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ESTIMATION OF DIFFERENT ENTROPIES OF INVERSE RAYLEIGH DISTRIBUTION

UNDER MULTIPLE CENSORED DATA........ooenteeeteteteteteeee st sne st saesne e e s

Hemani Sharma, Parmil Kumar

The inverse Rayleigh distribution finds widespread applications within life testing and reliability research.
Particularly, it proves invaluable in scenarios involving multiple censored data points. In this context, the Renyi,
Havrda, Charvat, and Tsallis entropies of the inverse Rayleigh distribution are efficiently calculated. The
maximum likelihood approach is used to get the estimators, as well as the approximate confidence interval. The
mean squared errors, approximate confidence interval, and their related average length are computed. To
illuminate the behavior of estimates across varying sample sizes, a comprehensive simulation study is conducted.
The outcomes of the simulation study consistently reveal a downward trend in mean squared errors and average
lengths as the sample size increases. Additionally, an interesting finding emerges as the censoring level
diminishes. The entropy estimators progressively converge towards their true values. For practical
demonstration, the effectiveness of the approach is showcased through the analysis of two real-world datasets.
These applications underscore the real-world relevance of the methodology, further validating its utility in
addressing complex scenarios involving censored data and inverse Rayleigh distributions.

A LITERATURE SURVEY ON QUEUEING MODEL WITH WORKING VACATION. ..............

Divya K., Indhira K.

In 2002, the Working Vacation (WV) queues were implemented as an extension of standard queueing models
with vacations. During the vacation period in WV queues, the server provides service at a slower pace as opposed
to the typical busy period.The objective of this survey is to provide a concise overview of the latest scholarly
investigations on queueing models for WVs. The concept of a queue with WV has been implemented across
various domains, encompassing computer systems, communication networks, production management,
computer communication, manufacturing, and inventory systems. Additionally, it has been applied to network
service, web service, file transfer service, and mail service.

BAYESIAN ESTIMATION OF TOPP-LEONE LINDLEY (TLL) DISTRIBUTION PARAMETERS
UNDER DIFFERENT LOSS FUNCTIONS USING LINDLEY APPROXIMATION ...........ccccceueee.

Nzei C. Lawrence, Adegoke M. Taiwo, Ekhosuehi N., Mbegbu I. Julian

In this study, we present the Bayesian estimates of the unknown parameters of the Topp-Leone Lindley
distribution using the maximum likelihood and Bayesian methods. In this study, the Bayes theorem was adopted
for obtaining the posterior distribution of the shape parameter and scale parameter of the Topp-Leone Lindley
distribution assuming the Jeffreys’ (non-informative) prior for the shape parameter and the Gamma (conjugate)
prior for the scale parameter under three different loss functions namely: Square Error Loss Function, Linear
Exponential Loss Function and Generalized Entropy Loss Function. The posterior distribution derived for both
parameters are not solvable analytically, it requires a numerical approximation techniques to obtain the solution.
The Lindley approximation techniques was adopted to obtain the parameters of interest. The loss function were
used to derive the estimates of both parameters with an assumption that the both parameters are unknown and
independent. To ascertain the accuracy of these estimators, the proposed Bayesian estimators under different loss
functions are compared with the corresponding maximum likelihood estimator using a Monte Carlo simulation
on the performance of these estimators according to the mean square error and BIAS based on simulated samples

7



Table of Contents

RT&A, No 1 (77)
Volume 19, March 2024

simulated from the Topp-Leone Lindley distribution. It was also observed for any fixed value of the parameters,
as sample size increases, the mean square errors of the Bayesian Estimates and maximum likelihood estimates
decrease. Also, the maximum likelihood estimates and Bayesian estimates converge to the same value as the
sample gets larger except for Generalized Entropy Loss Function.

SINE-WEIBULL DISTRIBUTION: MATHEMATICAL PROPERTIES

AND APPLICATION TO REAL DATASETS ...ttt sne e eeneene

Muhammad Umar Faruk, Alhaji Modu Isa, Aishatu Kaigama

New parameters can be added to expand families of distribution for greater flexibility or to construct covariate
models in several ways. In this study, a trigonometric-type distribution called Sine-Weibull distribution was
developed by adopting the Weibull distribution as the baseline distribution and Sine-G Family as the generator
to generate a flexible probability distribution without the need for extra parameters. The moment, moment
generating function, entropy, and order statistics are some of the mathematical aspects of this distribution that
were derived. The Maximum Likelihood approach was used to estimate the new distribution’s parameters. Using
actual datasets, the Sine-Weibull distribution’s applicability was demonstrated.

RECENT DEVELOPMENTS IN THE COMPUTATION OF THE ROCOF OF MULTI-STATE
SYSTEMS AND ITS APPLICATIONS ...ttt ettt ettt sae e

Guglielmo D’ Amico, Fulvio Gismondi

This paper reviews several theoretical works on the computation of the Rate of Occurrence of Failure (ROCOF)
for general multi-state random systems, focusing on recent generalizations. The discussion begins by defining
the ROCOF for a Markov process and discussing the main results achieved in the literature, then moves towards
the richer framework represented by semi-Markov systems. The paper discusses complications that arise when
extending the ROCOF to higher orders so that a measure of the association of failures in time can be obtained.
The work then analyzes possible modifications in terms of a conditional version of the ROCOF, which is of special
interest in applications. The findings are illustrated by a numerical example from reliability, and the broad
applicability is demonstrated by a discussion of different applications in other domains.

STRIP-PLOT ANALYSIS FOR THE CONSTRUCTION

OF COMPLETE TRIPARTITE AND CUBIC GRAPHS.........cocioiiieiiiiietcteeeeeeeeneeeeeeee e

V. Saranya, S. Kavitha

The Strip-Plot Design (SPD) is plays an important role in the complete block designs and also using the
agricultural, medical and industry fields. SPD is best suited for a two-factor experiment that has more treatments
than can be accommodated by a complete block design. In a SPD, one factor is assigned to the horizontal strip
plot, one factor is assigned to the vertical — strip plot and one factor is interaction plot. Also, few experimental
materials may be rare while other test items may be available in altering doses of other therapeutic factors, which
may be expensive or time-consuming. One of the main features of SPD involves three types of experimental
errors: row - strip plot error, coloum —strip plot error and interaction plot error. Experimenting across processing
steps is essential for studying the interaction of factors where certain factors come from one step and others arrive
from the other. The strip-plot design is a very efficient design for investigating multiple-step processes in terms
of both resources and time. Strip-plot designs are economical when the factors are hard to change and the process
under research has three discrete stages. When we want to study interactions between factors where some factors
are from one step and other factors from another step, it is important to conduct experiments across processing
steps. The approach is flexible because it can handle experimental design problems involving factors acting at
different levels, unlike the existing method. Graphs are widely used representations of both natural and human-
made structures. Graph theory can be used to investigate "things that are connected to other things. “Fits nearly
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everywhere. Some tough problems become easier to solve when they are represented graphically. We reviewed the
agricultural field yield of the strip-plot design and early work on the design of industrial strip-plot design in this
paper. We have also described the model of strip-plot design. We, therefore, advise experimenters to ensure that
their strip-plot designs contain a sufficient number of rows and columns so that valid statistical inference is
possible. A bipartite graph is one in which the edges can be divided into two sets without going into sets. A
complete bipartite graph is a bipartite graph that is completed. The complete tripartite graph in which the edges
can be divided into three set without going into sets. The cubic graph is a graph in which all vertices have degree
three. This paper describes the construction and Statistical Analysis of SPD using some particular types of graphs
is discussed through numerical examples.

A HYBRID APPROACH TO SINGLE ACCEPTANCE SAMPLING PLANS FOR LIFETIMES

MODELED WITH THE EXPONENTIAL RAYLEIGH DISTRIBUTION .......ccccocvininininiienicnienne 100

Nandhini M, Radhika A, Jeslin J, Manigandan P

This article explores into the examination of a novel compound distribution termed the ”Exponential Rayleigh
distribution” in the context of truncated life testing within a sampling plan. It introduces a hybrid single
acceptance sampling plan tailored for truncated life testing scenarios where the item's lifespan adheres to the
Exponential Rayleigh distribution. One of the primary segments within the domain of product quality control is
referred to as “sampling inspection by variables”. This category encompasses procedures that involve the selection
of multiple individual units based on measurements taken from a sample to assess a specific quality attribute
under scrutiny. These plans, used to assess whether to accept or reject a submitted batch of items based on their
observed lifetimes, are commonly known as reliability test plans. The article also outlines the development of a
test plan to determine when to conclude the experiment given specific parameters like sample size, producer’s
risk, consumer’s risk, and termination criteria. Sampling inspection, or reliability sampling, plays a pivotal role
in maintaining product quality. It involves subjecting items to testing, collecting data on their lifespans, and
making acceptance or rejection decisions based on the test results. When assessing an item’s quality primarily
based on its lifespan, which can be suitably described using a continuous probability distribution; such a plan is
termed a "life test sampling plan.” This article explores the application of the Exponential Rayleigh distribution
within the realm of reliability sampling plans, emphasizing the utilization of hybrid censoring for life checks and
median lifetime evaluations. This approach is leveraged to formulate reliability single sampling plans applicable
to the Exponential Rayleigh distribution. The article utilizes binomial probabilities to compute the parameters of
these sampling plans, aiming to strike a balance between protecting the interests of both the producer and the
consumer while minimizing producer risks. The study involves calculating the specified median lifetime and
determining design parameters like sample size and acceptance thresholds to meet predefined quality standards.
The flexibility of the Exponential Rayleigh distribution in analyzing various types of lifetime data is highlighted,
owing to its scale and shape parameters. To illustrate the concepts related to sampling strategies, a numerical
example is provided in the sampling strategies section of the article.

CHARACTERIZATION OF SOME CONTINUOUS DISTRIBUTIONS BY CONDITIONAL

VARIANCE OF RECORD VALUES ......ccoooittrtenesteeetetetetete ettt st see s v s saesnenene 108

Zaki Anwar, Mohd Faizan, Zakir Ali

Characterization of a probability distribution gives a unique property enjoyed by that distribution. Various
approaches are available in the literature to characterize distributions through record values. Many researchers
have characterized Exponential, Pareto, and Power function distributions using moments, conditional
expectation, and some other characteristics of record values. In this paper, we have characterized these three
distributions through conditional variance of adjacent record values. The results have been verified using
numerical computation.



Table of Contents

RT&A, No 1 (77)
Volume 19, March 2024

SOME INFERENTIAL ASPECTS ON THREE-STATION TANDEM QUEUE ................c.c..c.......

Ambily Jose, Agnes Jerome, M. R. Irshad

Considered is a three-station tandem queue with service times at stations 1, 2, and 3 are exponentially distributed
with customers arriving according to the Poisson process at station 1. Given that the stationary distribution is
the product of three independent geometric distributions with the intensity parameters, maximum likelihood
estimators and Bayes estimators of the intensity parameters based on the number of customers present at different
time periods are obtained. Furthermore, the minimal posterior risk and minimum Bayes risk of the estimators are
computed. Also, a simulation study is conducted to evaluate the performance of the estimators obtained.

RELIABILITY MODELING OF A BUTTER CHURNER AND

CONTINUOUS BUTTER MAKING PRODUCTION SYSTEM........cccceiiniiiiniinciiciicne

Upasana Sharma, Drishti

In the dairy plant, an investigation into the machine that makes butter was subjected to a reliability study in
relation to the seasonal demand. In the process of expanding the butter churner into a machine that can make
butter continuously, a more reliable operational model was devised. Both the models and the data acquired with
MATLAB have been subjected to availability and reliability testing and analysis. In addition, the graphical
analysis was carried out with the help of Code Blocks and Excel. A comparison of the two models was then covered
as the final topic. It was discovered that (a) the extended model was superior to the current model, (b) the failure
rate of the existing line increased, which implies that a new machine needs to be added to the line to share the
load, which results in improved production, and (c) the failure rate of the extended model was lower than the
failure rate of the existing model. (c) in order to maximise profits while simultaneously minimising losses The
effectiveness of the system ought to be enhanced by performing routine maintenance during both the summer and
the winter.

STREAMLINING PRODUCT DEPLOYMENT: ENHANCING EFFICIENCY THROUGH

KITTING PROQCESSES ...ttt sttt sve st et ss e et a et ettt snesaeen

G. Ayyappan, S. Sankeetha

Considering a single server with two queues that is prone to unreliability. The server offers a kitting process and
performs necessary checks and rectifications when required. The arrival of items follows a Markovian arrival
process, while the service is distributed based on a phase type distribution. The incoming products may exhibit
issues such as poor quality or defects. If either of the queues is empty, the server is unable to provide the requested
service and remains inactive. Furthermore, if all queues are empty, the server goes into a vacation mode.
Breakdowns, repairs, instances of customers leaving without service (reneging), and vacation periods are all
modeled using an exponential distribution. To gain insights into the performance of the queueing model, various
performance metrics are analyzed and represented through 2D and 3D graphs.

ON SOME PROPERTIES AND APPLICATIONS OF THE TYPE Il HALF -LOGISTIC

EXPONENTIATED FRECHET DISTRIBUTION ......ccoooiiiiiiiiininieeicteieeeteteeeesetereeesaeseesvennene

Olalekan Akanji Bello, Sani Ibrahim Doguwa, Abukakar Yahaya, Haruna Mohammed Jibril

As the dimensions of available data for analysis continues to grow rapidly, it becomes imperative to develop new
probability distributions that can more accurately represent various phenomena. In this research paper, we
introduce a novel continuous probability distribution known as the Type II Half-Logistic Exponentiated Frechet
Distribution, characterized by four positive parameters. This distribution expands upon the traditional Frechet
distribution by introducing two additional parameters. We derive a significant density representation for this
distribution. Furthermore, we delve into several statistical and mathematical properties associated with the Type
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II Half-Logistic Exponentiated Frechet distribution. This includes explicit expressions for key metrics such as the
quantile function, probability weighted moments, moments, moments generating function, reliability function,
hazard function, and order statistics. To estimate the model parameters effectively, we employ a maximum
likelihood estimation technique and present the results of a simulation study. Our research underscores the
superiority of this new distribution by applying it to two real-world datasets. Notably, the findings demonstrate
that the Type II Half-Logistic Exponentiated Frechet distribution outperforms other considered distributions in
fitting the two real datasets.

AVAILABILITY OPTIMIZATION OF A PAINT MANUFACTURING PLANT USING GREY
WOLF OPTIMIZATION: A METAHEURISTIC APPROACH .......cccccoiiiiiiiiiiiiiicccicne 175

Ashish Kumar, Vijay Singh Maan, Monika Saini

The primary objective of present research work is to evaluate and improve the performance and availability of the
paint manufacturing plant. Paint manufacturing plant consists of five subsystem naming mixer, grinder,
thinner, labelling, and filling unit. Among them labelling and filling unit have two machines in parallel
configuration and both are working simultaneously. All failure and repair rates are distributed exponentially.
Markov birth-death process is utilized to model the dynamic behavior of the system and its sub-components,
enabling a quantitative analysis of system availability. Grey wolf optimization (GWO), a swarm-based
optimization technique is used to optimize the availability of the system. Moreover, the research conducts a
thorough comparison between the outcomes derived from the Markov birth-death process and the GWO
technique. By harnessing the power of GWO, the study aims to further enhance the plant’s overall performance.

DESIGNING AND EVALUATION OF SKIP-LOT SAMPLING PLAN OF TYPE SkSP-T WITH
SINGLE SAMPLING PLAN AS REFERENCE PLAN UNDER THE CONDITION OF
INTERVENED POISSON DISTRIBUTION ......cocooiiiiiniiiiitcteieteteteeeesiteeseseessesressesseseseseeneeneenees 183

S. Suganya, K. Pradeepa Veerakumari

This paper describes the scheming technique of new system of skip lot sampling plan of type SkSP-T with Single
Sampling Plan as Reference plan under the condition of Intervened Poisson Distribution. The designing
methodology includes the evaluation of Acceptable Quality Level, Limiting Quality Level, Operating Ratio, and
Operating Characteristic curves. Tables are simulated by changing various parametric values of SkSP-T, SSP
and IPD and operating characteristic curves are drawn by using R language.

EJAZ DISTRIBUTION A NEW TWO PARAMETRIC DISTRIBUTION FOR MODELLING
DA T A ettt ettt sttt st s a bbbt bbbt et ettt a e st ae e bes 191

Aijaz Ahmad, M. A. Lone, Aafaq. A. Rather

This paper introduces a novel probability distribution known as the Ejaz distribution (ED), which is characterized
by two parameters. The study offers a comprehensive analysis of this distribution, including an examination of
key properties such as moments, moment-generating functions, order statistics, and reliability functions.
Additionally, the paper explores the graphical representation of essential functions like the probability density
function, cumulative distribution function, and hazard rate function, enhancing our visual understanding of
their behavior. The distribution’s parameters are estimated using the widely accepted method of maximum
likelihood estimation. Through real-world examples, the paper highlights the practical applicability of the Ejaz
distribution, demonstrating its performance and relevance in diverse scenarios.
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RELIABILITY INVESTIGATION OF THE SPIRULINA PRODUCTION PLANT USING

GUMBEL-HOUGAARD FAMILY COPULA ...ttt ettt st esessesaens

Priya Chaudhary, Shikha Bansal

This study examines the consistency metrics used to evaluate the durability of a spirulina production plant,
which consists of seven subsystems: cultivation pond, paddlewheel, filter unit, washing unit, spray dryer, ribbon
blender, and packaging. By studying the spirulina firm, we can repair it by discovering future failures. We can
increase spirulina production so that untimely failure can be prevented and production can be increased. There
are two types of system failures: partial and total. While a full failure renders the system incapable of operating,
a partial failure is thought to degrade the system. In contrast, repair rates follow two different types of
distributions: an ordinary and an exponential distribution. The system in a partially failed or degraded condition
is thought to be repaired using general time distribution. In contrast, fully failed systems are thought to be fixed
using the Gumbel-Hougaard family copula distribution. Using the supplementary variable approach, the system
is examined. A Chapmen-Kolmogorov differential equation is created and solved by applying the Gumbel-
Haugaard family Copula approach, employing the schematic representation of the system'’s state. supplementary
variable approaches are applied to develop and resolve the differential equations related to transition diagrams,
which are significant to this research. Reliability, availability, profitability, and MTTF are the critical
performance metrics for the spirulina production plant. Moreover, sensitivity analysis is carried out for MTTF.

EFFICIENT FRAMEWORK OF SECURITY FOR INTERNET OF THINGS ..........c.ccccoeiniinnns

Dr. Mihir Mehta, Dr. Kajal Patel, Dr. Komal Anadkat

IoT security represents a highly compelling subject of research at present. The absence of a viable security solution
for IoT applications could render them ineffective across various domains such as healthcare, smart homes,
inventory management, smart agriculture, and more. Within the IoT architecture, security services like
Confidentiality, Integrity, and Authentication play pivotal roles. In our research, we have concentrated on the
Authentication service, which is fundamental for distinguishing users and devices unequivocally within a
network. Authentication serves as the initial and crucial step in establishing secure communications among
diverse IoT devices and users within the network. A compromised Authentication service could open the door for
unauthorized users or devices to infiltrate the network, potentially leading to harmful activities like Masquerade
attacks, Man-in-the-Middle (MITM) attacks, and Replay attacks. Currently, Authentication stands as a widely
adopted and essential method for granting access to devices within IoT networks. Our contribution involves the
development of a Multi-factor IoT Authentication Model, leveraging two key parameters: Device Context
Information and Dynamic Key-based authentication. Our proposed approach begins by verifying the origin of
information. If the origin is deemed valid, our model proceeds to validate the identity of the device. In the event
of an intruder attempting to manipulate the device’s origin from its predefined context to an alternative location,
our system can swiftly detect this deviation, thereby enabling the rejection of communication requests from
compromised devices. Following the verification of context information, we initiate mutual authentication
between the IoT device and the server, employing the Challenge-response model. As a result of this second step,
individual Session keys are generated at both the device and server sides, facilitating secure communication
within a specific time window.

M/M/ec QUEUE WITH IMPATIENT CUSTOMERS ......ccceviririiririeieirininteeeeeieieeeeeeeeeneaeaeteaesesesesennes

Gulab Singh Bura

In this paper we proposed an M/M/e queue with impatient customers. Generally, customers are impatient due
to long waits in queue but in this work, we consider the case when customers are not impatient due to long waits
but they are impatient due to the poor quality of service. We model and analyze this queueing system by using
continued fraction technique and obtained the probability mass function of the customers present in the system
in time dependent form. Also, we calculate the average queue size. Finally, some graphical representations are
given to illustrate the model.
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REGULARITY OF ALTERNATE QUADRA SUBMERGING POLAR FUZZY GRAPH AND ITS
APPLICATION ...ttt ettt sttt ettt ettt ettt s ae s bbb sb e b e be b et enbennentententene 238

Anthoni Amali A, J. Jesintha Rosline

Fuzzy soft sets and graphs are invented to solve uncertain problems in the field of Applied mathematics. It is a
general mathematical tool introduced with many parameters to model the vagueness of the changing world. The
insight learning of the AQSP fuzzy soft graphs paved the way to discover the extension of the AQSP fuzzy soft
graph. In this research article we introduce the Regularity of AQSP fuzzy soft graph with definitions, theorems,
properties, and real-life applications. The aim of this invention is mainly to obtain the parametric values in
submerging level of confidence [-0.5, 0.5] [-1,1]. The scope of this new AQSP fuzzy soft graph is to solve the
imprecise problems in the field of Mathematical Engineering, Bio Mathematics, Economics, Medical Science,
Artificial Intelligence and Machine learning. The regularity of AQSP fuzzy soft graph is combined with the
concepts of regular, totally reqular, and perfectly regular. The application of this new graph is developed for
governing of the women safety vehicle network in different spots with membership submerging values. The future
extension can be applied in Approximate reasoning, Mathematical psychology, Decision making for medical
diagnosis.

STATISTICAL ANALYSIS OF SPLIT-PLOT DESIGN USING SPECIAL TYPE OF GRAPHS ..... 254

V. Saranya, S. Kavitha, M. Pachamuthu, S. Vijayan

When all experimental runs cannot be done under homogeneous conditions, blocking can be utilized to increase
the power for testing treatment effects. In many real-life environments, there is at least one factor that is hard to
change, leading to a split-plot structure. This paper demonstrates how to generate certain graphs using main-
plot and sub-plot analyses, as well as providing a catalog. As a result, during situations where the candidate set
is too huge to be tractable, the design of split-plot experiments becomes computationally feasible. The designs
were considered ideal because they were capable and efficient in estimating the fixed effects of the suitable
statistical model given the split-plot design structure. The Split-Plot Design (SPD) is the complete block design
which plays an important role in the fields of agriculture, medicine, and industries. This SPD is specifically
suited for a two-factor experiment that has more treatments than can be accommodated by a complete block design.
In an SPD, one factor is assigned to the main- plot. The assigned first factor is called the main - plot factor. The
main- plot is then divided into subplots and the second factor is called the sub - plot factor. SPD is most used for
(i) few experimental materials may be rare while the other experimental materials may be available in large
quantity, (ii) the levels of one or more treatment factor or easy to change and the alteration of levels of other
treatment factors are costly or time-consuming. Given the extensive study done in graph theory, it has developed
to be a very broad subject in mathematics. Graphs are important because they are a visual way of expressing
information. A graph shows data that is equivalent to many words. A graph can convey information that is
difficult to express in words. A bipartite graph is a type of graph in which the entire graph may be divided into
two bipartite sets, with edges connecting vertices in one set to vertices in the other. Vertex coloring is the
procedure of assigning labels or colors to each vertex in a graph. The data set was also manually analyzed to
validate the software-analyzed outcomes. R gave the same results as the manual analysis, showing that they were
both correct. R is mainly command-based. The proposed approach is demonstrated using agricultural and
industrial examples.

INFERENCE ON THE TIME-DEPENDENT STRESS-STRENGTH RELIABILITY MODELS
BASED ON FINITE MIXTURE MODELS .........ccooiiinteneneenestetetetetetet ettt ene e s se e 268

Krishnendu K., Annie Sabitha Paul, Drisya M., Joby K. Jose

Time-dependent stress-strength reliability engages with the chance of survival for systems with dynamic strength
and/or dynamic stress. When a system is allowed to run continuously, each run will cause a change in the
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strength of the system. The repeated occurrence of stress on the system over each run will affect the survival
capacity of the system. In this paper, we consider the distribution of time taken for the completion of a run by the
system follows gamma and the stress or strength of the system follows a finite mixture of lifetime probability
models. Here we consider two cases in which the first case deals with stress and strength following a finite mixture
of Weibull distribution and in the second case the stress and strength is assumed to follow a finite mixture of the
power-transformed half-logistic distribution. Moreover, the strength of the system is assumed to decrease by a
constant and the stress acting on the system is assumed to increase by a constant over each run. We obtained the
expression of the stress-strength reliability function and explained the ML and Bayesian methods for the
estimation of the reliability at various time points.

DUAL EXPONENTIAL RATIO ESTIMATOR IN PRESENCE OF NON-RESPONSE.................

Rafia Jan, T. R. Jan and Faizan Danish

The manuscript under consideration delves into a comprehensive exploration of the dual exponential ratio
estimator, particularly in the context of non-response scenarios. In the following discourse, we will embark on an
intricate journey through this research, emphasizing the pivotal aspects and findings that unravel the significance
of this estimator in the realm of statistical estimation. The crux of this investigation revolves around evaluating
the Mean Squared Error (MSE) and the Predictive Relative Efficiency (PRE) of the dual exponential ratio
estimator. These two performance metrics serve as essential benchmarks for assessing the accuracy and
effectiveness of the estimator. Notably, they play a crucial role in determining the estimator’s suitability for
practical applications, especially in situations where non-response is prevalent. To begin our exploration, it is
imperative to understand the fundamental concept of the dual exponential ratio estimator. This estimator is a
statistical tool employed in situations where traditional estimators may falter due to non-response, a phenomenon
frequently encountered in surveys and data collection. It leverages a dual exponential model to address this
challenge, making it a valuable addition to the toolkit of statisticians and researchers. The manuscript embarks
on a rigorous theoretical analysis of the dual exponential ratio estimator’s MSE and PRE. Through a series of
mathematical derivations and proofs, the authors elucidate the underlying principles governing its performance.
This theoretical foundation is crucial, as it not only establishes a solid framework for evaluating the estimator but
also provides insights into its behavior under different conditions. However, theory alone can only take us so far.
To wvalidate the theoretical findings and assess the estimator’s practical utility, numerical experiments are
conducted. These experiments involve simulations and real-world data scenarios, allowing the authors to draw
comparisons between the dual exponential ratio estimator and traditional estimators. The numerical results serve
as a bridge between theory and application, offering empirical evidence of the estimator’s prowess. In essence,
this manuscript fills a critical gap in the field of statistical estimation by thoroughly investigating the dual
exponential ratio estimator’s performance in the presence of non-response. By juxtaposing its MSE and PRE
with those of traditional estimators, it provides valuable insights into the potential advantages of adopting this
novel approach. Moreover, the combination of rigorous theory and practical validation ensures that the findings
are both intellectually sound and operationally relevant. The dual exponential ratio estimator, as explored and
analyzed within these pages, emerges as a promising solution, backed by both theoretical rigor and empirical
support. This research contributes not only to the theoretical foundations of statistics but also to its real-world
applications, underscoring the estimator’s potential to enhance the accuracy and reliability of estimation in the
face of non-response complexities.

PROCESS CAPABILITY ANALYSIS FOR NON NORMAL DATA BASED ON BOX-COX

TRANSFORMATION THROUGH TESTS OF GOODNESS OF FIT ........cccccocconiniiiiiiiine,

J. Krishnan, R. Vijayaraghavan

Process capability analysis is an effective and efficient tool for quality assurance. When the distribution of the
underlying quality characteristics is not normal, modifications of the basic process capability indices are required.
Literature in process control provides avenues to resolve the issue of non-normality and data transformation is
one of the approaches frequently applied in practice. Primarily the Box — Cox transformation (BCT) is employed
to transform the non normal data into normal data which originally utilizes the method of maximum likelihood
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estimation (MLE) to find the single transformation parameter A. There are alternative methods to estimate the
optimal parametric value A using goodness of fit tests rather using MLE method. In order to bring improved
estimates, this paper makes a fresh attempt to estimate process capability analysis (PCA) using transformed data
through different goodness of fit tests. The simulation study uses variety of asymmetric behaviors from a Weibull
distribution generating a random sample of 100 data points to find the best goodness of fit test for better process
capability estimates that are compared to the standard of six sigma results for non-normal data. Final result
shows that Shapiro-Wilk’s (SW) and Artificial Covariate (AC) methods are performing well when compared to
the method of MLE. Minitab software and R programming language were utilized for data simulation and
analysis.

THE USE OF EXPERIMENTAL MODELLING IN THE PREDICTION OF PRODUCT
RELTABILITY .ottt ettt sttt sttt et ettt ettt et st bbb sb bbb et e s ennentententene

Alena Breznickd, Pavol Miku$

When designing new systems and components, it is very important to correctly determine the degree and ability
of the joint to withstand stress and load. Every new product that is intended for the market must meet the
requirements for high safety and reliability during the entire life cycle. The presented article deals with the
possibility of modelling the ability to withstand such a load, the principle of the interference method was used in
the experimental modelling. The interference theory of reliability is based on the analysis of regqularities and
properties of two random variables that characterize reliability. Among these elementary properties from the point
of view of reliability assessment, we can successfully use dependability and lifetime analysis. It originates from
the concept of "safe life”, which is deterministic, based on determining and respecting the values of reliability
factors. The described approach assumes that a malfunction or a faulty function occurs when the strength limit
of the object is exceeded, i.e., ability to withstand stress.

A STUDY ON PARTIALLY ACCELERATED LIFE TEST MODEL FOR GENERALIZED
INVERSE RAYLEIGH DISTRIBUTION UNDER ADAPTIVE TYPE-II PROGRESSIVE HYBRID

CENSORING ..ottt ettt ettt ettt sttt et st b et b st e b et e b et e st st eae st et st eatsbentsbentebentebentesensesens 320

Intekhab Alam, Trapty Agarwal, Awakash Mishra, Aanchal Gaba

Modeling and examination of lifetime phenomena are the main aspects of statistical work in a wide variety of
scientific and industrial areas. The area of lifetime information analysis has developed and extended quickly with
respect to methodology, theory, and fields of applications. The point and interval maximum-likelihood estimations
of generalized inverse Rayleigh distribution (GIRD) parameters and the acceleration factor are considered in this
work. The estimation procedure is carried out for a partially accelerated step-stress model under adaptive Type-
II progressive hybrid censored data. The biases and the mean square errors of the maximume-likelihood estimators
are computed to assess their performances in the occurrence of censoring developed in this study through a Monte
Carlo simulation study.

EFFECT OF CLASSICAL AND ROBUST REGRESSION ESTIMATORS IN THE CONTEXT OF

HIGHDIMENSIONAL DATA WITH MULTICOLLINEARITY AND OUTLIERS ...............ccc...... 335

Muthukrishnan R, Karthika Ramakrishnan

Regression methods are used for the estimation and prediction in various fields of statistical study. It is a
statistical method commonly used for determining the degree of relationship between a response and a number of
explanatory variables. These explanatory variables may correlate each other and lead to multicollinearity. More
than two predictor variables with high correlation show the existence of multicollinearity which results in the
estimator having a high variance. Ordinary Least Square estimation fails to give a better regression estimator,
when the model’s presumptions are not met. This paper explores the various methods which can tolerate the
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problems of multicollinearity and outliers. This study compares different types of regression estimators such as
Ordinary Least Square, Robust, Ridge, and Liu by computing various error values such as Mean Absolute Error,
Root Mean Square Error, Mean Absolute Percentage Error and R2 under real environment that has both
multicollinearity and outliers. To compare the fit of the aforementioned regression models, the Akaike Information
Criterion was also calculated. According to the error measures and AIC this study concludes that the Liu
regression estimator performs well when compared with the other estimation methods.

EXPONENTIATED WEIBULL DISTRIBUTION: BAYESIAN ESTIMATION USING

PROGRESSIVE TYPE I INTERVAL CENSORING. .......cccccoiiiiirtnteeneneeeeesesreresreeeee e

M. Kumar, K P Aswathi

A three-parameter distribution known as the Generalized Weibull (GW) or Exponentiated Weibull distribution
is studied in this work. We construct Baye’s estimators for the unknown parameters and present reliability
function using progressive type I interval censoring data. Two different loss functions, namely, squared error
loss and general entropy loss functions are applied to derive Baye’s estimators. It is observed that there is no
closed-form solution for Baye’s estimators as well as for MLE. Hence, Lindley’s approximation procedure is
applied to obtain Bayesian estimator of unknown parameters, and Newton Rapson method is employed to obtain
MLE’s numerically. The corresponding reliability function is derived. Monte Carlo simulation is used to obtain
MLE. Further, the performance of MLE and Bayes estimators are compared in terms of their respective MSE and
Relative errors. It is noted by numerical computation that MLE’s performs better than Bayes estimators. In
addition to this, Bayes estimators obtained using Squared error loss function and general entropy loss function
are compared. It is observed through numerical computation that general entropy loss function is better in terms
of MSE.

METHODS FOR ENSURING AND PROVING FUNCTIONAL SAFETY OF AUTOMATIC
TRAIN OPERATION SYSTEMS ...ttt sttt ettt ettt et ettt s e nes

L.B. Shubinsky, E.N. Rozenberg, H. Schébe

The paper examines the specificity of artificial intelligence-based automatic train operation systems. Justifying
the functional safety (FS) of such systems is quite difficult. The paper proposes a process for proving the functional
safety of intelligent systems. A hybrid control system for a shunting locomotive was developed and analysed. It
combines machine vision (MV), train protection devices and manual control by a driver. A model is presented
that allows examining the functional safety of a locomotive control system layer by layer, i.e., evaluating the time
to safety degradation depending on the component failure and subsequent requirement of bringing the locomotive
to a complete stop. This allows to improve the FS of the shunting locomotive control system with machine vision
from SIL 2 to SIL 3 and maintaining it during sufficiently long periods of time (over a quarter of the mean time
to system failure). The mean time of faultless operation of a locomotive control system until it has to be brought
to a complete stop for safety reasons can be increased three times. A general approach is proposed to design the
functional safety of automatic train operation systems. It is based on the division of the information processing
process into two subprocesses, i.e., internal intelligent information processing onboard the locomotive for the
purpose of decision-making regarding track vacancy and communication of initial visual information to the
operating driver for decision-making. The division of this process must be combined with redundant machine
vision facilities, reqular comparison of the outputs of the onboard and fixed machine vision facilities, redundant
comparison outputs, smoothing of the outputs in the process of locomotive movement.
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SENSITIVITY AND PROFITABILITY ANALYSIS

OF TWO-UNITS AMMONIA/UREA PLANT ..ottt ettt eeenes

Sara Salim A Oraimi, Syed Mohd Rizwan, Kajal Sachdeva

This paper presents a reliability modelling of a two-unit ammonia/urea plant. Real maintenance data of the
production plant have been used for this purpose. Four types of failure were noted: process, electrical, mechanical
and instrumental failures. Both ammonia/urea formation units work in parallel and do not fail simultaneously.
Various reliability indices of the plant, such as availability, busy period for repair, and expected number of repairs
for each type of failure, have been obtained. Markov processes and regenerative point techniques are used for
analysis. Profit analysis for the plant is also done, along with a graphical representation of various parameters.
Finally, sensitivity analysis is carried out to see the impact of varied parameters on the profit function of the
plant.

STUDIES ON A NEW MANPOWER MODEL WITH NONHOMOGENEOUS POISSON

RECRUITMENT, PROMOTION AND LEAVING PROCESSES..........ccccoccoiivnniiinnicicicienees

K. Suryanarayana Rao, K. Srinivasa Rao

For proper utilization of manpower in any organization manpower modeling is needed. This paper addresses the
two graded manpower model with non-stationary recruitment, promotion and leaving processes. Here it is
assumed that the recruitment process in the first grade follows a NHP process which is further assumed that the
promotion and leaving processes are also NHP processes. Using the difference-differential equations, the joint
p.g.f of the number of employees in the organization at any time ‘t’ is derived. The characteristics of the model
such as the average number of employees in each grade, the average waiting time of an employee in each grade,
the variance of the number of employees in each grade and the C.V of an employee in each grade are derived
explicitly. The sensitivity analysis of the model with respect to the changes in parameter is also studied through
numerical illustration. The comparative study between homogeneous Poisson recruitment and NHP recruitment
is also discussed. This model also improves some of the earlier models as particular cases.

THE ROLE OF RECORD VALUES IN STATISTICAL INFERENCE: A REVIEW ARTICLE

Mahmoud A. Selim Alsanea

The record values data have received the attention of researchers in statistics for over seven decades. Through
these decades the records have played a significant and widely utilized role for statistical inference in parameter
estimation, predicting future values, hypothesis tests, as well as stress-strength tests, and characterizing
distributions. In this paper, the types of record values, some distributional properties, and statistical inferences
of record values and their applications are reviewed. The purpose of this paper is to shed light on the role of record
values in statistical inference. Therefore, we will examine this issue from two perspectives, the first perspective
being estimation and the second perspective being prediction. These are through some of the most important
lifetime distributions are Exponential, Weibull, Gumbel, Geometric, Pareto, Generalized exponential, Rayleigh,
Lomax, and Nadarajah-Haghighi distributions. I hope that the findings of this paper will be useful for researchers
in various fields and lead to further enhancement of research in record values theory and its applications.

APPLICATION OF THE FUZZY-SET THEORY TO ASSESS THE KNOWLEDGE OF

ELECTRIC POWER INDUSTRY SPECIALISTS ....c.oooiiiiiirieneecteteteeeteeeeee et

V.Kh. Nasibov R.R. Alizade LY. Mastaliyev A.M. Ramazanli

In most cases, the assessment of the knowledge of electric power industry workers is carried out according to a
test scheme, where the correct answer is selected from the list of answers. All questions have the same difficulty
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and only the single correct answer gives a certain score. The article developed a universal model for assessing the
knowledge of electric power industry workers, where using the theory of fuzzy logic and fuzzy inference, both the
complexity of questions and the possibility of a partial correct answer are taken into account.

A CRITICAL LITERATURE REVIEW AND FUTURE PERSPECTIVE OF RAM APPROACHES
FOR COMPLEX SYSTEMS IN VARIOUS PROCESS INDUSTRIES .........cccocooiiniiiiiiniiinnn, 431

Mausoof Sheikh, Dr. P.C. Tewari

In the industrial systems there is a requirement that systems should work efficiently for long time. System
performance is an important aspect for failure free operation but in real practice complete failure free operation
of any production system is seldom possible. Detailed critical literature review for the past thirty-three years of
Reliability, Maintainability and Availability (RAM) approaches has been carried out which can help to improve
performance of Complex systems. Review of some papers provided the detailed information about past and current
scenario of RAM practices in research field and industries. Different RAM tools and techniques extracted from
the review may be helpful in qualitative and quantitative analysis of the complex systems. In this paper, author
tried to focus on some major aspects of RAM approaches.

EXACT AND CONDITIONAL BOUNDS FOR GENERALIZED CUMULATIVE ENTROPY ........ 440

Alexey V. Lebedev

The differential entropy is a natural analog of the Shannon entropy for discrete distributions in respect to
absolutely continuous distributions (with density). In modern studies, many other kinds of entropy have been
introduced and analyzed, including various cumulative entropies, which are based not on the density but on the
(cumulative) distribution function of random variable. Such characteristics can be used, for example, in computer
vision, reliability theory, risk analysis, etc. We consider some generalizations of cumulative entropy, for a wide
class of entropy generators. We use the methods of probability theory, calculus of variations and Cauchy-
Bunyakovsky-Schwarz inequality. In the class of centered and normalized random variables, exact and
conditional bounds are found as well as the distributions on which they are attained. By conditional bounds we
understand bounds for one generalized cumulative entropy given the value of another entropy (in the class of
random variables with zero mean and unit variance). This problem is analogous to the previously posed and
partly solved problem on conditional bounds for expectations of sample maxima when we know the expected
maximum of a sample of another size or expected maxima of two smaller samples.

SOME PROPERTIES OF TSALLIS ENTROPY BASED ON A DOUBLY TRUNCATED
(INTERVAL) RANDOM VARIABLE.........cooetittnetnetneteieteittei ettt tss et se st et s et sesenes 448

S. Jalayeria, G.R. Mohtashami Borzadarana, M. Khorashadizadehb

In this paper, we first study doubly truncated (interval) Tsallis entropy and suggest doubly truncated (interval)
cumulative residual Tsallis entropy (ICRT), which is an extension of cumulative residual Tsallis entropy (CRT)
and the dynamic CRT defined by the aid of Sati and Gupta and of Kumar, respectively. We investigate some
properties and characterization of this measure, such as its relation with doubly truncated Shannon entropy,
mean residual (past) life, and hazard rate (or reversed hazard rate). Also, the twin measure, doubly truncated
(interval) cumulative past Tsallis entropy, is determined, and some of its properties are studied. Moreover, their
monotonicity and related aging classes of distributions are expressed, and the upper (lower) bound for them is
acquired. In the end, we propose four nonparametric estimators and compare their performance by utilizing
simulation data. Also, being based on the best-proposed estimator, a real data set is additionally examined.
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GENERALIZED X-EXPONENTIAL BATHTUB SHAPED FAILURE RATE DISTRIBUTION

AND ESTIMATION OF RELIABILITY OF MULTICOMPONENT STRESS-STRENGTH ............ 465

Faryal Shabbir, Abdul Khalique

In an engineering setup, one is interested to know and determine the reliability of the system of different
components. These components are usually subjected to different kinds of stress, and the reliability of the
components needs to be estimated under stress. In this paper, we aim to estimate the reliability of a
multicomponent stress-strength model assuming that the components of the system are working independently
with a common life distribution. The system follows a comparatively new distribution named as; Generalized X-
Exponential bathtub failure rate distribution. This paper studies the usefulness of this distribution in terms of
estimating the maximum likelihood estimate of the reliability parameter and its asymptotic confidence intervals.
Paper uses methods of parametric estimation and reliability estimation. Results are computed using Monte Carlo
simulation for small samples. Real data set is presented to evaluate the performance of Generalized X Exponential
Distribution (GXED) reliability estimator. Findings show that with the usage of proposed distribution, estimator
of reliability parameter fits very well to the real-world situations

DEVELOPMENT OF AN INTEGRATED SAFETY SISTEM FOR PRODUCTION FACILITIES:

THE PROBLEM STATEMENT AND THE PROPOSED SOLUTION ........ccccccoeiniiniiniiiiiiiine, 474

Evgeny Gvozdev

The article focuses on explosion and fire hazards at production facilities of enterprises where flammable liquids
and gases, categorized by explosion and fire risks, are processed, handled, transported, and stored. The goal to be
attained and the tasks to be solved towards this end are formulated in the article. Consolidated areas of knowledge,
accumulating results of research into risk assessment within systems of integrated safety implemented at
production facilities, are considered by the author. A model for development of a novel set of research and
methodological instruments (methods, techniques, software and hardware) is presented for its further practical
application. The problem of developing integrated safety systems for industrial facilities, posing explosion and
fire hazards, as well as the solution, are presented by the author for the first time. The novelty of the solution lies
in the computation of validity of the practical application of a novel set of research and methodological
instruments. A reduction in damage from accidents and fires at production facilities is demonstrated. Ultimately,
the socio-economic problem of reducing damage from accidents and fires is solved not only by Russian production
facilities, but also by government agencies, including the EMERCOM of Russia (Ministry of the Russian
Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters), Ministry of
Labor and Social Protection of Russia, and Federal Environmental, Industrial and Nuclear Supervision Service
of Russia.

TRANSIENT AND METAHEURISTIC COST SCRUTINY OF MX/G(A, B)/1 RETRIAL QUEUE
WITH RANDOM FAILURE UNDER EXTENDED BERNOULLI VACATION WITH

IMPATIENT CUSTOMERS ..ottt ettt ettt be st et sttt 488

Rani R, Indhira K

The transient and metaheuristic cost analysis of a MX/G(a, b)/1 retrial queue with random failure during an
extended Bernoulli vacation with impatient clients is covered in this study. Any batch that arrives and discovers
the server is busy, down, or on vacation joins an orbit. In the alternative, only one new customer from the group
joins the service right away, while the others join the orbit. After providing each service, the server either waits
to serve the following customer with probability (1 — 0) or goes on vacation with probability ©. It has been found
that these systems express steady-state solutions and are dependent on time probability generating functions in
consideration of their Laplace transforms. We also discuss a few exceptional and particular instances. After that,
the impact of different parameters on the system’s effectiveness is evaluated. We are also talking about ANFIS.
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Additional approaches employed in this study to swiftly determine the system’s optimum cost include genetic
algorithms (GA), artificial bee colonies (ABC), and particle swarm optimization (PSO). We also examined the
graph-based convergence of several optimization algorithms.

REPORTING METHODOLOGY AND ALGORITHM OF MODES OF COMPLEX ENERGY

SYSTEMS WITH PHASE COORDINATES ...ttt sttt eeas 510

Huseyngulu Guliyev, Famil Ibrahimov

A mathematical model, algorithm and program have been developed to study any types of complex asymmetric
steady-state modes and transient processes of a multi-machine power system with a renewable energy source in
phase coordinates, the results of which can be used in the operational control of power system operating modes
with any type of emergency automation. The developed methodology and software package can also be used in
industry to check the possibility of long-term operation in the considered asymmetrical mode from the point of
view of the operating conditions of the system generators and electrical receivers, to determine the need to use
baluns, to select their parameters and installation locations, to ensure the efficiency of asymmetrical modes , as
well as for conducting various tests and analyzing accidents that have occurred.

BAYES ESTIMATION OF CAPABILITY INDEX USING THREE-PARAMETER WEIBULL

DISTRIBUTION ...ttt ettt ettt et b sttt et sttt et sttt et bbb et e bt ebe st ese st enestenesaenenseneas 523

Sonam Gubreley, Ankita Gupta, Satyanshu K. Upadhyay

The process capability index is an important tool used in quality control and process improvement. Generally,
the index is estimated under the assumption of a normal distribution, although some other distributions are also
recommended in the literature. This paper instead considers a three-parameter Weibull distribution and obtains
an estimate of the process capability index under the Bayesian framework. Bayesian development is based on the
use of non-informative priors and the posterior sample-based inferences are drawn using an important Markov
chain Monte Carlo technique, namely, the Gibbs sampler algorithm. Finally, a numerical illustration based on
two real datasets is provided.

A NEW ALGORITHM TO SOLVE MULTI-OBJECTIVE TRANSPORTATION PROBLEM

WITH GENERALIZED TRAPEZOIDAL FUZZY NUMBERS ........cccocooiiniininenenetneseeeeseeeneenens 531

Ramakant Sharma, Sohan Lal Tyagi

Transportation Problem is a specific type of linear programming problem (LPP). Today, in the real world, the
decision maker handles the multi-objectives at the same time. Fuzzy Concepts are used in LPP to handle the
uncertainty and vagueness of data. This paper presents a new algorithm to solve a special type of fuzzy
transportation problem (FTP) with the generalized trapezoidal fuzzy numbers (GTpFN) in which the decision
maker is not certain about the exact value of transportation charge and the availabilities and requirements are
the real numbers. In this Proposed Algorithm first, the fuzzy multi-objective transportation problem (FMOTP)
is converted into a Crisp multi-objective transportation problem (MOTP) by the Proposed ranking function, and
then the Crisp MOTP is transformed into a single objective transportation problem using the sum of objective
functions values. The proposed algorithm gives an efficient compromise solution of FMOTP. To elaborate the
proposed algorithm, one numerical example is solved.
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USE OF THERMAL IMAGING METHOD OF CONTROL FOR INSPECTION OF BUILDING
STRUCTURES FOR TIGHTNESS .......oooiiiieeeteeteteteeeteeee st ne et ettt saeas

Sofia Skachkova, Anton Avgutsevichs

In any industry related to the construction of buildings and structures we have heard about the need to assess
the technical condition of various objects to assess and analyze the risks associated with the possible collapse of
buildings (structures), loss of life and high costs to eliminate these consequences. Since many objects fail over
time, and in general to determine the wear and tear and the possible term of further safe operation, it is necessary
to conduct a technical survey. The article describes the principle of operation of thermal imaging devices for
determining the reliability of building structures in residential premises, and also raises problems, the solution
of which can simplify the use of thermal imaging devices in the inspection of buildings and structures and reduce
the economic costs of damage compensation in case of timely detection and elimination of any defects.

ON THE CHARACTERIZATION AND APPLICATIONS OF A THREE-PARAMETER

IMPROVED WEIBULL-WEIBULL DISTRIBUTION ......ccccociiiiniiiiitiieieteteeeeeeseteeeesresvesnennens

A.S. Mohammed, B. Abba, I. Abdullahi, Y. Zakari, A. I. Ishaq

Parametric modeling of complex lifetime data characterized with nonmonotone hazard rate (NMHR) has in
recent years attract the interest of many researchers and practitioners. The three-parameter improved Weibull-
Weibull distribution introduced in 2022 has demonstrated a better NMHR modeling potential in the analysis of
several failure times identified with bathtub hazard rate (BHR). In this study, we present the characterization,
properties and two data sets” applications of the distribution. Various properties of the distribution obtained,
include moment generating function, moments, skewness, kurtosis, and some types of entropy. Numerical results
for mean, variance, skewness, and kurtosis are computed using simulation studies. Estimation of the distribution
parameters is performed using the method of maximum likelihood, and the estimation method is assessed by
Monte Carlo simulation experiments. The two illustrations further ascertain the capability of the model for
modeling lifetime data from different scientific investigation areas.

MARSHAL-OLKIN ALPHA POWER INVERSE RAYLEIGH DISTRIBUTION: PROPERTIES,
ESTIMATION AND APPLICATIONS ..ottt ettt ettt s e

Ismaila Olawale Adegbite, Kayode Samuel Adekeye, Olubisi Lawrence Aako

In this study, a new three-parameter distribution is introduced by extending the two-parameter Alpha Power
Inverse Rayleigh distribution using Marshall-Olkin G approach. The proposed Marshall-Olkin Generalized
Alpha Power Inverse Rayleigh (MOAPIR) distribution generalizes the Marshall-Olkin Inverse Rayleigh, Alpha
Power Inverse Rayleigh, and Inverse Rayleigh distribution. The characterization and statistical properties of the
proposed distribution such as hazard rate function, reversed hazard rate function, quantiles, moments, and order
statistics were derived. The estimation of the MOAPIR distribution parameters is derived using the maximum
likelihood estimation method. The performance of the proposed distribution was compared with other competing
distribution using two real-life data. The goodness of fit criteria and the distribution function curve showed that
the proposed distribution provides a better fit than other competing distributions of the same family of heavily
positive skewed distribution.
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ON DIFFERENT CLASSICAL ESTIMATION APPROACHES FOR TYPE I HALF LOGISTIC-
TOPP-LEONE- EXPONENTIAL DISTRIBUTION ......cccooiiiiiiininiierieteeteteteeeeeeeeeeeseesvessenaens

Akeem Ajibola Adepoju, Sauta S. Abdulkadir, Danjuma Jibasen

This paper aims to propose six methods of parameter estimation in order to examine the behavior of the new Type
I Half Logistic Topp-leone Exponential distribution. The methods taking into consideration are Maximum
Likelihood, Anderson Darling, Least Squares, Cramer von Mises, Maximum Product of Spacing, and Weighted
Least Squares Methods. The results show that all the methods are consistent, since the estimates approach the
true value of the parameters for all the methods. The bias, mean square error and mean relative estimates decay
as the sample size is raised. The estimates of the six methods obtained for the model, indicated that MPS estimates
is the closest to the true value of the parameters across the low, moderate and high sample sizes, invariable, the
MPS produces the least biasness. Buttress more, the MPS produces the least MSE all through and remain the
best estimator for low, moderate and high sample size of the model. Conclusively, MPS is the most consistent
among the estimators for the model.

ON THE Q-RAYLEIGH DISTRIBUTION AND ITS APPLICATIONS.........cccccoiiniiiiiiiin,

Ibrahim Sadok

This paper introduces the two-parameter qg-Rayleigh distribution, a powerful extension of the classical Rayleigh
model for analysing real-world data. Compared to the Rayleigh, the q-Rayleigh incorporates a novel pathway
parameter q, offering greater flexibility in capturing diverse data patterns. We delve into the mathematical
properties of the g-Rayleigh, including its hazard rate function and quantile function, and explore parameter
estimation through maximum likelihood methods. We demonstrate its superior fit compared to the widely-used
Rayleigh distribution for real-world data. Moreover, we explore its application in reliability analysis. This
comprehensive study makes the g-Rayleigh a compelling choice for modelling data exhibiting gradual transitions
and enhanced flexibility.

MI-K-MEAN ALGORITHM: A NEW APPROACH FOR FINANCIAL RISK ANALYSIS WITH
MISSING DATA IMPUTATION IN BIG DATA .....ccooiiiiiiiiiiicicccicesns

Ravindra Kumar, Diwakar Shukla, Kamlesh Kumar Pandey, Sagar, M.P. India , Sagar, M.P., India,

Amarkantak, M.P., India

The data mining is a tool of searching information from the data warehouse. Several mining algorithms exist in
literature, one of the most common is the usual K-mean procedure. This generates centroids after every round of
iteration. It is assumed that sample data is completely cleaned and noise free before the start of execution of the
usual K-mean algorithm. If a% values are missing in sample data then after cleaning only (100-a) % values are
available for the execution of the usual K-mean algorithm. Such bears a loss of information that affects the
decision. This paper considers this problem and resolves such issue by replacing the missing data through imputed
values calculated by the available values, called Mean Imputation (MI). It helps in financial risk analysis quite a
lot because of risk prediction being taken on a larger sample (cleaned and imputed both). Several imputation
procedures are available in literature. This paper considers the financial risk data as sample where the missing
values of sample are imputed by the usual Mean-Imputation (MI) method and then on complete sample. Proposed
MI-K-mean strategy is compared with no imputation usual procedure and found more efficient over the four-
evaluation criterion of cluster formation while applying on risk data analysis.
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A TYPE I HALF LOGISTIC TOPP-LEONE INVERSE LOMAX DISTRIBUTION

WITH APPLICATIONS IN SKINFOLDS ANALYSIS........ccccooiiiiiiiiiincccecenes

Akeem Ajibola Adepoju, Sauta S. Abdulkadir, Danjuma Jibasen, Jamiu S. Olumoh

This paper proposed a novel distribution parameterized by four parameters. This is achieved by compounding the
potentials properties of the Type I half logistic topp-leone generalized distribution family with the properties of
the inverse lomax distribution to form the novel Type I half logistic topp-leone inverse lomax distribution. The
novel distribution is potentially capable of extending classical inverse lomax distribution. The potentiality of the
shape of the probability density function of the novel distribution is worth recognizing since it produces right
skewed, approximately normal, left skewed and a reverted |-shaped. Decreasing life failure shape is also observed.
Distinctive features of the novel distribution such as moments, entropy, moment generating function, reliability
and hazard function were derived. The estimation method explored in this study is maximum likelihood
estimation. It is adopted to estimate the novel distribution unknown parameters. Real life data set was adopted to
investigate the potentiality and applicability of the novel model. The type I half logistic topp-leone inverse lomax

distribution outperform the recent models

A COMPRESSIVE STUDY ON FAULT DETECTION AND DIAGNOSIS FOR RELIABLE

OPERATION OF HVAC, ENERGY BUILDINGS AND MACHINERIES ............ccocccniininnnnnn.

M. S. Patil, G.M. Malwatkar

In Heating, Ventilation, and Air Conditioning (HVAC) systems, faults can be occurred due to various reasons
such as drift deviation, valve/fan failure, water clogging, air filter obstruction, temperature sensor failure and so
on. Similarly in electrical machineries faults can be occurred due to multiple causes such as phase reversal, over
or under voltage, starter open/short circuit, bearing problems, insulation breakdown, overloading, thermal
unbalance, environmental as well as other technical issues. The faults analysis at various stages of electrical
systems are critically important for reliable operation of the system. In view of reliability and safety operations of
modern sophisticated electrical systems, faults analysis and its diagnosis are necessary to avoid unaccountable
losses. The faults at various stages, its causes, methods of detection and diagnosis, fault classifications are
included in this work. The comment on effectiveness methods of detection of fault and diagnosis are included for
electrical systems. In the industries, systems are incorporated with monitoring capacity for detection of faults at
easy and early stage. This paper mainly focused on advancements in fault detection and diagnosis (FDD) methods
with short review of various recent methods. This includes system information representation, methods of FDD,
description of faults, fault classification, and decision actions related to maintenance, providing a systematic
overview of the current state of FDD. Furthermore, the paper underscores the pivotal roles of FDD in electrical
systems, emphasizing its effectiveness in identifying faulty states and taking pre-emptive actions against
potential failures or accidents. The discussion extends to developments of current research in FDD approaches
for electrical machineries with system monitoring, accompanied by short review of diverse and valuable FDD
methodologies. The study concludes by addressing comments on recent trends, future directions, challenges, and
prospective solutions in the hybrid and dynamic landscape of FDD.

M/M/C QUEUE WITH MULTIPLE WORKING VACATIONS AND SINGLE WORKING

VACATION UNDER ENCOURAGED ARRIVAL WITH IMPATIENT CUSTOMERS...............

Prakati P, Julia Rose Mary K

This paper demonstrates an M/M/C queuing model with Multiple working vacations and also single working
vacation under encouraged arrival with impatient customers. The queuing model with the servers adopting
multiple working vacation policy and single working vacation are determined separately and it is observed that
the servers during working vacation(s) will be serving the customers at a slower service rate when compared
during regular busy period. In addition to the above conditions, if there is a rapid increase in the customers’
arrival i.e, if encouraged arrival occurs and due to this sudden growth of the queue, there may be a impatience in
the behaviour of the customer. With these considerations, an M/M/C Queuing model is analysed with two
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vacation policies separately by applying PGF method and thus the performance measures for an M/M/C Queue
with Multiple Working Vacations and Single Working Vacation under Encouraged arrival with impatient
customers are evaluated.

BEHAVIORAL ANALYSIS AND MAINTENANCE DECISIONS OF WOOD INDUSTRIAL
SUBSYSTEM USING STOCHASTIC PETRI NETS SIMULATION MODELING............ccccccccueune.

Urvashi, Shikha Bansal

This study aims to optimize the productivity of the plywood manufacturing system within the wood industry. A
Petri nets simulation-based technique has been used to evaluate the availability analysis of the plywood
manufacturing system. A Petri nets model is created to represent the modeling of the plywood system. The model
is subsequently simulated using the licensed program Petri Nets (PN) GRIF 2023.7. This simulation is used to
evaluate the performance of the system. In the PN simulation model, timed transitions are fired based on the
failure and repair rate of the system. Immediate transitions, on the other hand, have their own guard function for
firing which is coded using a logical AND-OR gate. This study also assesses the impact of the repairman on the
system’s availability. The system’s availability is optimized by increasing the number of repairmen. However,
once a specific number of repairmen is reached, the system’s availability remains constant. This research is highly
valuable for determining the optimal number of maintenance staff needed for the wood industrial system.

PREDICTIVE MAINTENANCE SCHEME FOR PHASED MISSION SYSTEMS.......................

Preeti Wanti Srivastava, Satya Rani

In both industrial and military fields, many systems are phase mission systems (PMSs) which execute mission
composed of different phases in sequence. The structure, failure behaviour, and working condition of such a
system may change from phase to phase. Maintenance actions comprising corrective and preventive maintenance
schemes studied in the literature are aimed at retaining the maintained system in a proper condition and
improving its availability and extending its life. The present paper deals with finding optimal periodic inspection
time using multi-objective criteria comprising objectives of minimizing expected maintenance cost incurred due
to predictive, breakdown and periodic maintenance of a PMS, and maximizing its expected residual lifetime. The
predictive maintenance is condition-based preventive maintenance that anticipates system failures in order to
plan timely interventions on the system and hence improve its performance. The dependency is modelled using
Gumbel-Haugaard copula. An aircraft flight PMS comprising Taxiing phase, Take-Off phase, Cruising phase
and Landing phase has been used to illustrate the method developed.

PROFIT ANALYSIS OF REPAIRABLE JUICE PLANT .....ccoooiiiiiiinirineenieetereeeteeeeeeeeee e

Rahul, Mohit Yadav, Hemant Kumar

Juice is a non-fermented beverage that is obtained by squeezing fruits to increase immunity. Generally, juice
contains calcium, vitamin, iron, etc. to give the refresh tests. There are multiple steps to store the juice at large
levels such as storing, grinding pasteurization, etc. In this paper, the performance and reliability measures of a
juice plant are discussed. The juice plant has three distinct units. Unit A has washing and storage tank, unit B
has grinding, blending, evaporation and pasteurization, and unit C has bottling, labeling and packing units. If
any unit partially fails then the system works to a limited extent. A technician is always available to repair the
failed unit. The system fails when one unit completely fails. In this paper, the failure time and repair time follow
general distributions. The regenerative point graphical technique is used to explore the reliability measures.
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A LITERATURE REVIEW ON DEVELOPMENT OF QUEUEING NETWORKS ......................

V. Narmadha, P. Rajendran

This study conducts a quantitative research survey on the development of queueing networks over years.
Development is a process of gradual change that takes place over many years, during which a theory slowly
progress and attain a good state. Queueing theory has been through many developments which made its existence
inevitable in every field. Queueing networks can be considered as a collection of nodes, where each node stands
for a service facility. It has been proved to be a powerful and versatile tool for modelling facilities in manufacturing
units and telecommunication networks. This paper presents the development in Queueing networks and its types
over years. This paper’s main objective is to give all the analysts and researchers the knowledge about the
evolution that happened in Queueing networks over years.

MODELING AND ANALYSIS OF SINE POWER RAYLEIGH DISTRIBUTION: PROPERTIES
AND APPLICATIONS ...ttt ettt sttt sttt ettt et ettt ettt sa e b sae b e saenens

Aadil Ahmad Mir, S.P.Ahmad

In this manuscript, a new probability model named as Sine Power Rayleigh distribution (SPRD) is proposed
using a Sine-G function as generator. Various statistical properties of this new distribution were investigated,
including the survival function, hazard function, reverse hazard rate, cumulative hazard function, mills ratio,
quantile function, moments, moment generating function, conditional moments, entropy, and order statistics.
The parameters of the proposed distribution were estimated using the method of maximum likelihood estimation.
To assess the model’s versatility and applicability, we conduct analyses on two real life data sets. The outcomes
affirm the superior performance of the newly proposed model SPRD as compared to existing models.

NEW DISCRETE DISTRIBUTON FOR ZERO-INFLATED COUNT DATA ........cccccovviviiinn

Peer Bilal Ahmad, Mohammad Kafeel Wani

Ower-dispersed models are commonly utilized when the variation is more than what the model actually predicts.
Since one of the reasons for over-dispersion is the large number of zeros, we employ zero-inflated models instead
of more traditional ones to handle this observed occurrence. We present a zero-inflated version of a discrete
distribution that was developed in 2021 in our research. Significant statistical characteristics of the suggested
model have been identified, such as moments, the over-dispersion feature, generating functions, and related
measures, among others. We have carried the parametric estimation using the maximum likelihood estimate.
Maximum likelihood estimates are checked for usefulness in a simulation exercise. We evaluated the applicability
of our developed model using three real-world data sets,

STOCHASTIC OPTIMIZATION AND RELIABILITY ANALYSIS OF MUSHROOM PLANT .... 729

Shakuntla Singla, Sonia, Poonam Panwar

In the present paper the reliability model for availability analysis of mushroom plant is developed in three sub-
units like water pump, winter cold standby unit A.C., and packing machine. We assume a doctor of mushroom
and workers are available who examines and repairs the elements as when we need. A mathematical model of the
system is developed by using all these considerations. MTSF, Availability, server of busy period and expected
number of servers visit of mushroom plant are determined with the assistance of RPGT. Graphs and tables are
draw to depict the behavior of various parameters such as MTSF, Availability, server of busy period and expected
number of servers visits and the effect of various parameters of the plant is analyzed when repair and failure rate
both are vary and also when one of them is constant
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NUMERICAL INVESTIGATION OF RETRIAL QUEUEING INVENTORY SYSTEM WITH A

CONSTANT RETRIAL RATE, WORKING VACATION, FLUSH OUT, COLLISION AND

IMPATIENT CUSTOMERS ...ttt ettt ettt et ettt sat et s bbb e sa s neneen

G. Ayyappan, N. Arulmozhi

The retrial queueing inventory system with working vacation, flush out, balking, breakdown, and repair, as well
as a constant retrial rate and orbital client collision are all examined in this study. We made the assumption that
customers arrive through a Markovian arrival process and that they would get phase-type services from the
server. The inventory is replenished using a (s, S) and (s,Q) strategy, and it is expected that the replenishment
time will follow an exponential distribution. If there are zero inventory items, no customers in the orbit, or both,
the server will go into working vacation mode. When a customer retries an orbit while the server is serving
arriving customers, the orbital customer may collide with the arriving customer during that retry, in which case
both of them will be shifted back into orbit; otherwise, the orbital customer may avoid colliding with the arriving
customer and may rejoin the orbit for another retry. The number of customers in the orbit and the inventory level
may be found in the steady state. A cost analysis is produced along with the establishment of various important
performance measures. Moreover, some numerical examples are provided to clarify our mathematical notion.

ON @-CONHARMONICALLY FLAT LORENTZIAN PARA-KENMOTSU MANIFOLDS .......

I. V. Venkateswara Rao, S. Sunitha Devi, K. L. Sai Prasad

The present paper deals with a class of Lorentzian almost paracontact metric manifolds namely Lorentzian para-
Kenmotsu (briefly LP-Kenmotsu) manifolds. We study and have shown that a quasiconformally flat Lorentzian
para-Kenmotsu manifold is locally isomorphic with a unit sphere Sn(1). Further it is shown that an LP-Kenmotsu
manifold which is @-conharmonically flat is an n-Einstein manifold with the zero scalar curvature. At the end,
we have shown that a g-projectively flat LPKenmotsu manifold is an Einstein manifold with the scalar curvature
r=n(n-1).

DATA ANALYSIS AND CLASSICAL ESTIMATION METHODS OF THE BOUNDED POWER
LOMAX DISTRIBUTION ..ottt ettt st sae st st be st et eae ettt saesseesesnesaens

Amal S. Hassan, Asma M. Khalil, Heba F. Nagy

In this work, a novel bounded three-parameter power Lomax distribution termed the unit power Lomax (UPLoD)
is presented. The UPLoD is capable of handling data with left and right skewed shapes according to its probability
density function. Additionally, according to the hazard rate function, the distribution may be used to analyse
data containing |-shaped hazard rates. It is possible to determine some of the distribution’s mathematical
characteristics like moments, probability-weighted moments, incomplete moments, residual and reversed residual
life, quantile function, stress strength model, and entropy (Rényi, Havrda and Charvdt, Tsallis, and Arimoto)
measures. The Cramér—von Mises, weighted least squares, maximum likelihood, Anderson—Darling, maximum
product of spacing, and least squares approaches are among the conventional estimating techniques that are taken
into account. The performance of the resulting estimates is compared using a Monte Carlo simulation based on
some precision metrics. An actual data application is presented using water capacity data, and data about the
Susquehanna River’s maximum flood levels to show the importance of the new distribution compared to several
other known distributions.
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LIMIT CYCLES OF LENGTH TWO IN THE RIKKER MODEL AND THEIR APPLICATION IN
FISHING .ottt ettt ettt ettt st st b et ettt ettt e bt e bt et saesa e besbesaennenne

Gurami Tsitsiashvili, Tatyana Shatilina, Marina Osipova, Tatyana Radchenkova

The paper investigates the limit cycle of length two in the Rikker model. It is established that the dependence of
the ratio of the maximum value of the cycle to the minimum depends monotonously and almost linearly on the
growth coefficient of the Rikker model. Models of the parity shift of the limit cycle of length two are constructed,
which is provided by a simultaneous sharp decreaselincrease in the growth coefficient. On the example of the
Amur salmon in 1994 It is shown that a decrease in the growth coefficient, leading to a shift in the parity of the
cycle of length two, is accompanied by a low temperature during the life cycle of pink salmon, when the pink
salmon population is in a state of spawn and when the young are rolling.

INFERENCE ON THE INVERSE POWER BURR-HATKE DISTRIBUTION UNDER TYPE II
CENSORING ..ottt ettt ettt ettt et b s b s b e b et e e et et et et et s st sb e bt esesaesenseseneen

Pavitra Kumari, Vinay Kumar

There are many real-life situations, where data require probability distribution function which have decreasing
or upside-down bathtub (UBT) shaped failure rate function. The inverse power burr hatke distribution consists
both decreasing and UBT shaped failure rate functions. Here, we address the different estimation methods of the
parameter and reliability characteristics of the inverse Pareto distribution from both classical and Bayesian
approaches. We consider classical estimation procedures to estimate the unknown parameter of inverse power
burr-hatke distribution, such as maximum likelihood. Also, we consider Bayesian estimation using squared error
loss function based joint priors. The Monte Carlo simulations are performed to compare the performances of the
obtained estimators in mean square error sense. Finally, the flexibility of the proposed distribution is illustrated
empirically using one real-life datasets. The analyzed data shows that the introduced distribution provides a
superior fit than some important competing distributions such as the Weibull, inverse Pareto and Burr-Hatke
distributions.

A COMPARATIVE STUDY OF INVENTORY MODELLING: DETERMINISTIC OVER

STOCHASTIC APPROAQCH ..ottt sttt ettt ettt ettt sttt saesa b sa e e sae e

Lalji Kumar, Pratima Singh Ghoshi, Shreyashi Saxena, Kajal Sharma

This research study provides a comprehensive comparison of two critical approaches to inventory modelling-
deterministic and stochastic. The deterministic model employs traditional optimization techniques to optimize
complex systems, while the stochastic model leverages Particle Swarm Optimization (PSO) simulations to tackle
the challenges posed by uncertain dynamics. This approach enables us to develop effective strategies for
optimizing complex systems. After conducting sensitivity analyses, it was found that the deterministic model
oversimplifies demand dynamics, whereas the stochastic model more adeptly captures market uncertainties. As a
result, this study suggests that businesses adopt stochastic approaches to inventory management to better engage
in adaptive decision-making, contingency planning, optimal resource allocation, risk mitigation, and realistic
performance metrics. The research provides valuable insights for businesses seeking to navigate the complexities
of modern supply chains.
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SEQUENTIAL TESTING PROCEDURE FOR THE PARAMETERS OF INVERSE

DISTRIBUTION FAMILY ..ottt sttt sttt ettt st sa b sve st s enesaeneen

K. S. Chauhan, A. Sharma

The sequential probability ratio test is a powerful statistical tool that is frequently employed for hypothesis
testing, parameter estimation, and statistical inference. The aspect of robustness is of utmost importance when
employing SPRTS in practical applications. Past studies have investigated the robustness of SPRTS for specific
distributions. We have developed SPRTS for a family of inverse distributions that includes eleven distinct
distributions. The primary objective of this study is to investigate and evaluate the robustness of SPRTS under
various conditions and distributions, focusing

on the parameters of the inverse distribution family. SPRTS efficacy is measured using OC and ASN functions.
This study comprehensively covers the construction and rigorous evaluation of SPRTS, particularly in testing
simple null hypotheses against simple alternative hypotheses. Additionally, we investigate the robustness of
SPRTS under various factors, including the presence of other parameters and specified coefficients of variation.
Conclusive results, graphic representations, tables, and acceptance and rejection regions add clarity to the
findings.

CONFIDENCE INTERVAL USING MAXIMUM LIKELIHOOD ESTIMATION FOR THE

PARAMETERS OF POISSON TYPE RAYLEIGH CLASS MODEL ..........ccccoiiiiiiiiiniccne

Rajesh Singh, Preeti A. Badge, Pritee Singh

In this research paper, confidence interval using maximum likelihood estimation is obtained for Poisson type
Rayleigh class for the parameters. The failure intensity function, mean time to failure function and likelihood
function for the parameter is derived. Confidence interval has been obtained for the parameters using maximum
likelihood estimation. To study the performance of proposed Confidence interval, average length and coverage
probability are calculated by using Monte Carlo simulation technique. From the obtained intervals, it is
concluded that Confidence interval for the parameters perform better for appropriate choice of execution time and
certain values of parameters.
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ESTIMATION OF DIFFERENT ENTROPIES OF INVERSE
RAYLEIGH DISTRIBUTION UNDER MULTIPLE
CENSORED DATA

HeEMANT SHARMA AND PARMIL KUMAR

)
Department of Statistics, University of Jammu, J&K.
hemanistats@gmail.com, parmil@yahoo.com

Abstract

The inverse Rayleigh distribution finds widespread applications within life testing and reliability
research. Particularly, it proves invaluable in scenarios involving multiple censored data points. In
this context, the Renyi, Havrda, Charvat, and Tsallis entropies of the inverse Rayleigh distribution are
efficiently calculated. The maximum likelihood approach is used to get the estimators, as well as the
approximate confidence interval. The mean squared errors, approximate confidence interval, and their
related average length are computed. To illuminate the behavior of estimates across varying sample sizes,
a comprehensive simulation study is conducted. The outcomes of the simulation study consistently reveal
a downward trend in mean squared errors and average lengths as the sample size increases. Additionally,
an interesting finding emerges as the censoring level diminishes. The entropy estimators progressively
converge towards their true values. For practical demonstration, the effectiveness of the approach is
showcased through the analysis of two real-world datasets. These applications underscore the real-world
relevance of the methodology, further validating its utility in addressing complex scenarios involving
censored data and inverse Rayleigh distributions.

Keywords: inverse Rayleigh distribution, Renyi entropy, Havrda and Charvat entropy, Tsallis
entropy, multiple censored.

1. INTRODUCTION

The concept of entropy measurement is essential in many fields, including statistics, economics,
and physical, chemical, and biological phenomena. The concept of entropy was first proposed
as a thermodynamic state variable in classical thermodynamics, and it is based on principles
from probability theory and mathematical statistics. Although the term information theory does
not have a precise meaning, it can be considered of as the study of problems involving any
probabilistic system. Entropy is referred to as the amount of information found in the sample.
One of the most important aspects of statistics is the study of probability distributions. Every
probability distribution contains some element of uncertainty. Entropy is a phenomenon that
can be utilised to provide a quantitative estimate of uncertainty. Entropy is also a measure of
disorder or randomness in a probabilistic system having a large number of random states with
equal probability, and is zero when the system is in a specified state with no uncertainty. In other
terms, a random variable’s entropy is a measure of the amount of information required to explain
a random variable on average. Shannon [13] established the concept of entropy as a measure of
information. Here, we focus our attention on three entropy measures- the Renyi [11], Havrad
and Chavrat [7], Tsallis entropies [15]. The Renyi entropy [11] comes from information theory,
whereas the Tsallis entropy [15] comes from statistical physics, and both have a wide range of
applications in their respective fields. These three entropy measures are defined, accordingly, for
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an arbitrary variable X with the Probability Density Function (PDF) f(x;¢), where ¢ denotes the
corresponding parameters.

Rs(X9) = 5 ! log U_Zf(x;go)édx] (1)

where § 1 and 6 > 0, and
HCs(Xi9) = 55— | [ fligax 1] @

where 6 1 and 6 > 0, and
T5(X;p) = s [1 [ (p)‘sdx} 3

where § #1 and ¢ > 0,

Lord Rayleigh [12] initially proposed the Rayleigh distribution in relation to an acoustic problem.
Since then, a great deal of work has been done in numerous domains of science and technology
to improve this distribution. The Rayleigh distribution’s hazard function is an increasing function
of time, which is an important property. If the random variable Y has a Rayleigh distribution,
the random variable X = 1 has an inverse Rayleigh distribution (IRD). Trayer [14] proposed the
Inverse Rayleigh distribution (IRD). The IRD is used in a variety of applications, including as life
tests and reliability studies. A random variable X is said to have inverse Rayleigh distribution if
its PDF and CDF has the following form:

f(x;a)zzx;';exp { (‘;)Z];x>0,a>0 4)
F(x;0) = exp {— (Z)z} ; x>0,0>0 (5)

Wong and Chan [17] explored the entropy of ordered sequences and the order statistic. The
entropy of upper record values was studied by Baratpour et al. [4], whereas the entropy of
lower record values was proposed by Morabbi and Razmkhah [?]. Abo-Eleneen [1] discussed the
entropy of progressively censored samples, Cho et al. [5] estimated the entropy for the Rayleigh
distribution via doubly-generalized Type II hybrid censored samples using maximum likelihood
and Bayes estimators, and Hassan and Zaky [6] investigated point and interval estimation of
the Shannon entropy for the for the inverse Weibull distribution under multiple censored data.
Bantan et al. [3] used multiple censored data to derive the Renyi and g-entropy for the inverse
Lomax distribution. To measure the Lomax distribution’s dynamic cumulative residual Renyi
entropy, Al-Babtain et.al [2] explored the Bayesian and non-Bayesian techniques.

However, the estimation of entropy measures for the inverse Rayleigh distribution (IR), such as
the Renyi, Havrad, and Chavrat, Tsallis entropies, still an unresolved subject . The problem is
examined in the context of multiple censored data in this study, which fills the gap. This is a
common scenario in which many censoring levels are logically present, as it is in many situations
for life assessment and survival analysis. Renyi, Havrad and Chavrat, Tsallis entropies are derived
in our study after analysing the maximum likelihood estimator of o . A comprehensive numerical
analysis is carried out, demonstrating that the derived estimates behave well across a range of
sample sizes. The mean squared errors, estimated confidence intervals, and associated average
lengths are considered as benchmarks. The values of the mean squared errors and average lengths
decreases as the sample size rises, according to our numerical findings. Furthermore, as the
censoring level is reduced, the Renyi, Havrad and Chavrat, Tsallis entropies estimates approaches
the real value. The findings are illustrated using a real-life data set.

The next is how the rest of the article is organised: Section 2 gives the Renyi, Havrad, and Chavrat,
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Tsallis entropies for the inverse Rayleigh (IR) distribution. Section 3 focuses at how they can be
estimated using multiple censored data. Section 4 contains the simulation and numerical results.
Section 5 demonstrates how the method can be used to real-world data sets. Section 6 ends with
some summing comments.

2.  ExPrRESSIONS OF THE RENYI, HAVRAD AND CHAVRAT, TSALLIS ENTROPIES

Let X be an arbitrary variable with parameter ¢ that follows the IR distribution. The Renyi
entropy of X with ¢ = (¢) by using (1)and (3) is given as

o s
Rs(X;0) = %log {/0 i%zexp [_ (‘;)2” dx (6)

_ _ _ 1
Put%—yéx—%édx—a(—y—z)dy.
N ® 6.5 (V0 N
RJ(X,U)—l_(Slog/O 2%y (U) exp(=ar) (7 ) dy

2(5
=15 log/ v 2( U2 exp (—o)ay

~1-5 log[(ﬂs 1/ v 2 exp ( 5]/2)@}

Puty’> =t =y =+t=dy= 1-dt

2V

Ry(G0) = — 1 log | 2 [ 12 exp (—ot)-at

’ f"—mogﬁf SR
-1, / 122 Lexp (—ot)dt
159 0512 P

1 2\t e _1_4
Rtg(X;a):l_élog |5 /0 exp (—6t)«t2 27 dt

1 2\ 131
Rs(X;0) = 17— 1log [ (0> 5@ 7)

2

withd #1, >0and 36 —1 > 0.

Similarly, on using equation equation (7), Havrad and Chavrat entropy and Tsallis entropy of X is

given by
1 ® 2¢2 o\2 ?
HG(X0) = g5 K/o o (5)] ) _1]

1 2 6—1 Fngl
= 2]—5 _ 1 [_ (0_) (sﬂ - 1 (8)
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2\ 0-1 ria-t
1 = -2 9
(7)) 7= Y

The appropriate expressions of Renyi, Havrad, and Chavrat and Tsallis entropies of X, simply
stated as functions of parameter o, are represented by Equations (7), (8), and (9) respectively.

withd #1,6 >0and 36 —1 > 0.

3. ENTROPY ESTIMATION
Let X be a random variable with cdf and pdf equal to f(x;¢) and F(x;¢), respectively. We acquire n

values x1, Xy, ..., X, based on n units under a given test, where n f and n,, are the number of failed
and censored units, respectively. The Likelihood function for ¢ is as follows:

KH i @))% [1 — Flxi ) (10)

where K is a constant.
¢ r=1 if the ith unit failed, and 0 otherwise (so Yoie F="ny)
¢; m=1 if the ith unit censored, and 0 otherwise (so Y_1' 1 &y = 1p).

By inserting (4) and (5) in (10), we can get the likelihood function of the IR distribution based on
multiple censored samples is given by

oo G o[ @

The log-likelihood function is given by

1

2 n 2
logl(0) = 10g1<+22€zf10g 28 flOg 2€1f< ) +Z€i,mlog [1—exp (—g) ]
i=1

The MIE is obtained by maximizing L(c) with respect to ¢, and is given by

dlogl(c) 2ny 20 )21 <_20>
7:—.20—28-,——%28'/ —exp —
cl 02 i=1 foiz i=1 o 1—exp —A xl‘2
2

4 n Zl €im€X
= % — Z&,’/f <2(27> + ! p ) ( ) (12)
i=1 Xi (1 - exp )

The above equation is in closed form therefore, cannot be solved manually. So the MLE estimate
of ¢ is obtained with the help of matlab.

On substituting the MLE of ¢ in (7), (8) and (9), estimates for the entropies Rs5(X;0), HCs(X; o)
and Ty(X;0), are, respectively, given by

o\ -1 1301
Rs(X;0) = T3 log[ (a> 5352_11 (13)
2

withd #1,6 >0and 36 —1 > 0.
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1 2\ 13l
HCy(X;0) = 515 [ (0> 53,,31 -1 (14)

withd #1,6 >0and 36 — 1 > 0.

1
T(;(X,'(T) = 75_1

o\ 9-1 31
v(3) =
withd #1,6 >0and 36 —1 > 0.

