𝑡′

0
             (3) 

Or, 

𝑇𝐻𝐶 =
1

2𝜃3 [ℎ (−2(𝑎 − 𝑐 𝑝)𝜃(1 − 𝑒𝑡′𝜃 + 𝑡′𝜃) + 𝑏(−2 + 𝑡′2𝜃2 + 𝑒𝑡’𝜃(2 − 2𝑡′𝜃) ))]       (4) 

Total shortage cost with per unit shortage cost 𝑐𝑠, during the stock-out period is given as:

𝑇𝑆𝐶 =  𝑐𝑠 ∫ 𝐼(𝑡)𝑑𝑡
𝑇

𝑡′                (5) 

Or, 

𝑇𝑆𝐶 = 𝑐𝑠 (−
𝑎𝑇2

2
+

1

2
𝑐 𝑝 𝑇2 +

𝑏 𝑇3

6
+ 𝑎 𝑇 𝑡′ − 𝑐 𝑝 𝑇 𝑡′ −

𝑎𝑡′2

2
+

1

2
𝑐 𝑝 𝑡′2 −

1

2
𝑏 𝑇 𝑡′2 +

𝑏 𝑡′3

3
 ) 

       (6) 

Total purchasing cost with per unit purchasing cost 𝐶0, is given as: 

𝑇𝑃𝐶 =  𝐶0𝑄,  𝑤ℎ𝑒𝑟𝑒 𝑄 =  𝐼(0)                 (7) 

Or, 

𝑇𝑃𝐶 =
1

2𝜃2 (𝑐 𝜃 (−𝑏 + (−𝑎 + 𝑐 𝑝)𝜃 + 𝑒𝑡’𝜃(𝑏 + (𝑎 − 𝑐 𝑝 − 𝑏𝑡’)𝜃  )))              (8) 

Total cost incurred in terms of deterioration is as follows: 

𝑇𝐷𝐶 =  𝑐𝑑𝛳 ∫ 𝐼(𝑡)𝑑𝑡
𝑡′

0
            (9) 

Or, 

𝑇𝐷𝐶 =
1

2𝜃3 (𝑐𝑑 (−2(𝑎 − 𝑐 𝑝)𝜃(1 − 𝑒𝑡′𝜃 + 𝑡′𝜃) + 𝑏(−2 + 𝑡′2𝜃2 + 2𝑒𝑡’𝜃(1 − 𝑡′𝜃) )))     (10)

Total revenue generated during the selling period is as follows: 

𝑇𝑅𝑉 =  𝑝 ∫ 𝐷(𝑡, 𝑝)𝑑𝑡
𝑇

0
              (11) 

Or, 

𝑇𝑅𝑉 = 𝑃 ((𝑎 − 𝑐 𝑝)𝑇 −
𝑏 𝑇2

2
)               (12) 

Combining these costs, we have formulated the profit function given as: 

𝜋(𝑡′, 𝑇, 𝑝) = 𝑇𝑅𝑉 − 𝑇𝐷𝐶 − 𝑇𝑃𝐶 − 𝑇𝑆𝐶 − 𝑇𝐻𝐶            (13) 

Or, 
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𝜋(𝑡′, 𝑇, 𝑝) =  𝑃 ((𝑎 − 𝑐 𝑝)𝑇 −
𝑏 𝑇2

2
)

−  
1

2𝜃3
(𝑐𝑑 (−2(𝑎 − 𝑐 𝑝)𝜃(1 − 𝑒𝑡′𝜃 + 𝑡′𝜃) + 𝑏(−2 + 𝑡′2𝜃2 + 2𝑒𝑡’𝜃(1 − 𝑡′𝜃) )))

−
1

2𝜃2
(𝑐 𝜃 (−𝑏 + (−𝑎 + 𝑐 𝑝)𝜃 + 𝑒𝑡’𝜃(𝑏 + (𝑎 − 𝑐 𝑝 − 𝑏𝑡’)𝜃  )))

−
1

2𝜃3
[ℎ𝑐 (−2(𝑎 − 𝑐 𝑝)𝜃(1 − 𝑒𝑡′𝜃 + 𝑡′𝜃) + 𝑏(−2 + 𝑡′2𝜃2 + 𝑒𝑡’𝜃(2 − 2𝑡′𝜃) ))]

−
1

2𝜃3
[ℎ𝑐 (−2(𝑎 − 𝑐 𝑝)𝜃(1 − 𝑒𝑡′𝜃 + 𝑡′𝜃) + 𝑏(−2 + 𝑡′2𝜃2 + 𝑒𝑡’𝜃(2 − 2𝑡′𝜃) ))]

(14) 

 For the optimization of this model, we have utilized the classical optimization approach given in 

the following theorem.  

Theorem 1: For the positive values parameters, the proposed profit function is concave with respect to the 

holding time 𝑡′ and replenish time 𝑇.  

Proof: Using the objective function, we have formulated the Hessian matrix, given as, 

𝐻 = [

𝜕2𝛱

𝜕𝑡′2

𝜕2𝛱

𝜕𝑡′𝜕𝑇

𝜕2𝛱

𝜕𝑡′𝜕𝑇

𝜕2𝛱

𝜕𝑇2

]          (15) 

Where, 

𝜕2𝜋

𝜕𝑡′2 =
1

6𝜃3 (3(𝑎 − 𝑐 𝑝)𝜃 (−2𝑒𝜃𝑡′
 ℎ𝑐  𝜃2 + 𝜃(2 𝑐𝑠 𝜃 − 2𝐶0 𝑒𝜃𝑡′

𝜃2 − 2 𝑐𝑑  𝑒𝜃𝑡′
𝜃2)) +

𝑏 (ℎ𝑐 (−6𝜃2 + 12 𝑒𝜃𝑡′
𝜃2 + 6𝑒𝜃𝑡′

𝜃2(−1 + 𝜃𝑡′)) − 𝜃(𝜃2(−8 𝑐 𝑠 (𝑇 − 𝑡′) + 2 𝑐 𝑠 (𝑇 + 𝑡′)) +

𝑐𝑑  (6 𝜃2 − 12 𝑒𝜃𝑡′
𝜃2 + 𝑒𝜃𝑡′

𝜃2(6 − 6𝜃𝑡′)) − 6𝑐0(2 𝑒𝜃𝑡′
𝜃2 + 𝑒𝜃𝑡′

𝜃2(−1 + 𝜃𝑡′) )))  ;

𝜕2 𝜋

𝜕𝑇𝜕𝑡′ =
𝜕2𝛱

𝜕𝑡′𝜕𝑇
= 0 ; 

and, 

𝜕2𝜋

𝜕𝑇2
=

1

6 𝜃3 (6 𝑐𝑠 (𝑎 − 𝑐 𝑝)𝜃3 − 𝑏 𝜃3(6 𝑝 + 4𝑐𝑠(𝑇 − 𝑡′) + 2 𝑐𝑠(𝑇 + 2𝑡′) ))

From the evaluation, we have, 
𝜕2𝜋

𝜕𝑡′2 ,
𝜕2𝜋

𝜕𝑇2 > 0, and  
𝜕2𝜋

𝜕𝑡′2 

𝜕2𝜋

𝜕𝑇2 −
𝜕2𝜋

𝜕𝑡′𝜕𝑇
< 0. 

Thus, the objective function is concave with respect to replenish time 𝑇 and 𝑡′. The figure 1 and 2, shows the 

concavity of the profit function plotted on the values provided in example 1.   

Figure 1: Concavity of the profit function with respect to replenish time 
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Figure 2: Concavity of the profit function with respect to replenish time and per unit selling price 

Theorem 2: For the optimal value of 𝑝, the objective function (eq. 14) is concave with respect to the selling 

price.  

Proof: From objective function eq. 14, we have 
𝜕𝜋(.)

𝜕𝑝
=  

1

2𝜃2 (𝑇(2𝑎 − 𝑏𝑇)𝜃2 + 2ℎ𝑐(−1 + ⅇ𝑡’𝜃 − 𝑡’𝜃) − 𝑐𝜃 (−2𝑐0(−1 + ⅇ𝑡’𝜃) + (4𝑝𝑇 + 𝑐𝑠(𝑇 − 𝑡’)2)𝜃 +

𝑐𝑑(2 − 2ⅇ𝑡’𝜃 + 2𝑡’𝜃)))                                                            (16)

Putting 
𝜕𝜋(.)

𝜕𝑝
= 0, we yield the optimal value of per unit selling price as, 

𝑝∗ = −
1

4𝑐𝑇𝜃2 (2𝑐 ℎ𝑐 − 2𝑐𝑒𝑡’𝜃ℎ𝑐 + 2𝑐𝑐0𝜃 + 2𝑐𝑐𝑑𝜃 − 2𝑐𝑐0𝑒𝑡’𝜃𝜃 − 2𝑐𝑐𝑑𝑒𝑡’𝜃𝜃 + 2ℎ𝑐𝑡’𝜃 − 2𝑎𝑇𝜃2

+ 𝑏𝑇2𝜃2 + 𝑐𝑐𝑠𝑇2𝜃2 + 2𝑐𝑐𝑑𝑡’𝜃2 − 2𝑐𝑐𝑠𝑇𝑡’𝜃2 + 𝑐 𝑐𝑠𝑡’2𝜃2)

Again differentiating eq. 14, we have, 
𝜕2𝜋(.)

𝜕𝑝2 =  −2 𝑐 𝑇           (17) 

Thus, for 𝑐 > 0, the proposed profit function is concave. The concavity of the profit function with respect to 

the price can also be seen in figure 3. 

