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Guest Editorial

The papers collected in these 2 issues are works presented at the 1% Summer Safety and
Reliability Seminars, SSARS 2007, held in Gdansk/Sopot, Poland, from 22™ of July 2007 until 29™
of July 2007.

The Seminar was attended by 46 participants from 14 countries (Canada, Czech Republic,
Germany, Greece, Italy, Lithuania, Netherlands, Poland, Portugal, Slovakia, South Africa, South
Korea, Tunisia, United States).

The motivation behind this annual event series is to provide a forum for discussing, advancing
and developing methods for the safety and reliability analysis of the complex systems and processes,
which form the backbone of our modern societies. The subjects of the Seminars are chosen each year
by a Program Board of selected experts in an effort to dynamically represent the methodological
advancements developed to meet the newly arising challenges in the field of safety and reliability
analysis.

This year the emphasis was addressed to the following subjects:

*  Natural Hazards Analysis and Environment Protection Modeling;

+ Reliability and Safety Data Collection and Analysis;

+ System Safety and Reliability Modeling, Dependence, Dynamic Reliability;
* Risk Assessment and Management;

*  Maintenance Modeling and Optimization.

Both 1-2 hours lectures on advanced methods and technical presentations of 20-30 minutes on
applications of such methods were offered during the plenary sessions and the seminar sessions,
respectively.

The Advisory, Editorial and Organizing Boards have carried out the preliminary evaluation of the
52 contributions selected for this year Seminars and sent out recommendations to the authors for
improving their work.

The extended abstracts of all lectures and technical papers were collected in the SSARS
Proceedings, which constitute an up-to-date reference textbook for the participants to the Seminars
and all the researchers in the field.

The 43 papers and lectures presented at SSARS 2007 are presented in the two special issues of
the Journal, grouped into a System Safety, Reliability and Maintenance Modeling Section and a
Natural Hazards and Risk Assessment and Management Section.

Guest Editors

Krzysztof Kotowrocki, Enrico Zio

SSARS 2007 Chairmen
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Blokus-Roszkowska Agnieszka
Maritime University, Gdynia, Poland

Analysisof component failures dependency influence on system lifetime

Keywords

component failure dependency, rdiability characteristics, limit reliability function, transportation system

Abstract

In the paper the results of the reliability investigation of multi-state homogeneous parallel-series systems with
independent and dependent components are presented. The multi-state reliability functions of such systems and
other reliability characteristics in both cases are determined under the assumption that their components have
exponential reliability function. Moreover the asymptotic approach to the reliability evaluation of these systemsis
also presented and the classes of limit reliability functions for the considered systems in both cases are fixed.
Finally, the presented theoretical results are applied to the reliability evaluation of the shipyard rope transportation
system. The comparison of the multi-state exact and limit reliability functions of the considered transportation
system under the assumption that its components are independent and under the assumption that its components
have failure dependency is performed and illustrated graphically.

1. Introduction

The paper is concentrated on the reliability analysis of
large multi-state parallel-series systems with dependent
and independent failures of components. A paralld-
series  system  with  dependent components s
considered as a system of a number of paralle
subsystems linked in series, each of them composed of
components with dependent failures. The system is
failed if all componentsin at least one of its subsystem
are failed. In the reliability analysis of their parallel
subsystems, it seems natural to assume that the failures
of one or several of their components may cause the
reliability characteristics of their un-failed components
worsening. In such systems the increased load caused
by one or several of its components’ failures may
cause the increase of the failure rates of remaining un-
failed components. The rules of load sharing between
remaining not failed components that are the rules of
their falure rates increase may be different. In the
paper it is assumed that the load is distributed equally
among all un-failed components of considered parallel
systems and subsystems. This means that the failure
rates of these components are changing in an
analogical way that is the failure rates are increasing
with the same level.

Some results on limit reliability functions of two-state
parallel-series systems with equal load sharing among
components of parallel subsystems in a case when the

number of components in these subsystems is large
were obtained by Smith [6]-[7]. Other results on limit
reliability functions of two-state parallel-series systems
in a case of the paralld-series system structure s shape
when the number of parallel subsystems is large were
fixed by Harlow and Smith [8]. Some partial results on
limit reliability functions in the first of these two cases
for multi-state parallel-series systems can be found in
my recent publications aswell [1]-[2].

2. Reliability of multi-state systems

Taking into account the importance of the safety
effectiveness of large systems it seems reasonable to
consider the multi-state approach in their reliability
analysis. The assumption that the systems are
composed of multi-state components with reliability
state degrading in time without repair gives the
possibility for more precise anaysis of their reliability
and safety effectiveness. This assumption allows us to
distinguish a system reliability critical state to exceed
which is either dangerous for the environment or does
not assure the required level of effectiveness of this
system exploitation. Then, an important system
reiability characteristic is the time to the moment of
exceeding the system reliability critical state and its
distribution, which is called the system risk function.
This distribution is strictly related to the system multi-
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state reliability function that is a basic characteristic of

the multi-state system.

One of basic multi-state reliability structures with

components degrading in time is parall&l-series system.

In the multi-state reliability analysis to define paralld-

series systems with degrading components we assume

that:

- B, 1=12K)k,, j=12K,l,
ni N, are components of a system,

— all components and a system under consideration
havethe state set {0,1,...,7}, z3 1,

— the reliability states are ordered, the state O is the
worst and the state z is the best,

— the component and the system rdiability states
degrade with timet without repair,

= Tiu),i =12K,k,, j =L2K,I;, K. 11,15, K|, ,
nl N, are independent random  variables
representing the lifetimes of components Eij in the
state subset {u,u+1,...,zZ}, while they were in the
state z at the moment t = O,

— T(u) is a random variable representing the lifetime
of a sysem in the rdiability state subset
{u,u+1,...,z}, whileit was in the reliability state z
at the moment t = 0,

— g(t) are components E; states at the moment t,
tl <0,¥%),

— g(t) is the system reliability state at the moment t,
tT <0,¥).

Ko l1o K s

Under above assumptions we introduce the following
definition of multi-state reiability function of a
component.

Definition 1. A vector

Ri(t) = [Ri(t,0),Ri(t,1),...Ri(t.2)], tT (-¥,¥),
where

Ri(t.u) = P(ej(t) 3 ule(0) =2 =P(Ty(u) >1), (1)

for t1 <0,¥), u=01,...2i =12,... K, j =12..1, is
the probability that the component E; is in the
reiability state subset {u,u+1,...,z} at the moment t,
tl < 0,¥), while it was in the reliability state z at the

moment t = 0, is called the multi-state reliability
function of a component E;;.
Itisclear from Definition 1, that Ry(t,0) = 1.