Under sufficient regularity requirements, the MLE estimators are consistent and asymptotically
normal distributed for large sample sizes. At the confidence level 100(1-a) with a = (0,1), the
estimated confidence interval for the Renyi entropy can be calculated as follows:

p [_z

where z4 is 100(1 — %) the standard normal percentile and v is the significant level. As a result,
approximate Renyi entropy confidence bounds can be determined, such that

R5(X) — Rs(X)

IRs(X)

< <za|l=1-un (16)

NIR
NIR

P[Rs(X) = 2407 15y, < Rs(X) < Rs(X) + 250, ~]—q 17)

(Rs(X)) (R(s(X))]

where Ly = R;(X) — Z80R (X)) Uy = Rs(X) + Z40(p,0x)) are the lower and upper confidence
limits for Rs(X) and ¢ is the standard deviation and a = 0.05, the approximate confidence limits

for Renyi entropy will be constructed with confidence levels 95%. A similar result holds for
HCs(X) and T5(X) .

4. SIMULATION STUDY

The procedure adopted to examine the performance of the Proposed estimators given by (13), (14)
and (15) are as:

© 1000 random samples of sizes n = 50,100, 150, 200, 300,400 are obtained from the IR distribution
based on multiple censored samples, Using the method described in [16].

o The values of parameters are selected as 6 = 0.4,1.2,1.5 and ¢ = 1.2. We chose CL = 0.5 and
0.7 at random for failures at the censoring level (CL).

e The estimated value for o, true values for Rs;(X;0), HCs(X; ) and Ts(X; o) are obtained by
(12), (7), (8) and (9), and the estimates Rs(X; o), HC;(X; o) and T(g(X;U) given by (13), (14)and
(15) are calculated, respectively.

o At last, the average of the derived estimates, MSEs, and ALs are computed with a threshold of
95% All the calculations are done by the use of the software Matlab and R. From the tables,the
following conclusions have been made:

* As the sample size grows, the bias and MSEs of entropy estimates fall.
¢ Additionally, as the sample size grows, the ALs of estimates diminish.
* As the sample size expands, the entropy estimations approach their true values.

¢ The MSE of entropy estimates at CL = 0.5 is usually less than the MSE of estimates at
CL=07.

These findings demonstrate the high precision of our entropy estimates.
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Table 1: Renyi Entropy Estimates at CL=0.5(c = 1.2,6 = 0.4)

n  Actual Value Estimate Bias MSE AL
50 0.9930 1.1060 0.1130 6.33%e¢ %  0.0395
100 0.9089  0.0841 5.40x¢% 0.0190
150 0.9465  0.0495 4.71x¢ % 0.0121
200 0.9506  0.0424 1.79x¢%  0.0079
300 0.9560  0.0370 4.56x¢% 0.0064
400 0.9943  0.0013 9.52x¢~%  0.0047

Table 2: Renyi Entropy Estimates at CL=0.7(c = 1.2,5 = 0.4)

n  Actual Value Estimates Bias MSE AL
50 0.9930 0.8798  0.1132 3.19xe¢ %% 0.0382
100 1.0934  0.1004 1.01xe % 0.0219
150 1.0694  0.0764 3.19xe % 0.0140
200 1.0533  0.0603 2.42x¢=%  0.0099
300 09561  0.0369 1.95%¢% 0.0071
400 09864  0.0065 7.26x¢~% 0.0044

Table 3: HC Entropy Estimates at CL=0.5(c =1.2,6 = 1.5)

n Actual Value Estimate Bias MSE AL
50 6.5486 6.0175  0.5311 0.0056  0.2407
100 6.0733  0.4753 0.0023 0.1215
150 6.2092  0.3394 7.67%—04 0.0828
200 6.3493  0.1993 1.98x¢ % 0.0635
300 6.6832  0.1346 6.03x¢% 0.0446
400 6.5667  0.0181 8.16x¢~% 0.0328

Table 4: HC Entropy Estimates at CL=0.7(c = 1.2,6 = 1.5)

n  Actual Value Estimate Bias MSE AL
50 6.5486 5.8458  (.7028 0.0099 0.2338
100 59364  0.6122 0.0037  0.1187
150 6.1541  0.3945 0.0010 0.0821
200 6.2186  0.3300 5.44x¢ %  0.0622
300 64073  0.1413 6.65x¢~ % 0.0427
400 6.5249  0.0237 1.40x¢% 0.0326

Table 5: Tsallis Entropy Estimates at CL=0.5(c = 1.2,6 =1.2)

n  Actual Value Estimate Bias MSE AL
50 11.9156 12.5135  0.5979 0.0036  0.4883
100 12.2072  0.2916 0.0017  0.2434
150 12.0878 0.1722 9.88x¢~ % 0.1607
200 12.0497 0.1341 1.19x¢ % 0.1198
300 11.9792  0.0636 2.02x¢~%  0.0806
400 11.9027 0.0130 4.19%x¢~%  0.0595
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Table 6: Tsallis Entropy Estimates at CL=0.7(c = 1.2,6 =1.2)

n Actual Value Estimate Bias MSE AL
50 11.9156 12.6254  0.7098 0.0101 0.5050
100 12.3534  0.4377 0.0019 0.2471
150 12.1353  0.2197 321xe¢ % 0.1618
200 12.0573 01417 1.00x¢ % 0.1206
300 11.8533  0.0623 129 x¢~%  0.0790
400 11.9585 0.0429 4.60xe¢ 97 0.0598
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Figure 1: (a) Bias of Renyi, Havrda and Charvat, Tsallis entropy at CL=0.5 and (b) Bias of Renyi, Havrda and Charvat,
Tsallis entropy at CL=0.7
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Figure 2: (1) Average Length of Renyi, Havrda and Charvat, Tsallis entropy at CL=0.5 and (b) Average Length of
Renyi, Havrda and Charvat, Tsallis entropy at CL=0.7
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Figure 3: (1) MSE of Renyi entropy at CL=0.5 and CL=0.7, (b) MSE of Havrda and Charvat entropy at CL=0.5 and
CL=0.7 and (c) MSE of Tsallis entropy at CL=0.5 and CL=0.7

5. DAtA ANALYSIS

To demonstrate the effectiveness of our estimation methods, we utilize the dataset pertaining to
fatigue failure times of twenty-three ball bearings as documented in [8]. This dataset has been
extensively employed in various research investigations.

Dataset I: 0.1788,0.2892,0.3300, 0.4152, 0.4212, 0.4560, 0.4840, 0.5184, 0.5196, 0.5412, 0.5556, 0.6780,
0.6864, 0.6888,0.8412,0.9312,0.9864, 1.0512,1.0584, 1.2792,1.2804, 1.7340. The Kolmogorov-Smirnov
(K-S) distance and its corresponding p-value for the actual dataset are calculated as 0.1440 and
0.6988 respectively. These values suggest that the observed dataset aligns well with the inverse
Rayleigh distribution. This assertion gains further validation through the visualization of the
empirical Cumulative Distribution Function (ECDF) plot, the quantile-quantile (Q-Q) plot, and
the Histogram, showcased in figures 4 and 5. Derived from the complete sample, the maximum
likelihood estimate of the parameter sigma is determined as 0.4681, with a standard error of
0.0499.
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Figure 4: (a) Ecdf plot for the dataset I (b) Q-Q plot for the dataset I
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Figure 5: Plot of the fitted density for dataset I

Dataset II: The second dataset, sourced from [9], encompasses monthly actual tax revenues in
Egypt spanning from January 2006 to November 2010. These data points are measured in 1000 mil-
lion Egyptian pounds and exhibit the following sequence: 5.9,20.4,14.9,16.2,17.2,7.8,6.1,9.2,10.2,
9.6,13.3,85,21.6,18.5,5.1,6.7,17,8.6,9.7,39.2,35.7,15.7,9.7,10,4.1,36,8.5,8,9.2,26.2,21.9,16.7,21.3,
35.4,14.3,8.5,10.6,19.1,20.5,7.1,7.7,18.1,16.5,11.9,7,8.6,12.5,10.3,11.2,6.1,8.4,11,11.6,11.9,5.2,6.8,
8.9,7.1,10.8. The Kolmogorov-Smirnov (K-S) distance and its corresponding p-value for this
dataset stand at 0.08219 and 0.8203, respectively. These results suggest a fitting match with the
inverse Rayleigh distribution. This assertion gains further support from the visual analyses,
including the Empirical CDF plot, Quantile-Quantile (Q-Q) plot, and Histogram are depicted in
figures 6 and 7. The maximum likelihood estimate for the parameter sigma, obtained from the
complete dataset is 9.3595, with a standard error of 0.6092. Table 7 and 8 present estimates for
different entropy measures in both datasets. These tables reveal as the parameter § increases,
Renyi entropy demonstrates an ascending trend, whereas Tsallis and HC entropies exhibit a
descending trend with the increase of 6. Additionally, the estimates are notably influenced by the
level of censoring.
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Figure 7: Plot of the fitted density for dataset II

Table 7: Estimated of Renyi entropy, Tsallis entropy and HC entropy at CL=0.5, 0.7 for Dataset .

CL=0.5 CL=0.7
0 Ry(X) Ts(X) HCs(X) Rs(X) Ts(X) HCs(X)
1.2 -2.6986 13.5778 14.7472 -2.2308 12.8115 15.4360
2 -1.7333 6.6593 24727 -1.2654 4.5447  2.7547

Table 8: Estimated of Renyi entropy, Tsallis entropy and HC entropy at CL=0.5, 0.7 for Dataset 1.

CL=0.5 CL=0.7
6 Rs(X) HGs(X) Ts(X) Rs(X) HGCs(X) Ts(X)
1.2 03961 9.6191 20.7654 0.4187 9.5983 20.8244
2 1.3615 1.2562 12.4407 1.3841 1.2505 12.6790
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6. CONCLUSION

In this article, the Renyi, Havrda and Charvat, Tsallis entropies of the inverse Rayleigh distribution
are estimated using multiple censored data. Using maximum likelihood and plugging approach,
we present an efficient estimation strategy. The Renyi, Havrda and Charvat, and Tsallis entropies
estimates” behaviour is measured in terms of mean squared errors and average lengths. According
to numerical results, the bias and mean squared errors of our estimators decreases as the sample
size grows. It's also worth noting that as the sample size grows, the average length of our
estimators shrinks. As a result, the proposed estimates show to be efficient, giving new valuable
tools with potential relevance in a wide range of applications involving the inverse Rayleigh
distribution’s entropy. The paper concludes with an applications to a real-world data sets. In
upcoming research endeavors, one could explore the assessment of entropies using both Bayesian
and E-Bayesian methodologies across various censoring scenarios.
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Abstract

In 2002, the Working Vacation (WV) queues were implemented as an extension of standard
queueing models with vacations. During the vacation period in WV queues, the server provides service
at a slower pace as opposed to the typical busy period.The objective of this survey is to provide a
concise overview of the latest scholarly investigations on queueing models for WVs. The concept of
a queue with WV has been implemented across various domains, encompassing computer systems,
communication networks, production management, computer communication, manufacturing, and
inventory systems. Additionally, it has been applied to network service, web service, file transfer
service, and mail service.

Keywords:

Working Vacation Queue(WVQ), M/M/1 and M/G/1 queue, GI/M/1 and GI/G/1 queue,
Retrial queue, Discrete time Geo/G/1 queue, Multi-server queue, MX] /M /1 -Batch arrival
queue, MAP queue.

1. Introduction

In the realm of service industries like healthcare and manufacturing, as well as computer
systems, the queueing model plays a vital role. This mathematical concept, known as queuing
theory, finds applications in predicting queue lengths and waiting durations when different
types of customers are served by distinct servers following various queue disciplines.

One interesting aspect of queueing systems is the idea of a "working vacation" (WV).
Traditionally, when there are no customers or the server experiences a failure, the system goes
on vacation, and the server stops serving customers entirely. However, a WV introduces a
more efficient approach where the server continues working with different service rates during
vacation times, rather than coming to a complete halt. This way, the server can make better use
of its idle time. Model for WV is shown in

Our focus in this review paper is on the literature surrounding WV models. The idea of
vacation, which involves utilising the idle time of a server for additional work in a secondary
system, was first introduced by Levy and Yechiali in 1975 [36]. Subsequently, the concept of
a WV was afterwards introduced by Servi and Finn [63]. Over the last three decades, WV
queueing models have emerged as a prominent subject of interest within the field of queuing
theory.

The objective of this paper is to present a comprehensive overview of the progress achieved
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in the examination of arrival and service operations in diverse WV models. We'll explore the
application of WVs in the M/M/1 and M/G/1 queueing models in Section 2, while Section
3 will delve into the models for the GI/M/1 and GI/G/1 queues with WVs. Furthermore,
Section 4 will cover recent research on retrial queueing models incorporating WVs. Finally, in
Section 5, we’ll discuss some of the most recent developments in WV models. The paper will
conclude in Section 6, summarizing the key findings and offering concluding remarks to aid
readers in understanding the field of WVQ.

PRt 22 1

Service Facility Customer Leaving

Customer Arriving

Entering Working Vacation | ‘ Returning from Vacation

‘Working Vacation

Figure 1: Queueing Syetem with Working Vacation

2. An M/M/1and M/G/1 Queue Models with Working vacations

The concept of vacations in queueing models was first explored by Levy and Yechiali [36].
They utilized decomposition results to derive the optimal vacation size. Servi and Finn [63]
introduced a semi-vacation policy and derived an M/M/1 queue with multiple WVs (MWYV).
They also provided explicit formulas for average, variance, and distribution of time and number
of customers in the system. Wu and Takagi [78] extended Servi and Finn’s [63] M /M /1 model
toan M/G/1/WYV model, considering general distributions for both service times and WVs.
They further obtained the Laplace-Stieltjes Transform (LST) for the distribution of vacation
sizes.

Numerous studies followed, exploring different aspects of WV models. Liu et al. [50]
analyzed the stochastic decomposition structures of the number of customers and sojourn time
in M/M/1/WV queues. Zhang and Xu [89] investigated an M/M/1 queue with MWV and
N-policy. Li et al. [39] studied an M/G/1 queue with exponential WVs using matrix analytic
methods. Xu et al. [80] examined M/M/1 queue with SWYV, utilizing quasi birth and death
(QBD) process and matrix-geometric solution (MGS) method.

The research expanded to consider various scenarios, such as server breakdowns and
disasters. Kim et al. [30] explored the M/G/1 queue with disasters and working breakdown
services. Additionally, WV models were studied with different impatient behaviors, multiple
types of WVs, and variant service interruptions [83, 66, 76].

Vacation interruption (VI) models emerged, where vacation and VI are interconnected, and
the server may interrupt vacation based on specific system indices. Jihong Li and Naishuo Tian
[41] introduced VI, analyzing the M/M/1 queue using QBD process and MGS method. Zhang
and Hou [84] extended this to an M/G/1 queue with WV and VI, obtaining queue length
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distribution and service status.

The integration of WVs and service interruption due to server breakdowns added strength
to queueing models. Various analytical methods, such as generating functions, were employed
[24,14) 35, 88]. Imbalanced behavior of servers was also considered [51, 40, 21, 17].

Overall, extensive research has been conducted to understand the dynamics of queueing
models with WVs and vacation interruptions, offering valuable insights into optimizing system
performance and resource utilization.

3. An GI/M/1 and GI/G/1 Queue Models with Working vacations

In the context of general input (GI) queue models with WVs (WV), several studies have been con-
ducted. Baba [5] explored a GI/M/1 queue with WYV, extending Servi and Finn's M/M/1/WV
system to a GI/M/1/WV model. Building on this, Banik et al. [7] analyzed the GI/M/1/N
queue with a MWV policy. Li and Tian [42] delved into the details of a GI/M/1 queue with
SWYV, where the server can continue working at a reduced rate during the vacation period.

Zhang and Hou [86] studied the GI/M/1/N queue with a variant of MWV and obtained
the queue length distribution at different time periods using the supplementary variable tech-
nique (SVT) and embedded Markov chain (EMC) method. Goswami et al. [19] developed the
GI/M(n)/1 queue model with finite b uffer, considering state-dependent services and state-
dependent MWYV. Vijayalaxmi et al. [34] focused on a limited buffer come-back arrival single
server queueing system with multiple state-dependent exponential WV.

Ye and Liu [82] presented the GI/M/1 queue with SWV and derived the stationary distribu-
tion of the system size at arrival time using the matrix-geometric solution (MGS) method. They
also found the stationary distribution of the system size at arbitrary time using the semi-Markov
process (SMP) method. Panda et al. [56] explored an infinite buffer come-back arrival queue
with MWV policy, considering general bulk service (a,b)-rule.

In the context of general input and vacation interruption models, where the server goes on
vacation when there are no customers, several studies have been conducted. Li and Tian [38]
presented WV and VI in a discrete-time GI/Geo/1 queue using the MGS approach. Ji-hong
et al. [25] studied a GI/M/1 queue with WVs and vacation interruptions. Zhao et al. [90]
introduced setup time with VI policy and investigated a single server general input queue with
set-up period, WV, and VI, obtaining the distribution of the number of customers in the system
and waiting time.

Chen et al. [11] analyzed PH (Phase-type) WVs and vacation interruptions in GI/M/1
queues. They obtained steady-state distributions for the queue length and waiting time of
customers and revealed stochastic decomposition structures of the queue length and waiting
time using the method of matrix analytic method (MAM).

Li et al. [68] considered Bernoulli schedule rule and studied the start-up period, SWV, and
vacation interruption in the GI/M/1 queue. Goswami and Mund [18] dealt with impatient
customers in a single server renewal arrival batch service queue with MWV and balking. They
determined the probability distribution of queue length at pre-arrival epoch using the EMC
method.

4. Retrial Queue Models with Working Vacations

Retrial queues are mathematical models used in queueing theory to describe systems with finite
capacity where arriving jobs that find the system busy will wait for a while before attempting
to enter again. Which is shown in Fig. @ Such systems can be found in various real-world
scenarios like restaurant reservations, telecommunication networks, and packet switching
networks. Recently, the combination of retrial queues with WVs (WV) has become a subject of
thorough investigation.
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Studies have been conducted on different types of retrial queues incorporating WVs. For
instance, T. Van Do [74] analyzed the stability of the M/M/1 retrial queue with WV. Tao et al.
[69] used the matrix analytic method to propose conditions for stability in the M/M/1 retrial
queue with WV interruption under N-policy. Several researchers, such as Li et al. [45], Gao et
al. [16], and Aissani et al. [2]], explored various aspects of single server retrial queues with WVs
and vacation interruptions. Further research delved into specific aspects of retrial queues with

Server Busy
’ Retry

Service Facility - . . -
Customer Arriving for Service Served Customer Leaving

Entering Working Vacation |

‘Working Vacation

Returning from Vacation

o —

Figure 2: Retrial Queueing Model with Working Vacation

WV. For example, Upadhyaya [73] examined a discrete-time GeolX! /Geo/1 retrial queue with
WYV and derived various performance measures using the matrix-geometric method. Rajadurai
et al. [61, 60] addressed RQ systems with general retrial times, feedback, balking, multiple
WVs, and vacation interruptions using the supplementary variable technique.

Other studies considered specific features of retrial queues, such as starting failure, preemp-
tive priority, balking customers, and Bernoulli feedback, in the presence of WVs and vacation
interruptions [20, 59, 43, 46]. The effects of bulk arrivals, constant retrial rates, and socially
optimal balking strategies were also investigated [53, 54, [12].

In conclusion, the combination of retrial queues with WVs has attracted significant attention
in recent research, leading to a better understanding of system behaviors and performance
measures in various queueing scenarios.

5. Other Working Vacation Models

5.1. Discrete time Queue Models with Working Vacations

Discrete-time (DT) queues with vacations have been extensively investigated by various
researchers, owing to their wide range of applications in digital communication systems and
telecommunication networks, such as B-ISDN, ATM, and related technologies.
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Li [37] studied a discrete-time Geo/G/1 queueing system with multiple WVs, where the
server operates at a reduced rate during vacation periods. Li and Tian [38] introduced a discrete-
time queue model, where customer arrivals and service completions occur at discrete-time
instants, in the GI/Geo/1 framework. Li and Zhang [44] examined a discrete-time Geo/Geo/1
queue with server breakdowns and repairs. Yang et al. [81] investigated the equilibrium
joining /balking behavior in the discrete-time Geo/Geo/1 queuing model with multiple WVs.

5.2. Multi Server Queue Models with Working Vacations

Krishnamoorthy and Shreenivasan [31] investigated a two-server M /M /2 queueing system,
where one server remains idle while the other goes on vacation if there are no customers waiting
for service. Vijayashree and Janani [77] conducted a transient analysis of an M/M/c queue
subjected to multiple exponential WVs.

Bouchentouf et al. [9] studied a heterogeneous two-server queuing system with Bernoulli
feedback and multiple WVs, considering impatient customers. They obtained performance
measures and the steady-state probability of the queueing model. Sharma and Kumar [64]
analyzed a multi-server queuing system with essential two-phase repair and multiple WVs.
They employed the Runge-Kutta method to find the time-dependent probability.

5.3. Batch Arrival Queue Models with Working Vacations

Xu et al. [79] examined a batch arrival MIX//M/1 queue with single working vacation
(SWV), using the matrix analytic method (MAM) to derive the probability generating function
(PGF) of the stationary system length. Baba [6] investigated a batch arrival MX!/M/1 queue
with multiple working vacations (MWYV) and obtained the exact Laplace-Stieltjes Transform
(LST) of the stationary waiting time distribution.

Gao and Yao [15] demonstrated a batch arrival MIX! /G /1 queue with randomized WVs,
allowing for at most J vacations. Laxmi and Rajesh [32] extended Baba’s work [6] by incorpo-
rating the concept of variant WVs. They analyzed a single-server batch arrival infinite-buffer
queueing system with various types of WVs. Laxmi and Rajesh [33] further expanded on their
previous research and explored the effects of different WVs on a batch arrival queue with
reneging and server breakdowns.

Thangaraj and Rajendran [70] discussed a batch arrival queueing system with two types of
service and vacations. Niranjan et al. [55] analyzed a bulk arrival queueing model with batch
size-dependent service and WVs.

5.4. Markovian Arrival Process Queue Models With Working Vacations

AThe Markov Arrival Process (MAP) system represents another significant advancement in
the research of WV models. Zhang and Hou [85] conducted a study on a MAP/G/1 queue
with N-policy WVs and vacation interruptions. They successfully determined the distribution
of the system size at the pre-arrival epoch and the Laplace-Stieltjes Transform (LST) of waiting
time using the supplementary variable technique (SVT) and matrix analytic method (MAM).

Sreenivasan et al. [65] expanded on the work of Li and Tian [41] by incorporating MAP
arrivals, Phase-type (PH) services, and N-policy vacation queue models. Liu et al. [49]
examined a cold standby repairable system with WVs and interruptions, utilizing the MAP
arrival queueing model. Chakravarthy and Kulshrestha [10] investigated the MAP/PH/1 type
queueing model with WVs, server breakdowns, and repairs.
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6. Conclusion

In conclusion, this survey provides an in-depth exploration of the development of working va-
cation (WV) queueing models from their early stages to the present. The pioneering researchers
who have contributed to the field of WV queueing policies are presented. Readers gain a
comprehensive understanding of the current state of WV queueing models through this survey.
A wide array of research papers have been reviewed, and proper citations have been included.

This survey offers readers a holistic view of the diverse applications of WV queueing models
in various scenarios. It highlights the significance of WV models in predicting queue lengths,
waiting durations, and other essential performance measures in queueing systems.
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Abstract

In this study, we present the Bayesian estimates of the unknown parameters of the Topp-Leone
Lindley distribution using the maximum likelihood and Bayesian methods. In this study, the Bayes
theorem was adopted for obtaining the posterior distribution of the shape parameter and scale
parameter of the Topp-Leone Lindley distribution assuming the Jeffreys’ (non-informative) prior for
the shape parameter and the Gamma (conjugate) prior for the scale parameter under three different
loss functions namely: Square Error Loss Function, Linear Exponential Loss Function and
Generalized Entropy Loss Function. The posterior distribution derived for both parameters are not
solvable analytically, it requires a numerical approximation techniques to obtain the solution. The
Lindley approximation techniques was adopted to obtain the parameters of interest. The loss function
were used to derive the estimates of both parameters with an assumption that the both parameters
are unknown and independent. To ascertain the accuracy of these estimators, the proposed Bayesian
estimators under different loss functions are compared with the corresponding maximum likelihood
estimator using a Monte Carlo simulation on the performance of these estimators according to the
mean square ervor and BIAS based on simulated samples simulated from the Topp-Leone Lindley
distribution. . It was also observed for any fixed value of the parameters, as sample size increases, the
mean square errors of the Bayesian Estimates and maximum likelihood estimates decrease. Also, the
maximum likelihood estimates and Bayesian estimates converge to the same value as the sample gets
larger except for Generalized Entropy Loss Function.

Keywords: Bayesian estimation, Prior Distribution, Loss Functions, Lindley’s
Approximation, Topp-Leone Lindley distribution

1. INTRODUCTION

Topp and Leone [1] introduced a distribution with finite support whose cumulative distribution
function (cdf) has a closed form-expression called the Topp-Leone (the J-Shaped) distribution. This
distribution has been used to model several phenomenon representing the time until the occurrence
of a particular event. Data from such studies are called the survival data or lifetime data. Nadarajah
and Kotz [2] studied and disclosed the usefulness of the Topp-Leone distribution in the analysis of
interval-bounded data. In their study of the mathematical properties, it was observed that the Topp-
Leone distribution exhibit bathtub failure rate functions and the closed form of the moments
werederived, which disclosed the wide range of its applications in reliability study. The disclosure
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of the important properties of the Topp-Leone distribution by Nadarajah and Kotz [2] has attracted
the interest of authors which is evident in statistical literature. For instance, see the work of Ghitany
et al [3], Zhou et al [4], Kotz and Seier [5], Nadarajah [6], Zghoul [7], amongst others.The cumulative
frequency distribution (cdf) and probability density function (pdf) of the Topp-Leone (TL)
distribution are respectively given as

G(t) =t*(2-t) = [t2-t)f = b—(l—t)z]“, 0O<t<l a>0 (1)

and
a-1
G(t):2a(2—t)[l—(1—t)2J O<t<l a>0 @)

The TL distribution is on a unit interval support (0,1); this means that it cannot be used in the analysis

of survival data, which are not on a unit interval support. To overcome this setback, Al-Shomrani et
al [8] presented the Topp-Leone generated family of distribution with cdf and pdf given as

G(xa, @) = F(x;®)* (2- F(x;®))%* = [1—(E(x;cp))2r,x>o, a>0 3)

and
_ . 2 a-1
9(x; a, @) = 2af (X)F (x; @) [1—(F(x;d))) } , x>0, a>0 4)

Where f(X;q)), F(X;CD) and IE(X;Q)) are respectively the pdf, cdf and survival functions of the
baseline distribution and @ is the vector of parameters of the baseline distribution. Nzei and
Ekhosuehi [9] used the logit of the TL-G family to presented the Topp-Leone Lindley (TL-L)
distribution withthe probability density function (pdf) and the cumulative distribution function
(cdf) for the Topp-Leone Lindley (TL-L) distribution respectively expressed as;

-1
2 21«
g(x) = 2907 (14 O L+ K20k )y | O+ 1+ 6K 6k x>0, , 050 5)
0+1 0+1 0+1
and
o
G(x)= 1| X o=t L 20 4, 050 ©6)
0+1
The Reliability (survival) function of the TL-L distribution is given as
2 &
0+1+0x —@x
R(x)=1-91-| ————e¢ 7
® { = }} o
In addition, the corresponding hazard rate function of the TL-L distributionis expressed as
a-1
2 2
2a6 (1+X) O+1+6x e_zg XJq_ O+1+0x e_g X
0+1 0+1 0+1
h(x) = @ 8)
1-)1- O+1+60x e_g X
0+1

The CDF, pdf and hazard rate function of the TL-L distribution are shown in Figure (1), (2) and (3)
respectively for different values of the parameters & and 6.

The aim of this study is to obtainthe Bayesian estimates of the parameters @ and € for TL-L

distribution under different loss functions. The Bayesian framework is considered under the square
errorloss function (SELF) presented by Legendre [10] and Gauss [11], linear exponential (LINEX)
loss function presented by Varian [12] and general entropy loss function (GELF) presented by
Calabria and Pulcini [13] to obtain the Bayes estimators of the unknown parameters & and 6 .
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2. THE MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Let Xj, i=12,3,-,n be a random sample from the TL-L distribution, then the maximum
likelihood function of (5) denoted by L(x, §)is defined as:
5 2 a-1
n _ O+1+0x —
L(x; e, 0)= T1 200 1+ ) 0+1+0x o 20|, _[0+1+0X 6 x )
i=1| 6+1 0+1 0+1
and the log-likelihood function denoted by /,(x, @, 0) is given as
n n n
In(x,a,8)=n In(2a92)— nn(L+6)-203 x+ S In(L+x)+ _ZIn(wj
=1 =l i=1 0+1
2
n O+1+60x —
+(@-1)3 In l—(—e ‘9"] (10)
i=1 0+1
e T g W
- e —— “
— o0, 6=20
o = get5,6=1))
“ = =02 6=04
/ o -~ a=10,8=05
& J Iy = 1 L —
" =] L
a | &
o <] { iy
= 1
i o
i =]
o /| — a0
°1i /| a8 0
X K = a2, 605
= - -- u:TDE:ﬁ]U a
T T T T I © T T T T T
0 1 2 3 4 3 0 1 2 3 4
H X
Figure 1: The CDF of TL-L Distribution Figure 2: The PDF of TL-L Distribution
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Figure 3: The HRF of TL-L Distribution
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To obtain the MLEs of the TL-L, we solve the equations of the partial derivatives of the log-likelihood

function with respect to the parameters aall =0and % =0. These partial derivatives with respect
a
to the parameters & and 0 are:
2
! n O+1+0x —
O NS 1—(ue 9") (11)
oa a =l 6+1
—26x
n n n
6g—nzﬂ—i— ) X+L_ZL +29(a—1)_2 (6’+l+¢9()e (12)
00 0 O0+1 i O0+1i210+1+& |:1(9+1{(0+1)2 —(9+1+6)()e_26x}
. oln . . Lo
The solution of e 0, is the MLE of & which given as
o
a= il 5 (13)
n 1 —
S 1_(¢9+ +Ox exj
i=1 0+1

ol
By replacing o (12)in a—g =0 with estimate in (13), we have expression in terms of the parameter

0 as

n n
2n n T+ 1 3 X
6 0+1 =1 O+1im10+1+6&

26
126 -n 13 (6”;*6")6 =0 (14)
n (9+1+6’x _ngz '=1(0+1)[(9+1) —(9+1+@<)e—2@<]
Y hjl-| —e
1= f+1

Obviously, (14) is a complex equation, which cannot be solved analytically. Hence, solving (12) and
(13) simultaneously to obtain the maximum likelihood estimates of & and & requires iterative
approach such as Newton-Raphson iterative scheme as presented by Obisesan et al [14] and Bakari
et al [15] amongst others. This Newton-Raphson method can be performed with R-Software package.

3. BAYESIAN ESTIMATION (BE)

The main belief of Bayesian statistics that distinguishes it from the classical statistics is that it
consider the parameter(s) of the given model to be random variables with prior distribution denoted
by 7(®) .In this Section, we discuss the Bayesian estimates for the parameters of the TL-L distribution
using the Jeffreys’ (non-nformative) prior for @ and the Gamma (conjugate) prior for & under some
loss functions namely; squared error loss function (SELF), linear exponential loss function (LINEX)
andgeneral entropy loss function (GELF). We discuss these loss functions and the priorsbriefly as
follows:

3.1 The Square Error Loss Function (SELF)

The square error loss function, which is the simplest and the most commonly used symmetric loss
function in the literature by authors, see Rastogi and Merovci [16] and Sangeeta et al [17] amongst
others. It isdefined as

LseLF (‘M’) = (‘i’ —CD)Z (15)
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The Bayesian estimate under SELF is ® BSELF = Ed ((D | )_().

This is the expectation considered with regard to the posterior density. SELF assigns the same
magnitude of error to both over estimation and under estimation because of its symmetric nature,
which is not always true in many practical scenario Kaur et al. [18].

3.2  The Linear Exponential Loss Function (LINEX)

Varian [23] presented an asymmetric loss function defined as
- m(d-® .
L inex (6.0) =™ @) —m(@-a) -1 (16)

Where m=0 is the shape parameter of the LINEX loss function. Zellner[19] studied the properties
of this loss function and showed that form >0, over estimation is more costly than under estimation.

When m <0, the loss function increases almost exponentially for d <0 and almost linearly ford >0

, whered = ®—-® . The Bayesian estimate under the LINEX loss function is given as

S S
PBLINEX =-H'H[Eq>(e | x 17)

3.3  The General Entropy Loss Function (GELF)

The general entropy loss function (GELF) was proposed by Calabria and Pulcini [13] as an
alternative to the modified LINEX loss function and it is defined as

K .
- o D
D,0)=|—| —kinj—|-1 18
LoeLr(0.0) (@] [Q] (18)
Where k #0 and it determines the shape of the loss function. When k < 0, it shows there is more of

under estimation than over estimation. On the other hand, when k > 0shows more of over

estimation than under estimation. The Bayes estimate of ® under the general entropy loss function
is given as

; aIMIE3
PBGELF =[Ecp (‘D Izﬂ (19)
It is important to note that fork = -1, (i)GELF =0 SELF i-e- the general entropy loss function

reduces to the square error loss function atk = —1.

3.4 Prior Distributions:

The choice of prior distribution for an unknown parameter(s) is an important part of Bayesian
statistics. For the Bayes estimate of the parametersa andé, we consider the Jeffreys’ (non-
informative) prior for @ and the Gamma (conjugate) prior for &. Then the prior distributions are
defined below as:

7z1(CD) o | 1(®@) (20)
021
Where 1(®)=—E — which is the Fisher’s Information. For the TL-L distribution, the Jeffreys’
oD
prior of a is defined as
m () = 1 a>0 (21)
a

and
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p
7,(0) = %ep‘le‘qe 0>0, p>0, q>0 (22)

The joint prior distribution of the parameters a and @ is defined as a combination of the priors as

p
(e, 6) = 4 _gPLemad

a T(p)

(23)

3.5 Posterior Distribution

The posterior distribution function of an unknown probability distribution parameter ® is the
formula used to compute the conditional probability density of the distribution parameter ® given
the data X = xthrough the Bayes formula defined as

e

Where the prior distribution of the unknown parameter is 7(®), L(x|®) is the likelihood function

of the density of X and @ is vector of the unknown parameter. Then the posterior distribution of
the TL-L distribution parameters & and 6 is obtained by substituting (9) and (23) into (24) to be
a-1
2NgN~1g2n n )(9+1+axj 1{9+1+9xe_gxr . —0(2x+q)

1
0+1)"(p) Ei e 0+1
Pa,0]x) =

a1 (23

n _n-1,2n n 2
o000l i 0 H(1+X{9+1+0xj 1_{0+1+9xe_9x} e_9(2X+q)dad6
00 (0+2)"1(p) ;_1 0+1 6+1

Obviously, the posterior distribution in (25) for the estimation of TL-L parameters, « and #is in a
rational form which cannot be reduced to a closed form, making tedious to evaluate the posterior
distribution in order to obtain the Baye’s estimators. However, one can used the approach developed
by Lindley [20], to approximate these Bayes estimators.

3.6  Lindley’s Approximation

Lindley [20] developed a method for reducing the posterior distribution in Bayesian estimation,
which involves integral that can’t be expressed in closed form. This method provides a simplified
form of Bayesian estimator, which makes it easier to apply in practice. Several authors have used
the Lindley approximation to obtain the Bayes estimate for some lifetime distribution in the
literature; amongst whom are Hummara and Ahmad [21], Adegoke et al ([22], [23]), Kamran et al
[24], Bashiru et al [25], etc. Lindley developed an asymptotic approximation to the ratio
Lla, 0pUla, 6
() e o2l 0 0% Ot 0 (26)
eL(a, H}FU (a, H)G(a, 9)

f(a, 6)

Where Z(a, 0)is a function of the distribution parameter @ and@, Lla, 0)is the log-likelihood

function and U(a, 9) is the log of the prior distribution function 7r(a, 0). Therefore, 1(X) is

evaluated as

1 1 2 2
1(X)=2(e.0)+ 5211011 + 220020 | + V121011 +U 525095 )45 ['-11121‘711 * '—22222‘722]

1
5 (12221 011992 + 11272011920 ] 27)

Therefore, for an unknown parameter & , the Lindley approximation is can be expressed as
~ A1 1 2
Elz(alx)]=2(a, 9)+5 [211003] + 0124094 )2 uuzioh ~umioro0) 28)

Similarly, for an unknown parameter @, the Lindley approximation is can be expressed as
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A 1 1
E[z(0]x)]= Z(“: ‘9)““5 25p005] +U9Z505) )+§ ['-22222052 +L29912Z9 011‘722] (29)

Where the elements of the Lindley approximation in (27 - 29) are as given below

02(@0) , _o2(a.0) 022(a,0) 027(0,0) 022(a,0)
== 2T um— 5 2= 5 212 =500
oa 00 a
2
and 221:M
00°0a
P(e, 0)=In z(a,0)=pIng—InT(p)~Ina+(p-1)Ino—-qb;
Ulzap(ae)z_i nd U2:6P(a,0):p_—l_q
o a ol o
BhL(eo) 2
Lgg = =5
6a3 a3
L %mL(@o) 2n an 10 xexf 2 D xix)
222 548 03 (9+1)° O+1iFp114 k)2  (9+1)° IFU0+1+&x)?
L2 b« +2(ac+1)gCBA”—CAB”—C'A'B+C'B'A_2(0;—1)nBA'—AB'
(0+1)° IR0+ &x)  O+1 2 c? (0+12 = B2
3hL(e6) 2 NBA-AB 2 DA
L122 = 2 9+l 2 2 4B
oaol 0+1li=1 B (9+1) i-1B
3
Lm:a In Z(aﬂ)zo
0a%00
2
o11 1 e and
Lll n
Goyee LM __n 110 Wrx) 2 0 x 2+l
27 Ly |62 (0412 O+liga1ra? (0412 iFO+1+6x)  (0+1)
-1
. gBA'—AB' 2@-1) D A
i<l B2  (9+1)? i=1B
Where

A= x(0+1+ &N +1)0 +1+6K)-1]e 20X

A = x{[(9+1)(9+1+ @()—1]@— x—29x—29x2)+(9+1+ X)[(O+1+ )+ (0 +1)1+ x)]}e
—20 x

—20 X

B =(0+1)? -(0+1+ )% e

B’ =2(9+1)+2(9+1+@<)(9 x2 +ex—1)e‘2‘9x
2

C ={(9+1)2 —(0+1+&)? e—29x}
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C'= 2[ (0+1)? —(0+1+ ) e‘z‘ng{z(9+1)—2(9+1+ 9x)(9x2 ex—l)e‘z‘gx}

3.7  Lindley Approximation under the Different Loss Functions
In this section, we consider the Bayes estimators of the TL-L parameters « and 6 are obtained
assuming that both « and @ are unknown, using the prior in (23) under three different loss

functions:

3.7.1 Under Squared Error Entropy Loss Function

a) For the parameter « , it can be seen from the SELF estimator that Z(a, 0)=a , then lel,
and 22=211=222 =O,wehave
A a
N BA'— AB’ n
Where Hq = 2 BA'-AB" _ 2 A and
0+1ic1 g2 (9+1)? i=1B
Hy n n 1 x1+x) L2 h o« 2(a+1)

) 02 (0+12 O+1iTpr1ran? (9417 iIAO+1+6x)  (0+1)

-1
NBA'—AB' 2(a-1) N A
+ Z 2 ( 2). o
i=1 B (p+1)~ i=1B
b) For the parameter @, it can be seen from the SELF estimator that Z(a, 9)=0, then 22 =1,
and Zy=2y1=2Z99 =0, we have
p-1
o

éSELF= E[Z(9|>_<)]=9+H2( —q+%H2H3j (31)

Where

n n 1 x1+x) L2 h o« 2(a+1)

Ho=| - _ _
27102 (0422 O+liFgirea?  (+1)? 12O +1ra)  (9+D)

-1

N BA'—AB’ 2(z-1) N A

L PBA A 20y g A
i=1 B (p+1)~ i=1B

2
Hszﬂ_ 2n 1D x1+x)= 2 g x(1+x) L2 b x

03 (0+1° O+1iFp 100> (941 041 k) (0+1)° RO +1+60)

2(a+1) N CBA"-CAB"-C'AB+CB'A 2(x-1) h BA'— AB’
+ > -
0+1 =1 c2 (0+1)? =1 B2

57



Nzei C. L, Adegoke M. T, Ekhosuehi N., Mbegbu, I. ] RT&A, No 1 (77)
BAYESIAN ESTIMATION OF TLL DISTRIBUTION PARAMETERS Volume 19, March 2024

3.7.2 Under LINEX Loss Function

a) For the parameter &, it can be seen from the LINEX estimator that Z (e, 6)=e M then
Zl——me_ma,lesze_ma and 22 =222 =0 we have

A —m —m ma
aLinex - E6T1x)-e a[“T(a—'ﬂHz)} (32)
Where
n BA'— AB’ n
o2 RBAABT 2 DA
0+1iZ1 B2 (9+1)2 i=1B
n n 1 x1+x) 2 n X 2(a+1)
Ho= |3~ 72 o1 2 2 -
02 (0+12 O+1iF(o11+x)? (9412 iIAO+1+x)  (0+1)
-1
. DBA'-AB’ 2@-1) D A
i<l B2  (9+1)? i=1B
b) For the parameter @, it can be seen from the LINEX estimator that Z(a,@):e_me, then
Zzz—me_me, Zyy = mze_mgand Zy=2q7 =0, we have
0 (e ™ x)=e ™ i mH,| LmoHyHy ) g2t 33
LINEX = (& "7 [x)=e tmHp S m-HaHg)ra-— (33)
Where

n n 1 0 x1+x) 2 n o x 2(+1)
o=l 2 2 o 7t -
02 (0+12 O+1iF(pr1+x)? (9+1)? iIAO+1+x)  (0+1)

-1

N BA'—AB' 2(z-1) N A

. 2 @ 2)-2_
i=l B (9+1)~ i=1B

and
2
2n  2n 10 x@+x)° 2 1 XWex) 2 D X

Ho= —— +
3763 (0+)° 0+1iT(gr1+4)® (0412 1 A(9+1+ )2 (9+1)° iRO+1+6)

2(a+1) N CBA”"-CAB"-C'AB+CB'A 2(a-1) N BA'- AB'
0+1 21 c2 (0+12 151 B2

3.7.3 Under GELF Loss Function

a) For the parameter «, it can be seen from the GELF estimator that Z(a,@)za_k, then
Zl:—ka_(k+1), Zy =k(k+De (k+2) and Zy =Z5, =0 we have
. —k —k ka
:E( x): 14+ 2% (K +1-HqH 34
AGELF = B@ "X |=a [ o ( 1 2)} (34)
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Where
n r_ ! n
Hy = 2 _ BA'-AB' 2 .Zé and
6+1i1 g2 (9+1)? i=1B
Hy = n n 1 x1+x) L2 h o« 2(a+1)

9_2_(9+1)2 _‘9+1i=1(9+1+6<)2 (0+1)? iA0+1+60)  (0+1)

-1

N BA'—AB’ 2(¢-1) N A

+ J—
52 (0+1)? ile]

b) For the parameter @, it can be seen from the GELF estimator that Z(a, H)Za_k, then
Zy=—ka ®* 7, —kk+)a® D and /=71, =0, we have
A B S 1 p-1
Where
n n 1 N x1+x) 2 0 X 2(a+1)
Ho= | 2 7 a1 2 2 -
0 (9+1)° O+lislig+1+ex)  (0+1) i20+1+6k)  (6+1)

-1

N BA'—AB' 2(z-1) N A

 poas et g a
i=1 B (9+1)~ i=1B

2

Hszﬂ_ 2n 1 D x(1+x) 2 g x(1+x) L2 b x

+ —
03 (0+1° O0+liF(0114a)° (0412 iAo +1+ )2 (0+1)° iO+1+6X)

2(a+1) N CBA"-CAB"-C'AB+CB'A 2(x-1) h BA'- AB’
+ > -
0+1 =1 c2 (0+1)? =1 B2

4. NUMERICAL ANALYSIS
41  Monte Carlo Simulation Study

In this section, a Monte Carlo simulation studywas carried out with R Statistical software to
compare the performance and accuracy of the proposed Bayesian estimators and their maximum
likelihood estimates counterpart of TL-L distribution parameters & and € by using mean square
Errors (MSE) and the BIAS given as:

N /. 2
MSE = ~ 3 (b-o)
N j=
and
1 N .
BIAS= — Y ‘(D—(D‘
Ni=1
Where N is the number of samples. In each simulation, we generate N=10,000 samples of size
n=30,50,100, 200, 500,1000 from TL-L distribution for some sets of parameter values
a=0.84,16, 2, 25and §=0.5, 2, 2.5. We assume that p takes the values p=2, 5,8,10; (takes the
values g =1, 2,5,12; m takes the values m=16, 8 15and C takes the wvalues
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c=-0.25,—0.5,—0.65 —0.75. These results presented in Tables 1- 4 below showed the mean, MSE’s

and bias for estimating the parameters  and 6.

From the results of the simulation study in Table 1 — 4, we summarize our observations as follows:

i.  For any fixed values of the parameters « and €, as sample size increases, the MSEs of all
the estimators, both MLEs and Bayesian Estimates decrease.
ii.  The values of the hyper parameters from the prior distribution have minimal effect on the

posterior estimates.

iii.  Generally, the terms of MSEs of the MLEs and Bayesian estimates converge to the same

value as for the large sample except for GELF.

42  Real Data Analysis

This section present the application of TLL distribution to real data set. This data set represent 66
breaking stress of carbon fibers (in Gba) which was reported in Nicholas and Padgett [26].

3.70, 274, 273,
241, 3.19, 3.22,
3.22, 339, 281,
0.39, 3.68, 248,
3.65, 3.75, 243,
212, 315  1.08,

2.50,
1.69,
4.20,
0.85,
2.95,
2.56,

3.60, 3.1,
3.28, 3.09,
3.33, 2.55
1.61, 279,
297, 3.39,
1.80, 253

3.27,
1.87,
3.31,
4.70,
2.96,

287, 147,
3.15, 4.90,
3.31, 2.85,
2.03, 1.89,
2.35, 2.55,

3.11, 3.56,
1.57, 2.67,
1.25, 4.38,
2.88, 2.82,
259, 203,

4.42,
2.93,
1.84,
2.05,
1.61,

Table 1: Showing mean of ML and Bayesian estimates with corresponding MSEs and Bias for 8= o = 2 (while
p=2 9q=1 m=1 c=-0.75)

o a
n Method | MEAN MSE BIAS MEAN MSE BIAS
ML 2563265  0.317267  0.563265 2.155780  0.024267  0.155780
30 LINEX | 2563265 0.317267  0.563265 2.156686  0.024550  0.156686
GELF 2.019669  0.000386  0.019669 1.656376  0.118120  0.343623
SELF 2.559342  0.312864  0.559342 2.156988  0.024645  0.156988
ML 2485253  0.235470  0.485253 2.125277  0.015694  0.125277
50 LINEX | 2.485253  0.235470  0.485253 2.130306  0.017000  0.130306
GELF 1.965990  0.001156  0.034009 1.686560  0.098244  0.313439
SELF 2473202  0.223021  0.473202 2.131028  0.017197  0.131028
ML 2.219903  0.048357  0.219903 2.067709  0.004585  0.0677091
100 LINEX | 2.219903 0.048357  0.219903 2.066873  0.004473  0.066873
GELF 1.817202  0.033414  0.182797 1.692596  0.094496  0.307403
SELF 2.218925  0.047928  0.218925 2.066875  0.004473  0.066875
ML 2194559  0.037853  0.194559 1.940733  0.003512  0.059266
200 LINEX | 2.194559  0.037853  0.194559 1.959422  0.001751 0.040577
GELF 1.798195  0.040554  0.201380 1.723795  0.076289  0.276204
SELF 2.190094  0.036136  0.190094 1.959858  0.001720  0.040141
ML 1.926363  0.005422  0.073636 2.017662  0.000311 0.017662
500 LINEX | 1.926363 0.005422  0.073636 2.017107  0.000292  0.017107
GELF 1.634335  0.133710  0.365665 1.763728  0.055834  0.236271
SELF 1.925588  0.005537  0.074411 2.017155  0.000294  0.017155
ML 1.975739  0.000588  0.024260 2.010489  0.000110  0.010489
1000 LINEX | 1.975739  0.000588  0.024260 2.007554  0.000057  0.007553
GELF 1.666054  0.111519  0.333945 1.779841  0.048469  0.220158
SELF 1.975331  0.000608  .024668 2.007565  0.000057  0.007565
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Table 2: Showing mean of ML and Bayesian estimates with corresponding MSEs and Bias for 8= o = 2.5 (while
p=549=2 m=8k=-05)

o a
N Method | MEAN MSE BIAS MEAN MSE BIAS
ML 3.200958  0.491343  0.700958 2.746747  0.060884 0.246747
30 LINEX | 3.200958 0.491343  0.700958 2.746587  0.060805 0.246587
GELF 0.318750  4.757852  2.181250 0.364048  4.562259 2.135951
SELF 3.199980 0.489972  0.699980 2.746916  0.060967 0.246961
ML 3.103670  0.364418  0.603670 2.733993  0.054753 0.233993

50 LINEX | 3.103670  0.364418  0.603670 2.734001  0.054756 0.234001
GELF 1.753758  0.556876  0.746241 0.365735  4.555087 2.134265

SELF 3.101468 0.361764  0.601468 2.734241  0.054486 0.234241
ML 2775719  0.076021  0.275719 2.659853  0.025531 0.159853
100 LINEX | 2775719  0.076021  0.275719 2.659853  0.025531 0.159853
GELF 0.362098  4.570621  2.137901 1.630771  0.755558 0.869228
SELF 2.775484  0.075891  0.275484 2.659435  0.025420 0.159435
ML 2.749392  0.062196  0.249392 2.463737  0.001314 0.036262

200 LINEX | 2749392  0.062196  0.249392 2463329  0.001344 0.036670
GELF 0.367475  4.547659  2.132524 0.405834  4.385529 2.094165
SELF 2.748470  0.061737  0.248470 2.464147  0.001285 0.035858

ML 2411848  0.007770  0.088151 2.516045  0.000257 0.016045
500 LINEX | 2.411848 0.007770  0.088151 2.515688  0.000246 0.015688
GELF 0.415480  4.345220  2,084519 0.397501  4.420501 2.102498
SELF 2411668  0.007803  0.088338 2.515719  0.000247 0.015719

ML 2.472058  0.000780  0.027941 2.512703  0.000161 0.012703
1000 LINEX | 2.472058  0.000780  0.027941 2.512889  0.000166 0.012889
GELF 0.404940  4.389274  2.095059 0.397943  4.418641 2.102056
SELF 2471967  0.000785  0.028032 2.512922  0.000166 0.012922

Table 3: Showing mean of ML and Bayesian estimates with corresponding MSEs and Bias for 8=0.5and o =1.6
(while p=10, q=5, m=15¢c=-0.25)

o a
n Method | MEAN MSE BIAS MEAN MSE BIAS
ML 0.482010 1.249900 1.117989 1.725412  1.501634 1.225412

30 LINEX | 0.482010 1.249900  1.117989 1.725519  1.501897 1.225519
GELF 0.833072  0.588178  0.766927 1.146106  0.417453 0.646106
SELF 0.482010  1.249900 1.117989 1.602093  1.221410 1.102093

ML 0.494062  1.223098  1.105937 1.700421  1.441010 1.200421
50 LINEX | 0.494062  1.223098  1.105937 1.701528  1.443671 1.201528
GELF 0.838310 0.580171  0.761689 1.141972  0.412128 0.641972
SELF 0.494062  1.223098  1.105937 1.700645  1.441547 1.200645

ML 0.547370  1.108029  1.052629 1.654412  1.332668 1.154412
100 LINEX | 0.547370  1.108029  1.052629 1.624175  1.264541 1.124175
GELF 0.859336  0.548582  0.74663 1.127087  0.393238 0.627087
SELF 0.547371  1.108026  1.052628 1.553157  1.109139 1.053157
ML 0.553372  1.095429  1.046627 1.613726  1.240386 1.113726

200 LINEX | 0.553372  1.095429  1.046627 1.613730  1.240395 1.113730
GELF 0.862086  0.544517  0.737914 1.126783  0.391974 0.626078
SELF 0.553371  1.095430  1.046628 1.725438  1.501699 1.225438
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ML 0.616878  0.966528  (0.983122 1.607956  1.227566 1.107956
500 LINEX | 0.616878  0.966528  0.983122 1.607959  1.227574 1.107959
GELF 0.888384  0.506396  0.711615 1.125163  0.391029 0.625163
SELF 0.630569  0.939795  0.969430 1.613727  1.240389 1.113727
ML 0.635364  0.903520  0.964635 1.553046  1.108906 1.053046
1000 LINEX | 0.635364  0.903520  0.964635 1.553455  1.109767 1.053455
GELF 0.891125  0.502502  0.708874 1.116361  0.3799015  0.616361
SELF 0.635354  0.930540  0.964645 1.607957  1.227568 1.107957

Table 4: Showing mean of ML and Bayesian estimates with corresponding MSEs and Bias for =2 and o =0.84
(while p=5, q=12, m=8,c=—0.65)

o a
n Method | MEAN MSE BIAS MEAN MSE BIAS
ML 2.631936  3.211034  1.791936 0.767969 1.517899  1.232030
30 LINEX | 2.631936 3.211034 1.791936 0.738588 1.591409  1.261411
GELF 1.764271  0.854281  0.924271 0.820932 1.390366  1.179068
SELF 2408270  2.459486  1.568270 0.738978 1.592766  1.261921
ML 2.553476  2.936002  1.713476 0.781702 1.484247  1.218297
50 LINEX | 2.553476 2.936002 1.713476 0.766525 1.521766  1.233474
GELF 1.826392  0.972970  0.986392 0.841222 1.342981 1.158778
SELF 2.543565  2.871552  1.694565 0.766439 1.522096  1.233560
ML 2.231311 1.935746  1.391311 0.787585 0.469048  1.212414
100 LINEX | 2231311 1935746  1.391311 0.804772 1.429149  1.195227
GELF 1.634268  0.630865  0.794268 0.885795 1.341462  1.114206
SELF 2132726  1.671155  1.292726 0.829791 1.369402  1.170208
ML 2170852  1.771167  1.330852 0.8445506  1.335063  1.155449
200 LINEX | 2170852 1.771167  1.330852 0.829822 1.369314  1.170177
GELF 1.676593  0.699902  0.83659 0.866981 1.283888  1.133019
SELF 2216419  1.894586  1.376419 0.802809 1.433578  1.197190
ML 1.895829  1.114774  1.055829 0.854625 1.311883  1.145374
500 LINEX | 1.895829  1.114774  1.055829 0.826858 1.376269  1.173141
GELF 1.546722  0.499456  0.706722 0.887273 1.238159  1.112726
SELF 1.956499  1.246570  1.116499 0.831958 1.364320  1.168041
ML 1.958634  1.251342  1.118634 0.855785 1.309226  1.144214
1000 LINEX | 1.958634 1.251342 1.118634 0.902505 1.206101 1.097494
GELF 1.512338  0.452302  0.672533 0.942452 1.118742  1.057547
SELF 1.890693  1.103958  1.050693 0.912619 1.183110  1.087380

Table 5: The Point Estimates of Topp-Leone Lindley distribution parameters through MLE, LINEX, GELF and SELF
p=6 g=4, m=5 k=-0.75

Parameters MLE LINEX GELF SELF
0 0.7128402 0.7128402 | 0.7768919 | 0.7128402
o 6.339166 6.339166 3.995067 6.339166
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5. CONCLUSION

In estimating the parameters of probability distribution in survival analysis, Bayesian mechanism
examines the nature uncertainty and provide a judicious framework for studying such problems. In
this study, we considered the Bayesian Estimation (BE) for the Topp-Leone distribution parameters.
The BEs were obtained using Lindley's approximation under three different loss functions, which
includes Square Error Loss Function (SELF), Linear Exponential Loss Function (LINEX) and
Generalized Entropy Loss Function (GELF). Monte Carlo simulation was carried out to examine the
behavior of the maximum likelihood (ML) and Bayesian Estimators, which was investigated through
the mean square error (MSE) and bias of the estimators. It was also observed for any fixed value of
the parameters, as sample size increases, the MSEs of the Bayesian Estimates and MLEs decrease.
Also, the MLEs and Bayesian estimates converge to the same value as the sample gets larger except
for GELF. Generally, it was observed that the results obtained from the MLE, SELF and LINEX are
more consistent than that of GELG.
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Abstract

New parameters can be added to expand families of distribution for greater flexibility or to
construct covariate models in several ways. In this study, a trigonometric-type distribution called
Sine-Weibull distribution was developed by adopting the Weibull distribution as the baseline
distribution and Sine-G Family as the generator to generate a flexible probability distribution
without the need for extra parameters. The moment, moment generating function, entropy, and
order statistics are some of the mathematical aspects of this distribution that were derived. The
Maximum Likelihood approach was used to estimate the new distribution’s parameters. Using
actual datasets, the Sine-Weibull distribution's applicability was demonstrated.

Keywords: Sine-G Family, Weibull Distribution, Probability Distribution,
Maximum Likelihood Estimator

I. Introduction

Distribution functions, their properties and interrelationships play a significant role in modeling
naturally occurring phenomena. For this reason, a large number of distribution functions, which
were found applicable to many events in real life, have been proposed and defined in literature.
Various methods exist in defining statistical distributions. Many of these arose from the need to
model naturally occurring events. For example, the Normal distribution addresses real-valued
variables that tend to cluster at a single mean value, while the Poisson distribution models discrete
rare events. Yet few other distributions are functions of one or more distributions.

To explain real world phenomena, statistical distributions are widely applied. Their theory
is widely studied due to the utility of statistical distributions, and new distributions are developed.
In the field of probability theory and statistics, the search for creating a more effective and scalable
distribution of probability remains high [1]. Numerous standard distributions have been
extensively used over the past decades for modeling data in several fields such as Engineering,
Economics, Finance, Biological, Environmental and Medical Sciences etc. However, generalizing
these standard distributions has produced several compound distributions that are more flexible
compared to the baseline distributions. For this reason, several methods for generating new
families of distributions have been studied.

Weibull distribution is a continuous probability distribution. It is one of different
distributions used to describe particle size with major application in survival analysis, weather
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forecast and reliability engineering. The Weibull distributionis a continuous probability

distribution. It was named after Swedish mathematician Waloddi Weibull, who describe it in detail
in 1951, although it was first recognized by [2] and first applied by [3] to describe a unit size of
distribution. Weibull distribution exist with scale and shape parameters. This distribution has
become very popular in analyzing lifetime data and for many applications where a skewed
distribution is required. Inducing of a new shape parameter(s) introduces a model into greater
family of distributions and can give significantly skewed and heavy-tailed distributions and also
provides greater flexibility in the form of new distribution.

Even when there is uncertainty about the future in real life, decisions still need to be taken.
Thus, uncertainty issues must be dealt with by decision-making processes. Probability is one of the
frequently employed strategies for addressing uncertainty in planning and management. In order
to create a family of hybrid distributions that are more effective than their parent distributions,
many researchers have focused on the idea of combining two or more probability distributions. By
adding one or more parameters, these distributions become more flexible and can track a variety of
random phenomena that are difficult to model using their parent distributions. The laws of
generality, which state that when a particular distribution has more than four parameters, it
undermines the performance of the model, can sometimes be breached by such compounding or
extended distributions.

Many researchers have come up with new families of trigonometric in recent times. Some
of these families include: exponentiated sine-generated family of distributions by [4], Sin-G class of
distributions by [5], Sec-G Class by [7], Sine Square distribution by [8], Sine Inverse Lomax
Generated Family by [9], Sine Burr XII by [10], Sine Kumaraswamy-G family of distributions by
[11], Sine Topp-Leone family by [12], Sine-Exponential Distribution by [13] and Sine Power Lomax
distribution by [14] (2021).

The quest for developing more efficient and flexible probability distribution remains
strong in the field of probability theory and statistics. However, there is no single probability
distribution that is suitable for different data sets. Therefore, there is a need to come up with their
extended forms to give substitutive adaptable models or as to form a better representation of the
data. Thus, this has triggered the need to extend the existing classical Weibull distributions.
Therefore, this gives a gap of coming up with a distribution (Sine-Weibull Distribution) capable of
handling a dataset that behaved negatively or positively skewed. Hence, this research is aimed at
developing a new probability distribution function called Sine-Weibull Distribution.

II. Methods

2.1 The Weibull Distribution

A continuous random variable X is said to have followed a Weibull distribution if its cdf is
expressed as;

x\k
H(x,k,A)=1-— e‘(i) , x>0 (D
and the pdf is also expressed as;
k ,x\ (k-1 _(&)""
h(x,k,l)=z(z) e\ x>0 (2)

2.2 Sine G Family of Probability Distribution

Let H(x) be the cumulative distribution function (cdf) of a univariate continuous distribution and
h(x) be the corresponding probability density function (pdf), then, the Sine-G family of probability
distribution according to [5] Kumar et al., (2015) is given by:

66


https://en.wikipedia.org/wiki/Weibull_distribution

M. U. Faruk, A. M. Isa, A. Kaigama RT&A, No 1 (77)
SINE WEIBULL DISTRIBUTION Volume 19, March 2024

FHEE)

F(x,&) = J- cost dt = sin {gH(x, f)} 3)

0

and its corresponding pdf is given by:

£, = 5 h(6,8) cos {5 HEx©)) )

where H(x, ) and h(x, ) are the cdf and the pdf of any baseline distribution with vector parameter
¢

2.3 The New Sine Weibull Distribution

The pdf and cdf of the new sine Weibull distribution are given in equation (5) and (6):

s =56 ] ©
And
ek =anfp -]

The survival function S(x), hazard function h(x), reverse hazard function r(x) and the quantile
function Q (u) are given below:

S(x) = 1- F(x) =1-—sin {g [1 — e_(jl_c)k]} @)
o 5O sl O]
h(x)=1_F(x)= % (8
1 —sin {% [1 - e_(I) ]}
r(x) = igg = g(;—c)k_l e_(%)k cot {g [1 — e_(jl_c)k]} 9
1
. 1 =
Q) = F1 4 {—log <1 - ZSHITU) * (10

2.4. Parameter Estimation

The parameters of the newly developed Sine-Weibull distribution will be estimated using
the method of maximum likelihood (MLE). Moment and moment generating function (mgf) will
be used in determine the mean, variance, skewness and kurtosis, among other properties, of the
proposed distribution.

2.4.1 Method of Maximum Likelihood

Let Y,,Y,, ..., Y, independent, identically distributed (iid) random sample of a random
variable Y with pdf given by f(y/d), then the likelihood function L(8:y) of Y3,Y,, ..., Y, is the joint
density function when regarded as a function of the parameter. That is
L(6:y) = I, f (1, 6)

It is more convenient to use the log likelihood.
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[(8:y) =InL(S,y)

The estimate of the parameter can be obtained by taking the derivative of the log
likelihood function with respect to the parameter and equating to zero, that is

dy

35 InL(6,y)=0 (11)

2.4.2 Maximum Likelihood of Sine-Weibull Distribution

Let X;, X5, ..., X, be a random sample of size n from a Sine-Weibull distribution with a pdf
given by (1.1), the likelihood functionL(4: x) of this sample is given as

LAix) = f(x, ) =1L, % G)k_l e_(%)k cos {g [1 - e_(%)k]}

S D STy PR

Taking the log of the likelihood function gives

B T\NANO X\ K1 T SN L (B
l(4,x) =1n <(E) Zi:1 (7) cos {E [1 ) ]}e 2284(3)
e C T _(ﬁ)k noxnk

I(A,x)=n ln( ) + (k — 1)lrlz:l_=1 (7) + an cos{i[l —e \2 ]} - Zi:l (7)

PR O | S D=0
cosy7|1—e =0, ecause  COS (—) =
To maximize equation(11), we take the derivative with respect to A and equate to zero
al nor1 no(—kx*
=Y G2 (—/1 ) =
T (T ()

no [ oxk no1
Qo (r) =6-0 ()

n n
kz —(k—-1) A-1 piert
i=1 —

i=1

"k
2k =
i=1 k-1

)
Tl (k_l 11
1 k
n

A= / P (12)

(k 1)
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Equation (12) gives the maximum likelihood estimator of the parameter 1
2.5. Some Mathematical Properties

2.5.1 Moment

Moments plays a vital role in the field of statistical analysis, particularly when it comes to
real applications. Suppose that X is a random variable and r is a non-negative integer, the r®
moment of X is the quantity E (X*) provided it expectation exist. The rt is given by:

E(x") = fm xf(x)dx
x=0

The rt" moment of proposed Sine-Weibull distribution is derive as follows:

E(x") = gijoxr (%)H @ cos {g [1 _ e'(i—c)k]} dx

T [ee)

2k-1 Lzo(x)k—wle_(%)k cos {g [1 - e_(%)k]} dx

E(x") = i (D14 f:o (f)k_lw e_(%)k cos {% [1 - e_(%)k]} dx

E(x") =

2261 —o M
®x\k-1+7r x\k x\k

E(x") = f (—) e_(I) cos {E[l - e_(I) ]} dx =1 (it is a pdf)

0 A 2

T

= E(XT) — S (A)k—1+r
E(xT) = g,v (13)
The first and second moments (when r =1 and r = 2) are therefore given below,
EGO) =72 14

T
E(x?) = 5/12 (15)

The variance is given below

T T 2
V@) =B~ [E@P =522 - (—z)

2
21T
V@) =52 (1 2) (16)
T T
iati — — ]2 - —
Standard Deviation (S) = 2/1 (1 2) a7

2.5.2 Skewness and Kurtosis of the Sine-Weibull Distributions

The skewness and kurtosis of the sine-Weibull distribution are obtained using the third
and fourth moment respectively with the power of the standard deviation of the distribution These
approaches is the measure of kurtosis (a3) and skewness(a,) based on moments

E(x?)
(a3) = 53

T .3
21

3
(ea-3)

(a3) = (18)
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E(x4,) 7/14 7&4

(a4—) = 54 = 4 = T T 2
Vs Vs —~ 722 —_
(F0 D) Ge0-9)
1

(@) =7 T (19)

_ — )2

71 -3
2.5.3 Entropy

The entropy of is a measure of variation of the uncertainty. There are many entropy
measures studied and discussed in literature but the Renyi entropy is perhaps one of the most
popular. Renyi entropy of with proposed density function is given by

1 [ee]
ingp = 7= 109 ( | f(X)”dX> 20)

where p > 0 and p # 0. Inserting equation (4) into (20)

I R

2.5.4 Order Statistics

Suppose that xq, x5, ..., x,, are random samples of size n from probability distribution with
pdf f(x) and cdf F(x) as defined in (3) and (4) respectively, the pt order statistic can be expressed

fu0 = =IO p i - PG (22)

P-Din-1

The order statistics of the proposed Sine-Weibull distribution is given by:

fulx) =

(3@ e @ szl Y
(07" T oy

CEE TGS g

X {1 — sin [g (1 - e‘@k)]}n_p (23)

III. Results

3.1 Application

Specifically, AIC is aimed to obtain the best approximating model to the unknown true data
generating process. Superficially, BIC differs from AIC only in the first term which depends on
sample size n. Models that minimize the BIC are selected. From a Bayesian perspective, BIC is
designed to find the most probable model given the data.
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3.1.1 Dataset

One dataset was considered for illustrative purposes and comparison with the baseline
distribution and other competitors. The comparison was done with Weibull distribution and
Lomax distribution. We estimated the unknown parameters of the distribution by the maximum-
likelihood method. We obtain the values of the Akaike information criterion (AIC), Bayesian
information criterion (BIC) and consistent Akaike information criterion (CAIC) for the newly
developed distribution as well as the competitors. The dataset consists of thirty successive values
of March precipitation (in inches) in Minneapolis/St [16]. The data are as follows:

0.77 1.74 0.81 1.2 195 1.2 0.47 1.43 3.37 2.2 3.0 3.09

1.51 2.1 0.52 162 131 032 0.59 0.81 2.81 1.87 1.18 1.35
4.75 248 0.96 1.89 09 2.05

Table 1: Summary Statistics of the dataset

Data Minimum Q, Media Mean Q3 Maximu
Dataset 0.92 1.302 1.544 1.658 1.814 5.306

Table 1 gives the summary statistics of the data sets such as the mean, the median, the first and

third quartile, the minimum and the maximum values.

Table 2: MLE, AIC, CAIC, BIC, and HQIC of the data set

Data Set MLE AlcC CAIC BIC HQIC

Sine-Weibull 55.61173 115.2235 115.3472 120.4388 117.3322
Weibull 150.5514 305.1029 305.2266 310.3132 307.2716
Lomax 150.5514 303.1029 303.1437 310.3132 304.1572

Table 2 presents the results of the analysis of the dataset. The result of the analysis of the Sine-
Weibull Distribution was compared with Weibull Distribution and Lomax Distribution to test the
efficiency of the model. The proposed Sine-Weibull distribution has proven to be the better model
because it has the least AIC, CAIC, BIC and HQIC.

IV. Discussion

There has been a growing interest among statisticians and applied researchers in developing
flexible lifetime models for the betterment of modelling survival data. In this paper, we introduced
a two-parameter Sine-Weibull distribution which is obtained by considering a Weibull distribution
as the baseline. We study some of its statistical and mathematical properties. Maximum Likelihood
Estimation was used in parameter estimation. The usefulness of the new distribution was
illustrated via the analysis of real data sets. We hope that the proposed extended model will attract

wider applications.

71



M. U. Faruk, A. M. Isa, A. Kaigama RT&A, No 1 (77)
SINE WEIBULL DISTRIBUTION Volume 19, March 2024

References

[1] Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous
distributions. Metron, 71(1), 63-79.

[2] Frechet, M. (1927). Sur la loi de probabilit’e de 1’ecart maximum. Ann. de la Soc. polonaisede
Math, 6, 93—-116.

[3] Rosin, P. and Rammler, E. (1933) The Laws Governing the Fineness of powdered coal. Journal of
the Institute of Fuel, 7, 29-36

[4] Muhammad, M., Alshanbari, H.M. Alanzi, A.R.A., Liu, L., Sami, W., Chesneau, C., Jamal, F. A.
(2021). New Generator of Probability Models: The Exponentiated Sine-G Family for Lifetime Studies.
Entropy, 23, 1394.

[5] Kumar, D., Singh, U., & Singh, S. K. (2015). A new distribution using sine function-its application
to bladder cancer patients’ data. Journal of Statistics Applications & Probability, 4(3), 417.

[6] Souza, L., Junior, W. R. O., de Brito, C. C. R., Chesneau, C., Ferreira, T. A. E., Soares, L. (2019).
General properties for the Cos-G class of distributions with applications. Eurasian Bulletin of Mathematics,
2(2), 63-79.

[7] Souza, L., de Oliveira, W. R., de Brito, C. C. R., Chesneau, C., Fernandes, R., & Ferreira, T. A.
(2022). Sec-G class of distributions: Properties and applications. Symmetry, 14(2), 299.

[8] Al-Faris, R. Q., & Khan, S. (2008). Sine square distribution: a new statistical model based on the
sine function. Journal of Applied Probability and Statistics, 3(1), 163-173.

[9] Fayomi, A., Algarni, A., & Almarashi, A. M. (2021). Sine Inverse Lomax Generated Family of
Distributions with Applications. Mathematical Problems in Engineering, 1-11.

[10] Isa, A. M., Ali, B. A., & Zannah, U. (2022). Sine Burr XII Distribution: Properties and Application
to Real Data Sets. Arid Zone Journal of Basic and Applied Sciences, 1(3), 48-58.

[11] Chesneau, C., & Jamal, F. (2020). The sine Kumaraswamy-G family of distributions. Journal of
Mathematical Extension, 15.

[12] Al-Babtain, A. A., Elbatal, 1., Chesneau, C., & Elgarhy, M. (2020). Sine Topp-Leone-G family of
distributions: Theory and applications. Open Physics, 18(1), 574-593.

[13] Isa, A. M., Bashiru, S. O., Ali, B. A., Adepoju, A. A., & Itopa, L. 1. (2022). Sine-Exponential
Distribution: Its Mathematical Properties and Application to Real Dataset. UMYU Scientifica, 1(1), 127-131.

[14] Nagarjuna, V. B. V., Vardhan, R.V. and Chesneau, C. (2021). On the Accuracy of the Sine Power
Lomax Model for Data Fitting. Modelling, 2, 78—104.

[15] Hinkley, D. (1977). On quick choice of power transformation. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 26(1), 67-69.

72



Guglielmo D’ Amico and Fulvio Gismondi RT&A, No 1 (77)
ROCOF COMPUTATION AND APPLICATIONS Volume 19, March 2024

RECENT DEVELOPMENTS IN THE COMPUTATION OF
THE ROCOF OF MULTI-STATE SYSTEMS AND ITS
APPLICATIONS

Guglielmo D’ Amico! and Fulvio Gismondi?

Department of Economic Studies, University G. d’Annunzio of Chieti-Pescara, Italy
g.damico@unich.it

2Department of Economic and Business Science, "Guglielmo Marconi" University, Italy
f.gismondi@unimarconi.it

Abstract

This paper reviews several theoretical works on the computation of the Rate of Occurrence of Failure
(ROCOF) for general multi-state random systems, focusing on recent generalizations. The discussion
begins by defining the ROCOF for a Markov process and discussing the main results achieved in the
literature, then moves towards the richer framework represented by semi-Markov systems. The paper
discusses complications that arise when extending the ROCOF to higher orders so that a measure of
the association of failures in time can be obtained. The work then analyzes possible modifications in
terms of a conditional version of the ROCOEF, which is of special interest in applications. The findings
are illustrated by a numerical example from reliability, and the broad applicability is demonstrated
by a discussion of different applications in other domains.

Keywords: Markov processes, semi-Markov processes, reliability, applications

1. Introduction

Several studies deal with the proposal of new measures of performance for a random system and
their computation in applied problems; see e.g. [1]. Among the available indicators, the Rate of
Occurrence of Failure (ROCOF) is one of the most frequently used in understanding a system’s
performance over time. Once a system’s failure is defined, the ROCOF is the derivative of the
expected number of failures with respect to the time variable. Systems with an increasing path of the
ROCOF are expected to deteriorate as time goes on. Contrarily, if the ROCOF shows a decreasing
shape, then the system is expected to improve its quality of functioning over time. This seems to be
a simple concept, at least in its intuition, but computation and analysis pose relevant questions that
have been solved at different moments during the last half century.

In the seventies, some research articles dealing with systems that have already reached the steady
state appeared in the literature and showed how to compute the frequency of system failures and
their durations [2,3,4].

A few years later, Shi Ding-hua [5] developed a new method for calculating the ROCOF of a system
described by a finite-state continuous time-homogeneous Markov chain. The author also discussed
the case of a special high-dimensional Markov process equipped with supplementary variables. In
the middle of the 1990s, further contributions were given in a couple of research articles by Yeh Lam
[6,7]. In the first of his contributions, the author considers a system described by a continuous-time
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Markov chain of higher dimension after having introduced additional variables. A formula for
evaluating the ROCOF was derived, and an application for a two-component parallel system was
presented. In his second contribution, the author enlarged the stage by considering Markovian
systems with a denumerable state space.

Markov processes are very frequently adopted for system reliability analysis. Unfortunately, in
many circumstances, they are not suitable, either for practical or theoretical reasons. Hence, the need
to use more general models, and the semi-Markov ones are a valuable alternative; see e.g. [8,9].

The question of how to compute the ROCOF for a semi-Markov process attracted the attention of
Ouhbi, and Limnios [10]. In that work, the authors derived a formula for evaluating the ROCOF for
semi-Markov systems and also proposed a statistical estimator of this indicator. A Similar analysis
was executed by Georgiadis et al. [11] for the semi-Markov chain, i.e., for semi-Markov models in
discrete time.

A new idea was advanced by D’ Amico [12] with the concept of ROCOF of order n (shortly denoted
by n -ROCOF) for Markov processes. This new indicator coincides with the ROCOF when n = 1 and
expresses a measure of clustering in the time of failure events. For example, for n = 2 it expresses a
measure of association in time of a couple of failures at any couple of times (t4, t,) with t; < t,. After
having defined the n-ROCOF, the author derived an explicit formula in terms of the matrix generator
and initial probability distribution. Next, a nonparametric estimator was advanced, and its
asymptotic properties were determined. The n-ROCOF was applied to the modeling of financial
credit ratings, where a conditional version of it was shown to be particularly useful. A few years
later, Votsi [13] exploited a conditional version of the ROCOF for semi-Markov chains.

Finally, in [14], the analysis of the n-ROCOF for semi-Markov processes with finite state space is
executed in such a way that the previous quoted articles were generalized. The authors determined
an explicit formula for the n-ROCOF under a general random starting mechanism, considering any
possible state and duration of permanence in it. This was done using a mixed continuous-discrete
initial probability distribution function. A set of hypotheses on the model parameters was advanced
so that the derivation of an explicit formula expressing the n-ROCOF was obtained. The results were
sufficiently general to be of interest not only in the reliability theory field but for every general
system and could be applied every time that a partition of the state space can be introduced into
working and not-working states.

After giving a thorough analysis of the theoretical findings pertaining to the computation of the
ROCOF, we show a numerical example from the dependability area and go on to describe some
unusual applications in various fields, spanning from financial mathematics to wind energy
generation. Considering that several of these applications have never been mentioned before, they
also offer a suggestion for detailed future research.

The paper proceeds as follows: Section 2 describes the basic reliability problem and some of the most
important reliability indicators, ROCOF and n-ROCOF included. Section 3 considers a Markov
process for the probabilistic description of the system and shows formulas for the ROCOF and n-
ROCOEF. Section 4 provides a summary of the results related to the extension to the semi-Markov
framework, showing the latest results in the literature. Section 5 discusses a numerical example for
a Markov system and demonstrates the practical usefulness of the considered measures. Moreover,
different possible applications from real life problems are detailed. The discussion concludes in
Section 6, which reviews the content of the paper and provides general conclusions.

2. Basic description of the reliability problem and main indicators

The basic reliability problem can be described assuming that the performance of the system can be
identified with one element of a finite set E = {1,2, ..., m} called state space. Frequently, an ordering
relation on the set E is considered in such a way that higher ranks j € E correspond to a higher
system’s performance. The state space E is partitioned into two disjoint subsets W and F such that:
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E=WUF, WNF=0, W=*®, F=+0.

The subset W contains all the elements of E denoting acceptable working levels of the systems;
instead the subset F contains all the states of E in which the system is not performing in a satisfactory
way or has a fault. Sometimes the state space is divided into three subsets, denoting the working
states, the changeable states, and the failure states. The changeable states denote a working system
if and only if, before entering the changeable subset, the system was working and will continue to
work after leaving it; see [15].

The system evolves in time and changes its state migrating from one state i to another state j. The
most natural way to study this evolution is by using a stochastic process Z = {Z(t), t = 0}. Hence,
Z(t) denotes the state occupied by the system at time t and if Z(t) € W the system is working while
if Z(t) € F the system is not working.

Specific indicators are used to measure the overall quality of the system; among them, we remember:

- the availability function, which is defined by
A;(t) = P[Z(t) e W|Z(0) = i].

It expresses the probability that the system ranked i at time 0 will be operational at time t
independently of the possible behavior before this time.

- The reliability function which is defined by
R;(t) == P[Z(n) e W, vn € [0,t]|Z(0) = i].
This indicator consists of the probability that a system ranked i at time 0 will not experience a fault
(a visit to the subset F') from time 0 up to time f. A generalization of the reliability function considers

interval reliability indicators [16], recent results are available in [17,18], and the sequential reliability
function [19].

Denote by N¢(t) the number of failures of the system until time t, i.e. the number of passages from a
state of W to one of F. Then,

- the ROCOF at time t for a random system, denoted by ro(t), is defined by

ro(t) = }%E}, E[Nq(t + itt) - Nf(t)]. )

The ROCOF gives information on whether there are a lot of failures or only a few within a time,
and it has a simple probabilistic interpretation that for deteriorating systems shows an increasing
behavior and for improving systems, it is decreasing in time.

When studying the reliability of a reparable system, it is of great interest to also measure the
relative positioning of tuples of failures. For this reason, the n-ROCOF was defined D’ Amico [12]:

- the n-ROCOF at times t} = (ty, ty, ..., t,) with t; < t;;4 for a random system is defined by

V@m0, At Aty - ... At, :

()
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Clearly, for n = 1 the n-ROCOF coincides with the ROCOF of the system. For n = 2 we obtain an
interesting particular case called the 2-ROCOF which is given by

E[dN;(t,)dN,(t,)]

ro(t = )
) = rﬁo)l ) At,At,

3)

and expresses a measure of association of failure events in correspondence of a 2-dimensional
vector of times t? = (ty, t,).

3. n-ROCOF for Markov processes

A class of models frequently used in the reliability field is that represented by Markov processes; see
e.g. [20,21,22,23]. Here we briefly introduce them and show the formula for the n-ROCOF.

Let consider a continuous time Markov process (Z(t), t € R) with a finite state space E = {1,2, ..., m}
and generator matrix Q = (qij), i,j € E where q;; 20, Vi # j and q;; = — }.j; q;;- Consider also an
initial probability distribution over the states of the process at time zero denoted by the vector a =
(aq, ay, ..., @) where

a; = P(Z(0) = i).
Let p;(t) = P(Z(t) = i),Vi € E be the state probability at time ¢, then it results that
py(©) = ) apy(©),
icE
where p;(t) = P(Z(t) = j|Z(0) = i) = (e®)y.

Theorem [12] The n-ROCOF at times tf = (ty, t,, ..., t,) with t; < t;;, for a Markov jump process
(Z(t), t € R) over a finite state space E = {1,2, ..., m} and generator matrix Q = (qij), i,j € E is given

by
n n
ro(t;") = z n afo . (eQ(ti_ti_l))fi_lwi . qufi ) (4)
w,f i=1

where ¢, = 0 and the symbol Y|, - is an abbreviate notation for Y., cx Xw,ew,vi=1,..n 2if;eF,vi=1,..n

Formula (4) contains interesting particular cases of which we give representation. The ROCOF is
simply obtained by setting n = 1 in formula (4) with t, = 0. The result is:

ro(t) =) > D (€N, "ty

fo€E W1EW f1€F
= > D) ug (5)
w1 EW f1€F
which expresses exactly the formula established by Yeh [7].