 Figure 3: Concavity of the profit function with respect to per unit selling price 

Following an in-depth exploration of the deterministic approach, the subsequent section delves into 

the stochastic approach. This approach intricately considers and integrates uncertain factors 

associated with demand, acknowledging the dynamic and unpredictable nature of variables. In 
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contrast to the deterministic approach, which assumes a fixed and known demand, the stochastic 

approach takes into account the inherent variability and unpredictability in demand, providing a 

more comprehensive and realistic perspective in decision-making processes. 

V. Model Formulation with Stochastic Approach

Let consider the general form where the demand 𝐷(𝑝, 𝑡), is the function of price and time, and 𝑓(𝑝) 

is the probability distribution function over price. To be more specific, consider the pre-defined 

relation of the demand and uncertain factor, i.e., 𝐷(𝑝, 𝑡) = 𝑎 − 𝑏 𝑡 − 𝑐 𝑝 + 𝜖, where 𝑏 and 𝑐 are time 

dependent and price sensitive parameters, and 𝜖 can be determined with the specific distribution, 

such as uniform, normal etc. depends on the characteristic of the demand fluctuations.  

For choosing specific 𝜖, follows the normal distribution with mean 𝜇, and standard deviation 𝜎,  the 

𝜖~𝑁(0, 𝜎2), the pdf for the stochastic demand can be experessed as  

𝑓(𝑝) = 𝑒
−

(𝐷(𝑝,𝑡)−𝜇)2

2 𝜎2       (18) 

The uniform distribution is characterized by the constant probability density within a specific range. 

Consider the price range as [𝑝𝑚𝑎𝑥 , 𝑝𝑚𝑖𝑛  ]. In this case the probability distributon over this range will 

be as follows: 

𝐹(𝑝)  =
1

𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛
 (19) 

Therefore, we can express the demand with uniform distribution as 𝐷(𝑝, 𝑡) = 𝑎 − 𝑏 𝑡 − 𝑐𝑝 + 𝜖 

 where 𝜖 ~ 𝑈 (𝑝𝑚𝑖𝑛 , 𝑝𝑚𝑎𝑥). 

Taking these stochastic demand values and the inventory equation (1, 2), we have reworked for all 

the costs using these equations:  

Expected holding cost with per unit holding cost ℎ𝑐 is as follows: 

𝐸𝐻𝐶 =  𝐸 (∫ (ℎ𝑐 [∫ 𝐼(𝑡)𝑑𝑡
𝑡′

0
])

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝)          (20) 

Expected shortage cost with per unit shortage cost 𝐶𝑠 is as follows: 

𝐸𝑆𝐶 =  𝐸 (∫ (𝑐𝑠 [∫ 𝐼(𝑡)𝑑𝑡
𝑇

𝑡′ ])
𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝)          (21) 

Expected shortage cost with per unit shortage cost 𝐶𝑠 is as follows: 

𝐸𝑃𝐶 =  𝐸 (∫ 𝐶0𝑄
𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
 𝑓(𝑝)𝑑𝑝)            (22) 

Expected deteriorating cost with per unit deterioration cost 𝐶𝑠 is as follows: 

𝐸𝐷𝐶 =  𝐸 (∫ (𝑐𝑑𝛳 ∫ 𝐼(𝑡)𝑑𝑡
𝑡′

0
)

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝)            (23) 

Expected revenue is as follows: 

𝐸𝑅𝑉 = E ( ∫ (𝑝 ∫ 𝐷(𝑡, 𝑝)𝑑𝑡
𝑇

0
)

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝)           (24) 

Combining all the above cost, the profit function governs as: 

𝜋(𝑡′, 𝑇, 𝑝) = 𝐸𝑅𝑉 − 𝐸𝐻𝐶 − 𝐸𝑆𝐶 − 𝐸𝑃𝐶 − 𝐸𝐷𝐶               (25) 

Or, 
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𝜋(𝑡′, 𝑇, 𝑝) = 𝐸 (∫ (𝑝 ∫ 𝐷(𝑡, 𝑝)𝑑𝑡
𝑇

0
)

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝) − 𝐸 (∫ (ℎ𝑐 [∫ 𝐼(𝑡)𝑑𝑡

𝑡′

0
])

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝) −

𝐸 (∫ (𝑐𝑠 [∫ 𝐼(𝑡)𝑑𝑡
𝑇

𝑡′ ])
𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝)  − 𝐸 (∫ 𝐶0𝑄

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
 𝑓(𝑝)𝑑𝑝) − 𝐸 (∫ (𝑐𝑑𝛳 ∫ 𝐼(𝑡)𝑑𝑡

𝑡′

0
)

𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛
  𝑓(𝑝)𝑑𝑝) 

(26) 

subject to the conditions 𝑐0 ≤ 𝑝,   𝑝𝑚𝑖𝑛 ≤ 𝑝∗ ≤ 𝑝𝑚𝑎𝑥 ,  and t’ < 𝑇.

As the objective function is probabilistic, we have utilized Particle Swarm Optimization 

(PSO) to maximize the profit function. PSO is advantageous in optimization processes and excels in 

navigating complex solution spaces by simulating the social behavior of particles. PSO facilitates 

swift convergence to optimal outcomes by continuously adapting individual positions guided by 

personal and global best solutions. This collaborative, swarm-based approach is particularly 

effective in tackling intricate profit optimization challenges, especially when confronted with 

uncertainties such as stochastic demand. The algorithm's capacity to balance exploration and 

exploitation makes it an adaptable and powerful tool, contributing to improved decision-making in 

scenarios where traditional optimization methods may fall short. Here is the algorithm (Algorithm 

1), inspired by [11] that optimizes the profit function effectively. 

Algorithm 1: Algorithm to maximize the profit function using PSO. 

Input: Parametric values, objective function, constraints. 

Output: Global best values for 𝑡′. 𝑇, and 𝑝. 

1. Define module 1 taking argument (𝜇, 𝜎)

2. Evaluate the 𝜖 using desired probability distribution from eq. 18

3. Return 𝜖

4. Define module 2 taking the distribution function for desired probability distribution calling module 1, and

objective function and return the value of objective function

5. Initialize the parameters associated with PSO and identify the decision variables

6. Initialize the maximum number of iterations for PSO

7. Initialize the random position and velocities

8. for i=1, 2,…, maximum iterations do

9. Evaluate the fitness for each particle by calling module 2

10. Identify the global best position for each particle

11. Update the particle’s position and velocity equations

12. Check the convergence criteria for each iteration and find the global best value among them

13. If maximum value found from existing value, replace the value and set new position

14. Plot the iteration and function’s value

15. end for

16. Return the optimal decision variables and corresponding maximum profit based on the best particle's

position.

Utilizing the above algorithm, the following plot (figure 4) illustrates the global convergence of the 

profit function with respect to their decision variables.  
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Figure 4: Iterative convergence of the probabilistic profit function 

Now, in further section we will generalize the result difference for both the approaches, i.e., 

deterministic over stochastic and will find the superiority of the approaches through the numerical 

simulations.  

VI. Results
Effective inventory management is a critical aspect of supply chain optimization. Two primary 

approaches have been developed to address uncertainties: deterministic and stochastic. Each of 

these approaches offers distinct strategies for handling uncertainties in inventory management. In 

this study, we aim to explore the dynamics of both approaches by utilizing numerical formulations 

to visualize their impact on demand and profitability. The findings of this study will provide 

valuable insights for improving inventory management practices, which can ultimately contribute 

to the overall efficiency of the supply chain.  Example 1 illustrates the deterministic method, which 

relies on known variables and minimizes uncertainties. In the following example, we compare the 

outcomes of a stochastic approach to a deterministic one. This exploration aims to understand better 

how different methods influence inventory management and decision-making for businesses 

seeking stability and precision in stock management. 

Example 1: Consider a scenario where demand stability is critical and uncertainties are minimized through a 

deterministic approach. We assume a fixed potential demand of 150 units and factors like price sensitivity 

parameter (𝑐) = 0.1 and time sensitivity parameter (𝑏) = 0.1 to tackle the optimization process. We 

considered holding costs (ℎ) = $2 per unit per unit of time, shortage costs (𝑐𝑠) is $2 per unit of time, 

purchasing costs (𝑐0) is 10 per unit, deteriorating rate (𝜃) = 0.001 per unit per unit of time and deterioration 

cost (𝑐𝑑) = $0.1.  

The analysis finds insightful metrics: the optimal replenishment time is 𝑡′ is 1.69719 units, a shortage duration 

of 0.29951 units, a streamlined inventory cycle time (𝑇)  =  1.9967 units, the optimal selling price per unit 

(𝑝)  =  $78.01, the optimal profit is $10318.  
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Figure 5: Demand under the uncertainty 

The data set from example 1 has been utilized to formulate numerical results for the stochastic 

approach to compare results better. Using Figures 5 and 6, we have illustrated the disparities 

between deterministic and stochastic models and their implications for managerial decision-making 

in uncertain situations. 

 In the initial exploration, Figure 5 captures the essence of demand dynamics under 

deterministic and stochastic circumstances. The deterministic line, depicted by a dotted black line, 

represents a scenario where demand is predictable and follows a predefined pattern. In contrast, 

stochastic scenarios introduce variability, depicted through fluctuating demand graphs under 

various distributions. The numerical formulation of demand incorporates distributions such as 

normal, uniform, triangular, and exponential, simulating market conditions with different levels of 

unpredictability. This formulation allows us to visually notice how demand evolves when subject to 
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varying degrees of uncertainty. The result is a series of demand scenarios that reflect the potential 

variability inherent in real-world markets. 

