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1. Introduction 
 
For many years, the most commonly used models for the failure 
process have been the renewal process (RP) and the 
nonhomogeneous Poisson process (NHPP). In the framework of 
the repairable system applications, RP is used to model the 
situations with restoration to "good-as-new" condition (perfect 
repair assumption), meanwhile NHPP is applied to the 
situations with the “same-as-old” restoration (minimal repair 
assumption). In a sense, these two assumptions can be 
considered as extreme ones from both theoretical and practical 
standpoints. In order to avoid this “extremism”, several 
generalizing models have been introduced in recent years.  
References include Brown & Proschan (1982), Kijima & 
Sumita (1986), Filkenstein, (1993), Lindqvist (1999).  Among 
these models, the G-Renewal Process (GRP) introduced by 
Kijima & Sumita (1986) is very attractive, since it covers the 
intermediate "better-than-old-but-worse-than-new" repair 
assumption and results in a G-renewal equation, which is a 
generalization of the well-known ordinary renewal equation. 
Unfortunately, a closed form solution of the equation is 
unavailable, which makes the respective statistical estimation 
challenging. 
 
The objective of this paper is limited to statistical estimation of 
the parameters of G-Renewal Process, based on typical one-
dimensional warranty (grouped failure time) data. The Monte 
Carlo approach considered below can be also applied to 
parameter estimation of Kijima’s Model I and II (Kijima, 
1989). 
 
2. G-Renewal Process 
 
Kijima and Sumita (1986) introduced a G-Renewal Process, 
which can model restoration conditions ranging from "good-as-
new" to "same-as-old". The GRP is introduced using the notion 
of virtual age. 
 
Let An be the virtual age of a system immediately after the nth 
repair.  If An = y, then the system has the time to the (n + 1)th 
failure Xn+1 , which is distributed according to the following 
cumulative distribution function (CDF): 
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where F(X) is the CDF of the time-to-first-failure (TTFF) 
distribution of a new system. The sum  
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with S0 = 0, is called the real age of the system. 
In the framework of the GRP it is assumed that the nth repair 
can remove the damage incurred only during the time between 
the (n –1)th and the nth failures, so that the respective virtual 
age after the nth repair is 
 
A n  = An – 1 + q Xn  = q Sn , n =1, 2, . . . 
 
where q is the parameter of rejuvenation  (or repair 
effectiveness parameter) and the virtual age of a new system A0  
= 0, so that the TTFF is distributed according to F(t|0) ≡ F(t). 
 
The time between the first and second failures is distributed 
according to (1) with A1 = qX1. Respectively, the time between 
the second and third failure is distributed according to (1) with 
A2  = q ( X1 + X2), and so on.  
 
It is clear that for q = 0, the considered process coincides with 
an ordinary RP, thus, modeling the "good-as-new" repair 
assumption. With q = 1, a system is restored to the "same-as-
old" condition, which is similar to NHPP.  The case of 0 < q < 
1 corresponds to the intermediate "better-than-old-but-worse-
than-new" repair assumption.   Finally, with q  > 1, the virtual 
age An  > Sn , i.e., the repair damages the system to a higher 
degree than it was just before the respective failure, which 
corresponds to the "worse-than-old" repair assumption. 
  
The expected number of failures in (0, t], which is called a 
cumulative intensity function, is given by a solution of G-
renewal equation (Kijima, et al., 1988): 
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is the conditional probability density function (PDF) such that 
h(t) = d(H(t))/dt, g(t|0) = f(t), and F(t) and f(t) are the CDF and 
PDF of the TTFF distribution. 
 
The closed form solution of (2) is not available, and even 
numerical solutions are difficult to obtain, since the equation 
contains a recurrent infinite system (Finkelstein, 1997).  A 
Monte Carlo based solution is, however, possible and was 
discussed by Kaminskiy and Krivtsov (1998). 
 