Another interesting case is represented by the 2-ROCOF which is simply obtained by setting n = 2
in formula (4) with t, = 0. The result is:
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2 2
2y . ti—ti_ .
ro(t) = Z 1_[ %o (eQ( o 1))fi—1Wi Awif
w,f i=1

= Z Z Z Z Z ag (eQ t1)f0w1 Qs (eQ(tz—t1))f1W2 “Qu,f, - (6)

foEE W1 EW f1EF Wo€W f,EF

4. n-ROCOF for semi-Markov processes

Semi-Markov processes are a generalization of Markov processes, allowing for any kind of
probability distribution function for the sojourn time in the state of the system. Contrarily, Markov
processes require exponentially distributed sojourn times; this assumption can be inadequate in
several application fields, reliability theory included; see e.g. [24,25].

The definition of a semi-Markov process needs some preliminary concepts to be introduced. We start
by considering a bivariate random sequence (J,,, T,,),n € N. The random variable J,, denotes the state
of the system at its n-th transition; this variable assumes values in the state space E. The random
variable T,, denotes the time in which the system enters state J,,; this variable assumes any values in
the set of positive real numbers. The time the system remains in the state J,_, before entering state
Jn is called sojourn time. It is denoted by X,, = T, — T,_; having set X, = 0. The process (J,, T;,) is
called Markov Renewal Process (MRP) whenever it satisfies the next assumption:

PUn+1 = JiXn St Xn-1,Jn-1, Xn-2, .) = PUns1 = J, Xn St Jn).
The conditional joint probabilities of the MRP are denoted by
Qij(®) =PUns1=J,Xn<tlJn =10
and the matrix Q(t) = (Qi, ] (t)) is called the semi-Markov kernel.

Let N(t) = sup{n: T, < t} be the counting process of the number of transition up to the time t. Then
the semi-Markov process can be defined by Z(t) = Jy)-

Let assume that Q is absolutely continuous with respect to the Lebesgue measure on the set of
positive real numbers and denote by ¢; ;(t) = Ql"d—(t) the corresponding Radon-Nikodym derivatives.

Hence, we can consider the hazard rate functions according to the relation

q;,j(t) .
———— jifp;; >0 and H;(t) <1
;) =91 - H,(t) if py; >0 and H;(t)
0 otherwise

where H;(t):= P(Xp < t|Jn=1) = Xjep Qi,j(t) and pyj: = P(ns1 = jlJn = O = lim Q;;(1).

Let us introduce the backward recurrence time process B(t) := t — Ty(). Now we can describe the
set of three assumptions used in [14] to derive the formula for the n-ROCOF of a semi-Markov
process.

Assumption Al: This first assumption explains a general random starting mechanism for semi-
Markov processes. We first consider the vector p = (p;,py, ..., pn) Where

pi =P(Jo=1)

with Y;epp; = 1. Moreover we specify a set of cumulative distribution function for the duration in
the initial state i; i.e. F;(vy) = P(B(0) < vylJ, = i). Then we assume that

0 if vy<0
Fi(vo) = a; if vp=0, 0<aq;<1
Gi(vp) (1—a)+a if v,>0
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being G;(-) an absolutely continuous cumulative distribution function with support in (0, o) and
corresponding density function g; () having finite expectation.

Assumption A2: The semi-Markov process has uniformly bounded transition intensities, in formula:

dc € R, such that max sup Aij(y) <c.
LI€E yeRy

Assumption A3: For each state i € E there exist a state j € E (depending on i) and a non-null subset
S;;(¥) of the real numbers such that 4;;(y) < c for all y € S;;.

The following main result gives the formula for the n-ROCOF of a semi-Markov process.

Theorem [14] The n-ROCOF at times tf = (ty, t,, ..., t,) with t; < t;.; of a semi-Markov process
(Z(t), t =0) over a finite state space E = {1,2, ..., m} and semi-Markov kernel Q = (Qij (t)), i,jEE
is given by

m n
Sr
ro(t]) = Z Z a;,pj, ﬂf Vh_w, (0 6)qu, r, (5p — U )du,
Jjo=1 weW™m feFn r=1"0
m o 51
+ Z Z (1 - ajo)pjo <f (f 1/J]"0w1 (vo; ul)qw1f1 (s — ul)du1> Ijo (Uo)d%)
jo=1weWmn feFn 0 ~vo %

Sr
. l_lf lp}r—1wr(0; ur)qwrfr(sr - ur)dur ,
0
r=2

where s, = t, — t,_y, 5y = t; and ¥; (7; ) = E(; [N;(O)] = oo Q(") (y; t).

The quantity Q(n)(y; t)=P(,=j,T, < t|Jp =i,B(0) =y).

We observe that if we consider for all j, € E, a;; = 1 and n = 1, we have a null duration in the initial
state and we obtain exactly the formula for the ROCOF as it was established by [10], i.e.

70(f1 ) Z Z Z Pjo ftllpjow(o UGy (ty — ug)duy, . ®

Jo=1wew feF

5. Applied problems

Applications of the n-ROCOF measures to the reliability field are clearly of great interest. Here we
show a few results related to a numerical example based on Markov processes in subsection 5.1.
Anyway, there are many other fields of application in which the same concepts are worth
discussing. An example is the financial modeling of credit rating dynamics, which was extensively
discussed in [12,26]. A new application to wind power production is discussed later in subsection
5.2 taking inspiration from the problem discussed in [27] and [28].

5.1 A numerical example

Let us consider a random system whose state space is given by the set E = {1,2,3,4,5,6,7,8}. Each
number represents different levels of performance of the system, going from perfect functioning
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(state 1) to the worst one (state 8). The state space E is partitioned into two disjoint subsets W =

{1,2,3}and F = {4,5,6,7,8}.

We assume that the system evolves dynamically according to the generator matrix

-0.10 0.08 0.00 0.02 0.00 0.00 0.00 0.00
/0.80 —-1.30 0.35 0.15 0.00 0.00 0.00 0.00\
0.00 0.12 -133 0.90 0.31 0.00 0.00 0.00
Q_‘ 0.00 0.10 030 -0.90 0.50 0.10 0.00 0.00 '
~ | 0.00 0.00 0.30 0.15 -095 0.35 0.15 0.00 I’
| 0.00 0.00 0.05 0.20 0.10 -0.50 0.10 0.05 l
\0.00 0.05 0.08 0.09 0.15 0.33 —-0.90 0.20/
0.00 0.00 0.10 0.10 0.20 030 0.30 -1.00

Using equation (5), we compute the ROCOF of order 1 for the three working states. The results are
shown in Figure 1. The continuous line refers to the ROCOF computed starting from state 1, i.e.,
using the initial probability distribution @ = (1,0, ...,0); the dashed line refers to the ROCOF
computed starting from state 2, i.e., using the initial probability distribution & = (0,1,0, ...,0); the
dotted line refers to the ROCOF computed starting from state 3, i.e., using the initial probability
distribution & = (0,0,1,0 ...,0). The figure shows that independently of the initial state, the system
is going to deteriorate as the ROCOF shows increasing paths. Nonetheless, the differences
according to the initial state are remarkable and demonstrate a higher risk for state 3 and a lower
risk for state 1.

0.9 T

=== 1-ROCOF state 1

%81 —- =1.ROCOF state 2 il

1-ROCOF state 3

0 10 20 30 40 50 60 70 80 90 100

Figure 1. 1-ROCOF for a Markov process

0.03
0.025 | 12-ROCOF
- \:, :Islale 1
0.02

0.015

0.01

0.005 -
15

Figure 2. 2-ROCOF for a Markov process starting from state 1

Using equation (6), we compute the 2 —ROCOF starting from state 1. The result is graphically
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displayed in figure 2. On the X-axis, we report the time t;, while on the Y-axis, we report the time
t, —t;. Hence, the point (10, 5) on the XY-plane corresponds to the choice of t; = 10 and ¢, = 15.
Any point on the surface represents the corresponding value of the 2 —ROCOF. High values of the
surface show evidence for the association of failures at the corresponding times on the X and Y axes.
The maximum values (for the times considered in the figure) are concentrated on large values of t;
and t, — t;.

We repeat the computations of the 2 —ROCOF changing the initial state. The case with state 2 as
initial state and that for state 3 are considered in figures 3 and 4, respectively.

0.04

DZ-ROCDF
'state 2

0.035

0.03

0.025

0.02 -
15

Figure 3. 2-ROCOF for a Markov process starting from state 2

0.09
08 s
0.07
0.06
0.05

0.04

0.03 -
15

Figure 4. 2-ROCOF for a Markov process starting from state 3

As it is possible to see from these figures, their shapes are completely different from those of figure
2. In figures 3 and 4, the maximum values of association between couples of failures are for
combinations of short times t, —t; independently from time t; (which shows a contained
variability). This aspect is important because at short values of t, —t;, the system may show
trajectories of alternation between subsets W — F - W — F, i.e., the presence of two close-in-time
failures.

5.2 Wind power example

Wind power is one of the most important renewable energy sources. Because wind speed changes
very sharply over time, the wind engineer must use mathematical models to predict the power
output. Particular care should be given to abrupt interruptions of power production that may be
caused by extreme wind speeds. Indeed, on the one hand, low wind is unable to move wind
turbine’s blades, which determines no energy production. On the other hand, extremely high wind
speeds may cause damage to the turbine; hence, the wind engineer must switch it off to avoid
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structural breaking. The minimal wind speed necessary to activate the turbine is called the cut-in
speed v,;. The maximal wind speed that the turbine can handle is called the cut-out speed v,.
Finally, it is also important to consider the rated wind speed v,, which represents the minimum
wind speed value at which the turbine achieves its maximum power production, the so-called
rated power. Using the power curve for the wind turbine under consideration, we may calculate
the power output as a function of the wind speed. The relationship between wind speed v(t) and
wind power Pow(t) at any time ¢ is

0 if v(t) <vy
P-(3() —v3) |
Pow(t) ={  vi—v% if vy <v(t) <v,
l P if v, <v(t) <,
k 0 if v(t) > v,

where P, is the rated power. Essentially, for wind speed lower than the wind cut-in speed, there is
no power production. For wind speed between the cut-in speed and the rated speed the output
power is a cubic function of the wind speed. For values between the rated speed and the cut-off
speed the turbine produces its rated power. Finally, for speed greater than the wind speed cut-off
the turbine does not produce power.

The ROCOF and its generalization could be fruitfully used in this applied field as we are going to
show. First, we consider the first-order discrete-time Markov chain model proposed in [28] which
was applied to a sample of hourly wind speed data collected by Malaysian Meteorological Station
located at Mersing. The wind speed data range from 0 to 12m/s; hence the authors adopted a
twelve state Markov chain model with E = {1,2, ...,12} where the i-th state collects all wind speed
measurements ranging between (i — 1) m/s and i m/s. The estimated transition probability matrix
is taken from [28]:

r0.371 0.407 0.174 0.036 0.009 0.002 0.001 0.000 0.000 0.000 0.000 0.0007
0.166 0.446 0.312 0.059 0.012 0.004 0.000 0.001 0.000 0.000 0.000 0.000
0.051 0.243 0.504 0.163 0.028 0.008 0.002 0.001 0.000 0.000 0.000 0.000
0.017 0.083 0.303 0.391 0.160 0.035 0.008 0.002 0.001 0.000 0.000 0.000
0.010 0.035 0.099 0.277 0.382 0.157 0.031 0.007 0.001 0.001 0.000 0.000
0.006 0.021 0.043 0.108 0.295 0.343 0.146 0.031 0.004 0.003 0.000 0.000
0.005 0.016 0.027 0.047 0.110 0.302 0.324 0.142 0.021 0.004 0.002 0.000
0.006 0.016 0.030 0.033 0.055 0.127 0.365 0.239 0.105 0.022 0.002 0.000
0.009 0.019 0.014 0.018 0.042 0.065 0.140 0.326 0.269 0.079 0.014 0.005
0.014 0.054 0.055 0.014 0.027 0.028 0.041 0.205 0.288 0.164 0.083 0.027
0000 0.000 0.000 0.040 0.000 0.000 0.080 0.120 0.160 0.240 0.280 0.080
L0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.200 0.600 0.000

Now consider a commercial wind turbine with a cut-in speed of 4 m/s . This means that when the
wind speed process is in one of the first four states of the Markov chain, there is no power
production. The state space E is partitioned into two disjoint subsets W and F according to the
following:

W =1{56,..,12} F={1,234}

In order to apply the measures discussed in the previous sections, we need to transform the
discrete dynamic expressed by the transition matrix estimated by [28] into a continuous-time one
by finding a generator matrix that satisfactorily matches, in some sense, the discrete process. This
is a well-known and still open problem in the theory of Markov chains that is called the
embedding problem. A detailed discussion is provided in [29], and further results and applications
are provided in [30]. We consider here a simple strategy to get a generator matrix rendering results
“close” to the observed hourly transition probability matrix P. We observe that the transition
probability function for a continuous-time Markov process satisfy the relation
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Pu):eqt:jz(oﬂn.
n=0

n!

Therefore, given a probability matrix P, we can try to find a generator matrix Q such that

(Q1)° N (3%

P~=5 1

=1+ Qt.

From this relation we recover Q = % (P —1I). and we obtain the initial guess Q" = (P —I) by

setting t = 1 to denote one hour. Hence, we solve the following optimization problem:

min||P —e?||,
)

which consists of finding, within the set of generator matrices @, the one that minimizes the
previous matrix norm. In our application, we consider the minimization of the Frobenius matrix
norm, and we use the software Matlab to solve this optimization problem with an initial guess Q*.
The result is the following generator matrix:

—3.295 0.035 0.006 0.002 0.000 0.001 0.001 0.000 0.309 1.999 0.942 0.0007
0.020 -2.891 0.000 0.004 0.000 0.000 0.000 0.000 0.277 1.633 0.939 0.018
0.033 0.028 -2.362 0.001 0.000 0.000 0.000 0.000 0.085 0.776 1.239 0.200
0.268 0.059 0.014 -1975 0.014 0.000 0.000 0.000 0.028 0.137 0.504 0.951
0936 0.261 0.051 0.011 -1.965 0.001 0.000 0.000 0.017 0.060 0.166 0.462
Q= 0.492 0.572 0.243 0.052 0.007 -1.663 0.000 0.000 0.010 0.035 0.072 0.180

~l0.183 0503 0.540 0.237 0.035 0.007 —1.746 0.080 0.009 0.027 0.046 0.079
0.091 0.212 0.608 0.398 0.175 0.037 0.004 -1.758 0.100 0.027 0.051 0.055
0.070 0.108 0.535 1.091 0.728 0.002 0.003 0.003 -—2.542 0.001 0.000 0.001
0.045 0.047 0.068 0341 0480 0.273 0.138 0.045 0.024 -1.877 0.392 0.024
0000 0.000 0.133 0.200 0.266 0.455 0.522 0.133 0.000 0.001 -1.777 0.067
£L0.001 0.000 0.000 0.532 0.000 0.740 1.550 0.000 0.001 0.006 0.002 -—2.832-

Now, we can compute the ROCOF using the formula presented in the previous section. To
highlight the potentiality of the continuous-time framework, we compute the indicators on a 5-
minute time scale. This can be done simply by considering the hourly-based generator matrix Q
and dividing it by a factor of 1/12.

In figure 5, we report the 1-ROCOF corresponding to three choices of the initial distribution over the
states of the system. Specifically, the continuous blue line represents the indicator computed starting
from state 5, which denotes a wind speed of 5m/s. The dotted red line denotes the 1-ROCOF
behavior starting with a wind speed of 9m/s. Finally, the dashed yellow line stands for the 1-
ROCOF with an initial wind speed of 1m/s. It is possible to note that for short times, the 1-ROCOF
is monotone with respect to the initial speed. Thus, being in a state with strong wind implies a higher
chance of moving into one of the failure states where no power production occurs. The overall
behavior becomes irrelevant to the initial state around time 20, which corresponds to 20 - 5min =
100min where the system shows the achievement of a stationary value of the 1 — ROCOF equal to
0.0536.

82



Guglielmo D’ Amico and Fulvio Gismondi RT&A, No 1 (77)
ROCOF COMPUTATION AND APPLICATIONS Volume 19, March 2024

0.14 T T
== 1-ROCOF with initial state 5Sm/s
=+ »=+11-ROCOF with initial state 9m/s
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Figure 5. 1-ROCOF for the Markov process of wind speed

For completeness, we proceed by computing the 2-ROCOF for the wind speed Markov process. In
figure 6, we display the indicator when the initial state is equal to 5m/s (left panel) and when the
initial state is equal to 9m/s (right panel). The panels have similar surfaces. Both indicate a maximum
value of the 2-ROCOF for high values of the time t; and low values of the time t, — t;. Hence, the
maximum chance for a couple of transitions from working to failure states is for combinations of
times as (t; = 20,t, = 21). The indicator is increasing with respect to time t; and decreasing with
respect to time t, — t;. The 2-ROCOF assumes higher values for the initial wind speed of 9m/s as
compared to the initial wind speed of 5m/s case. In this way, the reliability engineer has a clear idea
of when the association between two failure events is high or low. This information can also be used
to measure the riskiness of a wind park investment in terms of the intermittency of power
production.

Figure 6. 2-ROCOF for the Markov process of wind speed for two initial wind speed values

IV. Discussion

Understanding the rate of occurrence of failures in a random system is of great relevance, both
theoretically and practically. This paper offers some general information after commenting on a
selection of recent major studies in the field.

- The definition of a recent measure called the n -ROCOF is reported, and a broad
interpretation as a measure of clustering in time of failures is given.

- The computation of the n -ROCOF under the hypothesis of a continuous-time finite state

space Markov chain is explained in detail. The results are also presented in the more
general framework represented by semi-Markov processes.
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- A numerical example clarifies the results and shows different shapes of the indicators that
are flexible enough to represent a great variety of real system behavior. A new application
of these concepts is provided in the field of wind engineering and reveals interesting aspects
that need an accurate investigation in a specific research article.
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Abstract

The Strip-Plot Design (SPD) is plays an important role in the complete block designs and also
using the agricultural, medical and industry fields. SPD is best suited for a two-factor
experiment that has more treatmentsthancanbe accommodated by a complete block design. In a
SPD, one factoris assigned to the horizontal strip plot, one factor is assigned to the vertical —
strip plot and one factor is interaction plot. Also, few experimental materials may be rare while
other test items may be available in altering doses of other therapeutic factors, which may be
expensive or time-consuming. One of the main features of SPD involves three types of
experimental errors: row - strip plot error, coloum — strip plot error and interaction plot error.
Experimenting across processing steps is essential for studying the interaction of factors where
certain factors come from one step and others arrive from the other. The strip-plot designis a
very efficient design for investigating multiple-step processes in terms of both resources and
time. Strip-plot designs are economical when the factors are hard to change and the process
under research has three discrete stages. When we want to study interactions between factors
where some factors are from one step and other factors from another step, it is important to
conduct experiments across processing steps. The approach is flexible because it can handle
experimental design problems involving factors acting at different levels, unlike the existing
method. Graphs are widely used representations of both natural and human-made structures.
Graph theory canbe used to investigate "thingsthat are connected to other things. “Fits nearly
everywhere. Some tough problems become easier to solve when they are represented graphically.
We reviewed the agricultural field yield of the strip-plot design and early work on the design of
industrial strip-plot designin this paper. We have also described the model of strip-plot design.
We, therefore, advise experimenters to ensure that their strip-plot designs contain a sufficient
number of rows and columns so that valid statistical inference is possible. A bipartite graph is
one in which the edges canbe divided into two sets without going into sets. A complete bipartite
graph is a bipartite graph that is completed. The complete tripartite graph in which the edges
can be divided into three set without going into sets. The cubic graph is a graph in which all
vertices have degree three. This paper describes the constructionand Statistical Analysis of SPD
using some particular types of graphs is discussed through numerical examples.

Keywords: Strip -plot design, complete tripartite graph, cubic graph
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1. Introduction

India is the third-largest producer of cotton in the world. Cotton grows well in drier parts of the,
black soil, red soil and alive soil of the Deccan plateau. It requires high temperature, light rainfall
or irrigation, 210 frost-free days and bright sunshine for its growth. It is a Kharif crop and requires
6 to 8 months to mature. The challenge is developing design organizations that meet quality and
cost criteria. Every attempt at agricultural science research includes the design of experiments.
Suppose to investigate more than one factor simultaneously in a single experiment, which is called
the factorial experiment of the design.

Some factors to be tested need bigger plots, and others require smaller plots. Different plots
are required in such cases, and the resulting design is known as split plot design (SPD). In 1925,
Fisher developed this design for the purpose of agricultural experiments. The cost of the
experiment can often be reduced by avoiding complete randomization.

The strip- plot design (SPD) is essential in complete block designs and applications in
agriculture, medicine, and industry. One component is assigned to the horizontal strip plot, one to
the vertical strip plot, and one to the interaction plot in an SPD.

Graph theory is one of the fastest-growing sciences. Graphs in their applications, are
commonly used to represent distinct objects and the relationship between these objects. The visual
representation of a graph is the declaration of an object vertex, while the relationship between
objects is expressed as an edge. In recent years, graph theory has established itself as an important
mathematical tool in various subjects, from available research and chemistry to genetics and
linguistics and from electrical engineering and geography to sociology and architecture in its own
right. At the same time is mathematical to discipline in its own right. Peter Horak et al. [1] have
focused on this result is a special case of a general conjecture made by Erdos and NeSetiil: For each
d > 3, the edge set of a graph of maximum degree d can always be partitioned into [5d2/4] subsets,
each of which induces a matching. Raymond Greenlaw and Rossella Petreschi [2] have developed
a new algorithm is presented for cubic graphs.

Arden Miller [3] has focused on using statistical experimental designs Strip-Plot
Configurations of Fractional Factorials. George A. et al. [4] have discussed the strip-plot design for
two-step processes. Elizabeth ]. et al. [5] have reviewed recent developments and provided
guidelines for using the Decomposition of complete tripartite graphs into gregarious 4-cycles.
Heidi Arnouts et al. [6] have focused on the Strip-plot experiments, and the cost of
experimentation can often be reduced by forgoing complete randomization. Antal Ivanyi et al. [7]
have developed an exchange algorithm for tripartite graphs with given degree set. Abdollah
Khodkar [8] has discussed the signed edge domination numbers of complete tripartite graphs.
Sheikh Rashid et al. [9] has discussed the study of cubic graphs withits application and introduced
certain concepts, including cubic graphs, internal cubic graphs, and external cubic graphs, and
illustrate these concepts by examples. Velimor D. et al. [10] have presented the procedure for
complete tripartite graphs with spanning maximal planar subgraphs.

Peter Bradshaw [11] has focused on vertex-disjoint triangles as a “tratching.” The problem of
finding a tratching that covers all vertices of a tripartite graph can be shown to be NP-complete
using a reduction from the three-dimensional matching problem. K Nisa et al. [11] have discussed
the Analysis of variance for strip plot design with missing values: bias correction of the mean
squares. Hossein Rashmansloua et al. [13] discussed about cubic graphs with novel application
and define the direct product. we introduce the notion of complete cubic graphs and present some
properties of self-complementary cubic graphs. Peter Goos [14] has reviewed recent developments
and provided guidelines for using the fish patty experiment: a strip-plot look. This paper
discussed a statistical analysis of SPD using complete tripartite and cubic graphs with a numerical
example.
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2. Preliminaries

2.1 Strip — Plot Design

In strip plot design, each block is divided into several vertical and horizontal strips depending on
the levels of the individual factors. Therefore, the Analysis of strip plot design is carried out in
three parts. The first part is the vertical strip analysis, the second part is the horizontal strip
analysis, and the third is the interaction analysis.

2.2 Complete Tripartite Graph

A complete tripartite graph is a set of vertices split into three disjoint sets such that no two graph
vertices within the same set are adjacent and every vertex in one set is adjacent to every vertex in
the other two sets. If the three sets contain p, g, and r graph vertices, a complete tripartite graph.

2.3 Cubic Graph

In the mathematical field of graph theory, a cubic graph is one in which all vertices have degree
three. In other words, a cubic graph is a three-regular graph. Cubic graphs are also called trivalent
graphs.

3. Statistical Analysis of Strip — Plot Design

The linear model for strip-plot design is

Y u+tit Bit (1) +yi Ty )u+( +e  =12...r, j=1,2...v,k=12...n (1)

Yikx is observation corresponds to the kth level of factor (A), jt level of factor (A) and it
replication. p the general mean effect.
7j is i block effect, A is the j level of factor A, B is the ki level of factor B.

is the interaction between jt level factor A and k' level factor B, the error
components.

and & areindependently and normally distributed with means zero and

ij
respective variance 62, 67 and o2

In statistical analysis, separate estimates of error are obtained for the main effects of the factors A
and B and their interaction A.B. Thus, three mean error squares will be applicable for testing the
significance of the main results of the characteristics and their interaction separately.

The vertical strip plot for thefirst factor, the horizontal strip plot for the second factor, and the
vertical and horizontal bars in theinteraction strip plot for the interaction between two factors are
always perpendicular toeach other. The correlation plot is very small and primarily illustrates the
interaction between the two design factors. As a result, we may say that correlation is assessed
more precisely in strip plot design.

This is an outline of the variance analysis table:

o Correction factor (CF)= —

o Total sum of square (SST) =

o Replication sum of square (SSR) = — -C

o Horizontal factor sum of square (5.5. (HF.)) = —-C

o Horizontal factor error sum of square (SSEa) = ——- -S§ -
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o Vertical factor sum of square (S.S.(V.E.)) = —-C
. Vertical factor error sum of square (SSEv)= —— - - SSR-
. Interaction effect sum of square= ——- - SSA-
o Interaction error sum of square (SSEc) = SST- (All other sum of square)

Table 1: ANOVA table for strip — plot design
Sv Df Ss Mss F-Ratio
R. (R) (r-1)

SSR

HF. (A) (a-1)

SSA
HFE (a) (r-1)(a-1) SSEa
VF.(B)  (b-1) SSB _
VFEE(®D) (r-1)(b-1) SSEb
LE (AB) (a-1)(b-1) SSAB

L.E. (c) (r-1)(a-1)(b-1)  SSEc

4. Construction of Strip — Plot Design using Graphs

4.1. Method for Construction for Tripartite Graph

o Let us consider the horizontal strip, vertical strip, and intersection plots as
vertex set Q. This vertex set P can be divided into three subsets: Q1, Q2, and Q3.

o Then the replication is considered as the first subset Q1, variety as the second
subset Q2, and Soils as the third subset Q3.

o Now consider the first (replication) vertex (R1) of the first subset, and then R1 is
connected to all the vertices of the second and third subset through edges.

o Next, consider the second replication vertex (R2). It’s connected to all the
vertices of the second and third subsets through the edges.

o Similarly, all the remaining replication vertices of the first subset are connected
to all the vertices of the second and third subsets through the corresponding
edges.

o Finally, we get the complete tripartite graph for the vertical strip, horizontal

strip, and intersection plots.

4.1.1 Application

In our study, to collect the yields of primary data on cotton cultivation varieties at Salem District of
Tamilnadu. Three replicates of various cotton varieties (LRA(P.T.), Supriya, Surabhi) in kilograms
and three Soil (Black, Red, and Alive). The four replications of Cotton cultivation in kilograms for
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yields per plot, three varieties of crops are tested, the layout being Strip plot design data is given

below.
Table 2: Replication wise data for yield of cotton (kg/ha)
Replication Ri R> Rs R4
Variety Soil(S1)
Vi 3328 3258 3400 3128
V2 3220 3150 3115 3015
Vs 2850 2800 2700 2625
Soil(52)
Vi 2814 2750 2915 2963
V2 2656 2655 2500 2700
Vs 2515 2514 2415 2400
Soil(Ss)
Vi 3050 3118 3250 3150
V2 2950 3000 3065 2950
Vs 2650 2750 2950 2800
Table 3: Replication xvariety for horizondal factor
Vi V2 Vs Replication Total
Ri 9192 8826 8015 26033
R2 9126 8805 8064 25995
Rs 9565 8680 8003 26248
R4 9241 8665 7825 25731
Variety Total 37124 34976 31907 104007

The complete tripartite graph construction method for horizontal — strip plot is given below.

From the above table 3 vertex is fixed as Q, which is divided into three subsets, the
figure 1 shows that Q1 (replication), Q2 (variety) and Qs (soils).

The figure 2 shows that first replication vertex (R1) connected to all the vertices of
variety (Vi, V2and Vs) through the edge values 9192(Y1), 8826(Y2), and 8015(Y3).

Variety Soils
Soils
Vi 81
S1
V2 S:
S2
V3 Sz S5
® ® [ ] [ J [ ] ®
R Rz Rs Ra Rs R4
Replication Replication
Figure 1: Graph of subsets Figure 2: Graph for first replication (Ri)

The figure 3 shows that second replication vertex (Rz2), and it is connected to all the
vertices of variety (Vi, V2, and Vs) through the edge values 9126(Y1), 8805(Y2), and
8064(Ys).

Similarly, the figure 4 shows that third and fourth replication vertices (R3 and Rs)
are connected to all the vertices of variety (Vi, V2 and Vs) through the
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corresponding edge values. (Y1, Y2 and Y3) 9565, 8680, and 8003 (Y1, Y2 and Y3)9241,
8665, and 7825.
Variety Soils Variety Soils

i 51

[(s126) S

Vs ss Vs

[ ( ]
Ry Rs

Replication Replication

Figure 3: Graph forsecond replication (R2)  Figure 4: Graph for third and fourth replication (Rs and R4)

o The figure 5 shows that complete tripartite graph of variety and replication for the
horizontal - strip plot.

S3

Replication

Figure 5: Graph for complete tripartite graph of horizondal — strip plot

Table 4: Replication x soils for vertical factor

S1 52 S3 Replication Total
R1 9398 7885 8650 26033
R2 9208 7919 3868 25995
R3 9215 7830 9203 26248
R4 8768 8063 8900 25731
Soils Total 36589 31797 35621 104007

The construction method of the complete tripartite graph for vertical — strip plot is given below
o From the above table4 that first replication vertex (R1). The figure 6 shows that first
replication vertex is connected to all soils (51, S2 and S3) through the values 9398,
7985, and 8650(Y1, Y2 and Y3).
o The figure 7 shows that second replication vertex (R1i). The second replication
vertex is connected to all Soils (S1, S2 and Ss) through the values 9208, 7919, and
8868 (Y1, Y2and Ys).
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Variety
Vi

Vi

(s605) ®
Rz

Ry

Soils

Rs

Replication

®
Ra

Figure 6: Graph for first replication (R1)

Va

4

Soils

Variety
Vi

-0
-0

Ra

Replication

Figure 7: Graph forsecond replication (Rz)

o Similarly, the figure 8 shows that third and fourth replication vertices (Rs and Rs)
are connected to all the vertices of soils (51, S2 and Ss) through the corresponding
edge values. 9215, 7830 and 9203 (Y1, Y2 and Y3) 8768, 8063 and 8900 (Y1, Y2 and Y3).

o The figure 9 shows that complete tripartite graph for replication and soils

vertical - strip plot.

Variety

Vi

N

@
=@

Replication

Replication

Figure 8: Graph for third and fourth replication (Rsand Rs)  Figure 9: Complete tripartite graph of vertical

Strip - plot

Table 5: Variety x soils for interaction plot

Si S2 Ss Variety Total
Vi 13114 11442 12568 37124
V2 12500 10511 11965 34976
Vs 10975 9844 11088 31907
Soils Total 36589 31797 35621 104007

The construction method of complete tripartite graph for interaction plot are given below
e The abovetable5 that first variety vertex (V1). The first variety vertex is connected to all
soils (S1, Sz and S3) through the values 13114, 11442 and12568 (Y1, Y2 and Y3).

Variety
Vi

Vs

Replication

[ ]
Ry

Vs S3

Variety

Va - Sz

Soils

Figure 10: Graph for first variety (V1)

92

® L ) L ]
Ra Rs Ry

Replication

Figure 11: Graph forsecond and third variety(V2andVs)
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o Similarly, the figure 11 shows that second and third verities vertexes (V2 and Vs)

are connected to all the Soils (51, S2 and Ss)., through the corresponding values
12500,10511 and 11965(Y1, Y2 and Y3) 10975, 9844 and 11088 (Y1, Y2 and Y3).

o The figure 12 shows that complete tripartite graph for the variety and soil
interaction plot.

WVariety Soils
V1 = 81

11442)

S3

Rs Ra

0
L

Replication

Figure 12: Complete tripartite graph for interaction plot

o The figure 13 shows that complete tripartite graph for replication and variety,
replication and soils, and variety and soils.

Replication

Figure 13: Complete tripartite graph for horizondal, vertical and interaction strip plot

Compute the correction factor and sum of squares as

o Correction factor (C.F.) =300484890.3

o Total sum of square (SST) = 2490006.7
Compute the sum of squares for the horizontal analysis:

. Replication sum of square (SSR) = 14996.256

o Horizontal factor sum of square (S.S. (HF.)) =1145826.5

o Horizontal factor error sum of square (SSE.) = 40929.8
Compute the sum of squares for the vertical analysis:

o Vertical factor sum of square (S.S. (V.E.)) =1070090.6

. Vertical factor error sum of square (SSE») = 118191.7
Compute the sum of squares for the interaction analysis:

o Interaction effect sum of square =59701.4

o Interaction error sum of square (SSEc) = 40.271

93



V. Saranya andS.Kavitha RT&A, No 1 (77)

STRIP- PLOT ANALYSIS USING SPECIALTYPE OF GRAPHS Volume 19, March 2024
Table 6: ANOVA for strip plot design

Sv Df Ss Mss F-Ratio P-Value
Replication 3 14996.256 4998.752 1.36467 0.26720020
Variety(A) 2 11458265 572291325 83.9847 -
Error(Ea) 6 40929.8 6821.633 - -
Soils(B) 2 10700906 535040.33 27.161314 0.00100000
Error (Ev) 6 118191.7 19698.617 - -
Interaction(AxB) 4 59701.4 14925.35 4.44747 0.01958176
Error (E:) 12 40271 3355.916 - -
Total 35 - - - -

The table value of replication and variety is greater than the calculated values. So the null
hypothesis is accepted. There is no significant difference between the four replications and the
threevarieties. The table value of soils is greater than the calculated value. So the null hypothesis is
accepted. There is no significant difference between the three soil levels. The table value of the
interaction effect is also more important than the calculated value. So the null hypothesis is
accepted.

There is no significant difference between the interaction effects. The P-value of the above
experiment is more significant than the 5% significance level. Therefore the null hypothesis is
accepted. There is no significant difference that occurred in the above experiment.

4.2 Method for Construction of Cubic Graph

o Let us consider the horizontal-strip plot, vertical-strip plot, and interaction plot
factors as vertex set Q. Then the elements are divided into two subsets, Q1 and Qa.

. Then the replication is considered the first subset Q1 and variety as the second
subset Q2.

o Now consider the first (replication) vertex Ri of the first subset and then Ri is
connected to all the vertices of the second subset through edges.

. Next, consider the second replication vertex Rz it is connected to all the vertices of
the second subset through the edges.

o Similarly, all the remaining replication vertices of the first subset are connected to

all the vertices of the second subset through the corresponding edges.
o Finally, we get the cubic graph for horizontal, vertical, and interaction plots.

4.2.1 Application

In our study, to collect the kilometers of primary data on petrol two-wheeler brands at Salem
District of Tamilnadu. Three replicates of various two-wheeler brands (Honda, Tvs, Suzuki), in
kilometers and three route way of (Hillstration, City, Highways). The four replications of petrol in
kilometers per litter, three brands of kilometres are tested, and the layout being Strip plot design
data is given below.

Table 7: Day wise for kilometres of petrol

Days D1 Dz Ds

Brand Route(R1)

B1 30 31 31

B2 35 34 34

Bs 33 32 33
Route(R2)
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B1 35 36 37
B2 42 40 41
Bs 37 38 39
Route(Rs)
B1 50 51 50
B2 57 55 56
Bs 54 53 54

Table 8: Days x brand for horizondal factor

B1 B2 Bs Days Total
D 115 134 124 373
D: 118 129 123 370
Ds 118 131 126 375
Brand Total 351 394 373 1118

The construction method of cubic graph for horizontal-strip plot is given below.

o From the above table 8 vertex is fixed as Q, which is divided into two subsets, the
figure 14 shows that Qi (days) and Q2 (brand).
4 The figure 15 shows that first day vertex (D1). The first days vertex is connected to

all brand (B, B2 and Bs) through the values 115(Y1), 134(Y2), 124(Y3).

Brand
By
Days
®
Dy
D:@ @®D:
L _J: L J:8
Figure 14: Graph of subsets Figure 15: Graph of first day (D1)
4 Similarly, the figure 16 shows that second and third day vertex (D2 and Ds). The

second and third days vertex is connected to all brand (B, B2 and Bs) through the
values 118,129, and 123(Y1, Y2 and Y3), 118,131 and 126 (Y1, Y2 and Y3).

4 The figure 17 shows that cubic graph for days and brand.

(123)

Figure 16: Graph of second and third days (D2 and Ds)  Figure 17: Cubic graph for horizontal — strip plot
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Table 9: Days x route for vertical factor

R1 R> Rs Days Total
D1 98 114 161 373
Dz 97 114 159 370
Ds 98 117 160 375
Route Total 293 345 480 1118

The construction method of the cubic graph vertical-strip plotis given below.

o From the above table 9 vertex is fixed as Q, which is divided into two subsets, the

figure 18 shows that Qi (days) and Q2 (route).

4 The figure 19 shows that first day vertex (D1). The first days vertex is connected to
all Route (R1, Rz and Rs) through the values 98(Y1), 114(Y2), 161(Y3).

Days Route Days Route
D1 R1 Ri
®
(151)
D: @ ®R: Ra

2 ® s 4
Figure 18: Cubic graph forsubset Figure 19: Cubic graph for first day (D1)
4 Similarly, the figure 20 shows that second and third day vertex (D2and Ds). The

second and third day vertex is connected to all routes (Ri, R2 and Rs), through
the values 97, 114 and 159(Y1, Y2 and Y3), 98, 117 and 160 (Y1, Y2, and Y3).

4 The figure 21 shows that cubic graph for days and route.

Days Route

Figure 20: Cubic graph forsecond and third days (D2 and Ds)

Days Route

Figure 21: Cubic graph for vertical — strip plot

Table 10: Brand x route for Interaction factor

R1 R2 Rs Brand Total
B: 92 108 151 351
B2 103 123 168 394
Bs 98 114 161 373
Route Total 293 345 480 1118
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The construction method of the cubic graph for the Interaction strip plot is given below.

o From the above table 10 vertex is fixed as Q, which is divided into two subsets, the
figure 22 shows that Qi (brand) and Q: (route).
4 The figure 23 shows that first vertex (R1). The first route vertex is connected to all

brand (By, B2 and Bs) through the values 92(Y1), 108(Y2), 151(Y3).

Route
Route
1 & - R
-
Ro
- -
B Bs
-
Brand
Figure 22: Cubic graph for subset Figure 23: Cubic graph for first brand (B1)
4 Similarly, the figure 24 shows that second and third route vertex (R2and Rs). The

second and third route vertex is connected to all brand (B, Bz and Bs), through the
values 103, 123, and 168 (Y1, Y2 and Y3), 98,114, and 161 (Y1, Y2 and Y3).

4 The figure 25 shows that cubic graph for route and brand.

Route

Figure 24: Cubic graph for second and third brand (Biand Bs) Figure 25: Cubic graph for interaction

Strip - plot

Compute the correction factor and sum of squares as

o Correction factor (C.F.) =46293.48148

o Total sum of square (SST) =2188.51852
Compute the sum of squares for the horizontal analysis:

o Replication sum of square (SSD) =1.4074

o Horizontal factor sum of square (S5.S. (HF.)) =102.7407

o Horizontal factor error sum of square (SSEa) = 6.3704
Compute the sum of squares for the vertical analysis:

o Vertical factor sum of square (S.S. (V.E.)) =2070.2963

o Vertical factor error sum of square (SSE») =1.43096
Compute the sum of squares for the interaction analysis:

. Interaction effect sum of square =4.1477

o Interaction error sum of square (SSEc) = 2.37456
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Table 11: ANOVA for strip plot design

Sv D.f Ss Mss F-Ratio P-Value
Replication 2 1.4074 0.7037 2.263180 0.12596233
Brand(A) 2 102.7407 51.3704 32.25563 -
Error(Ea.) 4 6.3704 1.5926 - -
Route(B) 2 2070.2963 1035.14815 2795.884156 0.00000000
Error(Eb) 4 1.48096 0.37024 - -
Interaction(AxB) 4 1.48096 1.036925 3.4934472 0.04526749
Error (Ec) 8 4.1477 0.29682 - -
Total 26 2.37456 - - -

The table values of replication and brand method are more significant than the calculated values.
So the null hypothesis is accepted. There is no significant difference between the three replications
and the three-route method. The table value of the route method is greater than the calculated
value. So the null hypothesis is accepted. There is no significant difference between the three route
methods. The tablevalue of theinteraction effect is also more effective than the calculated value. So
the null hypothesis is accepted. There is no significant difference between the interaction effects.

The P-value of the above experiment is more significant than the 5% significance level.
Therefore the null hypothesis is accepted. There is no significant difference that occurred in the
above experiment.

5. Conclusion

Many real-world experiments deviate from textbook examples and sometimes involve multiple
types of structures. Running agricultural and industrial tests in strip plot analysis is an effective
method to reduce costs. The strip-plot design is the most efficient design in terms of both the
resources required and the time required to study multi-step processes. This paper describes the
construction and analysis of strip-plot analysis using some particular type of graphs through
numerical examples from different fields, the hypothesis testing is compared by the strip-plot
ANOVA method with the software using the method. When comparing the results of these
methods, they produce the same results. Here some particular type of graphs is used to construct
the SPD. In the future, there is an idea to expand this procedure to other experimental designs,
such as Split-Split Plot Designs, Incomplete Block Designs etc.

Reference

[1] Horak, P., Qing, H. and Trotter, W. T. (1993). Induced matchings in cubic graphs. Journal of
Graph Theory, 17(2): 151-160.

[2] Greenlaw, R. and Petreschi, R. (1995). Cubic graphs. ACM Computing Surveys
(CSUR), 27(4): 471-495.

[3] Robin J. Wilson, Introduction to Graph Theory, Fourth Edition, = Addison Wesley
Longman Limited, England, 1996.

[4] Miller, A. (1997). Strip-plot configurations of fractional factorials. Technometrics, 39(2):153-
161.

[5] Milliken, G. A., Shi, X.,, Mendicino, M. and Vasudev, P. K. (1998). Strip-plot design for
two-step processes. Quality and reliability engineering international, 14(4):197-210.

[6] Billington, E. J. and Hoffman, D. G. (2003). Decomposition of complete tripartite graphs
into gregarious 4-cycles. Discrete Mathematics, 261(1-3): 87-111.

98



V. Saranya andS.Kavitha RT&A, No 1 (77)
STRIP- PLOT ANALYSIS USING SPECIAL TYPE OF GRAPHS Volume 19, March 2024

[7] Arnouts, H, Goos, P. and Jones, B. (2010). Design and analysis of industrial strip-plot

experiments. Quality and Reliability Engineering International, 26(2): 127-136.

[8] J.A. Bondy U.S.R. Murty Graph theory, Springer International Edition, 2013.

[9] Ivanyi, A, Pirzada, S. and Dar, F. A. (2015). Tripartite graphs with given degree set. Acta
Universitatis Sapientiae, Informatica, 7(1): 72-106.

[10] Douglas C. Montgomery Design and analysis of experiments, Fifth Edition, International
Student Version, Arizona State University, 2016.

[11] Abdollh Khodkar. (2018). Signed Edge Domination Numbers of Complete Tripartite
Graphs: Part 2, Australasian Journal Of Combinatorics, 71(3):351-368.

[12] Sheikh Rashid, Naveed Yaqoob, Muhammad Akram and Gulistan, (2018). Cubic graphs
with Application, International Journal of Analysis and Applications, 16:5.

[13] Velimor D. Almonte, Severino V. Gervacio and Emmanuel S. Natalio, (2019). Complete
Tripartite Graphs with Spanning maximal planar Subgraphs, Journal of the Mathematical Society of
the Philippine, 42(2):1-10.

[14] Bradshaw, P. A. (2019). Triangle Packing on Tripartite Graphs Is Hard. Rose-Hulman
Undergraduate Mathematics Journal, 20(1): 7.

[15] Santoso, K. A., Agustin, I. H, Prihandini, R. M., and Alfarisi, R. (2019). Vertex colouring
using the adjacency matrix. In Journal of Physics: Conference Series, 1211:1, p. 012019.

[16] Muhiuddin, G., Takallo, M. M,, Jun, Y. B., and Borzooei, R. A. (2020). Cubic graphs and
their application to a traffic flow problem. International Journal of Computational Intelligence
Systems, 13(1):1265-1280.

[17] Nisa, K., Hamsyiah, N., and Usman, M. (2020). Analysis of variance for strip plot design
with missing values: bias correction of the mean squares. In Journal of Physics: Conference
Series, 1524:1, p.012049.

[18] Rashmanlou, H., Muhiuddin, G., Amanathulla, S. K., Mofidnakhaei, F., and Pal, M. (2021).
A study on cubic graphs with novel application. Journal of Intelligent & Fuzzy Systems, 40(1):89-101.

[19] Goos, P. (2022). The fish patty experiment: a strip-plot look.Journal of Quality
Technology, 54(2): 236-248.

List of Abbreviation

Sv - Sources of variance
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Ss - Sum of squares

Mss - Mean sum of squares
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H.F. (A) - Horizontal Factor(A)
H.F.E. (a) - Horizontal Factor Error (a)
V.F. (B) - Vertical Factor(B)

V.EFE. (b)- Vertical Factor Error (b)
LE. (AB) - Interaction Effect (AB)
LE.(c) - Interaction Error(c).
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Abstract

This article explores into the examination of a novel compound distribution termed the "Exponential
Rayleigh distribution” in the context of truncated life testing within a sampling plan. It introduces a
hybrid single acceptance sampling plan tailored for truncated life testing scenarios where the item’s
lifespan adheres to the Exponential Rayleigh distribution. One of the primary segments within the
domain of product quality control is referred to as “sampling inspection by variables”. This category
encompasses procedures that involve the selection of multiple individual units based on measurements
taken from a sample to assess a specific quality attribute under scrutiny. These plans, used to assess
whether to accept or reject a submitted batch of items based on their observed lifetimes, are commonly
known as reliability test plans. The article also outlines the development of a test plan to determine
when to conclude the experiment given specific parameters like sample size, producer’s risk,
consumer’s risk, and termination criteria. Sampling inspection, or reliability sampling, plays a pivotal
role in maintaining product quality. It involves subjecting items to testing, collecting data on their
lifespans, and making acceptance or rejection decisions based on the test results. When assessing an
item’s quality primarily based on its lifespan, which can be suitably described using a continuous
probability distribution; such a plan is termed a "life test sampling plan.” This article explores the
application of the Exponential Rayleigh distribution within the realm of reliability sampling plans,
emphasizing the utilization of hybrid censoring for life checks and median lifetime evaluations. This
approach is leveraged to formulate reliability single sampling plans applicable to the Exponential
Rayleigh distribution. The article utilizes binomial probabilities to compute the parameters of these
sampling plans, aiming to strike a balance between protecting the interests of both the producer and
the consumer while minimizing producer risks. The study involves calculating the specified median
lifetime and determining design parameters like sample size and acceptance thresholds to meet
predefined quality standards. The flexibility of the Exponential Rayleigh distribution in analyzing
various types of lifetime data is highlighted, owing to its scale and shape parameters. To illustrate the
concepts related to sampling strategies, a numerical example is provided in the sampling strategies
section of the article.

Keywords: Reliability Sampling, Median life-time, Hybrid Censoring,
Exponential-Rayleigh Distribution.
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I. Introduction

Based on the examination of a sample of goods, sampling inspection plans are used to determine the
appropriateness of batches that contain finished products. In reliability sampling plans, the lifespan
of the tested items is a crucial element when determining the outcome of the batch after the testing
of life. As a result, it may be appropriate to conclude a life test by setting a time limit and counting
the number of failures that occur before the time limit. This is because the length of inspections may
be a significant constraint. In manufacturing industries, the reliability sampling plan serves as a
statistical tool for determining the allocation of lots by information gathered through a life check.
This method requires a greater amount of sampling cost and inspection time compared to regular
sampling plans. To make the inspection cost-effective, censoring schemes, such as Time censoring
(Type-I), Product censoring (Type-II), and hybrid censoring, are used frequently throughout the life
test. It is appropriate to develop reliability sampling plans with censoring methods when inspection
time is constrained and inspection costs are minimal.

The two main distributions in life testing and reliability theory are the Exponential and
Rayleigh distributions. They possess important structural properties and mathematical flexibility.
One of the fundamental distributions in statistics theory and application is the exponential
distribution. It has several important statistical characteristics, but its absence of memory property
best describes it. But it shows excellent tractability in mathematics. As a result, the theory and uses
of the exponential distribution are extensively covered in the literature [1]. When studying any
lifespan data or skewed data, the three-parameter gamma and three-parameter Weibull
distributions are frequently used. Both distributions have several favorable characteristics and
intriguing physical explanations. Both have quite an amount of versatility for examining various
forms of lifetime data because of the scale and shape factors [2]. A two-dimensional random vector
of normal variables which has independent, identically distributed coordinates with mean zero is
the basis of the Rayleigh distribution, which bears Lord Rayleigh’s name. Numerous scenarios
where the magnitudes of normal variables are crucial can be addressed using this distribution. A
function that appears in the Maximum Likelihood equation is approximated using a hyperbolic
approximation rather than a linear approximation in a Modified Maximum Likelihood Estimate of
the scale parameter of the Rayleigh distribution [3]. Since they reduce the amount of time and
resources needed for testing, these sample programs are very helpful to practitioners, the ability, at
various phases of the experiment, to exclude functional test specimens from further testing [4].
Acceptance sampling, also known as sampling inspection is a crucial quality control technique that
outlines the policies and steps for deciding whether to accept or reject a batch of goods based on the
examination of one or more samples. Consideration is given to the Burr (XII) distribution’s
application in the reliability sampling plan. Utilizing a set of simulated observations from the Burr
(XII) distribution, the evaluation of such plan was discussed [5]. In the industrial sector, reliability
sampling plans are used to make disposition decisions for batches based on product life testing.
These plans are created while taking into account pertinent probability distributions for the lifespans
of the tested products [6]. A new single sampling plan based on ranked data scheme for generalized
exponential distribution using median ranked set sampling [7].

The objective of this research is to establish dependable sampling plans based on
exponential Rayleigh distribution employing a hybrid censoring scheme that corresponds to
producer's and consumer's risk levels. A Lifetime of products follows a specific behavior that is
described by a probability distribution. Estimation and inferential part of the developed theory of
statistics is the key interest of the researcher and this is fulfilled with the help of these distributions
[8]. According to the criteria of the exponential Rayleigh distribution, the study produces the
Operating Characteristic (OC) function of the Reliability Single Sampling Plan (RSSP) in part 2. In
part 3, it is explained how to create and use the sampling plans. Moreover, part 4 discusses the
development of tables that provide optimal sampling plans for certain situations. An example is
given to illustrate the selection of a sampling plan. Part 5 summarizes the outcomes of the study.
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II. The Theoretical Perspective on the Rayleigh Distribution

The Rayleigh distribution is a continuous probability distribution widely used in probability theory
and statistics, particularly for random variables with non-negative values. It has a connection with
the chi distribution, specifically when having two degrees of freedom, albeit involving rescaling.
This distribution is named after Lord Rayleigh. It frequently appears when analyzing the overall
magnitude of a vector in a plane in relation to its directional components. For instance, in the two-
dimensional analysis of wind velocity, the Rayleigh distribution naturally emerges when each
component has zero mean, equal variance, and follows a normal distribution. Another scenario
where the Rayleigh distribution is relevant is in the context of random complex numbers. When real
and imaginary components are independently and identically distributed as Gaussian with equal
variance and zero mean, the absolute value of the complex number follows a Rayleigh distribution.

In the field of Magnetic Resonance Imaging (MRI), Rayleigh distribution is applied. MRI
images are often interpreted as magnitude images, although they are recorded as complex images.
Consequently, the background data in MRI images follows a Rayleigh distribution, allowing for the
estimation of noise variance in MRI images using this method. Furthermore, the Rayleigh
distribution has found application in the field of nutrition. It has been employed to establish
connections between dietary nutrient levels and the physiological responses of both humans and
animals. This approach represents a method for computing nutritional response relationships
through the utilization of Rayleigh distribution parameters."

III. Operating Characteristics of RSSPs under
Exponential Rayleigh distribution

One technique is known as a single sampling plan for reliability to make decisions about submitted
lots by testing randomly selected items from the lot. Mean life is used as a quality metric to calculate
the probability of acceptance to determine design parameters like sample size ‘n” and acceptance
number ‘c’ [9]. This plan is characterized by four parameters (N, n, ¢, t), which include the lot size
(N), sample size (n), acceptance number (c), and test termination time (t). The implementation of the
sampling plan involves using these parameters to make decisions about the lot. Choose a random

selection of n products from the submitted lot of size N.

(1) The supplied lot of size N should be randomly selected to yield a set of n
products.

(2) Execute a life test on the chosen items with t as the test termination time. Count
the number of things that failed, X=x.

(3) If X>C or time t, whichever occurs first, the life test should be terminated.

(4) Accept the lot, if x< c at time t; reject the lot if x>c either at time t or earlier.

Let T be the product’s lifespan; it will be distributed using an exponential Rayleigh
distribution with a probability density function (PDF)

xz—l)

B B
f(x) = ABxez* e~ A2 xeR; 4,6 >0 )

The specifications for the scale and shape are indicated here by A and {3. Following are the
formulas for the exponential Rayleigh distribution’s cumulative distribution function.

By2_yy
F(x)=1— e 7e? xeR; 1,8 >0 ()
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With median respectively,

-2 —log (1-p)
m—\/ﬁlog(1+( - )

Estimate to a parameter [3 respectively

1
2 1-log
b=ialos 5

From each value of 1/m, the lot fraction non-conforming, p may be computed.

r=e(2) -

Utilizing their OC functions, a sampling plan’s effectiveness can be evaluated. A sample
plan’s OC function is defined by
P,=P(x<c)=X5-oP (X =x)

It is reasonable that the probability distribution for X follows a hyper geometric distribution.
The probability distribution of X can be assumed approximately as hyper geometric distribution.
When N is large, the sampling distribution of X can be approximated by the Binomial (n, p)
distribution [10]. Under these circumstances, here, it is proposed that

B, (p)=236c=0 ne, p*qt"

IV. Plan Parameter determination under the conditions of the Exponential
Rayleigh Distribution

Utilizing the OC function stipulated by the Binomial probability distribution, the best reliability
single sampling plans are identified under the circumstances of the ER (A, 0) distribution. A
modified maximum likelihood estimate for Rayleigh distribution using hyperbolic approximation
[11]. A sample strategy is typically developed so that it simultaneously protects the manufacturer
and the customer. By designating two points on the OC curve, namely (pi;, 1-a) and (p2, ), the
protection of the producer and the customer is guaranteed. In this case, p; stands for the acceptable
quality level, for producer risk, p. for restricting quality level, and for consumer risk. It is possible
to determine an ideal RSSP for points meeting the following criteria.

P(p)=21-«a
and
Fa(p2) < B
These conditions may be written as
Y=o P " 21—« @)
and
Dx=oNCe P2 """ < B (4)

To find the best values of n and c subject to (3) and (4), various techniques may be used.
Finding the plan parameters involve using the iterative process outlined below. Therefore, the ideal
values of the plan parameters n and c for given, A, t, m;, m, &, §, and may be found as follows:.
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(1) When m;>m; with the required values of m; and m;, calculate
1-log (%) 1-log (%)

Bi =3 log (— =) and B> =5 log (—-2)
(2) Corresponding to t, 31 and (3, determine p1=Fr(1/mi) and p=F7(1/m.)
(3) Setc=0
(4) Find the largest n, say n;, such that P,(p1) = 1-a
(5) Find the smallest n, say ng, such that P,(p2) <8
(6) If ng <n,, then the optimum plan is (ng, c); otherwise increase c by 1.
(7) Repeat Steps 4 through 6 until optimum values of n and c are obtained.

By the hybrid censoring systems covered in part 2 and after figuring out n and ¢, a submitted lot
may undergo sample inspection.

V. Construction of Tables

Binomial probabilities are used to calculate the values of n and c for the best reliability sampling
plans for various combinations of A, t, m;, m,, a, and (3. Plans for acceptance sampling from
exponential populations that use the lifetime-performance index both with and without censoring
[12]. Both the producer’s risk and the consumer’s risk are taken into account at two distinct levels,
such as a=0.05, 0.05 and (3=0.05, 0.10 respectively. The producer’s expectations for the mean lifetime
of the products are considered as m;=6000, 7000, 8000, 9000, and 10000 hours respectively. Assumed
values for the shape parameter A and the test termination times t are 300, 450, and 600 hours and A=1
correspondingly. The consumer’s projected mean product lifespan is taken as m,= 1000, 1500, 2000,
2500, 3000, 3500, and 4000 hours respectively. Tables 1 through Table 3 give the n and c values for
the best reliability sampling strategies. Each cell entry (n, c) in every table reflects the ideal value of
the pair (n, c) that corresponds to the given values of A, t, m;, m,, a, and 3. choosing a plan from
these for certain requirements is illustrated in the following example.

Ilustration

Let ER (1, B) is distributing the lifetime of the products that have been submitted for inspection. The
average lifespan of products that live up to producer and customer expectations is, respectively,
m;=6000 hours and m,=4000 hours. Let’s say the quality inspector instructs the life test to be censored
at t=300 hours. The values of the limiting quality level and the acceptable quality level can therefore
be calculated as p;=0.0013 and p,=0.0029, respectively. The plan parameters can be calculated using
the binomial probabilities from Table 1 as n=8200 and c=16 if the producer’s risk and the consumer’s
risk are a=0.05 and (3=0.05, respectively.

Now, the inspection of the lot-by-lot sampling based on the life test can be done as follows:
The submitted lot may have up to 8200 products randomly chosen as a sample. All of the sampled
goods are eligible for life testing. The life test may be stopped if there have been 16 failures or fewer
after 300 hours. The lot might be taken. However, if the seventeenth failure happens before t=300
hours, the life test should be stopped. The lot could be disregarded.
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Table 1: Parameters of RSSPs under the conditions of ER (B, A=1) Distribution with a=0.05, A=1 and t=300 hours.

£=300, A=1 m; 6000 7000 8000 9000 10000

t/my 0.05 0.0428  0.0375  0.0333 0.03

m, t/m, P1 0.0013 0.0009  0.0007  0.0005  0.0004
P2

1000 0.3 0.0473 (81,1) (48,0) (48,0) (48,0) (48,0)

(99,1) (99,1) (62,0) (62,0) (62,0)

1500 0.2 0.0210 (1841)  (1841)  (1841)  (1841)  (184,1)

241)  (2241)  (2241)  (2241)  (224,1)

2000 0.15 0.0118 4482)  (327,1)  (327,1)  (327,1)  (327,1)

(5302)  (530,2)  (399,1)  (399,1)  (399,1)

2500  0.12 0.0075 (880,3)  (701,2)  (701,2)  (512,1)  (512,1)

(1021,3)  (829.2)  (829,2)  (829,2)  (624,1)

3000 0.1 0.0052 (1760,5)  (1267,3) (1010,2) (1010,2)  (738,1)

(2246,6)  (1736,4) (1471,3) (1194,2)  (1194,2)

3500  0.0857 0.0038 (3357,8)  (2396,5) (17253) (13752) (1375,2)

(4057,9)  (3059,6) (2364,4)  (2002,3)  (1626,2)

4000  0.075 0.0029 (6398,13)  (3972,7) (3130,5) (2254,3) (2254,3)
(8200,16)  (5299,9) (3996,6) (30884) (2616,3)

In each cell, the first pair is the value of (n, c) corresponding to (a=0.05, 3=0.10) and the
Second pair corresponding to (a=0.05, 3=0.05).

Table 2: Parameters of RSSPs under the conditions of ER (B, A=1) Distribution with a=0.05, A=1 and t=450 hours.

t=450, A=1 m; 6000 7000 8000 9000 10000

t/my 0.075 0.0642  0.0562 0.05 0.045

m, t/m, P1 00029  0.0021  0.0016  0.0013  0.0010
P2

1000 045 0.1064 (36,1) 1,00 (2L,0)  (2L0)  (21,0)

43,1) 431 (2700 (2700  (27,0)

1500 0.3 0.0473 (81,1) @1,1)  (8L,1)  (8L,1)  (48,0)

(99,1) 99,1)  (99,1)  (99,1)  (99,1)
(199,2)  (1451)  (1451) (1451)  (1451)
(2352)  (2352) (1771) (1771)  (177,1)
2500  0.18 0.0170 (390,3)  (311,2) (311,2) (2271)  (227,1)
( ) )
( ) )

2000 0.225 0.0266

(367,2)  (367,2)  (367,2)  (277,1)
(563,3)  (4482)  (4482)  (327,1)
(997,6)  (7704)  (6533)  (530,2)  (530,2)

3500 0.1285  0.0087 (1491,8)  (1064,5) (766,3)  (610,2)  (610,2)
(1801,9)  (1358,6) (1049,4)  (889,3)  (722,2)

4000 0.1125  0.0066 (2842,13)  (1764,7) (1390,5) (1001,3)  (1001,3)
(3643,16)  (2354,9) (1774,6) (1371,4) (1162,3)

3000 0.15 0.0118

In each cell, the first pair is the value of (n, c) corresponding to (a=0.05, 3=0.10) and the
Second pair corresponding to (a=0.05, 3=0.05).
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Table3: Parameters of RSSPs under the conditions of ER (B, A=1) Distribution with a=0.05, A=1 and t=600 hours.

=600, A=1 m; 6000 7000 8000 9000 10000
t/my 0.1 00857  0.075  0.0667 0.06
m, t/m, P1 0.0052  0.038  0.0029 0.0023  0.0018
P2
1000 0.6 0.1883 (20,1 (1200 (1200 (1200  (12,0)
(24,1) 41)  (150)  (150)  (150)
1500 0.4 0.0841 (45,1 451)  @451)  @451)  (27,0)

(55,1) 51)  (551)  (551)  (55,1)

2000 03 0.0473 (111,2) 61,1  @8L,1)  @L1)  (8L1)
(131,2)  (131,2)  (99,1)  (99,1) (99,1
2500  0.24 0.0303 193)  (1742) (1742) (127,1)  (127,1)
(2543)  (2062)  (2062)  (206,2)  (155,1)
3000 02 0.0210 439,5)  (3163)  (252,2)  (252,2)  (184,1)
(4975)  (4334)  (3663)  (297,2)  (297,2)
3500 0.1714  0.0154 (8388)  (5985)  (4303) (3432)  (343,2)
)

(1012,9)  (763,6)  (589,4)  (499,3)  (405,2)
4000  0.15 0.0118 (1598,13)  (992,7)  (781,5)  (563,3)  (563,3)
(2047,16)  (1323,9)  (997,6)  (7704)  (653,3)

In each cell, the first pair is the value of (n, c) corresponding to (a=0.05, 3=0.10) and the second pair
corresponding to (a=0.05, 3=0.05).

VI. Conclusion

In this article, a new sampling distribution is introduced for testing product quality when
conducting acceptance sampling for life tests that follow the Exponential Rayleigh distribution. The
paper also outlines reliability sampling plans for conducting life tests through hybrid censoring,
specifically for products that follow the Exponential Rayleigh distribution. These plans have been
designed to protect the interests of both the producer and consumer and the use of hybrid censoring
helps to reduce the amount of time required for implementation. The article also includes tables that
provide optimal plans for certain specified strengths.
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Abstract

Characterization of a probability distribution gives a unique property enjoyed by that distribution.
Various approaches are available in the literature to characterize distributions through record values.
Many researchers have characterized Exponential, Pareto, and Power function distributions using
moments, conditional expectation, and some other characteristics of record values. In this paper, we have
characterized these three distributions through conditional variance of adjacent record values. The results
have been verified using numerical computation.

Keywords: Characterization of continuous distributions, conditional variance, record values.

1. INTRODUCTION

Let X1, X>,... be a sequence of independent, identically distributed random variables with
distribution function (df)F(x) and probability density function (pdf)f(x). Let Xy, be the r th
upper record value, then the conditional pdf of Xy;,41) given X,y = x,1 <r < s is given by
(Ahsanullah, 2004)[1]

/)

f (Xu(r+1) =y | Xup = x) = o) (1.1)

where F(x) = P(X > x) =1— F(x).
One can transform the upper record into lower record values by replacing the original sequence

of (X;) by (—X;,j > 1) (Ahsanullah, 2004) []. Let Xi(r) be the r-th lower record value, then the
conditional pdf of Xy (1) given X,y = x,1 <r < s is given by

f (XL(r+1) | Xir) = x) = {;E‘Z; (1.2)

The record values have been extensively studied in literature. For an excellent review, one may
refer to Ahsamullah (2004) [1]. Arnold at al. (1998) [2] and Nevzorov (2001) [3] amongst others.
Characterization of distributions through conditional expectations of record values have been
considered, among others, by Nagaraja, H.N. and Nevzorov, V.B. (1997) [4], Franco and Ruiz(1997)
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[5], Athar et al. (2003) [6], Khan et al. (2010) [7] and Faizan and Khan (2011) [8].

Beg, M.I. and Kirmani. S.N.U.A. (1978) [9] characterized exponential distribution by a weak
homoscedasticity. Khan and Beg (1987) [10] extended the result of Beg and Kirmani (1978)
for Weibull distribution. Khan et al. (2008) [11] characterized a general class of distribution
by conditional variance of order statistics and Shah et al. (2018) [12] characterized Pareto and
power function distributions by conditional variance of order statistics, In this paper we have
characterized exponential, Pareto and power function distributions by conditional variance of
record values.

2. CHARACTERIZATION RESULTS

Theorem 2.1: Let x be a random variable with df F(x) and E (X?) < co. Then for r < s

14 [Xx(wrl) | Xv(r) = x} = 62 (2.1)
for some 6 > 0 if and only if
F(x)=eT; x>0. (2.2)
Proof: First we will prove implies ([2.I). It is easy to see that from and
E [Xu(rJrl) | Xu(r) = x} =x+0 (2.3)
and
E [Xﬁ(w) | Xy = x] = x2 4 2x6 + 262 2.4)

Now, using (2.3) and (2.4), we have
14 [Xu(r—i—l) | Xu(r) = x] =6

For sufficiency part, we have from (2.2)
2
© 2 fy) </°° fw) ) 2
2L dy — —Ldy | =0
/x TFo™ T\ TR

F(x) /X 2 (y)dy - ( /x yf (y)dy>2 = 0°F%(x) (2.5)

Differentiating (2.5) twice w.r.t. x and simplifying, we get

[ ufdy = xF(x) + 04 (x) 26
Now differentiate again w.r.t. x, we get
F(x) = —6°f'(x)

and hence the result.
Theorem 2.2: Let X be a random variable with dfF(x) and E (X2) < co. Then, for some r < s
and 0 < p < 1, we have

Y P 2
14 [Xu(r+1) | Xu(r) = x] = mx (2.7)
if and only if
F(x) = (%)p; < x < oo. (2.8)
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Proof: First we will prove implies (2.7). By using (1.1) and (2.8), it is easy to show that

E [Xu(r—l—l) | Xu(ry = x} =P x

and

2
E [Xu(r+l) | X“(”) = x} = x
which gives
X X = = X~
V|: u(r+1) | u(r) x} (p—Z)(p—l)zx
Now, to prove implies , we have using and

— 00 o0 2 —
Fe) [y = ([T usoiay) =elrn 29
where
= —p .
(p=2)(p—-1)
Differentiating twice w.r.t. x and simplifying, we get
[y =2x [ urway = e~ 12F) 2, @10)
Now, after differentiating w.r.t. x, we get
) _ FZ FZ !
/x yf(y)dy = cx*f(x) — (4c — 1)xF(x) + cf,((;c)) —cx 53;)({6)(36) (2.11)

Again differentiating (2.11), we get
W20 FRF) | F@) L, )

— X
f3(x) f2(x) f(x) f(x)
2 f'(x) flx) 1
+x Flx) +6xp(x) 6+ c =0.
Let lf;(;‘)) =y = y(x) bearing in mind that f(x) = F'(x), f(x) = F'(x), f'(x) = F"(x),
i/((xx)) =y +v F;ég) =" +3yy’ +1°, we get

2
R P e S I - A o 2
x 2 2x 7 x A (y+y) bxy +p~ —4p v 1=0.
2.12)

There exists a unique solution of the differential equation (2.12) that satisfies the prescribed initial
conditions

that y/(a) = —a%

and

y(a) = 4

where a is any finite point in the support of F. Thus by the existence and uniqueness theorem
(Boyce and Diprima, 2012) [13], we get

which implies that
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where A is a constant to be determined and hence the Theorem.
Theorem 2.3: Let X be a random variable with dfF(x) and E (X?) < oo. Then for r < s

p 2
VX Xi) =%X| = ————
[ L(r+1) | L(r) x} (p+2)(p+1)2x
if and only if
p
F(x) = (;) ; 0<x<p< oo (2.13)

Proof: This can be proved on lines of Theorem 2.2

Table 1: Verification of the characterization results in case of Exponential distribution.

0 X L.HS. R.HS. |L.H.S. — R.H.S.| | LH2 RIS
15 04 2.2499 2.25 0.0001 0.00005
2.5 0.8 6.2497 6.25 0.0003 0.00005
45 1.6 20.2504 20.25 0.0004 0.00002
5.5 2.0 30.2454 30.25 0.0046 0.00015
6.5 24 42.2430 4225 0.0070 0.00017
7.5 2.8 56.2436 56.25 0.0064 0.00011
8.5 3.2 72.2603 72.25 0.0103 0.00014
9.5 3.6 90.2302 90.25 0.0198 0.00022
10.5 4.0 110.2485 110.25 0.0015 0.00001
115 4.4 132.2380 132.25 0.0120 0.00009
12,5 4.8 156.1910 156.25 0.0590 0.00038
13,5 5.2 182.2197 182.25 0.0303 0.00017
14.5 5.6 210.2026 210.25 0.0474 0.00023
15.5 6.0 240.2801 240.25 0.0301 0.00013

Table 2: Verification of the characterization results in case of Pareto distribution.

w P X LHS. | RHS. | |LHS.—RHS| | LHSRAS.
03 3 02156 | 0.0347 | 0.0348 0.0001 0.0029
07 | 4 05797 | 0.0745 | 0.0747 0.0002 0.0027
11 5 0.8523 | 0.0756 | 0.0757 0.0001 0.0013
15 6 11692 | 0.0838 | 0.0820 0.0018 0.0220
1.9 7 14536 | 0.0699 | 0.0822 0.0123 0.1496
2.3 8 17510 | 0.0836 | 0.0834 0.0151 0.1530
27 | 9 20642 | 0.0943 | 0.0856 0.0087 0.1016
31 | 10 | 23171 | 00829 | 0.0812 0.0017 0.0209
35 | 11 | 26390 | 00850 | 0.0851 0.0001 0.0011
39 | 12 | 29604 | 00878 | 0.0869 0.0009 0.0103
43 | 13 | 32612 | 0.0847 | 0.0873 0.0026 0.0002
47 | 14 | 35998 | 0.0899 | 0.0895 0.0004 0.0045
51 | 15 | 38431 | 00862 | 0.0869 0.0007 0.0080
55 | 16 | 42212 | 00871 | 0.0905 0.0034 0.0376
59 | 17 | 45505 | 0.0917 | 0.1147 0.0230 0.2005

Conclusions:

This paper introduces a study of the Exponential, Pareto, and Power function distributions,
showcasing their characterizations based on the conditional variance of adjacent record values.
The validity of our findings has been confirmed through some numerical computation.
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Abstract

Considered is a three-station tandem queue with service times at stations 1, 2, and 3 are exponentially
distributed with customers arriving according to the Poisson process at station 1. Given that the station-
ary distribution is the product of three independent geometric distributions with the intensity parameters,
maximum likelihood estimators and Bayes estimators of the intensity parameters based on the number of
customers present at different time periods are obtained. Furthermore, the minimal posterior risk and
minimum Bayes risk of the estimators are computed. Also, a simulation study is conducted to evaluate
the performance of the estimators obtained.

Keywords: Three-station tandem queue, Classical inference, Bayesian inference, MCMC sampling

1. INTRODUCTION

Most works on queuing models are restricted to deriving the formulations for transient or
stationary (steady state) solutions and do not take into account the related statistical inference
issues. Some of the crucial tools to understanding any random phenomenon using stochastic
models are classical inference and Bayesian inference. The past has not paid much attention to
the analysis of queuing systems in all these directions. Standard parametric models are highly
suitable whenever the systems are completely observable in terms of their fundamental random
components, such as inter-arrival times and service times.

Estimation of the parameters associated with the queueing models are integral part of queuing
theory. Frequently, previous experiments or analyses of the inter-arrival time or service time
data have revealed some information about the parameters of the distributions of inter-arrival
time or service time. The Bayesian approach offers the framework for formally integrating prior
knowledge with the facts currently available.

Here are some of the queueing system research that have been done in the past where the estimate
of queueing parameters was done using both classical and Bayesian methods. Inter-arrival and
service times were used as the observed data in an empirical Bayesian framework by [9] to
estimate the parameters for various queueing systems. Based on the number of customers present
at various sampling time points, [5] computed an maximum likelihood estimator (MLE) and
Bayes estimator of traffic intensity in an M/M/1 queueing model. Regarding tandem queues with
dependent service time structures, [2] studied statistical inferential aspects. Using the classical
inference method, they modelled tandem queues and estimated the parameters. The statistical
analysis of a tandem queue with blocking was then undertaken by [3] and focused on a two
station tandem queue. Again, [1]] investigated the Bayesian inference for a two station tandem
queue, calculated the traffic intensities for the two stations, and determined the confidence
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interval of the estimators. In the M/M/1 queue with bivariate priors, Bayes estimation has been
studied by [6]. Then [4] performed a simulation research applying the Markov Chain Monte
Carlo (MCMC) approach including the Metropolis-Hastings (M-H) algorithm and explored the
Bayesian inference of the Markovian queuing model with two heterogeneous servers.

This paper attempts a detailed study of a three station tandem queue with customers arriving
according to the Poisson process, with rate A for service at station 1 and service times at station
1, station 2, and station 3 being exponentially distributed with service rates jq, pp and u3
respectively. The maximum likelihood and Bayes estimators of the intensity parameters p1, p and
p3 are computed using the number of customers present at various sampled time points under
the assumption that the stationary distribution is the product of three independent geometric
distributions with parameters p1, p» and p3 accordingly. Additionally, the minimal Bayes risk of
the estimators and the minimum posterior risk related to Bayes estimators are derived.

This paper is structured as follows: Section 1 discussed an introduction to tandem queues as well
as some early research in this area. Section 2 explored the model, the system description, and the
inferential aspects of the model. Section 3 looked at the estimated number of customers in the
system and its implications. Section 4 examined the model using simulation. Finally, Section 5
contains the paper’s conclusions.

2. SYSTEM DESCRIPTION AND STEADY STATE PROBABILITY

Consider a simplified one channel queuing system consisting of three service stations as in the
figure 1. A customer that arrives for servicing must pass through station 1, station 2 and station 3

000...000 000...000 STATION 2 :> STATION 3 :>

Figure 1: System configuration

before finishing the service. The model’s underlying assumptions are as follows:

1. Arrivals occur according to the Poisson distribution with mean rate A at station 1.

2. Service times at station 1, station 2 and station 3 are exponentially distributed with service
rates py, pp and u3 respectively.

3. A queue of infinite size is allowed in front of station 1 and station 2 but at most one customer
is permitted to wait between station 2 and station 3.

4. Each station is either free or busy.

5. If a customer in station i, i = 1,2 completes their service before station (i +1),i = 1,2
becomes free, then it is said that station i,i = 1,2 is blocked.

Let Py, ny,n; (f) be the probability that there are 17 customers in station 1, 1o customers in station
2 and n3 customers in station 3 at time ¢ (in queue or in system). In the steady state it can be
shown that,

pn],i’lz,n3(t) = p’fl(l - pl)pgz (1 - PZ)Pgs(l - P3)/ ny, np = O/ 1/ 2/ 3/ & nz = O/ 1/

A

where, p; = o

i =1,2,& 3 and steady state results exist provided p; < 1.
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2.1. C(lassical Inference

The likelihood function of the number of customers present at n different time points t1, {2, t3, ..., ty
is given by

1((01,02,03) | (31, 91,21), s (X Yty Z0))) = P (1 = 1) o3 1Y (1 — pp) o517 (1 = p3)™. (1)

Taking logarithms and differentiating the log-likelihood function of (1) with respect to p1, p» and
p3 and equating to zero, we get the MLEs of p1, p2, 3 and are given by

p\l — Zn:l Xi p\z :l 1y1 and pf\ — i= 121
n+Yrx’ n+ Y,y n+Yilizi
In other words,
T T T3
N / d 6« —
1 n+T1p2 T, T T

where,
ZﬁyvNMnl—m T, = Zy,van1—m)mu13 ZﬁyvNMml—m)
i= i=1

and Ty, T> and T3 are independent (see, [8]). Clearly, the probability mass functions (pmfs) of T7,
T; and T3 are given by

t1+n—1
P[T1=t1]=<ln_1 )(1—101)"#’;1/
th+n—1
P[T =t = ( zn 4 )(1 —p2)”p;2 and
tzt+n—1
P[T3=t3]=<3n1 >(1—P3)"P§3,

where, t1 =0,1,2,..,t, =0,1,2,..and t3 = 0,1, 2, ... It can be shown that

le 7’12 7’12
Hﬂ):Tf%,HB):lf;amﬂﬂﬁ) T{%
Also
n*p1 n’pa n?p3
Vﬂr(Tl) - m, Var(T2) - m and Vﬂr(TS) m

Since g1, ¢z and g3 are one to one functlons of T1,T, and T3 respectively, it is clear that ¢y, ¢» and

03 assume the values nilt P +t2 and - +t respectively with t1,t5,63 =0,1,2,3, - - - Further, the joint
pmf of g1, g2 and g3 is given by
. . . t ty t3
P = u, = v, = w| = = = = w
61 = w02 = 0,03 = ] [n+h nth U ntih ]

2+ —1 (5 +n—1 LS
= (1 ! >(1-—fn)"pf (1 ’ >(1'—£D)HP§
% 111};, -1 (1_P )nplmgu
n—1 3/ F3

In the next section, Bayes estimators of p;, p» and p3 and their Bayes risks are found.
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2.2. Bayesian Inference

The number of customers present at various sampled time points is used to determine the Bayes
estimators of p1, p2 and p3 as well as their Bayes risks. The natural conjugate prior density for
(p1,p2,p3) is taken to be the product of three independent Beta distributions of first kind with the
parameters (mq,n1), (my,np) and (ms, n3), respectively. As a result, we suppose that (p1, 02, 03)
has a prior distribution that is the product of three separate Beta distributions of the first kind,
each with the parameters (mq,n1), (mp, ny) and (m3,n3). That is,

1
B, ny)(ma, np)p(ms3, n3
X (1= p2)" 137N (1 = pg)™
where 0 < 01,02,03 < ]-/ o= (Pl/PZrP3)/ ml = (mllnl)/ 7’1/ = (m2/ 7’12) and Pl = (m3/ 7’13).

The marginal probability density function (pdf) of T = (T1, T2, T3) = (L1 Xi, 1t Yis i1 Zi)s
which is called the predictive pdf and is given by

Yll—l mz*l

)PT171(1 - p1) (%3

T(P| (Wll, nl); (mz, 7/[2), (m3, 1’[3)) =

11 .1
:/ / / f(t, t2, t3; 01, 02, 03).T(p|(m', n', p'))dp1.dps.dp3

= / / / P[Ty = 12].P[T3 = t3] (o] (', ', ') dpr.dpa.dps

_ Bl tm,n+ ”1)-/502 + o, 1+ 1) Bts + s, 4 13) g (ti +n— 1)
- B(mq, ny).p(my, ny).B(ms, n3) i=1 .

Hence the posterior distribution of p = (p1, p2, p3) is given by

£t ta, t3:0) (| (1, ')
oIy 2) = T s yelol ot 7))

1 (ttmp)—1 (n+n1)-1
Bty +my,n+ny)"t ey
1 (tp+mp)—1 (ntnz)—1
1 _ 2
. B(tr 4+ my, n+ny) z t=r2)
1 Ustms) =1 () _ o) (mtm)=1 0 < oy, pn, 05 < 1.

X
B(ts +m3,n+n3)"3

It should be pointed out that the posterior distribution of p = (p1,p2,p3) is the result of the
pdfs of three independent Beta distributions of first-kind with the parameters (t; + mq,n +ny),
(tp +my,n + ny) and (t3 + mz, n + n3), respectively. Therefore, under the squared error loss, the
Bayes estimator of p = (p1, 02, p3) is given by

E[o|(x,y,2) ///mpzpwplxy,

B t1 +my tr +mjy tz +m3
t1+m1+n+n1t2+m2+n+n2t3+m3+n+n3‘

Furthermore, the minimum posterior risk related to this Bayes estimator is provided by
Vylp®|(x,y,2)] = diag(E[61 — p1]* E[62 — p2]?, E[63 — p3]?),
where

] :/01 /Ol/ol[pl_pl]zq(p|(x,y,z))dpldp2dp3

~[ma(ny + 1) + 0t + n(n = 2myng) by + [mg (mg +1)n?]
(n+t)2(ty+my+n+n))(l+m +n+n+1)
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2 [na(ny+1) + n]t% +n(n — 2myny)ty + [mo(mo + 1)n?]
(n+4t2)?(t2 +mp +n+np) (b2 +mp +n+ny +1)

P = [n3(n3+1) + n]té +n(n —2manz)ts + [mz(ms + 1)n?]
 (n+t)2tz+my+ntn3)(ts+mz+n+ng+1)

and

E[62 — p2]

Eld3 — p3

Therefore, E[V,(p®|(x,y,z))] gives a minimum Bayes risk of o = (61, 5,7, 057 with respect to the
marginal distribution h(x,y,z) of (x,y,z), where (x,y,z) = (x1,y1,21), (X2, Y2,22), -, (X1, Yn, zn) is
derived as follows:

The marginal distribution h(x,y,z) of (x,y,z) is given by

h(xy.2) / / / (ol(x,,2))-T(p|(m’, 1, p'))dpr.dpa.dps

B(my +t1,n+ nl)ﬁ(mz +ty,n+np)B(ms +ts, n+ ns)
B(my,n1)B(ma, n2)B(ms, n3)

resulting in the minimum Bayes risk factor

repp = EVp(0°|(x,,2))] = Eldiag(E[6y — p1)?, E[62 — p2]* E[d3 — p3]*)].