Figure 6: Profit under the uncertainty 

The profit formulation integrates normal, uniform, triangular, and exponential distributions to 

simulate the impact of unpredictable market dynamics on profitability. The accompanying mean 

profit lines offer a glimpse into the expected profitability under stochastic conditions. Here, the 

interplay between deterministic and stochastic trends becomes apparent, illustrating how market 

uncertainties can significantly affect overall profitability. 
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The numerical exploration provides a foundation for understanding the managerial 

implications of deterministic and stochastic models in uncertain environments. The deterministic 

approach, while straightforward and easy to implement, may need to be revised when faced with 

the unpredictable nature of real-world markets. The illustrated figures provide evidence that 

deterministic models have the potential to oversimplify demand and profit scenarios, thereby 

leading to erroneous decisions. In contrast, the stochastic models offer a more nuanced perspective, 

acknowledging and embracing uncertainty. This acknowledgement is crucial for managerial 

decision-making in unpredictable environments. Managers armed with stochastic insights can 

anticipate a spectrum of possible outcomes and strategically plan for contingencies. The superiority 

of stochastic models logically unfolds through the comparison of deterministic and stochastic trends. 

In Figure 5, the deterministic line represents a singular path, unable to capture the diverse and 

fluctuating nature of market demand. The stochastic demand scenarios, on the other hand, reflect 

the inherent variability in market dynamics, allowing for a more comprehensive understanding. 

Figure 6 reinforces this logic by illustrating the rigid nature of deterministic profit trends 

contrasted with the dynamic and adaptable nature of stochastic profitability. The mean profit lines 

in stochastic scenarios serve as beacons, guiding managers toward a more informed and resilient 

decision-making process. In uncertain environments, where market conditions are subject to change, 

the deterministic approach may lead to missed opportunities or unexpected challenges. Stochastic 

models, by accommodating variability, empower managers to make decisions that align with the 

complex reality of supply and demand fluctuations. The numerical exploration of deterministic and 

stochastic models in inventory management provides valuable insights for managerial decision-

making. The visual representations in Figures 5 and 6 underscore the limitations of deterministic 

approaches in handling uncertainties compared to stochastic models' more adaptable and realistic 

nature. Managerial implications highlight the importance of embracing uncertainty and leveraging 

stochastic insights to navigate unpredictable market conditions effectively. The logical illustration 

of the superiority of stochastic models emphasizes their capacity to capture the dynamic nature of 

demand and profitability, offering a strategic advantage in decision-making. 

As businesses operate in an increasingly complex and uncertain global landscape, adopting 

stochastic models becomes imperative for those seeking resilience, adaptability, and optimized 

decision outcomes. The numerical results presented here guide managers, encouraging them to 

explore and implement stochastic approaches in their quest for effective and agile inventory 

management strategies. 

VII. Conclusion

The study conducted a comparative study between deterministic and stochastic approaches in 

inventory modelling. The deterministic model was subjected to classical optimization techniques, 

while the stochastic optimizations were addressed using particle swarm optimization (PSO). The 

analysis presented above sheds light on the intricacies and implications of these approaches, 

unveiling valuable insights for inventory management strategies when dealing with uncertainty. 

The sensitivity analyses conducted on deterministic and stochastic models emphasize the 

significance of acknowledging uncertainty in inventory dynamics. The deterministic paradigm 

assumes that demand and other parameters remain constant, resulting in robust predictability. 

However, this approach needs to be more balanced with the complex nature of real-world markets 

and may lead to suboptimal decision-making. On the other hand, the stochastic model, which 

embraces variability in demand, offers a more realistic depiction of market dynamics. There are 

several insights into this study are given below: 

1. Stochastic modelling enables managers to make adaptive decisions and respond to changing

market conditions in real time. By contrast, deterministic methods may need to pay more

attention to the dynamic nature of demand, putting businesses at a disadvantage.

RT&A, No 1 (77)
 Volume 19, March 2024

816



Lalji Kumar, Pratima Singh Ghoshi, Shreyashi Saxena, Kajal Sharma

COMPARATIVE STUDY OF INVENTORY MODELLING 

2. Stochastic modelling captures a wide range of potential outcomes, making it an effective

tool for robust contingency planning. Managers can anticipate and plan for uncertainties,

reducing the impact of unexpected disruptions on inventory management.

3. Sensitivity analyses have demonstrated the superiority of the stochastic model in optimizing

resource allocation. This helps managers efficiently use resources, minimize holding costs,

and increase profitability.

4. By quantifying uncertainties, the stochastic model becomes a powerful tool for risk

mitigation. Managers can use it to implement proactive risk management strategies,

ensuring resilience in the face of unforeseen market fluctuations.

5. The stochastic model provides more realistic performance metrics, enabling managers to

evaluate inventory management strategies against dynamic market conditions. This

provides a comprehensive understanding of operational effectiveness.

The following are some potential avenues for extending this work, which may help to develop 

further and advance the research: 

1. Integrate machine learning algorithms for a data-driven approach.

2. Incorporate multi-objective optimization techniques.

3. Incorporate real-time market feedback to enhance accuracy.

4. Explore cross-functional collaboration between inventory management and other business

units.

5. Investigate the potential of leveraging blockchain for improved inventory visibility and risk

management.

This research emphasizes the differences between deterministic and stochastic inventory modelling 

and offers practical suggestions for managerial decision-making. Businesses dealing with modern 

supply chains' complex and uncertain landscape would benefit from implementing stochastic 

approaches, particularly when combined with advanced optimization methods like PSO. The 

identified managerial implications and proposed future extensions pave the way for a more 

adaptive, resilient, and technologically advanced approach to inventory management. 
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Abstract

The sequential probability ratio test is a powerful statistical tool that is frequently employed for
hypothesis testing, parameter estimation, and statistical inference. The aspect of robustness is of
utmost importance when employing SPRTS in practical applications. Past studies have investigated
the robustness of SPRTS for specific distributions. We have developed SPRTS for a family of inverse
distributions that includes eleven distinct distributions. The primary objective of this study is to
investigate and evaluate the robustness of SPRTS under various conditions and distributions, focusing
on the parameters of the inverse distribution family. SPRTS efficacy is measured using OC and ASN
functions. This study comprehensively covers the construction and rigorous evaluation of SPRTS,
particularly in testing simple null hypotheses against simple alternative hypotheses. Additionally, we
investigate the robustness of SPRTS under various factors, including the presence of other parameters
and specified coefficients of variation. Conclusive results, graphic representations, tables, and acceptance
and rejection regions add clarity to the findings.

Keywords: Inverse Distributions Family, Sequential Probability Ratio Tests (SPRT), Operating
Characteristics (OC), Average Sample Number (ASN).

1. Introduction

Sequential Probability Ratio Tests (SPRT) are innovative methodologies that prove highly effective
for both hypothesis testing and parameter estimation in statistical inference. The foundational
work by [21] introduced the concept of SPRT for analyzing simple null hypotheses against simple
alternatives. To assess the effectiveness of SPRT, operating characteristic (OC) and average sample
number (ASN) functions were developed as performance measures. Sequential probability ratio
tests (SPRTS) have long been recognized as valuable tools for making efficient and prompt
decisions in various statistical applications. These tests play a crucial role in scenarios where
data are collected sequentially over time, and the goal is to make a conclusive determination
about a specific hypothesis. Robustness, which ensures the validity and reliability of these
tests under varying conditions, is an essential aspect to consider when employing SPRTS in
real-world situations. Multiple studies have scrutinized the robustness of SPRTS in disparate
scenarios, enhancing our understanding of their performance and versatility. For instance, [1]
examined Wald’s SPRT for Levy processes, while [3] explored the robustness of sequential testing
procedures for generalized life distributions. Other research, such as that by [6] studied the
robustness of sequential testing procedures for parameters of zero-truncated negative binomial,
binomial and Poisson distributions. Previous works have also assessed the robustness of SPRTS in
specific settings, such as [8], considered sequential life tests in the exponential case. [9] examined
the robustness of sequential probability ratio tests in the presence of nuisance parameters.[11]
evaluated exponential and Weibull test plans, whereas [12] concentrated on investigating the
robustness of the SPRT for a negative binomial distribution in cases where the shape parameter
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is not specified. Additionally, [13] investigated the robustness of the exponential SPRT when
failures from a Weibull distribution were transformed using a known shape parameter. Other
relevant research includes [17]discusses the performance analysis of the Sequential Probability
Ratio Test (SPRT) under various conditions and [14] explored robustifying the SPRT for a discrete
model under "contamination." In contrast, [15] analyzed the performance and robustness of
an SPRT for non-identically distributed observations. The robustness of SPRTS has also been
examined in the context of exponential life-testing procedures [18] and the scale parameter of
gamma and exponential distributions [19].[16] discusses the use of sequential probability ratio
tests (SPRTS) for the statistical analysis of simulation outputs generated by computers. The type I
and type II errors exponents of sequential probability ratio tests, when the actual distributions
differ from the test distributions analyzed by [2]. In light of these studies, this research aims to
investigate further and evaluate the robustness of sequential probability ratio tests under various
conditions and distributions. In this study, we aim to extend the existing research and contribute
to the robustness analysis of SPRTS for parameters of inverse distribution family suggested by
[7]. Our focus will be on thoroughly examining the robustness of these tests using OC and ASN
functions. We will develop and rigorously evaluate the SPRTS, with specific attention given
to their robustness about the OC and ASN functions. Sections 3 and 5 will cover the essential
elements of constructing and evaluating the SPRTS, including testing simple null hypotheses
against simple alternatives, sequential analyses of composite hypotheses, and comprehensively
examining their robustness. Section 4 shall analyze simple null hypotheses established on the
parameter γ, taking into account the presence of the illustrious δ. Furthermore, in Section 6, we
shall investigate comparable hypotheses founded on the parameter δ, factoring in the existence
of γ. In Section 7, we will further investigate the robustness of the SPRTS in the presence of
a specified coefficient of variation. Section 8 presents the regions of acceptance and rejection
deduced for the null hypothesis H0 compared to the alternative hypothesis H1. Finally, Section 9
will effectively explain the synthesized data and provide conclusive findings using a combination
of tables and graphics.
Through this comprehensive analysis, we aim to gain valuable insights into the robustness,
performance, and limitations of SPRTS in the inverse family of distributions.

