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ABSTRACT

The paper introduces a method of Bayesian probability papers for estimating the reliability function of
popular in reliability analysis location-scale life time distributions.  We use simulation examples to
validate the method and a real engineering data example to illustrate its practical application.
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1. INTRODUCTION

A Bayes’ approach to reliability (survivor) function estimation is introduced.  This Bayes’ approach is
similar to the widely used probability papers, which can be considered as the respective classical
analog.

The traditional probability paper technique is applied to the distributions, whose cumulative
distribution functions (or reliability functions) can be linearized in the way that the distribution
parameters are estimated through the simple linear regression model y = ax + b.  The family of such
distributions includes such popular distributions as the Weibull, exponential, normal, log-normal, and
log-logistic.  The estimates obtained using the probability papers are considered as the initial estimates
(for the subsequent nonlinear estimation), but in reliability engineering practice, they often turn out to
be the final ones as well.

In this paper, the basic assumptions related to the simple normal linear regression model are discussed
in the framework of the probability papers procedures, and the basic violations of these assumptions are
specified.

Analogously, the probability papers procedures are considered from the standpoint of Bayesian simple
linear regression model.  It is shown that the Bayesian simple regression model can be applied to the
probability paper procedures with approximately the same number of violations of the respective
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Bayesian assumptions as the classical probability papers procedures have with respect to classical
simple regression model.

The discussion below is limited to the respective point estimation procedures.

2. CLASSICAL PROBABILITY PAPERS AND SIMPLE LINEAR REGRESSION

The above mentioned linearization is applicable to those lifetime (time to failure) distributions for
which some transform of lifetime has a location-scale parameter distribution.  The location-scale
distribution for a lifetime random variable t is defined as the distribution having the probability density
function (PDF), which can be written in the following form [Lawless, 2003]:
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1)(   - ∞ < t < ∞  (1)

where u (- ∞ < u < ∞) and b > 0 are location and scale parameters, and f0(x) is a specified PDF on (- ∞,
∞).

2.1 Classical Simple Linear Regression

Consider the basic assumptions associated with the simple normal linear regression model.  Let’s
assume that a random response variable y fluctuates about an unknown nonrandom response function
η(x) of nonrandom known explanatory variable x, that is y = η(x)  + ε, where ε is the random
fluctuation or error.  In the following, we consider η(x) in the simple linear form, so that it can be
written as

y(x)= β0 +β1x + ε, (2)

or as

y(x)= β0x0 +β1x1 + ε, (2-1)

where β0 and β1 are unknown parameters to be estimated; x0 ≡ 1, and x1 ≡ x.  The data related to model
(2) are the pairs composed of observations yi(xi) and the respective values xi  (i= 1, 2, . . ., n), n ≥ 2.

For these observations, it is assumed that

yi(xi) = β0 x0 +β1xi + εi        (3)

where errors εi (i= 1, 2, . . ., n) are independent normally distributed with mean 0 and variance σ2.  In
other words, the observations yi(xi) are independent normally distributed with mean β0 x0 +β1xi  and
variance σ 2.

For the following discussion, let us consider Equation (3) in its matrix form, which is given by

Y = XB +      (3-1)
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where is the vector of errors with zero means and the following matrix of variances

Var ( ) = 2I,

and I is the (n x n) unit (identity) matrix, i.e.,
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The matrix form (3-1) is used below in Example 1 and in the further discussion.

The estimates of parameters β0 and β1 are found as
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where
_
y = n-1Σyi and

_
x = n-1Σxi .

The estimates (4) can be written in the matrix form as
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where is the transpose of matrix X, and ( X)-1 is the inverse of the matrix product of and X.

A more general case of model (3) is the so-called weighted regression when errors εi are still
independent but have different variances σ2

i (i= 1, 2,  .  .  ., n).  This model, which is called weighted
linear regression, will be discussed in the following, so we need to write it here as

yi(xi) = β0 x0 +β1xi + εi    (5)
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where errors εi are independent normally distributed with mean 0 and different variances σ2
i(xi) (i= 1,

2, . . ., n).  In the matrix form, the model (5) can be written as

Y = XB + ,     (3-2)

where  is the vector of independent errors with zero means and (in opposite to (3-1)) the following
symmetric positively defined diagonal (n x n) matrix of variances Var ( ) = ,
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The above variance matrix  can be represented in the form needed for the following consideration
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where w1, w2. . . , wn are the so-called weights. It is obvious, the greater variance, the smaller the
respective weight is.  The matrix of weights is defined as
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The estimates of parameters β0 and β1 for model (5) can be found as
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2.2 Classical Probability Papers

Without loss of generality, consider the Weibull probability paper estimation procedure, which is one
most popular in life data analysis.  Let the cumulative distribution function (CDF) of the Weibull time
to failure (TTF) distribution F(t) be given in the following form
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where t is TTF,  and  are the scale and shape parameters, respectively.  Applying the logarithmic
transformation twice, the above CDF is transformed to the following expression

( )( ) αββ lnln)(1lnln −=−− ttF (6-1)

Introducing the following notation y(t) = ln(- ln(1 – F(t)), ln t = x, 0 = ln( ), Equation (6-1) takes on
the simple linear response function form (2-1):

y(x)= β0x0 +β1x1 + ε
(6-2)

It should be noted that there is no guarantee that the errors  are independent and normally distributed
with mean 0 and variance σ2 anymore.  Nevertheless, the simple linear regression technique is widely
applied to Equation 6-1, which is known as the Weibull probability plotting.  The corresponding
procedure also includes estimation of CDF F(t) using order statistic, which is illustrated in the
framework of the following example.

