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An opened queuing network with a redundancy and a renewal of servers is considered. To 
calculate a stationary regime in this network directly it is necessary to consider sufficiently complicated 
and large system of linear algebraic equations. A special control of the network route matrix allows to 
use product theorems and so to simplify these calculations significantly.       

At first the network with a variable set of servers is analyzed. Then we suppose that an each 
server of the network may fail and be restored independently. At last we consider different variants of 
servers redundancy in the opened network. Considered network models are on a joint of queuing and 
reliability theories.  
 
Opened network with variable set of servers 
 

Consider opened queuing networkG  [1, §2] with Poisson input flow with the intensityλ  and l  
nodes. Each node contains single server with exponentially distributed service time with intensity kμ , 

1,...,k l= . Input flow comes into the network from the node 0 (internal source) and customers depart 
from the network to this node too.  

Denote by S  the set of all subsets (with ordered by values elements) of the set{ }1,..., l . Fix s S∈  

and suppose that a motion of customers may be only between the nodes of the subset { }0s∪  and 
customers do not depart from other nodes and do not arrive in these nodes. A customer motion in s -th 
state of the network is defined by the indivisible route matrix  ( ) ( ) { }, 0ij i j s

s sθ
∈

Θ =
∪

: 

, {0}i j s∀ ∈ ∪  ∃
1 1 21,..., {0}: 0, 0,..., 0

nn ii i i i ji i s θ θ θ∈ > > >∪ . 

Suppose that for fixed 1,..., lλ λ , 0 i iλ μ< < , 1 i l≤ ≤ , the route matrices ( )sΘ  satisfy the conditions 

                                          ( ) ( ) ( ), , , ,i ii s i s sλ λ λ λ∈ = ∈ Θ , s S∈ , s ≠ ∅ .                                            (1) 
For s =Ø customers do not arrive into the network, do not depart it, do not move between internal 
nodes of the network and are not served in them.  
        Fix ( ) 0A s > , s S∈ , ( ) 1

s S
A s

∈
=∑ , suppose that the matrix ( ) *

*
,

,
s s S

s s
∈

ν  is indivisible and 

                                                   ( ) ( ) ( ) ( )
* *

* * *, ,
s S s S

A s s s A s s sν ν
∈ ∈

=∑ ∑ .                                         
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Denote ( ){ }1 1,..., : 0,..., 0l lY n n n n= = ≥ ≥n  аnd designate je - l -dimensional vector in which j -th 
component equals 1 and all others equal zero.  
          The network G  with so controlled set of nodes is defined by Markov process ( ) ( ( ), ( ))x t s t y t=  
(s(t) characterizes a set of working nodes, y(t) characterizes numbers of customers in the network G 
nodes) with the state set X S Y= ×  and transition intensities ( ( )I A is and an indicator function of  an 
event A ) 

( ) ( )( ) ( ) ( ) ( ) ( )* * * * * *, , , , ,ss s I s s s s Iγ νΛ = = + =n n n n n n . 

Here for s S∈ , s ≠ ∅ , 
 

                             ( )
( )

( ) ( )
( ) ( )

*
0

* *
0
*

, , ,
, min ,1 , , ,

min ,1 , , , , ,

k k

s k k k k

k k kj k j

s k s
n s k s

n s k j k j s

λθ
γ μ θ

μ θ

⎧ = + ∈
⎪= = − ∈⎨
⎪ = − + ≠ ∈⎩

n n e
n n n n e

n n e e
                             (2) 

 
and ( )*, 0,s sγ ≡ =n n Ø. The process ( )x t  is ergodic [2, §4] and its limit distribution has the form 

                                                      ( ) ( ) ( ) ( ), , ,s A s s Xπ= ∈∏ n n n ,                                                  (3) 

( ) 1

1

inl
i

i i
C λπ

μ
−

=

⎛ ⎞
= ∏⎜ ⎟

⎝ ⎠
n ,  

1
,

l
i

i i i
Y C μ

μ λ=

⎛ ⎞
∈ = ∏⎜ ⎟−⎝ ⎠

n . 

 
Remark 1.   If , 1i i i lλ λ μ= < ≤ ≤ ,   then arbitrary symmetric route matrices ( ) ,s s SΘ ∈ , satisfy the 
conditions (1). 
 
        As an example consider an opened queuing network with two one-server nodes and a route matrix 
Ө which has zero diagonal elements and  ½  no diagonal elements. Here an input intensity is  λ  and 
service intensities are 1μ , 2μ . If both servers work then s={1,2} and this network is described by figure 
1. 
 

 
 

Figure 1. The queuing network with s={1,2}. 
  
        Suppose now that the first server works and the second server does not work. Then the initial two 
nodes network transforms into an one node network with s={1} and with ijθ =1 as for i=0, j=1 so for 
i=1, j=0, in all other cases ijθ =0. 
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Figure 2. The queuing network with s={1}. 
 