2. Inverse Distributions Family

Suppose a random variable (rv) x having p.d.f.

f
(
x; a−1, γ, δ, θ

)
=

γδgδ−1(x−1;θ)g′(x−1;θ)
x2Γ(δ) exp

(
−γg

(
x−1; θ

))
;

0 < x < a−1, γ > 0, δ > 0.
(1)

Where, g
(
x−1; θ

)
, is a function of θ and x. Moreover, g

(
x−1; θ

)
real-valued, Strict decreasing the

function of x with g(∞; θ) = ∞ and g′
(
x−1; θ

)
stances for the derivative of g(x; θ) by x−1.

the equation (1) shows that the above distribution can be converted in the following distributions
as special cases: If g(x; θ) = x2, δ = k + 1(k ≥ 0),

(
k = −1

2

)
provide the inverse Half-normal

distribution and (k = 0) the inverse Rayleigh distribution. If g(x; θ) = log
(

1 + xb

vb

)
, b > 0, v >

0, δ = 1, provide the inverse log-logistic model. If g(x; θ) = log
(

1 + xb

vb

)
, b > 0, v = 1, δ > 1,

provide the inverse Burr distribution. If g(x; θ) = log
(

1 + xb

vb

)
, b = 1, v > 1, δ > 1, provide the

inverse Lomax distribution. If g(x; θ) = x2

2 , δ = h
2 (h > 0), it becomes inverse Chi-distribution. If

g(x; θ) = log
( x

a
)

and δ = 1, obtain inverse Pareto distribution. If g(x; θ) = xr exp(ax), r > 0, a >

0, δ = 1, obtain inverse modified Weibull distribution. If g(x; θ) = µx + vx2

2 , γ = δ = 1, obtain
inverse linear exponential distribution. If g(x; θ) = log x, obtain the inverse of the log-gamma
distribution. If g(x; θ) = xp, p > 0, δ > 0, obtained the inverse generalized gamma distribution.
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3. SPRT FOR EVALUATING THE HYPOTHESES OF γ

Let a series X1, X2, . . . from (1), assume one needs to assess the simple hypotheses H0 : γ = γ0 as
opposed to H1 : γ = γ1 (> γ0). The analysis of SPRT on behalf of H0, expressed in this manner

Zi = ln
{

f (Xi; a, γ1, δ, θ)

f (Xi; a, γ0, δ, θ)

}
= δ.ln

(
γ1

γ0

)
− g

(
x−1

i ; θ
)
(γ1 − γ0) (2)

Admit Ho if ∑n
i=1 Zi ≤ lnB, refuse H0 if ∑n

i=1 Zi ≥ ln A, or else, carry on sampling using the
value of (n + 1))th. If α and β belong to the interval (0, 1) and represent type I and type II errors
sequentially, the work by [21] provides definitions for A and B that are specified as

A ∼=
(1 − β)

α

and
B ∼=

β

(1 − α)

Where 0 < B < 1 < A
The OC function is almost specified as

L(γ) ∼=
(

At0 − 1
)

(At0 − Bt0)

Where t0 is the non-zero result for equation

E
(
etozi

)
= 1 (3)

Note 1: Use the statement that g
(
x−1; θ

)
follows gamma distribution

Using (1) with (3), we find (
γ1

γ0

)δto { t0 (γ1 − γ0) + γ

γ

}−δ

= 1

or,

γ =
t0 (γ1 − γ0)(

γ1
γ0

)t0 − 1
(4)

To find the values of OC and ASN functions, evaluate (4) as

t0 ln
(

γ1

γ0

)
= ln

[
1 + t0

(
γ1 − γ0

γ

)]
(5)

By utilizing the natural logarithm function of (1 + x), which is defined for 1 < x < 1, in (5).we
can achieve the desired outcome from (6).{

1
3

(
γ1 − γ0

γ

)3
}

t2
0 −

{
1
2

(
γ1 − γ0

γ

)2
}

t0 +

{(
γ1 − γ0

γ

)
− ln

(
γ1

γ0

)}
= 0 (6)

Using (2), provides that

E (Zi | γ) = δ

[
ln

(
γ1

γ0

)
−

(
γ1 − γ0

γ

)]
(7)

Using (7), we get, the ASN function

E(N | γ) ∼=
L(γ)ln B + {1 − L(γ)}ln A

δ
[
ln

(
γ1
γ0

)
−

(
γ1−γ0

γ

)] (8)
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Using (8) the ASN function for H0 along with H1 specified as

E0(N) ∼=
(1 − α)ln B + α ln A

δ
[
ln

(
γ1
γ0

)
−

(
γ1−γ0

γ

)]
and

E1(N) ∼=
β ln B + (1 − β)ln A

δ
[
ln

(
γ1
γ0

)
−

(
γ1−γ0

γ

)]
4. SPRT FOR EVALUATING THE HYPOTHESES OF γ ALTHOUGH δ IS

CHANGING

Using section (3), The maximum value of ASN gets on behalf of γ = γ̃ where γ̃ is getting from
E (Zi | γ) = 0 and the maximum value is specified as

Eγ̃(N) ∼= − (ln A ∗ ln B)
E
(
z2

i | γ̃
) (9)

Also

γ̃ =

γ1 − γ0

ln
(

γ1
γ0

)
 (10)

Also, using (7) we get

E
(

Z2
i | γ̃

)
= δ

[
ln

(
γ1

γ0

)
−

(
γ1 − γ0

γ

)]2
+

(γ1 − γ0)
2 δ

γ̃2 (11)

Utilizing (9) and (11), we find that

Eγ̃(N) ∼=
−(ln A ∗ ln B){

δln
(

γ1
γ0

)
− (γ1−γ0)δ

γ̃

}2
+ (γ1−γ0)

2δ
γ̃2

Assuming that there has been a modification to the parameter δ and that (1) has transformed
into f (x; a, γ, d, θ), this can be attained by replacing δ with d. To analyze the robustness of SPRT,
suggest t0 as the result of the equation∫ a−1

0

{
f (xi; a, γ1, δ, θ)

f (xi; a, γo, δ, θ)

}t0

f (xi; a, γ, d, θ) dxi = 1 (12)

We achieve from (12) and put ϕ1 =
(

δ
d

)
(

γ1

γo

)δt0 γd

Γ(d)

∫ a−1

0
exp

[
−{(γ1 − γ0) t0 + γ} g

(
x−1

i ; θ
)] gd−1

(
x−1

i ; θ
)

g
′
(

x−1
i ; θ

)
x2

i
dxi = 1,

or,

(γ1 − γ0)
t0

γ
+ 1 =

(
γ1

γo

) δt0
d

or,

γ =
(γ1 − γ0) t0(

γ1
γ0

)ϕ1t0 − 1
(13)

To find the values of OC functions, evaluate (13) as

ϕ1t0 ln
(

γ1

γ0

)
= ln

[
1 + t0

(
γ1 − γ0

γ

)]
(14)
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Equation (14), Solve as (5) and find the roots of t0 from (15){
1
3

(
γ1 − γ0

γ

)3
}

t2
0 −

{
1
2

(
γ1 − γ0

γ

)2
}

t0 +

{(
γ1 − γ0

γ

)
− ϕ1 ln

(
γ1

γ0

)}
= 0 (15)

where ϕ1 =
(

δ
d

)
. The ASN function coincides with (8)

E (Zi | γ) = ϕ1

[
ln

(
γ1

γ0

)
−

(
γ1 − γ0

γ

)]
(16)

5. SPRT FOR EVALUATING THE HYPOTHESES OF δ

Suppose taking a sequence X1, X2, . . . from (1) are independently and identically distributed. To
analyze the simple null hypotheses in contradiction of the simple alternative hypotheses when γ
is identified. H0 : δ = δ0 as opposed to H1 : δ = δ1 (> δ0).
We suggest the resulting SPRT

Zi = (δ1 − δ0) ln γ + (δ1 − δ0) ln
{

g
(

x−1
i ; θ

)}
+ ln

(
Γ (δ0)

Γ (δ1)

)
(17)

Admit H0 on the nth step, if

n

∑
i=1

ln
{

g
(

x−1
i ; θ

)}
≤

{
ln B − n (δ1 − δ0) ln γ − n ln

(
Γ (δo)

Γ (δ1)

)}
/ (δ1 − δo) (18)

Reject H0 if

n

∑
i=1

ln
{

g
(

x−1
i ; θ

)}
≥

{
ln A − n (δ1 − δ0) ln γ − n ln

(
Γ (δ0)

Γ (δ1)

)}
/ (δ1 − δo) (19)

Then using the (n + 1)th value carry on sampling if{
ln B − n (δ1 − δ0) ln γ − n ln

(
Γ(δ0)
Γ(δ1)

)}
(δ1 − δ0)

<
n

∑
i=1

ln
{

g
(

x−1
i ; θ

)}
<{

ln A − n (δ1 − δ0) ln γ − n ln
(

Γ(δ0)
Γ(δ1)

)}
(δ1 − δ0)

(20)

The OC function, A and B same as previously.