3. EXPECTED NUMBER OF CUSTOMERS IN THE SYSTEM

The expected number of customers in the system is defined by

|
agk
agk
-

Ls = (nl +ny + n3)Pn1,n2,n3 (t)

3
=
Il
o
3
N
Il
o
3
(o)
i
o

I
agk
agk
-

(n1 +np + n3)p} (1 — p1)p52 (1 — p2)p3* (1 — p3)

=
=
Il
o
=
N
Il
o
=
W
I
o

[e9)

(1=p1)(1—p2)(1—p3) Z

Vl]:
01 02 03
+ + .
1-pp 1—p2 1-—0p3

13

1
Z n1 + ny +n3)py 053205

nmg

Therefore,

1 1 1
Ls=A . 2
TEDRRCE Ry @)

In the next section, we obtain a 100(1 — a)% asymptotic confidence interval for the expected
number of customers in the system.

3.1. Maximum Likelihood Estimator for the expected number of customers in
the system

Given an exponential inter-arrival time population with the parameter A, let X, X», ..., X, be
a random sample of size n. Let Y1, Y}y, ..., Yi, represent a random sample of size n taken from
a population of service times with an exponential distribution and parameter p;,i = 1,2,3.

Therefore, it is clear that
EX] =1, Ev]=1, i=1253
A Hi

Here X and Y}, i = 1,2, 3, respectively represents sample means for inter-arrival times and service

times. It can be shown that X and Y;, i = 1,2,3 are, respectively, the MLEs of Land L W i=1,2,3.
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Let6; = #il, 0, = %, 03 = P% and 6, = % Then the the expected number of customers in the system

given in (2) reduces to

th n 6> n 63
(s —61)  (02—62) (64—063)

Therefore, using the invariance property of the MLE, the MLE of L; is given by

Ls =

;% Y, Y,
TX_Y, X-%, X-15

It should be noticed that L; is a real valued function that is also differentiable in Yj, Y», Y3 and X.

3.2.  CAN estimator for expected number of customers

By applying the multivariate central limit theorem, we have
Vi [(Ya, Yo, Ya, X) — (61,02,05,00)] 5 N(0,Z) as n — oo.
The dispersion matrix X = ((0;;)) is given by X = dia g(62,63,03,67). Again from [7], we have
Vi(Ls — L) % N(0,02(0)) as n — oo,

where 6 = (61,65, 03,04) and

3 JL )2 92 92 92
2 S 2 1 2 3
O =) (=) =8 + + ) 3

Hence it is concluded that, Ls is a CAN estimator of L.

3.3. Confidence interval for expected number of customers

Let 02(0) be the estimator of 02(6) obtained by replacing 6 by a consistent estimator §, namely
6 = (Y1,Ys,Y3,X). Let 02 = 0%(). Since 0%(6) is a continuous function of 6, 02 is a consistent
estimator of 02(0) (see, [8]), we have

22 o2(0) asn — oo,

By Slutsky’s theorem (see, [8]) (X i> x, Yy, Py — }}f—;’ i> %, b #0), we have

Ls—L
\/ﬁ< — s) 4 N(0,1) as n — oo.
That is, .
fs— L
&

Pr[—kg<\/ﬁ< )<kg}—(1—o¢),

where ks is obtained from the standard normal table. Hence, 100(1 — «)% asymptotic confi-
dence interval for L, is given by (fs ks %), where ¢ is obtained from the equation given in
equation(3) by replacing 61, 6, and 65 by the corresponding MLEs Yj, Y, Y3 and X respectively.
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4. COMPUTATIONAL CONSIDERATIONS

The Bayes estimator of model parameters of three-station tandem queue with one customer being
allowed to wait in the last station using an MCMC (see, [10]) simulation method as is as follows:
1. Defining the likelihood function: The likelihood function is a probability distribution that
describes the probability of observing the data given the model parameters. In a queuing model
it would be the probability of observing the number of customers in each station, the waiting
time, and the service time given the model parameters (such as arrival rate, service rate and
observation time).

2. Defining the prior distribution: The prior distribution is a probability distribution that describes
the probability distribution of the model parameters before observing the data. In a queuing
model it would be the probability of the arrival rate, service rate and observation time.

3. Defining the posterior distribution: The posterior distribution is the probability distribution of
the model parameters given the data. It is calculated by multiplying the likelihood function and
the prior distribution.

4. Specify the starting values for the MCMC chain: Choose some initial values for the model
parameters that we want to estimate.

5. Run the MCMC simulation: Use an MCMC algorithm such as the M-H algorithm to generate a
large number of samples from the posterior distribution.

6. Extract the samples from the MCMC chain: Retrieve the samples generated by the MCMC
algorithm for each model parameters.

7. Calculate the posterior mean and standard deviation: Compute the mean and standard
deviation of the samples for each model parameter. These will be the Bayes estimates of the
model parameters.

8. Validate the estimates: Compare the Bayes estimates with the true values of the model parame-
ters (if they are known) or with the estimates obtained using other methods, such as maximum
likelihood estimation or method of moments.

9. Assess the convergence of the chain: Check if the chain has converged or not using methods
such as trace plots, Gelman-Rubin diagnostic, or effective sample size.

4.1. Simulation

The initial values given for simulation are :
01 =O.3,p2=0.4,p3=0.7,m1 =5,m2=6,m3=7,n1=10,n2=9,n3=8.

Table 1: Table 1: Table of MSE and Bias for different sample sizes.

Sample Size Estimates MSE Bias

500 0.2677 0.08643  0.17954
0.3575 0.00374  0.07256
0.6794 0.05953  0.09211

1000 0.2730 0.00789  0.00623
0.3823 0.00043  0.00058
0.6847 0.00312  0.00085

2000 0.2877 0.000036  0.00032
0.3956 0.000023  0.000082
0.7148 0.000016 0.00028

5000 0.3062 0.000006  0.000022
0.4341 0.000004  0.000039
0.7232 0.000003  0.000009
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From the table 1 it is clear that when sample size increases, the Mean Square Error (MSE) and
Bias are decreasing and tending to zero, indicating that the validity of the estimators obtained.

4.2. Histograms for simulation range

The histogram of the simulation range for the traffic intensities p;, p2 and p3 is plotted. The Y
axis measures the frequency and the X axis shows the range of values that the corresponding
traffic intensity takes with respect to the initial value. From the figure 2, figure 3 and figure 4, it
is clear that the simulation results have taken a normal curve shape.

Histogram of rho1

15

Frequency
10

0.295 0.300 0.305 0.310

rho1

Figure 2: Histogram 1

Histogram of rho2
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0.395 0.400 0.405 0.410

rho2

Figure 3: Histogram 2

Histogram of rho3

20

15
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0.695 0.700 0.705 0710
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Figure 4: Histogram 3
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5. CONCLUSIONS

In this study, we used the MLE and Bayesian techniques to estimate the traffic intensity for a
three-station tandem queue where only one customer was permitted to wait between the last
two stations. The Bayes estimators of p1, p2 and p3 were obtained using the beta prior, and the
minimal Bayes risk was calculated. We also estimated the expected customers for the system.
Then, using Slutsky’s theorem, the confidence interval for the expected number of customers
was determined. A three-station tandem queue was simulated using MCMC to obtain a Bayes
estimators, and the performance of the estimators are verified through a broad simulation study.
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Abstract

In the dairy plant, an investigation into the machine that makes butter was subjected to a reliability study
in relation to the seasonal demand. In the process of expanding the butter churner into a machine that
can make butter continuously, a more reliable operational model was devised. Both the models and the
data acquired with MATLAB have been subjected to availability and reliability testing and analysis. In
addition, the graphical analysis was carried out with the help of Code Blocks and Excel. A comparison of
the two models was then covered as the final topic. It was discovered that (a) the extended model was
superior to the current model, (b) the failure rate of the existing line increased, which implies that a new
machine needs to be added to the line to share the load, which results in improved production, and (c)
the failure rate of the extended model was lower than the failure rate of the existing model. (c) in order
to maximise profits while simultaneously minimising losses The effectiveness of the system ought to be
enhanced by performing routine maintenance during both the summer and the winter.

Keywords: Butter churner, continuous butter making, seasons, semi-Markov process, profit.

1. INTRODUCTION

As a result of high levels of "lifetime" engineering uncertainty, reliability engineering deals with
predicting, preventing, and managing engineering failures. Costs of failures caused by equip-
ment failure, parts costs, repairs, and personnel costs are all taken into account when reliability
engineering is conducted. Industry engineers now put their effort on efficiency and high quality
production. This can be achieved by improving system performance. When it comes to industrial
applications on food production lines, ensuring a high level of reliability is highly important;
however, reliability itself can be complex, many interconnected variables must be taken into
account when guiding and assessing various levels of reliability.

Using maintenance regimes [9] processed site performance improvement in the dairy industry.
[8] presented a case study on optimised performance of butter oil production. Based on real
data [5] represented generation of wind power and electric power demand. Reliability analysis
where operation is effected by temperature conditions was given by [2] and [1I]. RAM analysis for
modeling complex engineering systems was used by [6].

Introducing redundancy into a system can enhance its reliability. Redundancy with standby
(redundant) units refers to the usage of additional units with the primary unit of the system,
with the additional unit(s) becoming operational and performing all the desired functions with
equivalent parameters upon the failure of the primary unit. Standby redundancy technique was
used by several researchers to enchance system performance namely [3], [4], [7] etc. Work on
standby units in a dairy industry was done by [10], [11] and [12].

Description of the systems

In model 1, the system which we have considered consists of a churner that works in both

the seasons i.e., summer and winter. In winters, due to high demand system is always operating

122


mailto:usharma@pbi.ac.in, drish2796@gmail.com

Upasana Sharma, Drishti RT&A, No 1 (77)
RELIABILITY OF A BUTTER CHURENR AND CBM SYSTEM Volume 19, March 2024

unless a failure occurs that can be due to electricity hault or any fault in the churner. In summers,
due to less demand the system sometimes goes to cold standby state when there is no demand.
In model 2, the system consists of churner and continuous butter making. Both the units starts to
operate to accomodate the demand in winters, on the failure of any one unit the system works on
reduced capacity. In summers, the butter churner is operative and CBM is in cold standby state,
it operates on the failure of the churner. The system either goes to cold standby or maintenance
state when there is no demand.

Methods
Both the models have been analyzed using semi-Markov process and regenerative
point technique probabilistically.

2. ANNOTATIONS

Table 1:

Notations of the model 1

Notations Descriptions

A Failure rate of the main unit i.e. Churner.

A Rate of electricity failure due to which churner stops operating.

0% Rate at which churner goes to down state when demand is less than
production.

6 Rate when churner comes to operative state from a cold standby
state.

o Rate of going from winters to summers.
B Rate of going from summers to winters.
ch Main unit of the system i.e.ch.

S Summer season.

14 Winter season.

Och Main unit of the system is in operating state.

d>p Demand is more than production.

d<p Demand is less than production.

CSch Main unit is in cold standby state.

Frch Main unit is under repair.

HCSch Main unit in cold standby state due to electricity hault.

G(t),g(t) c.d.f. and p.d.f of time to repair of the main unit.

G1(t),£1(¢) c.d.f. and p.d.f of time to repair the electricity hault.

Ga(t),£2(¢) c.d.f. and p.d.f of time to going back to operating state from down
state.

3. TRANSITION PROBABILITIES AND MEAN SOJOURN TIME

Various states of the system are shown in figure 3.1 called as state transition diagram. Here, the
states Sp, S1, Sy are operating states, Ss is a cold standby state whereas, states Ss3, S4, S¢, S7 are the
failed states.

Transition Probabilites

* dQu(t) = pe~ TPt o dQu(t) = ae~(+B)(1) gt
o dQi3(t) = Aje~ (MM gy o dQuu(t) = Ae~ A+t gy
o dQos(t) = ye~ (AT gy o dQus(t) = Ae~ (THAFA)(0) g
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o dQu(t) = Ae— (Y HAFAD () g4

The non-zero probabilities p;; are as follows:

o pi=Qij(e0) = [o qidt * po = %

° POZZ@ * Piz= %}1

* Pu= ﬁ * Ps =g

* P = gt A e

* ps1=pe2 =g*1(0) * pan=pn=g*(0)
From the above transition probabilities it is verified that:

* por+poz=1 * ptpu=1

* pxs+ptpr=1

. — Regenerative point
Ss O —» Operativestate

O ——» Down state

D —» Failed state

S
° Fr ch Sa

d>p

Figure 1: State Transition Diagram

The unconditional mean time taken by the system to transit for any regenerative state j when
time is counted from the epoch of entrance into state i is mathematically state as:

o my= [y tdQ(t)dt = —q5(0) * oy + Mo = o
® mi3+mig = Hq ®  mps + My + Moy = pp

The mean sojourn time y; in the regenerative state iis defined as time of stay in that state before
transition to any other state:

. o= TR
* M= o * 3 =pe=—gi(0)
* py=p7=—g%0) * Us=7

4. MEeAN TIME 1O SYSTEM FAILURE

The average duration between successive system failures, i.e. MTSF is defined as the expected
time for which the system is in operation before it completely fails. Mean time to system failure
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(MTSF) of the system is determined by considering failed state as absorbing state. When the
system starts from the state 0, the mean time to system failure is:

T wry _ 1 1—=¢5*(s) N
T() o sh*HJOR (S) o shil;lo S o D
where,
N=(po+p1po1)(1-pas)+(p2+1sp2s)(Po2)
D=1—p25

5. AVAILABILITY ANALYSIS OF THE SYSTEM IN SUMMERS

Availability A;(t) is a measure that allows for a system to repair when failure occurs. The
availability of the system is defined as the probability that the system is successful at time t. The
long run availability of the system is given by

A = limg 0[sA5(s)] = B!
where,
Ni=pi2po2
Dy=pa+pspas+popas + p7p2y

6. AVAILABILITY ANALYSIS OF THE SYSTEM IN WINTERS

Availability A;(t) is a measure that allows for a system to repair when failure occurs. The
availability of a system is defined as the probability that the system is successful at time t. The
long run availability of the system is given by

AY = limg0[sAFY(s)] = T
where,
No=p1pm
Dy=p1+papra+pspis

7. Busy PERIOD ANALYSIS FOR REPAIR IN SUMMERS
Busy period B;(t) in summers is defined as the probability that the repairman is busy at time ¢
when the system entered to a regenerative state i. The total time in which the repairman is busy
doing repair of the system in steady state is given by:
Bj = lims0[sB3*(s)] = 15
where,

Na=poz(paste + pa7i7)
Dsis already defined above.

8. Busy PERIOoD ANALYSIS FOR REPAIR IN WINTERS

Busy period B;(t) in winters is defined as the probability that the repairman is busy at time ¢
when the system entered to a regenerative state i. The total time in which the repairman is busy
doing repair of the system in steady state is given by:

BY = limg_0[sBy*(s)] = Bt
where,
Na=po1(Wap13 + Wap1a)
D»is already defined above.
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9. ExPECTED NUMBER OF REPAIRS IN SUMMERS

Let Vj(t) be the expected number of repairs in (0, ) given that the system entered into
regenerative state i at i = 0. The expected number of repairs during summers in steady state is
given by:

Vy = limg_0 sV (s) = I]%
Ns=po2(1 — pa2s)
D is already defined above in equation.

10. ExPeECTED NUMBER OF REPAIRS IN WINTERS

Let Vj(t) be the expected number of repairs in (0, t) given that the system entered into
regenerative state i at i = 0. The expected number of repairs during summers in steady state is
given by:

Vi = limg__,gsV,}*(s) = g—g
Ne=pm
D, is already defined above in equation.

11. PrROFIT ANALYSIS OF THE SYSTEM

Profit incurred to the system model in steady state is given by

P = (C()AB + ClAg') — (CZBS + C3B60 + C4VOS + C5V0w)
where,
Co=Revenue per unit up time in summers.
Ci=Revenue per unit up time in winters.
C,=Cost per unit up time for which the repairman is busy for repair in summers.
C3=Cost per unit up time for which the repairman is busy for repair in winters.
C4=Cost per repair in summers.
Cs=Cost per repair in winters.

12. GRAPHICAL ANALYSIS AND CONCLUSION

For further numerical and graphical evaluation, let us assume the repair and failure rates to be
exponentially distirbuted
g(t) = Qefe(t)/gl(t) = 916791(15)

. P01:% * Po=iip

© P13 = * pu=xix
" 5= ey " P = FEr
* Py =i * pr=pe=1
* pn=pn=1 . VOZﬁ

* =y e T
¢ #32%2917 * Ha=pr=jy
SNCES

The parameters obtained using the original data collected from the Verka Milk Plant, Bathinda,
Punjab.
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Table 2:

Parameters for

Parameters obtained from data collected

Values
model 1
A .00045892
M .0002563
g1 (b) 04213
g(t) .062981
o .0004314
B .000526
0 .000155
0% .000955
Co 830000
C 1030000
@) 10500
Cs 12500
Cy 12000
Cs 15500

System effectiveness measures evaluated are given below:

Table 3:

Parameters obtained from data collected

Parameters for model 1 Values
Mean time to system failure 9453.77 hrs
Availability in summers .8975
Availability in winters .8984

Busy period for repair in summers .000485
Busy period for repair in winters .0004204
Expected number of repairs in summers .000217
Expected number of repairs in winters .000031

MTSF v/s Failure Rate A with varying Failure Rate A

MTSF e—

Failure Rate A I

Figure 2: MTSF v/s Failure Rate
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Profit v/s Failure Rate A with varying Failure
52500 Rate A, (summers)

52000
51500

51000

e, =0.0002431
50500 ——A=0.002431
e 1 =0.00431

Profit

50000
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011

Failure Rate A I

Figure 3: Profit v/s Failure Rate in Summers

Profitv/s Failure Rate A with varying Failure
570000 Rate A, (winters)

550000
530000

510000

450000

e \,=0.0002431
470000 g\, =0.002431
g 1 =0.00431

Profit E—

450000
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.00% 0.01 0.011

Failure Rate A —

Figure 4: Profit v/s Failure Rate in Winters

Profitv/s Revenue C, with varying cost C;
140 (summers)
120
100
B0

60
40

g =10500
g (=20500

20 = C:=30500

Profit

ap 1 300 500 700 %S00 1100 1300 1500 1700 1900 2100

ag Revenue Cy —

Figure 5: Profit v/s Failure Rate in Winters
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Profit v/s Revenue C, with varying cost C;
1200 (winters)

1000

18300 500 700 900 1100 1500 1500 1700 1500 2100

200 Revenue C; )

Profit

Figure 6: Profit v/s Failure Rate in Winters

Table 4:

Notations of the model

Figures Descriptions

5 Profit P1 increases as the revenue Cj increases. C,=10500; Profit >=<
according to Cp, when C; is >=<Rs.275.53, similarly for C,=20500
where cut off point is Rs.163.577 C,=30500; where cut off point is Rs.
452.675

6 Profit P2 increases as the revenue C; increases. C3=12500; Profit >=<
according to C3, when C; is >=<Rs.251.85, similarly for C3=22500
where cut off point is Rs.140.469. C3=32500; where cut off point is
Rs. 429.089

Figure 3 and figure 4 depicts the trend of mean time to system failure and profit v/s the failure
rate. It has been observed that as the failure rate A of the system increases mean time to system
failure and profit decreases. It also decreases on increasing failure rate A;. Figure 5,6 states that
profit increases as the cost C; increases as well it increases with increasing profit Cs.

MODEL 2 Assumptions

Model 2 have the following assumptions:

The system is operating at the initial stage.

At the initial stage the churner is operating and continuous butter making is in a cold
standby state.

Both the systems operates during winters due to high demand.

Only one unit is operating during summers due to less demand.

In summers it also undergoes maintenance.

The system sometimes goes to cold standby state in case of no demand in summers.
The repair is done on the failure of the system.

Repair rates are assumed to have arbitrary distribution.

Failure rates are taken to be exponentially distributed.
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¢ After repair the system operates as new.

* The system goes to failed state either on the failure of the churner or due to hault in the

electricity.
13. ANNOTATIONS FOR MODEL 2
Table 5:
Notations of the model 2
Notations Descriptions
A Failure rate of the churner.
A Failure rate of the continuous butter making.
0% Rate at which churner goes to down state when demand is less than
production.
6 Rate when churner comes to operative state from a cold standby
state.
u Rate of going to winters.
B Rate of going to summers.
ch Unit churner of the system.
cbm Unit continuous butter making of the system.
S Summer season.
W Winter season.
Och Churner is in operating state.
Ocbm CBM is in operating state.
d>p Demand is more than production.
d<p Demand is less than production.
CSch Main unit is in a cold standby state.
CScbm CBM is in a cold standby state.
Frch Churner is under repair.
HCSch Churner is in cold standby state due to electricity hault.
G(t),g(t) c.d.f. and p.d.f of time to repair of the churner.
G1(t),81(¢) c.d.f. and p.d.f of time to repair of CBM.
Ga(t),£2(¢) c.d.f. and p.d.f of time to going back to operating state from mainte-
nance.

14. MoODEL 2
15. ANNOTATIONS FOR MODEL 2

16. TRANSITION PROBABILITES AND MEAN SOJOURN TIME

Various states of the system are shown in figure 1.5 called as state transition diagram. Here, the
states Sp, 51, S2, S3, S5 are operating states, Sy is a cold standby state whereas, states Sg, S are
the reduced capacity states and rest are failed states.

. de():,Be_(DH_ﬁ)(t)dt e dQup(t) = —(a+B)(t) gt
© dQu(t) = Aem Mgy . de(t) Ae— (@B () gt
o dQy3(t) = ApeMHAatr)gy o dQou(t) = yePHAa+1)gy
o dQys(t) = AeMHAat)gy o dQsxn(t) = g(t)e*dt
o dQs15(t) = Ae AOG(t)dt o dQY (1) = (Ae M (0)1)ga(r)dt
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dQu(t) =
dQse(t) = )»16_)‘1 )G(t)dt
dQey(t) = go(t)dt
dQys(t) = Ae MGy (t)dt
dQox (1) = g1(t)eVat
dQ9 10(0 (Ae™ M8 (c)1) gy (t)dt
dQio11(t) = Ae= MO G(t)dt
dQusz7(t) = go(t)dt

The non-zero probabilities p;; are as follows:
pij=Qij(e0) = [y qijelt
po2 = W
P110 = ﬁ

_ 7
P24 = 37,7

pa2 = g5(A)

ps2 = 85*)( A1)
p72 —g1 ‘()
por =837 (1)

p101 = g (A1)

dQsy(t) = g(t)e~ Mt

4Q) (1) = (e O)g(r)dt
dQy(t) = g1 (t)e MO dt

4Q = (A0 (c)1)ga (1)t
dQo12(t) = Ae MGy (t)dt
dQuo1(t) = g(t)e MW at
dQ109(t) (Me~ MW (e)1)g(t)dt

e
dQu2,10(t) = g1(t)dt

po1 = %
A

P19 = ﬁl/\l

_ Ay
p23  AA+y

_ A
P25 = Xa+y
s =Py =1-85(A)
pse = Py =18y (M)
prs=pye =1-81" (1)
Por2 = Pty =1-81"(A)

pio11 = P%lg) =1-gM ()

From the above transition probabilities it is verified that:

po1 + po2 =1
P23+ paua+pas =1

3
p32 + P§7 )=

ps2 + Pé7) =1

p72 + P%) =1

12
po1 + P§,13 =1

11
P11+ Pgo,g) =1

p1o+p1i0 =1
p2+p3iz=1

ps2 + pse =1
p72 +p7s =1
po1+po2 =1
P11+ piogn =1

The unconditional mean time taken by the system to transit for any regenerative state j when
it (time) is counted from the epoch of entrance into state iis mathematically state as:

ml-]- =

Iy tdQ;(t)dt =

myg +Mmy10 = M1

—q;(0)

mgzp + M3 13 = U3
My + Mse = Us
M7y + mzs = Uy
Mgy + Moy 12 = Ho

m10,1 + ™M10,11 = H10
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mo1 + Me2 = Ho

Mo3 + Mpgq + M5 = U2

msp +mé7 ) = Kz

msy + mé67) =K

8
mzy + m;5) =K

12
moq + mérm) = K1

1
mip1 + m§0,1)1 =K
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Figure 7: Model 2: State Transition Diagram

The mean sojourn time ; in the regenerative state iis defined as time of stay in that state
before transition to any other state:

* M= ﬁ * M= ﬁ

* =g SRS

© =3 ¢ Hs= #(Al)l
oy —pg— 1—g§;>(A) « o= 1—g/\*1(/\1)

* = [y G(tdt o pi= [y Gi(t)dt

17. MEeAN TiME TO SYSTEM FAILURE FOR MODEL 2

The average duration between successive system failures, i.e. MTSF is defined as the expected
time for which the system is in operation before it completely fails. Mean time to system failure
(MTSF) of the system is determined by considering failed state as absorbing state. When the
system starts from the state 0, the mean time to system failure is:

Ty = lim R*(s) = Tim ~—% ()

s—0 s—0 S

_N
)

where,

D=p19p23p3s2p91 — P24 — P25P52 — P19P91 — P10,1P1,10 — P23P32 + P19P24P91 + P1opP25Ps52pP91 +
P23P32P10,1P1,10 + P24P10,1P1,10 + P25P52P101P1,10 + 1

N = po(p23p39 + paspse — p19p23p39pa1 — P1oP25Ps6P91 — P23P39P10,1P1,10 — P25P56P10,1P1,10) +
V1(P91 + Po1P912 — P23P32P91 — P24P42P91 — P25P52P91 — Po2P23P39P91 — Po2P25P56P91 —
Po1P23P32P9,12 — P01P24P42P9,12 — Po1P25P52P9,12) + (M2 + Hap24) (pa2 — p1opa2por —
P42p10,1P1,10 — Po1P19P42P9,12 — P01P42P1,10P10,11) + #3(]002}723 — P02P19P23P91 —
Po2P23P10,1P1,10) + H5(Po2P2s — Po2P19P25Po1 — Po2P25P10,1P1,10) + Ho(Po1P19 — Po1P19P23Pa2 —
Po1P19P24 P42 — P01P19P25p52) + mo(pmm,lo — Po1P23P32P1,10 — Po1P24P42P1,10 — Pot P25P52P1,10)
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18. RELIABILITY MEASURES

18.1. Awailability Analysis in Summers

Availability A;(t) is a measure that allows for a system to repair when failure occurs. The
availability of a system is defined as the probability that the system is successful at time t. The
long run availability of the system is given by
A§ = limgo[sAF(s)] = B

where,
Ni=po + Hapoz + #3poaps + Hspoapas — HopasPsz — HoPas — HoPaspsz — HoPsy Pre +
(13) 6) _ () (6) (8) _ (6)
H7po2P23P3;  + W7Po2P2s5Ps; — HoP23Psy P72 — H2P02Ps7 P75 — HoP25Ps7 P72 +

(13) (8) _ (6) ,(8) (6) ,(8) _ (13) ®) (6) (8)
H5P02P23P37 P75 — M3P02P23Ps7 P75 + HoP23P32Ps7 P75 — HoP23P3y " P52P75 + HoP24P57 P7s

6) (8 8 8 8

Di=(p2 + puapas) (1 - piy) P§5)) + u3(p2apr2 + prapsaple)) + VS(Pgs) + p2sp72 — P23P32P§5) -

8 6 6 13 6
P24P;5)) + H7(Pé7) - P23P32Pé7) + P23P§7 )P52 - P24P§7>)

18.2.  Availability Analysis in Winters when the System Works at Full Capacity

The availability of a system is defined as the probability that the system is successful at time t.
The long run availability of the system is given by
A§ = limg_o[sAF(s)] = T2

where,
11 12 11 11 12
Ny = po + p1po1 — HoP19P91 — HoP10,1P1,10 — uop§0,9) Pé,lo) — Hopa1 p§0,9) P1,10 — 1 P01P§o,9) Pé,lo) -
12
H0P19P10,1P§,13

Dy = u1(p101 + porpioe) + Ho(pio9 + piopioa) + tio(pi0 + P1ope,10)

18.3.  Availability Analysis in Winters when the System Operates at Reduced
Capacity

Availability of the system when it operates at reduced capapcity is given by
AY = limg0[sAF(s)] = B
where,
— (11) (12)
N3 = po1(pop1o + p10P1,10 + HoP1g9P1,10 + H10P19P9 10)
D, is already defined above.

18.4. Busy Period Analysis for Repair in Summers

Busy period B;(t) in summers is defined as the probability that the repairman is busy at time ¢
when the system entered to a regenerative state i. The total time in which the repairman is busy
doing repair of the system in steady state is given by:
. N.
By = lims—,0[sB;* (s)] = o
where,

Ny=po2(p5p25 + V7P23Pg173) + H7P25Pég)

D»is already defined above.

13) (8
+ V5P23P§7 )Pés))

18.5. Busy Period for Maintenance in Summers

Busy period B;(t) in summers for maintenance is obtained. The total time in which the
repairman is busy doing repair of the system in steady state is given by:
By" = lims__,o[sB§*™(s)] = g—;
where,
6) (8
Ns=—piapoopas(ply) pla — 1)
D»is already defined above.
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18.6. Busy Period Analysis for Repair in Winters

Busy period for repair in winters is obtained as given below:
The total time in which the repairman is busy doing repair of the system in steady state is given
by:
By = limg0[sBy" (s)] = 1
where,
— (11) (12)
Ne = po1(nop19 + #10p1,10 + Hopigg P1,10 + H10P19P9 19)
D»is already defined above.

18.7. Expected Number of Repairs in Summers

Let V;(t) be the expected number of repairs in (0, t) given that the system entered into
regenerative state i at i = 0.
The expected number of repairs during summers in steady state is given by:

VS = limg__osV¥ (s) = gi;

N7 = po2(paspsz2 + PzSPég) + P23P§173)P72 + P23P§173)P(7? + P25Pé67) p72 + P25pé67) P%) +
(13) (8) (13)_(6) (8)
P23P3; P52Pys + P23Ps; Ps7 Prs )

Dy is already defined above.

18.8. Expected Number of Maintenances in Summers

Let V;(t) be the expected number of maintenances. The expected number of repairs during
summers in steady state is given by:
VS = limg_,o sV (s) = g—?
13 6) (8
N = —(px2 + pyy Ipozpas(piy prs — 1)
D; is already defined above.

18.9. Expected Number of Repairs in Winters

Let Vj(t) be the expected number of repairs in winters. The expected number of repairs during
summers in steady state is given by:
VU = limg_,osV%"(s) = g—i

No = po1(p19po1 + P1o1P1,10 + P10,9P1,10 + P19Pé,1123 + P91P109P1,10 + P19P10,1 ngg + P19P10,9Pg123 +
P10,9P1,1079,10)
D, is already defined above.

19. PROFIT ANALYSIS OF THE SYSTEM

Profit incurred to the system model in steady state is given by

P = (C()AS + ClAg]f + CzABW) — (C3BS + C4Bg} + C5B(S)m + C6VOSr + C7V6U + Cgvgm)
where,
Co=Revenue per unit up time in summers.
C1=Revenue per unit up time in winters when the system operates at full capacity.
C>=Revenue per unit up time in winters when the system operates at reduced capacity.
C3=Cost per unit up time for which the repairman is busy for repair in summers.
C4=Cost per unit up time for which the repairman is busy for repair in winters.
Cs5=Cost per unit up time for which the repairman is busy for maintenance in summers.
Ce=Cost per repair in summers.
C7=Cost per repair in winters.
Cg=Cost per maintenance in summers.
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20. GRAPHICAL ANALYSIS AND CONCLUSION

For further numerical and graphical evaluation, let us assume the repair and failure rates to be

exponentially distirbuted

g(t) = 0e7 00, ¢ (1) = 01 01(1), g5 (1) = Gpe02(1)

_ B
® Po1= &7p

_ M
* P19~ A

_ Ay
* PB= Ny
_ A
® P = A+Ar+y
(13)
* Psy
(6) ]

® Ps7 = P56 = X, 19

(8) 61

8
® Py = P78 = i7e,

(12)

12) _ 8
® Po10 = P912 = xve;

(12) _ _
® Pio11 = P1o12 =

_ 1
mi = 31y

_ ()
H3 = T +6)

SRR R e

1

_1
* Ug=g

_ _ _6
=P313 = 314,

P02 = 738

_ A
P110 = 331,

v
P24 = 337,74

P = ﬁ
P52 = /\;\Jre
p72 = ﬁgl
pPo1 = ﬁgl
P10 )\1)19
Mo = ﬁ

1
H2 = 35355,
Ha=j
W7 =Ho = /\(AG—:-GI)
H8 = H12 = 917

The parameters obtained using the original data collected from the Verka Milk Plant, Bathinda,

Punjab.

Table 6:

Parameters obtained from data collected

Parameters for Values
model 1

A .00045892
M .0004567

As 0.000246572
1(t) .06312

g(t) .062981
(1) 0.002628867
o .000562

B .0004314

1) .000955

v .000155

Co 830000

Cy 1030000

@) 61660

Cs 10500

Cy 12500

Cs 15500
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Ce 19500
Cy 6400
Cs 7000

Table 7

System effectiveness measures evaluated are given below:

Parameters obtained from data collected

Parameters for model 2 Values
Mean time to system failure 99682.28 hrs
Availability in summers 0.985
Availability in winters when system oper- .989
ates at full capacity

Availability in winters when system oper- .001435
ates at reduced capacity

Busy period for repair in summers .003814
Busy period for maintenance in summers .038744
Busy period for repair in winters .007864
Expected number of repairs in summers .000242
Expected number of maintenances in sum- .000120
mers

Expected number of repairs in winters .000499

Failure Rate

Figure 8: MTSF v/s Failure Rate

Profit v/s Failure rate A with varying failure rate A,
450000 (summers)

Failure Rate A

Figure 9: Profit v/s Failure Rate in Summers
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Profit v/s Failure rate A with varying failure rate A,
566000 (winters)

565500
565000 .-_h.‘-_h""""-—-o-.__.-_...____.-___..._h.____o
564500

g },=0.0002465

564000 g 1=, 002465
563500 e Ny =0. 02465
563000

=

"é 562500

0. 562000
561500

0.001 0.002 0.005 0.004 0.005 0.006 0.007 0.008 0.003 001 0.011

Failure Rate ) S—)

Figure 10: Profit v/s Failure Rate in Winters

Profit v/s Revenue C; with cost Cy (summers)

680
480
g C,=10500
280 g Cx=20500
g C,=30500
g0
-
= -120 100 700 900 1100 1300 1500 1700 1900 2100
e
o
-320 Revenue Cp nmmmmmp

Figure 11: Profit v/s Failure Rate in Winters

Profitv/s Revenue C, with cost C, (winters)
1200

1000
800
600

400 — C=12500

g (=22500
== {(,=32500

200

0
500 700 500 1100 1300 1500 1700 1500 2100

Revenue C, N

-200

Profit me—)

-400

Figure 12: Profit v/s Failure Rate in Winters

137



Upasana Sharma, Drishti RT&A, No 1 (77)
RELIABILITY OF A BUTTER CHURENR AND CBM SYSTEM Volume 19, March 2024

Table 8:

Notations of the model

Figures Descriptions

11 Profit P1 increases as the revenue Cj increases. C3=10500; Profit >=<
according to C3, when C3 is >=<Rs.645.34, similarly for C3=20500
where cut off point is Rs.573.039 C3=30500; where cut off point is Rs.
500.7389

12 Profit P2 increases as the revenue C; increases. C4=12500; Profit
>=< according to C4, when C; is >=<Rs.203.345, similarly for
C4=22500 where cut off point is Rs.460.203. C4=32500; where cut off
point is Rs. 317.061

The MTSE, profit in the summers (P1), and profit in the winters (P2) graphs 8,9,10 exhibit a
similar trend with failure rate lambda and A;, which means that as the failure rate rises, the
MTSF and profit fall.

21. CONCLUSION

The significance of implementing dependability in verka milk plant is analysed and concluded
upon in this study. Using the parameters laid out in tables above, it has been shown that the
second model generates more money after CBM is put into effect. Results from mathematical
measurements and graphs showing that MTSF and Profit drop with increasing values of failure
rates must be used to gain a more in-depth understanding of the essential real influencing
elements and, in turn, enhance the reliability model. But the equations derived for MTSE,
assessments of the system’s functionality, and profit can be used to find alternative cut-off points
related to the required rates, costs, and probabilities involved. The formulas for the proposed
system can then be generated by plugging in the actual numbers for the relevant rates and costs.
Important decisions about the system’s dependability and profitability can be made with the help
of graphs showing cut-off points for key rates, costs, and revenue.
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Abstract

Considering a single server with two queues that is prone to unreliability. The server offers a kitting
process and performs necessary checks and rectifications when required. The arrival of items follows
a Markovian arrival process, while the service is distributed based on a phase type distribution. The
incoming products may exhibit issues such as poor quality or defects. If either of the queues is empty,
the server is unable to provide the requested service and remains inactive. Furthermore, if all queues
are empty, the server goes into a vacation mode. Breakdowns, repairs, instances of customers leaving
without service (reneging), and vacation periods are all modeled using an exponential distribution. To
gain insights into the performance of the queueing model, various performance metrics are analyzed and
represented through 2D and 3D graphs.

Keywords: Markovian Arrival Process, PH distribution, Vacation, Optional service, Breakdown
and Repair.

1. INTRODUCTION

The Markov arrival process (MAP) is a widely employed modeling approach that captures the
dynamic Markov structure underlying point processes. It offers adaptability and versatility,
making it suitable for probabilistic models that employ matrix analysis techniques. Neuts [15]
made significant contributions by proposing and extensively investigating the flexible nature of
Markov point processes. MAP shares similarities with other point processes, including Markov-
modulated Poisson processes, phase-like updating processes, and semi-Markov point processes.
It enables the simulation of both updating and non-updating models, making it a valuable tool
for studying arrival patterns. Chakravarthy [7] has provided in-depth insights and extensive
discussions on MAP, specifically focusing on its m-dimensional parameter matrix (Dy, D1, D;),
where D governs transitions associated with no arrivals and Dj and D, controls alternations
related to arrival events. This parameterization allows for effective control and analysis of arrival
dynamics in various systems.

Wang et al. [28] presented a framework for optimizing the kitting process in manufacturing. It
addresses the challenges of efficiently organizing and sequencing materials required for assembly
operations. The authors propose a mathematical model to minimize the overall kitting time,
reduce material handling, and improve productivity in manufacturing settings. Yadav et al.
[26] focused on optimizing the kitting process in an automotive assembly line. It investigates
the challenges associated with kitting and proposes a mathematical model for optimizing the
allocation of parts to kits. A hybrid optimization approach is applied that combines genetic
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algorithms and simulated annealing to minimize the total distance traveled by workers during the
kitting process. The study provides insights into improving the efficiency of the kitting process
in automotive manufacturing. Ayyappan and Nithya [6] studied a retrial feature that allows
customers who experience service unavailability to reattempt service after a certain period. The
model considers priority services, where one type of customer is given priority over the other in
terms of service. Breakdowns and repairs are differentiated, meaning that the server may require
different amounts of time to recover from different types of failures. Synchronized reneging
is taken into account, which means that customers may abandon the queue simultaneously if
their waiting time exceeds a specific threshold. Additionally, the model incorporates an optional
vacation, allowing the server to take breaks during certain periods.

Zhang and Fang [29] introduce a novel optimization algorithm designed to enhance the
efficiency of bulk service systems. These systems are frequently encountered in various industries,
including manufacturing and transportation, where multiple units of work or customers are
processed simultaneously. The primary objective of the proposed algorithm is to minimize
service time and decrease waiting times for customers within bulk service systems. To achieve
this, the algorithm combines two powerful optimization techniques: stochastic optimization and
reinforcement learning. The algorithm works in iterations, continuously refining its policies based
on feedback from the system. It collects data on customer arrival patterns, service times, and
queue lengths, which are then used to update the stochastic optimization models and reinforce
the learned policies. This iterative process allows the algorithm to adapt to dynamic changes
in the system and continuously optimize its performance. Li and Li [13] focused on optimizing
bulk service systems that involve parallel servers. It addresses the challenges associated with
efficiently allocating and coordinating multiple servers to improve system performance. The
authors propose novel optimization algorithms and strategies to minimize service time and
reduce waiting times for customers.

Smith and Johnson [22] investigated the influence of bulk service providers on the overall per-
formance of supply chains. Also examines how the involvement of bulk service providers affects
various aspects of supply chain operations, including efficiency, cost, and customer satisfaction.
The impact of bulk service providers on key performance indicators are analyzed such as order
fulfillment, inventory management, and lead times. Additionally, it highlights the importance of
establishing effective collaboration and coordination mechanisms between bulk service providers
and other supply chain stake holders. Also emphasize on the significance of information shar-
ing, communication, and performance monitoring to ensure optimal supply chain performance.
Wang et al. [27] presents a hybrid optimization approach specifically tailored for bulk service
systems in e-commerce warehouses. The authors combine mathematical modeling, simulation,
and metaheuristic algorithms to enhance the efficiency of warehouse operations, such as order
picking, packing, and shipping. The proposed approach aims to reduce order fulfillment time
and improve customer satisfaction in e-commerce fulfillment centers.

Arun et al.[2] analyzed a bulk service queue with server breakdowns, balking, and reneging.
It provides a detailed analysis of the system’s performance measures, such as the expected
waiting time and the expected queue length, under different scenarios. Sun and Zhang [23]
focused on the development of a bulk service system specifically designed for autonomous
mobile robots, the growing demand for efficient and flexible service systems in industries where
autonomous mobile robots are utilized. These systems involve the simultaneous processing of
multiple tasks or requests, and efficient management is crucial to optimize performance and
resource utilization. A comprehensive design framework for a bulk service system is proposed
that integrates autonomous mobile robots. They outline the key components of the system,
including task allocation, robot navigation, and coordination mechanisms. The findings of the
study demonstrate the advantages of incorporating autonomous mobile robots into bulk service
systems. The proposed design framework provides a blueprint for developing efficient and
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scalable systems that can adapt to changing demands and optimize resource allocation.

Arivudainambi and Arivudainambi [I] studied a mathematical model for analyzing a bulk
service queue with multiple vacations, server breakdowns, and general service times. It provides
a detailed analysis of the system’s performance measures, such as the expected waiting time
and the expected queue length. Li and Zhang [14] proposed an optimal control policies for
a bulk service queue with impatient customers and time-varying arrival rates. The proposed
policies are designed to minimize the total expected cost, including waiting costs and service
costs, under different operating conditions. Saroja and Saravanarajan [20] studied bulk service
queueing models with server vacations and feedback controls. It provides a detailed analysis
of the system’s performance measures, such as the expected waiting time and the expected
queue length, under different scenarios. Ayyappan and Meena [5] examined the service rate that
gradually declines until degradation is fixed. After completing a certain number of services (K),
the degradation is addressed. During the service period, the server may experience a breakdown
at any moment, triggering an immediate repair process. Once the service is complete, the server
transitions to the close-down process. If there are no customers in the system when the server
returns from vacation, the server will wait until a customer arrives. If a customer arrives without
a starting failure, the server provides service. However, if there is a starting failure, the server
immediately goes into the repair process.

Thottan and DeVeciana [24] presented a vacation model that incorporates autonomous server
vacations and customer impatience. The research focuses on analyzing the performance of queue-
ing systems under such conditions and investigates the impact of autonomous server vacations
and customer impatience on system efficiency. Huang and Li [8] investigated on optimization of
vacation queues that involve multiple vacation periods and general service times. The authors
investigate the problem of determining optimal control policies for allocating vacation time and
managing service rates in order to optimize various performance measures. They consider system
characteristics such as queue length, waiting time, and system utilization. By analyzing the
impact of different control policies on the system’s performance, the authors provide insights
into the efficient management of vacation queues. Their research contributes to the development
of strategies for optimizing service allocation and improving the overall efficiency of queueing
systems with multiple vacation periods and general service times. Anis et al. [4] explored the
analysis of a finite-buffer queue that incorporates server vacations and customer impatience. It
investigates the performance measures of the queueing system, including queue length, waiting
time, and server utilization. The study provides understanding the enhancement of buffer size,
vacation policies, and customer impatience management.

Srinivasan and Sriram [21] analyzed on studying vacation queues where the server is subject to
breakdowns and repair. The authors analyze the impact of server breakdowns on the performance
of the queueing system. They investigate various performance measures such as queue lengths,
waiting times, and server utilization during both normal operation and breakdown periods. The
study provides insights into the optimization of repair policies to minimize system downtime and
improve overall system performance. By considering the combined effect of vacations and server
breakdowns, the authors contribute to the understanding of real-world queueing systems where
service interruptions due to breakdowns are common. Kim et al.[10] researched on vacation
models that consider customer abandonments. It investigates the impact of customer abandon-
ment behavior on queueing systems during vacation periods. The study provides perception on
optimization of vacation policies and customer abandonment management.

Rakesh Kumar et al. [19] examined a single-server Markovian queuing model that incorpo-
rated customer impatience, including balking and reneging, alongside a threshold mechanism
and customer retention. They employed probability generating functions to analyze the model’s
transient behavior. Kalyanaraman and Janani [9] addresses a finite population Poisson queue em-
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ploying a fixed batch service rule. Following each service, the server goes on vacation, regardless
of queue size, providing service at a reduced rate during this period. The research calculates
system size probabilities, derives performance metrics, and also explores an infinite population
model with limited waiting room capacity as a secondary model. Krishnamurthy et al. [11]
centers on the examination of a queuing system characterized by its multi-stage bulk service
approach and the availability of service in batches. Within this system, incoming customers are
initially grouped into batches before undergoing bulk servicing. The research extensively presents
mathematical derivations pertaining to performance metrics, including system size, mean waiting
time, and mean service time.

Raina Raj and Selvamuthu Dharmaraja [17] introduces an architectural framework that priori-
tizes energy efficiency within the SAT network, with a particular focus on HAPs. Furthermore, a
stochastic model is proposed to account for three distinct states of energy conservation for HAPs,
including modes of power conservation, standby, and rest, where energy consumption is minimal
or negligible. Upon the arrival of a data packet, HAPs promptly transition to active service
mode, ensuring the entire system operates in an active state. Anilkumar and Jose [3] examines a
discrete-time inventory model (s, S) is investigated, featuring Bernoulli process customer arrivals
and geometrically distributed service and replenishment times. When inventory drops to zero
due to customer service or lack of replenishment, the system can accommodate a maximum of k
customers, with any excess customers considered lost until replenishment occurs. Rakesh Kumar
et al. [18] conducted a comprehensive study examining the utilization of queuing theory in the
analysis of cloud computing systems. Their research specifically delved into the phenomenon of
task reneging, where requests are dropped from the queue due to user impatience, deadlines,
security protocols, or active queue management strategies.

2. MOTIVATION

In a software development company, a team is working on creating a new application that
consists of multiple modules and features. Rather than developing and delivering each module
individually, they adopt a kitting process to streamline the deployment process and improve
efficiency. In this kitting process, each module or feature is treated as a separate item and is
placed in a dedicated queue. The server, which represents the deployment team, retrieves the
modules from the queues and starts assembling the software kit. They integrate the modules,
perform necessary configurations, and ensure compatibility between different components.

Once the kit is assembled, the server performs thorough testing and quality assurance checks
to verify the functionality and stability of the software. If any issues are identified, such as bugs or
compatibility conflicts, the server rectifies them before proceeding. Once the kit passes the testing
phase, it is packaged for release to the end-users or clients. The server ensures that all required
documentation, user guides, and support materials are included in the kit before delivering it. By
employing the kitting process in software development, the company streamlines the deployment
process, reduces errors, and ensures that the end-users receive a comprehensive and well-tested
software package.

3. MATHEMATICAL FORMULATION

This model considers two types of arrivals within a system. The first type follows a Markovian
arrival process and has infinite capacity, while the second type has a finite capacity of K. The
server is responsible for the packing service, which follows a phase type distribution denoted as
(w1, T1). The equation T{) + Tie = 0 holds true, where Tf represents a column vector. Once the
packing is completed using the kitting process, the server proceeds to verify the checklist for the
packed product.
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If the checklist is satisfied, the product is deemed ready for the outlet. Otherwise, the server
initiates the rechecking and rectification process. This rechecking process follows a phase type
distribution denoted as (ay, Tp). The equation Tg + Tre = 0 holds true, where Tg represents a
column vector. If either of the queues becomes empty, the server remains idle. However, when
both queues are empty, the server goes on vacation, with the vacation parameter 7 following an
exponential distribution.

Additionally, the server is subject to breakdown during both the packing service and recheck-
ing, with a breakdown parameter ¢ following an exponential distribution. When the server
experiences a breakdown while serving, it completes the ongoing service and then enters a repair
process with a parameter < following an exponential distribution. Moreover, the products in both
queues are susceptible to reneging, indicated by parameters J; and J, respectively, following an
exponential distribution. Reneging can occur due to factors such as lack of quality or defects.

n,, o |_H Repalrcampletion
)—(Jj o] —
Isthe final_ Y Product
o] Ny e -]
3
m -
m —| Rlpalrmmplﬂlnn _| Repair starts
s 1
Yes Yes any one
i — v —4 Lo
‘ contains atleast empty?
one product
No
s
’ both the
A queue empty?
A\ 4
s
Ne both the -

Figure 1: Schematic Representation of Our Model

In pursuit of a matrix-geometric solution, the model is explored within the framework of a
QBD (Quasi-Birth-Death) process. For a comprehensive exploration of Matrix Analytic Methods,
refer to the works of Neuts [16] and Latouche and Ramaswami [12]]. The QBD model’s state space
is formally defined, and an examination of the infinitesimal generator’s structure is carried out,
leveraging the subsequent notational conventions.

Let

Ij is the identity matrix of dimension j.

ey is the column vector of dimension mymy[(n1 + ny)(1+ K) + (4 + 3K) with its entries 1.
* Nj(t) indicates the total number of items in the type I queue.
* N, (t) indicates the total number of items in the type II queue.

* S(t) indicates the position of the server.
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where
0, if server is idle
1, if the server is engaged with packing
S(t) = 2, if the server is engaged with rework
3, if the server faces breakdown while packing
4, if the server faces breakdown while rework
5, if server is on vacation
* J;(t) indicates the service phase when the server is engaged with packing.
e J>(t) indicates it the service phase when the server is engaged with packing.
e M;(t) indicates the phase of the Markovian Arrival Process for type I queue.
* M;(t) indicates the phase of the Markovian Arrival Process for type II queue.
Let {(N1(t), Na(t),S(t), Ji(t), Ja(t), M1(t), Ma(t)); t > 0O} represent the continuous time Markov

chain for the QBD process with the state space.
=1(0) Ul(i)
where,
1(0) = {(0,7,0,51,82) : 0 <j <K, 1<s <my,1<s, <mp}

Fori >0,

U{(0,7,2,7r2,51,52) : 1 <j <K 1< <mp, 1 <5y <y, 1< sy <mp}
U{(0,j,1,51,52) :0<j<K,3<1<51<s3 <my,1<sy<my}

1(i)) = U{(0,j,1,r1,51,82) : 1 < j <K 1<r; <m,1<sp <my, 1 <sp <mp

For i>1, 1(i) ={(i,0,0,51,52) : 1 <s1 <mq,1<sy <mp}

The infinitesimal matrix generation of the QBD process is given by

By Bp1i O 0O 0 O
By A1 Ag 0 0 O
0 0 A A Ay O
where each of its block matrix are as follows,
i S
I
Boo = 0 by byo bjo -+ 0 0
0 0 0 0 - b phriMH
b(l)%l “1qT? gllmlmz ‘:Imﬂﬂz 0 bgzﬁ
0 by, 0 Sliym, bay
b(l)(lJ = | Ymym, 0 b%l 0 0
O ,YITHNHZ O bg%l 0
0 0 0 0 Iin, ® Do ® Iy,
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4. ANALYSIS OF THE STABILITY CONDITION

Determining the stability of a system is crucial to ensure its smooth operation and efficient
handling of incoming arrivals. The concept of traffic intensity serves as a key metric in assessing
system stability. By comparing the average arrival rate with the average service rate over the
long run, we can gauge whether the system is capable of managing the workload effectively. For
stability, it is desirable that the traffic intensity remains below 1, indicating that the system can
handle the incoming arrivals without becoming overwhelmed.

Analyzing the stability of a Markovian arrival process (MAP) presents unique challenges
compared to simpler arrival processes like the Poisson process. This is due to the diverse
inter arrival time distributions that MAPs can exhibit. To explore stability conditions in MAPs,
researchers employ matrix-analytic methods and simulation-based methods. These approaches
involve analyzing matrices and eigenvalues to ascertain the system’s stability. Simulation-based
methods, in particular, prove valuable when dealing with complex systems that lack analytical
solutions, enabling researchers to simulate and study system behavior under varying conditions.

Let A be an irreducible infinitesimal generator matrix of order mymy[(n1 +n2)(1 +K) + (4 +
3K)]. We can decompose A as A = Ag+ A; + Ay. The vector p = (po, ©1, 92, -, PKk+1) represents
an invariant probability vector. It satisfies the conditions pA = 0 and e = 1, where pe denotes
the dot product between p and the vector e.

polel !+ ']+ pn [+ 3
©0 [a%l] + o [aﬁz + a%z + a%z] + g)z[b?2 + a%l
0i_1[03%] + pi[a5® + a3 + a3?]) + piy1 (D32 + a3!

23 22 K+1,K+1 22
ok [a7’] + pxa1lag” +ay + a3

]
] =
]

] =

Given the normalizing condition pe = 1, in a stable system, it is necessary that

A1 (K+1)+1] < OA2E0n[1(K+1)+1)-
poag" + (p1+ 92+ . + pr41)a5° < oy + (1 + 02 + . + k)35 + (P14 P2 + oo + Pr11)a5

5. THE VECTOR OF INVARIANT PROBABILITIES

The crucial role of capturing the system’s steady-state behavior is played by the invariant
probability vector, which is symbolically represented as X. In order to obtain the vector X, it is
necessary to solve the system of equations represented as XQ = 0, while simultaneously ensuring
the normalization condition Xe = 1. Once the stability requirements are fulfilled, the remaining
components of X can be computed using an iterative approach. It is important to emphasize that X
can be partitioned into sub-vectors, including Xy and X; for i > 1, which have specific dimensions
based on the system’s characteristics. The dimension of X ismymy|[(n1 + nz)(1+ K) + (3 +4K),
while X; for i > 1 has a dimension of mymy[(n7 + n2)(1 + K) + (4 + 3K). Precisely calculating
the values of X and X; involves considering the unique properties and parameters of the system
at hand. The expression for X; can be represented as:

X;=X;R"1, i=234,...,

Here, R refers to the rate matrix, which serves as the minimal non-negative solution to the matrix
quadratic equation.
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R?Ay +RA;1 +Ap=0
The boundary states, represented as Xy and X, are determined by solving the following equations:

XoBoo + X1B1p =0
XoBo1 + X1(A1 + RA2) =0

These equations are subject to the normalizing condition:
Xoe+ X1(I-R)"le=1

It’s worth noting that Latouche and Ramaswamy [12] have improved the computation of the rate
matrix R by introducing the Logarithmic Reduction Algorithm. This algorithm simplifies the
process of obtaining R, making it more efficient and straightforward.

Step1:H + (—A;) 1A, L+ (—A1)"'Ay, G=Land T = H.

Step2:U=HL+LH;

M = H?;
H=(I-U)"'M;
M=1%
L=(I-U)"'M;
G=G+TL

T =TH;

continue Step 1 until |le — Gel|, < €.

Step3: R = —Ap(Ar + AOG)_l.

6. EXAMINATION OF Busy PERIOD

In the context of queueing theory, an essential aspect is the analysis of the busy period. This term
refers to the duration that starts when a customer enters an empty queue and concludes when
the queue once again becomes vacant. However, when dealing with Quasi-Birth-Death (QBD)
processes, a different concept known as the "fundamental period" emerges. The fundamental
period characterizes the duration needed for the system to shift from level i to level i — 1, where
i assumes a value of 2 or greater. It’s worth noting that special considerations are needed for
boundary states, particularly when i takes on values of 0 or 1. Furthermore, when examining all
levels i greater than or equal to 2, it becomes evident that there is a total of mn[I(1 + K) + 1] states.
This expression quantifies the number of states associated with each level within the queueing
model.

Notations:

* Gy (k,x) corresponds to the likelihood that the QBD process enters level 1 — 1 at time t = 0
after undergoing precisely k leftward transitions and arriving at state (u,v’), under the
condition that it initially commenced in state (u,v) at time t = 0.

e The transition matrix G,y (z,s) is defined as Y z¢ Jo e **dGyy (k, x), where the conditions
are |z| < 1 and Re(s) > 0. This matrix incorporates a combination of infinite series and
integrals to capture the intricate transitions inherent in the QBD process.

e G(z,s) takes the form of a matrix (G, (z,s)) and adheres to the equation G(z,s) = z[s] —
A1]71Ay + [sI — A1) 71 ApG?(z, 5), representing the interplay among various elements of the
QBD process.
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* In the context of the first passage time analysis, G = G,,; = G(0,1) captures the behavior
of the process in the absence of boundary states, providing insights into its performance
without considering boundary effects.

1,0)

. va;ﬂ) (k, x) is the conditional probability that enters the level 0 from 1 at time ¢ = 0.

o
G(v

* R, denotes the anticipated duration for the first passage between levels 1 and u — 1 when
the process is in state (#,v) at time = 0.

O;S)) (k, x) is the first conditional probability returning to level 0.

* R; is a column vector composed of the entries R, representing the expected first passage
times for different states.

* Ry, stands for the average number of customers who receive service during the initial
passage between levels 1 and u — 1 when the process begins in state (1, v) at time t = 0.

* R, is a column vector composed of the entries Jp;, signifying the average number of service
completions during the first passage time for different states.

. 5)?%51’0) represents the average duration for the first passage from level 1 to 0 within the QBD
process.

. ﬂgl'o) signifies the average number of completed services during the initial passage from
level 1 to 0.

. y_ﬁgo’o) denotes the average time taken for the first return to level 0 within the QBD process.

. ﬂéo,o) represents the average number of completed services during the initial return to level
0.

The G matrix can be computed using the following expression, utilizing the previously determined
rate matrix R obtained through the Logarithmic Reduction Algorithmic technique:

G= *[Al + RAz]_lAz

For the boundary states, specifically 1 and 0, we can establish equations satisfied by G(10)(z, s)
and G(00)(z, ), respectively:

G0 (z,5) = z[sI — Ay] ' Byg + [sI — A1] ' AgG(2,5)G 10 (2,5).

GO0 (z,5) =z [sI — 300]71 By1 G0 (z,5).

Since G, G(10) (z,8), and G(00) (z,s) are stochastic in nature, we can readily compute moments as
follows.

a —
= _gG(ZrS)’s:o,z:l = —[A(G+1)+ A4] te

o - _
Ry = EG(Z,S)|5:0,Z:1 = —[A)(G+1)+ Ai] " Age

J - _
R = 2 600 (z,5)[gzmr = — [Ar + AoG] ! [Aoy +¢]
0 - _
%S’O) = gG(l’O) (2,8)|s=0,21 = — [A1 + AoG] ™! [Bige + AgRy]

J - _
R = _gc(o’o) (z,5)]s—0,2-1 = —Bgyg' [e T 301%51'0)]

9 - .
RO = =GO (25|21 = —Bag' B Ry .
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7. PERFORMANCE MEASURES

When a system reaches a steady-state, it signifies that the system has achieved stability and
performance measures can be derived and examined. These performance measures play a vital
role in evaluating the various aspects of system performance and determining its efficiency and
effectiveness. By analyzing these measures, we can gain valuable insights into the system’s behav-
ior and identify areas that require improvement to enhance overall performance. Performance
measures serve as quantitative indicators that shed light on important system characteristics such
as throughput, response time, resource utilization, and reliability. They provide a comprehensive
view of how well the system is functioning and can help in assessing its overall effectiveness
in meeting desired objectives. By closely monitoring and analyzing performance measures,
decision-makers can identify potential bottlenecks, inefficiencies, or areas of improvement within
the system. This enables them to make informed decisions and take appropriate actions to
optimize system performance, increase productivity, and enhance customer satisfaction.

¢ Probability the server is idle .
Pr = T xoj0 + L2 Xioo-

* Probability the server is busy with packing.
Pgp = Y220 T Xiji-

* Probability the server is busy with rework.
Pgr = Y20 Yo Xijo-

* Probability the server is in breakdown while busy with packing.
_ oo K
Pppp = Yii—o Xjo Xij3-

* Probability the server is in breakdown while busy with rework.
R ) K
Pppp = Yii—o Xjo Xija-

* Probability the server is on vacation.
K
Py = Zfio ijo Xij5-
¢ Expected system size

ESystem = xl[(l - R)_Z]el'

8. Cost ANALYSIS

Let us introduce a cost associated with different system management metrics for our model of
interest. We can then formulate a cost function, TC, which takes these metrics into account.

TC = CH Esystem + Py % CV 4 P; % CI + Pgp * CBP + Pgg * CBR + Pgpp * CBDP + Pppg *
CBDR+p; *Cl4+pup *C2+ ¢ *C3

where

¢ TC-Total cost of the system per unit time.

¢ CH-Customer holding cost in the system per unit time.

¢ CV - Cost when the server is on vacation per unit time.

¢ CI - Cost when the server is idle per unit time.

¢ CBP - Cost when the server is busy with packing per unit time.
* CBR - Cost when the server is busy with rework per unit time.

¢ CBDP- Cost when the server faces breakdown while packing per unit time.
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* CBDR- Cost when the server faces breakdown while rework per unit time.
* C1 -Cost afforded for packing service by the server per unit time per unit time.
* (2 - Cost afforded for rework service by the server per unit time per unit time.

* C3 - Cost afforded for carrying out the repair process per unit time.

9. NUMERICAL ANALYSIS

In this section, we will delve into the qualitative behavior of the model through a series of
illustrations that include both numerical and graphical representations. By manipulating various
model parameters, such as the arrival process and service time distribution, we aim to gain
a deeper understanding of how these parameters affect the model’s behavior. Input data for
these parameters will be drawn from three sets of values available in the literature, allowing us
to examine a wide range of scenarios and explore the model’s response to different parameter
settings. Through these illustrations, we will shed light on the dynamics and trends exhibited by
the model as we vary the model parameters, helping us gain insights into its behavior in different
scenarios.

Erlang of order 2 (ERL-A)

-5 5 0 0 0 0 00 0O 0 00 O0O0
0 -5 5 0 0 0 00 0O 0 00 O0O
Dp= 10 0 -5 5 0(;Dy=10 0 0 0 O|;D,=(0 0 0 O O
0 0 0 -5 5 0 00 0O 0 00 O0O0
0 0 0 0 -5 300 00 2 00 00O

Exponential (Exp-A)

Hyperexponential (HYP-EXP-A)

Do [7190 0 ] o _[1026 0114] ) _[0684 0076
=1 0o  —019” 7t 01026 0.0114] ~2 ~ |0.0684 0.0076

Given that Varghese et al. [25] has suggested three phase type distributions for the service
process, we will consider these distributions in our analysis. These phase type distributions,
which have been proposed by Chakravarthy [7] and documented in the literature, will serve
as the basis for our examination of the model’s behavior. By incorporating these distributions
into our analysis, we aim to gain a deeper understanding of how the model performs under
different service time distribution settings and how it responds to varying parameters associ-
ated with these distributions. This will enable us to assess the qualitative behavior of the model
and uncover any patterns or trends that emerge as we explore these three phase type distributions.

Erlang of order 2 (ERL-S)

v =w= (0T =T= [_02 _g]
Exponential (Exp-A)
v = (1); Th = [-1]
a=(1); T, = [—1]

Hyperexponential (HYP-EXP-A)
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a1 = (0.3,0.7); Ty = {_29 g]

-12 6
Ny — (0.4,0.6), Tz = |: 5 _10]
Illustration 1:
In this analysis, we examine the implications of the reneging rate (1) of the customers on the
expected system size (Esystem) for various combinations of service and arrival times. We consider
specific parameter values, including A =2, y1 =5, 4p =6, =1,7v=3,0=1,1=4,p =03,

and g = 0.7. The observations derived from Table 1 to 3 are outlined below.

* As the reneging rate increases, more customers choose to leave the system without complet-
ing their service requests. This results in a lower number of customers in the system at any
given time, leading to an decrease in the expected system size.

* When customers renege at a higher rate, the system experiences a shorter average waiting
time and lower congestion due to customers leaving before being served. This decrease
congestion leads to only few customers remaining in the system, resulting in a lower
expected system size.

Illustration 2:
In this analysis, we examine the effects of the vacation rate ({) and service rate (y1) of the server
on the expected system size (Esystem). We consider various combinations of service and arrival
times and use specific parameter values, including A =2, 41 =6,y =30 =1, 6 =11 =4,
p = 0.3, and g = 0.7. The observations derived from Figure 29-37 are outlined below.

e When both the vacation rate (¢) and service rate (y1) increase, it generally leads to a
decrease in the expected system size. This means that, on average, there will be fewer
customers present in the system at any given time.

e An increase in the vacation rate (¢) implies that the availability of the server increases.
Similarly, an increase in the service rate (y1) means that the server can process customer
requests at a faster pace. When both the vacation rate and service rate increase, the server
has a reduced overall availability for serving customers due to more frequent breaks.

* These observations highlight the varying impacts of vacation rate and service rate on the
projected system size across different arrival and service times. Erlang arrivals show the
most significant reduction in system size, followed by exponential arrivals, while hyper
exponential arrivals display a slower rate of decrease.

Table 1: Renege rate (61) vs Expected System Size - ERL-A

service
51 Erlang Exponential Hyperexponential
1.0 2.689867713 2.764059228 2.776027059
1.1 2.680737416  2.74942792 2.765549157
1.2 2.672576038 2.734797612 2.755075026
1.3  2.665225627 2.720166304 2.744593354
1.4 2.658647922 2.705534995 2.724115453
1.5 2.647557358 2.690903687 2.703637552
1.6 2.640837634 2.676272379 2.683159655
1.7 2.625331925 2.661641071 2.672681749
1.8 2.611886634 2.647009763 2.662203847
1.9 2591670138 2.632378454 2.651725946
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Table 2: Renege rate (61) vs Expected System Size - EXP-A

service

) Erlang Exponential Hyperexponential
1.0 2.732538773 2.776538896 2.815784456
1.1 2721217834 2.766061989 2.794520162
1.2 2.710069838 2.755584087 2.777635494
1.3 2709039454 2.745106186 2.763847123
14 2.698116376 2.734628284 2.752344555
1.5 2.689888555 2.724150383 2.742586259
1.6 2.681785353 2.713672482 2.734194049
1.7 2.673681963 2.703194585 2.726894449
1.8 2.665578647 2.699716679 2.720483688
1.9 2.657475344 2.682238777 2.714806803

Table 3: Renege rate (61) vs Expected System Size - HYP-EXP-A

service

0 Erlang Exponential Hyperexponential
1.0 2.857181106 2.902141938 3.011784445
1.1 2.832316046 2.882431771 2.969464924
1.2 2.813250935 2.866914417 2.945390736
1.3 2.798124579 2.854332628 2.926737224
14 2.785797988 2.843905244 2.911866499
1.5 2.775536658 2.835114586 2.899730666
1.6 2.766845678 2.827598651 2.889632399
1.7 2.759379139 2.821103707 2.881091624
1.8 2.752887573  2.815428859 2.873767852
1.9 2747186259 2.797494693 2.867413281
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10. CONCLUSION

In conclusion, our model encompasses a complex system involving a single server managing
two queues, each susceptible to various uncertainties. We have meticulously detailed the arrival
and service processes, highlighting the critical phases and distribution patterns that govern
them. The model accounts for the inherent unpredictabilities, such as server breakdowns, repairs,
customer reneging, and vacation periods. By examining both infinite and finite capacity arrivals,
we have provided a comprehensive framework for analyzing the performance and reliability of
this intricate system. This model can serve as a valuable tool for optimizing operations, enhancing
service quality, and minimizing disruptions in scenarios where such intricate dynamics are at play.

Broadening the system’s scope to accommodate intricate service time patterns mirroring real-
world complexities holds the potential for a more profound comprehension of service dynamics.
Upcoming research endeavors will center on refining scheduling strategies and computational
methods for handling batch arrivals, server disruptions, repair processes, bulk services, and
the involvement of multiple service providers. These initiatives seek to minimize customer
waiting intervals, optimize resource distribution, and elevate overall system effectiveness, with
the ultimate goal of enhancing the applicability of such systems across diverse domains.
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Abstract

As the dimensions of available data for analysis continues to grow rapidly, it becomes imperative to
develop new probability distributions that can more accurately represent various phenomena. In
this research paper, we introduce a novel continuous probability distribution known as the Type II
Half-Logistic Exponentiated Frechet Distribution, characterized by four positive parameters. This
distribution expands upon the traditional Frechet distribution by introducing two additional
parameters. We derive a significant density representation for this distribution. Furthermore, we
delve into several statistical and mathematical properties associated with the Type II Half-Logistic
Exponentiated Frechet distribution. This includes explicit expressions for key metrics such as the
quantile function, probability weighted moments, moments, moments generating function,
reliability function, hazard function, and order statistics. To estimate the model parameters
effectively, we employ a maximum likelihood estimation technique and present the results of a
simulation study. Our research underscores the superiority of this new distribution by applying it
to two real-world datasets. Notably, the findings demonstrate that the Type II Half-Logistic
Exponentiated Frechet distribution outperforms other considered distributions in fitting the two
real datasets.

Keywords: Type II Half-Logistic Exponentiated-G, Frechet distribution,
Moments function, Reliability function, Maximum likelihood, Order Statistics.

1. Introduction

Many types of univariate continuous distributions exist, but research in various fields, including
engineering, environmental science, finance, and medicine, has shown that real-world data often
does not follow the classical distributions. To address this issue, extended forms of these
distributions have been developed to provide more flexibility in data modeling. The Frechet
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distribution, also called the type II extreme value distribution, plays a vital role in extreme value

theory and has numerous applications. There have been several modifications and enhancements
to the Frechet distribution proposed in the statistical literature to further improve its usefulness. In
recent times, various extensions of the Frechet distribution have been introduced by several
researchers in the academic literature. Nadarajah and Kotz [16] were the pioneers of the
exponentiated Frechet distribution, while Nadarajah and Gupta [17] introduced the beta Frechet
distribution. Mahmoud and Mandouh [12] put forth the transmuted Frechet distribution, Da Silva
et al., [7] defined the gamma extended Frechet distribution, Krishna et al., [10] introduced the
Marshall-Olkin Frechet distribution, and Mead and Abd-Eltawab [13] introduced the
Kumaraswamy Frechet distribution. Elbatal ef al., [8] conducted a study on the transmuted
exponentiated Frechet distribution, Afify et al., [1] investigated the transmuted Marshall-Olkin
Frechet distribution, Afify et al, [3] proposed the Kumaraswamy Marshall-Olkin Frechet
distribution, Afify et al., [2] explored the Weibull Frechet distribution, Tablada and Cordeiro [20]
defined the modified Frechet distribution, and Mead et al., [15] introduced the beta exponential
Frechet distribution.

In a recent study, Bello et al.,, [4] proposed a new distribution family called the Type II
Half-Logistic Exponentiated-G (TIIHLEt-G). This distribution family is defined by two positive
shape parameters, denoted by A and &, and can be applied to any arbitrary cumulative

distribution function (cdf) H (X, 19). The cumulative distribution function (cdf) and the probability
density function for TIIHLEt-G are detailed as follows:

2H“ (x;B)
1+ H™(x; B)]

Frnes (64, a,B) = [ , x>0, 4,a>0 (1)

and

22ah(xPH (6P H D (xP)]

Frimee (64, a,B) > ,X>0, 4,a>0 2)
[1+H“(xB) ]
The cdf and pdf of the Frechet distribution are given as
—(&y
H(x6,8)=e ¥ , x>0,6,6>0, 3
—(&y
h(x.6,5)=66°x "% X | x>0,0,6>0 @)

The most important goal of this paper is to enhance the flexibility of a statistical model by
extending the conventional two-parameter Frechet distribution. This novel model is referred to as
the Type II Half Logistic Exponentiated Frechet (TIIHLEtF) distribution. The structure of this paper
is organised as follows: In Section 2, we introduce and define the TIIHLEtF distribution. Section 3
presents valuable representations for the TIIHLEtF distribution. Section 4 focuses on deriving
statistical properties such as probability-weighted moments, ordinary moments, moments-
generating function, quartile function, reliability function, hazard function, and order statistics. In
Section 5, we estimate the parameters of the new model using the maximum likelihood estimation
(MLE) approach. To demonstrate the efficiency and consistency of MLE, we conducted a
simulation study in Section 6. In Section 7, we apply the new model to two real datasets to
illustrate its practical utility. Finally, Section 8 provides a conclusion for the paper.

2. Type II Half-Logistic Exponentiated Frechet (TIIHLEtF) Distribution

In this section, we introduce a novel model referred to as the TIIHLEtF distribution. A random
variable X is considered to follow the TIIHLEtF distribution if its cumulative distribution function
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(cdf) is derived by substituting equation (3) into equation (1) in the following approach:

,DM(Q)("
FT,,HLEtF(x;/l,a,e,&):%_—W x>0,4,0,0,6 >0 (5)
l+e

and its corresponding pdf is

-y @0y —ap Gy
5 —0-147"% x x
frmee (654, ,0,0) = 2Aa00"X " 8 ¢ ¢ ,X>0,4,a,0,>0 (6)

2
_[M(Q)J
l1+e *

where @ is a scale parameter and A, ,0 are shape parameters.

3. Expansion of Density

In this section, we have obtained a valuable expression for the probability density function (pdf)
and cumulative distribution function (cdf) of the TIHHLEtF distribution. This achievement is
attributed to our utilization of the generalized binomial series given as:

(1+2) Z( 1) [ﬂ“ jzi )

For | Z|<land g is a positive real non integer. The density function of the TITHLEtF distribution

is derived by applying the binomial theorem from equation (7) to equation (6).

2
Oys O\s o O\s
o1 O @y a0 ~ar(%)
fromee (G4, @,0,0)=22a80°x e X' e X e X {1+e x }

Now, using the generalized binomial theorem, we can write

e

Then, the pdf can be written as:
o (9)@_ aA(i+l)
frumer (64, @,0,0) = an {e X } ®)

+1
where 77, =21a06° X" 1( l) ( i j

In addition, an expansion for the [F x4, a,0, 5)]h is produced, with h being an integer, and the

binomial expansion is worked out once more.

ol O T
[F(x;l,a,@,&)]h:Zh[e X } 1+{e X }

0 aaTh h h _1 0 alj
1+{e K } =Z(—1)‘( +_J j[e K }
j=0 J
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The cdf can be written as:

0., A+

h ¢
[Fx4,a,0,0] =>g|e " )
-0

hooa(h+j=1
where ¢, =2"(-1)’ j
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Figure 1: Plots of Pdf of TIIHLEtF distribution for different values of parameters.

4. Statistical Properties
In this section, we derived some statistical properties of the new of distribution.
4.1. Probability weighted moments

Greenwood et al. [10] introduced a concept known as probability weighted moments (PWMs). This
technique is employed to create estimators in the inverse form for both distribution parameters

and quantiles. The notations used for probability weighted moments is 7, ., and these moments

can be computed for a random variable X by utilizing the relationship outlined below.
r S T r S
7,0 = E[ XTF(X)* | = [ X" ()(F(x))*dx (10)

The PWMs for the TIIHLEtF distribution are obtained by inserting equations (8) and (9) into (10),
and then replacing h with s in the following manner.

h 0.s aA(i+1+ j+s)

0 © ~ Gy

=2 mel X |e dx (1)
i=0 j=0

Consider the integral
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(9)(y aA(i+1+ j+8)
_[0 X" [e x } dx

1
aA(i +1+ j+5)0° T
y

o-1

3 dyx
00°aA(i+1+ j+53)

Let Y =aA(i +1+ j +s)(g)5 = X :{
X

Then

o aA(i+1+ j+5)0° o _ dyx°™
J e”
0 y 00°a(i+1+ j+5s)

© _r r
e T
Jo vy erdy=ra--)

Hence, the PWMs of TIIHLEtF can be expressed in the following manner.

f =S Y @) 0 (i+1+ j+ 8)5_177p¢)t1—‘(1—g) 12)

i=0 j=0

Now,

0 =2 (1) [” J‘ _1]

and
7, = 2(=1) (PIF ij

4.2. Moments

As moments play a crucial role in statistical analysis, particularly in practical applications, we
proceed to derived the r' moment for the newly introduced distribution.

g =E(x") = j X" f (x)dx (13)
0

By using the expansion of the pdf in equation (8), we have

. O aA(i+l)
E(Xr)zznpjo x[e x } dx (14)
i-0

(9)5 aA(i+l)
.[0 X" [e X } dx
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. 0. aA(i+1)6° |° dwx® ™
Let W=aA(i+1)(=)’ = x = # JOX =
X W al(i+1)6°6
Then

Iw al(i+1)6° ge‘w dwx’™
0 W al(i+1)6°

;
© = r
[ wierdw=r@a-—)
0 B
The rth moment for TITHLEtF distribution can be written as follows
© r L—l r
E(Xr):anﬁr(a/l)5(i+l)‘5 F(l—g) (15)
i=0
Now

7, = 2(-1) (Wj

The mean and variance of TIIHLEtF distribution are as follows

1 1

- Sl 1
E(X) =) n,0(al)’ (i+1)° r(1—g) (16)
i=0
and
ks e 1 1 i 1 1, 1 2
var(X)=>"n,0(al)’ (i+1)° r(1—g) —{znpe(aﬁ)ﬁ (i+1)° r(1—g)} 17)
i=0 i=0
4.3. Moment generating function (mgf)
The Moment Generating Function of x is given as:
M, (t)=E(e")= Ie‘xf(x)dx (18)
0
. " 0 thm
where the expansion of € = Z ,
m=0 M:

The moment generating function of TIIHLEtF distribution is given by

t", 6" (@A)° (i +1)61r(1—g‘)

M b=

o (19)
i=0 m=0 -
4.4. Reliability function

The reliability function, also referred to as the survivor function, provides the probability that an
individual or patient will endure beyond certain specified duration of time. In other words, it gives
the likelihood of survival beyond a particular time point. It’s defined as
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-2
1-je X
R(x;4,2,0,0)=——= Tz (20)
%y
1+|e X

45. Hazard function

The hazard function represents the likelihood of an event of interest happening within a relatively
brief time interval is defined as follow:

a-1 a(A-1)
sosa -Gy &y Oy
2Aa00°x° e X |e e

T(X4,a,0,8)= (1)

4.6. Quantile Function

The quantile function plays a crucial role in generating random variables from continuous
probability distributions, making it a key element in probability theory. Specifically, for a given
value 'x,' the quantile function is denoted as F(x) = u, where 'u’ follows a uniform distribution
between 0 and 1 (U(0,1)). To simulate the TIIHLEtF distribution, one can readily achieve this by
reversing equation (5), resulting in the definition of the quantile function Q(u).

x=Q(u) = - 22)
1 s
U al
—log U
w0 o y
2 — =126=121=3 0=12 ~ — =056=121=120=12
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Figure 2: Plots of hazard of the TITHLEtF distribution for different valves of parameters.
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4.7.  Order Statistics

Order statistics are widely applied in various statistical fields, including reliability and life testing.
Consider a set of n independent and identically distributed random variables represented as X1, Xz,
.., Xn, each following a continuous distribution function F(x). If these random variables are drawn
from the TITHLEtF distribution, we can denote the cumulative distribution function (cdf) as Fr:n(x)
and the probability density function (pdf) as frn(x) for the rth order statistic, where r ranges from 1
to n. In a study by David [1979], the probability density function of Xrnwas provided.

f(x) % n—r
frn(X)= #Z(—l)v F(x)"" (23)
' B(r,n—r+1) = Vv
By substituting equation (8) and equation (9) into equation (23), also replacing h with v+r-1
in equation (9). We have

fr:n (X; /1, o, 9, 5) = 2“”)/105505{5 - ii ril( 1)|+J+v[ rj

B(rn r+1)v0|0 j=0

[1+ I] [I’ +V+ J _ 2] {e(f)" :|0!/1(I+j+r+v)
i j

The equation above is called the rth order statistics for the TIIHLEtF distribution.
Let r = n, then the probability density function of the maximum order statistics of TIIHLEtF

(24)

distribution is

oo n+v-1 o l |
fmn (X;j”a’07 5) = 2(n+v) nlaﬁ@éx_é_lz Z (_1)|+J+V( + j
|

i=0 j=0

(n V4 J _ 2j|: 7(g)0_ :|a/1(i+j+n+v)
. e
J

Also, let r = 1, then the probability density function of the minimum order statistics of TIIHLEtF

(25)

distribution is

n-1 o v 1 1
B (64, 2,0,8) =29 P n1as0’x Y 33 (- 1)'“*“( j( i ]

v=0 i=0 j=0 I

=0
(V-{-] 1]|: ﬁ j|a/1(|+j+1+v)

5. Parameter Estimation

(26)

In this research paper, we investigate the application of the maximum likelihood technique to
estimate the unknown parameters of the TIIHLEtF distribution when dealing with complete data.
Maximum likelihood estimates (MLEs) possess advantageous characteristics that can be utilized to
establish confidence intervals and provide straightforward approximations that perform well with
finite data samples. In the realm of distribution theory, these approximations for MLEs can be
conveniently managed, either through analytical or numerical methods. Consider a random
sample of size n, denoted as xi, X2, x3...,Xn, drawn from the TIIHLEtF distribution. Then, the

likelihood function, based on the observed sample, for the parameter vector (l,a,&, 5)T

defined as follows.
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log L =nlog(2) +nlog(4)+nlog(e)+nlog(o) +no log(o) — (5+1)Zn: log(x;)

n 0 n 9 n _(3)5 “ (27)
—a) (=) —a(A-1)D (=)’ -2 log 1+{e % }
i1 X i1 X i-1
.
L L L L
The components of score vector AL(¢) = 0 (¢) , 0 (¢) s 0 (¢) s 0 (¢) are given as
oA oa 00 00
at a
) )
{e % log {e ! }
dlogL n L, 0.5 >
oRvE_B_ Yy _»o . =0 28
5 a;( xi) > (28)

i=1 Ny “
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Ale ™ e logle * (29)
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1+{e i ]
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1+[e § }
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The MLEs are obtained by setting EY R P IANTY: and 7 to zero and solving these
o

equations simultaneously. These equations cannot be solved analytically, so we have to appeal to

alogL n
08

0

3 ( )|09( ) (30)
=0

numerical method.
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6. Simulation Study

In this section, a numerical analysis will be conducted to evaluate the performance of MLE for
TIIHLEtF Distribution.