Definition 2. A vector

R, t3=[R , GLO,R,, (D.KR , (2]

where

R, (t,u)=P(s(t) ® u|s(0)=2) = P(T(u) >t) (2)

for t1 <0,¥), u=0,1,..,z is the probability that the
system isin the reliability state subset {u,u+1,...,2} at
the moment t, t1 <0,¥), whileit wasin the reliability

state z at the moment t = 0, is called the multi-state
reliability function of a system.
If

p(ty) =[p(t,0), p(t.),K, p(t,2)] for tT <0,¥),
where

p(t,u) = P(s(t) =u|s(0) = 2)
for t1<0,¥%), u=01K,z isthe probability that the

system is in the state u at the moment t, tT <0,¥),
whileit was in the state z at the moment t =0, then

R, (t0)=1 R, (t2=p(t2), tT<0¥), (3)
and

pt.u) =R, , (t,u)- R, (tu+ (4)
for t1 <0,%), u=01K,z- 1.
Moreover, if

RM (t,u)=1for t£0, U=1K,z

then the mean lifetime of the system in the state subset
{uu+1lK,z is

M(u)=f‘)§kny,n t,u)dt, u=1K,z, (5)
0

and the standard deviation of the system sojourn time
inthe state subset {u,u +1LK, 7} is

s () =yNU)- [MW]?, u=1K,z (6)
where

N(u)=2t‘3t§knyln (t,u)dt, u=1K,z (7)
Besides
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M (U) = op(t.u)dt, u=1K,z, (8)

is the mean lifetime of the system in the state u, while
the integrals (5), (6) and (7) are convergent. Then,
according to (3)-(5) and (7), we get the following
relationship

M@Uu) =M(u)- Mu+1), u=12K,z- 1,

M(2) =M (2). (9)
Definition 3. A probability

r(t) = P(s(t) <r |s(0) = 2) = P(T(r) £1),

that the system at the moment t, t1 <0,¥), isin the

suhbset of states worse than the critical state r,
ri {1L2,K,z, while it was In the state z at the

moment t =0 is caled a risk function of the multi-
state system.
Under this definition, from (1), we have

r®)=1- P(st)® r|s(0)=2)=1- R, (t.r), (10)

for tT (-¥,¥) and moreover, if t is the moment
when the risk exceeds a permitted level d, dT <01>,
then

t =r(d), (11)

where r'l(t), if exists, istheinverse function of the
risk function r(t).

2.1. Multi-state parallel-series systems

Definition 4. A multi-state system is called paralld-
series if its lifetime T(u) in the state subset
{u,u+1,..., 7} isgiven by

T(u) = min{max{T; (U)}}, u=12K,z

1£iEk, 1£jEl,

Definition 5. A multi-state parallel-series system is
called homogeneous if its component lifetimes Tj;(u) in
the state subset have an identical distribution function

F(t,u)= P(Tij we£t),u=12K,z i=12K,kK,,
=12, K1,

i.e. if its components E; have the same reliability
function

R(t,u) =1- F(t,u),u=12K,z

Definition 6. A multi-state parallel-series system is
called regular if

l,=K=1,_ =l,, 1.TN,

i.e if the numbers of components in its paralle
subsystems are equal.

2.1.1. Parallel-series systems with independent
components

Theresults presented below can befound in [4].

Proposition 1. If in a homogeneous regular multi-state
paralld-series system

(i) components failure independently,
(if) components have reliability functions R(t),

then the multi-state system reliability function is given
by the formula

ﬁkn 5 3 =[1 ﬁkn ) K, ﬁkn 2],
where

Ry, (W) =[1- [1- ROI"T™ for tT (-¥,¥),
u=1K,z,
where Kk, is the number of its parallel subsystems

linked in seriesand |, is the number of components in

each subsystem.
In the case when components of a system have
exponential reliability functionsi.e.

R(t») =[1 R(t.1), K, R(t, 2)], (12)
where

R(t,u) =1 for t <0,

R(t,u) =exp[- | (U)t] for t2 0, | (u)>0, (13)

then the multi-state system reliability function takes
form

R, t¥=[LR , CD.K,R , (2], (14)

where

-10-
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ﬁkn,ln (t,u)=1 for t <0,

Ry, (tu)=[1- [1- exp[-1 (u)t]]"]" (15)
fort3 0, u=1K,z

2.1.2. Parallel-series systems with dependent
component failures

A multi-state parallel-series system is in the reliability
state subset {u,u+1..,2z if al of its parale
subsystems are in this state subset. Taking into account
this fact, a multi-state parallel-series system with
dependent components is considered as a system of
linked independently in series multi-state parallel
subsystems composed of components with failure
dependency. In each of these subsystems we assume
the following model of failure dependency. After
getting out of the reiability state subset {u,u +1,..., Z}
v,v=012K,l, - 1, of components in a subsystem the
increased load is shared equally among others so as
their load increase with the same scale. Then ther
reliability is getting worse so that the mean values of
the| -th, i =12,K,k,, subsystem component lifetimes

T;;"(u) inthe state subset {u,u+1,...,Z areof theform

@=L T

-Lu=12K,z (16)

ET;"(u)] = E[T; (u)] - —E[T;
j=12K,1, v:o,J,z,K,li

Then the rates of getting out from the reliability state

subset {u,u+1,..., 2 of remaining components of the
i-th, i =1,2,K, k,,, multi-state subsystem are given by
19wy =Y (), v= 012K, -1, (17)
u —LZ,K, Z.

Proposition 2. If in a homogeneous regular multi-state
paralld-series system

(i) components failure in dependent way according to
(16),

(i) components have exponential reliability functions
given by (12)-(13),

then the multi-state system reliability function is given
by the formula

R, t¥=[LR , CD.K,R , (2], (18)

where

R, (t,u)=1for t<0,

kn

8, 1L un” I(u)t) ol WY g1 1 (u)t]g
9]

k I (tu)—

fort3 0, u=1K,z (29)

3. Asymptotic approach

The investigation of exact reiability functions of large
systems often leads to complicated formulae. Thus,
from practical point of view, the asymptotic approach
to large systems rdiability evaluation is very
important. The suggested method allows us to obtain
formulae that simplify optimising cal culations.

In the paper in the asymptotic approach to the
reiability evaluation of multi-state parallel-series
systems the linear standardization of their lifetimes in
the reliability state subsets is used. This approach relies
on an investigation of limit distribution of a
standardized random variable (T(u)- b,(u))/a,(u),
u=12K,z, where T(u) isthe system lifetime in the
state  subset {u,u+1lK,zZ and a,(u)>0,
b,(u)T (-¥,¥), are caled normalizing constants. For
that reason, we assume the following definition [4].

Definition 7. A rdiability function

At) =[LA (t), KA (t,2)], tT (-¥,¥%),

is caled a multi-sate limit reliability function of a
system with reliability function

ﬁkn 5 3 =[1 ﬁkn ) K, ﬁkn 2],

if there exist normalizing constants a,(u) >0,
b,(u)T (-¥,¥) suchas

lim Ry, (B (WE+ b, (W),u) =A (t,u) for tT Ca ),
n

where Cg(,, Iis the set of continuity points of
Atu),u=12K,z

From Definition 7 it follows that the knowledge the
limit reiability function of a system A (t;) for
sufficiently large n allows us to estimate the multi-state
reliability function of a system R | (t,y according
the following approximate formula

R, (t3 @A ((t- b,()/a, ()3, (20)

-11-
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i.e
LR, t).K,R , (t2)]

- t- b ()
@LA (—an B

t- bn(z)

D KA ( 2 (2

V)] tT (- ¥,¥).

3.1. Reliability evaluation of large parallel-
series systems with independent components

In this point the possibilities of multi-state asymptotic
approach to the reliability evaluation of large parallel-
series systems are presented. There are formulated two
propositions that allow us to find multi-state limit
reiability functions of homogeneous parallel-series
systems with independent components under the
assumption that they have exponential reliability
functions.