L(δ) ∼=
(

At0 − 1
)

(At0 − Bt0)
(21)

Here to is the positive as well as negative but not zero

E
{

etoZi
}
= 1. (22)

Using Note 1 with (22), we get{
Γ (t0 (δ1 − δ0) + δ)

Γ(δ)

}
=

(
Γ (δ1)

Γ (δ0)

)t0

. (23)

Taking the logarithm of both sides of (23), with ln(1 + x);−1 < x < 1

ln Γ(x) = ln
√

2π − x +

(
x − 1

2

)
ln x (24)
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By using the equation (24) of approximation, we get

t0
2

6

(
δ1 − δ0

δ

)3
(δ + 1)− t0

4

(
δ1 − δ0

δ

)2
(2δ + 1)−

(
δ0 −

1
2

)
ln δ0 +

(
δ1 −

1
2

)
ln δ1

−
(

1 + ln δ − 1
2δ

)
(δ1 − δ0) = 0

(25)

Simplifying terms up to the third degree in t0, we get the roots of t0 from (25).

E
{

ln(g
(

X−1
i ; θ

)
)
}
=

γδ

Γ(δ)

∫ ∞

0
(ln x)xδ−1e−γxdx (26)

We achieved, using [10], that

E
{

ln(g
(

X−1
i ; θ

)
)
}
= {ψ(δ)− lnγ}, (27)

And ψ(δ) is specified as

ψ(δ) =
d

d(δ)
lnΓ(δ)

Using (7) and (26), we find

E (Zi | δ) = [ln {Γ (δo)} − ln {Γ (δ1)}] + (δ1 − δ0)ψ(δ) (28)

The ASN function for Ho and H1 using (22) and (27) are specified as

E0(N) ∼=
(1 − α)ln B + α ln A

{ln (Γ (δ0))− ln (Γ (δ1))}+ (δ1 − δ0)ψ (δ)
(29)

and

E1(N) ∼=
β ln B + (1 − β)ln A

{ln (Γ (δ0))− ln (Γ (δ1))}+ (δ1 − δ0)ψ (δ)
(30)

6. SPRT FOR EVALUATING THE HYPOTHESES OF δ ALTHOUGH γ IS
CHANGING

Using Section (5), The greatest value of ASN attained for δ = δ̃, where δ̃ is the result of
E (Zi | δ) = 0

ψ(δ̃) =
{lnΓ (δ1)− lnΓ (δ0)}

(δ1 − δ0)

This gives the highest worth as

Eδ(N) ∼= − (ln A ∗ ln B)

E
(

Z2
i | δ̂

)
Using (17) and [10], we get

E
(

Z2
i | δ̃

)
= {ln (Γ (δ0) /Γ (δ1))}2 + (δ1 − δ0)

2
{
(ψ(δ̃))2 + ξ(2, δ̃ − 1)

}
Where ξ(z, q) is specified as

ξ(z, q) =
∞

∑
n=0

(
1

(q + n)2

)
Where t0 is the solution of the equation

∫ a−1

0

{
f (xi; a, γ, δ1, θ)

f (xi; a, γ, δ0θ)

}t0

f (xi; a, η, δ, θ) dxi = 1. (31)
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We achieve this using (17) and (31),

γ(δ1−δ0)t0

{
Γ (δ0)

Γ (δ1)

}t0 ηδ

Γ(δ)

∫ a−1

0

g(δ1−δ0)h+δ−1
(

x−1
i ; θ

)
g
′
(

x−1
i : θ

)
exp

(
−ηg

(
x−1

i : θ
))

dxi

x2
i

= 1

or,

ϕ2
(δ1−δ0)t0

{
Γ (δ0)

Γ (δ1)

}t0 Γ ((δ1 − δ0) t0 + δ)

Γ(δ)
= 1 (32)

Where ϕ2 = γ
η .

By applying the logarithm function to both sides of the equation (32), and employing the
approximation (24), the solutions for the variable t0 are obtained from the following equation,

t0
2

6

(
δ1 − δ0

δ

)3
(δ + 1)− t0

4

(
δ1 − δ0

δ

)2
(2δ + 1)−

(
δ0 −

1
2

)
ln δ0 +

(
δ1 −

1
2

)
ln δ1

− (δ1 − δ0) ln ϕ2 −
(

1 + ln δ − 1
2δ

)
(δ1 − δ0) = 0

(33)

The ASN function coincides with (8),

E (Zi | δ) = ln
{

Γ (δ0)

Γ (δ1)

}
+ (δ1 − δ0) Γ(δ) + (δ1 − δ0) ln ϕ2. (34)

7. SPRT ROBUSTNESS FOR γ WITH INDICATED COEFFICIENT OF
VARIATION

If g(x; θ) = x2

2 , δ = h
2 (h > 0) in (1), the values of µ = h

h−2 , for h > 2 and σ2 = 2h2

(h−2)2(h−4) , for h >

4. Then, the coefficient of variation (CV)

C =

√
2

(h − 4)
(35)

Assume that the value of the coefficient of variation alters from to c to c∗, then δ becomes

δ∗ =
1

C∗2 + 2 (36)

The OC function is

ψ1t0 ln
(

γ1

γ0

)
= ln

[
1 + t0

(
γ1 − γ0

γ

)]
(37)

Solve (37) as (5) up to the third degree in t0 and find the roots of t0 from (39){
1
3

(
γ1 − γ0

γ

)3
}

t2
0 −

{
1
2

(
γ1 − γ0

γ

)2
}

t0 +

{(
γ1 − γ0

γ

)
− ψ1 ln

(
γ1

γ0

)}
= 0 (38)

where ψ1 =
(

δ
δ∗

)
.

The ASN function coincides with (8)

E (Zi | γ) = ψ1

[
ln

(
γ1

γ0

)
−

(
γ1 − γ0

γ

)]
(39)
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8. ACCEPTANCE AND REJECTION REGION

we need to assess the simple hypotheses H0 : γ = γ0 as opposed to H1 : γ = γ1 (> γ0) having
preassigned 0 < α and β < 1 then Zi is

Zi = δ.ln
(

γ1

γ0

)
− g

(
x−1

i ; θ
)
(γ1 − γ0) (40)

Define, Z(N) = ∑n
i=1 Xi and N = initial integer n(≥ 1), so that the inequality is defined as

Z(N) ≤ c1 + dn or Z(N) ≥ c2 + dn valid among the parameters.

c1 =
ln B

(γ1 − γ0)
, c2 =

ln A
(γ1 − γ0)

and d =
δ ln

(
γ0
γ1

)
(γ1 − γ0)

9. RESULT AND DISCUSSION

Table 1: H0 : γ0 = 22, H1 : γ1 = 26 H0 : δ0 = 22, H1 : δ1 = 26

γ L(γ) E[N] δ L(δ) E[N]

22.0 0.997848 396.3 22.0 0.997500 16.82
22.2 0.995846 442.9 22.2 0.995382 18.70
22.4 0.992101 499.5 22.4 0.991517 20.98
22.6 0.985191 568.6 22.6 0.984524 23.77
22.8 0.972657 653.2 22.8 0.972019 27.16
23.0 0.950427 755.6 23.0 0.950054 31.27
23.2 0.912296 875.9 23.2 0.912590 36.08
23.4 0.850178 1008.3 23.4 0.851663 41.38
23.6 0.756664 1136.4 23.6 0.759744 46.52
23.8 0.631008 1232.9 23.8 0.635534 50.40
24.0 0.485370 1268.9 24.0 0.490420 51.83
24.2 0.342685 1233.2 24.2 0.347054 50.32
24.4 0.224024 1140.9 24.4 0.227029 46.47
24.6 0.138008 1021.1 24.6 0.139693 41.46
24.8 0.081636 898.8 24.8 0.082409 36.35
25.0 0.047077 788.0 25.0 0.047344 31.74
25.2 0.026743 693.5 25.2 0.026777 27.81
25.4 0.015062 615.1 25.4 0.015011 24.55
25.6 0.008442 550.6 25.6 0.008374 21.88
25.8 0.004719 497.5 25.8 0.004660 19.69
26.0 0.002634 453.5 26.0 0.002590 17.87

Figure 1: OC and ASN Curve for section 3.
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Figure 2: OC and ASN Curve for section 5.

I. The values denoted by the OC and ASN functions for sections 3 and 5 under α = β = 0.05,
corresponding to the parameters γ and δ can be found in Table 1, while the visuals representing
these values are illustrated in Figures 1 and 2. The table mentioned above and curves yield
outcomes that are deemed acceptable.