Example 1. 100 identical components were put on a life test.  The test data are Type II censored: the test
was terminated at the time of the fifth failure.  Failure times t(i) (in hours) of the 5 failed components
were 11.96, 39.10, 71.52, 74.90, 123.14.

The traditional estimates )( )(

^

itF of CDF F(t), used in the Weibull probability papers is given by the
following formulae [1]:

n
itF i

5.0)( )(

^ −
= (7)

where t(i) (i = 1, 2, . . , r; and r n) are the ordered failure times.  In our example r = 5 and n = 100.

Calculating these estimates for our data and applying double logarithmic transformation (6-1) results in
the following table (vector) of observations y’s
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4.19216-
5.29581-

Y

The explanatory variable x1 is obviously the logarithm of the failure times, so that our explanatory
variable matrix X is evaluated as
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Now we can find the estimates of the parameters and 0 = ln( ) using Equations (4) or (4-1) as
^
β =

0.971 (the estimate of the shape parameter) and 0

^
β = -7.712, so that the estimate of the scale parameter

is
^

α = 2809.852.

At this point, it must be mentioned that the test data in this example are simulated from the Weibull
distribution with the scale parameter α = 1000 and the shape parameter β = 1.5.  It is clear that the
estimates obtained are rather biased.

3. BAYESIAN SIMPLE LINEAR REGRESSION AND BAYESIAN PROBABILITY PAPERS

3.1 Bayesian Interpretation of Classical Simple Linear Regression

Consider simple normal linear regression (3).  In Bayesian context, it is assumed that the parameters of
model β0 , β1 and logσ  are uniformly and independently distributed, i.e.,

p(β0 , β1, σ) ∝ 1/σ  (8)

Note that it is an extra assumption, i.e., the assumptions about the observations yi(xi) are not changed.

Assumption (8) is a convenient form of the so-called, noninformative prior distribution.

It can be shown [2] that under the given assumptions, the conditional posterior probability density

function for β0 and β1 has the bivariate normal form with mean (
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where
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y = n-1Σyi and

_
x = n-1Σxi.  The above expressions for

^

0β and
^

1β are the easily recognizable
classical least squares estimates (4) for the simple linear regression (3)
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3.2 Including Prior Information about Model Parameters

In the framework of Bayesian linear regression analysis, the prior information can be added to one or
several regression parameters.  Let’s begin with including prior information about a single regression
parameter, say β1.  It is supposed that the information can be expressed as the normal distribution with
known mean β1pr and variance 2

β1pr [3], i.e.,

β1 pr ~N(β1, 2
β1pr)

Note that this prior distribution is similar to classical assumptions about observations yi(xi) (i = 1, 2, . . .
, n), introduced in Section 1.

Based on this similarity, the prior information on parameter β1 is interpreted as an additional (pseudo)
“data point” in the regression data set, and the posterior point estimates are calculated using the same
Equations (4) or (9).  For the case considered, this “observed” value of y corresponds to x0 = 0 and x1 =
1.

Including prior information about a set of regression parameter is performed in the similar way.  For
example, the prior information about the other regression parameter, β0 is included as a “data point”
having the prior β0 pr ~N(β0, 2

β0pr).  This “observed” value of y corresponds to x0 = 1 and x1 = 0.

Because, for the time being, we consider the case of independent observations with equal variances, we
are expand this assumption to the priors, i.e., it is assumed that the priors are independently and
normally distributed with equal variances, i.e.,

2
β0pr = 2

β1pr = 2     (10)

The following example illustrates the issues discussed in the given section.

Example 2. The data from Example 1 are used.  The prior information about the unknown
parameters is incorporated as follows.

Example 2.1
The prior shape parameter of the Weibull distribution β pr  = 1.5, and the prior scale parameter  pr  =
1000.  Note that we use the true values of the parameters of the Weibull distribution, from which the
data were generated, so that to an extent, our prior information is ideal.

In terms of the regression model (6-2), parameter β1 as an additional (pseudo) “data point” is 1.5 with
corresponding x0 = 0 and x1 = 1.  The parameter βo as another additional point is β ln( ) = -10.36 with
corresponding x0 = 1 and x1 = 0.  The table (vector) of observations y’ with these two new point now is
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1.5000
10.3616-
3.07816-
3.33465-
3.67625-
4.19216-
5.29581-

=Y

The respective explanatory variable matrix X is now

1.000000
00000.01

4.813321
4.316201
4.270041
3.666051
2.481961

=X

As in Example 1, the estimates of the posterior estimates of parameters and 0 = ln( ) are calculated

using Equations (4) or (4-1), which gives post1

^
β = 1.512 (the estimate of the shape parameter) and 0

^
β =

-9.915, so that the posterior estimate of the scale parameter is post

^
α = 705.294.  See Figure 1 for a

graphical interpretation of Example 2.
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Figure 1. Weibull probability Plot of Prior & Posterior Distributions.