Proposition 3. If in a homogeneous regular multi-state
paralld-series system

(i) components failure independently,

(i) components have exponential reliability functions
given by (12)-(13),

(i) k,=n, I,-clogn>>s, ¢>0, s>0,
I

logn’
u=12,K, z,

b, (u) =——log

(iv) a,(u)= | (1u)

1 (Wlogn'
then

ALty =[LA,(tD, KA (2], tT (-¥,¥), (21
where

A (t,u) = exp[- expt] for u=1K,z, (22)

is the multi-state limit reiability function of considered
system.

Proposition 4. If in a homogeneous regular multi-state
paralld-series system

(i) components failure independently,

(i) components have exponential reliability functions
given by (12)-(13),
(i) k,® k, k>0, |, ® ¥,

(iv) an(u):ﬁ, bn(u):'f?d)n, UE12 K. 2

then

Aty =[LA (1), KA L (t,2)], tT (-¥,¥),
(23)
where

AL tu)=[1- exp[- exp[-t]]]* for u=1K,z, (24)

is the multi-state limit rdiability function of considered
system.

3.2. Reliability evaluation of large parallel-
series systems with dependent component
failures

The proofs of presented below propositions are given
in[3].

Proposition 5. If in a homogeneous regular multi-state
paralld-series system

(i) components failure in dependent way according to
(16),

(if) components have exponential reliability functions
given by (12)-(13),

(iii) ﬁkn,ln (t,J is a multi-state system reliability
function given by (18)-(19),

(iv) k,® k =constantas n® ¥,

v I, =n,

(vi) a(u):; b(u):iforu:LKz
A () N R R (7)) o

then

ALY =LA, ). KA, 2], tT (-¥,¥), (25
where
ALt u) =[1- Fyey @l for u=1K,z,  (26)

and

t t2 .
oexp[- —]dt, tl (-¥,¥),
R 2

1
Fuog (tU) = Fp

-12-
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is the multi-state limit rdiability function of considered
system.
According to Proposition 5 and by (20) we can get the
approximate formula for the exact multi-state
reiability function of the considered parallel-series
system

ﬁkn 5 3 =[1 ﬁkn ) K, ﬁkn 2],

where
R, () @, )
a, (u)
=[1- Fyep /0l W)t - Vn,u) 27)

for tT (-¥,¥), u=1K,z

Proposition 6. If in a homogeneous regular multi-state
paralld-series system

(i) components failure in dependent way according to
(16),

(i) components have exponential reliability functions
given by (12)-(13),

(iii) Rk I (t,J is a multi-state system reliability
function given by (18)-(19),

(iv) k,® ¥ asn® ¥,

V) 1=

(vi) n'%logkn® 0asn® ¥,

i) a (=— >
" | (u)y2nlogk, =

log(4p) +loglogk,, - 4logk, N 1

b (u)=
(1) | (u),/8nlogk, | (u)
for u=12,K,z,
then

ALY =[LA, 1), KA, 12)] t1 (-¥¥), (29
where

A ,(t,u) = exp[- expt], u=12,K, 2, (29)

is the multi-state limit rdiability function of considered
system.
According to Proposition 6 and by (20) we can get the
approximate formula for the exact multi-state
reiability function of the considered parallel-series
system

R, (tI=[LR , (tD.K R, (t, 2] tT (-¥,¥),

where

- b, (u)
a, (u)

=exp[- exp[(l (u)t- D,/ 2nlogk,

) %Iog(4p)- %Ioglogkn +2logk,]] (30)

k|(tu)@°~( ,u)

for tT (-¥,%¥),u=12K,z

4. Application

The obtained theoretical results can be applied to the
reliability evaluation of real technical systems that are
composed of large number of components with failure
dependency. In this part, the ship-rope elevator used in
the Naval Shipyard in Gdynia is considered and its
reliability analysis is performed. The devator is
composed of a steel platform-carriage moved with 10
rope-hoisting winches fed by separate electric motors.
The exact and limit multi-state reiability functions, the
mean values and standard deviations of this system
lifetimes in the rdiability state subsets, the mean
values of the system lifetimes in particular reiability
states and the system risk function are determined.

In our further analysis we will discuss the reliability of
the rope system only. The system under consideration
isin order if all its ropes do not fail. Thus we may
assume that it is a series system composed of 10
components. Each of the ropes is composed of 22
strands. According to rope reliability data given in
their technical certificates and experts opinions [5]
based on the nature of strand failures the following
reliability states have been distinguished:

state 3 —astrand is new, without any defects,

state 2 — the number of broken wires in the strand is
greater than 0% and less than 25% of all its wires, or
corrosion of wires is greater than 0% and less than
25%,

state 1 — the number of broken wires in the strand is
greater than or equal to 25% and less than 50% of all
its wires, or corrosion of wires is greater than or equal
to 25% and less than 50%,

state 0 — otherwise (a strand is failed).
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We consider the strands as basic components of the
system. The system of ropes is in the reliability state
subset {u,u+1,...,zZ}, u=2123 when al of its ropes
are in this state subset and each of the ropes is in the
reiability state subset {u,u+1..., 7z}, u=2123 if a
least one of 22 strands is in this state subset. Thus,
according to Definition 6 we conclude that the rope
elevator is a regular 4-states parallel-series system
composed of k, = 10 series-linked subsystems (ropes)
with |, = 22 parallel-linked components (strands).

It has been assumed that the strands have exponential
reiability functions:

R(t,)) =[L R(t,)), R(t,2),R(t,3)] for tT (-¥,¥),
R(t,u) =1 for t <0, u=123,

R(t,)) = exp[- 0.1613t] , R(t,2) = exp[- 0.2041],
R(t,3) = exp[- 0.2326t] for t3 0.

4.1. The ship-rope elevator as a system with
independent components

Discussed in the paper the shipyard rope transportation
system under the assumption that its components are
independent is also widely described and analysed in

[4].

Applying Proposition 1 the exact multi-state reliability
function of the elevator under the assumption that its
components are independent is given by the formula

ﬁ10,22 ty=[1, ﬁ10,22 (tD), ﬁ10,22 (t,2), ﬁ10,22 t,3)], (31)
where

Ry (t,1) =[1- [1- exp[- 0.1613]]*]",

Rio2(t,2) =[1- [1- exp[- 0.2041t]]2]*,

Ry (1,3) =[1- [1- exp[- 0.2326t]]%]%,
for tT (-¥,¥).
The expected values of the eevator lifetimes T(2),
T(2), T(3) inthe state subsets {1,2,3}, {2,3}, {3} and
their standard deviations counted in years, according to
5)-(7), are:

M (1) €13.434, M(2) €10.617, M (3) €9.316,

s () €2.106, s (2) €1.597, s (3) €1.360.

Hence, from (9), the elevator mean lifetimes in the
particular statesin years are

M (1) @2.817, M (2) @.301, M (3) @9.316.
Assuming that a critical reliability state of the rope

elevator isr = 2, then from (10) its risk function takes
the following form

r(t)=1- ﬁ10,22 t2

=1- [1- [1- exp[- 0.2041]]2], t1 (- ¥,¥).