Table 2: OC and ASN Functions for section 4, under α = β = 0.05, where H0 : γ0 = 22, H1 : γ1 = 26

ϕ1 = 0.95 ϕ1 = 0.98 ϕ1 = 1 ϕ1 = 1.02 ϕ1 = 1.05

γ L(γ) E[N] L(γ) E[N] L(γ) E[N] L(γ) E[N] L(γ) E[N]

22.0 0.999977 256.109 0.999593 325.533 0.997848 396.275 0.990174 501.269 0.925563 760.351
22.2 0.999949 275.377 0.999182 357.072 0.995846 442.881 0.981647 572.664 0.871228 878.478
22.4 0.999891 297.332 0.998388 394.382 0.992101 499.451 0.966278 659.846 0.787253 998.243
22.6 0.999773 322.565 0.996875 439.007 0.985191 568.593 0.939285 764.602 0.670219 1097.251
22.8 0.999539 351.837 0.994031 492.942 0.972657 653.184 0.893689 885.460 0.528271 1148.101
23.0 0.999084 386.143 0.988758 558.689 0.950427 755.616 0.821178 1013.745 0.382212 1134.421
23.2 0.998208 426.784 0.979124 639.166 0.912296 875.930 0.715853 1129.741 0.255118 1063.405
23.4 0.996548 475.461 0.961857 737.241 0.850178 1008.278 0.581040 1204.816 0.159600 959.524
23.6 0.993440 534.365 0.931752 854.390 0.756664 1136.436 0.433599 1215.202 0.095382 847.741
23.8 0.987698 606.223 0.881433 987.837 0.631008 1232.898 0.297492 1159.170 0.055358 743.688
24.0 0.977243 694.173 0.802653 1126.039 0.485370 1268.878 0.190055 1058.028 0.031567 653.709
24.2 0.958580 801.169 0.690763 1245.161 0.342685 1233.182 0.115203 939.908 0.017819 578.588
24.4 0.926211 928.388 0.551685 1313.657 0.224024 1140.910 0.067448 825.361 0.010001 516.709
24.6 0.872518 1071.916 0.404611 1309.361 0.138008 1021.076 0.038658 724.251 0.005595 465.802
24.8 0.789395 1217.829 0.273264 1236.136 0.081636 898.796 0.021884 639.054 0.003124 423.701
25.0 0.673200 1339.075 0.172445 1120.253 0.047077 788.025 0.012302 568.673 0.001742 388.586
25.2 0.531691 1402.143 0.103641 991.440 0.026743 693.530 0.006888 510.809 0.000971 359.005
25.4 0.385428 1386.471 0.060349 869.573 0.015062 615.103 0.003848 463.075 0.000540 333.831
25.6 0.257639 1300.211 0.034475 763.352 0.008442 550.600 0.002147 423.395 0.000301 312.195
25.8 0.161310 1173.099 0.019477 674.378 0.004719 497.491 0.001197 390.091 0.000167 293.426
26.0 0.096429 1035.896 0.010936 601.031 0.002634 453.477 0.000666 361.853 0.000093 277.004

II. Figure 3 illustrates the numerical values of the OC and ASN curves extracted from Table 2,
corresponding to different ϕ1 values. When ϕ1 < 1(ϕ1 > 1), the OC curve shifts either towards
the right or left direction, while the ASN curve shifts towards the upper right or lower left
direction. Both curves demonstrate that the SPRT exhibits a high degree of sensitivity towards
alterations in δ.
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Figure 3: OC and ASN Curve for section 4.

Table 3: OC and ASN Functions for section 6, under α = β = 0.05 where H0 : H0 : δ0 = 22, H1 : δ1 = 26

ϕ2 = 0.95 ϕ2 = 0.99 ϕ2 = 1 ϕ2 = 1.02 ϕ2 = 1.05

δ L(δ) E[N] L(δ) E[N] L(δ) E[N] L(δ) E[N] L(δ) E[N]

22.0 0.999949 12.805 0.998800 16.277 0.997500 16.821 0.989824 25.063 0.930141 38.018
22.2 0.999903 13.769 0.997769 17.854 0.995382 18.704 0.981471 28.633 0.879707 43.924
22.4 0.999816 14.867 0.995875 19.719 0.991517 20.984 0.966597 32.992 0.800964 49.912
22.6 0.999653 16.128 0.992418 21.950 0.984524 23.765 0.940663 38.230 0.689215 54.863
22.8 0.999350 17.592 0.986152 24.647 0.972019 27.161 0.896956 44.273 0.550252 57.405
23.0 0.998787 19.307 0.974920 27.934 0.950054 31.265 0.827248 50.687 0.403178 56.721
23.2 0.997751 21.339 0.955114 31.958 0.912590 36.081 0.725144 56.487 0.271799 53.170
23.4 0.995848 23.773 0.921109 36.862 0.851663 41.381 0.592699 60.241 0.171045 47.976
23.6 0.992379 26.718 0.865216 42.719 0.759744 46.521 0.445466 60.760 0.102434 42.387
23.8 0.986097 30.311 0.779487 49.392 0.635534 50.398 0.307359 57.959 0.059402 37.184
24.0 0.974842 34.709 0.660892 56.302 0.490420 51.829 0.196953 52.901 0.033783 32.685
24.2 0.955006 40.058 0.518186 62.258 0.347054 50.320 0.119421 46.995 0.018999 28.929
24.4 0.920963 46.419 0.372612 65.683 0.227029 46.466 0.069790 41.268 0.010619 25.835
24.6 0.865024 53.596 0.247071 65.468 0.139693 41.460 0.039871 36.213 0.005915 23.290
24.8 0.779245 60.891 0.153542 61.807 0.082409 36.355 0.022479 31.953 0.003290 21.185
25.0 0.660606 66.954 0.091170 56.013 0.047344 31.737 0.012580 28.434 0.001828 19.429
25.2 0.517881 70.107 0.052585 49.572 0.026777 27.807 0.007012 25.540 0.001015 17.950
25.4 0.372321 69.324 0.029808 43.479 0.015011 24.553 0.003901 23.154 0.000564 16.692
25.6 0.246826 65.011 0.016731 38.168 0.008374 21.882 0.002167 21.170 0.000313 15.610
25.8 0.153354 58.655 0.009340 33.719 0.004660 19.688 0.001204 19.505 0.000174 14.671
26.0 0.091038 51.795 0.005199 30.052 0.002590 17.872 0.000669 18.093 0.000097 13.850

Figure 4: OC and ASN Curve for section 6.

III. Figure 4 portrays the values of the operational characteristic (OC) and average sample num-
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ber (ASN) curves derived from Table 3 across various magnitudes of ϕ2. When ϕ2 < 1(ϕ2 > 1),
the OC curve experiences a rightward (leftward) shift, while the ASN curve undergoes an upward
rightward (downward leftward) shift. Both curves demonstrate the considerable sensitivity of the
sequential probability ratio test (SPRT) to parameter γ alterations.
IV. Figure 5 illustrates the plotted values of the OC and ASN curves obtained from Table 4 while
considering different values of ’ψ’. When ψ < 1(ψ > 1) is taken into account, the OC curve
experiences a shift towards the right (left), while the ASN curve shifts upwards (downwards)
towards the right. It is evident from both curves that the SPRT demonstrates a considerable level
of sensitivity towards variations in ’ψ’.

Table 4: OC and ASN Functions for section 7, under α = β = 0.05 where H0 : H0 : γ0 = 22, H1 : γ1 = 26

ψ = 0.96 ψ = 1 ψ = 1.04

γ L(γ) E[N] L(γ) E[N] L(γ) E[N]

22.0 0.999936 275.746 0.997848 396.275 0.960659 658.849
22.2 0.999864 298.188 0.995846 442.881 0.929568 764.064
22.4 0.999719 324.055 0.992101 499.451 0.877735 883.456
22.6 0.999432 354.157 0.985191 568.593 0.796964 1006.162
22.8 0.998873 389.555 0.972657 653.184 0.683060 1110.363
23.0 0.997803 431.636 0.950427 755.616 0.542805 1168.026
23.2 0.995782 482.209 0.912296 875.930 0.396046 1160.562
23.4 0.992010 543.586 0.850178 1008.278 0.266293 1092.897
23.6 0.985068 618.594 0.756664 1136.436 0.167506 988.999
23.8 0.972493 710.346 0.631008 1232.898 0.100472 874.913
24.0 0.950216 821.423 0.485370 1268.878 0.058441 767.625
24.2 0.912031 951.852 0.342685 1233.182 0.033369 674.376
24.4 0.849857 1095.264 0.224024 1140.910 0.018849 596.352
24.6 0.756289 1234.025 0.138008 1021.076 0.010583 532.042
24.8 0.630591 1338.272 0.081636 898.796 0.005922 479.150
25.0 0.484941 1376.797 0.047077 788.025 0.003307 435.440
25.2 0.342284 1337.532 0.026743 693.530 0.001844 399.016
25.4 0.223688 1236.956 0.015062 615.103 0.001028 368.364
25.6 0.137752 1106.603 0.008442 550.600 0.000572 342.305
25.8 0.081457 973.726 0.004719 497.491 0.000318 319.929
26.0 0.046959 853.432 0.002634 453.477 0.000177 300.536

Figure 5: OC and ASN Curve for section 7.

V. The acceptance and rejection zones for the null hypothesis H0, with H0 : γ0 = 22 and the
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alternative hypothesis H0 : γ0 = 26. Both the α and β significance levels are set to 0.05, and
the degrees of freedom δ are set to 2. The values of the constants c1, c2, and d are -287.0828,
287.0828, and -27.90466, respectively. As a result, if the observed value Z(n) is less than or
equal to −27.90466N + 287.0828, we accept the null hypothesis H0, and we accept the alternative
hypothesis H1 if Z(n) is higher than or equal to −27.90466N − 287.0828. In the intermediate
stages, the sampling procedure continues.

Figure 6: The Acceptance and Rejection zones for H0
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Abstract

In this research paper, confidence interval using maximum likelihood estimation is obtained for 
Poisson type Rayleigh class for the parameters. The failure intensity function, mean time to failure 
function and likelihood function for the parameter is derived. Confidence interval has been obtained 
for the parameters using maximum likelihood estimation. To study the performance of proposed 
Confidence interval, average length and coverage probability are calculated by using Monte Carlo 
simulation technique. From the obtained intervals, it is concluded that Confidence interval for the
parameters perform better for appropriate choice of execution time and certain values of parameters. 

Keywords: Rayleigh distribution, Software reliability growth model, Maximum 
likelihood estimation (MLE), Average length and coverage probability.