3. Warranty Data 
 
Typical one-dimensional warranty data are collected as 
results of observations on a large population of identical 
repairable units. The population size, N0, is known and it 
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can be assumed as constant in time (the number of lost 
units, if any, is negligible with respect to N0).  The following 

table provides an example of real warranty data, which are 
analyzed in the next section. 

 
 
 

Table 1. Example of Warranty Data for a Repairable System. Population Size, N0 = 100000. 
 

Month in Service, t 3 6 9 12 15 18 21 24 27 
Cumulative Number of Failures 
Per System, Hemp(t) 

 
0.03 

 
0.09 

 
0.14 

 
0.24 

 
0.38 

 
0.54 

 
0.70 

 
0.90 

 
1.17 

 
 
 
4. Estimation Procedure 
 
 
Based on the warranty data, the empirical cumulative intensity 
function, Hemp(t), is calculated as 
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where N(t) is the cumulative number of failures in (0, t]. 
Denote a solution of G-renewal equation (2) obtained by Monte 
Carlo simulations by 
  
Ηmc(t) = f(F(τ|α), q, t)),    (4) 

where F(τ|α) is a given time-to-first-failure CDF with unknown 
vector of parameters, α.  

Using (3) and (4), the least squares estimates of GRP 
parameters α and q can be obtained as a solution of GRP 
parameters α and q can be obtained as a solution of the 
following optimization problem: 
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5. Examples 
 
5.1 Simulated Data 
 
The empirical cumulative intensity function, Hemp(t),  was 
obtained by simulating a GRP with a Weibull distributed TTFF 
(shape parameter, β = 1.5 and scale parameter, Θ = 1) and the 
GRP rejuvenation parameter, q = 0.5 using N0 = 100 
realizations over the observation interval, T = 5Θ. 
 
Estimates of β, Θ, and q were obtained based on n0 = 1000 
realizations of GRP as follows:  
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Tables 2 - 3 show the sample correlation and covariance 
matrices for the obtained estimates of GRP parameters for 30 
simulated empirical cumulative intensity functions, Hemp(t). 
 
 

Table 2. Sample Correlation Matrix 
 

β Θ q  

β 1.000   

Θ 0.702 1.000  

q 0.079 -0.523 1.000 

 
Table 3. Sample Covariance Matrix 

 

β Θ q  

β 2.6 10-3   

Θ 1.9 10-3 2.8 10-3  

q 2.3 10-4 -1.6 10-3 3.2 10-3 

 
 
With the empirical cumulative intensity function simulated for 
N0 = 100000 realizations (which is a more typical case for a 
company concerned with mass production) and using n0 = 
1000000, the estimation procedure returns the original GRP 
parameters with close to zero variance. 
 
 
 
5.2 Real Data 
 
The warranty data collected on a system during first 18 months 
(see Table 1) were used for estimation of GRP parameters. The 
Weibull distribution with the shape parameter, β, and the scale 
parameter, Θ, was assumed as the underlying TTFF 
distribution.  The solid line in Figure 1 represents the least 
squares fit from a family of G-renewal functions simulated in 
the following parameter domain: {1 < β < 2, 10 < Θ < 50, 
0 < q < 1}. 
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Figure 1. A Lest Square Fit of G-Renewal Function 
 
 
 
 
 
 
 
The obtained estimates of GRP parameters are 

0.70
^

,42
^

1.8,
^

=== qθβ . The estimated G-renewal 
function shows a good fit to the data not only in the interval (0, 
18] months (used for estimation) but also in the remaining 
interval (18, 30] months (obtained by prediction), see Figure 1. 
The figure also shows the extreme repair conditions modeled by 
the RP (q = 0) and the GRP (q = 1). 
It is reasonable to conclude that the approach considered above 
is not only practically applicable for estimation of the GRP 
parameters, but also for prediction of the G-renewal function, 
which is often essential in warranty data analysis. 
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