The moment when the system risk exceeds the
permitted level eg. d =0.05, accordingto (11), is

t =r '(d) @ yearsand 212 days.

Since the number of parallel subsystems in the system
is k, =10 and the number of components in each

subsystem is |, =22, then taking into account that
I, =22>>logk, =10g10 € 2.3, it seems reasonable to
apply in the eevator's reliability evauation either
Proposition 2 or Proposition 3. First applying
Proposition 2 we conclude that multi-state limit
reiability function of the elevator is of theform

ﬁ10,22 t3=0[ ﬁ10,22 (t.D), ﬁ10,22 (t.2), ﬁ10,22 t3)], (32
where

Ryo (t.1) €exp[- exp[0.3714t - 5.1969]],
Ryo(t,2) €exp[- exp[0.4699t - 5.1969]],

Ry (t,3) €Cexp[- exp[0.5356t - 5.1970]],
for tT (-¥,¥).

The expected values of the eevator lifetimes T(2),
T(2), T(3) inthe statesubsets {1,2,3}, {2,3}, {3} and
their standard deviations counted in years, according to

5)-(7), are:
M (D €12.453, M (2) €9.843, M(3) €8.636,
s (1) €3.199, s (2) €2.487, s (3) €2.158.

Hence, from (9), the elevator mean lifetimes in the
particular statesin years are
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M (1) @2.610, M (2) @.207, M (3) @8.636.

If acritical reliability state of the rope elevator isr = 2,
then from (10) its risk function takes the following
form

r(t)=1- ﬁ10,22 t.2
=1- exp[- exp[0.4699t - 5.1969]], tT (-¥,¥).

The moment when the system risk exceeds the
permitted level eg. d =0.05, accordingto (11), is

t =r '(d) @6 years.
Next applying Proposition 3 we get

Rio2 (6.3 =[1 Ryg 2 (t,1), Ry 2 (1,2), Ryg 2 (t,3)], (33)
where

Ry (t.1) @1- exp[- exp[- 0.1613t +3.0911]]]*,

Ryo 2 (t,2) @1- exp[- exp[- 0.2041t +3.0910]]]*°,

Ry (1,3) @1- exp[- exp[- 0.2326t +3.0911]]]",
for tT (-¥,¥).

The expected values of the eevator lifetimes T(2),
T(2), T(3) inthe state subsets {1,2,3}, {2,3}, {3} and
their standard deviations counted in years, according to
5)-(7), are:

M (D €13.027, M (2) €10.295, M (3) €9.034,

s (1) €2.300, s (2) €1.758, s (3) €1.506.

Hence, from (9), the elevator mean lifetimes in the
particular statesin years are

M (1) @2.732, M(2) @.261, M (3) @9.034.

If acritical reliability state of the rope elevator isr = 2,
then from (10) its risk function takes the following
form

r(t)=1- ﬁ10,22 t.2

=1- [1- exp[- exp[- 0.2041t +3.0910]]]*°,

for tT (-¥,¥).

The moment when the system risk exceeds the
permitted level eg. d =0.05, accordingto (11), is

t =r '(d) @8 years 310 days.

4.2. The ship-rope elevator as a system with
dependent component failures

From practical point of view it seems reasonable to
consider the shipyard rope transportation system
assuming components dependence. Indeed, while
failing some of strands in a rope the load of the
remaining not failed ones may be getting larger. Thus,
the assumption about dependence of strands is natural
and justified.

After considering Proposition 4 the exact multi-state
elevator rdiability function is given by the formula

ﬁ10,22 t3=[1, ﬁ10,22 (t.D), ﬁ10,22 (t.2), ﬁ10,22 t3)], (34)

where

ﬁ10,22 (t,uy=1fort<0,u=123

21 (3.5486t) 10
+!exp[- 3.5486t]] ™,

ﬁ10,22 tD) =[ é
J:

0

21 (4.4902t)
j!

Ry (t,2) =[& exp[ - 4.4902t]]*°,
j=0

3 BA1720] o gy
[ o

ﬁ10,22 t3) =[ é}

j=0
for t3 0.

The expected values of the eevator lifetimes T(2),
T(2), T(3) inthe statesubsets {1,2,3}, {2,3}, {3} and
their standard deviations, according to (5)-(7), in years
are

M (D €4.335, M(2) €3.426, M (3) € 3.006,

s (1) €0.773, s (2) €0.472, s (3) €0.414.

Hence, from (9), the elevator mean lifetimes in the
particular statesin years are

M (1) @0.909, M (2) @0.420, M (3) @3.006.
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If acritical reliability state of the rope elevator isr = 2,
then from (10) its risk function takes the following
form

r(t)=1- ﬁ10,22 t.2

0, t<0,
21 (4. 4902t)J

j=0

i
_1
=1

1- 14 exp[- 4.4902t]]%°, t 3 .
|

The moment when the system risk exceeds the
permitted level eg. d =0.05, accordingto (11), is

=r"1(d) @ yearsand 230 days.
In the asymptotic approach to the reliability evaluation
of the rope elevator assuming component failure
dependency similarly as in the first case we can apply
either Proposition 5 or Proposition 6. Applying

Proposition 5 we can find the approximate multi-state
reiability function of the rope elevator system.

ﬁ10,22 t3=[1, ﬁ10,22 (t.D), ﬁ10,22 (t.2), ﬁ10,22 (t,3)], (35)

where

Ry (t1) @1- Fyoy (0.7566t - 4.6904)]*
Ry 2 (1,2) @1- Fypoy (0.9573t - 4.6904)]°

Ry (t,3) @1- Fy oy (1.0901t - 4.6904)]°
for tT (-¥,¥).

The expected values of the eevator lifetimes T(2),
T(2), T(3) inthe statesubsets {1,2,3}, {2,3}, {3} and
their standard deviations counted in years, according to

5)-(7), are:
M (D €4.166, M (2) €3.292, M (3) €2.891,
s (1) €0.776, s (2) €0.613, s (3) €0.538.

Hence, from (9), the elevator mean lifetimes in the
particular statesin years are

M (1) @0.873, M (2) @.401, M (3) @2.891.

Assuming that a critical reliability state of the rope
elevator isr = 2, then from (10) its risk function takes
the following form

r(t)=1- ﬁ10,22 t.2

=1- [1- Fyy (0.9573t - 4.6904)]°, tT (-¥,¥).
The moment when the system risk exceeds the
permitted level assuming as before d =0.05,
according to (11), is

=r"1(d) @ years 80 days.

Now the system multi-state reliability function is
estimated from the formula (13) as an application of
Proposition 6.

ﬁ10,22 t3=[1, ﬁ10,22 (t.D), ﬁ10,22 (t.2), ﬁ10,22 (t,3)], (36)

where

ﬁ10,22 (t,]) =exp[- exp[(0.1613t - 1),/44log10

+10g(50//p log10)]],
Rio22(1:2) = exp[- exp[(0.20411 - 1),/44I0g10
+log(50/ /p log10)]],
Ruo 2 (t,3) = exp[- exp[(0.2326t - 1)\/4410910
+log(50//p log10)]],
for tT (-¥,¥).