1. Introduction

Software reliability is the quality characteristic of operation system which can measure, predict and 
estimate quality of software system. In last several decades various model have been proposed to 
assess software reliability. Most of them are probabilistic models. Software modeling techniques can 
be divided into two categories: Prediction and estimation models. Estimation models determines the 
current software reliability  by applying statistical  inference techniques to failure data  while the 
prediction models determines future  software reliability  based upon  available software metrics and 
measures. The parameters involved in software reliability models can be estimated by using some 
basic procedures like maximum likelihood, least square estimation and Bayesian point estimation, etc.
Among all software reliability models, software reliability growth models are very useful to assess 
software reliability. With the help of software reliability approach customer fulfill their requirements.

Most of the past research work in software reliability modeling has concentrated on the point 
estimation of the parameters. The uncertainty of the estimates by using interval estimation has not 
been fully discussed. The most commonly applied interval estimation technique is based on the 
central limit theorem assuming large sample size. In real world testing the number of software 
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failures observed is usually large. Maximum likelihood Estimation is most preferable because of its 
easy computation and it is suitable for large sample size. The Confidence interval provides two pairs 
of values based on sample (say an interval) within which the parameter will lie with certain
probability

In this research paper Poisson type Rayleigh class model is considered according to Musa and 
Okumoto [10] classification scheme. The Rayleigh distribution is widely used for communications, 
physical sciences, medical imaging and engineering, applied statistics and clinical trials. Sinha and 
Howlader [16] have computed credible an HPD intervals of the parameters of Rayleigh distribution 
and also estimated credible interval using reliability function. Sinha [17] has estimated Bayesian 
interval for the parameters of Rayleigh distribution and its reliability function. Hirano [5] has 
described origin and properties of Rayleigh distribution.  Merovci and Elbatal [9] have defined and 
studied Weibull Rayleigh distribution and its mathematical properties. Roy [13] proposed Discrete 
Rayleigh distribution for univariate and bivariate situations. Dey et al [2] have described different 
approaches for the estimation of two parameters Rayleigh distribution and also computed credible 
intervals. Rao et al [12] have proposed software reliability growth model of inverse Rayleigh 
distribution to assess the failure process of developed software and estimated the model parameters 
by maximum likelihood estimation. Fang and Yeh [3] have proposed a software reliability estimation 
that uses Stochastic differential equations i.e. SDEs with the fault detection function.

Rao and Cunha [1] have estimated credible intervals and confidence intervals through maximum 
likelihood estimators for lognormal distribution and also compared average length and coverage 
probability of the calculated interval. Jeske et al [6] have developed the confidence intervals of 
average failure rate on the basis of asymptotic theory. Fang and Yeh [4] have proposed confidence 
interval of the software fault detection process of software reliability growth models using stochastic 
differential equations. Saroj et al [14] have proposed transformed distribution called inverse Muth 
distribution and obtained asymptotic confidence interval for parameters of distribution in case of 
maximum likelihood estimation and maximum product spacing estimation (MPSE) is alternative 
method for MLE. Lalitha and Mishra [7] have obtained modified maximum likelihood estimate of the 
Rayleigh distribution using hyperbolic approximation. Lee et al [8] used Obha's model to build the 
SRGM with confidence intervals that can help the software developers to determine the optimal 
release time in practice. The Rayleigh distribution is widely used for communications, physical 
sciences, medical imaging and engineering, applied statistics and clinical trials. Seo et al [15] have 
obtained the exact confidence intervals for unknown parameters and predictive intervals for future 
upper record values by considering some pivotal quantities in the two parameter Rayleigh 
distribution. Yamada et al. [18] have proposed software reliability growth models incorporating the 
quantity of test-effort exhausted on software testing described by the Rayleigh curve and Rayleigh 
function used to estimate the detection rate of defects as a function of time during the software 
development process. 

The frame of this paper is such that section 2 presents derivation of failure intensity and 
expected number of failures using Rayleigh distribution. Section 3 presents Likelihood function and 
construction of Confidence interval of parameters for Rayleigh distribution. Results are discussed in 
the section 4 while concluding remarks are provided in section 5.     
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2. Model Formulation and Evaluation

Considering that software system has experienced me failures at times ti, where i = 
1,2,…………me during the execution time te. Let the parameter γ0 be the total number of failures and 
the second parameter is γ1. Let 't' be the positive random variable having Rayleigh distribution then 
its probability density function in terms of 't' is given as

(ݐ)݂ = ൝ݐγଵି ଶ݁ି
భమቂ ೟ംభቃ

మ , ݐ > 0, ଵߛ > 00 , ݁ݏ݅ݓݎℎ݁ݐܱ (1)

The failure intensity function of the above model can be given as:

(ݐ)ߣ = ଵିߛݐ଴ߛ ଶ݁ିభమൣ௧ఊభషభ൧మ , ݐ > 0, ଵߛ > 0, ଴ߛ > 0 (2)

Also, the mean failures function i.e. expected number of failures at time ݐ௘is given by:

(௘ݐ)ߤ = ଵିߛ଴ߛ ଶ ∫ ଵିߛݐ ଶ݁ିభమൣ௧ఊభషభ൧మ௧೐଴ ݔ݀
After some algebraic simplification, the above equation can be given as:

(௘ݐ)ߤ = ଴ൣ1ߛ − ݁ିభమ൫௧೐ఊభషభ൯మ൧ (3)

3. Likelihood function and Confidence Interval

Confidence interval is one of the estimation techniques to draw statistical inference. Confidence 
interval can construct with several different methods. The method of confidence interval constructed 
through maximum likelihood estimation is discussed here. Likelihood function is significant part of 
frequentist and Bayesian analysis. It can be used to compare probability of various parameter values. 
The likelihood function of  (ߛ଴, (ଵߛ is obtained with the help of failure intensity (2) and expected 
number of failures (3) the likelihood function (see for details Musa et al [11]) and can be expressed 
as follows: 

,଴ߛ)ܮ (ଵߛ = ଵିߛ଴௠೐ߛ ଶ௠೐ൣ∏ ௜௠೐௜ୀଵݐ ൧݁ିభమ்ఊభషమe ିఊబexp ቊߛ଴݁ିభమቀ೟೐ംభቁమቋ (4)

Where,     ∑ ௜ଶ௠೐௜ୀଵݐ = ܶ
Maximum likelihood estimators for the parameters γ0 and   γ1are given by:

ො௠଴ߛ = ݉௘ ൥1 − ݁ିభమ൬ ೟೐ംෝ෡೘భ൰
మ൩

ିଵ
(5)
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ො௠ଵߛ = ଵ
ଶ ൝ ்

௠೐ − ௘ଶ݁ିభమቀ೟೐ംෝభቁమݐ ቈ1 − ݁ିభమቀ೟೐ംෝభቁమ቉ିଵൡ (6)

To obtain confidence limits for the parameters γ0 and γ1 asymptotic variances of the maximum 
likelihood estimator of the parameters γ0 and γ1 are derived, which is the inverse of Fisher 
information matrix. The negative second order partial derivative of log likelihood function is obtained 
as follows:

డమ௟௢௚௅
డఊబమ = −௠೐ఊෝబమ (7)

డమ௟௢௚௅
డఊభమ = ଵ

[(ିమౣ౛
ംෝభమ ାଷ∑ ೟೔ംෝభర

೘೐೔సభ ାଷఊෝబ௘ష
೟೐మమ ംෝభ ೟೐మംෝభరାఊෝబ௘

ష ೟೐మംෝభ ೟೐రംෝభల)]
(8)          

Using equation (7) and (8) equations, the variance for the parameters γ0 and γ1 can be given as 
follows:

Var (ߛො଴) =   ఊෝబమ௠೐ (9)

Var (ߛොଵ) = ଵ
[(ିమౣ౛

ംෝభమ ାଷ∑ ೟೔ംෝభర
೘೐೔సభ ାଷఊෝబ௘ష

೟೐మమ ംෝభ ೟೐మംෝభర ା ఊෝబ௘ష
೟೐మംෝభ ೟೐రംෝభల)]

(10)  

Using equation (9) and (10) the 100(1-α) % confidence interval for parameters γ0 i.e. (ߛ෤0Lߛ෤0U) and γ1 i.e.
 are given by ( ෤1Uߛ,෤1Lߛ)

ො଴+ zα/2  ටఊෝబ௠೐ߛ =෤0Lߛ (11)         

෤0Uߛ −ො଴ߛ = zα/2   ටఊෝబ௠೐ (12)

෤ଵ௅ߛ = ଵෝߛ − ఈ/ଶඨݖ ଵ
[(ିమౣ౛

ംෝభమ ାଷ∑ ೟೔ംෝభర
೘೐೔సభ ାଷఊෝబ௘ష

೟೐మమ ംෝభ ೟೐మംෝభరାఊෝబ௘
ష ೟೐మംෝభ ೟೐రംෝభల)]

(13)

ଵ௎ߛ = ଵෝߛ + ఈ/ଶඨݖ ଵ
[(ିమౣ౛

ംෝభమ ାଷ∑ ೟೔ംෝభర
೘೐೔సభ ାଷఊෝబ௘ష

೟೐మమ ംෝభ ೟೐మംෝభరାఊෝబ௘
ష ೟೐మംෝభ ೟೐రംෝభల)]

(14)

Where, zα/2 is the [100(1+α)/2]th standard normal percentile.

Substituting the tabulated values of Zα/2, 95% confidence intervals (ߛ෤0L, ߛ෤0U ) and (ߛ෤1L,ߛ෤1U ) can be 
obtained.
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4. Results and Discussion

Here, two sided interval confidence interval at 95% confidence level using maximum likelihood 
estimation are obtained for the parameter 0ߛ and 1ߛ. A sample size me was generated up to execution 
time te and it was repeated 1000 times from the Rayleigh distribution by considering different values 
of 0ߛ and 1ߛ to study the performance of proposed confidence interval. 95% confidence intervals have
been obtained by using Monte Carlo simulation technique. The values of average length and coverage 
probability have been obtained by assuming execution time =)௘ݐ 5,6,7,8), and parametersߛ଴(=10(1)14), andߛଵ(= 0.75(0.25)1.75). Average length and coverage probability obtained for confidence 
interval has been summarized in the tables 1 to 8.