Table 1: MLEs, biases and RMSE for some values of parameters

(1,1,2.5,2.5) (1,0.5,2,1)
n Parameters Estimated Bais RMSE Estimated Bais RMSE
Values Values

20 A 1.9103 0.9103 0.1823 1.0140 0.0140 0.0450
a 1.0472 0.0472 0.1458 0.5247 0.0247 0.0667

o 2.5845 0.0845 0.1504 2.0140 0.0140 0.0434

o 2.5845 0.0845 1.5894 2.0140 1.0140 1.0149

50 A 1.7149 0.7149 0.1330 1.0076 0.0076 0.0320
a 1.0384 0.0384 0.0930 0.5058 0.0058 0.0303

o 2.5401 0.0401 0.1281 2.0113 0.0113 0.0392

o 2.5401 0.0401 1.3058 2.0113 1.0113 1.0120

100 A 1.5193 0.5193 0.1157 1.0031 0.0031 0.0208
a 1.0382 0.0382 0.0696 0.5008 0.0008 0.0096

o 2.5389 0.0389 0.1213 2.0068 0.0068 0.0294

o 2.5389 0.0389 0.6298 2.0068 1.0068 1.0072

250 A 1.4246 0.4246 0.0980 1.0001 0.0001 0.0018
a 1.0376 0.0376 0.0587 0.5000 0.0000 0.0000

0 2.5120 0.0120 0.1202 2.0008 0.0008 0.0102

o 2.5120 0.0120 0.6126 2.0008 1.0008 1.0009

500 A 1.3032 0.3032 0.0849 1.0000 0.0000 0.0000
a 1.0303 0.0303 0.0470 0.5000 0.0000 0.0000

o 2.5110 0.0110 0.1170 2.0000 0.0000 0.0000

o 2.5110 0.0110 0.5114 2.0000 1.0000 1.0000

1000 A 1.1332 0.1332 0.0762 1.0000 0.0000 0.0000
a 1.0282 0.0282 0.0396 0.5000 0.0000 0.0000

0 2.5032 0.0032 0.1092 2.0000 0.0000 0.0000

o 2.5032 0.0032 0.5036 2.0000 1.0000 1.0000

The table above shows the values of biases and RMSEs approach zero and the estimates tend to the
initial (true) values as the sample increases, which indicates that the estimates are efficient and
consistent.

7. Applications to Real Data

In this section, we apply the TIIHLEtF distribution to two real datasets and perform a comparative
analysis by contrasting it with fits to other distribution models. Specifically, we compare it with the
Exponentiated Half-Logistic Frechet (EHLF) distribution proposed by Cordeiro et al., [6],
Kumaraswamy Frechet (KExF) distribution by Mead and Abd-Eltawab [14], the Gompertz Frechet
(GoFr) distribution by Oguntunde et al., [18], the Exponentiated Frechet (ExFr) distribution by
Nadaraja and Kotz [16], and the Frechet distribution introduced by Frechet [9]. This comparison is
carried out for illustrative purposes.
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The EHLF distribution developed by Cordeiro et al. [6] has pdf defined as:

A-1

6], ] ¢
f(x;a,2,0,8)=2a0Bx el 7 11 el 1-|1-e "

e (32)

£
1+|1-e g
The KExF distribution developed by Mead and Abd-Eltawab [14] has pdf defined as:
_a(g)/f _a(g)/f A
f(X;a, 4,6, ) =alpO’x e ¥ |1-e * (33)
The GoFr distribution proposed by Oguntunde et al., [18] has pdf given as:
a a 1 |8 1~ 1—9[7(%)/?}
Byh, [’(Y)ﬁ} [’(Y)ﬁ} ’
f(Xa,1,0,B)=0a”x""e e e (34)
The ExFr Distribution proposed by Nadaraja and Kotz [16] has pdf given as:
1
-&y &y
f(x;a,A,0)=alc’? 1—e( x ] x’(l”)e( x ] (35)
The Frechet distribution developed by Frechet [9] has pdf defined as:
0
-(2)

f(x,60,0)=060"x""e * (36)

The two datasets utilized as illustrative examples in this application showcase the enhanced
distribution flexibility and suitability of the newly proposed distribution. It also demonstrates its
ability to provide the "best fit" when empirically modeling these datasets, surpassing the
previously mentioned comparator distributions. All calculations were carried out using the R
programming language.

Data set 1

The first dataset provided below contains information about the times at which 84 aircraft
windshields experienced failures. This dataset was previously utilized in a study by Tahir et al.,
[21].

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578,
0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924,
1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934,
4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103,
4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344,
4.602, 1.757, 2.324, 3.376, 4.663.
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Figure 3: Fitted pdfs for the THHLEtF, EHLF, KFr, GoFr, ExF, and Fr distributions to the data set 1

Table 2: MLEs, Log-likelihoods and Goodness of Fits Statistics for the Data Set 1

Distributions a A 0 o /] LL AIC
TITHLEtF 1.4258 1.4258 1.0593 0.7272 - -60.4319  128.8638
EHLF 0.6829 22.7797 0.5953 - 16.8659 -152.1688 312.3376
KFr 13.1105 1.9176  0.1052 - 0.8131 -63.4185 134.837
GoFr 1.3750 1.5499  5.3750 - 1.3750 - 186.4972 380.9943
ExF 5.7603  0.6018 7.1979 - -167.5459  341.0917
Fr - - 19.5745 0.3347 - -146.065  296.1299

Table 2 displays the outcomes of maximum likelihood estimation for estimating the parameters of
both the newly proposed distribution and five comparator distributions. Evaluating goodness of
fit, the new proposed distribution exhibited the lowest AIC value, with the KFr distribution
coming in a close second. A visual assessment of the fit, as shown in Figure 3, further reinforces the
superiority of the proposed distribution when compared to the comparator distributions.
Consequently, the newly proposed distribution is deemed the most suitable choice for modeling
an aircraft windshields failure dataset from the assortment of distributions under consideration.
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Data set 2

The second dataset presented below records both the instances of failure and the periods of service
for a windshield. This dataset was previously employed in a study conducted by Kundu and

Raqab [12].

0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280, 1.794, 2.819, 0.313,
1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900, 2.053, 3.102, 0.952, 2.065,
3.304, 0.996, 2.117, 3.483,1.003, 2.137, 3.500, 1.010, 2.141, 3.622, 1.085, 2.163, 3.665, 1.092, 2.183, 3.695,

1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435, 4.806, 1.249, 2.464, 4.881,1.262, 2.543, 5.140.
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Figure 4: Fitted pdfs for the TIIHLEtF, EHLF, KFr, GoFr, ExF, and Fr distributions to the

data set 2

Table 3: MLEs, Log-likelihoods and Goodness of Fits Statistics for the Data Set 2

Distributions a A 0 o S LL AIC
TIIHLEtF 0.8728 21344 0.7247  0.6787 - - 75.4283 158.8566
EHLF 1.3995 5.6071  0.5085 - 3.1002  -115.1316 238.2632
KFr 0.0046 0.0248 0.0084 - 2.5480 - 130.8708 269.7416
GoFr 3.3750 2.0249  5.3750 - 3.3750 -111.8307 231.6613
ExF 6.5403 0.3166 - 9.4231 - - 108.8879 223.7758
Fr - - 19.4876  0.2848 - -139.9228 283.8457
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In Table 3, you can find the outcomes of Maximum Likelihood Estimation for estimating the
parameters of the TIIHLEtF distribution and five other comparator distributions. When
considering the goodness of fit statistic AIC, it's worth noting that the new distribution displayed
the lowest AIC value, indicating that it is the most appropriate fit for the hypertension patients'
dataset. Furthermore, a visual examination of the fit, as depicted in Figure 4, reinforces the
superiority of the new distribution over its comparator counterparts. Hence, the new distribution
is confirmed as the optimal choice for modeling the data of instances of failure and the periods of
service for a windshield.

8. CONCLUSION

In this article, we introduced and explored a novel distribution known as the Type II Half-Logistic
Exponentiated Frechet Distribution, building upon the distribution family originally proposed by
Bello et al., [4]. We conducted a thorough examination of various statistical components associated
with this new distribution, including the explicit quantile function, probability-weighted moments,
moments, generating function, reliability function, hazard function, and order statistics. The
estimation of its parameters was carried out using the maximum likelihood technique. We
presented simulation results to assess the performance of this new distribution, and we also
compared it to well-established models. Furthermore, we applied it to analyze two real datasets to
underscore the significance and versatility of the new distribution. The findings suggest that the
new distribution outperforms the existing models considered, indicating its potential applicability
in a wide range of practical applications for modeling data.
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Abstract

The primary objective of present research work is to evaluate and improve the performance and
availability of the paint manufacturing plant. Paint manufacturing plant consists of five subsystem
naming mixer, grinder, thinner, labelling, and filling unit. Among them labelling and filling unit
have two machines in parallel configuration and both are working simultaneously. All failure and
repair rates are distributed exponentially. Markov birth-death process is utilized to model the
dynamic behavior of the system and its sub-components, enabling a quantitative analysis of system
availability. Grey wolf optimization (GWO), a swarm-based optimization technique is used to
optimize the availability of the system. Moreover, the research conducts a thorough comparison
between the outcomes derived from the Markov birth-death process and the GWO technique. By
harnessing the power of GWO, the study aims to further enhance the plant’s overall performance.

Keywords: Paint Manufacturing Plant, Markov Birth-death Process, Availability,
Grey Wolf Optimization

I. Introduction

In the contemporary industrial landscape, the pursuit of enhanced operational efficiency and
availability remains a paramount concern for manufacturing facilities across various sectors. The
paint manufacturing industry plays a pivotal role in sectors such as automotive, construction, and
consumer goods. However, the intricacies of operating a paint manufacturing plant entail
multifaceted challenges that impact both production efficiency and overall plant availability. The
convergence of factors including equipment breakdowns, maintenance scheduling, and process
bottlenecks can lead to undesirable downtime and reduced performance. Thus, a systematic
investigation into optimizing plant performance is not only a scientific pursuit but a practical
necessity.

Historically, the paint manufacturing industry has undergone significant transformations,
mirroring advancements in technology, materials, and process optimization. As a result, the
industry's journey has been marked by shifts in production methodologies, ingredient formulations,
and quality assurance practices. Over the years, the industry's evolution has been propelled by the
growing demand for superior quality coatings, environmental sustainability, and cost-effective
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production. The past era of paint manufacturing was characterized by conventional batch processes
and manual labor-intensive operations. These approaches often introduced variability in product
quality and production efficiency. However, with the advent of automation, computer-aided design,
and advanced process control systems, the industry witnessed substantial improvements in
reliability and productivity. Automation minimized human errors, enhanced process repeatability,
and facilitated real-time monitoring and control of critical process parameters.

The increasing complexity of paint manufacturing processes, coupled with the demand for
higher product quality, has driven the need for sophisticated analytical and optimization tools. In
response to this demand, researchers and practitioners have explored various methodologies to
enhance the operational reliability and productivity of manufacturing plants. One prominent
avenue of exploration has been the integration of metaheuristic techniques, which offer innovative
approaches to tackle complex optimization problems. Soltanali et al. [12] aimed to enhance
automotive manufacturing productivity and reliability using RAM methodologies. It identified
bottlenecks in the vehicle body conveying process and optimized maintenance intervals to improve
operational performance. Dahiya and Kumar [4] introduced a novel method for assessing a paint
manufacturing plant's performance and availability analysis by employing fuzzy reliability and
coverage factors. Ostadi [6] employed a general preventive maintenance model to optimize
maintenance costs while ensuring reliability and availability in a flexible manufacturing system
(FMS). An optimal preventive maintenance framework was applied to a robot paint sprayer,
providing maintenance plans and reliability parameters. Omoregbe and Eniola [7] investigated
maintenance practices' impact on competitive advantage in the paint manufacturing industry,
revealing a positive relationship between preventive maintenance and competitive advantage.
Chanda and Naskar [8] focused on assessing reliability of paint manufacturing plant by collecting
breakdown and maintenance data, identifying worker inefficiency and component degradation as
primary failure factors. Schultmann et al. [11] addressed challenges faced by small and medium
sized companies in supply chains, focusing on reliable throughput times amid uncertainties. It
proposed a fuzzy scheduling approach for hybrid flow shops and validated it through a case study
in paint manufacturing.

Metaheuristic approaches are widely used in availability optimization problems to find near-
optimal solutions for complex problems. Saini et al. [10] assessed cloud infrastructure's availability,
crucial for its operation in healthcare and business. Utilizing both, dragonfly algorithm (DA) and
grey wolf algorithms (GWO), a stochastic model was optimized, emphasizing the superior
performance of the GWO. Saini et al. [9] aimed to create an innovative, efficient irrigation system
(EIIS) using a series-configured setup with internal cold standby redundancy for sensor units and
optimization was performed with GWO and DA to enhance system efficiency and performance.
Kumar et al. [2] employed metaheuristic algorithms genetic algorithm (GA) and particle swarm
optimization (PSO), to optimize performance of cooling tower. A novel stochastic model for a six-
subsystem cooling tower was developed using Markovian processes, considering factors like
random variables, repair, and failure rates. Saini et al. [8] aimed to develop a novel stochastic model
for optimizing the availability of embedded life-critical systems by using DA and GWO algorithms.
Yadav et al. [13] analyzed the reliability and availability of a repairable system using the Markov
approach. The impact of failure rate, repair rate, and operating time on reliability, MTSF, and
availability was also discussed. Saini et al. [7] aimed to assess the availability and performance of a
sewage treatment plant's primary unit using redundancy. Mirjalili et al. [3] introduced the Grey Wolf
Optimizer (GWO), a metaheuristic inspired by grey wolves’ social structure and hunting behavior.
It outperformed other metaheuristics on various test functions and successfully tackled engineering
design problems.

The whole manuscript is divided into five sections. Section 1 includes the introduction of
proposed system and previous work done in related area. section 2 provides the insights into used
materials and methods for investigation. In section 3, mathematical modelling, steady state diagram
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and availability analysis of the system is mentioned. Numerical and graphical representation of
results is appended in section 4. Section 5 cover the conclusion part of the research.

II. Material and Methods

This section contains the notations and methodology used for the availability investigation of paint
manufacturing plant.

I. Notations

The following nomenclature is used to develop the state transition diagram and mathematical
modelling of system.

Table 1: Notations for paint manufacturing plant’s sub-system

Sr. | Sub-systems and Notations for different states function Failure Repair
no. notations rates (ai) = rates ()
Operative  Degraded = Complete
state states failed state
1 Mixer (U) U - u at B1
2 Grinder (V) v - v oo (32
3 Dilution/Thinner (W) W - w o (s
4 Labelling unit (X2) X2 Xt X a4, ot P4, Ps
(Two parallel machine)
5 Filling unit (Y?) Y2 Y! y as, o7 Bs, 7
(Two parallel machine)
6 Pi(t) Probability that the system is in it state at time t

Operative states

-
8 C> Degraded states
)

Completely failed states

II. System Description

The proposed paint manufacturing system comprises five sub-systems like mixer, grinder, thinner,
labelling unit, and filling unit. The failure and repair rates of all the subsystems follow exponential
distribution. All the subsystem arranged in a series configuration and work-flow diagram of system
is append in figure 1.

i) Subsystem U (Mixer)
In paint manufacturing, a mixer unit plays a crucial role in blending and homogenizing various
raw materials to create consistent and high-quality paint products. The unit's primary purpose
is to create a homogeneous mixture by effectively dispersing and combining the ingredients.
The failure of this unit can result in the entire system's breakdown.

ii) Subsystem V (Grinder)

A grinder unit serves the essential purpose of reducing solid particles, such as pigments and
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fillers, into finer particles to achieve the desired texture and consistency in the final paint
product. The grinder unit plays a crucial role in breaking down aggregates and achieving
uniform particle size distribution, which directly influences the paint's color, opacity, gloss, and
overall quality. The failure of this subsystem can impact the overall functionality of the system.

iii) Subsystem W (Thinner/Diluter)
Thinner or diluter plays a pivotal role in paint manufacturing as a vital solvent used to modify
the viscosity and consistency of paint formulations. Thinner is employed to reduce the thickness
of paint, making it easier to apply and ensuring a smooth, even coat. Failure of subsystem can
disrupt and compromise the entire operation of the system. Subsystem failures have the
potential to disrupt and compromise the entire system's operation.

iv) Subsystem X (Labelling unit)
A labelling unit plays a pivotal role in ensuring that each container bears essential information,
including product details, batch numbers, safety warnings, and regulatory compliance. This

system comprises two labelling machines working together in parallel configuration with
different failure and repair rates.

v) Subsystem Y (Filling unit)
A filling unit in a paint manufacturing plant is responsible for accurately filling paint into
containers, such as cans or buckets. Its importance lies in ensuring precise and consistent
product quantities, which are essential for quality control and cost efficiency. The system

consists of two filling machines operating in parallel, each with its own distinct rates of failure
and repair.

Labelling | Filling .
i - o 7 —
Machine-1 Machine-1

THINNER/ |
DILUTER J’”

b 4

Labelling | | q Filling |
‘ i Machine-2 l : o 1 Machine-2 l )
Figure 1: Work-flow diagram of system

III. Assumptions

J At time t=0, all subsystems are in good working condition without any failure.

J The rates of failure and repair are exponentially distributed and are equally and
independently distributed.

J All subsystems of the paint manufacturing plant are configured in a series format while
labelling unit and filling unit have two unit working together in parallel configuration.

J Subsystems works as flawlessly as new after repair.

o An adequate repair facility is always available at operational time.
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III. Mathematical Modelling and Analysis

In this section, a mathematical model for paint manufacturing plant is developed using Markov

birth-death process. The Chapman-Kolmogorov differential difference equations derived based on
figure 2.

‘
[ uvwx32y ] [ uvwxly ]
Si1s S20 Si9

Figure 2. State transition diagram of paint manufacture plants

I. Transition Probabilities

P (t + At) = (1 — a At — @, At — azAt — a, At — asAt)P, (t) + B Ps(H) At + B, Ps (H) At + B P, (t)At

+ B, P, (At + B P;(t)At

P (t + At) = P (t) — (At + ayAt + azAt + a, At + agA)P (t) + By Ps (D) At + B, P () At + B3 P, (t)At
+ B, P, (At + B P5(t)At

1im A0 — (a4 @y + @5 + @y + @) + BiPS(8) + BoPo() + B Pr(8) + BuPo(8) +
BsPs(t)
P{(t) = —(ay + az + az + ay + as)P(t) + B1Ps(6) + B2 Ps(t) + B3 Pr (8) + BuPo (E) + PP (0)
Taking limit !im, we get

tlfg P{(t) = —(ay + ay + a3 + ay + as)Py(t) + B1Ps(t) + B Ps(t) + B3P (t) + BaPr(t) + BsPs (1)

(ay+ ay + as + ay, + as)Py = B1Ps + PoPs + P3Py + PuPy + s Py 1
Similarly for others states,

(ay +a; +az + Py + as + ag)P, = 1Py + Py + P3Pig + asPy + PPy + BsPyy 2)

(a; + a; + az + ay + Bs + a;)Py = By Py + PoPrs + P3Prs + BuPs + asPy + B Pis 3)

(a; +a; +as + Py + s + ag + a;)P, = B Pig + B Piy + B3Pig + ayPs + asP, + fPro + P7Pa0(4)

Yi P = 213'=1 BiPisa ©)

i1 P, = XL BiPiys (6)

asP; = BePry )

=1 Py = X231 BnPriia (8)

a;P; = B7Pys )

ZZ=1 agh, = 23=1BrPriis (10)

2i=6 5Py = Xi-6BiPri13 (11)

Initial conditions,
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(I i ¢=0
Pe(0) = {0 if  £#0 (12)

Solving the linear system of equations (1-11) by using initial conditions mentioned in equation (12),
the following probabilities derived at various states and solve them in terms of P;, we get
P, =GP, Py =HP, P, =P, Py =P, P, =22P,, P, =P, Py ==1P, P, =22 P,,
B1 B2 B3 B1 B2

Py Z%PZI Py =;_2P2/ P, Z%P3/P13 Z%P&Plzl- Z%P&Pw Z%P&Pm Z%PM
P17=%P4,P18=%P4,P19=;—2P4,P20=%P4 (13)
Here,
146 as | 1B asras(g+p)
GZ(B 5)Pl’HZ(C5 4)P1’I_[@_T%]'Az(%"'as)/fgz(&"'as)/
4 B

C = (a,+Bs), D = (B, + Bs) and " represent the multiplication.
By using normalization condition,

X2 P =1 (14)
The expression of P; derived by using equations (13-14) and shown in equation (15) as follows:
Pi+ P+ Py, +Pyy =1

SR PRI I 3 P2 5 Ry P 3 PRy (15)

The depiction of system availability involves the addition of probabilities in the upstate.
Mathematical expression for system availability is formulated as follows:

Ag=P +P,+P;+P, (16)
By putting the values and determine the final availability expression, is as below:
[1+G+H+I]

A0 = e [ () () (e () + (D)o 17)

IV. Numerical Results and Discussion

In this section, the availability of paint manufacturing system is derived by using the expression
given in equation (17) and is found 0.950145478. The arbitrary values of failure and repair rates are
taken on the behalf of the previous studies and are append in table 2. For enhancement of availability
of the system swarm-intelligence based algorithm named GWO is used. For execution of
optimization the possible search space for failure and repair rates are append in table 3 and the
optimum availability of the system for different iterations and populations are presented in table 4.

Table 2: Failure and repair rates for subsystems of paint manufacturing plant

Sr.No. Name of subsystem Failure rates (a;) Repair rates (8;)
1 Mixer a,=0.005 $,=0.889
2 Grinder a,=0.051 B,=1.397
3 Dilution/ Thinner a3=0.0052 B5=0.998
4 Labelling a,=0.0727 B,=1.232
5 Filling as=0.0954 Bs=1.244
6 Standby labelling machine as=0.0778 Be=1.374
7 Standby filling machine a,=0.0955 B,=1.387

In figure 3 and 4, the effect of change in failure rate is shown on the other sub-systems availability
with increase an 50% in the failure rates and repair rates. It is shown that while varying the failure
rate of a; from 0.001 to 0.007, the availability of subsystems decreases. Subsystem grinder is
fluctuated very much by increasing 50% in failure rates and repair rates both. While floating the
value of B, from 0.001 to 0.007 and 50% increase in other subsystems repair rates, then the availability
is also increase.
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Figure 3: System availability with variation in a1 and subsequent changes in failure rates of subsystems
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Figure 4: System availability with variation in B1 and subsequent changes in repair rates of subsystems
Table 3: Range of search space for grey wolf optimization
Sr. No. | Subsystem Range of failure rates (a;) | Range of repair rates (;)
1 Mixer [0.0025, 0.0075] [0.45, 1.34]
2 Grinder [0.0260, 0.0770] [0.70, 2.10]
3 Dilution/ Thinner [0.0028, 0.0082] [0.50, 1.50]
4 Labelling [0.0360, 0.1090] [0.62, 1.85]
5 Standby labelling machine [0.0480, 0.1440] [0.63, 1.87]
6 Filling [0.0390, 0.1170] [0.69, 2.06]
7 Standby filling machine [0.0480, 0.1440] [0.71, 2.09]

Table 4: Optimum availability of system at different iterations with varying population sizes

W 100 150 200 250 300
Iteration I
10 0.983572 0.983576 0.983575 0.983574 0.983570
30 0.983573 0.983571 0.983571 0.983575 0.983571
50 0.983576 0.983575 0.983549 0.983575 0.983572
70 0.983572 0.983575 0.983569 0.983563 0.983568
90 0.983577 0.983555 0.983570 0.983570 0.983573
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V. Conclusion

In this study, a comparative analysis is performed and it provides insights into the strengths and
limitations of each methodology. It is shown that the metaheuristic optimization techniques perform
better than the traditional techniques. The overall availability of paint manufacturing plant is
improved by 0.9501454 to 0.983577 using GWO. Ultimately, the paper offers valuable insights into
both the theoretical and practical dimensions of improving paint manufacturing plant performance
and availability. The combined usage of Markov analysis and GWO presents a robust approach for
achieving the desired goals, contributing to the advancement of industrial reliability and efficiency.

Acknowledgement: This research is funded by Manipal University Jaipur, under the scheme of Dr. Ramdas
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Abstract

This paper describes the scheming technique of new system of skip lot sampling plan of type SkSP-T with Single Sampling
Plan as Reference plan under the condition of Intervened Poisson Distribution. The designing methodology includes the
evaluation of Acceptable Quality Level, Limiting Quality Level, Operating Ratio, and Operating Characteristic curves.
Tables are simulated by changing various parametric values of SkSP-T, SSP and IPD and operating characteristic curves
are drawn by using R language.

Keywords: Skip-lot sampling plan of type SkSP-T, Intervened Poisson Distribution, Single Sampling
Plan.

I. Introduction

Maintenance of quality is decided to improve the production. Good qualities of products
facilitate to reduce both producer and consumer risks. Additionally, it manages the production cost
and consumer satisfaction. The determination of designing every sampling method is to find out a
succession of the process to be tested in a sequence of lots is defined the quality. Statistical Quality
control (5QC) is one of the processing techniques throughout that the production quality is sustained
and too reduced the production errors. Every quality control technique defines the defective items
and the defective items are replaced by good once. Acceptance sampling (AS) is one of the
imperative method used in SQC through judgment a lot concerning its quality of 100% inspection
and no inspection. The major purpose of acceptance sampling is towards constructing a sampling
plan that is mainly characterized by sample size (n) and acceptance number(c); also it is able to
minimize the inspection cost and sampling error.

The most important areas of Acceptance Sampling plan is classified into four broad categories.
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It includes lot-by-lot sampling plan by attribute and by variables, Continuous sampling plan, and
special purpose plans. The special purpose plan includes Skip-lot sampling plan. Skip-lot sampling
plans are inspected only the fraction of submitted lots. Such process of sampling is in reducing the
cost in provisions of minimizing the time and exertion. On the other hand skip-lot sampling
supposed to only be used instantaneously, it has been established that the excellent quality of the
submitted lots are very good.

Dodge [5] introduced the skip-lot sampling plan of type SkSP-1 based on the concept of
continuous sampling plan of type CSP-1. Perry [13] developed some specified level of Operating

Ratio (OR) for corresponding producers and consumer’s risk, OC and ASN function (operating
characteristic) of the SkSP-2 plan using Markov chain techniques. SkSP-3 is based on the concept of
Continuous Sampling Pan of type CSP-2 of Dodge and Terry [8]. SkSP-3 is developed by
Vijayaraghavan [16] using Markov chain technique. The multilevel continuous sampling plans are
derived Lieberman and Solomon[7]. The CSP-T plans are tightened multilevel plans that include
three levels developed by Fordice [6]. Kandasamy and Govindaraju [11] developed the performance
measures of CSP-T plan. Balamurali [1] developed Modified Tightened Three level Continuous
sampling plan. Balamurali and Chi-Hyuck Jun [2] developed a modified CSP-T sampling procedure.

Pradeepa Veerakumari and Suganya [15] introduced Skip-lot sampling plan of type SkSP-T
(T-tightened) based on the concept of continuous sampling plan of type CSP-T, CSP-M, MMLP-T-2,
and SkSP-2. Sampling levels are fixed by using CSP-M procedure; sampling fractions are taken from
the CSP-T procedure and other concepts are taken by modified CSP-T and SkSP-2 procedures. The
main advantage of skip-lot sampling plan of type SkSP-T plan if there is a defect found in skipping
the level, and then there is a normal inspection in that fraction level. The stopping rule parameter S
is introduced for the tightening inspection which makes the plan convenient. In the proposed plan
sampling frequency (f) is minimized by every skipping inspection level. The Operating
Characteristic functions for this SkSP-T plan are also derived with single sampling plan as the
reference plan under the condition of Intervened Poisson Distribution. SKSP-T plan vary among
normal inspection and skipping inspection with three levels. Pradeepa Veerakumari and Suganya
[23] developed skip-lot sampling plan of SkSP-T based on fuzzy logic techniques. Suganya and
Pradeepa Veerakumari [22] developed SkSP-T plan based on Burr type XII distribution.

Shanmugam [18] introduced the Intervened Poisson Distribution which is designated as
IPD. It is a moderated adaptation of the zero-truncated Poisson distribution (ZTPD). IPD is
compared with ZTPD it concludes that IPD produces good quality of products and provide an
additional report about the capability of the intervention made in the manufacturing or production
process. It is supportive of accepting the result of the corresponding process. The area of IPD has
been applied by various product control, process control, manufacturing industries, biologists, and
etc. Much real-time (cholera disease, health improvement for before and after treatment) examples
can establish in Shanmugam [18,19]. Huang and Fung [9] developed intervened truncated poisson
distribution. In Scollnik [20] introduced the new concept it is called intervened generalized Poisson
distribution (IGPD) and it is an extension of IPD. Scollnik [21] developed the Bayesian analysis for
IPD using Gibbs sampling approach. Dhanavanthan [3,4] introduced the Compound Intervened
Poisson distribution (CIPD) also estimated its characteristic parameters for using the concept of
statistical inference and probability. Satheesh and Shibu [17] introduced the modified intervened
Poisson distribution (MIPD). MIPD parameters can be estimated by using the method of factorial
moment, mixed moment, likelihood estimators and uniformly best estimators. Pradeepa
Veerakumari and Azarudheen [14] developed various attribute acceptances sampling plan using
SSP under the condition of IPD as a reference plan. Jayakumar and Rehana [10] develop and
Characterizations , Different Methods of Estimation and Applications of Exponential Intervened
Poisson Distribution. Muhammed Rasheed Irshad et.al [12] developed Intervened Poisson
Distribution by Lagrangian Approach.
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II. Design of SKSP-T plan and its Operating Characteristic function

Operating procedure of the SkSP-T plan is stated as follows:

Stepl: Initiate SkSP-T procedure with normal inspection using the single sampling plan as a
reference plan under the condition of Intervened Poisson Distribution.

Step2: When i successive lots are received on normal inspection, terminate the normal inspection
and change to skipping inspection.

Step3: On skipping inspection, inspect only a fraction f of the lots selected at random, level 1.

Step4: After i consecutive lots in succession have been founded without a non-conforming at level
1, the system then switches to skipping inspection with a fraction of {/2, level 2.

Step5: After i consecutive lots in succession have been founded without a non-conforming at level
2, the system then switches to skipping inspection with a fraction of f/4, level 3.

Step6: If a non-conforming lot is found on either skipping level, the system reverts to normal
inspection.

The Operating Characteristics Function of SkSP-T plan is given by
_ Pi(f,f3(1—P1)+f, f3P1(1~Pl)+f, f, P?1)
Fa(p) = f1f2£3 (1—P1)+P1(fyf3(1~P1)+f; f3P1(1~P1)+f; f, P21) @)

I1I. Origin of Intervened Poisson Distribution (IPD)

Let us consider the number of defectives in a lot as Y1. Implementation of, the number of defectives
in a lot produced as of a progression in no way to be perfect due to random inconsistency, which
implies the event Y1>0. Y1 is a random variable and it is an infrequent event. Then the zero-truncated
Poisson distribution with pdf is

oY1
P(Y,=y,) = [

;v =12, .. ()
Where 6>0 is called incidence parameter. The above equation can be used this example if the
manufactures make any modification in a manufacturing system in order to produce the better
quality of products. In this position, pO can be changed to 6. Where p (p = 0) is called an intervention
parameter (IP) and Y2 be the no. of defectives that occurred after modify in the production process.
And Y2 is denoted that a Poisson random variable with mean p0.

A random variable Y=Y1+Y2 i.e., the total no. of defectives occurred. The random variable Y is

formed by Intervened Poisson Distribution with probability function,
[(a+p)Y—p¥167

P(Y =y) ="C5ratn, X = L2.. ®)
Mean and Variance of the Intervened Poisson Distributiorll (IPD) is
p=ECO =01+ p)+ 7] @
And
g =Var(X) =u—e’ (999_1)2 )

From the Intervened Poisson Distribution (IPD) than the mean (u) is greater than its
variance (02). In equation (2) substitute p = 0 then the Intervened Poisson Distribution is reduced to
zero-truncated Poisson distribution (ZTPD).

The Operating Characteristic function for Single Sampling Plan under the conditions of

Intervened Poisson D (6, p) can be defined as,
Cc c
_ o N (A +p) —p716”
Pp) = ) Y =16,0) = ) = et
x=1 y=1
Where 0 =np and p is measured in percentage.
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IV. Designing of Single Sampling Plan under the conditions of Intervened Poisson
Distribution (IPD)

The attribute Single Sampling Plan for the necessary parameters are sample size (n), acceptance
number (c), the lot size (N), the number of defective in the sample (d) and proportion defective (p).
In general, then the defective item d < c (acceptance number) then the lot will be accepted, otherwise,
the lot will be rejected.

The skip-lot sampling plan of type SkSP-T, Single Sampling plan and intervened Poisson
distribution parameters are determined with the primary objective to carry out both the consumer’s
and the producer’s risk. Both the risk’s can be satisfying the subsequent conditions for the particular
strength (p1, o, p2, ),

Rp)=1-a
Fa(p2) =8

Where, p1 =is the proportion defective for that the risk of rejection is to be

And p2=is the proportion defective for that the risk of acceptance to be 3

1. Specify p1 = Acceptable Quality Level at = 0.05 or 0.01.

2. Specify p2 = Limiting Quality Level at 3 =0.10 or 0.05.

3. Obtain the corresponding ratio OR = p2/ p1 at a different combination of o and f.
4.

V. Numerical Illustration

The following examples to obtain the new system of skip lot sampling plan of type SkSP-T with
Single Sampling Plan as reference plan under the conditions of Intervened Poisson Distribution
(IPD) for calculating the Probability of Acceptance, Operating Characteristic (OC) Curve, Average
Sample Number (ASN), Average Outgoing Quality (AOQ) and Average Total Inspection (ATI). The
SkSP-T, SSP, and IPD parameters n — sample size, ¢ — acceptance number, i — clearance interval, {-
sampling frequency, N- lot size, p - proportion or fraction defective, Pa (p) - Probability of Acceptance
0 - incidence parameter and g - intervention parameter.

In the production process assume there is a 1% of intervention occurred in the experimental
session and it is preferred to establish a proposed sampling plan for a certain set of values say,
a=0.05, 3=0.10 and p1=0.028741, p>=0.1428. Then the Operating Ratio OR=p2/p1= 0.142879/0.028741 =
4.97. And np1 value is determined from table 1 as 1.437025 and the corresponding sample size n is
computed as n =np1/p1 = 1.437025/0.028741=49.99 = 50. Hence the parameters of SkSP-T with Single
Sampling Plan as reference plan under the Condition of Intervened Poisson Distribution indexed
through Acceptable and Limiting Quality Levels.

Table 1 considers the new system of skip-lot sampling plan of type SkSP-T with Single
Sampling plan as reference plan under the condition of Intervened Poisson Distribution (IPD)
parameter values are estimated and derived its Acceptable Quality Level (AQL) and Limiting
Quality Level (LQL). And also calculated the Operating Ratio (OR) it explains the ratio of limiting
quality level to acceptable quality level. The new proposed plan system is designing several
combinations of OC curves for various parameter values of SkSP-T, SSP and IPD.

In Acceptance Sampling plan five important basic measures are defined in ISO standard
(2006). The measures of Acceptance Sampling plan is 1. Probability of Acceptance (Pa (p)) 2.Average
Sample Number (ASN) 3.Average Outgoing Quality (AOQ) 4.Average Outgoing Quality Limit
(AOQL) and 5.Average Total Inspection (ATI).

Figure 1 represents the OC curves for SkSP-T with SSP as reference plan under the
conditions of IPD for c and n are fixed and by changing the o values. From this figure conclude that
smaller intervention occurs in the production process then the producer’s risk will be minimized.
Also the acceptance number c =1 it concludes that proportion defective p is decreases.

From figure 2 for n and o values are fixed and by changing the c values. It concludes that
then the probability of acceptance (Pa (p)) is increased although the acceptance number c also
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increases. Figure 3 design the OC curve for fixed c and g and by changing then n (sample size) values.
From this figure denotes then the sample size (n) increases consumers are safeguarded. However,
the sample size is smaller the producers are safeguarded.

Figure 4 specifies the OC curve for proposed sampling plan. It is observed that p (proportion
defective) increases Pa (p) (Probability of Acceptance) decreases. OC curves specify the
manufacturing to the producer’s and consumer’s quality level. The Characteristic curve is used for
the purpose of Probability of Acceptance depends upon the fraction defective and also conclude that
the producer risk (&) and consumer risk (). It concludes that sample size increase, producer risk is

maximized and consumer risk minimized. It is the inequity of Sampling Plan between Good lots and
Bad Lots.

Table 1: Optimal parameters of SkSP-T plan with single sampling plan as Reference plan under the condition of
Intervened Poisson Distribution (IPD)

Probability of Acceptance Pa(p) Operating Ratio (OR)
f1 f2 f3 C a=0.01 a=0.05 o=0.05
Q 099 | 095 | 090 | 050 | 010 | 0.05 | 0.01 8-001 | =005 | p=0.10
12| 1/4 | 1/8 0.148 | 0.624 | 1.053 | 3.140 | 5711 | 6577 | 8.386 | 56.662 | 10.540 | 9.152
/3] 1/6 | 1/12 0.215 | 0.833 | 1.356 | 3.605 | 6.164 | 7.022 | 8.810 | 40.977 | 8.4298 | 7.400
0.01 1/51 1/10 | 1/20 | 1| 0340 | 1.181 | 1.804 | 4.203 | 6.759 | 7.593 | 9.427 | 27.726 | 6.4300 | 5.723
1% m: 1@2 0.445 | 1.450 | 2.127 | 4594 | 7.140 | 7.985 | 9.778 | 21.973 | 55069 | 4.924
0552 | 1.659 | 2.387 | 4.891 | 7.428 | 8251 | 10.07 | 18.243 | 4.9735 | 4.477
12| 1/4 | 1/8 0.070 | 0297 | 0.510 | 1.610 | 3.014 | 3.485 | 4.432 | 63.314 | 11.734 | 10.15
13| 16 | 1/12 0.102 | 0401 | 0.668 | 1.863 | 3.265 | 3.734 | 4.737 | 46441 | 93117 | 8.142
0.05 151 1710 | 1/20 1 2 o961 [ 0579 | 0.898 | 2.190 | 3.582 | 4.034 | 5.011 | 31.124 | 6.9672 | 6.187
1771 1/14 | 1/28 0211 | 0711 | 1.066 | 2.404 | 3.788 | 4241 | 5192 | 24.607 | 59648 | 5328
1/9°| 1718 | 1/36 0.262 | 0.821 | 1.205 | 2.567 | 3.943 | 4383 | 5.346 | 20.405 | 5.3386 | 4.803
2] 1/4 | 1/8 0.042 | 0182 | 0317 | 1.030 | 1.972 | 2.289 | 2.985 | 71.071 | 12.577 | 10.84
13| 16 | 1/12 0.061 | 0248 | 0.415 | 1.196 | 2.140 | 2.456 | 3.119 | 51.131 | 9.9032 | 8.629
0.10 1/5| 1/10 | 1/20 | 3| 0.098 | 0357 | 0563 | 1.415 | 2.360 | 2.666 | 3.334 | 34.02 74678 | 6.611
17 | 1/14 | 1/28 0.128 | 0444 | 0.672 | 1.559 | 2.500 | 2.810 | 3.459 | 27.023 | 6.3288 | 5.631
1/9 | 1/18 | 1/36 0.161 | 0514 | 0.762 | 1.669 | 2.606 | 2.907 | 3.564 | 22.137 | 5.6556 | 5.070
2] 1/4 | 1/8 0.029 | 0.127 | 0221 | 0.729 | 1.418 | 1.653 | 2.159 | 74.448 | 13.016 | 11.17
13| 16 | 1/12 0.042 | 0172 | 0289 | 0.850 | 1.544 | 1.779 | 2.270 | 54.048 | 10.343 | 8.977
0.15 1/5 ] 1/10 | 1/20 | 4 | 0.068 | 0.249 | 0395 | 1.009 | 1.707 | 1.936 | 2.436 | 35.824 | 7.7751 | 6.855
17 | 1/14 | 1/28 0.089 | 0311 | 0473 | 1.116 | 1.812 | 2.043 | 2.531 | 28.438 | 6.5691 | 5.826
1/9 | 1/18 | 1/36 0.112 | 0360 | 0537 | 1.195 | 1.891 | 2.116 | 2.610 | 23.304 | 5.8778 | 5.253
2] 1/4 | 18 0.022 | 0093 | 0.164 | 0549 | 1.077 | 2261 | 1.688 | 76.727 | 24.312 | 11.58
13| 16 | 1/12 0.028 | 0.128 | 0.216 | 0.641 | 1.176 | 1.360 | 1.753 | 62.607 | 10.625 | 9.188
0.20 1/5] 1/10 | 1/20 | 5| 0.049 | 0.186 | 0.296 | 0.763 | 1.304 | 1.483 | 1.876 | 38286 | 7.9731 | 7.011
17 | 1/14 | 1/28 0.064 | 0232 | 0354 | 0.845 | 1.386 | 1567 | 1.950 | 30469 | 6.7543 | 5.974
1/9 | 1/18 | 1/36 0.084 | 0269 | 0.404 | 0907 | 1.447 | 1.625 | 2.002 | 23.833 | 6.0409 | 5.379
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Figure 4: Operating Characteristic Curve for SkKSP-T With SSP as reference plan under the

condition of IPD

VI. Conclusion

The new proposed skip-lot sampling plan of type SkSP-T with single sampling plan as refence plan
under the condition of intervened poisson distribution is apply during the production process to
improve the quality of products to produce. The comparison results have specified that the SkSP-T
with IPD is more efficient than the conventional sampling plans. The necessary tables and examples
are contributed and applied for the formulation of the new proposed sampling plan.
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Abstract

This paper introduces a novel probability distribution known as the Ejaz distribution (ED), which
is characterized by two parameters. The study offers a comprehensive analysis of this distribution,
including an examination of key properties such as moments, moment-generating functions, order
statistics, and reliability functions. Additionally, the paper explores the graphical representation of
essential functions like the probability density function, cumulative distribution function, and hazard
rate function, enhancing our visual understanding of their behavior. The distribution’s parameters are
estimated using the widely accepted method of maximum likelihood estimation. Through real-world
examples, the paper highlights the practical applicability of the Ejaz distribution, demonstrating its
performance and relevance in diverse scenarios.

Keywords: Moments, Reliability analysis, oder statistics, maximum likelihood estimation, Data
analysis.

1. INTRODUCTION

In numerous fields such as economics, engineering, finance, insurance, demography, biology, and
environmental and medical sciences, various statistical distributions have been widely utilized to
describe and predict observed phenomena. However, the data encountered in these disciplines
often exhibit complex behaviors and diverse shapes, characterized by varying degrees of skewness
and kurtosis. Consequently, many of the conventional standard distributions have limitations
when it comes to accurately representing these data. As a result, the application of these classical
distributions may not yield satisfactory fits. Hence, numerous researchers have endeavored to
enhance these established classical distributions to achieve greater adaptability in modeling data
from a wide array of academic domains. In recent times, researchers have been actively engaged
in the development of new families of continuous probability distributions known for their
remarkable flexibility. This innovation involves the incorporation of extra parameters into the
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foundational distributions. These novel families of lifetime distributions have gained prominence,
particularly in fields like economics, engineering, finance, insurance, demography, biology, and
environmental and medical sciences, where data frequently exhibit intricate behaviors, diverse
shapes, skewness, and kurtosis variations. The integration of additional parameters empowers
these distributions to offer a more adaptable and versatile framework for modeling complex
data. By doing so, they overcome the limitations of traditional standard distributions, enabling
researchers to better capture and predict real-world phenomena with precision. Thus, these
newly proposed lifetime distribution families have become invaluable tools for data analysis and
modeling in a wide range of disciplines. In recent years, researchers have introduced modifica-
tions to enhance the adaptability of conventional distributions when interpreting diverse datasets.
These changes aim to improve the accuracy of data analysis across different fields by tailoring
distribution characteristics to specific dataset requirements. For reference Aijaz et al. [1-3], Terna
Godfrey leren [18], Albert Luguterah [4], Topp-Leone Rayleigh distribution by Fatoki olayode
[9],Amal S. Hassan et al. [5], Frank Gomes-silva et al. [10], Brito et al.[7], Morad Alizadeh et al.
[15], Shanker et al. [17],Lindley [14], Flaih, A et al. [11], Akhter, Z et al. [6], G.M. Corderio et
al. [13]. The formulated distribution is versatile and suitable for modeling various data types,
including left-skewed, right-skewed, and symmetric datasets. This versatility is evident when
examining probability density function (PDF) plots, as they demonstrate that this distribution can
offer the most optimal fit for complex datasets. Whether the data exhibits a pronounced tail on
the left, a tail on the right, or a balanced symmetry, this distribution’s flexibility allows it to adapt
and provide a robust representation. Its ability to accommodate a wide range of data patterns
makes it a valuable tool for statistical modeling and analysis, ensuring accurate and meaningful
insights across diverse data scenarios.

Let us suposse F(x;a, B) be cdf of a random variable x with «,  parameters, then the cumula-
tive distribution function of Ejaz distribution is described as.

F(x;a,B) =1— e (e =1) (2 - e_"‘(eﬁx_l)> ; x>0,a8>0 1)

1.0
1.0

0.8
0.8

0.6
0.6

a a
=} =]
3 2
w =
< =<
3 3
a=16p=15
N a=08p3=1.2 o
© a=12,=25 ° a=12,=08
a=05p=27 a=0.53=0.7
o a=23p=3 - a=0.3,3=0.9
o [S)
0 1 2 3 4 5 0 1 2 3 4 5
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Figure 1: The cdf plots of Ejaz distribution for distinct parameter values.

The corresponding probability density function is described as

F(x;a, ) = 2upe (P —1)+px (1 - e*“(fﬁ"*)) ;x> 0,a,8>0 2)
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Here we examine the validity of pdf

/ooof (x;a, B)dx =1
:/oo zaﬁeﬂx(eﬁx,l)ﬂgx (1 _efac(eﬁxfl)) dx
0

On substituting ef* — 1 = z, so that 0 < z < o we have

=2 /oo e (1—e*)dz
0

1
*(a)

15
15

a=0.6B=05 a=03p=14
a=08p=1.2 a=05p=0.6
a=12p=08 - a=0.78=08
a=05p=0.7 a=0.9,=07
. a=0.3,=0.9 . S a=03p=07
a a
5 5
o o \
0 1 2 3 4 5 0 1 2 3 4 5
X X

Figure 2: The pdf plots of Ejaz distribution for distinct parameter values.

2. MOMENTS

To understand and characterize the properties of the formulated distribution, we perform a
moment analysis about the origin. This analysis allows us to derive essential statistical measures
such as skewness, kurtosis, and other relevant properties. By examining these moments, we gain
valuable insights into the distribution’s shape, central tendency, and the presence of any outliers
or heavy tails, aiding in its comprehensive statistical characterization and interpretation.
Suppose x denotes a random variable follows Fjaz distribution. Then k moment about origin
denoted as y;( can be obtained as

= E() = [ 2 p)dx

J0
=20 /oo xkefa(€5x71)+ﬁx (1 _ efrx(eﬂ"fl)) dx
0
Making substitution eP*=z so that 1 < z < oo, we have

;4;( —i;;: {e"‘ /100 (log(z))f e *2dz — &2 /100 (log(z))ke_z“zdz}

Applying integro-Exponential function by Milgram [16].

EL(A :.—/ log(#)) t—e~Mdt
(A) +1ih (log(t)) t™%e
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1 20T (k+1) 7 x
=g (Eb(@) — 'Ef(20)

Substituting k = 1,2, 3,4 we obtain first four moments of the distribution about origin. The
variance 02, skewness +/pB1, kurtosis 8, , coefficient of variation (C.V) and index of dispersion 7.

Let x be a random variable follows Ejaz distribution. Then the moment generating function of
the distribution denoted by Mx(t) is given by

My (8) :E(efX) _ /°° o f(x; a, B)dx
tk

Z xfxzx‘B k'E()

k=
tK 20etT (k41)

= Z Tl GIORTZHED)

3. RELIABILITY INDICATORS

This section is focused on researching and developing distinct ageing indicators for the formulated
distribution.
3.1. Survival function

Let us suppose x be a continuous random variable with cdf F(x).Then its Survival function which
is also known as reliability function is stated as

S(x) = pr(X > x) = / F(x)dx =1— F(x)
JX
Therefore, the survival function for Ejaz distribution is given by

S(x;a, B) =1 —F(x;a, B)
o) (el ) )

3.2. Hazard rate function

The hazard rate function of a random variable x is denoted as

59 ) =G

using equation (1) and (3) in equation (4), then the hazard rate function of Ejaz distribution is
given as

4)

20pePr (1 — el -1)
h(x;a, B) = (2 (e“(eﬁx1)> )
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Figure 3: The hrf plots of Ejaz distribution for distinct parameter values.

3.3. Cumulative hazard rate function

The cumulative hazard rate function of a random variable x is given as
H(x,u, ) == In[F(x; B)] ©)

using equation (1) in equation (5), then we obtain cumulative hazard rate function of Ejaz
distribution as

H(xa,p) = a (7 — 1) —log (2 — (1)

3.4. Reverse Hazard rate function

The reverse hazard rate function of random variable x is described as

o ~fd

using equation (1) and (2) in equation (6), then the reverse hazard rate function of Ejaz
distribution is given as

ZalBe_”‘("ﬁx—lHﬁx (1 _ e—zx(e“"—l))
1 — e—a(eP*=1) (2 — efa(eﬁx—l))

(e p) =

4. ORDER STATISTICS

Let us suppose X1, X2, ..., X, be random samples of size n from Ejaz distribution with pdf f(x) and
cdf F(x). Then the probability density function of the k'’ order statistics is given as

_1’1—! k=174 n—k
Flk) = G ) I 1= F)] 7)

n—1

Using equation (1) and (2) in equation (7), we have

fx(k) _Mlmzwﬁe_a(Eﬁx_l)+ﬁx (1 - g—ﬂé(eﬁx_l)) [1 _ e—“(eﬁx—l) (2 _ e—uc(eﬁx—l))}

X {e_"‘(eﬁx_l) (2 _ e—a(eﬁx_l))}n—k

k-1
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The pdf of the first order statistics X; of Ejaz distribution is given by
fx(l) :2naﬁeﬂx(cﬂ"71)+ﬁx (1 o efrx(eﬁxfl)) [E,a(eﬂx,l) (2 _ e*tx(eﬂ"fl)>} n—1
The pdf of the first order statistics X, of Ejaz distribution is given by

eln) =2ae (1485 (1 D) [ gmale 1) (2 pale-1) ]!

5. MaximuMm LiKELIHOOD ESTIMATION

Let the random samples x1, X2, x3, ..., X, are drawn from Ejaz distribution. The likelihood function
of n observations is given as

L= ﬁ (lelge—zx(eﬁx—l)-&-ﬁx (1 _ e—a(eﬁ"—l)))

i=1

The log-likelihood function is given as
n .
I =nlog(2) 4+ nlog(«) + nlog(p) — « (eﬁx — 1) +Bx+ ) _ log <1 — e“"(eljx’—l)) (8)
i=n

The partial derivatives of the log-likelihood function with respect to « and B are given as

n(ePri — 1) g e(eFi-1)
L P ) il Ll ©)
dx n i1 1— e*tx(e '171)
al n n . yiePriea(eMi=1)
D axeePi o e A
= axiePt +x; —a — (10)
a‘B ﬁ ! ! z; 1— eﬂx(eﬁ 171)

For interval estimation and hypothesis tests on the model parameters, an information matrix
is required. The 2 by 2 observed matrix is

0%logl 0%logl
I(p) = —1 E( o’ ) E(aaaﬁ)
¥) = n E 02logl E 0%logl
(x) £ (%)

The elements of above information matrix can be obtain by differentiating equations (9) and
(10) again partially. Under standard regularity conditions when n — oo the distribution of ¢ can
be approximated by a multivariate normal N(0, I(§)~!) distribution to construct approximate
confidence interval for the parameters. Hence the approximate 100(1 — )% confidence interval
for & and B are respectively given by

&+ Zo /I ($)and 312% Lyg (9)

[4
2

6. SIMULATION ANALYSIS

The bias, variance and MSE were all addressed to simulation analysis. From Ejaz distribution
taking N=500 with samples of size n=25, 50, 150, 200, 250 and 400. For various parameter
combinations, simulation results have been achieved. The bias, variance and MSE values are
calculated and presented in table 1 and 2. As the sample size increases, this becomes apparent
that these estimates are relatively consistent and approximate the actual values of parameters.
Interestingly, with all parameter combinations, the bias and MSE reduce as the sample size
increases.
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Table 1: Bias, variance and their corresponding MSE’s for different parameter values « = 1.2, = 0.8

Sample size Parameters Bias Variance MSE
25 1% 0.01130  0.00432  0.01473
B 0.01251  0.00154  0.00165
50 « 0.00314  0.00413  0.00514
B 0.00103  0.00071  0.00061
150 % -0.00021  0.00301  0.00201
B 0.00406  0.00049  0.00051
200 o -0.00201  0.00156  0.00205
B 0.00237  0.00027  0.00028
250 o 0.00120  0.00206  0.00203
B 0.00255  0.00025  0.00022
300 o 0.00177  0.00203  0.00201
B 0.00066  0.00021  0.00020

Table 2: Bias, variance and their corresponding MSE’s for different parameter values « = 2.2, = 1.5

Sample size Parameters Bias Variance MSE
25 % 0.01230  0.03553  0.03573
B 0.02003  0.01832  0.01031
50 % 0.01214 0.01105  0.01132
B 0.01121  0.00506  0.00420
150 o 0.00672  0.00668  0.00607
B 0.00146  0.00224  0.00216
200 o 0.00265 0.00416  0.00506
B 0.01076  0.00232  0.00214
250 o 0.0027  0.00360  0.00361
B 0.00208  0.00145  0.00145
300 o 0.00150  0.00301  0.00211
B 0.00063  0.00130  0.00130

7. DATA AANALYSIS

This subsection evaluates a real-world data sets to demonstrate the Ejaz distribution’s applicability
and effectiveness. The Ejaz distribution (ED) adaptability is determined by comparing its efficacy
to the following conventional distributions.

1:- Weibull distribution having pdf

flx;a,B) = aﬁxﬁfle*“"ﬁ; x>0,a >0
2:- Frechet distribution having pdf
flxa,p) =apx P e’ x> 0,a,8>0
3:- Inverse Burr distribution having pdf
flxa,B)=ap(1- x“")_ﬁ_l; x>0,aB>0
4:- Lomax distribution having pdf

fla,B)=ap(l4+ax) P, x>0,08>0
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5:- Exponentiated Rayleigh distribution having pdf

-1
f(x;a,B) = Zaﬁxe_‘"xz (1 — e_"‘xz)ﬁ ; x>0,a,>0

6:- Lindley distribution having pdf

a2

(1+a)

flxa) =

(I4+x)e ™ x>0,a>0
7:- Inverse Rayleigh distribution having pdf
200 2
f(x;zx,‘B):Ee ; x>0,a>0

To compare the versatility of the explored distribution, we consider the criteria like AIC
(Akaike information criterion), CAIC (Consistent Akaike information criterion), BIC (Bayesian
information criterion) and HQIC (Hannan-Quinn information criterion). Distribution having
lesser AIC, CAIC, BIC and HQIC values is considered better.

AIC = =21 +2p, AICC = =214+ 2pm/(m —p—1), BIC = =21+ p(log(m))
HQIC = —21 +2plog(log(m)), K.S = maxi<j<p, (F(xj) - ]_71,% - F(xj)>

Where I’ denotes the log-likelihood function,’p’is the number of parameters and’'m’is the
sample size.

Data set 1: The followig observation are due to Caramanis et al and Mazmumdar and Gaver
[12], where they compare the two distinct algorithms called SC16 and P3 for estimating unit
capacity factors. The values resulted from the algorith SC16 are 2.01, 6.32, 3.52, 2.15, 5.42, 2.04,
2.77,2.26,1.95, 1.00, 2.45, 0.74, 0.98, 1.27, 2.77, 3.68, 1.18, 1.09,1.60, 0.57, 3.33, 0.91, 7.14, 2.08, 3.85,
1.99,7.76,252,157,4.67,4.22,1.92,1.59, 4.08, 2.02, 0.84,6.85, 2.18, 2.04, 1.05, 2.91, 1.37, 2.43, 2.28,
3.74,1.30, 1.59, 1.83, 3.85, 6.30, 4.83, 0.50, 3.40, 2.33,4.25, 3.49, 2.12, 0.83, 0.54, 3.23, 4.50, 0.71, 0.48,
2.30,7.73.

Data set 2: The followig observation are due to Caramanis et al and Mazmumdar and Gaver
[12], where they compare the two distinct algorithms called SC16 and P3 for estimating unit
capacity factors. The values resulted from the algorith SC16 are 0.1, 0.33, 0.44, 0.56, 0.59, 0.59,
0.72,0.74, 0.92, 0.93,0.9¢, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13,1.15, 1.16, 1.2,
1.21,1.22,1.22,1.24,1.3, 1.34, 1.36, 1.39, 1.44, 1.46,1.53, 1.59, 1.6, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83,
1.95,1.96, 1.97,2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.78,2.93, 3.27, 3.42,
3.47,3.61,4.02,4.32, 4.58, 5.55, 2.54, 0.77.

The ML estimates with corresponding standard errors in parenthesis of the unknown parame-
ters are presented in Table 3 and Table 5. Also the comparison statistics, AIC, BIC, CAIC, HQIC
and the goodness-of-fit statistic for the data sets are displayed in Table 4 and Table 6.

It is observed from the findings that ED provides best fit than other competative models based
on the measures of statistics, AIC, BIC, AICC, HQIC and K-S statistic. Along with p-values of
each model.
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Table 3: The ML Estimates (standard error in parenthesis) for data set 1

Model & B
ED 3.45342 0.19311
(1.92236) | (0.08456)
WD 0.16787 1.59666
(0.04105) | (0.15017)
FD 1.82550 1.42975
(0.22717) | (0.12938)
IBD 1.79634 2.85966
(0.15843) | (0.36236)
LXD 0.00769 48.2182
(0.00464) | (29.232)
ERD 0.07499 0.73015
(0.01347) | (0.11406)
LD 0.59651
(0.05424)
IRD 1.78914
(0.22191)

Table 4: Comparison criterion and goodness-offit statistics for data set 1

Model -21 AIC AICC BIC HQIC | K.S statistic | p-value
ED 239.11 | 243.11 | 243.30 | 247.45 | 244.82 0.07732 0.8319
WD 240.85 | 244.85 | 245.04 | 249.20 | 246.56 0.0955 0.5927
FD 250.87 | 254.87 | 255.07 | 259.22 | 256.59 0.1491 0.1111
IBD 245.36 | 249.36 | 249.56 | 253.71 | 251.08 0.12373 0.2726
LXD 130.57 | 265.14 | 265.33 | 269.49 | 266.86 1.00 2.2e-16
ERD | 243.000 | 247.00 | 247.19 | 251.34 | 248.71 0.12333 0.2762
LD 249.59 | 251.59 | 251.65 | 253.77 | 252.45 0.11653 0.3406
IRD 267.49 | 269.49 | 269.56 | 271.67 | 270.35 0.27703 9.293e-05

Estimated pdf of the fitted model for data set 1

Empirical cdf versus fitted cdf for data set 1

Fitted hazard rate function for data set 1
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Figure 4: Fitted pdf, cdf and hrf for data set 1.
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Table 5: The ML Estimates (standard error in parenthesis) for data set 2

Model & B

ED 3.45342 0.19311
(1.92236) | (0.08456)
WD 0.29347 | 1.796236
(0.05540) | (0.15662)
FD 1.04750 1.17538
(0.13022) | (0.08496)
IBD 2.31897 1.85769
(0.21444) | (0.21925)
LXD 0.00841 68.4375
(0.00579) | (47.3451)
ERD 0.22565 0.90717
(0.03649) | (0.14049)
LD 0.87441
(0.07718)
IRD 0.45560
(0.05369)

Table 6: Comparison criterion and goodness-of-fit statistics for data set 2

Model -21 AIC AICC BIC HQIC | K.S statistic | p-value
ED 191.80 | 195.80 | 195.97 | 200.35 | 197.61 0.06414 0.6053
WD 192.05 | 196.05 | 196.22 | 200.60 | 197.86 0.098266 0.4902
FD 234.65 | 238.65 | 238.82 | 243.20 | 240.46 0.18994 0.01109
IBD 195.21 | 199.21 | 199.38 | 201.02 | 203.76 0.10925 0.3565
LXD | 22558 | 229.58 | 229.75 | 234.13 | 231.39 0.28959 1.139e-05
ERD | 193.26 | 197.26 | 197.44 | 201.82 | 199.08 0.10202 0.4419
LD 213.05 | 215.05 | 215.10 | 217.32 | 215.95 0.2356 0.000671
IRD | 323.71 | 325.71 | 325.77 | 327.99 | 326.61 0.4674 4.352e-14

Estimated pdf of the fitted model for data set 2 Empirical cdf versus fitted cdf for data set 2 Fitted hazard rate function for data set 2
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Figure 5: Fitted pdf, cdf and hrf for data set 2.
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8. CoNCLUSION

In this research paper, we introduce a novel two-parameter lifetime distribution, named the "Ejaz
distribution.” We delve into various mathematical properties associated with this distribution,
including its shape, moments, hazard rate, and order statistics. Furthermore, we discuss the
utilization of the maximum likelihood estimation method for estimating the distribution’s parame-
ters. To illustrate the practical effectiveness and superiority of the Ejaz distribution in comparison
to existing alternatives such as the Weibull, Fre¢het, Inverse Burr, Lomax, Exponentiated Rayleigh,
Lindley, and inverse Rayleigh distributions, we conduct goodness-of-fit tests employing criteria
such as the Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC),
and Bayesian Information Criterion (BIC) on real-life lifetime datasets. Additionally, we perform
a simulation analysis, which reveals an intriguing trend: as the sample size increases, there is a
reduction in bias and mean squared error (MSE) across all parameter combinations.
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Abstract

This study examines the consistency metrics used to evaluate the durability of a spirulina production
plant, which consists of seven subsystems: cultivation pond, paddlewheel, filter unit, washing unit,
spray dryer, ribbon blender, and packaging. By studying the spirulina firm, we can repair it by
discovering future failures. We can increase spirulina production so that untimely failure can be
prevented and production can be increased. There are two types of system failures: partial and total.
While a full failure renders the system incapable of operating, a partial failure is thought to degrade
the system. In contrast, repair rates follow two different types of distributions: an ordinary and an
exponential distribution. The system in a partially failed or degraded condition is thought to be
repaired using general time distribution. In contrast, fully failed systems are thought to be fixed using
the Gumbel-Hougaard family copula distribution. Using the supplementary variable approach, the
system is examined. A Chapmen-Kolmogorov differential equation is created and solved by applying
the Gumbel-Haugaard family Copula approach, employing the schematic representation of the
system's state. supplementary variable approaches are applied to develop and resolve the differential
equations related to transition diagrams, which are significant to this research. Reliability,
availability, profitability, and MTTF are the critical performance metrics for the spirulina production
plant. Moreover, sensitivity analysis is carried out for MTTF.

Keywords: Laplace transformation, MATLAB tool, Sensitivity, Spirulina

production plant
I. Introduction

The fundamental idea behind reliability is failure-free operation, which refers to an item's capacity
to operate as intended without a fault for a predetermined amount of time under predetermined
circumstances. Every technology system in the present scientific era depends on dependability to
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some extent. A high level of dependability is required for defenses, businesses, and space research
projects. The designers, engineers, and manufacturers in both the public and private sectors
emphasize the dependable operation of their systems or equipment. Maximizing profit frequently
arises in many reliability models of practical utility. The price a repairman must pay to fix the
system's failure stage determines the profit that may be made from an operational system. As a
result, the primary focus of research on repairable complex systems is anticipating and calculating
the costs associated with maintaining a system. In comparison to what is typically found as
availability/reliability of the system, the concept of determining the cost necessary to run a
procedure involves a thorough understanding of the system’s behavior.

Much work has been done to increase reliability while connecting the components in parallel
and series. Agarwal and Bansal [1] carried out top-of-the-line repair disciplines with an
environmental impact to determine the system's dependability. Xie et al. [2] As reliability and
performance analysis of networked computers with opaque bridges have received little to no
attention in prior research on networked computers; this study examines the reliability and
efficiency analysis of complicated series-parallel networked computers with visible bridges.
Agarwal et al. [3] The efficiency of a redundant cold-standby device. Yusuf and Hussaini [4]
Evaluate a system consisting of three redundant units, three different forms of failure, and general
repair.[5] Using generic stochastic Wiener processes as the foundation, a unique regression
estimation technique for deterioration analysis. Agarwal and Bansal [6] Evaluated the solar thermal
electric generation facilities' cost study. Bansal and Tyagi [9] Production of leaf springs is modeled
mathematically, and availability is examined. Arora and Kumar [7] A thermal power plant's ash
management system's stochastic behavior analysis and maintenance planning was provided again
using the Markov technique. The probabilistic method must be revised to address the ambiguous
and uncertain failure/repair data. Thus, FM has been utilized by several academics in other fields to
address such variability in the failure/repair data. Bansal [8] Preemptive-Resume Repair Discipline
Availability Analysis of a Repairable Redundant System. Chaudhary and Bansal [11] Assessment of
Hydroelectric Power Station Reliability Performance. Bansal et al. [10] Manufacturing Plant for
Screws Performance Modeling and Availability Analysis. Chauhan and Malik [12] studied the
series-parallel circuits' dependability for the given variable. Fouladirad et al. [13] By reducing the
traditional premise that the extent of depreciation may expand forever, which is frequently
impractical for specialized units, we build a novel, limited, modified gamma process model to
describe and anticipate degrading occurrences. A set of wear measurements of the cylinder liners
used in a diesel engine for maritime propulsion are features related to the suggested model's
application. Godara and Bansal [14] Boolean function technique and neural network approach are
used to analyze the performance of reliability factors in steam turbine generator power plants.
Kabiru et al. [15] have concentrated on the sophisticated system's combined distribution, including
two reliability evaluation components. Uswarman and Rushdi [16] used multimodal criterion
systems for the reliability assessment of rooftop solar photovoltaic panels. Lai and Zwetsloot
[17] provide an ensemble rating system for the quality of products that is data-driven and is verified
by recognizing high-risk situations firms in a research study of the solar sector. The last two articles
focus on repairable equipment' dependability and maintenance. Tyagi and Bansal [18] Wastewater
Treatment Process Optimization Model. The apparatus fails if at least k continuous units fail. A
continuous k-out-of-n: F system comprises n-ordered units arranged in a line or circle. Several
experts have delved deeply into the k-out-of-n scheme. Maihulla et al. [19] The Gumbel-Haugaard
Family Copula examines a modest solar photovoltaic system's function and cost. Meynaoui et al.
[20] Using universal examination of the distribution of the input parameters' sensitivity employed
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in quantitative simulators to mimic physical activities and cope with an unintentional situation
during a sodium cooling fast nuclear reactor.

Vitamins E, C, and B6 are just a few vitamins and minerals abundant in spirulina that support
a robust immune system. According to research, spirulina increases the body's ability to produce
white blood cells and antibodies that help your body fight against infections and infections. There
are several possibilities for medicinal and therapeutic uses in addition to its significance as a food
additive for supplemental human nutrition. The giant spirulina plant in the world today is Earthrise
farm, which was founded in 1976 and was the first spirulina farm in North America. Earthrise has
produced high-quality and secure spirulina for customers worldwide with over 40 years of expertise
and a 108-acre facility. The author's goal is that the model made by the author should be able to
produce maximum production without any failure. The author has prepared a model keeping in
mind the benefits of Spirulina so that we can get maximum production without failure. Seven
subsystems have been chosen. Subsystem two has taken three units, one on hot standby and two on
cold standby, while subsystem four has taken two units, one on hot standby and the other on cold
standby, and other subsystems have been single units. The copula distribution has been used to
correct these states whenever the system partially failed, i.e., operating less efficiently than it should.
Because a completely failed state is required for a quick repair, a general repair cannot be used in
these situations. The different interests and necessary system dependability measures have been
discussed. The findings were obtained using various failure and repair rate numbers. The following
are the sections of the paper: an introduction, a spirulina production process, a mathematical
modeling, a solution of the model, and an analytical section in which various reliability measures,
such as availability, reliability, MTTF, sensitivity to MTTF, and cost analysis, have been calculated
using different parameter settings. And the last interpretation of results with the help of tables and
graphs.

II. Methods

I. Spirulina Production Process

The Spirulina production plant consists of seven subsystems, i.e., cultivation pond, paddlewheel,
filter chamber, washing chamber, spray dryer, ribbon blender, and packaging.

(a) Cultivation Pond

Cultivation may begin by feeding water to the chamber at the necessary height. The water must have
the proper pH and be alkaline by adding the necessary salts at the correct rate. After the water has
a typical nutritional makeup, the chamber is ready for spirulina planting. For optimal development
and harvesting, 30 grams of dry spirulina should be applied for every 10 liters of water. It is made
up of one unit connected in sequence. Thus, further, this unit fails, and the system fails.

(b) Paddlewheel

This fan has a paddle wheel or propeller installed on a spinning shaft inside a ring, panel, or cage.
The most common applications for propeller fans are light- to medium-duty ones, including
ventilation systems where air may be propelled in any direction. These wheels produce oxygen so
that the algae can get proper nutrition, and the sun's light can reach the bottom layer so that more
and more spirulina accumulate above. It consists of three parallel units. This system's capacity
would be reduced with a partial failure. Only when three units fail does a severe failure occur.
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(c) Filtration Unit

The spirulina is separated in this chamber by filtering using powerful vacuums. Spirulina with
specific contaminants is produced when a filter drains water by sucking it out with a vacuum. It is
made up of one unit connected in series. Thus, further, this unit fails, and the system fails.

(d) Washing unit

In this chamber, a high stream of pure water is used for flushing out contaminants. moreover,
spirulina cream is available. It consists of two parallel components. This system's capacity would be
reduced with a partial failure. Only when two units fail may a severe failure occur.

(e) Spray Dryer

In spray drying, a solution, fluid, or emulsion comprising one or more components of the desired
product is atomized into droplets by spraying. Then, the droplets are quickly evaporated into the
compound by superheated steam at a specific temperature and pressure. It is made up of one unit
connected in sequence. Thus, further, this unit fails, and the system fails.

(f) Ribbon Blender

Spirulina we receive in solid form is processed via a crusher into dry powder. It is made up of one
unit connected in sequence. Thus, further, this unit fails, and the system fails.

(g) Packaging

Spirulina is ground into a fine powder and then utilized to manufacture tablets and capsules. Items
are measured, sealed, and packed with care. It is prepared to be sold on the market for various uses.
This part has yet to be considered for analysis because it hardly ever fails.

—{ paddie }—
| wheel | -
__[washing |
unit
(cultivation) [ paddle ) filtration ) (“spray | [ mbbon | [ SR
\_pond ) . _wheel | —1 unit | \_drayer | | blender | |Packaging)
(“washing )
(" paddle ) L unit
“—{_wheel |—

Figure 1: Flow Diagram of Spirulina Production Plant

II. State Description

Sp: All subsystems are in good operating order in state S, . The system is fully functional and in
excellent condition.

S;: Due to the breakdown of subsystem one, S; isa catastrophic failure. The system is being repaired,
and the failing status is being addressed with copula repair.

S,: The initial unit of subsystem-two failed; the state S, reflects a degraded condition with a small
partial failure in subsystem-two. The system operates, the state is undergoing general repair, and
total repair time is (x, t).

S3: The first and second units of subsystem-two failed; the state Ss reflects a degraded condition with
minor partial failure in subsystem-two. The system is operating, and the state is undergoing general
repair. And the elapsed repair time is (x, t).

Syt After failing every unit of subsystem two, the state S, reflects an entire state of failure. The system

205



Priya Chaudhary, Shikha Bansal RT&A, No 1 (77)
RELIABILITY INVESTIGATION OF THE SPIRULINA PRODUCTION Volume 19, March 2024

is being repaired, and the failing status is being addressed with copula repair.

Ss: Due to the breakdown of subsystem three, the state Ss is a fully failed state. The system is being
repaired, and the failing status is being addressed with copula repair.

Se: The initial unit of subsystem-four failed; the state S4 reflects a degraded condition with a small
partial failure in subsystem-four. The system is operating, and the state is undergoing general repair.
And the elapsed repair time is (x, t).

S;: After failing both units of subsystem two, the state S, reflects an entire failed state. The system
is being repaired, and the failing status is being addressed with copula repair.

Sg: The initial units of subsystems two and four have failed. when the second units of subsystems 2
and 4 are in use. When the third unit of subsystem two is on standby. The system is operating, and
the state is undergoing general repair. And the elapsed repair time is (x, t).

So: The second units of subsystem two and the first unit of subsystem four have failed. when the
third unit of subsystem two and the second unit of subsystem four are in use. When the second unit
of subsystem four is on standby. The system is operating, and the state is undergoing general repair.
And the elapsed repair time is (x, t).

S10: Due to the breakdown of subsystem five, the state S;, is a fully failed state. The system is being
repaired, and the failing status is being addressed with copula repair.

S11: Due to the breakdown of subsystem six, the state S;; is a fully failed state. The system is being
repaired, and the failing status is being addressed with copula repair.

S12: Due to the breakdown of subsystem seven, the state S, is a fully failed state. The system is being
repaired, and the failing status is being addressed with copula repair.

III. Assumptions

® At first, every system component is in a good functioning state.

® For operational mode, one unit from subsystem one, subsystem two, subsystem three,
subsystem four, subsystem five, subsystem six, and subsystem seven is required.

® Moreover, subsystems 1, 3, 5, 6, and 7 will all be inoperative if one of their corresponding units
fails.

® If three units from subsystem 2 fail, the system will not function.
® The subsystem will not function if any of its two parts fail.
® When a system component is inoperable or failed condition, it can still be repaired.

® Once a unit in a subsystem completely fails, copula (Gumbel-Haugaard Family) repair is
necessary.

® The failed unit can execute the function as soon as it has been repaired.

® A system healed via copula operates precisely like an entire system, and no harm is thought to
occur during restoration.

IV. Notations

t: Variable time on a time scale.

s: Laplace transforms variables for all expressions.

b1, D2, D3, Dy, Ps, P, P7: sub system failure rates 1,2,3,4,5,6 and 7 respectively.

N1.(), 12 (%), M3(x), 14 (%), 15 (x), M6 (x), n,(x): Subsystem repair rates 1,2,3,4,5,6 and 7 respectively.
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Vi(x), Wy (x), W3 (x), Pa(x), Ps(x), P (x), ¥, (x): Unit in a subsystem 1,2,3,4,5,6,7 that completely
failed was repaired by a copula.

P (x,t): The possibility that the system is Systate for k= 0 to 12. The system is being repaired, and
the time since the last repair is x, t.

P(s): Laplace transform of state probability P (t).

E, (t): expected profit for the period [0, t).

Z1,Z,: respectively, revenue and operating cost per unit of time.

Sp(x): S, (x) = a(x)ef: ~@(94x wyith repair distribution function a(x).

L[S,(™)]: fom e *a(x) el ~*@dx = §,(s), is the Laplace transform of S, (x)

L[%“(x)]: fooo e~ el —a gy = %"(S) is the Laplace transform of %"m

to(x) = Co(uy(x),u(x)), The Gumbel-Hougaard family copula's expression for joint probability is
provided as Co(u; (x),uy(x)) = e [x%+{ogn@}®11/6  hereu, = n(x), andu, = e* where 6 as a
parameter, 1< 6 < oo,

Y
= "’l
s @,
ws
06\* il
m Po(t) @4 Ps(=. 1)
DR . —> ”s

Complete
failure

Perfect Partial failure
State

Figure2: State Transition Diagram of Spirulina production plant

I1. Formulation and Solution of model

The probability of considerations and continuity of reasoning relates the following set of difference
differential equations to the mathematical model above.

2 it dot byt bt b+ P+ by B(O= [ WP () dx+ [ 1Py (x, 1) dx +
fom NaPs(x, t) dx + fooo Y,P,(x,t)dx + fooo Y, P, (x, t)dx + fooo WP (x,t) dx + fom WPo(x, t)dx +
fo WePyq(x, ) dx + fo W7 P, (x, t) dx o

0 g Y, )P, t)=20 2
(a+a+ 1) 1(x!)_ ()
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(%"‘%"“Pz""ﬁz; +772)P2(x,t)=0
(5 42+ g+ by +112) Ps(x,6) = 0
S+ W) P =0
S+ W) P, ) =0
(§+%+¢2+¢4+772)P6(x't) =0
(Z+Z+%,)P(xt)=0
(ai+;—x+¢2 + 12 +772)P8(x't)=0
(5 42+ by +714) Po(x,6) = 0
(5 +2=+¥5) Po(x, ) = 0
(%424 W) Pu(x,t) =0
(Z+2+%,)Put)=0
Boundary conditions:
P3(0,t) = 5 Py(t)

P,(0,t) = ¢3(1 + py)Py(t)
P,(0, t) =, Po(t), where i=1,2,5,6,10,11,12 & j=1,2,3,4,5,6,7

P;(0,t) = ¢pFPy(t)

Pg(0,t) = (¢ ds + P2P4) Py ()

Py(0,t) = ¢34 Py(t)

Py(0) =1

Solving (1)-(21),
Po(S) =)

P,(s) = P [1—5:‘:1(5)]

€(s)

P2 [1=Spp(s+Pat+ds)
%(”"aﬂ[ (s+92+62)

@5 [1=Sp,(s+pa+ds)
P3(S)_e(s)[ (s+d2+62)

3 (1+¢4) [1-Sw, (s)
PA,(S) = ZE(S) | —Fa ]
= _& 1- SlIJS(S)
Ps(s) = €(s) [ s ]

b4 [1=Sy, (s+d2+¢s)
P =51 (s+d2+b0)
= _ %1 1—51{145
P7(S)_e(s)[ s ]
p (S) (Padp2+P2¢4) [1-San, (s+da)

€(s) (s+4)
( ) — ¢4¢’2 [1 5772(5+¢2)

€(s) (s+¢2)

) 1— Sl.y (s)
P10(5) = e(s)[ 5 ]

$e [1-Swe(s)
P11(5) = e(j)[ s ]

¢y [1=Sw,(s)
P12(5) = e(;)[ L ]

Where,

(©)

(4)

©)

(6)

)

(8)

)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
21D
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(BD
(32)
(33)

€E(s) = [(5 +d1+ byt Pt Pyt Ps + e+ By) — ¢1§wl(s) - ¢E§n2(s + ¢, + P31+

¢4)§w2 (s) — ¢3§'P4 (s) — ¢4§772 (5+ ¢+ ds) — ¢£§'~I’4(s) - ¢5§w5 (s) =

— $7S,(s) ] (34)

The probability of a system being in an operating mode or a failed state at any given moment are
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transformed using a Laplace transform as follows:

Fup(s) = Py(s) + P,(s) + P3(s) + Ps(s) + Pg(s) + Py(s) (35)

5 _ 1 1-Spy (s +@atda)] | 5 [1-Syp(s+d2+d) 1-Sy, (2 +¢a)

Fup(s) = e(s){l ¢ [ (s+¢2+¢4) ] ¢ [ (s+db2+¢a) ] * ¢4[ (s+¢2+4) ] (P2 P4+
1-Sop, (s+d4) 3 1=Sp, (s+¢2)

e R T A el (36)

Pdown(s) =1- Pup(s) (37)

II1. Results

I. Availability Analysis

. _ G __ exp [x9+{logn(x)}9]1/9 = _n .
Taking, S,,(s) = S, [x6-+{10gn ()}°]1/0 (s) = Srexp [0+ logn(x}?1/6 , Sy (s)= P and failure rates are

¢, = .002,¢, = .003, ¢; =.004, ¢, =.005, ¢p5 = .003, s = .007, ¢, = .001And repair rates
M= =N=N=N=N=10,=1=¥, =¥, =¥; =¥, =¥ =¥ =¥, in equation [36], One
may get the availability expression as: taking the inverse Laplace transform.

Availability =[. 01678017142869¢ ~101717779780318t _ 74877063381646¢ —06371454763895¢ _
37315067813499¢ 0765367498357t 1 0599206711030e %5 +.00000002708736¢ 3¢ +
1.5990990379009¢~%°7¢ 4 .000017998275150te %% +.000000000135161851te 003 +
.001601056166718te 07t (38)

Taking time t=0,1,2,3,4,5,6,7,8,9,10, We determined several values for availability with equation [38]
as shown in Table 1 and graph in Fig. 3

Table 1: Availability vs time (t)

=
3
)

A(t)

1.00000
0.99080
0.98550
0.97960
0.97170
0.96130
0.94820
0.93230
0.91370
0.89220
0.86790

O 0 NI N U = W N~ O

—_
]
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1.00000

0.98000

0.96000

0.94000

0.92000

Availability

0.90000

0.88000

0.86000

0.84000

Figure 3: Availability v/s Time
II. Reliability Analysis
Assuming all repair rates is equal to zero in equation [36] and taking failure rates as ¢p; = .002, ¢, =
.003, ¢35 =.004, ¢, =.005, ¢p5 = .003, ¢4 = .007, ¢, = .001 after which, using the Inverse

Laplace transform, we obtained Equation [39]. as shown in Table 2 and graph in Fig. 4.
R(t) = {.0015e¢79°5¢ +.00000000061363636e %3¢ + 5535555494191e 025t +
4449444447007t} (39)

Table 2: Reliability v/s Time

=
3
[¢]

R(t)

1.00000
0.98320
0.96680
0.95070
0.93500
0.91960
0.90450
0.88980
0.87540
0.86120
0.84740

O 0 N3 O O = W N = O

—
o
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0.94000

2

£0.92000

i

:£0.90000

&
0.88000
0.86000
0.84000

0.82000

Figure 4: Reliability v/s Time

III. MTTF Analysis

Assuming all repair rates is equal to zero in equation [36], we arrive at the formula for MTTF as s
tends to zero

. = 1 2024305 +2¢4+2¢2 s+ P3Pt P3
MTTF = lim P - 40
lim Py (5) ¢1+¢z+¢3+¢4+¢5+¢6+¢7{ b2t ba } (40)

and taking failure rates as ¢, = .002,¢, = .003, ¢5 =.004, ¢, =.005, ¢5 = .003, ¢ = .007,
¢, = .001and varying failure rates one by one as .001,.002,.003,.004,.005,.006,.007,.008,.009,.010 in
equation [38], and we can get the variation of mean time to failure with respect to failures rates as

shown in Table 3 and graph in Fig. 5.