Classical estimates:
β =0.971, α = 2810

Posterior (equal weights):
β =1.512, α = 705
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The above example represents a case when the pseudo data points are assumed having the same
variances as the real data points (observations).  In the framework of the weighted regression, this case
corresponds to the equal weights situation.  From Bayesian standpoint, it is the situation when the prior
information has as much value as the real data.

Now consider the following two extreme cases.

Example 2.2

In the first case, the prior information has a negligible value.  This case can be realized using very small
weights (large variances) related to the pseudo data points on the Weibull plot.  Let’s consider the data
of Example 2 with the following variance matrix:
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1000000000
0100000001
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Applying Equation (4-2) for the weighted linear regression, results in post1

^
β = 0.975 (the estimate of the

shape parameter) and 0

^
β = -7.726, so that the estimate of the scale parameter of the Weibull

Distribution is post

^
α = 2772.408.  It is clear that, the posterior estimates are close to the classical ones

(see Example 1).  The result shows that the prior information does not play a significant role in the
estimation.

Example 2.3

Now consider the opposite case.  Let’s select very large weights (very small variances) related to the
pseudo data points on the Weibull plot.  Let’s consider the data of Example 2 with the following
variance matrix:
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Applying the same Equation (4-2) for the weighted linear regression, gives the following estimates:

post1

^
β = 1.509 (the estimate of the shape parameter) and 0

^
β = -10.359, so that the estimate of the scale

parameter is post

^
α = 958.276.  It is clear that, the posterior estimates are close to the true values of the

Weibull distribution, from which the data were generated.  This result reveals that in the considered
case, the prior information does play a dominant role in estimation.

Example 2.4

Now consider the case close to real practical application of the given Bayesian procedure.  One can
assume that the data points on the Weibull probability plot have equal variances (standard deviations).
Let’s assume that they are equal to 1.  A degree of belief in the prior information about the Weibull
distribution parameters can be expressed in the same terms of standard deviations.  It is reasonable to
assume that the standard deviations related to the respective pseudo data points are, say, 3 times larger
compared to the real data points, e.g., three times larger.  Let's consider this case using the same
example.  The respective variance matrix for this case is























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



=Σ

000.9000000
0000.900001

0010000
0001000
0000100
0000010
0000001

Applying the same Equation (4-2), gives the following estimates: the estimate of the shape parameter

post1

^
β = 1.934, and the estimate of the scale parameter is

^
α = 1356.920.  It is clear that, the posterior

estimates are based on both types of data – the real observations and the prior information.

3.3 Including Prior Information about Reliability or Cumulative Distribution Function

It is clear that prior information about the reliability function or the CDF can be included in data set
using a similar approach.  That is, treating the prior knowledge about the reliability function at some
given times as additional data points, and expressing the degree of belief in terms of standard
deviations of prior reliability function estimates, which can be obtained using either expert opinion
elicitation, or appropriate data (e.g., data on the predecessor product, alpha version testing etc.)
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Table 1.  Summary of Examples.

True values of the Weibull distribution parameters are:  = 1000,  = 1.5.

Example Estimation Procedure and Data Estimate of  Estimate of
Example 1 Classical procedure.  Real data only 2810 0.971
Example 2.1 Bayes’ procedure with equal weights based on

real data and ideal prior estimates, i.e., pr =
1000, pr = 1.5.

705 1.512

Example 2.2 Bayes’ procedure with negligible prior
information, i.e., prior estimates have very
small weights (large variances)

2772 0.975

Example 2.3 Bayes’ procedure with prior information
strongly dominating real data, i.e., prior
estimates have very large weights (small
variances)

958 1.509

Example 2.4 Bayes’ procedure with prior information
comparable with real data information

1357 1.934

4. ACCELERATED FATIGUE TEST DATA

A sample of 12 induction-hardened steel ball joints underwent an accelerated fatigue life test with the
following cycles to failure (in 1000s): 150, 170, 180, 200, 200, 215, 220, 220, 250, 260, 265, 300.
Based on long-term history of such tests, the underlying life distribution was assumed to be lognormal.
The CDF of the lognormal distribution with location parameter µ, and scale parameter σ is linearized
using the following simple transformation:

σ
µ

σ
Φ −=− )tln()]t(F[ 11 ,

where Φ-1[.] is the inverse of the standard normal cumulative distribution function.  The classical least-
square estimates of the location and scale parameters in this case are found to be 12.279 and 0.204,
respectively.  Historical data suggested that the scale parameter should be 0.160.  Using the procedure
similar to that outlined in Example 2.1 (equal weights), the Bayesian posterior estimate of the scale
parameter was found to be 0.171.  The analysis is graphically summarized in Figure 2.
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Figure 2. Lognormal Probability Plot of Ball Joint Fatigue Life Data.
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