Tables 1 to 4 summarize average length and coverage probability for parameter γ0.From these 
tables, it is seen that as the value of ߛ଴increases, average length calculated for parameter ߛ଴decreases 
and as value of ߛଵincreases,average length also increases. As the value ofߛ଴increases coverage 
probability also decreases.  And coverage probability increases as ߛଵincreases. It was also found that 
as execution time increases average length also increases and coverage probability also increase.

From the tables 5 to 8 it is noticed that the average length calculated for parameter ߛଵ increases 
as the value of scale parameter γ0 and shape parameterߛଵincrease. Coverage probability for ߛଵ
parameter is increasing as value of ߛ଴ increasing and coverage probability increases slightly as ߛଵ
increases.  It can also be observed that varying execution time, average length and coverage 
probability increases.

Table 1: Average length and coverage probability of 95% Confidence interval of ොெ଴ߛ calculated for different values of the 
parameters ߛ଴ ଵ= (0.75:0.25:1.75) and te= 5ߛ,(10:1:14) =

*The values in the parenthesis is coverage probability.

1ࢽ0ࢽ 10 11 12 13 14

0.75 8.58030 
(0.994)

7.80447 
(0.993)

6.94918 
(0.992)

6.61624 
(0.991)

6.36012
(0.991)

1 8.58031 
(0.994)

8.01258 
(0.993)

7.06641 
(0.992)

6.92884 
(0.992)

6.36018 
(0.991)

1.25 8.67284 
(0.994)

8.19769 
(0.993)

7.19420 
(0.992)

7.30324 
(0.992)

6.53328 
(0.991)

1.50 8.67286 
(0.994)

8.38281 
(0.993)

7.27498 
(0.992)

7.58629 
(0.992)

6.73742 
(0.991)

1.75
8.76538 
(0.995)

8.39524 
(0.994)

7.60509 
(0.993)

7.71259 
(0.993)

6.79844 
(0.991)
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Table 2: Average length and coverage probability of 95% Confidence interval of ොெ଴ߛ calculated for different values of the 
parameters ߛ଴ ଵ= (0.75:0.25:1.75) and te= 6ߛ,(10:1:14) =

*The values in the parenthesis is coverage probability.

Table 3: Average length and coverage probability of 95% Confidence interval of ොெ଴ߛ calculated for different values of the 
parameters ߛ଴ ଵ= (0.75:0.25:1.75) and te= 7ߛ,(10:1:14) =

*The values in the parenthesis is coverage probability.

1ࢽ0ࢽ 10 11 12 13 14

0.75 8.58030 
(0.994)

8.083131 
(0.993)

7.55347 
(0.993)

7.17032 
(0.992)

6.38972 
(0.991)

1
8.72548 
(0.994)

8.382828 
(0.993)

7.59294 
(0.993)

7.28211 
(0.992)

6.77412 
(0.991)

1.25 8.76538 
(0.995)

8.395234 
(0.994)

7.68555 
(0.993)

7.28413 
(0.992)

6.93309 
(0.0.992)

1.50 8.78338 
(0.995)

8.395235 
(0.994)

7.89537 
(0.993)

7.36196 
(0.992)

6.95633 
(0.992)

1.75
8.86543 
(0.995)

8.487783 
(0.994)

8.092692 
(0.993)

7.56139 
(0.993)

7.30408 
(0.992)

1ࢽ0ࢽ 10 11 12 13 14

0.75 8.65738 
(0.994)

8.48777 
(0.994)

8.21017 
(0.993)

7.39136 
(0.993)

7.26634 
(0.992)

1 8.68386 
(0.994)

8.55324 
(0.994)

8.39537 
(0.993)

8.10580 
(0.993)

7.48448 
(0.992)

1.25 8.72529 
(0.994)

8.60538 
(0.994)

8.47527 
(0.994)

8.19886 
(0.993)

7.48785 
(0.992)

1.50 8.74578 
(0.994)

8.65581 
(0.994)

8.48778 
(0.994)

8.28175 
(0.993)

7.51383 
(0.992)

1.75
8.76538 
(0.995)

8.70539 
(0.994)

8.70251 
(0.994)

8.29022 
(0.993)

7.81726 
(0.993)
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Table 4: Average length and coverage probability of 95% Confidence interval of ොெ଴ߛ calculated for different values of the 
parameters ߛ଴ ଵ= (0.75:0.25:1.75) and te= 8ߛ,(10:1:14) =

*The values in the parenthesis is coverage probability.

Table 5: Average length and coverage probability of 95% Confidence interval of ොெଵߛ calculated for different values of the 
parameters ߛ଴ ଵ= (0.75:0.25:1.75) and te=5ߛ,(10:1:14) =

*The values in the parenthesis is coverage probability.

1ࢽ0ࢽ
10 11 12 13 14

0.75 8.75526 
(0.995)

8.72563 
(0.994)

8.48777 
(0.993)

8.37329 
(0.993)

7.70533 
(0.992)

1
8.76530 
(0.995)

8.72443 
(0.994)

8.56786 
(0.993)

8.38274
(0.993)

7.79001 
(0.992)

1.25
8.77386 
(0.995)

8.73284 
(0.994)

8.67284 
(0.993)

8.38875 
(0.993)

7.79140 
(0.992)

1.50 8.78628 
(0.995)

8.76645 
(0.995)

8.73713 
(0.993)

8.58031 
(0.993)

7.89511 
(0.992)

1.75 8.79404 
(0.996)

8.76852 
(0.995)

8.74653 
(0.993)

8.58157 
(0.993)

8.080868 
(0.993)

૚ࢽ૙ࢽ 10 11 12 13 14

0.75 0.452752 
(0.992)

0.865715 
(0.992)

1.027517 
(0.993)

1.23690 
(0.994)

1.61596 
(0.994)

1
0.456343 
(0.992)

0.866659 
(0.992)

1.246347 
(0.994)

1.59739 
(0.994)

1.689033 
(0.994)

1.25
0.558101 
(0.992)

1.002341 
(0.992)

1.319541 
(0.994)

1.796597 
(0.994)

1.705186 
(0.994)

1.50 0.57393 
(0.992)

1.02732 
(0.993)

1.419113 
(0.994)

1.923769 
(0.994)

1.927146 
(0.994)

1.75 0.606502 
(0.992)

1.34733 
(0.993)

1.426714 
(0.994)

1.991414 
(0.994)

2.031833 
(0.995)
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Table 6: Average length and coverage probability of 95% Confidence interval of ොெଵߛ calculated for different values of the 
parameters ߛ଴ ଵ= (0.75:0.25:1.75) and te=6ߛ,(10:1:14) =

*The values in the parenthesis is coverage probability.

Table 7: Average length and coverage probability of 95% Confidence interval of ොெଵߛ calculated for different values of the 
parameters ߛ଴ ଵ= (0.75:0.25:1.75) and te=7ߛ,(10:1:14) =

*The values in the parenthesis is coverage probability.

૚ࢽ૙ࢽ 10 11 12 13 14

0.75 0.45221
(0.992)

0.77637
(0.993)

0.85234
(0.993)

1.02542
(0.993)

1.19246
(0.994)

1
0.46395  
(0.992)

0.77946  
(0.993)

1.06090 
(0.993)

1.22735  
(0.994)

1.59603 
(0.994)

1.25
0.53536 
(0.992)

0.92815  
(0.993)

1.07249 
(0.993)

1.32042 
(0.994)

1.71065 
(0.994)

1.50 0.61473  
(0.992)

1.03821  
(0.993)

1.44207 
(0.994)

1.46521  
(0.994)

1.97013 
(0.994)

1.75 0.72554
(0.993)

1.36680  
(0.994)

1.47128 
(0.994)

1.62992 
(0.994)

2.22514 
(0.995)

૚ࢽ૙ࢽ 10 11 12 13 14

0.75
0.49438 
(0.992)

0.83019 
(0.992)

1.02628 
(0.993)

1.50549 
(0.994)

2.09446 
(0.994)

1 0.49828 
(0.992)

1.02850
(0.993)

1.19715 
(0.993)

1.94524 
(0.994)

2.45315
(0.994)

1.25 0.59144 
(0.992)

1.10866 
(0.993)

1.67258 
(0.993)

2.09082 
(0.994)

2.54534 
(0.994)

1.50 0.59262 
(0.992)

1.13891 
(0.993)

1.70941 
(0.993)

2.16158 
(0.994)

2.83801 
(0.994)

1.75 0.63329 
(0.992)

1.16842 
(0.993)

1.88625 
(0.993)

3.37754 
(0.994)

3.46204 
(0.994)
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Table 8: Average length and coverage probability of 95% Confidence interval of ොெଵߛ calculated for different values of the 
parameters ߛ଴ ଵ= (0.75:0.25:1.75) and te=8ߛ,(10:1:14) =

*The values in the parenthesis is coverage probability.

5. Conclusion

In this research paper, confidence intervals are proposed for the parameters of Poisson type 
Rayleigh class model. For the proposed model confidence intervals, average length and coverage 
probability is calculated with the help of simulated data. From the above discussion it is observed 
that confidence interval for the parameters ߛ଴and ߛଵ gives higher coverage probability for particular 
values of both the parameters for fixed execution time. It is concluded that confidence interval can be 
preferred for certain values of parameters for fixed execution time.
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