Table 3: MTTF V/S Failure rates

Failure

rate ¢1 P2 ¢3 P4 ¢5 ¢6 b7

0.001 83.630210 87.050725 91.232957 95.630953 87.266306 105.638160 80.285002
0.002 80.285002 83.523810 87.266306 91.263637 83.630210 100.356252 77.197117
0.003 77.197117 80.285002 83.630210 87.282610 80.285002 95.577383  74.337965
0.004 74.337965 77.299148 80.285002 83.636906 77.197117 91.232957  71.683037
0.005 71.683037 74.537042 77.197117 80.285002 74.337965 87.266306  69.211208
0.006 69.211208 71.974032 74.337965 77.192310 71.683037 83.630210  66.904168
0.007 66.904168 69.589089 71.683037 74.329632 69.211208 80.285002  64.745969
0.008 64.745969 67.364113 69.211208 71.672080 66.904168 77.197117  62.722658
0.009 62.722658 65.283423 66.904168 69.198279 64.745969 74.337965  60.821971
0.01 60.821971 63.333349 64.745969 66.889747 62.722658 71.683037  59.033090
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Figure 5: MTTF v/s Failure rates

IV. Sensitivity Analysis

With the partial differentiation of MTTF regarding the failure rate of the system, the sensitivity in
MTTF of the system can be evaluated. The MTTF sensitivity may be calculated by using the set of
parameters¢; = .002,¢, = .003, ¢p; =.004, ¢, =.005, ¢p5 = .003, ¢s = .007, ¢, = .00land in
the partial differentiation of MTTF, as given in the Table 4 and graphs in Fig. 6

Table 4: Sensitivity of MTTF as a function of failures rates

Failure d(MTTF) 9(MTTF) O(MTTF) O(MTTF) o(MTTF) d(MTTF) o(MTTF)

rates 0¢, ¢, ¢, 0, 0¢s ¢ d¢;
0.001 -1313.161 -3686.090 -1562.770 -4580.640 -1429.831 -2095.237 -1210.209
0.002 -1210.209 -3376.410 -1429.831 -4164.710 -1313.161 -1890.952 -1118.906
0.003 -1118.906  -3000.000 -1313.161 -3805.760 -1210.209 -1715.149 -1037.559
0.004 -1037.559 -2922.050 -1210.209 -3492.520 -1118.906 -1562.770 -964.771
0.005 -964.771  -2606.310 -1118.906 -3217.000 -1037.559 -1429.831 -899.382
0.006 -899.382  -2424.520 -1037.559 -2973.190 -964.771 -1313.161 -840.423
0.007 -840.423  -2312.060 -964.771  -2756.240 -899.382 -1210.209 -787.077
0.008 -787.077  -2169.620 -899.382  -2562.400 -840.423 -1118.906  -738.653
0.009 -738.653  -2017.450 -840.423  -2388.270 -787.077  -1037.559 -694.564
0.010 -694.564  -1909.720 -787.077  -2231.420 -738.653 -964.771 -654.309
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Figure 6: Sensitivity of MTTF V/S failures rates

V. Profit Analysis

Formula presented as follows may be used to compute the expected profit within the period [0, t):

Ep(t) = 2 Jy Pup(©) = Zat

Taking Z; = 1 and Z,=.05,.10,.15,.20,.25,.30,.35 and varying t=0,1,2, 3,....... 10. units of time then the
expected profit is
Ep(t) = {0.0164967¢~ 1017177797t 4 390381228 0637145476 4 4 875444529 07653674981 _
1.19841342e7°95 — 0.000009e 03t — 228.4427196e %7t — 0.00000033¢e 003" —
0.000011e7993¢ — 0.0035¢te 095 — 0.719928e 005t — 0.2287222te 07" — 32.674612¢ 007t +
0.232222t + 254.2729352 — Z,t}
(41)
As given in the Table 5 and graphs in Fig. 7.

Table 5: Expected profit v/s Time

Time Z,=.05  Z,=.10 Z,=15  Z,=20 Z,=25 Z,=30 Z,=35
0 0 0 0 0 0 0 0

1 1.204884 1.154884  1.104884 1.054884  1.004884  0.954884  (.904884
2 2415288 2315288 2215288 2.115288  2.015288 1915288  1.815288
3 3.657103 3507103  3.357103 3.207103  3.057103  2.907103  2.757103
4 4926165 4.726165 4526165 4.326165  4.126165  3.926165  3.726165
5 6219485 5969485  5.719485 5469485 5219485  4.969485  4.719485
6 7534606 7.234606  6.934606 6.634606  6.334606  6.034606  5.734606
7 8.869361 8519361  8.169361 7.819361  7.469361  7.119361  6.769361
8 1022178 9.821781  9.421781 9.021781  8.621781 8221781  7.821781
9 11.59005 11.14005  10.69005 10.24005  9.790051  9.340051  8.890051

—_
o

14.92179  14.42179 13.92179  13.42179 12.92179 12.42179 11.92179
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Figure 7: Profit v/s Time

IV. Discussion
L. Interpretation of the result & Discussion

To analyse and conduct the Spirulina production plant while taking reliability metrics into account
for various values of failure and repair rates. When the failure rates are set at various values, ¢; =
.002,¢, = .003, ¢3 =.004, ¢, =.005, ¢5s = .003, ¢4 = .007, ¢, = .001 namely, Table.l1 shows
the information on the availability of the plant repairable system concerning the time variation.
Figure 3's simulation demonstrates how availability declines over time. The graph unequivocally
demonstrates that the system's availability is higher when the time span is 5 years or less. A similar
way is shown in Figure 4 for the system's reliability over time. The graph shows how reliability
decreases as time t increases from 0 to 10. The time interval, on the other hand, is more reliable.

As shown in Figures 4 and 5, adding more units to standby can increase system availability and
reliability by performing a perfect repair in the case of an incomplete failure, replacing the affected
subsystem with a new one in the case of a full failure, performing routine inspections and
preventative maintenance, hiring more repair equipment, and other methods.

A simulation of the mean time to failure vs the failure rate is shown in Figure 5. The graph
demonstrates that the MTTF drops as the failure rate rises. The MTTF decreases as the failure rate
rises, lowering the system's duration. To extend the system's MTTF and duration, fault-tolerant
components should be used.

One can see from Table 5 and Figure 6 that System MTTF is extremely sensitive to the failure rates
of the washing chamber. The MTTF of the spirulina manufacturing facility is significantly impacted
when the failure rate of the washing chamber rises. In this case MTTF is much less responsive.
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The connection between profit and time t for Z, = .05,.10,.15,.20,.25,.30,.35 is shown Table 5 in
Figure 7. The graph shows that the expected profit falls with increasing time for any value of Z,.
Yet, the anticipated profit increases as the value decline. The anticipated profit will increase by
putting the substitution and redundancy concepts into practice.

II. Conclusion

In this study, the Markov model was used to assess the plant's reliability at the spirulina production
plant. From the explanation above, we deduce the following: The MTTF is extremely sensitive to the
failure rate of the washing unit; as soon as this number even marginally changes, the MTTF's
sensitivity rating increases drastically. So, the engineers of the spirulina production plant should
pay more attention to the maintenance of the system's fourth unit (washing unit). This unit mostly
affects the plant's functioning. For this unit, reliable equipment should be used to cause the least
possible system disruption. Timely preventative maintenance will improve the system's
performance. The spirulina production plant will greatly benefit from this study in terms of
improving its efficiency and maintenance strategy.
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Abstract

0T security represents a highly compelling subject of research at present. The absence of a
viable security solution for IoT applications could render them ineffective across various domains
such as healthcare, smart homes, inventory management, smart agriculture, and more. Within the
IoT architecture, security services like Confidentiality, Integrity, and Authentication play pivotal
roles. In our research, we have concentrated on the Authentication service, which is fundamental for
distinguishing users and devices unequivocally within a network. Authentication serves as the initial
and crucial step in establishing secure communications among diverse IoT devices and users within
the network. A compromised Authentication service could open the door for unauthorized users or
devices to infiltrate the network, potentially leading to harmful activities like Masquerade attacks,
Man-in-the-Middle (MITM) attacks, and Replay attacks.Currently, Authentication stands as a
widely adopted and essential method for granting access to devices within IoT networks. Our
contribution involves the development of a Multi-factor IoT Authentication Model, leveraging two
key parameters: Device Context Information and Dynamic Key-based authentication.Our proposed
approach begins by verifying the origin of information. If the origin is deemed valid, our model
proceeds to validate the identity of the device. In the event of an intruder attempting to manipulate
the device’s origin from its predefined context to an alternative location, our system can swiftly detect
this deviation, thereby enabling the rejection of communication requests from compromised
devices.Following the verification of context information, we initiate mutual authentication between
the IoT device and the server, employing the Challenge-response model. As a result of this second
step, individual Session keys are generated at both the device and server sides, facilitating secure
communication within a specific time window.

Keywords: Internet of Things, Multi-factor Authentication, Dynamic key
based Authentication.

I. Introduction

The realm of IoT security represents a highly significant area of research in the current era.
It has garnered substantial attention from researchers across industry, academia, and various
government agencies. A report by CISCO in April 2019 projected a staggering 50 billion devices to
be interconnected with the internet by the end of 2020. This exponential growth presents a
substantial opportunity for malicious actors to launch diverse cyber-attacks on IoT systems,
primarily due to the open architecture inherent in IoT networks. Traditional security approaches are
ill-suited for IoT devices, primarily due to their inherent limitations, including constrained storage
capacity and computational power. Moreover, IoT devices must function in harsh and unpredictable
environments, making them vulnerable to an array of security threats. Consequently, there is an
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imperative need to develop security solutions tailored to the resource constraints of IoT devices
while providing essential attributes such as Confidentiality, Integrity, and Authentication in IoT
networks.
Outlined below are some of the key challenges in IoT security.
Open Architecture: In IoT, all devices are interconnected through the internet, adhering to
an open framework. This openness amplifies the potential for various security threats.
System Limitations: IoT devices face constraints concerning memory, computational power,
CPU capacity, and energy. These limitations render traditional security approaches
unsuitable for direct deployment in IoT systems.
Absence of Standards: The diversity of IoT devices hinders standardization efforts. Each IoT
device functions as a standalone system comprising hardware, firmware, and
communication interfaces. Ensuring security at the design phase, crafting secure code, and
conducting rigorous verification/validation during the manufacturing process are essential.
Nevertheless, there is currently no practical means to enforce and standardize these security
methods across all devices.
Deficient Trust and Integrity: With a multitude of devices connected to the internet, it
becomes nearly impossible to verify that each device maintains adequate safeguards and
remains up-to-date with the latest security updates. A single vulnerable link in the network
can grant intruders access to numerous devices. Ensuring trust and data integrity for every
IoT device is of paramount importance.
Insecure Web Interfaces: Vulnerable web interfaces in IoT devices are susceptible to various
threats, including account enumeration and brute force attacks. For example, attackers may
gain unauthorized access to websites by attempting numerous password combinations,
potentially compromising administrative policies and sensitive data. Attackers can also
manipulate the credentials of legitimate users.
Addressing these challenges is crucial to establishing a robust and secure IoT ecosystem that can
withstand the evolving landscape of cyber threats.
There are certain security issues present in IoT Architecture, they are Authentication,
Encryption, Trust Management & Secure Routing.
Authentication: Authentication plays a pivotal role in identifying devices and users within an IoT
system, granting access exclusively to authorized entities. In IoT systems, authentication can be
realized through various methods, including Identity-based authentication, Token-based
authentication, PUF-based authentication, and Procedure-based authentication.
Encryption: Encryption is essential for achieving end-to-end security in IoT systems. The primary
objective of encryption within the IoT ecosystem is to establish effective end-to-end communication
through the utilization of symmetric and asymmetric cryptographic algorithms. However, IoT
devices face resource limitations, which necessitate a departure from traditional encryption
algorithms like AES and DES, as they are not directly suitable for the constraints of IoT networks.
Trust Management: IoT trust management is fundamentally geared towards identifying and
isolating malicious nodes within the IoT network. The overarching aim is to identify and
subsequently remove such nodes from the network, thus enabling secure access control within the
IoT environment.
Secure Routing: Within the context of data transmission in IoT networks, the presence of malicious
nodes poses a significant threat. These malicious nodes have the potential to divert data packets
towards them, infiltrating routing and forwarding decision processes for both data and control
packets. As such, ensuring secure routing mechanisms becomes imperative in safeguarding the
integrity of IoT networks.
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Figure 1: Security Issues for Internet of Things

II. Literature Review

In [1], researchers Hokeun Kim and Edward Lee proposed an approach for authentication in
IoT devices, emphasizing a provincially centralized and universally distributed method. Trust
serves as a fundamental prerequisite for authentication in IoT systems, and the authors discussed
the implementation of a certificate-based scenario to establish trust between clients and servers.
They identified two key methods for deploying trust within a network: (1) Utilizing a Centralized
Trusted Authority and (2) Leveraging Distributed and Trusted stakeholders. The authors developed
a network framework named "Auth," which incorporates local authentication and authorization
entities. Auth, implemented as open-source software in Java and accessible on GitHub, facilitates
authorization for locally registered entities (IoT devices) and manages trust relationships with other
Auth instances. The framework securely stores the credentials of endorsed devices and access
policies within a database. The authorization process involves the assignment of session keys,
cryptographic keys used for specific access activities.

In [2], authors Mohammad Wazid, Ashok Kumar Das, and others discussed a lightweight
authentication protocol known as the "User Authenticated Key Management Protocol (UAKMP)"
designed for a concept called Hierarchical Internet of Things (HIOT). This protocol utilizes three
authentication factors: (1) user smart cards, (2) passwords, and (3) personal biometrics. The method
employs a combination of cryptographic message digest functions and symmetric
encryption/decryption. UAKMP involves six essential steps: (1) Enrollment of various sensor nodes,
(2) Enrollment of users, (3) User sign-up, (4) Authentication and key agreement, (5) Password
change, and (6) Integration of newly joined sensor nodes. Gateway nodes store critical information
required for authentication in all deployed sensing nodes, including their identity. The protocol
assumes that the Gateway node is trustworthy, as a breach of its security could endanger the entire
network, potentially leading to node impersonation attacks and denial of service attacks.

In [3], authors Ning Wang, Ting Jiang, and their team presented an authentication approach
primarily focused on physical layer attributes. Physical layer authentication involves the
examination of various physical attributes, including Received Signal Strength (RSS) and Channel
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Impulse Response (CIR). The proposed method incorporates machine learning, specifically a
Feedforward Neural Network, for classification tasks. This choice of neural network offers
advantages such as rapid learning, ease of construction, and minimal human intervention. Binary
hypothesis testing is used to detect spoofing attacks, framing the problem within an Alice-Bob-Eve
model, where Alice is the legitimate transmitter, Bob is the legitimate receiver, and Eve is an
illegitimate transmitter attempting to impersonate another node with a false address. The challenge
addressed in this method is determining whether the second message received by Bob, after the first
one confirmed to be from Alice, is still sent by Alice or not.

In [4], authors Muhammad Naveed Aman, Sachin Taneja, and others introduced a token-based
authentication method that employs OAuth 2.0, an open authentication and authorization standard.
This method aims to mitigate security risks associated with conventional client-server
authentication, where clients use resource owners' credentials, potentially leading to password
leakage and data breaches. The proposed approach involves three main steps: (1) The client sends
an authorization request to the Authorization Server (AS), (2) The AS verifies the client's authenticity
and, if verified, issues an access token to the client, and (3) The client uses this access token to
authenticate itself to the resource server (RS) and access requested resources. However, the method
is susceptible to replay attacks if an intruder captures an access token generated by the Authorization
Server, as it could be misused for impersonation attacks.

In [5], authors Prosanta Gope and Biplab Sikdar presented a lightweight two-factor authentication
approach for IoT devices, addressing the vulnerabilities of password-based and key-based methods
to physical and side-channel attacks. Their approach combines two factors: (1) a secret shared key
and (2) a Physical Unclonable Function (PUF). During registration, an IoT device transmits its
identity along with a registration request to the server. The server responds by generating a random
challenge (C), which it sends back to the client IoT device. The client computes a response to the
challenge using its PUF and sends it back to the server for verification. If the response is correct, the
server generates an alias identity and session key for the device, storing these details in its database.
However, the method does not consider environmental parameters, which can affect PUF output,
and is vulnerable to man-in-the-middle attacks, replay attacks, and spoofing attacks.

In [6], authors Muhammad Naveed Aman and Biplab Sikdar presented two-factor authentication
algorithms for IoT devices, considering the low-cost nature of IoT devices that makes them
susceptible to spoofing and impersonation attacks. Their method combines PUF and device
hardware fingerprints for authentication. After device identity verification, the server provides a
new challenge to the IoT device, which computes a response using its PUF and the provided
challenge. However, this approach is vulnerable to replay attacks, as intruders can intercept
Challenge-Response pairs exchanged between the IoT device and the server and use them for
predicting other CRPs. Additionally, it does not provide security against man-in-the-middle attacks.

In [7], authors Zahoor Ahmed Alizai, Noquia Fateema Tarin, and others introduced a multifactor
authentication approach based on digital signatures and device capabilities. This schema utilizes a
secure TLS channel, with a digital signature serving as a second factor for authentication. Device
authentication relies on the verification of device capability, involving data processing tasks.
However, this approach demands high computational resources due to the involvement of
asymmetric cryptography, making it unsuitable for resource-constrained IoT devices. Furthermore,
it is vulnerable to impersonation and denial-of-service attacks.

In [8], authors Moritz Loske, Lukas Rothe, and others proposed context-aware authentication
methods for IoT devices, addressing the limitations of existing cryptography-based approaches in
IoT networks with resource-constrained devices. Context-aware authentication incorporates
environmental information, such as temperature, luminosity, radio signals, and device location, to
improve the authentication process. While this method reduces computational overhead, it does not
provide confidentiality and is susceptible to man-in-the-middle attacks, replay attacks, and spoofing
attacks. Therefore, it is best used as one parameter within a multi-factor-based authentication
approach to enhance security.
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In [9], authors Tarak Nandy, Sananda Bhattacharya, and their team discussed the existing
authentication approaches for IoT and emphasized the need for strong and secure authentication
methods. In IoT networks, various devices communicate with each other and users, making proper
security crucial to prevent credential theft and attacks on the IoT network. The authors identified
various attacks on IoT authentication, including masquerade attacks, man-in-the-middle attacks,
denial-of-service attacks, forging attacks, guessing attacks, physical attacks, and routing attacks.

Table 1: IoT Attacks & description

Attacks Description

Masquerade attack In this attack, adversary misuses the identity of the legal user to
get access to the network.

Man in the Middle In this attack, adversary intercepts the communication between

attack two parties and also can modify the communication contents.

In this attack, adversary floods the network with fake requests
DOS attack so legal user cannot use resources at that time. Network and

resources are unavailable for them.

In this attack, adversary emulates a system or legal user to gain

Forging attack access to the network.
In this attack, adversary predicates credentials of legal user by
Guessing attack brute force approach or dictionary approach to gain access of

the network.
In this attack, adversary tries to get physical access of the

Physical attack resource and can change physical location of resource to launch
the attack.
In this attack, adversary advertises a false route for packet
Routing attack delivery from source to destination.

Problem Statement: Design & Development of Lightweight Multi-factor IoT Authentication
approach by considering Context Parameter & Dynamic Key Parameter (Vault, Random Number)
for addressing location spoofing attack, Eavesdropping attack, Replay attack & Identity Stolen
attack.

Advantages of Context Information Parameter:

Early Detection of Attackers: When contextual variables, such as location information, are validated
during the login session, it becomes possible to identify and detect request messages from potential
attackers at an early stage. This early detection eliminates the need to unnecessarily verify other
authentication factors during the session, thereby enhancing the security system's performance and
reducing delays.

Crucial for Decision-Making: In domains like Military and Industry applications, the context
parameter of a device plays a pivotal role in the decision-making process. If a device is legitimate
but its context information has been tampered with, it can transmit incorrect or faulty data, which
can have adverse effects on system performance. Therefore, validating context information is
essential, along with device identity validation, before initiating a communication session.
Advantages of Dynamic Key-Based IoT Authentication:

Enhanced Security: In symmetric encryption, both communicating parties share the same pair of
keys. However, if a third party gains access to the key or analyzes network traffic, they can infer the
communication content. Consequently, long-term use of a fixed session key is insecure in IoT
devices.

"One Time One Cipher" Approach: To address this security concern, the "One Time One Cipher"
approach is employed, where the key used for encryption and decryption differs for each session
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and expires after each use. This approach ensures the uniqueness and dynamic nature of the key.
Session keys are generated securely and efficiently on both the device and server sides, considering
parameters such as the Vault and Random Number Generation. This proactive measure helps
prevent Key Stolen and Eavesdropping attacks, enhancing overall security.

III. Methodology

Step 1: Context-Based Authentication
A. During the login request to the server, an IoT device transmits its login request along with
contextual information. Specifically, the IoT device sends its location information in the form of
Cartesian coordinates to the server.
B. The server proceeds to validate these context parameters by comparing them to the stored records
in its database. In this validation process, the server calculates the Angle of Arrival (AoA) for the
requested IoT device and matches the result with the stored AoA information for that device in the
database. If these physical context parameters match, it provides evidence that the device is
legitimate and identified at its original location.

Step 2: Dynamic Key-Based Authentication
If the device successfully passes the context-based authentication test, we introduce a second factor
to enhance our authentication process, known as Dynamic Key-Based Authentication. In this phase,
IoT Device and Server mutually authenticate each other initially by employing a Challenge-
Response mechanism.Following a successful mutual authentication, a Session Key is generated for
communication within a specific time window.
The detailed procedure for Dynamic Key-Based Authentication is as follows:
Vault: The Vault consists of 64 keys, with each key being 128 bits in length and represented in
hexadecimal format. All of these keys are organized in an 8x8 matrix format, which is stored both
on the IoT device and the server. To enhance security, these keys can be stored in an encrypted
format at both ends. Each key in this 8x8 matrix can be denoted as K[0][0], K[0][1], ..., K[7][7]. During
the initial deployment, this 8x8 matrix is shared between the IoT device and the server.
Challenge-Response Mechanism: Our proposed protocol employs a Handshaking concept to
achieve mutual authentication between the IoT device and the server. The diagram below illustrates
the sequence of messages exchanged between the IoT device and the server to facilitate Mutual

Authentication.
Table 2: Notations for the proposed Dynamic Key Based Authentication
Notation Description
[ Concentation Operation
® Ex-OR Operation
h Message Digest Function
Random Number 128-bit Random Number for Mutually Authentication
Temporary Number Purpose
(Nonce) 128-bit Random Number for Session Key Generation

Purpose
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IoT Device Server

MI1=h (Device ID) || Session Number

M2= Challenge; & Random Number;

M3= Enc(K;. Random Number; || Temporary Number, || {Challenge, & Random Number2}

M4=Enc(K,, Random Number; || Temporary Number,}

Figure 2: Message Exchange Sequence for the proposed authentication structure

The communication process between an IoT Device and an IoT Server involves several steps to
establish a secure authentication session. Below is a description of these steps.
1. Initiation of Communication Request:
e TheloT Device initiates communication by sending a request (M1) to the IoT Server.
e Request message M1 includes a message digest of the Device ID and the Session
number, which helps maintain the authentication session.
e M1 =h(Device ID) | | Session Number
2. Challenge Message Generation by Server:
e The Server verifies the message digest value for the Device ID.
e If valid, the Server generates a Challenge Message (M2) for the IoT Device.
e M2 contains Challengel and a Random number1.
e Challengel comprises q distinct numbers, each pointing to an index in an 8x8 Matrix
stored in a secure vault.
e The value of g must be less than the total number of keys stored in the vault.
e Challengel ={C1, C2,C3, ..., C8}
e M2 = {Challengel, Random Number1}
3. Response Generation by IoT Device:
e TheIoT Device generates a response for the assigned challenge.
e A temporary key of 128 bits (K1) is generated by performing XOR operations on the
key values indexed by the challenge message.
e Temporary Key K1 at IoT Device Side = K[C1] @ K[C2] & ... @ K[Cq]
e The IoT Device creates a response by encrypting Random Numberl || Temporary
Numberl using K1 as the encryption key.
e Here, Temporary Numberl is a 128-bit random number generated by the IoT Device
for future use in generating a Session key for subsequent communication.
e M3 =Enc(K1, Random Numberl || Temporary Number (Nonce)1 || {Challenge2,
Random Number2}).
e TheloT Device also generates a separate challenge message (Challenge2) for the IoT
Server in a similar manner.
4. Response Generation by Server:
e Upon receiving the message from the IoT Device, the Server generates a temporary
key (K2) using the indexes from Challenge2 stored in its secure vault.
¢ No key sharing is required between the IoT Device and the Server.
e  After obtaining key K2, the Server decrypts message M3.
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e If the Server retrieves Random numberl from M3, it indicates that the receiver of
the previous challenge message (M2) was a legitimate IoT Device.
e The Server then generates a response for the IoT Device's challenge (M3).
e Message M4 from the Server to the IoT Device is encrypted using temporary key K2
and includes Random Number2 and Temporary Number2.
e Temporary Key K2 at Server Side = K[C1] @ K[C2] @ ... & K[Cq].
e M4 =Enc(K2, Random Number2 | | Temporary Number (Nonce)2).
5. Authentication by IoT Device:
e The IoT Device receives message M4 and decrypts it by generating temporary key
K2 from its secure vault, using the content of Challenge C2.
e If the IoT Device obtains Random number2, it signifies that the Server is also
authenticated.
6. Session Key Generation:
e After mutual authentication between the IoT Device and the Server, they generate
a temporary session key using Temporary Numberl and Temporary Number?2.
e Session Key = Temporary Numberl @ Temporary Number2.

Contribution of our Research Work:

1. The proposed work aims to implement light weight mutual authentication approach for IoT
devices which can avoid the possibility of Key Stolen attack, Eavesdropping attack and
Location Spoofing attack.

2. The proposed work plans to verify contextual information of a device when it initiates a
session with reference node. Parameter AoA- Angle of arrival will be utilized for context
matching. So, prevention of Location Spoofing attack can be done at initial stage. It will
reduce energy consumption, delay and also intrusion activities during session.

3. The proposed work plan to generate the session key as a part of IoT device authentication
in a dynamic way. The working principal for dynamic key generation will be “One Session,
One Cipher”. It will generate session key on both sides —device and server in a secure,
efficient way by considering parameters- Vault and Random number generation. So,
prevention of Key Stolen attack and Eavesdropping attack will be possible.

IV. Security Analysis of the Proposed Method

Protection against Location Spoofing Attack:

Proof: The distinguishing feature of the proposed protocol lies in its ability to verify the location of
the IoT device, ensuring that authentication requests originate from a known location.
Consequently, if an adversary seizes an IoT device and attempts authentication from a remote,
unauthorized location, their efforts will be in vain. We have implemented a Localization approach,
utilizing location-specific attributes such as AoA (Angle of Arrival), to fortify protection against
Location Spoofing attacks.

Protection against Man-in-the-Middle Attack:

Proof: A Man-in-the-Middle (MitM) attack involves an attacker intercepting communications
between two parties with the intention of secretly eavesdropping on or modifying the transmitted
data. The significant feature of the proposed method is that adversaries cannot compute the session
key due to the reliance on Random number generation in its generation process. Importantly, in our
protocol, the session key is not explicitly transmitted between the Server and the device. Instead, it
is computed independently by the device and server at their respective locations. Consequently,
adversaries are unable to access the session key required to launch a MITM attack.

Protection against Replay Attack:

Proof: The initiation of a new session with a device encompasses both the context-based
authentication process and the dynamic key-based authentication approach for key establishment.
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During this authentication phase, each device shares a nonce and a Session ID. The Session ID is
unique for each new session and serves as a timestamp within our protocol. In the event of an
attacker attempting to replay previous session authentication messages, these messages will be
discarded due to the presence of an old Session ID that has already expired. Furthermore, the
attacker cannot manipulate or update the Session ID as it is transmitted in an encrypted form, with
only the destination node, i.e.,, the Server, possessing the knowledge of it after decryption with its
key. Even if an adversary were to submit the same authentication message to the server after a
certain period of time, they would not succeed. This is because our protocol generates a new Nonce
(Random Number) for each session, rendering any previous nonce random number request for
session establishment immediately invalid.

Device Anonymity:

Proof: In relation to Device Anonymity, our proposed approach refrains from transmitting the actual
device identity in any message exchange or communication with the server node. Instead of the
device ID, a message digest value of the device ID is transmitted along with the session number.
Since the message digest function adheres to a one-way property, it becomes computationally
infeasible for an intruder to deduce the device ID from the message without knowledge of the
specific hash algorithm used.

Brute force attempts Analysis for the proposed Approach:

We have securely stored a total of 64 keys, each with a length of 128 bits, in both the IoT device
and the Server's vaults. Temporary keys are generated through the XOR operation using these stored
keys. Let's calculate the efforts required to derive these Temporary keys.

An intruder needs to select 8 keys out of the total 64 keys, resulting in a total possible combination
of 64C8, calculated as follows:
64Cs= 64! / (64-8)! 8!

= 64!/ 56! 8!

= 64*63*62*61*60*59*58*57 / 8*7*6*5*4*3*2*1

=17, 84, 62,98, 76, 37, 760 / 40, 3 20
Total Possible key combinations at IoT device side =4,42,61,65,368.

Similarly, total possible key combinations at Server side for selecting 8 different keys from 64 keys
vault to generate second temporary key = 4,42,61,65,368.
Total computations required to capture both temporary key from vault= 8,85,23,30,736.

Assuming that an intruder can perform 1 million computations in 1 hour, it would take them a
total of 8,852.33 hours or approximately 368 days to recover Temporary Key 1 and Temporary Key
2 from the vault. This is a significant time frame, and since we also update vault values regularly,
our suggested schema provides security against Key-stolen attacks.

Even if an adversary possesses knowledge about the dynamic key authentication approach, it
remains computationally infeasible for them to directly derive the session key.

V. Conclusion

The Internet of Things (IoT) encompasses a multitude of physical devices capable of seamless data
exchange. These devices connect directly to the web, operating in an open environment, which
presents opportunities for intruders to launch various cyber-attacks. IoT security is a critical research
domain that engages both academic and industry researchers. Within the realm of IoT security, the
CIA Model—Confidentiality, Integrity, and Authentication—is of paramount importance.
Authentication, in particular, plays a central role in ensuring the security of IoT networks as it
uniquely identifies each device connected to the network. In our investigation, we thoroughly
examined the challenges inherent in existing loT authentication algorithms. We uncovered potential
cyber threats, including Replay attacks, Man-in-the-Middle (MITM) attacks, Location Spoofing
attacks, and Key Stolen attacks, which can compromise the security of current IoT authentication
architectures. Furthermore, we conducted an in-depth review of the work conducted by
various
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experts in the field of authentication. Through this review, we pinpointed research gaps that still
exist in the domain of IoT authentication, highlighting opportunities for researchers to contribute
their expertise and develop precise and efficient security solutions. There is a pressing need for the
creation of an efficient IoT Authentication Multi-factor algorithm that is lightweight —demanding
fewer resources —and is rooted in context verification and dynamic key generation approaches.

To substantiate our proposal, we conducted an informal security analysis, demonstrating that our
approach effectively safeguards against Key Stolen, MITM, and Replay threats. Furthermore, we
established that it is computationally infeasible for an intruder to breach our suggested approach
within a finite timeframe and with limited resources.
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Abstract

In this paper we proposed an M/M/co queue with impatient customers. Generally, customers
are impatient due to long waits in queue but in this work, we consider the case when customers
are not impatient due to long waits but they are impatient due to the poor quality of service.
We model and analyze this queueing system by using continued fraction technique and obtained
the probability mass function of the customers present in the system in time dependent form.
Also, we calculate the average queue size. Finally, some graphical representations are given to
illustrate the model.

Keywords: M/M/co Queue, Transient Solution, Impatient Customers, Laplace Transform.

1. INTRODUCTION

We present an M/M/oco queue with impatient customers. The impatient behavior of customer is
common in many real life queueing situations such as in hospital during emergencies, inventory
systems, telecommunications system etc. When the waiting time is sufficiently large or intolerable
the customers may become impatient and decide to leave (i.e.balk or renege) the system before
being served. The study of queueing models with impatient customers play an important role in
many revenue generating queueing system. There is an extensive literature available on queues
with impatient customers(see e.g.,[4], [5], [14]). First attempt in this field was made by Haight [14].
After that, Al-Seedy et.al.[2] obtained the transient behavior of an M/M/1 queue with balking.
The single server Markovian queue with reneging was proposed by Haight [15]. Ancker et.al.([4],
[5]) considered an M/M/1/N queue with both balking and reneging simultaneously. Multi-server
queueing model with impatient customers was investigated by Varshney et.al.[23]. Time dependent
solution of the M/M/c queueing model was proposed by Al-Seedy et.al.[3]. The concept of balking
with heterogeneous servers have been proposed by Abou El-Ata [6] and Singh [19]. Queues with
catastrophes and impatient customers have been investigated by various authors. Yechiali [24]
consider the case of impatient customers when server is down due to catastrophes. Sudhesh
[22] extends the work of Yechiali [24] and obtained the time dependent solution. Altman and
Yechiali [1] considered an infinite server queueing system with impatient customers under the
situation where servers are free and doing some additional task. A GI/G/1 queue with disaster
and customer impatient was studied by Chakravarthy [12]. Customers impatient due to priority
has been analyzed by Choi et. al.[11]. Sudhesh et. al.[20] obtained the transient solution of two
heterogeneous servers queue with impatient customers when server is down due to the occurrence
of breakdown.Vacation queueing model are also analyzed with impatient behavior of customers
by various researchers. Ammar [8] obtained the transient solution of a waiting server,vacation
queueing model with impatient customers. Sampath et. al. [21] extends the work of Ammar [8] by
considering multiple vacation in place of single vacation. Perel and Yechiali [17] give the steady sate
solution of an M/M/c (c¢=1, 1 <c <00, c= 00) queue with slow server and impatient behavior of
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customers in two random phases. Generally it is assumed that customers are impatient due to long
waits in queue but in this work authors considered that customers may be impatient due to slow
service rate. In our work we also consider that customers may be impatient due to poor quality of
service provided by the servers and obtained the time dependent solution of an M/M/co queue
with impatient customers. Generally, in self service models or an infinite server models there is no
question of impatient behavior of customers because the entering customers immediately get service
and there is no waiting line in the system. But in our case the customer is impatient not due to long
waits but due to the quality of the service provided by the server. It may possible that a customer
is impatient due to poor quality of service. The motivation for studying this model comes from the
field of telecommunications. Let us consider a university campus which is providing a free Wi-Fi
service for their students at their campus. Every student entering in the campus may use the free
Wi-Fi service. The service starts as soon as he joins the campus and carries until the end of the
campus. A small university campus contains thousands of such self served customers who are using
this service. Each customer receives identical quality of signals of Wi-Fi connection. The quality of
signals may vary and fluctuate randomly.The poor quality of signals causes the impatient behavior
of customers.Whenever a customer enters into the campus and finds poor quality of signals of the
Wi-Fi connection, he may decide to leave the system without getting served i.e. customer balk from
the system. On other hand, he joins the service but leaves the system due to poor quality of Wi-Fi
connection, this also becomes a case of customer renege from the system. Hence, our operating
model is a suitable preposition.

2. MATHEMATICAL MODEL

M/M /oo queue with impatient customers is in operation. Arrivals occur one by one in a Poisson
stream with mean rate a. There are infinite servers and service time are exponentially distributed
with parameter 8. Capacity of the system is infinite. After entering the system, the customers
either decide to join the service with probability 6 or balk with probability 1 — 6, where 0 < 0 < 1.
After joining the service, if he finds a poor quality of signals of Wi-Fi connection then, the customer
will wait for a certain length of time T, exponentially distributed with parameter -y, for improving
the quality of service. If it has not improved by then, the customer abandons and leave the system
without getting complete service. Let P, (t) be the probability that the random variable N (¢)
assumes the value n i.e.

Po(t) = P(N(t) = n)

3. TRANSIENT SOLUTION

In this section, we provide the transient solution of the presented queueing model. For this, the
differential- difference equations are given as:

Py(t) = —(af) Po(t) + (B +7) P(t) (1)
P(t) = —(af +n(B+7)) Pu(t) + (n +1) (B +7) Pata(t) + 0aPp-1(t),n > 1. (2)

Initially, at t=0, .
ro={) o 8

Laplace transformation of Eq.(2) with initial condition Eq.(3) results the following equation
(5+ 0+ (8 +7)) Pi(s) = (n+ 1) (8 +7) Py (5) + 0aPi_y (5) (1)
After simplification, Eq.(4), gives
Pr(s) O

i) _ - (5)
Piaal) (s 0+ n(B+7) — (n+ 1)(5+7) )
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fa
B+y
= ) (6)

S _~_9704+n)_
(b’+7 B+ . (n+2)[30Ta
(75 + A5 +(m+1) - Y
+ +v ( s +07a+(n+2))_.”
B+y Bty

Now using the identity given by Lorentzen and Waadeland [16]

1Fi(c;q;2) =2+ q—z+1+q—z+2+"
Use of Eq.(7) in Eq.(6), gives
% —Oo
Pi(s) _ fa Pt Lz +nt1i5E) ®
P* + s —0ay’
ao1(s)  (B+7) (mw ) VP (5 55+ 522)
therefore for n > 1, we have
0 " Fi(n+1; 22— S T+ 1; ===
N/ (555 + Z) 1F1(1? g7 T L5
Pr(s) = G (s)Fg (s), (10)
where ;
" Fiin+1; +n+1; ==
(s = ((;f )) 1 ( Py 7)) _ (1)
it (B+v+’) 1Al 55 + 1555
It is well known that -
> Pils) = (12)
n=0
by the use of Eq.(10) in Eq.(12), we get
1 - B
Py(s) = 1+ZCZ(S)1 (13)
n=1

Po(t) = Ca(t) * Po(t), (15)

where the symbol * denotes the convolution and

‘oo /oo k
(1) = / §<§cn<y>> dy. (16)

Next we derive the expression for ¢, (t), where ¢, (t) represents the inverse Laplace transform of

Cals).
From Eq.(11)

o= (5 ) it bt B
CRNCEA (B+v+’) 1L 555 + L5
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It is well known that

—Oa > (n+ 1)k (‘%)k
=2 +n+ 1) k!

S
1Filn+1;,——+n+1;
k=0 (B+7

B+ B+

where () represents the Pochhammer symbol.i.e.

(B)x = { 1 if k=0;
FELBB+D)(B+2)..(B+k—1) ifk=1,23,..
Therefore

k

s . —fa 00 n+k _ ba
1F1(71+1;[M+n+1agz,y)_z(k)( 5+7)
s : +k s :
I (535 +1) S (55 +9)

Applying partial fraction expansion, the above equation can be written as

1R+ 155 +n+ 1559 _(5ﬂ)i<n+k> ( fa )’“

T, (5i7 n Z) —\ k B+~
ntk i—1
-1
> G — : (17)
— (n+k—)(@—1(s+i(B+7))
Also
s —fa = &
Fi(1; 1; = —0a)"” di (s),
171 ( ﬂ+7+ ﬁJr,y) kZ:O( )" di(s)
where i
di(s) = : and dj(s) =1.
ITi (s +i(8+7))
By the use of the identity given in Srivastava and Kashyap [18]
1 - k _*
. _s —fa :Z(Ga) er(s), (18)
Fligs 555 S
where ef(s) = 1, and for k=1,2,3,...
di(s)
dy(s)  di(s) 1
er(s) =
di_(s) di_5(s) di_s(s) . . . di(s) 1
di(s)  di_y(s) di_o(s) . . . di(s) di(s)
k: .
=Y (1) (s)er_j(s).
j=1
By substituting Eq.(17) and Eq.(18) in Eq.(11), we get
Gilo) = (00 (-0 (" T )y ) 36 et
§=0 J k=0
On inversion, we obtain
N o0 n+ . o0
6ult) = (00" (=00 (" T )50 300 1) (19)
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where
LR < S 0 Vi e
dp(t) = e Pt =123, ...,
v = Gt 2 G
and
k .
ex(t) =D (1) di(t) x ex—i(t), k=2,3,4,..; e(t) =di(t)
=1

4. TIME DEPENDENT MOMENTS

4.1. Mean

Let A(t) represents the average value of the random variable N(t) , therefore

A(t) = B(N(1)) = Y _nPa(t) (20)
n=1
Initially, at t=0, Eq(20) gives
A(0) =0,
which implies
A(t) =3 nPL), (21)
n=1

whereA’(t) denote the differentiation of A(¢).
Application of Eq.(2) in Eq.(21),after some calculation gives

A'(t) + (B+7)A(t) — 0a = 0. (22)
which is a linear differential equation in A(t), whose solution gives

970‘[1 _ e—(ﬁ—!—'v)t] (23)

Al = B+

4.2. Variance

Let Var(N(t)) represents the variance of the random variable N(t), therefore
Var(N(t)) = E[N(t) — E(N(#)]*

which may be written as

Var(N()) = b(t) - [A@)P, (24)
where -
b(t) = E(N?(t)) = > _n’Pa(t),
with )
b(0) = 0,
also -
b(t)=> n’Pt) (25)
n=1

substitution of P} (t) in Eq.(25), after some calculation results in the form of a linear differential
equation in b(t) i.e.
V' (t) = —(26 4 7)b(t) + (20a + 8 + )M (t) + fa (26)
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which after integration gives

(200 + B+ 7)0a(B — (v +3B)e” 2D 4 (v 4 23))e” OF!
By +28)(y + B)
(710"

MCEET L .

Substitution of Eq.(27) in Eq.(24), gives the expression of Var(N(t)).

b(t) =

5. GRAPHICAL ILLUSTRATIONS

In this section, we presents some graphical results to observe the time dependent behavior of various
probabilities and average number of customers in the system.

a=2,8=3,y=1

Time

Figure 1: Py(t) versus Time

a=2,8=3,0=0.5

JRE—)

Po(t)

...... v=2
[
p—_——t

09 4

Time

Figure 2: Py(t) versus Time
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Fig.(1 to 6) illustrates that as time increases, all the probability curves except Py(t) are decreases
initially and then attain the steady state after ¢ = 2. Also we notice that the probabilities Pj(t)
and P(t) increases with increasing 6 and the probability Py(t) decreases while we increase the
value of 6. Further, we observe that if v increases the probability of an empty system i.e. Py(t)
increases while the other probabilities decrease. Fig.(7 and 8 ) explain the situation that the average
number of customers in the system increases with time initially and then finally attains steady
state. The average number of customers increase with the increasing values of 6 and decrease with
the increasing values of ~.

6. CONCLUSION

impatient behavior of customers is common in many real life queueing situations. Approximately,
in all previous work available in the literature, it has been assumed that customers are impatient
due to long waits in queue. But in the present study we analyze the case in which customers are
impatient due to the quality of the service provided by the server. We have obtained the probability
mass function of the number of customers in time dependent form. Also, we have determined
the transient mean and variance of the number of customers. At the end, for observing the time
dependent behavior of various probabilities, we provide some graphical illustrations.
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Abstract

Fuzzy soft sets and graphs are invented to solve uncertain problems in the field of Applied mathematics.
It is a general mathematical tool introduced with many parameters to model the vagueness of the changing
world. The insight learning of the AQSP fuzzy soft graphs paved the way to discover the extension of the
AQSP fuzzy soft graph. In this research article we introduce the Regularity of AQSP fuzzy soft graph
with definitions, theorems, properties, and real-life applications. The aim of this invention is mainly to
obtain the parametric values in submerging level of confidence [-0.5, 0.5] C [-1,1]. The scope of this new
AQSP fuzzy soft graph is to solve the imprecise problems in the field of Mathematical Engineering, Bio
Mathematics, Economics, Medical Science, Artificial Intelligence and Machine learning. The regularity
of AQSP fuzzy soft graph is combined with the concepts of regular, totally reqular, and perfectly regular.
The application of this new graph is developed for governing of the women safety vehicle network in
different spots with membership submerging values. The future extension can be applied in Approximate
reasoning, Mathematical psychology, Decision making for medical diagnosis.

Keywords: Regular AQSP fuzzy soft graph, Totally regular, Perfectly regular AQSP fuzzy soft
graph, Alternate Quadra Submerging level of confidence.

1. INTRODUCTION

The concept of graph theory was introduced by Euler in 1736. He concreted the way to find
the solution of Konigsberg bridge problem. In 1965 Zadeh[20] invented Fuzzy set theory as a
mathematical fuzzy tool for handling uncertainties like vagueness, ambiguity, and imprecision
in linguistic variables. Fuzzy set has resulted as a potential area of interdisciplinary exploration
and the fuzzy graph theory is of modern inducement. The first definition of fuzzy graph
was determined by Kaufmann[10] in 1973, based on Zadeh’s fuzzy relation in 1971. In 1975,
Rosenfeld[16] introduced the concept of fuzzy graph. The structure of fuzzy graphs, using
fuzzy relations, obtaining contrasts of several graph hypothetical concepts are the masterpiece
of Rosenfeld. Operations on fuzzy graphs were exposed by J.N.Moderson[14] and C.S.Peng.
A.Nagoorgani[8] and K.Radha[9] invented the concept of regular fuzzy graphs in 2008.

In 1999, D.Molodtsov[12] intended the notion of soft set theory to solve complicated
uncertain problems in Applied Mathematics, Engineering and Environmental studies. In 2001,
P.K.Maji[11], initiated the concept of fuzzy soft sets. Zou and Xio discussed the application of
the fuzzy soft sets in an imprecise scenario. Later, Akram[4] and Nawaz[15] presented new
ideas known as fuzzy soft graphs. A.Pouhassani[24] and H.Doostie studied degree, total degree,
regularity and total regularity of fuzzy soft graph and its properties. Regular fuzzy soft graphs
and its related properties are investigated by B.Akhilandeswari. The concepts of fuzzy bipolar
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soft sets and bipolar fuzzy soft sets have been introduced by Naz and Shabir. Aslam et al studied
some basic operations on bipolar fuzzy soft sets.

In this article, we portray a new mathematical fuzzy graph model AQSP Fuzzy Soft graph
for dealing imprecise information by integrating the concepts of fuzzy graph and fuzzy soft
graphs. We estimate the regularities of AQSP fuzzy soft graphs and some of their characteristics
and properties. Here Regular AQSP fuzzy soft graphs, and totally regular AQSP fuzzy soft
graphs and perfectly regular AQSP fuzzy soft graphs are examined. Total degree of an AQSP
fuzzy soft graph is designed. Theorems for regular AQSP fuzzy soft graphs and totally regular
AQSP fuzzy soft graphs are presented. A necessary condition under which they are equivalent
is provided. Some properties of regular AQSP fuzzy soft graphs, perfectly regular AQSP fuzzy
soft graphs are reviewed with real life applications.The perception of AQSP fuzzy soft graph
membership values with submerging level of confidence is applicable in Machine learning and
medical psychology.We explored the AQSP fuzzy soft graph module in Governing of women
safety police vehicle network with membership score functions.

2. PRELIMINARIES

2.1.  Fuzzy Graph [16]

Let U is a non-empty set. A fuzzy graph is a set of two of functions G : (¢, 1) where ¢ is a
fuzzy subset of U, y is a symmetric fuzzy relation on ¢, where ¢ : U — [0,1] and the edge set
#:UxU—[0,1] such that, u(x,y) <min(u(x),u(y)) Vx,y € U. The underlying crisp graph
of fuzzy graph G : (o, i) is with the notion G* : (¢*, u*) where ¢* is denoted as the non-empty
set U of verticesand y* =E € V x V.
2.2. Fuzzy Soft graph [13]

A fuzzy soft graph G = (G*, F,K, A) is a four tuple such that

1. G* = (V,E) is a simple graph.

2. A is a non empty set of parameters.

3. (E A) is a fuzzy soft vertex set V.

4. (K, A) is a fuzzy soft edge set E.

5. F(a),K(a) is a fuzzy soft graph of G*V a € A.
Then it satisfies the condition, K(a)(x,y) < F(a)(x) AF(a)(Y) Va € Aand (x,y) € V.

2.3. Fuzzy soft graph degree of a vertex [4]
Let G = (G*, F,K, A) be a fuzzy soft graph on G*. The fuzzy soft graph degree of a vertex a is
defined as degg(a) = Yoen Lxzy K(e)(x,y)Va € Aand (x,y) € V.
2.4. Regular Fuzzy soft graph [4]
Let G = (G*, F,K, A) be a regular fuzzy soft graph if (F(e), K(e)) is regular fuzzy graph of degree
k for all e; € A then G is a k- regular fuzzy soft graph.
2.5.  Order of fuzzy soft graph [4]

Let Gay = ((A,0,), (A, 1,)) be a fuzzy soft graph. Then the order of fuzzy soft graph G4 v =
Yec Lxen 0e(X).
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2.6. AQSP Fuzzy Soft Graph [18]

Let V = (07 (x), o] (x), 02 (x), 0 (x)), (0F (x), o (x), 05 (x), 0 (x))...(0F (), o (x), 01 (x), o1 (x)))

be a nonempty AQSP fuzzy set. E (Parameters set) and A 4osp C E. Also let,

Q) ol: A a0sp — Fagsp(V)(Collection of all AQSP fuzzy subsets in V), e — ol and
ol 1V —0,1], v; —> of then (Aapsp,0”) : AQSP fuzzy soft vertex set.

(i) oN : Aagsp — Fagsp(V)(Collection of all AQSP fuzzy subsets in V), e — o
0NV — [-1,0], v; —> o then (Aagsp, o) : AQSP fuzzy soft vertex set.

(iii) pp : Apgsp — Fagsp(V)(Collection of all AQSP fuzzy submerge subsets in V), e — pf ,
and pl : V — [0,0.5], v; — p? then (Aaqpsp, p) : AQSP fuzzy soft vertex set.

(iv) pN : Aagsp — Fagsp(V) (Collection of all fuzzy submerge subsets in V), e — pé\] , and
pN 1V — [-0.5,0], v; — pY then (Aaqgsp, V) : AQSP fuzzy soft vertex set.

W) uf: Axosp — Fagsp(V x V) (Collection of all AQSPfuzzy subsets in V x V), e — ul,
pe 2V xV —1[0,1], (v;,0}) = g (v;,0j) then (Aagsp, u”) :

AQSP fuzzy soft membership edge set.

(vi) uN : Apgsp — Fagsp(V x V)(Collection of all AQSPfuzzy subsets in V x V), e — ulY,
and ul : VxV — [-1,0], (v;, vj) — ulN(v;, vj) then (Aagsp, V)1 AQSP fuzzy soft
non - membership edge set.

(vii) vP : Aggsp — Fagsp(V x V)(Collection of all AQSPfuzzy subsets in V x V), e — 7%,
and 7} : V x V. — [0,0.5], (v;,v;) — ¢ (v;,0;) then (Aagsp,¥") : AQSP fuzzy soft
submerge membership edge set.

(viii) YN : Apgsp — Fagsp(V x V)(Collection of all AQSPfuzzy subsets in V x V), e — ¥,
and Y : V x V — [<05,0], (v;,v7) — 72 (v;,vj) then (Aagsp, v) : AQSP fuzzy soft
submerge membership edge set. Then the AQSP fuzzy soft graph is,

((Aagsp), (0N, 0f,0M)), ((Aagsp), (', uN, ", +N)) if the conditions are satisfied
@ pe (v y) <ot ()Nl (), O (xy) >0 (x) Vo (y),
© 76 (x,y) <pd () ApE(y), (@A) 7Y (xy) > e (x) Vel (y), for all e € Aggsp and
for all values of x,y = 1,2,3,...,n and this AQSP fuzzy soft graph is denoted as Gags p(A, V).

, and

3. METHOD

The essential definition of AQSP fuzzy soft graph method is deliberated with an examples.

3.1. Alternate Quadra Sub - merging Polar(AQSP) Fuzzy Graph

An Alternate Quadra - Submerging Polar (AQSP) Fuzzy Graph G = (0agsp, Hagsp) is a fuzzy
graph with crisp graph G* = (0j,osp , Higsp ) is givenas V = (o (x),oN (x), pf (x),pN (x))
which is the membership value of vertices along with the uncertain membership value of edges is
givenas, E=V x V= (u (x,y), 1N (x,y), 7" (xy), 7" (x,y))-

Here the vertex set V is defined with the given condition in a unique method which is an
alternate contrast submerging polarized uncertain transformation.Here c” = V — [0,1], oN =
V —[-1,0],p" =d | 05,07 (x)|and pN = —d |-0.5, ¢N (x)|. Here (-0.5, 0.5) is the fixation
of uncertain alternate contrast polarized
submerging transformation into certain consistent preferable position. And the edge set E satisfies
the following sufficient conditions.

(i) pP(xy) <min(o®(x), o"(y)), (i) pN (x,y) =max (o (x), N (y))

(iii) 9P (x,y) <min (0" (x), o (y) ) (i0) ¥V (x,y) > max (N (x), oV (v)),

Y(x,y) € E. By definition, u* =V xV —[0,1] x [1,0], uN =V xV — [-1,0] x [0, —1]
and the submerging mappings, 7" =V x V. — [0,0.5] x [0.5,0],
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AN =V xV — [-0.5,0] x [0, —0.5], which denotes the impact of the alternate quadrant polar-
ized fuzzy mapping.

The maximum of submerging presumption to be at the level of confidence [0,0.5] C [0, 1]
and the minimum of submerging presumption level of confidence is [—0.5,0] C [—1, 0] extension
of the graph with its membership and non - membership values portrait the unique level of
submerging destination in an AQSP fuzzy graph.

Also it must satisfy the condition, —1 < ¢ (x) + N (x) <1 and |pf (x)+pN (x)| <1
with constrains 0 < oF (x) + 0N (x) + [pP (x) 4+ p" (x)| < 2 such that the uncertain status of
submerging presumption, transform into its precise consistent level with fixation mid - value 0.5,
which implies that level of confidence 0.5 in an AQSP as the valuable membership of its position
which is real and valid in the fuzzification. The example of AQSP fuzzy graph is given in Figure.1.

v,(08,-0.7,0.3,-0.2)

(0.7,-0.7,0.2,-0.2) (0.7,-0.6,0.2,-0.1)
(0.7,-0.9,0.2,-04) v, v,(09,-08,04,-0.3)
(05,-0.7,0.0, -0.2) (0.7,-0.5,0.2,-0.1)
(0.6,-0.7,0.1,-0.2) v, v5(0.7,-0.6,0.2, -0.1)

(0.6,-0.6,0.1,-0.1)

Figure 1: AQSP Fuzzy Graph G = (0AQsp, 1AQSP)

3.2. Example of AQSP Fuzzy Soft Graph

Consider an AQSP fuzzy soft graph Gagsp(A, V), where V = (v, v2,v3,v4) and
E = (e1,e2,e3). Here Gpgsp(A, V) is described in Table.1. and
e (0;, v]-) =0, Y(v;, ZJ]') €V x V {(v1,v2), (v3,v3),(v3,v4), (v1,v4),(v1,v3)} forall e € E.

Table 1: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(,0) vy (%) U3 Uy

e1 (06,-07, (07,-08, (08,-09, (06,-07,
01-02) 02,-03) 03,-04) 0.1-02)

es  (07,-06, (08,-07, (09,-08, (08,-08,
02-01)  03,-02) 04,-03) 03-03)

e (08,-06, (09,-0.7, (08,-08, (09,-009,
03,-01) 04,-02) 03,-03) 04-04)
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Table 2: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

(,7) 01,02 v,03 3,04 V4,701 01,73
e (06,-07, (0.7,-08, (0.6,-07, (06,-07, (0.6, -0.7,
01-02) 02,-03) 01,-02) 0.1,-02) 0.1,-02)
e (0.7,-06, (07,-07, (08,-08, (0.7,-06 (06,-06,
02-01)  02,-02) 03,-03) 02-0.1) 0.1,-0.1)
es (08,-06, (08,-07, (08,-07 (07,-0.6 (08, -0.6,
03-01) 03,-02) 03,-02) 02-0.1) 03,-0.1)

Table. 2. represents the AQSP fuzzy graph with parametric membership
and non - membership with submerge values.

4. DESCRIPTIONS OF THE REGULARITY OF AQSP FUZZY SOFT GRAPH

41. Regular AQSP Fuzzy Ssoft Graph

Let G* = (0, u*) be a crisp graph and Gagsp(A, V) be an regular AQSP fuzzy soft graph of
G*. Then Gagsp(A, V) is said to be an regular AQSP soft graph, if R4osp(e;) is an regular AQSP
fuzzy soft graph of degree k for all ¢; € Aqsp, then Gagsp(A, V) is a k - regular AQSP fuzzy
soft graph.

v,(0.7,-0.8,0.2,-0.3)

(0.7,-08,02,-0.3) (06,-0.7,0.1,-02)

(08,-08,03,-0.3) v, v, (08, 09,03,-04)

(06,-0.7,0.1, -0.2) (0.7,-0.8,02,-0.3)
v3(0.7,-08,02,-03)

Figure 2: Gqsp(A, V) - Corresponding to the parameter e

v,(08,-07,03,-02)

(06,-06,0.1,-0.1) (0.7,-0.7,0.2, -0.2)

(08,-08,0.3,-03) vy v, (0.7,-0.9,0.2,-0.4)
{0.7,-0.7,02,-0.2)

{0.6,-0.6,0.1,-0.1)

v3(0.9,-0.9,04,-0.4)

Figure 3: G,qsp(A, V) - Corresponding to the parameter e,
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4.2. Example of an AQSP Fuzzy Soft Graph

Consider, an AQSP fuzzy soft graph, G s p(A, V), the vertex set V = (v1,v5,v3,0v4) and let

the corresponding parameters E = (eg, ep).
Here Gagsp(A, V) = ((Aagsp), (¢F,aN,0F,0N)), ((Aagsp), (4", uN, 2", 4N)) is
described by Table.3 and Table. 4 (v1,v,,v3,v4)).

4.3. Remark on Regular AQSP Fuzzy Graph

Fron Figure.2 and Figure.3 we get the result that the regular AQSP fuzzy graph which can not be
a totally regular AQSP fuzzy graph. Table 3. represents the AQSP fuzzy soft graph vertex set.

Table 3: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(77 U1 U2 U3 vy

e (07,-08, (08,-09, (07,-07, (08,-08,
02-03) 03,-04) 02,-02) 03-03)

e (08,-0.7, (07,-09, (09,-09, (08, -0.8,
03-02) 02,-04) 04,-04) 03 ,-03)

Table 4: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

(1,7) U102 V203 U304 V401

et (06,-07, (07,-08, (06,-07, (07,-08,
01-02) 02,-03) 01,-02) 02-023)

e (07,-07, (06,-06, (0.7,-07, (06,-06,
02-02) 01,-01) 02,-02) 0.1,-0.1)

Table. 4 represents the corresponding edges, (v1,v2), (v2,v3), (v3,04), (va, V1) ,
for all values of e € Asgsp-

4.4. Totally Regular AQSP Fuzzy Soft Graph

Let G* = (o, ) be a simple graph and Gsgsp(A, V) be an AQSP fuzzy soft graph of G*.
Then G4qsp(A, V) is said to be a totally regular AQSP fuzzy soft graph if R 4osp(A, V) is totally
regular fuzzy soft graph for all values of e; € A4qsp, then Gagsp(A, V) is called k totally regular
AQSP fuzzy soft graph.

Theorem 1. If G4qsp(A, V) satifies the condition of regular and totally regular AQSP fuzzy soft
graph, then we prove that ((Aagsp), (¢F,oN,pP,pN)) is a constant AQSP fuzzy soft function in
Haosp(A, V) of G* for all values of e € A4qsp-

Proof. Let Gagsp(A, V) satifies the condition of regular and totally regular AQSP fuzzy soft
graph. Then we have the degree of vertices as,
(i) degoy (a) = ki, degoy'(a) = ko, degpg (a) =ks, degpy’(a) = ky and
(i) tdegol (a) = Iy, tdegoN(a) =1, tdegpl(a) =15, tdegpl (a) = Iy.
In AQSP fuzzy subgraphs Huosp(A, V) for all values of e € Apgsp, a € V. This implies that,
degal (a) + Aagsp 0, (a) =1,
degoy (a) + Aagsp 0y (a) = by,
degp, (a) + Apgsp pe (a) =13,
dego (a) + Aagsp pN (@) = Iy € Hagsp(A, V),V e € Apgsp, a € V.
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Aagsp oy (a) =1 — ki

Augsp 0y (a) =1 — ko

Aagsp py (a) =15 — ks

Aagsp pN(a) =1y — kg € Hagsp(A, V),

Vee AAQSP/ aeV.

Hence, ((Aagsp), (F,oN,pP, ")) is a constant AQSP fuzzy soft function in

Hagsp(A, V) of G* for all values of e € Axqsp.

v,(08,-08,03,-0.3)

(0.6,-0.6,0.1,-0.1) (0.6,-0.6,0.1,-0.1)

(0.8,-0.8,0.3,-0.3) v, v, (0.7,-07,02,-0.2)

(0.6,-06,0.1,-0.1) (0.7,-0.7,0.2,-0.2)

v3(0.7,-07,02,-0.2)

Figure 4: G40sp(A, V) - Corresponding to the parameter eq

v,(08,-058,03,-03)

(0.7,-0.7,0.2,-0.2) {0.7,-0.7,0.2, -0.2)

(0.8,-0.8,03,-03) v, v;(09,-0.9,04,-04)

(0.7,-0.7,0.2, -0.2) (0.6,-06,0.1,-0.1)

v;(0.9,-09,0.4,-0.4)

Figure 5: G0sp(A, V) - Corresponding to the parameter e,

4.5. Example Totally Regular AQSP Fuzzy Soft Graph

Consider, an AQSP fuzzy soft graph, Gagsp(A, V), the vertex set V = (v1,v,v3,v4) and let
the corresponding parameters E = (eq, ¢;) is shown in the Figure.4 and Figure.5.
Here Gagsp(4, V) = ((Aagsp), (07,0N,07,0M)), ((Aagse), (1P, 1N, 27, 7))
is described Figure.6 (v1,vy,v3,v4)). Figure. 7 represents the corresponding edges,
(v1,v2), (v2,03), (v3,v4), (v4,v1) , for all values of e € Aqsp.
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Table 5: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(7 U1 02 U3 vy

er (08,-08, (07,-07, (07,-07, (08,-08,
03-03) 02,-02) 02,-02) 03-03)

e (08,-0.8, (09,-09, (09,09, (08, -0.8,
03-03) 04,-04) 04,-04) 03,-03)

Table 6: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

(1,7 0102 V203 U304 U401

e (06,-06, (07,-07, (06,-06, (06,-06,
01-01) 02,-02) 01,-01) 01,-0.1)

e (07,-07, (0.6,-0.6, (07,-07, (07,-07,
02-02) 01,-01) 02,-02) 02-02)

4.6. Example of AQSP Fuzzy Soft Graph

Consider, an AQSP fuzzy soft graph, Ggsp(A, V), the vertex set V = (v1,v2,v3,7v4) and let the

corresponding parameters E = (eq, e2).

Here Gagsp(A, V) = ((Aagse), (e7,0N,0%,pN)), ((Aagsp), (1, uN,7",N)) is described
by Table.5 and Table. 5 such as, (Ul, 02), (’02, 03), (03, ?)4), (01, 03), (T)l, ?)4), (04, Ul), (T)l, ?)1) ,
for all values of e € Aagsp.

4.7. Remark on Regular AQSP Fuzzy Soft Graph

From Theorem.5.7. we get the result if Gygsp(A, V) is a regular AQSP fuzzy soft graph and
((Aagsp), (¢f,oN,pP, pN)) is a constant AQSP fuzzy soft function, then GE&QS p(A, V) is aregular
AQSP fuzzy soft graph.

4.8. Remark on Totally Regular AQSP Fuzzy Soft Graph

From Theorem.5.7. similarly we get the result if G4osp(A, V) is a totally regular AQSP fuzzy soft
graph and ((Aagsp), (oF, N, pP,pN)) is a constant AQSP fuzzy soft function, then GSQSP(A, V)

is a totally regular AQSP fuzzy soft graph.

Theorem 2. Let Gagsp(A, V) = ((Aagsp), (¢F, N, o, 0M)), ((Aagsp), (U, ulN,+F,+N)), for all
values of e € Agsp. be an AQSP fuzzy soft graph with the vertex and edge membership and
non - membership submerging values. Then we prove that,

(D) Taca tdegc ,oop(av) (00 (@) = 25(Gagsp(A, V) +O(Gagsp(A, V)

(i) Xaea tde8G ,nsp(a,v) (0¥ (a) = 25(Gagsp(A,V)) + O(Gagsp(A,V))

(i) Ypea tdegc,oep(a,v) (02 (2) = 25(Gagsp(A, V) +O(Gagsp(4,V))

(V) Loca tdegc,pop(av) (02 (@) = 25(Gagsp(A, V) +O(Gagsp(A, V)

PrOOf' (1) tdegGAQsp(A,V) (U’f(ﬂ)) = ZEEAAQSP (ZaeV(Vf(ar b) + Uf(“)’

= ZIZGV tdegGAQsp(A,V) (o—f(a)) = ZHEV(EEEAAQSP (Eaev(yﬁj(a/ b) + O—EP(a)'
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= Taeatdegg,oop(av) (0 (a)) = 25(Gagsp(A,V)) +O0(Gagsp(A, V).
For non - membership AQSP fuzzy soft graph values are,

(i) tdegg,psp(a,v) (00 (8)) = Teenngsp (Lacy (12 (a,b) + 07 (a),

= Yaev tdegc,oop(av) (00 (a)) = Laev (Lecaosp (Lacv (e (a,b) + 07 (a),
= Yucatdegc,,epav) (02V(a)) =25(Gagsp(A,V)) + O(Gagsp(A, V).
Now, the Submerging membership values are,

(iii) tdegc ,o5p(A,v) (0¥ (a)) = L€ A osp (Zpev (72 (a,b) +F (a)),

= Yaev tdegc,oep(av) (0 (8)) = Lacv Lec Anosr (Lacv (76 (a,0) + ¢ (a),
= Yueatdegc, opav) (00 (a)) = 25(Gagsp(A, V) +O0(Gagsp(A, V).

For the Submerging non - membership values are,
(lV) tdegGAQsp(A,V) (pg\](a)) - ZEEAAQSP (EﬂEV(ryg\](a/ b) +£] (ﬂ)),
- ZﬂGV tdegGAQsp(A,V) (pé\l(a)) = ZLIEV ZEGAAQSP (Zaev('yg\l (a’ b) + p(lf\l(a))’

= Yacatdegc,,eoav) (00 (2)) =25(Gagsp(A,V)) +O(Gagsp(4, V). u

5. PROPERTIES OF REGULAR AND TOTALLY REGULAR AQSP Fuzzy Sortr GRAPH

Theorem 3. The size of the (ki,ky, k3, k4) regular AQSP fuzzy soft graph (Gaosp(A,V) on
G* = (V,E) is (i) pzﬁ/ (ii) p—kz, (iii) %7(3 and (iv) ka‘* where p = |V| and deg o (a) = ky,
deg 0, (a) = ko, deg p; (a) = ks and deg pg' (a) = ks

Proof.
(1) S(Gaqsp(A, V) = Leeagsp (Laro e (a,1))
since Gaqsp(A, V) is a kq regular AQSP fuzzy soft graph we get,
degol(a) = ki, Va €V,
Now, S(Gagsp(A, V) = Leeagsp (Lazo e (a,))

Yoy deg‘f (@)

deg (7
Zaev ZaeV
(11) S(GAQSP(A V)) ZEGAAQSP<ZLZ7£II Vflf\](a/ b))
since (Gagsp(A,V)) is a (ky, ko, k3, ky) regular AQSP fuzzy soft graph we get,
degoN(a) =ky, Va €V,
NOW/ S(GAQSP(A/ V)) = ZEEAAQSP (Eﬂ#b ]«lg\](ll, b))

N

Py 50

d
ZaEV & ZaGV
(iii) S(GAQSP(A V)) = ZeeAAQSP(Za7éb 7% (a, b))
since (Gasp(A,V)) is a k3 regular AQSP fuzzy soft graph we get,
degpl(a) = ks, Va eV,
Now, $(Gagsp(A,V)) = LecAnosp (Larn Ve (,))

deg p;'(a)
Yoev — 5

7
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d P
Yacv = g" @ Yaev %3
(iv) S(Gagsp(A, V) = Lec Anosr (Lazh Ve (a,1))
since (Gaosp(A,V)) is a kg regular AQSP fuzzy soft graph we get,
degpl(a) = kg, Ya eV,
Now, $(Gaqsp(A,V)) = Leeaposp (Larn Ve (a,))
deg pp' (a)
Lacv LN
d
ZaEV %e(u) = ZaEV %4
Hence, The size of the (ky, ky, k3, k4) regular AQSP fuzzy soft graph (Gagsp(A, V) on
G*=(V,E)is kal, kaz, pzﬁ and ka4 where p = |V| |
Theorem 4. If Gagsp(A, V) = ((Aagsp), (¢, 0%,0%,0N)), ((Aagsp), (1", N, 2", 9N))
be an regular AQSP fuzzy on G* = (0, u*) is a k-totally regular AQSP fuzzy soft graph.
Then, ZS(GAQSP(A, V) + O(GAQSP(A/ V)) = (U’Ppk, O'Npk, ')/Ppk, "prk) where,
(@p,oNp, A P Np) = |VI.
Proof. Since, Gqsp(A, V) is a k-totally regular AQSP fuzzy soft graph,
tdegGAQSP(A,V)UPa =k, tdegGAQsp(AfV)aNa = ka, tdegGAQsp(AIV)pPa =ks
and tdegGAQSP(A/V)pNa =ky,VaeV.
= degGAQSP(A,V)UPa + ZEEA O—EP(a)' degGAQsp(A,V)UNa + ZEEA Ué\](a)/
degcAQsp(A,V)PPa + Yeen Pl (a) and degcAQsp(A,V)PNﬂ + Yeenpl(a),Vaec V.

P P, _
= Laev 468G ,405p(A V)T 0+ Laev LecAygsp 0 8 = Laevs
N N, _
ZaevdegGAQSP(A,V)U a"’ZaeV ZEEAAQSPU a= ZIZEV‘

For submerging AQSP fuzzy soft graph values are,

Yacv degGAQSP(A,V)PPa +Yaev ):eeAAQsp PP‘Z = Yaev,
Yaev degGAQgp(A,V)PNa + Yaev XecApgsp oNa=Y,ey.
= tdegGAQSP(A,V)aPa =k, tdegGAQSP(A,V)UNa =k,
tdegGAQSP(A,V)pPa = k3 and tdegGAQSP(A,V)pNa =ky,VacV.
Hence, 25(G4 v (AQSP) + O(Ga v (AQSP)) = (¢ pk, N pk, v* pk, 4N pk).
[ ]

Theorem 5. If (Gagsp(A,V)) = ((Aagsp), (¢,cN,p%,0N)), ((Aagsp), (u”, pN, 7", 7N)) e
an AQSP fuzzy soft graph on G* = (¢*,u*) is a k-regular AQSP fuzzy soft graph.Then
{1)O(Gagsp(A,V)) =n(ly — k1), (i))O(Gagsp(A,V)) =n(la —ka),

(iii) O(Gagsp(A, V))=n(l3 — k3) and (iv) O(Gagsp(A,V)) = n(ly — k) where n = |V|.

Proof. Since (Gagsp(A,V)) is an k-regular AQSP fuzzy soft graph, then we have
degGAQSP(A/V)O-Pa =k, degGAQSP(AIV)UNa = ka, degGAQsp(A/V)pPLZ = ks and

degGAQSP(A/V)pNa = ky4,Va € V. Here, (Gagsp(A,V)) is totally regular
AQSP fuzzy soft graph, then we consider,

tdegGAQSP(A,V)UPa =1, tdegGAQSP(A,V)UNa =1, tdegGAQSP(A,V)pPa =13
and tdegGAQSP(A,V)pNa = Iy, Va € V. Now we have,

Yaca tdegcAQsp(A,v)UP” =oP pky,

Laca tdegc ,opo(a vy a = o™ pky,

Yaca tdegc ,osn(avyp’a = p¥ pks,

Yaca tdegGAQSP(A,V)(fNa =N pky.

(i) The AQSP fuzzy soft graph membership value is,

= Yaev h = Laev 468G, 06p(4,v)0 0 + O(Gagsp(4, V)

= Yaevh = Laevki + O(Gagsp(A, V)
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= nly = nky +O(Gagsp(A,V))

= O(Gagsp(4,V)) = nky —nly

— O(Gagsp(A,V)) =n(ky —h)

O(Gagsp(A,V)) = n(ly —ki).

(ii) The AQSP fuzzy soft graph non-membership value is,
= Yaevl = Yaev degGAQSP(A,V)‘TNa +O(Gagsr(A,V))
= Yaev 2 = Yaev k2 + O(Gagsp(4,V))

= nly = nky + O(GAQSP(A, V))

= O(Gagsp(4,V)) = nky —nly

= O(Gagsp(4,V)) =n(ky — )

O(Gagsp(A,V)) = n(ly —kz).

(iii) The AQSP fuzzy soft graph submerrging membership value is,
= Yaev 13 = Laev 4686 ,5p(av)P 1 + O(Gagsp(4,V))
— Yaev s = Laev ks + O(Gagsp(A,V))

— i’ll3 = i’lk3 + O(GAQSP(A/ V))

= O(Gagsp(A,V)) = nks —nl;

— O(Gagsp(A,V)) = n(ks —I3)

O(Gagsp(A,V)) = n(l3 —ks).

(iv) The AQSP fuzzy soft graph submerrging non- -membership value is,
= Yaev s = Laev 4686 ,5p(a,v)P 8 + O(Gagsp(4, V)
= Yaev s = Laev ks + O(Gagsp(4,V))

— 1’113 = le3 + O(GAQSP(A/ V))

= O(Gagsp(4,V)) = nks —nls

— O(GAQSP(A V)) =n(ks —I3)

O(Gagsp(A,V)) = n(l3 — k3). Hence the result.

6. PERFECTLY REGULAR AQSP FUZZY SOFT GRAPH
Let Gagsp(A, V) be an AQSP fuzzy soft graph on V. Then G40sp(A, V) is called as
perfectly regular AQSP fuzzy soft graph if Gagsp(A, V) = ((Aagsp), (¢F, oV, pf,pN)),
((Aagsp), (uP, uN, 4P, oN)) is a regular and totally regular AQSP fuzzy soft graph Ve; € Aaqsp.

Table 7: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(7 U1 &) U3 Uy

e (08,-08, (08,-08 (08,-08, (08,-08,
03-03) 03-03) 03-03) 03-03)

e (09,-09, (09,-09, (09,-09, (09,-09,
04-04) 04-04) 04-04) 04-04)

Table 7. represent the AQSP Fuzzy Soft Graph corresponding parameteric vertex set

Table 8: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

(#,7) U102 0203 U304 U401

e (07,-07, (07,-07, (07,-07, (07,-07,
02,-02) 02,-02) 02,-02) 02-02)

e (08,-0.7, (08,-07, (08,-07, (08, -07,
03-02)  03,-02) 03,-02) 03-02)

Table 8. explains the AQSP Fuzzy Soft Graph corresponding parameteric edge set
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6.1. Example of AQSP Fuzzy Soft Graph

From the Figure.8 we get the result of AQSP fuzzy soft graph with the condition, tdegg, ., (AV)
=25(Gagsp(A, V) +0(Gagsp(A,V)) :56+32 =288

where, 25(Gagsp(A, V) = 5.6 and O(Gagsp(A,V)) = 3.2, then, tdegc ., (A, V) = 8.8. Using
Figure.6 and Figure.7 we can get the same result of AQSP fuzzy soft graph.

v,(0.8,-08,03,-03)

(0.7,-0.7,0.2,-0.2) (0.7,-0.7,02,-0.2)

(0.7,-0.7,0.2, -0.2)

(07,-07,02,-0.2) v, (0.8,-0.8,03,-03)

(0.8,-0.8,0.3,-0.3) v,

(0.7,-07.02,-02) (07,-0.7,0.2,-0.2)

v;(0.8,-08,03,-0.3)

Figure 6: Perfectly reqular AQSP fuzzy soft graph Corresponding to the parameter eq

v,(09,- 08,04, -0.4)

(0.8,-0.7,0.3, - 0.2) (08,-07,03,-0.2)

(0.8,-0.7,03,-0.2) v,(09,- 09,04,-04)

(0.9,- 0.9,04,-04)v,
(0.8,-0.7,0.3,-0.2)

(0.8,-0.7,0.3,-0.2) (0.8,-0.7,03, -0.2)

v;(0.9,- 09,04, -04)

Figure 7: Perfectly reqular AQSP fuzzy soft graph Corresponding to the parameter eq

Theorem 6. For a perfectly regular AQSP fuzzy soft graph G,qsp(A, V) we have

((Aagsp), (oF,oN, pP, pN)) is a constant function.

Proof. From Theorem .4 and Theorem. 5 we prove that
P N P N

Gagsp(A, V) = ((Aagsp), (¢F,aN, 0", 0M)), ((Aagsp), (1, uN, 2P, ¥N)) is perfectly
regular AQSP fuzzy soft graph. |

Theorem 7. Let G4osp(A, V) be an AQSP fuzzy soft graph. Then we prove that Gosp(A, V) is
perfectly regular AQSP fuzzy soft graph if and only if the given conditions are satisfied for edges
and vertices with membership values.

(i) Ly e () = Loy e (2,Y)

(i) Lyt (X, Y) = Loy o' (2,Y)

(iif) Zx;éy ’)’5(3(/ y) = Zz;éy 'Yflzj(zl ]/)

(iv) Zx;éy Ve (x }/) Zz#y Ve (Zry) er]/ eV,e € AAQSP'

(V) 07 (x) = (), VI)U()—%N(Z)

(vii) pE () = pE(2), (vi) N (x) = (=), Y,y € V. &5 € Angsp.

Proof. Consider, G4qsp(A,V) is perfectly regular AQSP fuzzy soft graph. By definition
Gagsp(A,V) is regular AQSP fuzzy soft graph, hence it trivially satifies (i), (ii), (iii) and (iv).
Therfore we have the following,
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degGAQSP(A )Up(x) = degGAQsp(A,V)UP(Z)/
degGAQsp( UN(x) = degGAQsp(A,V)UN(Z)/
degcAQSP( V)P ( ) = degGAQSP(A,V)PP(Z)/

4egG osp(4,V)P N(x) = 4e8G 105p(A,V)P N(z),Vx,z € V,e; € Apgsp.
Thus 1mp11es the results by proposition 8.2.in the following,

Zx;éy He (x y) Zz;éy He (Z ]/)

Yty MY (%, y) = Loy i (2,y)

Zx;éy ’)’g(x/ y) = Zz;éy 75(213/)

Yty Ve (X,Y) = Lozy 70 (2,y) Yx,y €V, e € Apgsp.

by Theorem.6, (v), (vi), (vii) and (viii) also holds.

Conversely, suppose that G4osp(A, V) is an AQSP fuzzy soft graph such that it satisfies the
conditions from (i) (ii), (iii) and (iv).

V)T of(x) = degGAQSP(A,V)‘TP(Z) =T,
)UN() degcAQsp(A,V)UN(Z)Jz

degcAQSP(A V)P P(x) = degc ,p(av)P” (2),73

degG ,psp(av)P" (X) = degGAQSP(A )N (2) = 1, Vx,2 € V, e € Aagsp-

This implies that G4osp(A, V) is a regular AQSP fuzzy soft graph.

From, (v), (vi), (vii) and (viii) we get the result,

V) 07 (x) = 07’ (2) = k1,

(vi) oY (x) = 00V (z) = ko

(vi) 1 () = pL(z) =,

(viii) pN (x) = pN(z) = ks, Vx,z € V,e; € Asgsp -

Thus, ((Aagsp), (o, N, pF,pN)) is a constant AQSP fuzzy soft function.

tdeg G, 5n(Av)0" (2) = de8G ,0p(av)0” (2) + 07 (2) =11+ Ky,

tdegc ,osp(Av)0" (W) = degc ,op(av)0" (W) + 0 (w) = r1 +ky,

tdeg G, osp(A V)0 (2) = de8G ,oep(av)0 (2) + 0N (2) = 12 + ko,

tdeg G, osp(A V)0 (W) = degc ,oop(a )T (W) + oN (w) =12 + ks,

tdeg G 4 05p(A,V)P oP(z) = degGAQsp(A,v)PP(Z) +pP(z) = r3+ ks,

tdegG 4 osp(4,V)P " (w) = degGAQSP(A,V)pP(w) +pP(w) =r3+ ks,

tdeg G ,osp(4, V)PN(Z) degGAQgp(A,V)PN(Z) +0N(z) =14+ ky,

tdeg G ,osp(4,V)P oN(w) = degGAQsp(A,V)PN(w) + pN(w) =14 + kg, Vx,2 € V,0; € Augsp.

The toally regular AQSP fuzzy soft graph is,

tdeg G yo5p (4 v)0" (2) = tdegc 50410 " (W) = ki,

tdeg G o504 V)0 (2) = tdegG ,6p(av) 0 (W) = ko,

tdeg G ,osp(av)P" (2) = tdegc ,on(av)p” (W) = k3,

tdegc ,osp(a V)P (2) = tdegc, oo (a )P (w). = ky V2,2 € V,e; € Ayqsp-

Hence G4qsp(A, V) is toally regular AQSP fuzzy soft graph This implies that
Gagsp(A, V) = ((Aagsp), (F,aN,p", PN ), ((Aagsp), (uF, uN,+F,4N)) is perfectly regular
AQSP fuzzy soft graph and ((Aagsp), (¢F,c™, 0", pN)) is a constant function. therefore,
tdegGAQSP(A,V)pP(z) = tdegGAQSP(A,V)pP(w) = ky, ko, k3, and kg, Vx,z € V,e; € Apgsp.