The expected values of the eevator lifetimes T(2),
T(2), T(3) inthe state subsets {1,2,3}, {2,3}, {3} and
their standard deviations, according to (5)-(7), in years

are
M (1) €4.044, M (2) €3.196, M (3) €2.805,
s () €0.787, s (2) €0.622, s (3) €0.546.

Hence, from (9), the elevator mean lifetimes in the
particular statesin years are

M (1) @0.848, M (2) @0.392, M (3) @2.805.

If acritical reliability state of the rope elevator isr = 2,
then from (10) its risk function takes the following
form
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r(t)=1- ﬁ10,22 t2

=1- exp[- exp[(0.2041t - 1),/4410g10

+log(50/+/p log10)]] for tT (- ¥,¥).

The moment when the system risk exceeds the
permitted level eg. d =0.05, accordingto (11), is

t =r '(d) @ yearsand 11 days.

Comparing the expected values of the eevator
lifetimes in the state subset and the elevator mean
lifetimes in the particular states in the case when
strands failure in dependent and independent way we
can conclude that these values are lower in the first
case for about 68% percent for exact reliability
functions and for about 67% and 69% for approximate
reliability functions.

The obtained results illustrate that the increased load of
remaining un-failed components causes shortening the
lifetime of these components in a significant way. That
fact can be interpreted as a decrease of their reliability
much faster then for the systems with independent
components. Taking into account the presented ship-
rope elevator we can notice that the lifetime in the
reiability state subset of the elevator under the
assumption that strand failurein dependent way is even
about 70% shorten then in the case when strands are
independent.

5. Conclusion

In the paper the exact reliability analysis and
asymptotic approach to the reliability evaluation of
homogeneous multi-state paralle-series systems are
presented. For these systems the exact and limit
reiability functions and other characteristics both in
the case when their components are independent and
when they are dependent are determined under the
assumption that components of systems have
exponentia reliability functions.

Introduced in the paper the method of reliability
evaluation of large systems relies on application of
some approximate methods based on classical
asymptotic approach to thisissue. The obtained results
are concerned with typical systems with regular
structure. Applied in the paper anaytical methods are
successful rather for not very complex systems. In this
background it seems to be justified the extension of
this issue for systems with less regular structures and
use of any other reliability analysis methods.
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Figure 1. Graphs of the rope elevator exact and approximate reliability functions in the state subset u> 1

a) in the case when components are independent

b) in the case when components fail dependently
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Figure 2. Graphs of the rope elevator exact and approximate reliability functions in the state subset u > 2

a) in the case when components are independent

b) in the case when components fail dependently
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a) in the case when components are independent
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Abstract

Exact knowledge of the rdiability characteristics as the time dependent unavailability coefficient for example,
under influence of different ageing processes as well as under different failure types is very useful to the
practitioners who haveto find the optimal maintenance policy for their equipment. In this paper found models and
their solutions have potential to face the optimisation task under the conflicting issues of safety and economics.
Most of the solved models take into account ageing processes. An increasing tendency lately exists to include
aging effects into the risk assessment models to evaluate its contribution. We devel oped different renewa models
taking into account different ageing distributions of failures (Weibull, Erlang, log-normal): models with negligible
renewal time, models with periodical preventive maintenance, alternating renewal process with lognormal
distribution of failure time, and with two types of failures.

1. Introduction

This paper mainly concentrates on the modelling of
various types of renewal processes and on the
computation of principal characteristics of these
processes — the time dependent coefficient of
availability, possibly unavailability. The aim is to
generate models, most often found in practice, which
describe the processes of ageing, further the
occurrence of dormant failures that are eliminated by
periodical inspections as well as monitored failures
which are detectable immediately after their
occurrence.

Renewal theory seems to be a feasible option to
quantify time-dependent effects on component
unavailability due to ageing, periodical inspections, or
repairs [1]. Closed form solutions for the asymptotic
the failure rate and unavailability can be obtained
using Laplace transform. Obtaining the detailed time
behaviour may not be atrivial numerical task.

Basic information from renewa theory brings
Appendix [4], [3]. Thefollowing chapter 2 is devoted
to models with a negligible renewal time in which a
main impact is given on flexible models with the
Erlang and Weibull distribution. The solution of these
models is received from a Laplace and discrete
Fourier transformation. In the following chapter 3 we
introduce different models with maintenance. Main
attention is paid to models with periodical preventive

maintenance - basic equations for the model are
formulated. The solution of a system of equations is
demonstrated for the situations with an exponential
and Weibull distribution. In the next chapter the
alternating model with an inconsiderable renewal time
is solved, this is demonstrated for lognormal
distribution of time to failure. The final part involves
generally formulated alternating models with the
occurrence of two types of independent failures.
Time-dependent unavailability of components under
maintenance and ageing processes can exhibit
mathematically complex behaviour [5]. The
unavailability may be also dependent on maintenance
history. First failure distributions may not be
continuous functions. Within this paper we can say
that renewal theory provides a feasible approach in
selected cases to implement and evaluate interventions
given by maintenance and aging processes.

A lot of notable asymptotic results on availability
andyses are focused on the situation that the
components have exponentia lifetime distributions.
Using so-called phase-type approach, author in [2]
shows that the multi-state model also provides a
framework for covering other types of distributions,
but with limitations - the approach makes use of the
fact that a distribution function can be approximated
by a mixture of Erlang distributions (with the same
scale parameter). Asymptotic analysis of highly
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available systems has been carried out by a number of
researchers. A survey is given by Gertsbakh [7], with
emphasis on results related to the convergence of the
distribution of the first system falure to the
exponential distribution.

If the lifetimes are distributed arbitrarily, then the
system can be described by a semi-Markov process or
Markov renewal process. Semi-Markov processes and
Markov renewal processes are based on a marriage of
renewal processes and Markov chains. Pyke [8] gave
a careful definition and discussion of Markov renewal
processes in detail. In reliability, these processes are
one of the most powerful mathematical techniques for
analysing maintenance and random modes. A
detailed analysis of the non-exponential case (non-
regenerative case) is however outside of the scope of
the introduction part. Further research is needed to
present formally proved results for the general case.
Presently, the literature covers only some particular
cases, what isalso the case of this presentation.

2. Modelswith a negligible renewal period

In some cases we can take into account a renewal
period equal to zero. For example the situation when a
time to a renewal is substantially smaller than a time
to a falure and its implementation would not
influence an expected result. This case was intensively
studied in [6]. Basic relationships for Poisson process
arederivedin [4]:

Renewal function and renewal density are given as
follows

¥
H({t)=EN, =& n

n=1

(| t)ne—lt
n!

¥ (1H)"

n=1 Nl

=] te’"

Basic definitions from renewa theory see in
Appendix. Renewal density is constant

h(t) =H'(t) =1 .

Methodology based on Laplace transforms was
dramatically extended in [6] for the case when a time
to failure is modelled by the Erlang distribution,
which has a probability density function

| (I t)2e 't

, t30,1 0, af0.
a)

f(t)=

After the backward transformation a renewal density
isequal to

1l +s,
a

I & t
hty=—+ & eX tF0,

a k=1

in the expression thereis s, 1 C,

which is k™ nonzero root of the equation
(s+A?=A sl C,

For example for a = 4 nonzero roots are equal to

s, =I (e%-l):(-1+i)l,

s, =l (e? -)=-2,

i3p
s,=l(e2 -)=(-1- i),

and arenewal density

3l +s
3%
4

|
h(t) =— + e
©=7

k=1

=IZ[1- e?t- e'tdn(l1)].