Analogously it is possible to consider the case when s={2} and the second server works but the first 
server does not work. 

 
 

Figure 3. Queuing network with s={2}. 
 

        Last case is when both servers does not work and so s= Ø. 
 

 
 

Figure 4. Queuing network with s= Ø. 
 

             Now define failures and renewals of servers in considered networks as follows .  
 

 
 

Figure 5.  Transitions between queuing networks with different structures. 
 

Here transition intensities in the figure 5 are defined by the matrix ( ) *
*

,
,

s s S
s s

∈
ν .         
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        The formula (3) gives limit distribution in the queuing network with so variable structure and with 
1λ = 2λ =λ  in the formula (1). This network characterizes failures and renewals of servers in the initial 

two node opened queuing network. Figures 1-5 show that even in this simple case a description of the 
opened queuing network with failures and renewals of servers is sufficiently complicated. To consider 
a redundancy of servers it is necessary to analyze significantly more complicated scheme. Next section 
is devoted to an analysis of this scheme. 
 
Opened queuing network with failures and renewals of servers. 
 

Consider closed queuing network kG�  with a single working place, a single repair place and 

km customers. The customers move along a route: a working part – a repair part and so on. The 
working (repair) part consists of a queue before the working (repair) place and of the working (repair) 
place. Each customer fails with an intensity kα at the working place and is repaired with an intensity 

kβ  at the repair place. So a service time at the working (at the repair) place may be interpreted as a 
working (repair) time of a customer and the closed queuing network kG�  may be considered as a system 
of a redundancy (if km >1) and a renewal. 

Describe a current number of customers at the working part of the network kG�  by ergodic 
discrete Markov process ( )ky t�  with state set { }: 0k k k kY n n m= ≤ ≤� � � and transition intensities 

( ) ( ), 1 α min 1,k k k k kn n nγ − =� � � � , ( ) ( ), min 1,k k k k k kn n m nγ β= −� � � �+1 ,  k kn Y∈ �� , 
and limit distribution 

( )
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k
k k k
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α
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� , 1
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�
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Remark 2. The transition intensities k�γ  describe a system of an unloaded redundancy and a renewal.  
For a system of  a loaded redundancy and a renewal  [3] the process ( )ky t�  has transition intensities 

( ), 1 αk k k k kn n nγ − =� � � � ,  ( ) ( ),k k k k k kn n m nγ β= −� � � �+1 , 0 k kn m≤ ≤� , 
and limit distribution 
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       Consider l networks kG� , 1 k l≤ ≤ , working independently, and describe them 

by  Markov process ( )y t�  with state set ( ){ },..., : ,11 l k kY n n n Y k l= ∈ ≤ ≤� �� � � �n =   
and transition intensities 

                                                    ( ) ( )*

=1
,

l

k k k
k

, n n= ∑� � � � � �γ γ*n n ,                                                                    (4) 

and limit distribution 

                                                        ( ) ( )
1

l

k k
k

P P n
=

= ∏� �n .                                                                      (5) 

Suppose that a server in k–th node of the network G  may fail and be restored as a customer in the 
closed network kG� , 1 k l≤ ≤ . Then opened queuing network with a separate redundancy and a renewal 
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of servers in each node may be described by discrete Markov process ( ) ( )( ),y t y t�  with state set Y Y×�  
and transition intensities 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )* * * * * *, , , , ,s I Iγ γΛ = = + =�� � � � � � �nn n n n n n n n n n n n .                      (6) 

Here ( )*,γ� � �n n  are defined by the formulas (4), and ( ) ( )*,sγ �n n n - by the formulas (2) with  

( ) { }: 0,1ks k n k l= > ≤ ≤� �n . 
(7) 
If the conditions (1) are true then the process ( ) ( )( ),y t y t�  is ergodic and analogously to (3) its limit 

distribution has the form ( ) ( )P π�n n , ( ), Y Y∈ ×��n n . 

Remark 3. The formulas (4), (5) describe independent and separate closed networks kG� , 
1 k l≤ ≤ , of a redundancy and a renewal of the network G  servers. But these networks  may be 
aggregated into common closed queuing network G�  with l  working nodes (places), fixed number  of 
repair nodes (places) and arbitrary indivisible route matrix.  
 
Suppose that numbers of customers in all nodes (not only working) of so defined network G�  is 
described by some ergodic Markov process ( )y t� with state set Y� , transition intensities ( )*,γ� � �n n and  

limit distribution ( )P �n . Then Markov process ( ) ( )( ),y t y t�  with transition intensities defined by (6), 

(7) has limit distribution ( ) ( )P π�n n , ( ), Y Y∈ ×��n n . 
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