(z
"(
N

(
N

7. AprprLICATION OF AQSP Fuzzy Sorr GRAPH

AQSP fuzzy soft graph can be used in the governing of women safety police network (WSPN) of a
city or a district or any Non safety area region. The WSPN can be utilized using AQSP fuzzy soft
graph, where the police vehicle depots are the vertices (v1,vp,v3,...v,;) and the route connecting
two police vehicles are considered as corresponding edges.
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For women safety police inspectors are positioned and the objective of the Governing problem
is to find the minimum number of women inspectors required who will inspect the police vehicle
for a particular time and particular bus stop or any region. The following description of AQSP
fuzzy soft graph will help to find the solution of Patrolling of Police vehicle Network.

7.1.

1.

Method of AQSP Fuzzy Soft Graph Women Safety Police Vehicle Network

Let V = (v1,0p,03...v;) be the vertices of AQSP fuzzy soft graph police vehicle depots
in a particular women safety vehicle network corresponding to the women Institutions,
Companies, Colleges and Working places especially in bus stops.

. We consider the edges as women working regions E = (v1v, 0103, 0204, ...0m 0y ). The vertices

membership and non-membership values of the police vehicle V; is determine as
Vi e AAQSP fOT i=1,2,..n

. Now, define a term safety of women work is satisfied, which is the minimum number of

women saved from particular people who distubs them while they stay or travel or work in
different places.It is denoted as S vertices.The vehicle route is denoted by edges R = v;v; in
Alternate quadra submerging polar fuzzy soft graph.

. Find the membership values of the women safety vehicle route v;v; between the range [-1,1]

using AQSP fuzzy graph soft graph with the given conditions if
(i) S > R,for AQSP membership values (ii) S < R,for AQSP non-membership values.

C@u(ny) <o ()N (Y),  b) e (xny) = 0 (x) Ve (y),

@1 (xy) <pd () ApE(y), (AN (xy) > pN(x) Vel (y), foralle € Aygsp and
for all values of x,y =1,2,3, ..., n.

. Let the capacity of five women police vehicle depots as vertices v; = 4,vp = 3,v1 = 5,04 =4,,

number of women exist in the spot facing dangerous situation denoted as edges, v{,v, = 55
, 02,03 = 95, v3,0v4 = 100 , vg4,v1 =92 are tabulated below.

. The score values are measured by the AQSP score formula which gives the result of low

and high self-esteem influential person, 1 (llp Yol — ZLN Yo
d d

Table 9: Tabular representation of AQSP Fuzzy Soft Graph parameter vertex set.

(o,p) v 02 U3 4

e (06,-08, (07,-07, (08,-09, (06, -009,
01-03) 02,-02) 03,-04) 0.1,-04)

e (07,-09, (08,-0.6, (09,-0.8, (0.8,-0.8,
02-04) 03,-01) 04,-03) 03-03)

Score 0.500 0.900 0.925 0.900

The score values of the women needed safety in different spots are given with membership
and non membership values of the edges are v;,v, = 0.550 , vp,v3 = 0.950, v3,v4 = 1.000 ,
v4,01 = 0.925. The police vehicle v3 = 3 is the important vehicle to be in the spot v3,v4 = 1.000
where women in that area need safety. The bar diagram given below shows the result.
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Table 10: Tabular representation of AQSP Fuzzy Soft Graph parameter edge set.

({7200) U102 V203 U304 0401

el (07,-07, (07,-07, (1.0,-07, (07,-07,
02,-02) 02,-02) 05,-02) 02,-02)

e (08,-07, (08,-07, (09,-10, (0.8, -0.7,
03,-02) 03,-02) 04,-05) 03,-02)

Score 0.550 0.950 1.000 0.925

8. CoNCLUSION

The Alternate Quadra Submerging Polar (AQSP) fuzzy graph is introduced with the basic per-
ception of Fuzzy soft graphs. In this article, we introduce the new module AQSP fuzzy soft
graphs with suitable definitions, theorems, examples, and properties. The membership and
non-membership values of AQSP fuzzy soft graph is introduced with submerging level of confi-
dence [-0.5,0.5]. The introduction of this new module AQSP fuzzy soft graph is an indispensable
concept that can be rather developed into interdisciplinary subjects. The main purpose of this
new graph is to find the reliable corresponding parametric membership values. The regular,
totally regular, and perfectly regular AQSP fuzzy soft graph combinatoric concepts and properties
can be applied in Combinatoric subjects, Applied Mathematics, Statistics, Probability, Artificial
intelligence, Approximate reasoning, Teaching learning projects and Mathematical psychology.
Different types of AQSP fuzzy soft graphs and the Network method of Governing the women
safety vehicle in different spots are presented specifically. Finding the important police vehicle,
connected routes and spots are the extent of the AQSP fuzzy soft graph. In future the extension of
the AQSP fuzzy soft graph can be developed in Decision making analysis, medical diagnosis, and
machine learning. The regularity of AQSP fuzzy soft sets and graphs are applicable in real life
situations which are uncertain. The combinatoric membership and non-membership submerging
values can be found using corresponding parameters in different fuzzy fields.
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Abstract

When all experimental runs cannot be done under homogeneous conditions, blocking can be utilized
to increase the power for testing treatment effects. In many real-life environments, there is at least
one factor that is hard to change, leading to a split-plot structure. This paper demonstrates how to
generate certain graphs using main-plot and sub-plot analyses, as well as providing a catalog. As a
result, during situations where the candidate set is too huge to be tractable, the design of split-plot
experiments becomes computationally feasible. The designs were considered ideal because they were
capable and efficient in estimating the fixed effects of the suitable statistical model given the split-plot
design structure. The Split-Plot Design (SPD) is the complete block design which plays an important
role in the fields of agriculture, medicine, and industries. This SPD is specifically suited for a two-
factor experiment that has more treatments than can be accommodated by a complete block design. In
an SPD, one factor is assigned to the main- plot. The assigned first factor is called the main - plot
factor. The main- plot is then divided into subplots and the second factor is called the sub - plot factor.
SPD is most used for (i) few experimental materials may be rare while the other experimental
materials may be available in large quantity, (ii) the levels of one or more treatment factor or easy to
change and the alteration of levels of other treatment factors are costly or time-consuming. Given the
extensive study done in graph theory, it has developed to be a very broad subject in mathematics.
Graphs are important because they are a visual way of expressing information. A graph shows data
that is equivalent to many words. A graph can convey information that is difficult to express in
words. A bipartite graph is a type of graph in which the entire graph may be divided into two bipartite
sets, with edges connecting vertices in one set to vertices in the other. Vertex coloring is the procedure
of assigning labels or colors to each vertex in a graph. The data set was also manually analyzed to
validate the software-analyzed outcomes. R gave the same results as the manual analysis, showing
that they were both correct. R is mainly command-based. The proposed approach is demonstrated
using agricultural and industrial examples.

Key Word: Split-plot design, complete bipartite graph, colored graph.
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1. Introduction

Tamil Nadu is one of the leading rice-growing states in India and has been successfully cultivating rice
since ancient times as the state has all the favorable climatic conditions suitable for rice cultivation. Rice
research was initiated in Madras State to increase rice production and productivity (mixed).1902 at
Samalkota in East Godavari district was extended to 12 more places. This study uses primary data to
determine the rice production of the Salem district of Tamil Nadu. The present study aims to analyze
rice cultivation using different levels of nitrogen. The constraint analysis is applied to find out the
problems of paddy cultivation.

A split plot design and some graphs were adopted for this present study. The split-plot design
originated in the field of agriculture. Experimenters applied one treatment to a large area of land, called
a whole plot, and other treatments to smaller areas of land within the whole plot called a subplot. Split
plots have two types of factors Hard-to-change (HTC) applied to the whole plots and Easy-to-change
(ETC) applied to the subplots. In such case different sizes of plots are required and the resulting design
is known as Split Plot Design (SPD). In 1925, Fisher developed these designs for the purpose of
agricultural experiments.

One of the fastest-expanding sciences in modern technology is graph theory. Graphs are commonly
used in applications of many fields to represent different objects and their relationships. The declaration
of an object vertex serves as the graph's visual representation, while an edge represents the relationships
between objects. Graph theory has recently become established as a significant mathematical tool in a
wide range of fields, including functional research, chemistry, genetics, and linguistics, as well as
electrical engineering, geography, sociology, and architecture of themselves.

Wooding W M [1] has discussed split-plot designs characteristics and applications. To design
the first section, models and least squares are reviewed. The main part shows how a fundamental split-
plot design is created through a process of "evolution,” starting with a completely random model and
progressing through a randomized blocks design to a split-plot while using the same set of runs. George
Box and Stephen Jones [2] have evaluated the applicability of split-plot designs for the experimental
setting and have concentrated on the use of statistical experimental designs in designing goods that are
robust to environmental factors. They conclude that the split-plot and strip-block designs are valuable
for creating strong products. Peter Goos and Martina Vandebroek [3] have developed an exchange
algorithm for constructing D-optimal split-plot designs and the resulting designs are analyzed.
Natalino Calegario et al. [4] have analyzed the split-split-plot design and established the impact of
fertilizer concentration on the establishment of Begonia and Petunia. Then they draw the conclusion
that the pH values declined with fertilizer concentration over time and the EC values increased over
time, resulting in values that limited nutrient availability and plant growth.

Bradley Jones and Peter Goos [5] have suggested a fresh technique for producing ideal split-plot
designs. These split-plot designs are best when they are effective at estimating the fixed effects of the
proper statistical model, given the structure of the design. Pwasong A D and Choji D N [6] have
analyzed the rabbit feeds data obtained from the Department of Agricultural Science, Federal College
of Education Pankshin and determined that there is any significant variation in the categories of feeds
given. The result illustrates that there was no significant different between the various types of feed
utilized to feed the rabbits.

Bradley Jones [7] has suggested for the use of split-plot designs in industrial applications are
provided after an examination of current developments. Johannes Ledolter [8] has reviewed the
factorial split-plot design and fractional factorial split-plot designs experiments and uses several
illustrative examples to illustrate why they frequently occur in industrial investigations. Abhishek K.
Shrivastava [9] has presented an effective method for constructing split-plot design catalogues by
transforming the design isomorphism problem to a graph isomorphism problem utilizing a new graph
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representation. Derya Dogan and Pinar Dundar [10] have introduced the new concept of average
covering number of a graph and establish the brief relationship between the average covering number
and some other graph parameters.
David I ] and Adehi M U [11] have utilized a 21x52 split-plot experiment with three replicates for
comparison. Here they review the sorghum thresher's improved threshing efficiency.Vahide

Hajihassani and Yadollah Rajaei [12] have used five agricultural machinery companies that have existed
accepted in the Tehran Stock Exchange since (1388-1390) and a sample that is representative of society,
conduct a split-plot design model study on the factors impacting liquidity accepted in stock exchange
Agricultural Machinery companies. David I J et al. [13] have presented the steps for the estimated
generalized least square (EGLS) technique, which estimates the parameters of a nonlinear split-plot
design (SPD) model utilizing theoretical iterative Gauss Newton via Taylor Series expansion. Yoshimi
Egawaa et al. [14] have discussed the 4-connected graph in triangles and let G be a 4-connected graph,
and let ETG) denote the set of those edges of G which are not contained in a triangle, and let E«(G)
denote the set of 4-contractible edges of G. We show thatif 3< |E7(G)| <4 or |IE7(G)| 27, then | E(G)|
2 (IETG)! +8)/4 unless G has one of the three specified configurations.

Table 1: Background of this research

The related articles of Split-plot design, application of split-plot design,

Review graph theory, vertex coloring and split-plot design with colored graph
are given.

Example 1 Yield of paddy in different level of nitrogen and the given data are
collected from the agriculture filed of salem district.

Example 2 Application method of paint in different mixing level and the given data

are collected from different hardware’s in salem district.

2. Preliminaries

2.1 Split-plot Design

A randomized complete block design with two factors is no longer a randomized complete block design
because the order of experiments is controlled to obtain observations in each treatment under each
block. Splitting the randomization of an experiment to obtain observations under the treatment of one
factor is called a split-plot design.

2.2 Complete Bipartite Graph
A complete bipartite graph is a graph whose vertex set V can be divided into two subsets V; and V,

such that no edge has both endpoints in the same subset and every edge is connected to every vertex of
the first subset and every vertex of the second subset.

2.3 Colored Graph

In a graph, the procedure for assigning the labels (colors) to the nodes or edges or areas is known as
graph coloring. In this assignment no two adjacent vertices or adjacent edges or adjacent areas are
getting the same color.

3. Statistical Analysis of Split Plot Design

The liner model for Split Plot Design is.
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Yijk = +1+t+sp +tsj + 0, +gj, ¥V i=12,..1; j=1,2,...0;,k=1,2...n.
Where, Y;j;, is the observation corresponding to k** level of sub plot factor (B), j*"* level
of main plot factor (A) and i*" replication.

 is general mean effect.

1; is i*" replication effect.

t; is j*" main - plot treatment effect.

S is k™ sub - plot treatment effect.

tsj is interaction effect.

The error components 9;; and ¢;j, are independently and normally distributed with mean zero and

respective variance 62 d andoZe.
3.1 Main-Plot Analysis

This analysis part is based on the comparisons of main plot totals:
The levels of A are assigned to the main plots within blocks based on RBD and the sum of squares are

given below,

. Correction factor (CF) = %
. Total sum of square (SST) = ¥X? — CF
- Replication sum of square (SSR) = % —CF
. Main-plot sum of square (55 (MP)) = 24 CF
™m 2
- Main-plot error sum of square (SSE1) = 2R _ CF—SSR - SS(MP)

3.2 Sub-Plot Analysis

This analysis part is based on the comparisons of sub plot totals:

. Sub-plot sum of square (5S (SP)) = % —CF
. Interaction effect sum of square (AXB) = ﬁ — CF — SSA — SSB
. Sub-plot error sum of square (SSE2) = SST- (SSR + SS (MP) + SSE1+ SS (SP) + (AXB))

The analysis of the variance table is outlined as follows

Table 2: ANOVA for split-plot designs

Sv Df Ss Mss F-Ratio
Replication  (r-1) S2 = SSR F Sk
R = —
SSR r—-1 R &, ~Fr-1),c-1v-1)
MP(A) (v-1) , __SSA Si
SA = 1 FA = 2
SSA -1 St ~Frv-n,0-1v-1)
MPE (E1) (r-1)(v-1)  SSE1 g _ SSE,
E"r-Dw-1) -
SP (B) (n-1) SSB . SSB S&
(n—-1) Sg, ~Fy-n,0-1(n-1)
IE(AB) (v-1)(n-1)  SSAB SSAB F,. = Sp

Sé2~F(v—1),(r—1)(n—1)

St = G- Dm-1)
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SPE(E:) v(r-1)(n-1)  SSE2 52 = SSE,
vr—1(n-1)

Total rvn-1 SST -

3.3 Flow — Chart

Split-Plot Design
Ex.1: Yield of paddy for nitrogen level
Ex. 2:Study of pigment dispersion

Main-Plot
Ex. 1: Replication x Variety Ex. 1: Variety x Nitrogen
Ex. 2: Replication x Application method Ex. 2: Application method x Mixing level
Main-Plot
Ex. 1: Complete bipartite graph Ex. 1: Complete bipartite graph
Ex.2: Colored graph Ex.2: Colored graph

Theanalysis is verified with ‘R’ program.

Figure 1: Flow chart

4. Construction of Split-Plot Design using Complete Bipartite Graph

4.1 Method for Construction of Complete Bipartite Graphs

. Let us consider the main-plot and sub-plot as vertex set S . This vertex set can be
divided into subsets of S;and S,.

. In main-plot, the replication is considered as first subset S;and variety as second
subset S,.

o Now consider the first vertex of first subset and then R, is connected to all the

vertices of second subset through edges.

o Next consider the second vertex and it is connected to all the vertices of the second

subset through the edges.

. Similarly, all the remaining vertices of the first subset are connected to all the vertices

of second subset through the corresponding edges.

. Finally, we get the complete bipartite graph for main-plot and sub-plot.

411 Application
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This example is to determine the yield response in N fertilization between different paddy varieties,
three varieties of Paddy (Vi = ADT 36, V:=ASD 16, V3 = IR50) are the treatments of main plot, nitrogen
rates such as 0, 30 and 60 Kg/ha are the sub- plot treatments. The study was replicated four times and
the primary data gathered for this experiment from the agricultural field of salem district of tamil nadu

in India and shown in table 3.

Table 3: Replication wise data for yield of paddy (Kg/ha)

Replication R: R> Rs R4
Variety Nitrogen (N1)

Vi 15.8 19.2 13.2 13.2

V2 20.8 15.3 20.5 13.8

Vs 15.9 16.3 16.2 12.8
Nitrogen (N2)

Vi 17.8 20.5 14.8 13.8

Va 24.8 20.8 18.8 17.8

Vs 18.5 16.1 20.8 12.2
Nitrogen (Ns)

Vi 21.1 24.8 13.8 18.8

Va 30.5 19.2 25.7 15.2

Vs 18.3 18.2 22.8 10.8

Table 4: Replication x variety (RxV) for main — plot

Vi V2 Vs Replication Total
Ru 54.7 76.1 52.7 183.5
Ro 64.5 55.3 51 170.8
Rs 41.8 65 59.8 166.6
R4 45.8 46.8 35.8 128.4
Variety Total 206.8 243.2 199.3 649.3

The procedure for constructing the complete bipartite graph mentioned in section 4.1 is followed for
the main-plot and sub-plot for the above experiments and then the finalized complete bipartite graph.

From the above table 4 as vertex is fixed as S, which is divided into two subsets, figure 2 shows that S
(replication) and S: (variety). Figure 3 shows that the first replication vertex (R:) and it is connected to
all the vertices of variety (V1, V2 and Vs) through the edge values 54.7(Y1), 76.1(Y2) and 54.7(Y3).
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Replication Variety
Ri® LAY
Re
oV
R;@
R:@ oy;

Figure 2: Graph of subsets

Replication

Ri

R:@

R;@

Ri@

Variety

Figure 3: Graph for first replication (R1)

Figure 4 shows that the second replication vertex (R,) and it is connected to all the vertices of variety
(V1,V, and V3) through the edge values 64.5(Y;) 55.3(Y,) and 51(Y;). Similarly, figure 5 shows that the
third and fourth replication vertices R; and R, are connected to all the vertices of variety (Vy, V,and V)
through the corresponding edge values (Y3, Y,and Y3) 41.8,65, and 59.8 (Y3, Y,and Y3) 45.8, 46.8 and 35.8.

Replication Replication

Ri®@

Ri@—

R:@ Vs

Figure 4: Graph for second replication (Rz) Figure 5: Graph for third and fourth replication (Rsand Ra)

Finally, figure 6 shows that the complete bipartite graph of variety and replication for main - plot.
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Replication Variety

Fig. 6: Graph for complete bipartite graph of main - plot

Table 5: Variety x nitrogen (V x N) for sub-plot

N1 N: Ns Variety Total
Vi 61.4 66.9 78.5 206.8
Vs 70.4 82.2 90.6 243.2
Vs 61.2 67.6 70.5 199.2
Nitrogen Total 193 216.7 239.6 649.3

The construction of complete bipartite graph for the sub-plot are given below.

From the above table 5 as vertex is fixed as G, which is divided into two subsets, figure 7 shows that
Gi(variety) and Gz (nitrogen). Figure 8 shows that the first variety (V) is connected to all nitrogen
(N3, Nyand N3) through the values 61.4(Y;), 66.9(Y;) and 78.5(Y;).

Variety Nitrogen Variety Nitrogen

vie N Vi 644 s

V.0 L)) V,e

V:e N

Figure 7: Graph for vertex subset Figure 8: Graph for first variety (V1)
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Similarly, figure shows that the second and third variety V, and V; is connected to all the nitrogen (N;, N,
and N3) through the corresponding values 70.4, 82.2 and 90.6 (Y;,Y, and Y3), 61.2, 67.6 and 70.7 (Y, Y,
and Y3).Finally, figure 10 shows the complete bipartite graph for variety and nitrogen.

Variety Nitrogen

Variety Nitrogen

Vie Ni

Figure 9: Graph for second and third variety (V2 and V3) Figure 10: Complete bipartite graph for sub — plot

The sum of squares for main- plot:

o Correction factor (CF) = 17910.8469

o Total sum of square (SST) = 637.46

o Replication sum of square (S5SR) = 187.709

. Variety sum of square (SSV) = 91.9006

. Main-plot error sum of square (SSE1) = 175.4527
The sum of squares for sub-plot:

o Nitrogen sum of square (SSN) = 90.4906

o Interaction effect sum of square (VxN) =10.4194

. Sub-plot error sum of square (SSE2) = 81.4869

The ANOVA table for split-plot design is shown in below table:

Table 6: ANOVA table for split-plot design

Sv Df Ss Mss F-Ratio P-Value
Replication 3 187.7098 62.570 2.1397 0.196473
Variety (A) 2 91.9006 45.950 1.5714 0.282634
Main - plot error(E1) 6 175.4527 29.242 - -
Nitrogen(B) 2 90.4906 45.245 9.9945 0.001204**
Interaction (AB) 4 10.4194 2.605 0.5754 0.684090
Sub - plot error(E:z) 18 81.49 4.527 - -

Total 35 - - - -

The table value of replication and variety are greater than the calculated values. So, the null hypothesis
is accepted. There is no significant difference between the four replications and three varieties. The table
value of nitrogen level is greater than the calculated value. So, the null hypothesis is accepted. There is
no significant difference between the three nitrogen levels. The table value of the interaction effect is
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also greater than the calculated value. So, the null hypothesis is accepted.

There is no significant difference between the interaction effects. The P-value of the above
experiment is greater than the 5% level of significant. Therefore, the null hypothesis is accepted. There

is no significant difference that occurred in the above experiment.

4.2 Method for Construction of Colored Graph

o Let us consider the main-plot and sub-plot factors as the vertex set S;and S, . Here the

common factor assigned as S; and the other factor assigned S,.

o The vertices of set S;and S, are colored using the vertex coloring and the vertices are

differentiate with different colors. Now consider the first vertex of S; and itis connected

to the corresponding vertices of S, through edges.

o Next the second vertex of S;which is connected to the corresponding vertices of S,
through edges.
o Similarly, all the remaining vertices of the first set are connected to the corresponding
vertices of second set through the corresponding edges.
o Finally, we get the colored graph (vertex coloring graph) for main-plot and sub-plot.
4.2.1 Application

The test is designed to examine pigment dispersion in paint. Three different mixing levels of a particular
pigment are studied. The procedure consists of three application methods (brushing, sparing, and
rolling) and measured the percentage reflectance of a pigment. Four days required running the
experiment from hardware shops in salem district and the data obtained below.

Table 7: Replication wise data form mixes level and application method of paint

Replication R: R: Rs Ra
Application Method Mixing level (M)
A 65.8 70.2 65.2 69.2
Az 69.8 65.3 70.5 63.8
As 70.8 67.3 68.2 69.8
Mixing level (M:)
Ai 68.7 73.5 69.9 66.8
Az 74.8 70.8 68.8 67.8
As 50.8 69.1 71.8 63.2
Mixing level (Ms)
Ai 72.2 77.8 71.6 70.8
Az 81.5 69.2 75.7 65.2
As 69.3 71.6 77.8 60.8
Table 8: Replication x application method (RxA) for main - plot
Ai A2 As Replication Total
R: 206.8 226.1 1909 623.8
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R2 221.5 2053 208 634.8
Rs 206.7 215 217.8 639.5
R4 206.8 196.8 193.8 597.4
Application Total ~ 841.8  843.2 810.5 2495.5

Table 9: Application method x mixing (AxM) for sub-plot

M; My Ms Application Total
A 270.4 219 292.4 841.8
Az 269.4 282.2 291.6 843.2
As 276.1 254.9 279.5 810.5
Mixing Total 815.9 816.1 863.5 2495.5

The procedure for constructing the colored graph mentioned in section 4.2 for main-plot and sub-plot
for the above experiments and then the finalize.

Here we take main-plot factors (replication and application) and sub-plot factors (application method
and mixing level) as the set S;and S,. Figure 11 shows that the Here S; consists of the common factor
which is application and S, consists of factors such as replication and mixing level. Next, figure 12 shows
that the first vertex A; of first set and then A; is connected to the corresponding (replication and mixing)
vertices of the second set through edges.

®R1

Ao

Ase oM

oM

e M

Figure 11: Colored graph of vertex set

Figure 12: Colored graph for first application method

Next figure 13 shows that the second vertex A, of first set and it is connected to the corresponding
vertices of second set. Similarly, figure 14 shows that the third vertex A; of first set are connected to the
corresponding vertices of second set and finally, we get the colored graph (vertex coloring graph) for

main-plot and sub-plot.
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@R

Figure 13: Colored graph for second application method ~ Figure 14: Colored graph for main — plot and sub - plot

The sum of squares for main-plot:

o Correction factor (CF) = 172986.6738

o Total sum of square (SST) = 975.3762

o Replication sum of square (SSR) = 118.269533

o Application method sum of square (5SA) = 56.970367

o Main-plot error sum of square (SSE1) = 173161.9137
The sum of squares for main-plot:

. Sub-plot sum of square (SSM) = 125.348

. Interaction effect sum of square (AxM) = 87.0449

o Sub-plot error sum of square (SSE:z) = 334.2397

Table 10: ANOVA table for split- plot design

Sv Df Ss Mss F-Ratio P-Value
Replication 3 118.2695 39.4217 0.9330 0.48062
Application method(A) 2 56.97037 28.4852 0.6742 0.54435
Main Plot Error(E1) 6 253.503 42.2505 - -
Mixing(M) 2 125.3487 62.674 3.3752 0.05691
Interaction (AM) 4 87.0449 21.7612 1.1719 0.35616
Sub-plot Error(Ez) 18 334.2397 18.5688 - -
Total 35 - - - -

The table values of replication and application method are greater than the calculated values. So, the
null hypothesis is accepted. There is no significant difference between the four replications and three
application methods. The table value of mixing level is greater than the calculated value. So, the null
hypothesis is accepted. There is no significant difference between the three application methods. The
table value of the interaction effect is also greater than the calculated value. So, the null hypothesis is
accepted. There is no significant difference between the interaction effects.
The P-value of the above experiment is greater than the 5% level of significant. Therefore, the null
hypothesis is accepted. There is no significant difference that occurred in the above experiment.
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Table 11: Table for comparative study

ANOVA Example 1 Example 2
Null hypothesis is Null hypothesis is
Traditional method
accepted accepted
Null hypothesis is Null hypothesis is
R-Software method
accepted accepted

5. Conclusion

Many of these real-world agricultural and industrial experiments involve factors called HTC. In these
situations, experimenters have realized that the most efficient way to conduct an experiment is to fix
the level of the hard-to-change factor and then run all or some combination of the easily changeable
factors. This is repeated a few times. As we have seen, this leads to a split-plot design. Accounting for
the split-plot nature of the design is equally important in the analysis of the data because the split-plot
test contains two error terms. The present paper is classified into three parts namely rice production,
nitrogen level and variety of rice in salem district. Constraint analysis is used to increase rice
production. To construct and analyze the SPD using some special type of graphs through numerical
esxamples from different field and the hypothesis testing is compared by the split-plot ANOV A method
with software using method. When comparing the results of these methods, they produce the same
results. Here some special type of graphs is used to construct the SPD. In future, there is an idea to
expanding this procedure to other experimental designs such as strip-plot design and incomplete block
designs etc.

List of Abbreviation

Sv - Sources of variance

Df - Degrees of freedom

Ss - Sum of squares

Mss - Mean sum of squares
MP(A) — Main -Plot(A)

MPE(E1) — Main — Plot Error (E1)
SP(B) — Sup -Plot(B)

SPE(E2) - Sup — Plot Error (E2)
IE(AB) - Interaction Effect (AB)
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Abstract

Time-dependent stress-strength reliability engages with the chance of survival for systems with dynamic
strength and/or dynamic stress. When a system is allowed to run continuously, each run will cause
a change in the strength of the system. The repeated occurrence of stress on the system over each
run will affect the survival capacity of the system. In this paper, we consider the distribution of time
taken for the completion of a run by the system follows gamma and the stress or strength of the system
follows a finite mixture of lifetime probability models. Here we consider two cases in which the first
case deals with stress and strength following a finite mixture of Weibull distribution and in the second
case the stress and strength is assumed to follow a finite mixture of the power-transformed half-logistic
distribution. Moreover, the strength of the system is assumed to decrease by a constant and the stress
acting on the system is assumed to increase by a constant over each run. We obtained the expression of
the stress-strength reliability function and explained the ML and Bayesian methods for the estimation of
the reliability at various time points.

Keywords: Time-dependent Stress-strength reliability, Gamma Renewal process, Finite mixture
distribution, Expectation Maximization algorithm, Markov Chain Monte Carlo method.

1. INTRODUCTION

In reliability theory, stress-strength reliability measures the chance of the strength of a system
to overcome the stress acting on it. Every object or individual has its own strength for survival.
When they are subject to any kind of stress, they will survive only if their strength surpasses the
stress. Stress-strength reliability model can be used to compare the effectiveness of two treatments,
to compare the life length of two equipment, etc. Let Y denotes the random strength of the system
under consideration and X is the stress acting on that system. Then the stress-strength reliability
of the system is denoted by R and is defined as R = P[X < Y].

The concept of stress-strength reliability theory was originated by Birnbaum [2]. Kotz et.al.
[11] discussed point and interval estimation of stress-strength models using different approaches.
Baklizi and Eidous [1] proposed an estimator of R based on kernel estimators of the densities of
X and Y. Zhou [20] illustrated the estimation of R using the bootstrap method. Recently many
authors discussed classical and Bayesian methods of estimating R for different probability models,
see Pakdaman et al. [12] Xavier and Jose [15,16], Xavier et al. [17, 18] and Jose et.al. [7,10].
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Nowadays, research on stress-strength reliability estimation focuses on the case where the
stress, strength or both changes with respect to time, and hence the term time-dependent stress-
strength reliability. Let Y (¢) represent the strength of a system at time t and X(t) be the stress on
the system at t. Under the time-dependent stress-strength reliability model, we are interested in
the estimation of the stress-strength reliability function

R(t) = P[X(t) < Y(1)], @

which gives the chance of survival of the system at time ¢. For example, quite often we have to
download files to mobile phones. The downloaded files consume the memory space of the phone
corresponding to the size of that file. It will cause a reduction in the speed of functioning of the
phone. So each time we download a new file, the number of files piled up in the phone memory
which will reduce the functioning speed of the phone.Time dependent stress-strength reliability
models were studied in Yadav [19], Gopalan and Venkateswarlu [5, 6], Eryilmaz [4] and Siju and
Kumar [13, 14], Jose and Drisya [8, 9] and Drisya et al. [3].

Time-dependent stress-strength reliability engages with the chance of survival for systems
with dynamic strength and/or dynamic stress. When a system is allowed to run continuously,
each run will cause a change in the strength of the system. The repeated occurrence of stress on
the system over each run will affect the survival capacity of the system. In this paper, we consider
the distribution of time taken for the completion of a run by the system follows gamma and the
stress or strength of the system follows a finite mixture of lifetime probability models. Here we
consider two cases in which the first case deals with stress and strength following a finite mixture
of Weibull distribution and in the second case the stress and strength are assumed to follow a
finite mixture of the power-transformed half-logistic distribution. Moreover, the strength of the
system is assumed to decrease by a constant and the stress acting on the system is assumed to
increase by a constant over each run.

This paper is organized as follows. Estimation of stress-strength reliability function with
gamma cycle times under random fixed stress and strength is discussed in Section 2. The
expressions for stress-strength reliability function under a finite mixture of Weibull and a finite
mixture of power-transformed half-logistic distributions are also derived. A brief description of
the EM algorithm for estimating R(t) is given in Section 3 with numerical illustrations based on
simulated data. Computation of the Bayes estimate of R(t)using the Markov Chain Monte Carlo
method is illustrated in Section 4 with a numerical illustration based on simulated data.

2. ESTIMATION OF R(f) BASED ON FINITE MIXTURE DISTRIBUTION

Consider a system that is allowed to work continuously. The system executes several runs during
the time period of observation say (0,t). The time taken for completion of a run by the system
is a random variable and we call it cycle time. In this paper, we assume that the cycle times are
gamma-distributed. Hence the total number of runs within the entire time period will have a
renewal process. Let the cycle time Z follows gamma distribution with p.d.f.,

akzk—le—az

flz) = W;Z > 0. 2)

Then the number of runs during the time interval (0,t), say N(t)has the following distribution.

Py(t) = p[N(t) = n]
(n+1)k—1 r
— oty (a:') i =0,1,2, .. 3)
r=nk :

Let X; be the stress imposed on the system during j cycle time and the corresponding
strength of the system be Y;. Also let the initial strength of the system, say Y be a continuous
random variable with density function h(y() and the initial stress on the system X also be a
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continuous random variable with p.d.f g(xg). The system is allowed to run continuously and
when it runs, its strength decreases by ap and the stress increases by by on completion of each
run. Hence, the probability that the system works after n runs is given by

R, = P(X1<Y)N(Xa<Yo)Nn---N(Xy <Yy))
= P((x0+bo <yo—ao) N (x0+2by < yo—2a9) NN (x0+nby < yo—nao))
= P(xo+n(ap+bo) < yo)

— o roo ; o 4
/0 ~/X0+"(“0+bo) (y0)8& (x0)dyodxo @

Therefore the reliability of the system at time ¢ is

R() io Pa(t)Ry

= P,(t =" h dyod 5
r;) ()/0 A0+n(a0+bo) (y0)g(x0)dyodxo (5)

00 at (n+1)k—1 (at)r o 00
= - ~— h dyod 6
n;)e )3 o /0 /xo+n(ao+bo) (y0)g(x0)dyodxo (6)

r=nk

In particular, consider the case that stress acting on the system do not vary throughout the
observation period as well as the strength of the system decreases by a constant say, ag9. Then the
probability of functioning of the system after n runs is given by

Ry = Pl(X1<Y1)N (X2 <Ya) N0 (Xn < V)]
= P[(xo<Y0—ao)ﬂ(xo<Y0—2a0)ﬂ--~ﬂ(x0<Y0—na0)]
P

[(xo + nag < Yp)]

= / h(yo)dyo @)
J Xo+nag
Therefore, the value of R(t) can be obtained as
R(t) = Y Pu(t)Ru
n=0
fo'e) (Yl+1)k—l r 0
= Yoo v @/ 1 (yo)dyo.
n=0 r=nk r Xo+nag

2.1. R(t) based on finite mixture Weibull distribution

Let the initial strength of the system follow a mixture of Weibull distributions with p.d.f.

i 44 o

h(yo) =Y mgyg*e*yo/ﬁf,yo >0,0>0,0<7m <1,B;>0;i=12,..,m. ®)
i=1 Pi

and initial stress on the system follows a mixture of Weibull distribution with p.d.f.

& 12 1 ® /9.

g(xo) =) pjgx(")‘_ e "0/, xg > 0,0 >0,0<p;<1,0;>0;j=1,2,..,m. )
j=1 Y

When the system runs, its strength decreases by ay and the stress increases by by on completion
of each run. The time taken for completion of a run is assumed to be a gamma variate. Then the
chance for survival of the system after # runs is

mq my a
Ry=Y m Yy pje (nootbo))™/bisyy = 1,2, . (10)
-1 j=1
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with

RO—ZN,ZpJﬁZ+9 (11)

Then the corresponding stress-strength reliability function is obtained as

r nm my ,Bz

R() = “”Z _ Z @me

o~ (n(ag+bo))*/ B (12)

0 (
+ Z e—at Z
n=1 =

Change in R(t) corresponding to change in different parameters stress and strength distribu-
tions are given in Figure 1. From the figure, it is clear that the value of R(t) increases with an

Variation in R{t) with respect Variation in R{t) with respect Variation in R{t) with respect
to change in strength parameters to change in strength parameters to change in strength parameters
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— Gi=02 — d=02
== G1=04 0
= | — G1=08 El 2
= see G1=038 o
3
o | = 2
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= = @ =
= = o o =
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Figure 1: Variation in R(t) corresponding to change in parameters

increase in shape parameter values and decreases with an increase in scale parameter values of
strength when the initial strength of the the system is Weibull-distributed. Also R(t) increases
with an increase in shape parameter values of stress distribution.

As a particular case assume that the strength of the system has a mixture Weibull distribution
with parameters (a,f;);i = 1,2,..my, and the stress is fixed. Then the chance of the system
working after the completion of n runs is,

R, = o—(xo+nag)* /B (13)
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and the corresponding stress strength reliability is obtained as

ad —at (n+1)k71 (ﬂt)r m «/B.
R(t) = Z e 2 . Z ﬂie_(x0+"“°) Bi (14)
n=0 r=nk o=l
my ) (n+1)k—1 r ,
— 7 Z e @e—(xo-ﬁ-"ﬂo)“/ﬁi (15)
i=1 n=0 r=nk '

2.2. R(t) based on finite a mixture of power transformed half logistic distribution

The p.d.f of the power transformed half-logistic distribution (Xavier and Jose (2020)) is given by

-2

y—1,—6y" —8y7 < . )

) = 4 2 (1+e®7) 7, 0<y<e;6>09>0. »
0 otherwise.

Now, let us assume that initial strength ( Y ) of the system follows a mixture of power
transformed half logistic distribution with p.d.f

h 272251171#% ! 701% (1“‘375]'% )7 ’ (17)
i=1

0<yy)<00,0,;>00<m <19, >0,i=1,2,..,m. Itis also assumed that initial stress on
the system ( Xy ) follows the mixture of power transformed half logistic distribution with p.d.f

& 121 _5yix S I\ -2
g(x0) = ) p20ymaj¥y” € W (L+e 0 )7, (18)
j=1
0<x < 00,(52]' >0,0< pj < 1,’)/2]‘ > 0,;j =1,2,..,m
Hence, R, is given by

my m2
Ry = 4) ) pibsir2
s

X L 2i 2i
x / 1= (14 oSl nlantbo) 1)1 T gty (1 4 oy 25, (19)
0

Then, the stress-strength reliability is given by

(”+1)k_1 (ﬂt r my

oo m2
R(t) = 4) e ) Y 7 Y pibaina
=0 i3

r=nk
[ee] X L Y27 2i
% / [1 _ (1 + e—&u(}(o—‘ri’l(ﬂo—&-bo))’yll)—]]ng] 18752]'3502] (1 + 8752jx02])_2dx0 (20)
0

Change in R(t) corresponding to change in different parameters stress and strength distributions
are given in Figure 2. From the graph, when the stress and strength parameters follow a mixture
of power transformed half logistic distribution, the increase in the parameters results in a decrease
in the R(t) and after a point, they converge. Particularly when stress is fixed and strength
of the system has a mixture of power transformed half logistic distribution with parameters
(6;,7vi) i =1,2,...,my, the chance of the system working after the completion of n runs is,

my )
Ry =Y 2mi[1 — (1+ ¢ dixotnao)’iy =1, 1)
i=1

Then, corresponding R(t) is given by
(n+1)k—1

) r mi
Rty = Y e ) ( Zz — (1 4 ¢~ %(Fotnao)yiy=1),
n=0 r=nk
my [o'e) (11+1)k 1 X
= Yy e ) *(”f.) 21— (1 ¢~ HGorn) ™)), (22)
i=1 n=0 r=nk :
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Figure 2: Variation in R(t) corresponding to change in stress and strength parameters

3. ML EsTIMATION OF R(T) USING EM ALGORITHM

In this section, we describe the ML estimation of the reliability function. Assume that the strength
and the stress follow a finite mixture distribution with densities h(y) and g(x) respectively. where

mq my
h(y) = 2 mhi(y), 0<m<1, Z ;=1 (23)
i=1 i=1
and
my ny
g(x) =Y pigi(x), 0<pi<1, Y pj=1 (24)
j=1 i=1
The cycle time follows a gamma distribution with p.d.f.
k k—1,—az
a“z" e
= = > 0.

Let (x1,x2, ..., xz) and (y1,Y2, ..., ym) and (21, 22, ..., z+) be random samples on stress, strength and
cycle time respectively. Then the joint likelihood function is

L o= [Ist) Tho)TLfz) (26)
i=1 =1 =1

and the corresponding log-likelihood function

I = ilog g(x;) + ilog h(y;) + illog f(zt)
1= ]: t=

= ll + 1+ 13 (27)

As the log-likelihood function is the sum of log-likelihoods corresponding to the random samples
of stress, strength as well as cycle time respectively and since the parameters are independent
the stress, strength, and cycle time parameters can be obtained by maximizing corresponding
log-likelihood function. The ML estimates of stress and strength parameters can be computed by
by using Expectation - Maximization algorithm.
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3.1. ML Estimation of R(t) based on a finite mixture of Weibull distribution

Assuming that the cycle time distribution follows gamma distribution and the initial stress
follows a finite mixture of Weibull distribution with parameters (&, B;),7 = 1,2, ..., m; and strength
follows finite mixture of Weibull distribution with parameters («, 9]-), j=1,2,..,my expression
for the stress strength reliability function is derived in the previous section. We can estimate the
stress, strength and cycle time parameters separately. The ML estimates of stress and strength
parameters can be computed by by using EM algorithm. Here we summarize the EM algorithm
for computing the parameters of a finite mixture of Weibull distribution. Consider the strength
data consists of n independent and identically distributed observations (y1, 2, ..., ¥») from a finite
a mixture of Weibull distribution with p.d.f.

h(y,a,B) = an (v,a,Bi), B=(Bii=1,2,..,m)

Where .
_
hi(y,a, B;) = %y"‘*le Fi,y>0,a>0,8>0i=1,2,..,m
1

The associated log-likelihood function is
n
L(y,a,B)) = ) log h(y, . p)- (28)
j=1

The MLE of &, 8 is determined such that

L(y,&,B) = supapL(y, a, B). (29)

Define a variable z;; such that z;; = 1 if j unit of the sample comes from the i component
and z;; = 0 otherwise. Since each component comes from exactly one component, we have

E?:l Zij = 1, T = P[Zij = 1].
Yi|zij:1 ~ Weibull(zx, [Bi),i = 1,2,...,m

In missing data setup y can be considered as incomplete data and x = (x1, x, ..., x,) where x; =
(yj,zj) and z; (z,«]«,i =1,2,..,m) as a complete data set. The density function corresponding to
the observatlons in the complete data set is

(x],ac B) = he( y]/Z]r‘X B) = Z nllzz] y]r“ Bi)- (30)
and the likelihood function is
Le(x,, Bi) Zlogh xj, o, B)- (31)

The EM algorithm iteratively maximizes Q(«, ,B\oc, B = E(Lc(x, &, Bly, o, B1)) instead of maxi-
mizing L(y, a, B), where «, B(!) is the current value at t and then compute the expectation

n

E, a,B) i (Le(x, 2, B)|y) = 2 ZEIXﬁ(t Zl]|y (log i +log h; (y],oc Bi)) (32)
j=li=1 "
Ea,,sl(”(ziﬂy) = Paﬁu) (zij = 1ly)
0y
- T ()(y],a B mi=1,2,m, (33)
T hi(y;, o, Bi)
Tij(]/j/ w, Bi) (34)
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It is the posterior probability that j* observation belongs to the i component in the #" iteration.
Thus we have
n_mip
Qe Bila, BY) = Y- Y wij(er, ) (log i+ log h(yi,, By)). (35)
]
j=1li=1

Hence the EM algorithm consists of the following two steps.

Step1.E-step: Compute Q(w, Bla, B1)
Step2.M-step:Compute the value of «, B*+1) that maximizes Q(w, Bla, B1)).

If 7;; where observable posterior probabilities, then MLE of 7 is simply given by

i’lfl—l]

which is the proportion of the sample having arisen from the i component of the mixture.
For the (t + 1) update other parameters a and (B1, B2, ..., Bm, ), we have to obtain the solution

of
n m

0
() en ) —
ZZT](” ) ,loghz(yj/“’ﬁz))—o (36)
j=1i=1 l au, B
We repeat the procedure until the desired accuracy is obtained. Hence we get the estimates of the
strength parameters as:

Z Tl]ylx(t+1
Bi(t+1) = | —5—— 37)

Z Tij
=1

mq -1
a(t+1)=mn|), ﬁl( Zrz,y] log(yj) - Z Zrz]lc)g vi) (38)
i=1 i=1j=1
Similarly, we can estimate the stress parameters. The ML estimates of gamma cycle time
parameters can be obtained by standard procedures. Using the ML estimates of the stress,
strength, and cycle time parameters and applying the invariance property of the ML estimators
we can find the value of R(t).

We use the Monte Carlo simulation technique to estimate R(t) for systems with initial strength
and initial stress following Weibull mixture and cycle times following gamma distribution. We
have done the entire numerical analysis using R. The numerical illustration of ML of R(t) with
gamma cycle time with Weibull mixture initial stress and strength for different time values is
given in Table 1. In which y( represent initial strength and x( represent initial stress of the system.
For a fixed time interval, we draw samples for cycle time and the number of cycles based on the
distributional assumption of cycle times. The maximum number of cycles up to which the total
cycle time does not exceed the length of the time interval under consideration is taken as the
number of runs during the time interval. The cycle time observed during each run constitutes the
simulated sample of cycle times. The command rweibull helps in simulating samples from the
Weibull distribution. Samples to represent initial stress and initial strength distributions, when
both are mixtures of Weibull distributions are generated using this command. We repeat the
entire simulation experiment 1,000 times.

From the table, it is clear that R(t) decreases as the time increases, when the initial stress and
strength of the system is distributed as a mixture of Weibull distribution with gamma cycle time.

275



Krishnendu, K., Annie Sabitha Paul , Drisya M., and Joby K. Jose. RT&A, No 1 (77)
INFERENCE ON TIME-DEPENDENT SSR MODELS Volume 19, March 2024

Table 1: ML Estimation of R(t) with Weibull mixture initial stress and strength

Cycle time Stress and Strength ag X0 t R(¢)
Parameters  Estimated Parameters Estimated
G(0.5,2) a=0.4881 Y;:0.8W(0.3,0.6)+ a = 0.2890 1 0.02 10 0.2230
k =2.0840 0.2W(0.3,2) 6 = (0.5892,1.9454) 25  0.1539
Xo :0.3W(0.3,1)+ a = 0.2954 50 0.1175
0.7W(0.3,0.3) B = (1.1603,0.2957) 75  0.0989
100 0.0869
G(0.5,4) a=0.5231 Y :0.6W(5,0.3)+ a = 5.0982 0.001 0.08 10 0.9155
k =3.1780 0.4W(5,2) 6 = (0.2992,2.1114) 25 09154
Xp :0.3W(5,0.1)+ a = 5.1089 50 0.6168
0.7W(5,0.2) B = (0.1008,0.2292) 75 02228
100  0.0498
G(1,2) a=05231 Yp:04W(2,1.2)+ a = 2.0008 0.02 005 10 0.8699
k =3.1780 0.6W(2,4) 6 = (1.3100,4.1216) 25  0.8938
Xo :0.7W(2,4)+ a = 1.9279 50 0.7896
0.3W(2,2.5) B = (4.3704,2.6518) 75  0.6559
100 0.5188
G(1,4) a=09910 Y;:0.2W(1.2,0.8)+ a = 1.2056 0.1 005 10 0.5913
k = 3.9622 0.8W(1.2,2.4) 6 = (0.7759,2.3253) 25  0.4231
Xp :0.3W(1.2,4)+ a =1.1128 50 0.2357
0.7W(1.2,3.2) B = (3.9000,3.9901) 75 01292
100 0.0693

3.2. ML Estimation of R(t) based on a finite mixture of power-transformed
half-logistic distribution

By assuming that the cycle time follows gamma distribution and the initial stress and strength
follow the mixture of power transformed half logistic distribution with parameters (dy;, 71;),i =
1,2,..,m; and (52]-, 72]-), j=1,2,..,my respectively, the corresponding stress-strength reliability is
given in the previous section. Now, consider independent and identically distributed strength
observations y = (y1,Y2, ..., ¥») from a finite a mixture of power transformed half logistic mixture
with p.d.f.

nmy
h(y,61,71) = Y, 7ihi(y, 61, 111)-
i—1

Where

-2

e Y1i—1 ,— 0y =8y 8 . .

hiy) = 26171y e (1 +e% ) , 05y < 00; 01; > 0; 71; > 0 (39)
0, otherwise

i =1,2,..,my. Using the EM algorithm explained earlier, we get the ML estimates of the strength
parameters as

n
YT
_ =

m= =12, m, (40)
5 = Ljz T 01 1) i=1,2,.m. (41)
Y (ti(yjs 010 1)y M (1 — 12::212]71,- ]
Tii = Lo Tl i 1) - =12, m. (42)
L7 (553 610, 110 log (v 611y T (1 — i) - 1)
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Similarly, we can find the stress estimates and hence we can find R(t) by the estimated parameters.

We use the Monte Carlo simulation technique to estimate R(t) for systems with initial strength
and initial stress following a finite mixture of power-transformed half logistic distribution and
cycle times following Gamma distribution. Table 2 gives the estimated value of R(t) with gamma
cycle time with power transformed half logistic mixture initial stress and strength for different
time values. The package bayesmeta available in R software allows sampling from half-logistic
distribution. Then sample from power transformed half logistic distribution is simulated using
simple conversion techniques.

Table 2: ML Estimation of R(t) with PTHL mixture initial stress and strength

Cycle time Stress and Strength ag X0 t R(¥)
Parameters  Estimated Parameters Estimated
G(0.5,1) a=04885 Y} :0.6PTHL(5,0.3) 8 = (5.0927,49764) 0.001 0.008 10 0.00756
k = 0.9687 +0.4PTHL(0.4,2) 12 = (0.1067,0.2025) 50  0.00755
Xp : 0.3PTHL(5,0.1) &, = (9.2026,2.0041) 100  0.00755
+0.7PTHL(5,0.2) 71 = (1.1615,6.0581) 150 0.00753
200 0.00367
G(0.5,2) a=09522 Y, :0.7PTHL(8,0.5) &, = (7.3349,1.1391)  0.001  0.08 10  0.0629
k=1.9138 +0.3PTHL(0.5,2.5) 72 = (0.5245,1.8925) 50  0.0629
Xp :0.2PTHL(4,0.5) 61 = (3.8315,5.0771) 125  0.0626
+0.8PTHL(5,0.2) 71 = (0.1008,0.2292) 140  0.0525
150 0.0313
G(1,1) a=1.0097 Yp:0.2PTHL(2,0.2) J> = (1.9903,3.9043) 0.002 0.005 10  0.1067
k = 1.0029 +0.8PTHL(4,2.4) 12 = (0.1961,2.4533) 50  0.1067
X :0.6PTHL(4,2) 41 = (3.9133,5.1319) 75 0.1063
+0.4PTHL(4.6,2) 71 = (2.1198,1.9368) 100  0.0490
125 0.0008
G(1,2) a = 1.0099 Yy :0.1PTHL(3,2.4) & = (2.6875,3.0715)  0.002 0.005 10  0.1038
k = 1.9968 +0.9PTHL(3,1.2) 72 = (2.2066,1.1926) 50  0.1038
Xo :0.8PTHL(2.5,1.1) &, = (2.4427,5.3425) 75 0.1034
+0.2PTHL(5,2) 71 = (1.1208,2.0481) 100  0.0477
125  0.0008

From this table, we can see that, R(t) decreases as time increases, when the initial stress and
strength of the system is distributed as a mixture of power transformed half logistic distribution
with gamma cycle time.

4. BAYEsIAN EstimaTION OF R(T) UsING MCMC METHOD

In this section, we describe the Bayesian estimation of the reliability function. The stress and
strength follow a finite mixture distribution with densities g(x) and h(y) respectively and the cycle
time follows a gamma distribution. Let (x1, x2, ..., Xx), (y1,Y2, -, Ym) and (z1, 22, ..., z;) be random
samples on stress, strength, and cycle time respectively. Then, the joint likelihood function is

n m r
L=T1sC)TTrw) s (2) (43)
i=1 =1 =1
where
my my
g(x) =) pigix), 0<p<1 ) p=1 (44)
=1 =1
and
my my
h(y) =) mhi(y), 0<m<1, Y} m=1 (45)
i—1 i—1
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The cycle time follows a gamma distribution with p.d.f.

kk—1,—az
a*z" e
= — — z>0. 46
We assume prior probabilities corresponding to each parameter to get a Bayesian estimate of the
reliability function.

4.1. Bayesian Estimation of R(t) based on a finite mixture of Weibull distribution

Let the cycle time follow a gamma distribution with parameters (4, k) and stress and strength
of the system follow a mixture of Weibull distribution with parameters («, ]-), j=1,2,.,mpand
(6,7),i=1,2,..,m respectively. The expression for stress-strength reliability is given in section 2.
Here we discuss the estimation of the parameters by the Bayesian estimation method. Treating Z;
as the auxiliary variable, such that

X]‘Z] S gi(x,ac,,Bi) and p(Z/ = l) = Pi/j = 1,2,..,71,i = 1,2,..,1712.

Y]-|Z]- =i~ hi(y,d,v;) and p(Zj =i)=m,j=12,.,mi=12,.m;.

Where N
gi(x) = fxafle*x“/ﬁf,x >0,a>0,8>0i=1,2,..,m. (47)

1

and
hi(y) = gy“—ley“/ef,y > 0,0 > 0,0, > 0;j =1,2,..,my. (48)
]

We can simplify the likelihood function into the form,

r akzltfflefuz[ my

I1 I1 « Hn ! - T (zijx)
1 , zjj & L (2}
L == W 7‘[7 (—)nll ( xj]> eﬁz ] 1 ]/

t=1 i=1 i j=1
51
my 5 n 1y 5
[l Pzzk ()" TTv" e L1 (zayr) (49)
k=1 Tk 1=1

We fix the Dirichlet prior distribution for 7w = (711, 713, ..., nml) and p = (p1, P2, --r Pm, ), gamma
prior for B;, vx;i =1,2,..,mp, k = 1,2,..,m; non-informative prior for «,d, a and k.The variable Zjj
is such that z;; = 1 if j unit of the sample comes from the i component and zjj = 0 otherwise.
Also ny = 271221 Zij and Ny = 2]7”:11 Zk]'.

Hence

.~ Dirichlet(p11, p12, -+ Him,)
p o~ Dirichlet(ym, H22, s H2my )
) ﬁ?li*le‘bliﬁ";i =12,.,m
() o ek =1,2,.,m
mts(a), 716(9), 707 (a), 78 (k)

x 1

where p1 = (p11, H12, -+ Pimy ), H2 = (B21, B22, -+ Bamy), (81i,02:);1 = 1,2,.,mp and (byj, baj);j =
1,2,..,m; are the hyper-parameters. Since the cycle time parameters have a non-informative prior,
their estimates coincide with the ML estimates. The joint prior distribution of 7, p, B, v, &, and ¢
can be written as,

0 1li—1 p(al;=1) p1;B; » p2i—1, (a2j=1) pp.n.
g(m,p, B, 7 ,9) “ngi Bi e ZH”]‘ 7; el (50)
=1 j=1

1
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Where B = (B1, B2, -, Bm,) and v = (71,72, ..., Ym; ). The posterior probability is given by,

ny mq

i— — B. - 2i—1 iy

h(7T, P, ‘B, ¥, 5|X, v, Zij) . H p?L 1[35“11 1)eb1;,3/ H 7-[]%’21 1,)/]@ ] )esz'YJ
i1 =1

-1
r akzl;—le—az, ny al, & L ! Ly (z;x%)
[MT———TI " ()™ T]x" eBi ==Y
(k—1)! LB 4

M ﬂ2k n2 ( Zk1> " LY (zay?)

k T “j=1 !
[] [Ty ] e 51)
k=1

Then, the conditional posterior distributions of 7, p, B, v, «, and J are:

T~ Dirichlet(yll + 111, H12 + 112, .., Himy =+ nlmz) (52)
p ~ Dirichlet(pa1 + no1, piop + 122, .., Hom, + 2wy ) (53)

"y " a—1 .
nl; Zij — B Lj=1 %)
m(a|B, x,z) o H ot ij e Pi (54)
j=1

i=1

i=1

my -1 1 n
m(8]y,y,z) o H §n2i (Hya’) Y Ly (55)

703 (Bile, BY, x,2) o /317”1[*“1[’1 ~ 5 D= X?e*blﬁi-i =1,2,.,my (56)
1 ymn
7T4i(')/i|(5/ ')’;'k/]//z) « 7 —n2;+a2;— e - E 1y] e—l727Z i=1,2,. . (57)

Where g7 = {B;,i =1,2,i —1,i+1.,my} and oy} = {v;,i=1,2,i = 1,i +1.,my }.

The posterior distributions of «, ;,J, and 7; cannot be reduced analytically to a well-known
distribution. So we use the Markov chain Monte Carlo method with Gibbs sampling under
Metropolis-Hastings algorithm for computing Bayes estimate using the statistical software, R. The
Metropolis-Hastings algorithm with chi-square proposal density is used for generating samples
from (71, p,a, B,8,7), where m = (711, 712, ..., Ty ), P = (P1, P2, Pmy) B={Bii =1,2,..,mp}, and
v =A{v,i=1,2,.,m}is given as follows.

ALGORITHM —1:

Step1. Set the initial values (2%, p°,a?, 8°,46°,7°)

Step2.Generate z;; values using sample x

Step3.Generate 7!

Step4. Using the proposal density g(a) ~ X%x) where x is the d.f and choose x = a!~! Generate

another random variable y from the chi-square density g. Generate u from Uniform(0,1). If

()8 (x)
U< gy

Step5. Using the proposal density g(B;) ~ )((x) where x is the d.f and choose x = ﬁf‘l Generate

accept y and set at = = y; otherwise set al = x

another random variable y from the chi-square density g. Generate u from Uniform(0,1). If

703 (y)8 (%)

73 ()8 ()
Li=1,2,.,m

Step6.Generate z;; values using sample y

Step7.Generate p!

Step8. Using the proposal density g(J) ~ % ) where x is the d.f and choose x = 6'~! Generate

u < accept y and set Bt = y; otherwise set B} = x. Repeat the procedure and generate

random variable y from the chi-square density g. Generate u from Uniform(0,1). If u < #}:‘;E;

accept y and set &' = y; otherwise set 6! = x
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Step9. Using the proposal density g(y;) ~ )(%x) where x is the d.f and choose x = 'yf*l Generate

random variable y from the chi-square density g. Generate u from Uniform(0,1). If u < %

accept y and set ﬁf = y; otherwise set ‘Bf = x. Repeate the procedure and generate 'yf,i =1,2,.,m
Step10 Compute R(t).
Step11 Increment £.

Table 3 provides the estimated values of R(t) by the Bayesian estimation method when the
stress and strength of the system follow a mixture of two Weibull distributions with gamma cycle
time. We assume that the mixture proportions 7r and p are known and the component parameters
(a,B,6,7) are unknown and are following gamma prior distributions. Also, we assume that
cycle time parameters 2 and k follow non-informative prior. Since the cycle time parameters
have a non-informative prior, their estimates coincide with the ML estimates. The table shows
Bayes estimates of the parameters («, B, 4, v) and Bayes estimate of the reliability function R(t) for
different time values corresponding to various sets of hyperparameter values. The table shows
that R(t) decreases as time increases.

Table 3: Bayesian Estimation of R(t) with Weibull mixture initial stress strength

Cycle time Stress and Strength ag X0 t R(¥)
Parameters  Estimated Parameters Estimated

G(052) a=04881 Yp:0.8W(0.3,0.6)+ 5 = 0.2890 1 002 10 02230
k = 2.0840 0.8W(0.3,2) v = (0.5892,1.9454) 25  0.1539
X0:0.3W(0.3,1)+ o = 0.2954 50  0.1175
0.7W(0.3,0.3) B = (1.1603,0.2957) 75 0.0989
100 0.0869
G(0.54) a = 0.5231 Y5:0.6W(5,0.3)+ 6 = 5.0982 0.001 0.08 10 09155
k = 3.1780 0.4W(5,2) ¥ = (0.2992,2.1114) 25 09154
X0:0.3W(5,0.1)+ a = 5.1089 50 0.6168
0.7W(5,0.2) B = (0.1008,0.2292) 75  0.2228
100 0.0498
G(1,2) 1=09975 Yp:03W(0.2,2)+ 5 = 0.2005 001 002 10 07598
k=1.9738 0.7W(0.2,5) v = (0.8536,8.6029) 25  0.7208
X0:0.4W(0.2,0.9)+ x = 5.1089 50  0.6868
0.6W(0.2,8) B = (0.1008,0.2292) 75  0.6652
100 0.6492
G(1,4) 1=09652  Yy:0.5W(2,02)+ 5 =2.0344 0001 005 10 0.7455
k = 3.7469 0.5W(2,6) v = (0.2093,5.9099) 25  0.6070
Xo:0.5W(2,1)+ a = 1.9980 50 0.4140
0.5W(2,10) B = (1.0200,9.8969) 75  0.3370
100 0.2908

4.2. Bayesian Estimation of R(t) based on a finite mixture of power-transformed
half-logistic distribution

Let the cycle time follows a gamma distribution with parameters (4, k) and stress and strength
of the system follow a mixture of power transformed half logistic distribution with parameters
((5j, 'yj), j=1,2,..,my and (a;,6;),i = 1,2,..,m; respectively. The expression for stress-strength
reliability is given in section 2. Here we discuss the estimation of the parameters by the Bayesian

estimation method. Consider the auxiliary variable Z;, such that

Xi|Zi =i~ gi(x,6;,vi) and p(Z; = i) = p;,j =1,2,.,n,i=1,2,.,m

Yj|Z]- =i~ hi(y,ua;0;) and p(Zj =i)=m,j=12,.,mi=12,.m
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Where
. AN —2

gi(x) _ 2§i'yix%*1e*f5fx” (1 + e*‘six”) , 0<x<o0;0;,>0;v; >0. (58)
0 otherwise.
;0,10 ey (1 + e”"fygi)_Z 0<y<ooua;>07>0

fly)=q 5 SR (59)
0 otherwise.

Then likelihood function L is

n Ak, k=1_—ay;
aty; e

L:HW

i=1
n

7i—1
n o o Yi
szj o i i (zijx;)
=1

<1 + Eéix}yi) ZZU]
j=1

m 0\ 22k
H (1 + e“ky]'k>
=1

]

m
2 nl,-znli 711,‘51‘11{
[T Ti 9%

i=1

ny

0 —1

m 0

12k pn2y g2k 12k Zkj ftka"’Ll(zkjy-k)

P20, o | |yj e i i
j=1

I
I
—

(60)

We fix the Dirichlet prior distribution for 7 = (71, 712, ..., T, ) and p = (p1, p2, ..., Pm, ), gamma
prior for d;, ay;i = 1,2,..,mp, k =1,2,..,m1 non-informative prior for v, 6, a and k. Since the cycle
time parameters have a non-informative prior, their estimates coincide with the ML estimates.
The variable z;; is such that z;; = 1 if j unit of the sample comes from the i component and

z;j = 0 otherwise. Also ny; = E]’.”:Zl zjj and n = ;,”:11 2. Hence

~  Dirichlet(p11, pt12, s Him,)

7T
p o~ Dirichlet(pm, M22, oo W2my )

ali—=1 _—b1;6;.
ot e T

)
T (ag) D‘sz_lesz"“"}k =1,2,.,m
)

7(5(’)’1‘), 7[6(9k), 71'7(0), 7"[8(]( 1,‘i = 1,2,..,1712,,’]( = 1,2,..,71’!1

4]

where H1 = (}111, K12, - H1my ),]/lz = (‘1421, U222, ooy ,Z’lZmz)/ (all-,azl-);i =12,., my and (blj/ bZ])/] =
1,2,..,my are the hyper-parameters. Since the cycle time parameters have a non-informative prior,
their estimates coincide with the ML estimates.

Now proceeding as in the case of Bayesian estimation of R(t) based on the finite mixture
of Weibull distribution discussed in the previous section we can easily obtain the conditional
marginal distributions 7, p,J, &, 7y, and 6. The conditional posterior distributions of 7, p,d, «, 7,
and 6 are:

m ~ Dirichlet(j11 + 11, #12 4 112, s fimy + M) (61)
p ~ Dirichlet(po; + no1, pioo + 122, oo, Hom, + N2my ) (62)
3 (6l 7, 07, x,zi) o 5fli+nli713_ (‘5" Yia (zifx7i)+b1f5i) ﬁ [1 + e‘sf"fq o
=1
] i=1,2,.,m. (63)
el ) o Pl (e ) o) Py ]
=1
jk =1,2,.,m. (64)
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’)/l'—l " ; i 7221"
tsi (1116, ,ﬁ’x’zij) ~ 7;11,- <ﬁ x}%ij) e <5i i (Zijx? )) ﬁ [1 + e*zi,-x]'7 ] 1 :
j=1

j=1
i=1,2,.,m. (65)

61 e
m ) _ m AN 0 Zij
ok (Olet, 0F, v, 217) o< 07" (I IJ/?) o (8 X () [1 {1 +e“kykk] :

j=1 j=1
k=1,2,.,m. (66)

Where 0 = {6;,j =1,2,..,i = 1,i+ 1., mp}, v} = {'yj,j =1,2,.,i-1i+1.,m}, af = {a;i =
1,2,.,k=1,k+1.,m}and 6 = {6;,i =1,2,...k = 1,k +1.,m }.

Since the posterior distributions of «g, 6, J;, and 7y; cannot be reduced analytically to a well-known
distribution, as done in the previous section, we use the Markov chain Monte Carlo method
with Gibbs sampling under Metropolis-Hastings algorithm for computing Bayes estimates. We
fix the proposal density as the chi-square distribution. The Metropolis-Hastings algorithm
with chi-square proposal density is used for generating samples from (7, p,«,6,6,7), where
n=(m,i=12,.,m),p=(pr,k=12,.,m)a={a,k=1,2,.,m}, 0={6k=12,.,m},
0={0;,i=1,2,.,my}and v = {v;,i =1,2,..,my} is given as follows.

ALGORITHM —2:

Step1. Set the initial values (%, p°,a?,6°,45°,7°).

Step2.Generate z;; values using sample x

Step3.Generate 7’.

Step4. Using the proposal density ¢(d;) ~ X%x)’ where x is the d.f and choose x = (5571. Generate

another random variable y from the chi-square density g. Generate u from Uniform(0,1). If
73 ()8 (%)
73 (%)8 ()

5f,i = 1, 2, ., mMy.

accept y and set 8! = y; otherwise set 6! = x. Repeate the procedure and generate

Step5. Using the proposal density g(;) ~ )(%x), where x is the d.f and choose x = %471 Generate

another random variable y from the chi-square density g. Generate u from Uniform(0,1). If
Ts; X
S

,Bf,i = 1,2,.., my.

Step6.Generate z;; values using sample y.

Step7.Generate p'.

Step8. Using the proposal density g(ay) ~ X%x)’ where x is the d.f and choose x = let{*l

Generate random variable y from the chi-square density g. Generate u from Uniform(0,1). If
Ty (y)8 (x)
T (x)g (y)
ap, k=1,2,.,m.

accept y and set v} = y; otherwise set 7/ = x. Repeate the procedure and generate

accept y and set al = y; otherwise set af = x. Repeate the procedure and generate

Step9. Using the proposal density g(6;) ~ )(%x), where x is the d.f and choose x = 9;(_1

Generate random variable y from the chi-square density g. Generate u from Uniform(0,1). If
ek ()8 (%)
ek (1)8(y)
Qi,k = 1,2, ., M.
Step10 Compute R(t).
Stepll Increment £.

accept y and set 0. = y; otherwise set 6; = x. Repeate the procedure and generate

Table 4 provides the estimated values of R(t) by the Bayesian estimation method when the
stress and strength of the system follow a mixture of two power-transformed half-logistic distri-
butions with gamma cycle time. We assume that the mixture proportions 7r and p are known and
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the component parameters («, 6, ,y) are unknown and are following gamma prior distributions.
Also, we assume that cycle time parameters a and k follow non-informative prior. Since the cycle
time parameters have a non-informative prior, their estimates coincide with the ML estimates.
The table shows Bayes estimates of the parameters («, 6,6, y) and Bayes estimate of the reliability
function R(t) for different time values corresponding to various sets of hyperparameter values.
The table shows that R(t) decreases as time increases, as we expected.

Table 4: Bayesian Estimation of R(t) with PTHL mixture initial stress and strength

Cycle time Stress and Strength ag X0 t R(¥)
Parameters  Estimated Parameters Estimated

G(0.5,1) a = 05110 Yy:0.3PTHL(0.2,5) a =(0.2942,1.7069) 0.001 0.005 10 0.0184
k = 0.9955 +0.7PTHL(2,6) 0 = (4.5235,5.4221) 75 0.0185
Xo: 0.3PTHL(1,3) 6 = (1.8201,2.2808) 150 0.0184
+0.7PTHL(2.2,4.5) v = (6.1306,4.6754) 200 0.0166
225 0.0090
G(0.5,1) a = 0.4759 Yy:0.6PTHL(2,6) « = (1.8055,6.7181)  0.002 0.005 10 0.1851
k = 0.9559 +0.4PTHL(4,2) 6 = (5.9235,2.1754) 75 0.1864
X:0.4PTHL(1,3) 6 = (1.1301,1.0738) 150 0.1858
+0.6PTHL(0.5,2) ¥ = (2.4231,0.6529) 200 0.0907
225 0.0202
G(1,4) a = 0.9694 Y5:0.7PTHL(8,0.5) « = (0.6985,3.4123) 0.001 0.005 10 0.2369
k = 3.9365 +0.3PTHL(0.5,2.5) 0 = (1.8173,4.9566) 75 02394
X0:0.2PTHL(4,0.5) 6 = (0.5839,0.2675) 125 0.2335
+0.8PTHL(5,0.2) v = (2.2849,1.6391) 140 0.1487
150  0.0589
G(1,4) a=0.9674 Strength:0.6PTHL(1.5,5) « = (1.1917,6.8528) 0.002 0.08 10  0.0400
k = 3.8930 +0.4PTHL(5,4) 0 = (6.2016,3.7667) 75  0.0404
Stress:0.5PTHL(2.4,6) 6 = (1.92620.2490) 125 0.0394

+0.5PTHL(0.3,4) v = (5.5248,3.8446) 140 0.0251
150  0.0099

5. CONCLUSION

In this paper, we investigated the stress-strength reliability of a system. Here we considered
a scenario where the stress and strength of the system follow a finite mixture distribution with
gamma cycle time. Specifically, we examined the performance of the system under two types
of finite mixture models: a finite mixture of Weibull distribution and a finite mixture of power-
transformed half-logistic distribution. To estimate the reliability function R(t), we employed
two methods: maximum likelihood (ML) estimation using the expectation-maximization (EM)
algorithm and Bayesian estimation using the Markov Chain Monte Carlo (MCMC) method. We
computed the estimates of R(t) for different time points corresponding to various sets of parameter
values. Based on the graphs and tables presented in the paper, it can be observed that as time
increases, the reliability function R(t) decreases when the stress and strength of the system follow
a finite mixture of Weibull or power-transformed half-logistic distribution with gamma cycle time.
This suggests that the system becomes less reliable or more prone to failure as time progresses.
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Abstract

The manuscript under consideration delves into a comprehensive exploration of the dual
exponential ratio estimator, particularly in the context of non-response scenarios. In the following
discourse, we will embark on an intricate journey through this research, emphasizing the pivotal
aspects and findings that unravel the significance of this estimator in the realm of statistical
estimation. The crux of this investigation revolves around evaluating the Mean Squared Error
(MSE) and the Predictive Relative Efficiency (PRE) of the dual exponential ratio estimator. These
two performance metrics serve as essential benchmarks for assessing the accuracy and effectiveness
of the estimator. Notably, they play a crucial role in determining the estimator’s suitability for
practical applications, especially in situations where non-response is prevalent. To begin our
exploration, it is imperative to understand the fundamental concept of the dual exponential ratio
estimator. This estimator is a statistical tool employed in situations where traditional estimators
may falter due to non-response, a phenomenon frequently encountered in surveys and data
collection. It leverages a dual exponential model to address this challenge, making it a valuable
addition to the toolkit of statisticians and researchers. The manuscript embarks on a rigorous
theoretical analysis of the dual exponential ratio estimator’s MSE and PRE. Through a series of
mathematical derivations and proofs, the authors elucidate the underlying principles governing its
performance. This theoretical foundation is crucial, as it not only establishes a solid framework for
evaluating the estimator but also provides insights into its behavior under different conditions.
However, theory alone can only take us so far. To validate the theoretical findings and assess the
estimator’s practical utility, numerical experiments are conducted. These experiments involve
simulations and real-world data scenarios, allowing the authors to draw comparisons between the
dual exponential ratio estimator and traditional estimators. The numerical results serve as a bridge
between theory and application, offering empirical evidence of the estimator’s prowess. In essence,
this manuscript fills a critical gap in the field of statistical estimation by thoroughly investigating
the dual exponential ratio estimator’s performance in the presence of non-response. By juxtaposing
its MSE and PRE with those of traditional estimators, it provides valuable insights into the
potential advantages of adopting this novel approach. Moreover, the combination of rigorous theory
and practical validation ensures that the findings are both intellectually sound and operationally
relevant. The dual exponential ratio estimator, as explored and analyzed within these pages,
emerges as a promising solution, backed by both theoretical rigor and empirical support. This
research contributes not only to the theoretical foundations of statistics but also to its real-world
applications, underscoring the estimator’s potential to enhance the accuracy and reliability of
estimation in the face of non-response complexities.

Keywords: Non-Response (NR), Exponential Estimator, Dual to Ratio Estimator, Mean
Square Error and Percent Relative Efficiency.
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I. Introduction

In recent years, the use of sample surveys has gained popularity due to the practicality of
overcoming logistical challenges associated with conducting comprehensive census surveys. This
trend has led to the widespread adoption of estimators like the ratio, product, and regression
estimators for efficiently estimating population parameters, particularly the mean of the variable of
interest. These estimators capitalize on the inherent correlation between the study variable and
auxiliary variables, either during the survey design or at the estimation stage, to yield accurate
results while optimizing resources. The central focus of this research is to develop a novel
modified exponential ratio estimator for the population mean. This estimator aims to address
potential limitations of existing estimators and enhance the precision of estimates, as evaluated
through mean squared error comparisons. By exploring alternative approaches and incorporating
adjustments, the researchers anticipate achieving more reliable and efficient estimates of the
population mean.

Over the years, several scholars have made significant contributions to the field of survey
estimation. Various authors have made numerous work for the estimation of population variance
from time to time including [14],[9] , [13], [8] [1], [5], [11],[12],[15] and [10] have made important
studies on this topic in the literature. Notably, [17] made pioneering strides by explicitly utilizing
auxiliary information for estimation purposes, laying the foundation for the ratio estimator.
Subsequently, [18] further advanced this concept by employing auxiliary information to refine
estimations.

When dealing with scenarios where the coefficient of correlation is negative between the
study variable and auxiliary variables, [19] introduced the product-type estimator, which has
proven to be valuable in specific contexts. Additionally, [20] proposed an innovative approach by
combining multiple ratio estimators based on individual auxiliary variables positively correlated
with the study variable. This technique allowed for greater accuracy in estimation. The product
estimator was formalized by [21], providing a well-defined framework for its application.
Furthermore, [22] delved into the complexities of ratio estimators involving two or more correlated
variables, shedding light on new possibilities for refining estimation methods. The exponential
type estimators of population mean were thoroughly investigated by [23] using auxiliary data,
resulting in a comprehensive analysis of their performance and potential improvements. [24] took
a unique approach by incorporating transformed auxiliary variables, which led to promising
results in estimating the mean of the study character. The literature offers an array of other
contributions in this area, including the works of [25], [26], [27], and [28], who introduced their
respective estimators and demonstrated their efficacy in diverse sampling scenarios. Moreover,
[29] and [30] took on the challenge of developing superior exponential type estimators by
considering information from two altered auxiliary variables, further expanding the range of
available estimation techniques. To gain a more comprehensive understanding of this topic,
interested readers can refer to [31], which offers an in-depth exploration of various aspects of
survey estimation. In recent times, [32], [33], and [34] have made notable contributions to this area
of study, introducing novel ideas and methodologies that hold promise for advancing the field of
survey estimation even further.

In conclusion, this research endeavors to create a Generalized Ratio-cum-product estimator of
population variance that builds upon the knowledge and advancements made by previous
scholars. By harnessing the power of auxiliary information and exploring innovative avenues, the
researchers aim to provide an enhanced and efficient approach to estimating the population mean
and contributing to the growing body of knowledge in survey estimation techniques.
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II. Notations

Let N and n and be population and sample of size respectively. Out of n units * N, ’ responds and *
N,” do not respond accordingly, the population is distributed in ‘N1’(those who respond) and

‘N2’ (the non-respondents), such that N; + N, = N . From sample of “N,” a sub-sample of size k

n
where (k = FZ’ h> 1) is taken and data is obtained. Further, we define

N, N, 1 1 W, (h-1) n, n, - 1
= — =—, ﬂ/:———’ =, =—, = —, Y:—
W= =y N7 n e T NZy
VR S S B R I S S0 o _S S
EaR A R I R e L T A e i At s Gl o
N N, _ N _ N, —
Z(yl_y)z Z(y. _Yz)z Z(X, _X)Z Z(X _X2)2
S22 = i=1 82 _ = 2 _ =l SZ _ =l
y N-1 @ N,-1 T N-1 '@ N,-1

III. Existing Estimators

Hansen and Hurwitz proposed an unbiased estimator of Y in case of non-response,
y =W Y +W, Yy,
where y; is the sample mean of respondents and Y,is the mean of sub-sample of non-

respondents,
The variance is,

Vly')=7la cf ro cly).
The unbiased estimator of X in case of non-response is given as,
X =W, X +W, X,,
where X, the sample is mean of the respondents and similarly X, is the mean of sub-sample.

The variance is
V()_(*): )?2(/1 Cf +6 Cf(z))
3.1 Case I: Non-response on y only

Ratio estimator of Y in case I is,

*

b :y?i,
MSE(ts,) =Y 2|4 (C2 +C2 =2p,,C,C,)+0 C2 |

The dual to ratio estimator given by Srivenkentrama (1980) is,

V4
t, = —{XTJ ,
X

where fﬁz( X ), i=12,..,N.
and the MSE is,

<
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MSE(ty) = A 72 (cy2 +C2g (g-2 C))

The dual of ratio estimator in case of non-response is,

[ x?
tDl =Yy (7}

The MSE is given by
MSE(tDl):VZ[/l (c§ +C9 (g —20))+9 C?(z)]

Singh and Kumar (2009) considered the exponential estimators of Y in case of non-response.
- X —x
tem =Y €Xp ————

The MSE is,

_ 1
MSE(tgep, ) =Y 2{/1 (05 +ZCf - prCnyJW (C5<z> )}

The dual exponential estimator for non-response is

. X/ - X
tEDl =Yy exp ’

X7+ X
The MSE is,
2~ 2

2 9°C,
MSE(tEDl)=y2P,£c§+ 2 —gpyXCXCy]+9C§(Z):|

3.2 Case II: Non-response on both y and x

The ratio estimator of Y for case II along with MSE is given as,

lpy === X ,
X
v 2[~2 2

Av2(c2+c2-2p,C,C, )

MSE(teo)=| ./, ) ,
+0V%(Cle +Ciy ~ 2P CraCria)
Syx SyX(Z)

where p, = is the correlation for the overall population, while p ., = 3 is the
yoX y(2)~x(2)

case of non-respondent group.
Dual of ratio estimator for case II is,
X

tD2 7
and the MSE is,
MSE(tp;) = V2[4 (C2 +C2g (g-2C))+ 6 (C2z) + C29 (9 -Cpy))

The exponential ratio estimator is given as,

. X -x
tERz =Yy exp( = _*]
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The dual of exponential ratio estimator is
teps = Y €XP X7 -X
Ep2 X7+ X

And the MSE is given by
i 22

MSE(tEDz):Y_2 2,2
,  9°Cyp
+6 Cy(2)+—

3.3 Proposed Estimator: Case I

» g°C
A[Cy = —gpyxcxcyj

= 9Px(2)Cx(2)Cy(2)

The proposed ratio-cum-dual of exponential ratio estimator of Y is given as,

here x” — M, o and O are constants.
N —n

here x# = M, o and O are constants.
N —n

Table 1: Some members of the proposed class of estimator

@

Values of Constants

S. No. Estimator
o o
1 t*:y* 0 0
2 . )? 1 0
t —)tRl=y(¥j
3. (X -1 0
t _)tPl_y(?j
4 . )ZZ 2 0
t:y F
5. )?% i 0
F:T(TJ 2
X
6 . . )_(ﬁ—)? 0 1
t =y ex —
s T
7 . ()—(ﬂ_)z) 0 1
t =V ex — 5
yexp 2>‘<ﬁ+xj 2
8 L Z(Xﬂ_)?) 0 2
t =y ex —
VO T x
9 X X 5P _ X 1 1
t =V | — |ex —
y X g X + X
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)_(ﬁ=(l+g))z—g)_(and g= n
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1
2

N |-

To acquire the MSE, we write

Y =Y({i+e)and X = X(1+e,),
Such that,

Ele2)=(1c,? +0c2,) E@?)=4C2 Elee,)=1CC,?
Expressing (1) in €'S we have

U=Vllre) (%} oxp [5{(“ 9)X - g(§(1+e1))— gH

X1+

:va+%)@+%ya”@{5(_g%]}

2-9e
S -1
=Y(L+ey) L+e ) “exp (—ﬂ(l—%j J
2 2
(a+1) 5 h
:V(1+e0)(1—ael+%ef—..J{l—%(l—%) +}

Ignoring higher order terms,

t*:va+%)@_aﬁ)@_5g%]

(t* —\7): V(eo —(%jelj

Squaring both sides, we get,

(t* —\7)2 :Vz(eg +(@je§ ~(2a+59)e, elj

Taking expectation, we get the MSE as,

2
MSE(t")= YZ{(ﬂcyz +0C2, |+ ﬂcxz{(WJ ~(5g+ Za)CH e
Differentiate (2) w.r.t. & and equate it to zero,

(’wyz + 9C§(2))

0 A0 o

— MSE[t |]=—2:Y 2 =0
dar ( ) oa +ﬂCX2{(@) —(5g+2a)C}

2 MsEft")=2a=5g+2C

oa

,_9g+2C

2
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We can write

(89 +2a)=2C
Using (3) in (2) we get,
MSE(t" ), = 2@05(1—pfy)+ 0C2 |
3.4 Proposed Estimator: Case II

The proposed estimator Of Y is

t = y*[zJa exp sIK7-X
X X7 +X

*ﬂ _ N )? - n )_(*
N-—n
The associated sample mean is obtained as

)_(ﬂ=(1+g))?—g)_(andg= n
N—-n

where X

Table 2: Some members of the proposed class of estimator

, & and O are suitably chosen constant.