0.3
025
0.2
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0.1
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h(9
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Figure 1. Renewal density for Erlang distribution

Another calculation method was applied for Weibull
distribution of time to failure, which has a probability
density

f(t)=al (1 )>1e (0", 30,

a >0 isaparameter of the shape, A > 0 is a parameter
of ascale

A probability density f(t), n= 2,3,...., or a probability
density of time to ™ failure can be calculated as a
convolution of the function ( f,, *f ). We can express
it numerically eg. with the help of discrete Fourier
transformation [6].

By a numerical integration we can determine a vector
of adistribution function F,_

A formula (1) for a calculation of the renewal function

HO= & F, @
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is necessary to substitute by a finite sum of thefirst K
computed terms at the numerical calculation. It can be
conducted because these terms converge quickly to a
zero at a definite interval [0, T]. Equally, §,=X; + X;
+...+ X, has an asymptotic normal distribution N(n,
no®) where p and o are definite expected value and a
dispersion of X;.

Considering that Weibull distribution of time to
failurefor a > 1 has an increasing failurerate

rt)=1a(t)??

a distribution function F,(t) can be upper estimated by
the function

ti

n-l(?n)

F,(t)£1- é_—le'm =G, (t), t pnm,
i=o il

where u is an expected value of atimeto failure [3].

o1+ )
- a
|

m
We can estimate in thisway an error of afinite sum
K
H(t)=a F, (1),
n=0

because a remainder is limited

X Qox

¥
Foy £ n:?(fl;n(t), tpnm.

n=K+1

Exact reationship for the reminder is derived in [6].
The behaviour of the renewal function estimated for
different number of members in the above finite sum
wecan seein Figure 2.

4 -
Hn(% ] H (O=F (O+..+F ()

ol X Weib(52)

1+

0 I 1 1 |
0 5

Figure 2. Renewal function for Weibull distribution

3. Modelswith maintenance

In many dituations, failure of a unit during actual
operation is costly or dangerous. If the unit is
characterized by a failure rate that increases with age,

it may be wise to replace it before it has aged too
greatly. In this section we shall concentrate on the
operating characteristics of some commonly
employed replacement policies.

A commonly considered replacement policy is the
policy based on age (age replacement). Such a policy
is in force if a unit is always replaced at the time of
faillure or 7. hours after its installation, whichever
occurs first; 7. is a constant unless otherwise specified.
If 7. isarandom variable, we shall refer to the policy
as arandom age replacement policy. Under a policy of
block replacement the unit is replaced at times Az, (k =
1,2,...), and at failure This replacement policy
derives its name from the commonly employed
practice of replacing a block or group of units in a
system at prescribed times kz.(k = 1,2,...) independent
of thefailure history of the system.

3.1. Replacement based on age

A unit is replaced 7. hours after its installation or at
fallure, whichever occurs first; 7. is considered
constant. Let R(t) denote the probability that an item
does not fail in service beforetimet. Then

R(t) =Rt :)"R(t- nt,),
nl NE{G:nt E£t<(n+1t..

The distribution function of atimeto failure Xis
F(t)=1- R(t) =1- Rt )"R(t- nt ),
t30,nl NE{O}:nt £t<(n+1t..

Expected time to failure E(X) is

E(x) =t‘)R(x)dx

y (n+l)tc
=4 o R C)nR(t- nt .)dt

n=0 nte

¥ te 1 te
= & R({t,)" oR()dt = SR()ct,
n=0 0 Fit.)o

C
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[ FiH=1-R(z C)"R(t—nz 2

05¢ R(t)=weib(1/8,2)
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Figure 3. The Weibull distribution function for a unit
with the replacement based on age.

35 40
When thetimeto failureis exponentially distributed X
~ exp(1/p), then we have
F(t)=1- Rt .)"R(t- nt )
=1- gMeg M-nte) = g "

which means that distribution function is independent
on replacements. Other words, the unit does not age.

3.2. Block replacement policy

Under a policy of block replacement all components
of a given type are replaced simultaneously at times
kre (k= 1,2,...) independent of the failure history of
the system. If X istime of i-th failure of a unit which
has distribution function F; and probability density f;
and R(t)=1- F; (t), then

Rl(t):R(t c)nR(t' nt c)1

nl NE{G:nt £t<(n+1t,,
f0=Rt.)"L[- Rt- nt )]
1 - c dt c/

Didtribution of time to i-th failure for i > 1 we can
derive on the basis of conditional probability:

x>0, y>0, k=[x/t ], =[(x+y)/t. ], | >k,

Pr(X; >y\ X,.; =X

=R((k+Dt . - YRt )"V R(x+y-nt).
Then

¥
Pr(X; >y) =oR((k+Dt . - X)R(t C)(I- (k+1)
0

'R(x+y-nt )f_,(x)dx

y (kebte I- (k+1)
=34 o R(k+Lt.- xR(.)

k=0 ki
'R(x+y- 1t )f_ (X)dx

2=x- Ko, n=[Z+Y)/t ]
¥ te

=& Rll(t c)k C)R(t c” Z)R(t c)n_l
k=0 0

'R(z+y-nt)f,_,(2)dz

:%témc- JR(z+y- nt.)fi (Pdz

R(t R(t)=weib(0.5.2)
o 0359052
05 Ni=234... ]
0 | | | |
0 05 1 15 2 t 25

Figure 4. The Weibull distribution function for a unit
with block replacement

In Figure 4, we can see time dependencies for R(t) for
Weibull distribution of timeto failure.

3.3. Periodical preventive maintenance

May a device goes through a periodical maintenance
after a time interval of the operation 1., whose
intention is a detection of possible dormant flaws and
their possible eimination. The period of device
maintenance is tq and after this period the device starts
operating again. F(t) is here a time distribution to a
failure X. Then in the interval [0, 1+ 14) there is a
probahility that the device appears in the not operating
state equal to

P(t)=F(), tpt,
=1Lt3t,.

The state of afailureis considered then both atime to
the maintenance after a possible failure and the time
when the device is unde maintenance. The
probability P(t) (also a coefficient of unavailahility)
for t1[0,%¥) is generated by following system of

equations:

P(t) = R, (1),
nl NE{G:nt,.+t )ptEn+Dt, +t,),
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RO =R.1(0- Ra(t)L- R(t- it +ty))]

i=12,...,n-1

Ry () =F(t), tfO.

Here P; (t) stands for a probability that a device exists
in the failure state provided that before it had gone
through i inspections. A term Pi.y(t) - Pia(ito)
represents a probability that a device was all right at
the previous inspection and it failed in the interval (iz,
t), Pia(itc) Po(t - i(zc + 74)) is a probability that it had
failed in the previous inspection and since then it
failed again.

3.3.1. Exponential distribution of timeto
failure

May
Ft)=1-e'".

For thetime t1 [0,¥) isthen a probability P(t) equal
to

Pt =F(t- nt +ty)),
ti [n(t c +t d)1n(t Cc +t d)+t 0)1
P(t):l' ti [n(t c +t d)+t c1(n+1)(t c +t d))!

If g = O, the expression for P(t) can be further
simplified into the form

P(t)=F(t- nt ),
nl NE{G:nt,.+t )Etp(n+D(t, +t,).

3.3.2. Welbull distribution of timeto failure

Let the intensity of failures of the given distribution of
time to failure is not constant, it is then a function of
time past since the last renewal. In this case it is
necessary for the given t and n, related with it which
sets a number of done inspections to solve above
mentioned system of n equations and the solution of
the given system is not eiminated anyhow as it is at
an exponential distribution.

Inthe Figures 5 and Figure 6 a slightly marked curve
draws points of the local extremes in the case of
shortening a timeto the first inspection.

F(t)=exp(1/8)

08

P(®
06}
0.4f

0.2r

0

Figure 5. Codfficient of unavailability for exponential
distribution

rF@

=weib(1/82)
7. =8 S

35

5 30 t

Figure 6. Coefficient of unavailability for Weibull
distribution.

10 15 20 25

4. Alternating renewal models

Alternating models are those where two of the
significantly diverse states appear, between which a
model converts from one to another. A faulty device is
the example of the alternating model whereatimeto a
repair is compared with a time to failure and it cannot
be neglected.

In the case that both a time to failure and a time to a
repair follows an exponentia distribution, general
solution for a caculation of a coefficient of
availability can befoundin [4].

4.1. Lognormal distribution of atimeto failure

If adistribution to a failure X; has alognormal
distribution, then a probability density isintheform

Int- |
d

nm=§u ), L0

where ¢(X) is standard normal density.

In this case a numerical calculation is offered again
for the computation of the coefficient of availability.
We can compute a probability density of a sum of
random quantities X ang X; (X; is an exponential timeto
a repair) from a discrete Fourier transformation [6],
equally as a convolution in the equation

K(®) =R, (0 + ()R, (t- ¥

The calculation of a renewal density is substituted by
afinitesum

h(t) = é:fn(t).
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An example: In the following example a calculation
for parameter values 6=1/4, A=8c, 1=1/2, is done. In
the Figure 7 there is a renewal densty. The
asymptotic value is marked by dots, which is in this
case equal to

1

lim h(t) =
EX, +EX

t® ¥

@0.123

r

0.25
h(
0.2

h) = £ (O ,(O+..+ (1)
7\
\/ N

0 Il Il Il i
0 10 20 30 40

0.15¢

0.1+
0.05-

t 50

Figure 7. A renewal density for lognormal distribution

Figure 8 shows a procedure of the coefficient of
availability K(t), the asymptotic value is marked by
dots again and it is given by the following formula:

1

.938
+ EX @

r

<=l = g5

K(®
0.95¢

/\
\/\/

085 Il Il Il Il
0 10 20 30 40

0.9+

t

Figure 8. Coefficient of availability for a lognormal
distribution

5. Alternating renewal models with two types
of failures

The following part presents models, which consider
an appearance of two different independent failures.
These failures can be described by an equa
distribution with different parameters or by different
distributions.

5.1. Common repair

A device composed of two serial elements can be an
example whereas a failure of one of them causes a
failure of the whole device. A time to a renewal is
common for both the failures and begins immediately
after one of them. It is described by an exponential
distribution with a mean value 1/t.

50

A failure occurrence in the renewal time is not taken
into account, after the renewal both the parts are
considered to be new.

May Xu and X, are independent random values
describing time of faillures with probability densities
f(t) and fix(t), further a time to a repair is X, with a
density f,(t). A probability that no failure occursin the
interval [0,t) is equal to

Re (t) =P(X¢y 3 tl‘fozs t)

=[1- FraI[L- Fr2 (O] =Ry (DR ().

and is ardiability function of thetimeto failure X; of
the whole device. Then X¢,s @ probability density

f©=- RO

With the knowledge f{t) we can calculate the
functions describing this alternating process.

If the time to failure has an exponential distribution
with mean values 1/A and 1/, then

ff (t) - %e—(l +m)t :(I + m)e—(l +m)t.

Then f(t) has an exponential distribution with a mean
vaue U(A+p) and the coefficient of availability is

equal

| +nm
+

g (MmOt + £ 0.
| +m+t

t
K(t) =
® | +m+t

If the analytical procedure is uneasy or impossible, a
numerical calculation can be used. For a renewal
density computation is desirable instead of the
equation

¥
h(t) = f; (1) + h(X) T (t - X)dx
0
use a renewal equation for arenewal density

h(t) = & f, (1)

n=1

and conduct a sum of the only definite number of
elements with a fault stated above. fu(t) is a
probability density of time to n" failure. Then for the
calculation of convolutions is used for example a
quick discrete Fourier’ s transformation.

In the Figure 9 there is a graph of a coefficient of
availability in the case that a time to a failure Xy and
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X, have Weibull distribution. Expected vaue to the
failure EX; isequal to

EX 2 EX 2 202
EXy = zfl f22 = 36 2 :\/ﬁ
EX: + EXT, 2°+6
and that is why an asymptotic coefficient of

availability is equal to

f
+ EX

=0.79

r

EX

1
K(®

0.95+ -
EX, =86,

EX,=2, A
EX =05

0.9+
0.85-

0.8

0.75 I I I I
0 2 4 6 8 t

10

Figure 9. Coefficient of availability for Weibull
distribution

5.2. Two independent parts

Supposing the device consists of two independent
parts. The behaviour of each one is described by its
alternating model with a given time to a failure and a
time to a repair. Maintenance proceeds for both
differently and independently. Equally, the failure of
one of them can appear regardless of the state of the
other part, even in the state of afailure.

Let us consider the whole device to be in the state of a
faillure when at least one of the parts isin the state of a
failure. K,(t) is a coefficient of availability of the first
part and Kyt) is a coefficient of availability of the
second one. For thewhole device K(t) is equal to

K(1) = Ka (DK, (D)

May dormant faults occur in the first part, with
Weibull’s distribution and with an expected value EX
= 2 and a parameter of the form a = 2 which are
eliminated by periodical inspections with a period t. =
2 (See Moddes with periodica preventive
maintenance) and the second part is equal as in the
previous model. The course of the coefficient of
availability as the product of already computed partial
ones is designed in the Figure 10.

S

02
0

0

Figure 10. Coefficient of availability for independent
parts

6. Conclusion

In this paper a few types of renewal processes, which
differentiate in a renewal course and a type of
probability distribution of a time to failure, were
described. These processes were mathematically
modelled by the means of a renewal theory and these
models were subsequently solved.

In the cases, when the solving of integral eguations
was not analytically feasible, numerical computations
were successfully applied. It was known from the
theory that the cases with the exponential probability
distribution are analytically easy to solve.