®)

)

®)

. Values of Constants
S. No. Estimator
a o
1 t' =y 0 0
ok —_% X
X
" X
3 t >t, =Y (?j -1 0
4 t =y (_*2 2 0
X
_ ! 1
3 =y | > 0
X 2
6 t” =y exp X" -X 0 1
XP+X
7 t" =y exp X" -X) 0 L
2(x” + X) 2
* 2()_(*ﬁ - X)
8 t =y ex = 0 2
VO )X J
9 t**—y*zexp X7 -X 1 1
X X?+X
1
- S X )2 ¥P _X 1 1
10. t = y é exp 1()i* X_) — _
X 2(x7 + X 2 2
To acquire the MSE,
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X =X (1 "y )
Ee?)=(1c,? +0C2, ) and Elejer)=(1CC,2 +0C,C2y) )
Ignoring the higher terms, we get,

e :V(1+eo)(l—ael)(1_5%elj

e 0g+2
(t _Y):Y(eO_Melj
2
Squaring the above equation, we get

(t** —\7)2 =\72(eg +{M}2e5 —(5g+ 2a)e0e1}

Taking expectation, we get

(,1Cy2 +HC§(Z))+ (/ICXZ + H-sz(z))
) g2
MSE(t™ )= {(59 +2“jz -9 +2a)R}

2
ACC,” +60C,Cly
AC2+6Cy }
Differentiate (6) w.r.t & we get,
5 (zcyz+ec§(z))+(/10x2+49c§(2))

?MSE(tﬂ):ai v {[59 +2aj2 ~(6g +2a)R}

(6)

where R = (

o a
2

O MSE(t™)=2a=5g+2R
oa
a:5g+2R
2
We can write,
(89 +2a)=2R %
Substituting (7) in (6) we have,

MSE (t**)min :Y_Z{(/’t C?f +9C§(2))— (/1C sz +9C(2)Cf(2))2]

l1c,2+6ck, )
MSE (™). =V2[(2C2 +0C2, ) 0-p7)]. )
Where " = -5 (7’_‘) e rocachy)
W VK lac,? ok, e +ock,)
IV. Theoretical Efficiency Comparison
4.1 Casel

V (ty)- MSE (") 0.
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—V2(4C2 +0.C2p) ) -T2 |2 C20- p2 )+ 6.C2y |2 0
=Y?AC*C; >0
MSE (tn, )- MSE( )>o0.
—v2[alc2 +c2-2p,C,Cy )+ 02 |-V 2ac2 - p2 )+ 002, |2 0
=Y ?(C, -CC,) =0

MSE (tegs )~ MSE (") 0
:?2[,1(c§+%cf—pxycxc jw(cy(z)ﬂ V2[aczli-p2 )+ oy |20

-2, Cx 2
% ,17(1—20) >0

4.2 Case II
V (t,)- MSE ()20
2 2 Y
cc?+ ec(z)cx(z))
(AC +0C2y)

=Y_2(/IC§+6’.C§(2)) Y? (/ALC2+9Cy(2)) (l

e +0c(2)cx(2))
(icz +eac?,)
MSE (tp, )— MSE(t™)> 0.
NZ(CX2 +Cy —2p,,C,C, )*WZ(szm +Cy —2ny<2)Cx(2)Cy(2))

cc, +9c(2)cx(2)) >0
(/10 +0C2y)

2| (ac2 +0C2, )- G

v2[(acz +ecz, )-(acc? +ac,cz, Jf 20
MSE(tERZ)—MSE( )= 0.

_ 1 Ce2)
Y 2[/1((35 + ZCf - prCXC ] + 9[C 2(2) +— 4 ny(z)Cx(z)C y(2)

CC,2 +0C,Cly |
(/10 +0C2y)

V2| (ac2 +0C2, )- g

2
_ 2 Ci
_v? (gc_ue XZ‘Z)J (1cc? + e, CX(Z))] >0

2

V. Empirical Study

We have used two data sets.
Population I: Khare and Sinha (2004).
y: weight in kg of children,
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x: chest circumference in cm of children
Population II: Satici and Kadilar (2011).
y: number of successful students,

x: number of teachers.

Table 3: Data Statistics

Population I [Khare and Sinha (2004)] Population II[Satici and Kadilar (2011)]
N =95 N, =71 N = 261 N, =196
n=35 N, = 24 n=90 N, = 65
X = 55.86 Cyy(zy = 0.00395 S, = 415.1944 C, =1.7595
Y =195 Py = 0.729 C, =1.8654 p,, = 0.9705
C, =0.05860 C, (2 = 0.05402 Y =222.57 S,(z) = 376.48
P,y =0.85 C,, =0.00776 X =306.43 C,) =1.2285
C, =0.15613 C, = 0.12075 S, =539.1722 Piy(z) = 0.9733
Table 4: The MSE and PRE’s of the population I w.r.t unbiased estimator for case I
h=2 h=3 h=4
Estimators MSE PRE MSE PRE MSE PRE
tO 0.2015 100 0.2395 100 0.2813 100
tre 0.1293 155.81 0.1593 150.31 0.1960 143.52
tera 0.1594 126.41 0.1914 125.13 0.2264 124.21
t " (prop) 0.0791 254.43 0.1172 204.27 0.1574 178.70
Table 5: The MSE and PRE’s of population I w.r.t unbiased estimator for case IT
h=2 h=3 h=4
Estima MSE PRE MSE PRE MSE PRE
tors

to 0.2015 100 0.2395 100 0.2813 100

) 0.1363 147.79 0.1743 137.35 0.2152 130.66

tere 0.1654 121.81 0.2023 117.73 0.2447 114.93

t " (prop)| 0.0832 242.16 0.1022 234.31 0.1228 228.92

Table 6: The MSE and PRE’s population II w.r.t unbiased estimator for case I

Estimator MSE PRE MSE PRE MSE PRE
tO 1459.59 100 1664.28 100 1868.98 100
tey 278.57 523.95 483.27 344.37 687.96 271.67
tem 589.96 247.40 796.66 209.43 999.36 187.02
t " (prop) 275.92 529.00 480.92 346.28 685.32 272.72
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Table 7: The MSE and PRE’s of population Il w.r.t unbiased estimator for case 11

Estimator MSE PRE MSE PRE MSE PRE
to 1459.59 100 1664.28 100 1868.98 100
try 84.90 1719.15 95.92 1735.01 106.94 1747.60
ters 441.20 330.82 497.13 334.38 553.06 337.93

- 82.77 1763.31 94.07 1769.19 105.21 1776.46

V. Conclusion

In the context of survey sampling and estimation, the ratio-cum-dual of exponential ratio estimator
has been proposed as a valuable approach, particularly in cases involving non-response. This
innovative method combines elements of the traditional ratio estimator and dual to improve
estimation accuracy. To assess the performance of this novel estimator, an essential step is to
compute the Mean Squared Error (MSE) expression. This metric provides insights into the
estimator's precision and reliability in estimating population parameters. To further evaluate the
efficacy of the suggested estimator, both theoretical and empirical analyses have been conducted.
Theoretical assessments involve rigorous mathematical proofs and calculations, while empirical
evaluations utilize real-world data to validate the estimator's practical utility. The synergy of these
two evaluation approaches ensures a comprehensive understanding of the estimator's competence.
Upon scrutinizing the results presented in the accompanying table, a compelling conclusion
emerges. It is evident that the proposed estimator surpasses the existing estimators found in the
literature in terms of efficiency. This conclusion is drawn from a careful consideration of the MSE
values, which indicate that the proposed estimator consistently provides more accurate and precise
estimates, even in the presence of non-response. Therefore, this study contributes to the field by
introducing a superior estimator for survey sampling, offering improved accuracy and reliability
in estimating population parameters.
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Abstract

Process capability analysis is an effective and efficient tool for quality assurance. When the distribution
of the underlying quality characteristics is not normal, modifications of the basic process capability
indices are required. Literature in process control provides avenues to resolve the issue of non-
normality and data transformation is one of the approaches frequently applied in practice. Primarily
the Box — Cox transformation (BCT) is employed to transform the non normal data into normal data
which originally utilizes the method of maximum likelihood estimation (MLE) to find the single
transformation parameter A. There are alternative methods to estimate the optimal parametric value A
using goodness of fit tests rather using MLE method. In order to bring improved estimates, this paper
makes a fresh attempt to estimate process capability analysis (PCA) using transformed data through
different goodness of fit tests. The simulation study uses variety of asymmetric behaviors from a
Weibull distribution generating a random sample of 100 data points to find the best goodness of fit test
for better process capability estimates that are compared to the standard of six sigma results for non-
normal data. Final result shows that Shapiro-Wilk's (SW) and Artificial Covariate (AC) methods are
performing well when compared to the method of MLE. Minitab software and R programming
language were utilized for data simulation and analysis.

Keywords: Goodness of fit tests, Box-Cox Transformation, Asymmetricc MLE, Weibull
distribution, Six sigma.

1. Introduction

Process capability indices (PCls), the statistical tools in quality control, are widely used to meet the
required targets set in most of the manufacturing industries. Process capability analysis (PCA) addresses
the issues relating to how well a manufacturing process meets the required specification. PCls defined
from normality assumptions cannot be used to accurately measure the performance of non-normal
processes. Data transformation for preserving a somewhat normal distribution has been recommended in
[5]. The empirical study made in [4] has demonstrated that the findings of transformed data are much
superior to the results of the original data. The literature surveys demonstrate that for non-normal
distributions such as Lognormal, Weibull], etc., the transformation methods perform well when compared
to non-transformation (NT) methods and are considered as consistently superior to NT methods. Further,
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NT methods are found to be inadequate in capturing the capability of the process unless the underlying
distribution is close to or approximately normal. NT methods are unsatisfactory because the distribution
deviates significantly from normal. See, [15].

In PCA, the process variation is defined based on the measure ‘standard deviation’. The short-term
and long-term variability may be addressed by the estimated standard deviation obtained from the
random sample observations and such an estimate is used while computing the process capability. The
short-term variability is considered for computing the process capability indices whereas long-term
variability is taken for calculating process performance indices. Hence, capability indices are calculated
using samples of data based on short-term or within group variation, whereas performance indices are
calculated using all the data points using long-term or overall variation. The process capability indices
are denoted by Cp and Cpk, and process performance indices are demoted by Pp and Ppk. A detailed review
on various methods that are chosen for performance comparison in their ability to handle non-normality
in the computation of process capability indices is presented in [13]. The most common and traditional
indices being applied by manufacturing industry are process capability index Cp and process capability
ratio Cpk which are given below in Table 1 along with the respective performance indices, where X is the
sample mean, USL is the upper specification limit and LSL is the lower specification limit.

Table 1: Process Capability and Process Performance Indices

Process capability indices Process performance indices
USL-LSL USL-LSL
Cp= ——== Pp=
P 60w P 60overall
Cyk = Min (CPU, CPL) Pk = Min (CPU, CPL)
Cpy = USL=®  cpp _ LSk ppy = USL=%  ppp . _f-Lst
3ow 3ow 30overall 30overall

According to [15], a better understanding is required about Box - Cox transformation (BCT) and its
parameter estimation approach utilizing a search method to estimate the process capabilities. In [17], a
method of converting non-normal data into normal data to analyze the data using the process capability
indices and an improved Box-Cox transformation model have been proposed to deal with non-normal
data and to calculate its process capability indices. In [1], the method of maximum likelihood estimation
(MLE) was utilized for finding the ideal parameter A in Box-Cox transformation. Alternative methods to
MLE approach utilizing goodness of fit tests (normality tests) were developed in [3], [10] and [11]. By
examining the effect of conversion of non-normal data into normal data with the use of different
goodness of fit tests, it is demonstrated in [3] that the method of MLE in estimating the BCT parameter A
could be biased and ineffective. The competence of the different goodness of fit test was also determined
in [3] by various measures of errors, estimates of PCI, PPI and defective parts per million (PPM) products.

In order to get improvised estimates of PCI and the result within the standard of six sigma level, a
new attempt is made in this paper to estimate process capability analysis implementing different
goodness of fit tests in BCT. The results of different goodness of fits tests are recorded and presented to
help the practitioner to choose the method which will produce the improvised results in various
asymmetric situations, viz., low, moderate and high. Thus, the objectives of this paper is to examine the
effectiveness of the different goodness of fit tests involving transformation of non-normal data into
normal data using BCT and to recommend a superior test that will produce higher values of process
capability with minimum of error and PPM values. It also verifies whether the proposed method produce
the results within the standard of six sigma level.

298



Krishnan J., Vijayaraghavan R RT&A, No 1 (77)
PROCESS CAPABILITY ANALYSIS FOR NON-NORMAL DATA Volume 19, March 2024

2. Methodology

Transforming non-normal data into normal data is one of the frequently used approaches in practice
when the observed data do not satisfy the normality assumption. A few approaches which are applied in
practice to transform the non-normal data into normal include Johnson’s system of transformation (JST),
Box-Cox transformation (BCT) and Rosenblatt transformation (RT). Though JST and BCT approaches are
equally efficient, the latter would be preferred over the first one for handling non-normal data when
computer assisted analysis is available and it also outperforms the other methods. See, [12]. Further,
when compared with the JST method, BCT method is more accurate and precise. BCT provides a family
of power transformations that will optimally normalize a particular variable. As stated in [2], the BCT
method transforms non-normal data into normal data on the positive response variable x as shown in the
below expressions:

A
e xil,forxi;tO 1)
logx, forA =0

It may be noted that since an analysis of variance is unchanged by a linear transformation, the
expressions given (1) is equivalent to

2 {xﬂ",forﬂpio
x" =

2)
logx, forA =0

The estimation of A is done through various goodness of tests for normality, that are available in the
literature, which includes tests, such as Shapiro - Wilk (SW), Anderson Darling (AD), Cramer Von Mises
(CVM), Pearson Chi-square (PC), Shapiro - Francia (SF), Lillefors (Kolmogorov - Simirnov) (LT / KS),
Jarque - Bera (JB), and artificial covariate method (AC). The BCT approach given in [2] involves the
method of maximum likelihood estimation (MLE). Two alternative approaches proposed in [10] and [11],
respectively, considered Box - Cox power transformation using maximization of the Shapiro - Wilk W
statistics which forces the data to get closer to normal as much as possible and Anderson - Darling test. In
these approaches, Newton - Rapson algorithm has been used to obtain A. A method is proposed in [3] to
simulate a single artificial and non-informative covariate and to find A minimizing the sum of squares of
errors among several simple linear regression models.

The results of the earlier studies presented in the literature, particularly in [1], [7], [10], [14], [16] and
[18], would be useful to understand the significance of tests of goodness of fit while transforming non-
normal data into normal data. [10] Shows that the test based on SW statistic is a powerful test of
normality for a variety of non-normal distributions, the SW statistic is reliable for small samples and in
regression applications, the statistic would yield higher R2 It is asserted in [7] that the test based on SW
statistic is the most powerful test for non-normal distributions.

According to [14], B test is preferable to the Shapiro-Wilk test when the data exhibit a symmetric
distribution with medium or long tails, or a slightly skewed distribution with long tails. [18] Ascertained
that the test based on SW statistic is the best one for asymmetric distributions and powerful for
symmetric short tailed distributions and has good power qualities throughout a wide variety of
asymmetric distributions. Based on the results of a simulation study provided in [1], it is found that all of
the transforming approaches performed similarly to one another. One may refer to [9] and [19] for the
details on the concepts of six-sigma tools and process capability analysis for non-normal data,
respectively.
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3. Weibull Distribution

Weibull distribution is applicable to a wide range of non-normal processes because it is capable of
generating a variety of distinct curves based on its parameters. It exhibits a significant tail behavior,
showing a significant effect on the capability of the process. It is frequently utilized in applications that
focus on quality and reliability to analyze failure data and to comprehend how failures take place or how
often products fail.

The probability density function of a Weibull random variable is given by the following form:
a-1 x\*
al x g
—| = e ('g j , x>0
fx)=38\ B
0, x<0

3

where a >0 and 8 > 0 are the shape and scale parameters, respectively.

The mean, the variance and the measure of skweness of the Weibull distribution are, respectively, given
as follows:

EX)=pu=4T(1+1/a)

V(X)=0" = g|0(1+2/a)-(C1+1/a)) ]

S, = =%[ﬂ3 T(1+3/a)-3u0” 4]

The Weibull distribution with three sets of shape and scale parameters, say (2.8, 3.5), (1.8, 2.0), and (1.0,
1.3) is considered in [6]. The sets of parameters are categorized for the purpose of assessing the
effectiveness of low, moderate, and high asymmetric behaviors during the transformation of non-normal
data into normal data and carrying out the process capability analysis. The shapes of the density function
of Weibull distribution for these sets of parameters are shown in Figure 1.
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Figure 1: Asymmetric Behavior of Weibull Distribution

4. Numerical [llustrations

For a simulation set-up, the data set of size 100 is generated using different asymmetric levels of
Weibull distribution. Minitab and R programming were utilized for data simulation and analysis
purpose. As given in [6], the lower and upper specification limits are taken as 0.0 and 10. A combination
of the box plot, descriptive statistics, measures of errors, like bias, percentage bias, median absolute error
(MdAE), root mean square error (RMSE) and radar chart can be used to assess the effectiveness of the
method.
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This paper considers only the measures of errors and radar plots. In particular, bias, MdAE and
RMSE are taken while transforming non-normal data into normal data using different goodness of fit
tests in Box - Cox transformation. Once the transformation has been completed, the data have been
further utilized to estimate process capability and process performance index and to choose the most
effective approach among different goodness of fit tests. According to [8], a process is categorized as
inadequate, if PCI < 1.00; capable, if 1.00 < PCI < 1.33; satisfactory, if 1.33 < PCI < 1.50; excellent, if 1.50 <
PCI < 2.00; and super, if > 2.00. Automotive industry uses Cpk = 1.33 as a benchmark in assessing the
capability of the process. If Cp and Cpk are more than or equal to 2 and 1.5, respectively, a process is said
to be under six-sigma controls. Similarly, Pp and Pp must be more than 2 and 1.5, respectively, for a
process to generate six-sigma results. See, [8].

In order to guarantee the quality of the final product and reduce the number of faulty items, quality
practitioners will also focus on PPM values. Table 2 lists the process fallout in defective parts per million
products in relation to the proportion of good items and PPM values for various sigma levels. The main
goal of all quality and industry practitioners is to reach 6o limits and a defect rate of 3.4 PPM has been
associated with the process using these indices. On the other hand, the process performance indices,
namely Pp and Ppk are utilized in the industries, particularly in the automobile sector, as the second sorts
of estimators.

Table 2: Process Fallout in Defective Parts per Million with Respect to Different Sigma Levels

Sigma Level = Percentage = PPM Values

6 99.9997% 34

5 99.98% 233

4 99.4% 6,210
3 93.3% 66,807
2 69.1% 308,537
1 30.9% 691,462

4.1 Low Asymmetric Distribution

In this sub-section, low asymmetric Weibull distribution with the skewness of 0.13 and 0.31 for the
combination of shape and scale parameters 2.8 and 3.5, respectively, has been taken for simulation study.
From the error point of view, Bias, MAAE and RMSE values are very less for AD, CVM, SF, LT and PC
goodness of fit tests and this ensures that the transformed values are very closer to normal data with
minimum error values. For more information, Table 3 and Figure 2 may be referred. On the other hand,
from estimation point of view, the transformed data are further taken for the estimation of process
capability and process performance. The transformed data sets from SW, LT, AC, and MLE tests show the
closeness to the standard normal and produce better results when compared to other methods. The PPM
values are recorded as a minimum of 656 and a maximum of 1939 corresponding to the above said
methods and are better than the results of 30 and 4o limits and closer to the result of 50 standards. For
more information, Table 4 and 5 may be referred.

4.2 Moderate Asymmetric Distribution

A Weibull distribution with the shape and scale parameters fixed as 1.80 and 2.0, respectively, will
represent the moderate asymmetrical non-normal data with skewness 0.64 and 0.94. In the simulation
study, Minitab (M_T) transforms non-normal data into much closer normal data with minimum Bias,
MdAE and RMSE values compared to other methods and the corresponding estimate of PC is smaller but
with higher PPM values compared to the benchmark result. Thus, the method of transformation using
Minitab cannot be taken as a competent method. One may refer to Table 6 and Figure 3.
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Table 3: Various Measures of Error Values for Low Asymmetric Data After Data Transformation

Low Asymmetry (SK=0.13) Low Asymmetry (SK=0.31)
Methods Weibull distribution (a=2.8, 3=3.5) Weibull distribution (a=2.8, 3=3.5)

Bias MdAE RMSE Bias MdAE RMSE

SW 1.300 1.245 1.322 1.391 1.320 1.428
AD 1.226 1.184 1.240 1.335 1.273 1.363
CVM 1.226 1.184 1.240 1.246 1.200 1.263
PC 0.527 0.646 0.663 1.391 1.320 1.428
SF 1.271 1.221 1.289 1.363 1.297 1.396
LT 0.571 0.665 0.677 1.391 1.320 1.428
JB 1.285 1.233 1.306 1.377 1.309 1.412
AC 1.343 1.281 1.371 1.392 1.321 1.429
MLE 1.342 1.280 1.370 1.391 1.320 1.428
M_T * * * 1.434 1.345 1.706

* Transformation not done

Radar chart for W(2.8,35) & S=013 Radar chart for W(2.8,3.5) & 5=0.31
511\.1- S‘i’\"
1.5 y
’ ’ -« = Bias [ T -« = Bias
MLE (3 /0.5 "% cvMm Bia MLE( B\Y oM Bias
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Figure 2: Radar Chart for Various Measures of Errors After Normalization of Low Asymmetric Distribution

Table 4: Estimates of Process Capability and Process Performance Indices for W(2.8, 3.5)
Distribution Having Sk =0.13 After Normalization via Goodness of Fit Tests

PCI (Within PPI (Overall

Method AValue LSL  USL Capability) Capability)
Cp Cpk PPM Pp Ppk PPM
W(2.8, 3.5) - 0 10 130 082 6828 127 0.81 7667
SW 0.75 -1.33 616 129 1.07 656 125 1.04 904
AD 0.79 -1.27 654 129 1.02 1066 125 1.00 1402
CVvM 0.85 -1.18 715 128 096 2051 125 093 2543
PC 0.75 -1.33 616 129 1.07 656 125 1.04 904
SF 0.77 -1.30 635 129 1.05 841 125 1.02 1130
LT 0.75 -1.33 616 129 107 656 125 1.04 904
JB 0.76 -1.32 626 129 106 731 125 103 99
AC 0.75 -1.33 616 129 1.07 656 125 1.04 904
MLE 0.75 -1.33 616 129 1.07 656 125 1.04 904
M.T 0.50 0.00 316 142 128 66 136 122 127

302



Krishnan J., Vijayaraghavan R
PROCESS CAPABILITY ANALYSIS FOR NON-NORMAL DATA

RT&A, No 1 (77)
Volume 19, March 2024

Table 5: Estimates of Process Capability and Process Performance Indices for W(2.8, 3.5)
Distribution Having Sk =0.31 After Normalization via Goodness of Fit Tests

PCI (Within PPI (Overall
Method AValue LSL  USL Capability) Capability)
Cp Cpk PPM Pp Ppk PPM
W(2.8, 3.5) - 0 10 127 0.80 8026 132 0.83 6362
SW 0.81 123 674 124 096 1939 129  1.00 1389
AD 0.86 -1.16 - 726 125 091 3051 129 0.95 2259
CVvM 0.86 -1.16 - 726 125 091 3051 129 0.95 2259
PC 1.24 -0.81 1321 136 0.67 22553 141 0.69 19197
SF 0.83 -120 694 124 094 2351 129 098 1708
LT 1.22 -0.82 1278 135 086 21189 140 070 17959
JB 0.82 -122 684 124 095 2106 1.29  0.99 1518
AC 0.78 -128 644 124 1.00 1402 129  1.03 981
MLE 0.78 -128 644 124 1.00 1407 129  1.03 985
M.T - 0 10 127  0.80 8026 132 0.83 6362

Table 6: Various Measures of Error Values for Moderate Asymmetric Data After Data Transformation

Moderate Asymmetry (5K=0.64)

Moderate Asymmetry (SK=0.94)

Methods Weibull distribution (a=1.8, 3=2.0) = Weibull distribution (a=1.8, 3=2.0)
Bias MdAE RMSE Bias MdAE RMSE
SW 1.204 1.108 1.231 1.271 1.137 1.321
AD 1.195 1.102 1.219 1.255 1.127 1.301
CVM 1.175 1.090 1.195 1.247 1.122 1.290
PC 1.282 1.156 1.326 1.192 1.091 1.221
SF 1.201 1.106 1.227 1.271 1.137 1.321
LT 1.223 1.118 1.253 1.271 1.137 1.321
JB 1.211 1.111 1.238 1.271 1.137 1.321
AC 1.207 1.110 1.234 1.282 1.143 1.335
MLE 1.207 1.110 1.234 1.283 1.143 1.336
M_T 0.420 0.304 0.703 0.524 0.383 0.863
Radar chart for W(1.8, 2.0) & Si=0.64 Radar chart for W(1.8, 2.0) & S=094
SW SW
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Figure 3: Radar Chart for Various Measures of Errors After Normalization of Moderate Asymmetric Distribution
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Besides M_T transformation, the CVM, AD, AF, AC and SW methods of transformation produce less
errors and the PC, LT, JB, AC, MLE and SW methods of transformation yield the target results during the
estimation of process capability and process performance indices along with the minimum PPM values.
For the moderate asymmetric situations, the minimum and maximum PPM values were recorded as 81
and 241, respectively. The goodness of fit tests in the estimation of process capability for moderate
asymmetric distribution shows the better results than 30, 40 and 50 limits and approach towards the
standard of 60. One may also refer to Table 7 and 8 for more information.

Table 7: Estimates of Process Capability and Process Performance Indices for W(1.8, 2.0)
Distribution Having Sk = 0.64 After Normalization via Goodness of Fit Tests

PCI (Within PPI (Overall
Method AValue LSL  USL Capability) Capability)
Cp Cpk PPM Pp Ppk PPM
W(1.8, 2.0) - 0 10 1.79 059 37568 1.80 0.60 36938
SW 0.45 -222 404 144 123 110 144  1.23 114
AD 0.48 -208 421 144 116 252 143  1.16 259
CVM 0.54 -1.85 457 143 1.04 900 143  1.04 914
PC 0.19 -526 289 202 125 92 201 124 99
SF 0.46 -217 410 144 121 149 144  1.20 154
LT 0.39 -256 373 148 141 14 148  1.40 15
JB 0.43 -233 393 145 1.29 56 145 1.28 59
AC 0.44 -227 399 145 126 81 145 1.25 84
MLE 0.44 -227 399 145 126 81 145 1.25 84
M_T 0.50 0 316 143 1.12 398 143 1.12 408

Table 8: Estimates of Process Capability and Process Performance Indices for W(1.8, 2.0)
Distribution Having Sk =0.94 After Normalization via Goodness of Fit Tests

PCI (Within PPI (Overall
Method AValue LSL  USL Capability) Capability)
Cp Cpk PPM Pp Ppk PPM
W(1.8, 2.0) - 0 10 150 0.54 51629 154 056 47940
SW 0.43 -233 393 128 117 241 132 121 151
AD 0.47 -213 415 126 1.08 623 130 111 428
CVM 0.49 204 427 126 1.04 949 1.30 1.07 674
PC 0.62 -161 511 126 084 6101 130 086 4922
SF 0.43 -233 393 128 117 241 132 1.21 154
LT 0.43 -233 393 128 117 241 132 121 154
JB 0.43 -233 393 128 117 241 132 121 154
AC 0.40 -250 378 130 125 118 134 1.29 70
MLE 0.40 -250 378 130 125 118 134 1.29 70
M.T 0.50 0 316 126 1.02 1143 130 1.05 822

4.3. High Asymmetric Distribution

A Weibull distribution with the shape and scale parameters fixed as 1.0 and 1.3, respectively, will
represent the high asymmetrical non-normal data with skewness 1.35 and 1.76. Among the different
methods, Minitab (M_T) transforms non-normal data into much closer normal data with minimum Bias,
MdAE and RMSE values when compared to other methods, but the corresponding estimate of PCA
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shows smaller and more PPM values compared to the standard requirements. Therefore, the method of
transformation using Minitab (M_T) cannot be taken as an effective method. One may refer to Table 9 and
Figure 4 for more information. From the point of view of errors, after transforming non normal data into
normal data using different goodness of fit tests, the LT, SF, AC and SW, PC and AD methods produce
fewer errors. Moreover, the methods such as AC, JB, SW, AD and MLE yield better estimates of process
capability and process performance along with lesser PPM values. In this case, the minimum and
maximum PPM values are recorded as 740 and 3075, respectively. The goodness of fit tests in the
estimation of process capability for moderate asymmetric distribution shows that the process is better
than 30 and 40 and approach towards the standard of 50. One may refer to Table 10 and 11 for more
information.

Table 9: Various Measures of Error Values for High Symmetric Data After Data Transformation

High Asymmetry (5K =1.35) High Asymmetry (SK =1.76)
Methods  Weibull distribution (a =1.0, 3=1.3)  Weibull distribution (a=1.0, =1.3)
Bias MdAE RMSE Bias MdAE RMSE
SW 1.473 1.261 1.584 1.382 1.165 1.474
AD 1.480 1.265 1.593 1.414 1.174 1.519
CVM 1.486 1.269 1.602 1.414 1.174 1.519
PC 1.363 1.196 1.442 1.490 1.198 1.641
SF 1.466 1.257 1.576 1.376 1.163 1.465
LT 1.440 1.241 1.542 1.364 1.159 1.448
JB 1.493 1.273 1.611 1.382 1.165 1.474
AC 1.479 1.265 1.593 1.382 1.164 1.472
MLE 1.480 1.265 1.593 1.382 1.165 1.474
M.T 0.536 0.466 1.308 0.237 0.369 0.966
Radar chart for W(1.0, 1.3} & S=1.35 Radar chart for W(1.0, 1.3} & Si=1.76
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Figure 4: Radar Chart for Various Measures of Errors after Normalization of High Asymmetric Distribution
5. Results and Discussion

Data transformation and estimation of process capability analysis are the two aspects considered in this
section. The effectiveness of different goodness of fit tests is determined by various measures of errors
such as Bias, MdAE and RMSE. Based on the numerical illustrations provided in the previous section, it is
found that the methods of AD and CVM tests produce lesser errors in low and moderate asymmetric
situations, the methods of SW and SF tests yield considerably lesser errors in the case of moderate and
high asymmetric behaviors, and the methods of LT and AC tests perform better only on high asymmetric
situations. Similarly, the methods of PC, LT, JB, DME, and M_T tests yield better estimates, but provide
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greater PPM values while estimating process capability and process performance indices.

Table 10: Estimates of Process Capability and Process Performance Indices for W(1.0, 1.3)
Distribution Having Sk = 1.35 After Normalization via Goodness of Fit Tests

PCI (Within PPI (Overall
Method AValue LSL  USL Capability) Capability)
Cp Cpk PPM Pp  Ppk PPM
W(1.0,1.3) - 0 10 142 034 156902 139 033 160815
SW 0.26 -385 315 114 1.09 744 1.13  1.08 821
AD 0.21 476 296 122 1.01 1248 121  1.00 1316
CVM 0.21 476 296 122 1.01 1248 121  1.00 1316
PC 0.1 -100 259 1.82 0.84 6000 183 0.84 5871
SF 0.27 -:370 319 112 110 770 111 1.09 856
LT 0.29 -345 328 111 1.07 956 1.09 1.06 1071
JB 0.26 -3.85 315 114 1.09 744 1.13  1.08 821
AC 0.26 -3.85 315 114 1.09 740 1.13  1.08 817
MLE 0.26 -3.85 315 114 1.09 744 1.13  1.08 821
M.T 0.28 0 190 111 1.11 834 1.10 1.10 932

Table 11: Estimates of Process Capability and Process Performance Indices for W(1.0, 1.3)
Distribution Having Sk =1.76 After Normalization via Goodness of Fit Tests

PCI (Within PPI (Overall
Method AValue LSL  USL Capability) Capability)
Cp Cpk PPM Pp Ppk PPM
W(1.0,1.3) - 0 10 112 035 148540 1.15 036 142686
SW 0.29 -345 328 100 0.95 3033 099 094 3397
AD 0.28 -357 323 101 094 3075 099 093 3459
CVM 0.27 -3.70 319 1.02 093 3136 1.01 091 3539
PC 0.46 217 410 092 0.69 19756 092 0.69 19840
SF 0.30 -333 332 099 096 3173 098 095 3533
LT 0.34 294 349 095 0.90 4652 095 090 5012
JB 0.26 -3.85 315 1.04 092 3265 1.02 090 3694
AC 0.28 -357 323 101 094 3075 099 093 3458
MLE 0.28 -357 323 101 094 3075 099 093 3458
M.T 0.24 0.00 174 1.06 0.90 3639 1.05 0.88 4132

Thus, as a result, it will not be thought of as a useful way to evaluate the capability or a performance
of the process, though the methods of SW, AC, SF and MLE tests produce superior results with better
estimates and lesser PPM values when compared to other and traditional methods. A small PPM value
generally assures that fewer items will be rejected, and it must be lower than the benchmark values to
obtain six sigma results. On the basis of the numerical illustrations, it can be observed that the different
tests of goodness of fit would guarantee better performance (656 as the minimum and 1939 as the
maximum PPM values) in comparison to the typical PPM values of the 30 and 40 limits, and are very
close to the outcome of the 50 limits only in low asymmetric behaviors.

The PPM values for moderately asymmetric conditions are found to be 81 and 241 as minimum and
maximum values, respectively. This outcome surpasses the 30, 40, and 50 limits and is getting closer to
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the benchmark of 60 outcomes. The minimum and maximum PPM values of 740 and 3075 would ensure
that the procedure is better than the 30 and 40 limits only under high asymmetrical circumstances. One
may refer to Table 12 for the better understanding of the efficiency of different normality tests under
various asymmetric behaviors while dealing with non-normal quality characteristics based on the
numerical examples, results and discussion.

Table 12: Efficiency of Various Tests of Goodness of Fit in Data Transformation and Estimation of Process Capability
and Process Performance Indices for Weibull Distribution

Different Efficiency in data transformation Efficiency in estimation of PCI/PPI
Asymmetric Low Moderate High Low Moderate High
Levels Asymmetric | Asymmetric | Asymmetric | Asymmetric | Asymmetric | Asymmetric
Skewness 013 | 031 | 064 | 094 | 135 | 1.76 | 0.13 | 031 | 0.64 | 094 | 135 | 1.76
SW v v v v v v v v v v
AD v v v v v
CVM v v v v
PC v v v v'* v
SE v v v v v v v
LT v v v v v v'* v v
JB v v v v | v
AC v v v v v v
MLE v v v v v
M_T @ v v v v v
DME v | ve | ve | v | vs | v

DME - Direct Minitab Estimation | @ - No transformation done | v'- less errors and/or better estimates and less PPM values | v* -
Produces less error but higher PPM values | v'$ - Produces Better estimates but higher PPM values.

6. Conclusion

Process capability analysis is important for any production process and useful for its continuous
improvement. This study attempts to compare the ability of various tests of goodness of fit over the
method of maximum likelihood in the estimation of the parameter involved in Box - Cox transformation.
Primarily, the effectiveness of the tests of goodness of fit in transforming non-normal data into normal
data is assessed through various measures of errors along with a radar chart. Based on the numerical
example, the solutions to the research problem are turned out and it is observed that, regardless of using
different formulas, the estimates of process capability and process performance indices approximately
match. It is to be noted that the performance of process capability analysis for non-normal data purely
depends on the choices of variation taken into account. Further, the transformed data is extended
towards estimating process capability and process performance in order to identify the effective methods
for non-normal quality characteristics. As per the results and discussion, one may observe that the
measures of errors, and estimates of PCI, PPI and PPM values from SW, AC, SF and MLE methods of
goodness of fit tests have higher accuracy in data transformation, greater power in estimating process
capability or process performance and leaves smaller PPM values in all asymmetric situations.

By taking into account of the research problem, the SW test outperforms the other tests while
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transforming non-normal data into normal data and estimating process capability / performance with
smaller PPM values in all the asymmetric situations. However, other methods of tests such as AC and
MLE methods can also be considered for handling non-normal quality characteristics and producing
considerably good results. Application of different goodness of fit tests to estimate PCA yields smaller
PPM values and obviously better results than 30, 40 and 50 limits. Implementing goodness of fit tests
further helps to obtain the results that are closer to the six sigma standards than the traditional MLE
method. Thus, the current MLE technique could be effectively substituted by using goodness of fits tests
in Box-Cox transformation to achieve desired results in estimating process capability.
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Abstract

When designing new systems and components, it is very important to correctly determine the degree
and ability of the joint to withstand stress and load. Every new product that is intended for the market
must meet the requirements for high safety and reliability during the entire life cycle. The presented
article deals with the possibility of modelling the ability to withstand such a load, the principle of the
interference method was used in the experimental modelling. The interference theory of reliability is
based on the analysis of regularities and properties of two random variables that characterize
reliability. Among these elementary properties from the point of view of reliability assessment, we
can successfully use dependability and lifetime analysis. It originates from the concept of “safe life”,
which is determin-istic, based on determining and respecting the values of reliability factors. The
described approach as-sumes that a malfunction or a faulty function occurs when the strength limit
of the object is exceeded, i.e., ability to withstand stress.

Keywords: Reliability, Interference theory, Dependability, Load, Strength

1. Introduction

The interference theory of reliability is based on the analysis of the regularities and properties of two
random variables that characterize the elementary properties of dependability and lifetime.
Interference reliability theory offers reliability prediction in new product design because it can
simulate the various loads and stresses that are applied to the product during its life cycle. The
method uses the assessment of reliability properties in interesting interactions, which ultimately
affect the resulting reliability. Such analyses are important precisely in the first stages of the product
life cycle and are therefore successfully included in the process of creation and production of parts.
The basic step of the analysis is the observation of two random variables, which we will describe in
the following text.

Distribution of random variables

*The first random variable characterizes the operating mode and the resulting operating stress L
(Load stress). Operating stress is caused by the sum of external stress and the conditions of the
selected modes of use.
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e The second random variable quantifies the strength S (carrying capacity). Strength to load S
(Strength) is the ability to withstand physical, or chemical and biological loads, which, because of
their action, result in changes causing element failures.

Both parameters of the model are random variables, characterized by random variables or processes.
The form of their expression can be expressed by a histogram, or after statistical processing by
probability distribution functions [1]. The literature presents many models of analytical
quantification of dependability interference for the cases of exponential, normal, Weibull or gamma
and log-normal distributions of load probability densities fL (L) and strength £S (S) [2].

For the combination of different distributions of load and strength, the method of calculating the
integrals of the two-dimensional joint function is complex, and the calculation of fault-freeness is
difficult. Then it is advanta-geous to use mathematical or simulation modelling [3]. Today, the
reliability of products is successfully predicted already when designing new systems and can
effectively use mathematical modelling and simulation. From the point of view of partial reliability
properties, in the presented article, the authors will focus on the prediction of dependability
modelling. Therefore, we will deal with the calculation method of the interference theory of relia-
bility in the present paper.

2. Definition of the model

The assessed system or object Mk, which is exposed to the load during the monitored time, will be
reliable if the given operating stress L together with a certain probability does not exceed the strength
S.

Mk =Pr (S>L) (1)

Where:

Mk... System or object,
S...Stress [%/MPa],
L...Load Stress [%/MPa].

Course of loading density and strength values

Ap o
* Load
Strength

Probability

0 € W0 %0 A0 20 I X0 W

Load and strength values o

F= j/ (L).F,(L)dL F=[ £(5)]1-F,($)ds]

0 0

Figure 1: Representation of the range of interference
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This area (Figure.1) is proportional to the probability of a malfunction. It expresses the fact that due
to the random properties of quantities (mainly their dispersion) there is a certain degree of possibility
- the probability that a state will occur when the stress will be greater than the resistance to failure
in each case. As a result, a malfunction will occur. When calculating the probability of trouble-free
operation R, assuming that the random variables L, S are independent of each other, we can start
from the well-known fact that the probability of the simultaneous occurrence of two independent
phenomena is equal to the product of their probabilities.

The quantities characterizing the operating stress L (load) and the strength of the structure S are
expressed by distribution functions and probability densities. Let us denote the probability density
for the random stress variable L by fL(L) and the probability density for the random variable S
against failure by fS(S). Let's denote the distribution function for the random stress variable L by
FL(L) and the distribution function for the random stress strength variable S by FS(S). The quantities
L and S are random, they have a specific probability distribution law, most often continuous or
discrete. They can influence each other, which means to interfere, and this property can therefore be
successfully used when assessing the reliability of a technical system or object in general. The
extreme points of penetration, which arise during the analysis itself, define the area of mutual
influence of both quantities his area is proportional to the probability of a malfunction [4]. The
overlapping area defines the area of mutual influence of both quantities. It is proportional to the
probability of failure and expresses the fact that due to the random properties of quantities
(primarily their dispersion) there is a certain degree (probability) of the possibility that a state will
occur when the stress will be greater than the strength to failure in each case and as a result a failure
will occur. The area expresses the fact that due to the random properties of the quantities (especially
their dispersion) there is a certain degree of possibility - the probability that a state will occur where
the stress will be greater than the strength to failure in the given case. As a result, a malfunction will
occur [5]. The curves are shown in Fig. 1. When calculating the probability of trouble-free operation
R, we can assume that the random variables L, S are independent of each other, based on the known
fact that the probability of the simultaneous occurrence of two independent phenomena is equal to
the product of their probabilities. In accordance with the introduction of labels for the probability
densities of quantities L and S, the following will apply to the probability of dependability operation
R:

F=[7f(L).F(L)dL )
Or

F = [ fs(S).[1— F,(S)dS] ?3)

The mentioned relationships are the methodological basis for modelling the failure rate or failure-
freeness of elements using the SSI interference method [6,7].

3. SSI simulation model

The input quantities of load L and strength S have a random character obtained from experimental
measurement. The result is a non-parametric distribution of the obtained data, which we can
statistically process in the form of a histogram or convert to a usable parametric distribution, as
illustrated in Fig. 2. [8]. Both cases provide us with the possibility of generating input quantities and
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assessing the occurrence of decisive events for the statistical expression of failure rate or failure-
freeness of elements using the interference method.
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Figure 2: Expression of random variables L and S by histogram of relative abundances and probability distribution
density

For the range of experimental or generated values, we determine the size of the values of the
distribution functions FL(S) and Fs(S) for different strength values S. For the range of values of both
functions, stress L and S contribute to failure. If we plot the values of L and S in the interdependence
graph, the intersection represents the product of two independent phenomena. The area below the
line of the graph represents the probability of fault-free operation expressed, and the area above the
line of the graph represents the probability of the occurrence of a fault. A probability distribution
model is characterized by a density function and a distribution function based on precisely specified
parameters that need to be estimated from the data using a likelihood function. We also test
hypotheses in statistical models, which often represent models of causal dependence of dependent
variables on predictors. In the experiment, graphic tools are used and serve for a quick and
illustrative presentation of the results, especially when it comes to more comprehensive data and
mutual comparison of several files. By graphically representing the frequency distribution, we get a
clear idea of the nature of the frequency distribution of the observed character.

Probability of failure

e Rts Sont ST SR S ST SO :

07t

Depandability expressed by the area under
06F |the line ...

L B

| s S SE IR S
| SO SO S S SIS SRS S S S S
.| T W T S SO SN DU S-S

Probability from strength proportion

% o1 02 03 04 05 06 07 08 09 1

Probability from load proportion

Figure 3: Probability of failure

The modelling procedure was designed as follows. The first step is to obtain the input data of
histogram parameters, or the probability distribution of operating load L and strength S of the
investigated system element. Subsequently, a random level of operating load and strength is
generated, thus creating a point of realization of the phenomenon. The next analysis will assess

313



Alena Breznicka, Pavol Mikus
THE USE OF EXPERIMENTAL MODELLING IN THE PREDICTION RT&A, No 1 (77)
OF PRODUCT RELIABILITY Volume 19, March 2024

which area it falls into and show it graphically. The boundary between fault-free and fault-free areas
is given by the condition S > =L and expressed by the red line in the fig. 3. If the condition S>=1Lis
not met, this is a fault condition. We record the number of simulation steps N and the number of
failure states n. We will statistically process the generated data into the form of values of probability
density functions and distribution functions, and by plotting them we will get an idea of their
interference. In the proposed procedure, we will successfully use the MATLAB simulation language,
because its graphics allow the creation of interactive programs, the environment of which allows the
user to dialogically change the parameters of the distributions and judge what load and strength
values are acceptable for the structural design application. The program in the basic window offers
the option of choosing the type of load distribution and strength of the investigated element,
distribution parameters and the number of simulations. If, from the input data used, the simulation
results indicate that the required fault-free parameters do not meet, the simulations can be carried
out by changing the load and strength parameters until an acceptable level of interference is reached.

4. Steps of the experimental simulation model

The first steps of the analysis require the determination of the number of simulations and the loading
of the necessary input data of the parameters of the distributions of the probability density functions
of the operating load and the strength of the investigated element. The verification analysis is shown
in fig.4.
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Figure 4: Determination of the number of simulations in the mathematical model

The level of operational load and strength is generated and statistically processed into values of
probability density functions and distribution functions. The curves of the distribution functions are
shown in fig. 5.

Course of distribution functions of load and strength

1r . —
+ load
08+| * strength /
£ os}
o) /
804 /
o /£
a /
02t /
0 p— u':'f d A A J
0 £0 100 150 20 20 300

Value load and strength
Figure 5: Determining the operating load and strength of the part
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The next step of the analysis is to plot the curve of probability density functions and distribution
functions, shown in Fig. 6. Determines the minimum value of the strength function and the
maximum value of the load function. Plots the interdependence of L and S values. Calculates the
size of the area under the graph line.
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Figure 6: Probability density functions and distribution functions

The next step of the experiment was to analyse the impact of changes in the values of standard
deviations.

5. Outputs of experimental simulation of parameters of dependability

Load L is a stochastic quantity with properties as in the previous case. It has its distribution of the
probability of occurrence at individual levels, which do not change its character (type and
parameters of the distribution) with time (period of operation). The resistance of the structure to
failure S with time does not change its type (law) of distribution but changes its position relative to
the origin of the coordinates. A change in position occurs when the stress repeatedly exceeds a
certain threshold limit Sc of the sensitivity (resistance) of the structure. The application of the
dynamic model requires the clarification of some important concepts and properties of the random
variables used in the model. Above all, the clarification of the stochastic nature of the quantities S
and L, especially their possible change with the time of stress exposure, and further the concept of
"accumulation of damage". The possibilities of variations in how the system will react to different
strength need to be verified by repeated modelling. ongoing analyses can be evaluated in Fig.7.
Procedure for processing the analysis experiment:

* In the first step, we summarize the input data that evaluates the parameters of histograms,
distribution probabilities

e Simulation of random variable operating load and resistance.

* Modelling the point of realization of the phenomenon, assessing which area it falls into and
graphically representing it.

e Graphically determine the boundary between the fault-free and fault-free areas, represented by a
red line in the picture. 3.

e If the condition S > =L is not met, this is a fault condition.

e Control of the number of simulation steps N to the ratio of the number of failure states n.

» We statistically process the generated data into the form of values of probability density functions
and distribution functions.

* Generation of mutual interference of phenomena.

* We calculate probability of failure.
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Figure 7: Principle of the impact of changes in the strength parameter

316



Alena Breznicka, Pavol Mikus
THE USE OF EXPERIMENTAL MODELLING IN THE PREDICTION RT&A, No 1 (77)
OF PRODUCT RELIABILITY Volume 19, March 2024

The method of creating a statistical probability model and graphical representation of the share of
load and strength in the form of histograms of the generated values can be expressed with the
scaatherhist function. The next step is the analysis of the probability of failure achieved in a
simulation experiment with parameters according to Table 1. Again, we choose a smaller number of
simulations, for indicative results. With a higher number of simulations, the accuracy of the result
increases, but the graphical representation of the results deteriorates.

Table 1: Input and output parameters of the simulation experiment

Input: Output:

Number of 6 1000 Probability of 0.919
simulations dependability

Load parameters, Median 50

Exponencial - Probability of failure 0.081
Strength Median 130

parameters, Weibull | Standard deviation 20

Load - strength scatterhist

Load
"
S

Strength

Figure 8: Graphic representation of load and strength ratio

The results of the simulation and their graphic representation point to a high degree of influence of individual
parameters of strength and load. The principle of the approach is shown in Fig. 8 Graphical analysis of the
impact of changes in the strength parameter. When assessing the results of the simulation, it must be
remembered that the engineering object (element) has the structural and material properties to withstand stress.
Load and strength are expressed by quantities that can be characterized as dynamic and stochastic. During
operation, the engineering object (element) is stressed by combined effects, namely: Operational stress:
operational load, environmental effects, and the human factor. This is represented by the quantity L - load. And
resistance to physical stress, chemical stress, and biological stress, represented by the component S — strength.
In Fig. 9. an analysis is shown, which provides a graphical output describing the state when we can identify
failure. The red area represents a high load that the system is no longer able to withstand. Below the critical line
is the permissible area. It is an area that characterizes dependability.
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faillure

Load
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Figure 9: Graphical representation of the 2D failure and failure-free set of the realization of 100,000 simulations
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6. Conclusion

An equivalent stress is a stress that has one constant level (level, amplitude) which, if applied to a
component with frequency Sometimes, will cause a failure after the same lifetime of the component
as would cause the complete spectrum of stress acting in service at all levels. So, the damage after a
certain period of operation (life) caused by this equivalent stress is the same as the damage caused
during the same period of operation by the complete spectrum of operational stress [9]. Thus, we
can assume that any arbitrary operating stress spectrum can be "converted" to a single level
equivalent spectrum of the described properties. The dynamic model is applied primarily to such
processes when the strength S against failure due to repeated exposure to Load L of different
(randomly variable) levels changes with the duration of operation (time). These are e.g., typical cases
of element damage due to phenomena associated with material fatigue, exceeding the set parameters
limits [10,11].

The results of experimental simulation using the reliability interference method can be summarized
in the following advantages:

* The construction, component will be reliable if the operating load L does not exceed the strength
S with a certain probability.

* The quantities L and S are random, and we assume that they have a specific probability
distribution law.

* The operational load and strength of the structure will be expressed by probability densities and
distribution functions.

* Load and strength are quantities that can influence each other (interfere).

® The extreme points of penetration delimit the area of mutual interference, which is proportional
to the probability of the occurrence of a fault.

The simulation model makes it possible to eliminate the shortcomings of classical calculation
methods and to use the results of few experimental measurements, to determine the interference of
different probability density distributions of randomly variable functions of permitted operating
loads and strength, to apply the results to determine the reliability of elements of diverse systems
and, last but not least, to use graphic outputs for didactic support of the method explanation SSI and
the behaviour of random variables of different probability distributions.
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Abstract

Modeling and examination of lifetime phenomena are the main aspects of statistical work in a wide
variety of scientific and industrial areas. The area of lifetime information analysis has developed and
extended quickly with respect to methodology, theory, and fields of applications. The point and
interval maximum-likelihood estimations of generalized inverse Rayleigh distribution (GIRD)
parameters and the acceleration factor are considered in this work. The estimation procedure is
carried out for a partially accelerated step-stress model under adaptive Type-II progressive hybrid
censored data. The biases and the mean square errors of the maximum-Iikelihood estimators are
computed to assess their performances in the occurrence of censoring developed in this study
through a Monte Carlo simulation study.

Keywords: Partially accelerated life test, Generalized inverse Rayleigh
distribution, Newton Raphson method, Adaptive Type-II Progressive Hybrid

Censoring, Simulation study.

I. Introduction

The Partially accelerated life tests (PALTs) are applied by reliability practitioners profitably to
calculate approximately the acceleration factor and thus gathering the accelerated information to
ordinary surroundings. In a PALT, objects are experience in both regular and accelerated
circumstances. Progressive-stress, step-stress, and constant-stress are the three types of PALTs. The
assessment performed under these kinds of stress is called accelerated life test (ALT) or partially
accelerated life test (PALT). In ALT, the components are placed under stress to obtain additional
failures in a tiny time. The key postulation in ALT is that the mathematical model connecting the
life span of the component and the stress is acknowledged or can be assumed. In various
situations, such a model is neither identified nor assumed. That is, ALT information can't be
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gathered to ordinary use circumstances. So, in such situations, PALT is a more appropriate choice

to be applied to calculate the statistical model’s parameters. There are three types of PALT i.e.
Constant stress PALT (CSPALT), step stress PALT (SSPALT) and progressive stress PALT
(PSPALT).

In SSPALT, the test component initiates at ordinary use circumstances for a particular period.
If it works successfully at that period, it is placed in stress. Stress continually increases until the
examination components are unsuccessful or the examination is ended based on a confident
censoring scheme. Rao [1] indicates that the step-stress technique can reduce the investigating
period and save many human resources, substances, sources, and cash. In particular, SSPALT
should be applied for a trustworthiness study to save time and wealth mainly, when the trial
components are of superior reliability and have significant models.

In the present work, we combine an adaptive Type-II progressive hybrid censoring scheme
with the step-stress PALT to obtain a step-stress PALT under adaptive Type-II progressive hybrid
censored scheme with the GIRD as a lifetime model.

As pointed out by Lin et al. [2], many conditions in existence analysis and reliability research
are available, in which components are lost or removed in the investigation prior to failure. The
practitioner may not gainful idea about the failure times for all the elements under study. The
information detected from this research is called censored information, and the scheme is called
censoring scheme. The frequently applied censoring schemes are the Type-I and Type-II censoring
scheme, for more details one may refer to Balakrishnan and Ng [3]. Many studies have discussed
the hybrid censoring plan, which is a combination of Type-I and Type-II censoring schemes, with
the associated statistical inference, see for example, Epstein [4], Balakrishnan and Kundu [5] Childs
et al. [6], Gupta and Kundu [7], Kundu [8], Deyand Pradhan [9], and Salah el al. [10] among
others. Due to the less flexibility of removing the components from the testing at any position
other than the starting point, another censoring scheme was applied, which is called progressively
Type-II hybrid censoring schemes. Table 1 summarizes a recent literature review of the different
censoring schemes.

Table 1: Related work to the proposed problem

Author(s) Name | Method Scheme Failure Model Strategy
Abdel-Ghaly et | SSALT Type-II Pareto distribution -
al. [11]
Alam et al. [12], | CSPALT, Progressive Generalized inverted | Maintenance
Alam and Aquil | SSPALT censoring, Adaptive exponential service policy
[13] Type-II progressive distribution,
hybrid censoring Exponentiated Pareto
distribution
Abd El-Raheem | CSALT, Complete sampling, | Extension of the -
[14, 15] CSALT Type-I censoring exponential
distribution
Balakrishnan et | SSALT Type-II censoring Exponential -
al. [16] distribution
Xiaolin et al. [17] | SSPALT Progressive Type-II Modified Weibull -
hybrid censoring distribution
Alam and Aquil | SSPALT Progressive Generalized inverted | Maintenance
[18] censoring exponential service policy
distribution
Alam et al. [19] | SSPALT Progressive Power function Maintenance
censoring distribution service policy
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Author(s) Name | Method Scheme Failure Model Strategy
Ismail [20, 21] SSPALT, Adaptive Type-1I | Weibull distribution, | -
SSPALT progressively hybrid | Weibull distribution
censoring, Adaptive
Type-1 progressively
hybrid censoring
Ismail [22] SSPALT Type-I progressive | Weibull distribution | -
hybrid censoring
El-Sagheer and | SSPALT Type-II-Progressive Lomax distribution | -
Ahsanullah [23] censoring
Zhou et al. [24] | SSALT - Copula function Competing risk
Srivastavaand | SSPALT Type-I and Type-II truncated logistic -
Mittal [25] censorings distribution
Proposed Work | SSPALT Adaptive  Type-II | Generalized Inverse | -
progressive hybrid | Rayleigh distribution
censoring

The proposed study is motivated by two factors. The first aims to establish explicit formulas
for the likelihood and log-likelihood functions under an adaptive Type-II progressive hybrid
censoring scheme. The second is to apply a Monte Carlo simulation study to estimate the
performance of the model parameter estimators with an adaptive Type-II progressive hybrid
censoring scheme in terms of biases and mean squared errors. The authors presented a study on
SSPALT utilizing adaptive Type-II progressive hybrid censoring where the lifespan of test items
follows the two parameters GIRD in this work.

The uniqueness of this work stems from the fact that no earlier research has been conducted in
this area using the proposed censoring scheme for two parameters GIRD.

The present paper is arranged as; the model illustration and test procedure are presented in
section 2. The point and interval estimation is presented in section 3. A simulation study is carried
out in section 4 to check the performance of model parameters. The result based on the proposed
problem and conclusion is provided in section 5. The real-life implementation of the proposed
work is shown in section 6.

II. Model lllustration and Test Process

The GIRD is one of the most beneficial and important distribution within the inverted scale
distributions. It has been considered as an appropriate failure model in life testing and reliability
analysis, for more details about GIRD one may refer to Fatima et al. [26]. The GIRD has lots of uses
in the area of reliability theories. The Probability density function (pdf) of GIRD presents by the
following equation (1);

A-1
-2 -2
FA0) = e {1—e‘(9y) } ,2,0>0 M
0%y
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Figure 1: Pdf pattern of GIRD

The cumulative density function (cdf) of GIRD presents by the following equation (2);

A
-2
F(y,/l,e):l—{l—e_(ey) } :9,4,0>0

)

[~

Figure 2: Cdf pattern of GIRD
The reliability function of GIRD is given by

A
-2
S(y,4,0) = {1—e—(9y) }

®)

N

Figure 3: Reliability pattern of GIRD
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The hazard rate function of GIRD is presented by the following equation:

226700

h(y,A,0)= 5
02y3 {1 —_e @) }

(4)

0.8
— A,6=6,0.6
0.6
A,6=8,0.9
5
9 04t
0.2
0.0}
0 2 4 6 8 10

Figure 4: Hazard pattern of GIRD

Figure 1 shows that the Pdf of GIRD is positively skewed, while the shape of Cdf is increasing
as shown in Figure 2. Figure 3 and 4 show the Reliability and Hazard shapes of GIRD for different
values of 4 and 6. The figure 3 shows that the reliability function of GIRD is downward skewed for
different values of 4,68, it becomes flatter and flatter as the shape parameter is increased. The

behavior of instantaneous failure rate of the GIRD has an upside-down bathtub shape curve.

The unimodel hazard rate function shows the possibility of decreasing failures as soon as the
product has passed a particular moment, during some kind of stress on that product. Thus, the
GIRD shows excellent statistical performance and can be a better model to fit real data in many
scientific fields.

Kumar and Garg [27] handled an estimation of parameters of GIRD based on randomly
censored trials. Bakoban and Abubaker [28] presented the assumption of GIRD with real
information applications. Bakoban and Abubaker [29] also proposed a study on the estimation of
parameters of GIRD using progressive Type-II censoring.

Under SSPALT the pdf of Y can be written as:

0, y<0
S =1/ =f4,0), 0<y<t (5)
), y>t

A-1
-2 -2
where, f5(y) = %g@(mﬂ()}—ﬂ)) 1— e—(&(r+ﬂ(y—r))) v, B, 2,050

f2()is attained by applying variable transformation that is projected by DeGroot and Goel

[30] and the procedure is given in the following equation:
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T if T <
Y={ yree ®)

r+,8_1(T—T) ifT>t

In equation (6), T is the life span of the article in normal operating circumstances, while 7 is
the time at which stress is changed (i.e., stress change time) and /3 is the acceleration factor.

In life testing analysis, the Type-I and Type-II censoring ideas are the mainly well-liked and
widespread plans. These schemes explain as follows, suppose there are 7 apparatus situate on the
investigation, then under Type-I censoring, the investigation carries on until reached a pre-
specified pointx . But in Type-II censoring, the investigation carries on until a reached a pre-
specified quantity of componentsm(<n). We cannot take out components from the live
experimentation at any moment and any position except the opening point in these two schemes.
This is the key weakness of these two schemes. To remove this weakness, progressive Type-II
censoring or progressively Type-II hybrid censoring another censoring comes in light. Hybrid
censoring is the mixture of two censorings, i.e., Type-I and Type-II censorings. So, the progressive
Type-II censoring scheme is described as follows;

In the progressive Type-II censoring scheme environment, the reliability practitioner presets
the number of components to be unsuccessful (say 72) out of the total number of components 7,
placed under analysis. At the moment, when initial failure happens, R| components among
n—lleftover (surviving) components are randomly taken off from the life analysis. Similarly,
R, of the leftovern —2 — R, examination components are eliminated from the analysis at the
moment of the second failure. This practice continues until the mth failure is reached. All the

leftover R, =n—m—R, —R, —...— R —1surviving examination components are eliminated

from the examination at this point. The R, units are situating before the work. The assumption

related to progressive censoring and progressively is proposed by many authors such as
Balakrishnan [31], Balakrishnan and Agrawala [32], etc.

If a life examination experiment stops randomly at a momentmin(Y, , . ,¢), where

1<m<n,0<@<oare determined prior to the experiment, and

Nemen <Yomn <o <Yy are the ordered lifetimes consequential from the study, then

(R,R,,...,R,)are called progressively hybrid censoring (PHC) scheme. If the mthprogressive

censored unit occurs before the point® (¢ >Y,,.,..,,), then the investigation ends at the

moment Y,

'm:m:n - Else, the examination will end at the moment ¢ , where Yj:m:n <@p< Yj+1:m:n

, hence all the leftover (n — i R, — j)existing units are censored at@ . Here jis a random
i=1

variable and denotes the number of unsuccessful units up to @ . The reliability engineer comes
with the problem of different censoring schemes, and the practitioner may observe a tiny test size
(even it is equal to zero). So, this is not possible to happen with standard suggestion procedures to
obtain good results. To remove such type of drawback, another censoring comes in light called
adaptive censored samples. This was commenced by Ng et al. [33].

In this scheme, the observed quantity of failed units72is prefixed and the investigation
moment is unlocked to run over the moment x . The investigation will continue along with pre-

determined progressive censoring schemes (R,R,,R,,...,R,)ifY,,.,.. <@, otherwise, the

ongoing units (on work units), which following the (j +134 to (m —1)h experimental failures, are
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J
not uninvolved from the analysis. All the surviving units Rm =n—m-— ZRZ. are taken back from

i=1
the test at the stage Y,.,,., if Mobserved failures are obtained, i.e. R;,; =...= R, =0. The

progressive Type-II censoring takes place if # —> 90 and the conventional Type-II censoring takes

place, ifn — 0.

If the practitioner is free to vary the value x, then this kind of censoring proposal is known as
an adaptive progressively Type-II hybrid censoring (APHCT-II) scheme. This variation in x is
completed to regulate the most advantageous of pointed investigation time and a better
opportunity of supervising various failures.

III. Estimation PProcess

Let Y1,Y>,...,Y, be a life span of nindependently and identically distributed units following the
GIRD. Vicmen < Yomn < -V imn <7< Yo, +timin < 2 < Y rstimn <..< Y aT€ Completely observed

(ordered) lifetimes. Both point and confidence interval estimation is presented in the following

subsections:

I. Point Estimation

In this section, we used the maximum likelihood estimation method. Under the SSPALT the
likelihood function with APHCT-II for GIRD based on M observed lifetime data takes the
following form;

m J (n—m—éRi)
L(ﬂ”g’ﬂ)ocHfl(yZ':m:n)fZ(yi:m:n)H(Sl(T))Ri (Sz(ym:m:n)) i=1 (7)

i=1 i=1

PRV PRy
where, §(7) = {1 _ o (07) } ' SDomon) = {1 — o (OC+Bmmn—1))

InL=1InL(4,0,0)

n,is the amount of components that are unsuccessful in the normal circumstance and 7, is

the number of components that are unsuccessful in accelerated circumstance.

The log-likelihood function takes the following form;

m

mL=-3 @) +G-DShfi-e @33 mf+ Ay - T)}n{m(“zﬂ H

i=1 04
., ] e . B ®
£ AR e ]33 Iy - 3 (0 + By, 1))

J J _) m ~2
+ Z /1(” —m-3 Rijln [1 _ e*(a(ﬁﬁ(y“,:m,ﬁr))) ]+ (A - 1)2 lnl:l _ e*(l‘}(ﬂﬂ(.v,fr))) ]
i=1 i=1 i=1

To obtain maximum likelihood estimates (MLEs) of model parameters and acceleration factor,
we differentiate the above equation for parameters ¢4 and [ equating to zero.
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where, 0; =7+ B(y; =7), Oppmin =T+ BVmimen — 7). S =0, +1,

-2
ag;L (2’”) Zln{l— ~@0) +Zln{ ~(00;)” }LZR ln[ ~(0) }+

_ )

é(ﬂ—m— éRi]ln{l—e_(eam)_z | =0

i=1 i=1

@D 2 m
OolnL 4 _ ! ;
aI; " 229 () 2 =218~ 32 y_z ~> ()20 -
(1 e‘(@’z) j i=1
m (- V-2 (002 —(6’2’)_2 2,3
2(/1—1)9‘32(01) ¢ l_z 23 AR 4 _f (10)
ol 1—e(00) izl | — =00
J J ~(0c )2 2
_2219_3(11—171— ZRij e~ on) (O-mz) =0
P= i=1 l—e” (‘%'m)
OlnL " (o,~7)0o,)° (o, - T)(@O‘)3 (0o
—— =20 L9 TV0) A-1)0 —
AR S “=y Z Bli—e®)”) o
J 7 (o, —r)(@o* )3 (0o, m (o.-1)
- ﬂ@(n—m—ZRl.) +-_-3 i -
2 ) N ) 5% o

It is an impossible task to solve the above equations manually. Hence, an iterative procedure
called the Newton Raphson technique is used to get the MLE of the model parameters and
acceleration factor.

II. Interval Estimation

The interval estimation for the model parameters and acceleration factor based on APHCT-II is
obtained. The asymptotic distribution of MLE A, 8 and [ takes the following form presented in

the following equations.
((A-2.6-0)-p) > No.r ' (1.0.p) 1)

The above procedure is suggested by Miller and Nelson [34]. [ _1(1,9, ) denotes the

variance-covariance matrix of 4,8 and £ . The 3x 3 matrix / -1 which is approximately equal to 1
and the elements I] ,(4,0,0),i=123;j=123, closed to [;; (/1 0 ﬂ) under the APHCT-II

are given as.
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where, 0" InL - _(Z_m]
042 A2

e (%)

82 m _3 m 67(90,- )72 (O_')fz R J ( J j (O' ( " 2
- o — 20 n—-m-R | -
816‘9 21 (—e@” i Z‘ (=) = 5 (—c )

o0 ?

73 ZZRW)

o*InL  4m . g @07 2 Y207 @0”
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The 100(1 — 7)% approximated two-sided limits of confidence for parameters 4,6 and S
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are given as:
At Zp VI (A0.8), 022, Y153 (A.0.5) and £ 2,133 (4,6, 5)

IV. Simulation study

Since it is theoretically not achievable to evaluate the presentation of different censorings for
different values of model parameters. For this job, many software and simulation techniques are
used. In this segment, the Monte-Carlo simulation procedure is applied to evaluate the efficiency
of the MLEs. This efficiency is recorded based on the mean squared error (MSE) and bias of the
MLEs. The following three progressive censorings are chosen for this assignment;

e Scheme() R, =R, =R, =..=R
e Scheme(ll) R,=n—-m, R, =R, =R,...=0
e Scheme(ll) R, =R, =R, =..=R

R =n-m

m—17

R, =n—-2m+1

m—1’

For this task, 1000 simulation-based on MSEs and biases are estimated. The steps for this
procedure are;
o The values of parameters n,m,7,, A,0 and [ are specified first.

e After selecting the parameter values, we generate a random sample from GIRD of size
nby the inverse CDF method in both situations (regular and accelerated circumstances).
e Generate the PHC sample for the parameters n,m,7,p,A,0 and [ by using the

technique discussed in equation (6).
e The sample data set for the APHCT-II is;

Yiemn <Xyimn <o Ynymn ST <Vn, +limn SO <VJ+limn < <Vmin:n
e Find the values of the MSEs and the biases associated with MLEs of the parameters, the
computing values are presented in Table 2,3,4 and 5 at different values of parameters.

Table 2: The average MSEs and biases for A,0, 5,7 and @ are set at 0.9, 1.4, 1.76, 2.4 and 6

(n.m) | Schemes | Valuesof A | Valuesof ¢ | Valuesof [
Bias | MSE | Bias | MSE | Bias | MSE

1 0.856 | 0.929 | 0498 | 0.638 | 0.574 | 0.684

(50,12) 2 0911 | 0.998 | 0.685 | 0.694 | 0.633 | 0.693
3 0.743 | 0.873 | 0.584 | 0.658 | 0.593 | 0.709

1 0.502 | 0.577 | 0476 | 0.609 | 0.543 | 0.644

(70,12) 2 0.587 | 0.676 | 0.632 | 0.698 | 0.600 | 0.676
3 0.522 | 0.611 | 0.564 | 0.650 | 0.578 | 0.687

1 0.411 | 0.500 | 0.386 | 0.521 | 0.465 | 0.565

(90,12) 2 0.599 | 0.680 | 0.658 | 0.705 | 0.533 | 0.590
3 0.431 | 0.534 | 0489 | 0.580 | 0.498 | 0.577

1 0.343 | 0.344 | 0.300 | 0.467 | 0.398 | 0.511

(50,20) 2 0.445 | 0.587 | 0499 | 0.612 | 0.466 | 0.554
3 0.365 | 0.398 | 0.387 | 0.513 | 0.440 | 0.534

1 0.233 | 0.231 | 0.190 | 0.376 | 0.300 | 0.432

(70,20) 2 0.342 | 0.498 | 0409 | 0546 | 0.376 | 0.467
3 0.287 | 0.280 | 0.298 | 0.412 | 0.333 | 0.442
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24 and 9

(n.m) | Schemes | Valuesof A | Valuesof ¢ | Valuesof /3
Bias | MSE | Bias | MSE | Bias | MSE
1 0.143 | 0.154 | 0.122 | 0.287 | 0.198 | 0.365
(90,20) 2 0.234 | 0409 | 0.265 | 0.387 | 0.287 | 0.398
3 0.188 | 0.190 | 0.198 | 0.322 | 0.209 | 0.370
Table 3: Average values of MSEs and biases when A,0, 5,7 and @ are set at 0.7, 1.4, 1.76,
(n.m) | Schemes | Valuesof A | Valuesof ¢ | Valuesof [
Bias | MSE | Bias | MSE | Bias | MSE
1 0.387 | 0.508 | 0.609 | 0.673 | 0.548 | 0.698
(50,12) 2 0.435 | 0.580 | 0.655 | 0.705 | 0.715 | 0.775
3 0.477 | 0.546 | 0.640 | 0.642 | 0.658 | 0.739
1 0.323 | 0.410 | 0456 | 0.521 | 0.512 | 0.574
(70,12) 2 0.408 | 0.498 | 0.509 | 0.578 | 0.598 | 0.687
3 0.397 | 0433 | 0480 | 0.547 | 0.545 | 0.632
1 0.276 | 0.324 | 0.387 | 0.454 | 0.431 | 0.511
(90,12) 2 0.322 | 0413 | 0433 | 0517 | 0.508 | 0.596
3 0.299 | 0.356 | 0.410 | 0.489 | 0.474 | 0.541
1 0.197 | 0.250 | 0.311 | 0.386 | 0.324 | 0.434
(50,20) 2 0.354 | 0.431 | 0465 | 0.530 | 0.534 | 0.608
3 0.218 | 0.288 | 0.327 | 0416 | 0.419 | 0.487
1 0.113 | 0.176 | 0.232 | 0.318 | 0.243 | 0.353
(70,20) 2 0.265 | 0.334 | 0.379 | 0464 | 0.465 | 0.533
3 0.175 | 0.212 | 0.248 | 0.354 | 0.325 | 0.397
1 0.007 | 0.119 | 0.146 | 0.243 | 0.154 | 0.265
(90,20) 2 0.175 | 0.254 | 0.299 | 0.385 | 0.386 | 0.421
3 0.108 | 0.175 | 0.186 | 0.278 | 0.256 | 0.290

Table 4: Average values of MSEs and biases when A,0, 5,7 and @ are set at 0.7, 1.4, 1.76,2.8 and 9

(n.m) | Schemes | Valuesof A | Valuesof ¢ | Valuesof f
Bias MSE | Bias | MSE | Bias | MSE

1 0.334 | 0.398 | 0.387 | 0.465 | 0.480 | 0.602

(50,12) 2 0.387 | 0.446 | 0445 | 0.576 | 0.587 | 0.715
3 0.354 | 0.431 | 0412 | 0.543 | 0.535 | 0.675

1 0.296 | 0.344 | 0.297 | 0.387 | 0.429 | 0.519

(70,12) 2 0.320 | 0.400 | 0.365 | 0.487 | 0.519 | 0.630
3 0312 | 0.386 | 0.345 | 0.438 | 0.482 | 0.567

1 0.230 | 0.278 | 0.204 | 0.316 | 0.349 | 0.430

(90,12) 2 0.266 | 0.342 | 0.295| 0.416 | 0.451 | 0.579
3 0.240 | 0.294 | 0.256 | 0.398 | 0.380 | 0.483

1 0.187 | 0.238 | 0.138 | 0.253 | 0.227 | 0.341

(50,20) 2 0.287 | 0.360 | 0.305 | 0.436 | 0.465 | 0.583
3 0.209 | 0.267 | 0.178 | 0.303 | 0.283 | 0.425

1 0.129 | 0.186 | 0.008 | 0.180 | 0.145 | 0.265

(70,20) 2 0.220 | 0.287 | 0.221 | 0.254 | 0.373 | 0.454
3 0.148 | 0.202 | 0.120 | 0.228 | 0.220 | 0.374
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(n.m) | Schemes | Valuesof A | Valuesof € | Valuesof f

Bias | MSE | Bias | MSE | Bias | MSE

1 0.007 | 0.129 | 0.004 | 0.109 | 0.100 | 0.187

(90,20) 2 0.139 | 0.198 | 0.188 | 0.169 | 0.270 | 0.378
3 0.102 | 0.149 | 0.009 | 0.134 | 0.139 | 0.190

Table 5: Average values of MSEs and biases when A,0, 3,7 and @ areset at 1.5,1.4, 1.76, 2.4 and 9
(n.m) | Schemes | Valuesof A | Valuesof ¢ | Valuesof

Bias | MSE | Bias | MSE | Bias | MSE

1 0.560 | 0.593 | 0.593 | 0.656 | 0.644 | 0.734

(50,12) 2 0.677 | 0.765 | 0.709 | 0.788 | 0.723 | 0.797
3 0.600 | 0.712 | 0.650 | 0.693 | 0.687 | 0.755

1 0476 | 0499 | 0486 | 0.575 | 0.563 | 0.665

(70,12) 2 0.588 | 0.691 | 0.628 | 0.690 | 0.659 | 0.687
3 0.523 | 0.633 | 0.576 | 0.620 | 0.581 | 0.671

1 0410 | 0453 | 0.399 | 0.484 | 0.487 | 0.556

(90,12) 2 0.593 | 0.698 | 0.645 | 0.705 | 0.667 | 0.710
3 0.447 | 0560 | 0.480 | 0.563 | 0.530 | 0.600

1 0.334 | 0407 | 0.311 | 0.422 | 0.435 | 0.523

(50,20) 2 0.450 | 0.599 | 0.513 | 0.567 | 0.574 | 0.616
3 0.389 | 0.523 | 0.419 | 0.497 | 0.467 | 0.586

1 0.254 | 0.306 | 0.223 | 0.375 | 0.370 | 0.455

(70,20) 2 0.334 | 0492 | 0.460 | 0.500 | 0.479 | 0.544
3 0.319 | 0.345 | 0.280 | 0.386 | 0.417 | 0.478

1 0.130 | 0.233 | 0.155 | 0.284 | 0.245 | 0.374

(90,20) 2 0.252 | 0.364 | 0.359 | 0.433 | 0.332 | 0.407
3 0.209 | 0.288 | 0.197 | 0.357 | 0.300 | 0.431

V. Application in Real Life Situation

SSPALT is now the most significant procedure of reviewing item trustworthiness rapidly, and the
blueprint of capable investigation plans is a serious step to guarantee that SSPALTs can evaluate
the item reliability correctly, quickly, and cheaply. With the encouragement of the national
approach of civil-military integration, SSPALT will be mostly applied in the research and
development of a variety of manufactured goods, and the SSPALT plan design hypothesis will face
more challenges. To assist engineers in selecting suitable hypotheses and to stimulate researchers
to build up the theories necessary in manufacturing, with the focal point on the demands for
theory investigation that happen from the execution of SSPALT, this study reviews and
summarizes the expansion of the SSPALT plan. The expansion of the theory and technique for
setting up the most favorable SSPALT for shape-scale distribution, which is the most functional
and grown-up theory of designing the optimal SSPALT, are explained in detail. Based on the
theory of convenience for engineers to choose suitable techniques according to the troubles that
originate in practice, this discussed will help to review the progress of optimal ALT plan design
theory by taking the engineering problems occurring from the ALT execution as the key thread,
provides strategy on choosing suitable theories for engineers, and suggests views about the vital
solved theory problems for researchers.

A real life data set is commenced to demonstrate how the ML estimation method works in
practice based on real life data set from Nelson [35]. Table 6 is presented the data set and the data
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set is correspond to the oil breakdown period of insulating fluid under two stress stages (34
kilovolt (kv) and 36 kv), considering the data set under 34 kv as data under ordinary stress
condition. Before further proceeding, we test the strength of GRID to fit the data listed in Table 6

using Kolmogorov-Smirnov (K-S) test statistic and its corresponding p-value for each stress stage.
The outcome is presented in Table 7. We can observe that the GRID fits better to the given data in
the two stress stages because the p-values are greater than 0.05. The MLEs, p-values and K-S
statistic are presented in Table 7.

Table 6: Stress values and complete failure data

Stress (in kv) Complete failure data
34 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75,
32.52,33.91, 36.71, 72.89
36 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.9, 3.67, 3.99, 5.35, 13.77, 25.5

Table 7: MLLEs of the parameters, p-value and K-S statistic

Parameters Stress (inkv) | K-S | p-value
A =1.2065,60 =3.0873, =1.2189 34 0.1562 | 0.5422
36 0.1752 | 0.1290

VI. Results and Conclusion

From Tables 2 to 5, it is concluded that the MLE is consistent and asymptotically normally
distributed and one can realize that the biases and MSEs decrease as sample size increase for
different values of parameters, which proves the efficiency of MLE.

The study deals with SSPALT by using an adaptive Type-II progressively hybrid censoring
scheme for GIRD with a maximum likelihood estimation procedure. The numerical values of
MLEs of distribution parameters are attained using the Newton-Raphson technique, and the
performances of parameters are recorded in terms of MSEs and biases. Superb efficiency in
estimating distribution parameters is examined under APHCT-II due to the huge sample size
attained. So, APHCT-II is an excellent option for reliability practitioners to attain a greater
efficiency of the distribution parameters. In the future, this work can be extended for different
failure distributions under the Bayesian atmosphere.
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Abstract

Regression methods are used for the estimation and prediction in various fields of statistical study. It is a statistical
method commonly used for determining the degree of relationship between a response and a number of explanatory
variables. These explanatory variables may correlate each other and lead to multicollinearity. More than two predictor
variables with high correlation show the existence of multicollinearity which results in the estimator having a high
variance. Ordinary Least Square estimation fails to give a better reqQression estimator, when the model’s presumptions
are not met. This paper explores the various methods which can tolerate the problems of multicollinearity and outliers.
This study compares different types of regression estimators such as Ordinary Least Square, Robust, Ridge, and Liu by
computing various error values such as Mean Absolute Error, Root Mean Square Error, Mean Absolute Percentage
Error and R2 under real environment that has both multicollinearity and outliers. To compare the fit of the
aforementioned regression models, the Akaike Information Criterion was also calculated. According to the error measures
and AIC this study concludes that the Liu regression estimator performs well when compared with the other estimation
methods.

Keywords: Regression, Multicollinearity, Outliers, Ridge, Liu

I. Introduction

OLS estimator is the commonly used method to predict the parameters of a regression model when
all the assumptions of the model are satisfied. The problems that would be affected the results of
this method are multicollinearity and outliers. Multicollinearity is the situation where the
explanatory variables have highly interdependent. It will increase the error values and thus the
estimator may unreliable. Hoerl and Kennard [1] develop a regression procedure to control
multicollinearity.

An outlier is a data observation that is unusual. It results the estimator to be not efficient
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and changes the sign of the regression coefficients. Mendenhall and Sincich [7] give the definition of
outlier as value with absolute standardized error greater than 3. Robust regression methods are
usually used to obtain a better result when there are outliers. The main purpose of this paper is to
compare different regression methods and identify the good one with better estimator in the
presence of both multicollinearity and outlier.

The rest of the paper is structured as follows. In section 2, various regression estimators like
OLS, Robust regression, Ridge regression and Liu regression are explained briefly. The performance
of these regression procedures is studied under real environments and the results are summarized
in section 3 and conclusion of the study is presented in the last section.

II. Regression Methods

Regression analysis is used to draw inferences from data when there is a connection between the
response and the predictor variables, according to Draper and Smith [9]. These approaches in
machine learning come in a variety of forms, and their use depends on the type of data being used.
It is the primary method to solve the problems in machine learning using data modeling. This
paper includes the methods OLS, Robust, Ridge and Liu with the comparison of error measures
under different real datasets having the presence of both outliers and multicollinearity. Outliers are
identified by the Cook’s distance procedure and the analysis has been carried out using R software.

Ordinary Least Squares (OLS)

Ordinary Least Squares (OLS) is a technique used to predict the dependent variable (y)
with the help of a number of predictor variables (X). It is the popularly used and Best Linear
Unbiased Estimator (BLUE) when all the suppositions of the classical regression model are
satisfied [Aitken [3]]. The general model of an OLS method with k independent variables is given
by
y=XB+e @™

where y is the (m X 1) vector of response variable, X is a (m X k) matrix, B is a (k X 1) vector of an
unknown regression parameters and € is a (m X 1) vector of residual term that is considered to be
independently and identically distributed as normal with mean zero and fixed variance o¢2. The
OLS estimator for the unknown parameter is

Bos = (X'X)™ (X'y) @)

The performance of f,,s will be statistically insignificant when multicollinearity exists between
the explanatory variables.

Robust Regression

Robust regression is an alternative approach to the classical regression model, when the
nature of the data deviates from the key assumptions. The goal of robust regression is to get
beyond some of the drawbacks of conventional regressio