With the gained results and gathered experience it
would be possible to continue in modelling and
solving more complex mathematical models which
would precisely describe real problems. For example
by the involvement of certain relations which would
specify the emergence, or a possible renewa of
individual types of failures which in reality do not
have to be independent on each other. Equally, it
would be practically efficient to continue towards the
calculation of optimal maintenance strategies with the
set costs connected with failures, exchanges and
inspections of individual components of the system
and determination of the expected number of these
events at a given time interval.
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Appendix

Renewal Process

Renewa process sarves for example to model
mathematically a device behaviour which is
maintained in such away that it stays running as most
effectively and longest as possible May a file of
components or the whole device with a time to a
failure X (non-negative absolutely continuous random
variable) with a dispersion given by a probability
density f(t) exists and may a symbol t denotes for
clearness a time. The first component is put into
operation at time t = 0. Further, X; is a period when
the first component comes to the failure and at the
same time it is substituted by a new identica
component from a given file. It means that a renewal
period (in this case a change period) is negligible, or
equal to zero. This second component breaks down
after the period X, since it started to operate. At the
time X; + X, the second component is renewed by the
exchange for the third one and the process continues
further in such a way. Ther-threnewal will happen at
thetimeS, = X; + X, +...+X,.

If X; X, .are independent non-negative equally
distributed random variables with a finite expected
value and dispersion,

S

(=)

then a random process {S,}7_, is caled a renewal

process in a renewal theory. Sometimes an order of
stated random variables {X,}"n=o is denoted in this
way. In the case when a time distribution until the
failure is exponentia, we spesk about Poisson
process. A function Fn(t) indicates a distribution
function of a random variable S,. There are a few
other random variables connected with the renewal
process, which describe its behaviour (at time). Let we

call N; a number of renewalsin theinterval [0, t] for a
firmt =0, it means

N, =max{n:S, pt}

From this we also get that Sy <t < Sy+1. Regarding
the fact that the interval [0, t] contains n failures (as
well as renewals) only if n™ failure happens at the
latest at thetimet

PN, 2 n}=P{s, pt}=F, (1)

and the probability that at the time t there are n
renewals in the given renewal process can be
described in the following way

P{N, =n}=P{s, ptUS,,, 3 t}

= I:n (t)[l' I:n+1(t)] = I:n (t) - I:n+1(t)

Provided that X; X, are independent non-negative
equally distributed random variables and P,(X; = 0) <
1, then a random variable N; has finite moments of all
the series (Stein's theorem).
And if N;, t 2.0 gives a number of renewals in the
interval [0, t], then afunction

H({t)=EN,, t30
is called a renewal function. As it is apparent it gives
an expected number of renewals in the interval [0, t].
The expected number of renewals in the interval [t,,
t;], O< t;< t, can be quantified from H (t;) — H (t,),
because a number of renewals in this interval is Ny, —
Nt]_.
A renewal function can be aso expressed from
distributional functions F,(t) of random variables S,

¥
H(t) = & nP(N, =n)
n=0

¥ ¥
=an[F,(t)- Fu®] =& F, .

n=1 n=1
A renewa equation is important for the renewal
function computation H(t). It provides a mutual
unique relation between distributional function of a
time to a renewal and a renewa function: if a
distributional function of a time to the renewal F(t) is
continuous, then a renewal function H(t) is convenient
with an integral equation

H() =F(t) + BH (t - u)F(u)du.
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This equation can be easily derived from the previous
equation with help of its integral transformation (e.g.
Laplace).

An asymptotic behaviour of a renewal process is
substantial. An asymptotic behaviour of a renewal
process is discussed in an Elementary theorem about a
renewal: if atime distribution to arenewal has afinite
expected value i, then

H (t)

_1
.

lim
t®¥ t

It is a Blackwell theorem, which testifies about a
limited behaviour of an expected number of renewals
at afinite interval (t, t+At]: if atime to arenewal has
a non-lattice distribution with a definite postive
expected value i, then " h ¥ 0is

im{H (t+ 1) - H(t)]:r—:.

If a derivation of a renewal function exists (i.e. X;
X, are absolutely continuous random variables), then
for the arbitrary time t > 0 a function h(t) that is
defined by areation

h(t) = lim

Dt® 0+

HE - HEXDY _ g
Dt

isarenewal density. Then with a help of a probability
density fo(t) = F'n(t) we have

h(t) = & 1, (0).

A renewal density most often appears in the following
integral equation

h(t) =  (t) + oh(t - u) f (u)du,

so called a renewal eguation for a renewal density.
Here f(t) is a probability density of a absolutely
continuous non-negative time to the renewal X.

We can describe the equation approximately by words
in such a way that for At—0 renewal probability
h(t)At in the interval (t, t + At ] is equal to a
probability sum f(t) At that in the interval (t, t + At ]
the first renewal happens and the sum of probabilities
for " ul (0,t) that the renewal happens at thetimet —

u followed by a timeto the failure of the length u.
Alternating Renewal Process

Provided that there are two kinds of components with
various independent time to a falure XY

respectively adequate distributional functions F(t),
G(t) (densties f(t), g(t)), at the time t 0 the
component of the first typeis activated and every time
at the time of failure is substituted by the component
of the opposite type, resulting process is named
Alternating renewal process.

We can simulate a renewal process with a definite
timeto a renewal with such a model. At thetimet =
0 the component begins to work to the moment of
faillure X;. Thefina timeto therenewal Y; follows. At
the moment X; + Y; the renewal ends and a new (or
repaired) component is activated with a time to a
failure X;. X3 Xo...resp. Y, Y,...are independent non-
negative random variables with a distr. function F(t)
resp. G(t).The n™ failure happens at the moment

S, =X, +Y, v+ X Y, + X

n?
for " renewa we have
T =X, +Y, ot X +Y,  + X, +Y, .

A random process {S,, Ty, S, T,....} is then an
aternating renewal process. A coefficient of
availability K(t) (or also A(t) - availability) is a basic
characteristic of a renewal process with a finite time
to a renewal. It determines a probability that at the
time t the component will work. It is consequently
equal to a sum of probabilities that X; > t, it means
that the first component has a time to a failure greater
than t, and that the renewal happens in the interval (u,
u+ Au], Au— 0,0 < u< tandarenewed component
will have atimeto afailure greater thant - u.

Written by an integral equation:

K(t)=1- F(t)+ohOo[L- F(t- x)]dx

=R(t) + E-,h(x) R(t - x)dx,

h(x) is a renewal process density of a renewal
{To}"n=0, F(t) isadistribution function of thetimeto a
failure, resp. 1 — F(t) = R(t) isrdiability function.

In particular, an asymptotic coefficient of availability
of the alternating renewa process is important
practical reliability characteristics,

K =limK (t).

t®¥

It describes behaviour of the alternating renewal
process in the situation when the system is stabilized
in “a distant time moment t”, i.e. a stationary case,
when the influence of the beginning configuration
subsides.
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Two various approachesto VTS Zatoka radar system reliability analysis

Keywords
VTS system, system rdiability, shipping safety

Abstract

In the paper we propose two ways of reliability calculation of radar system in Vessel Traffic Services Zatoka.
Reliability and availability of the system were calculated on the base of reiability of the system components. In
thefirst approach there was assumed that system is series, in the second approach system is treated as a series-“m
out of n”. We obtain different results. Conclusion isthat choosing proper method of approach to system reliability

and availability analysisis decisive in appropriate evaluation of those properties.

1. Introduction

One of the most important properties of the devices
and technical systems is their reliability. Reliability is
extremely important when concerns systems, which
assure people safety or/and natural environment
protection. Vessd Traffic Services System — VTS
Zatoka is that type of system. Its main task is to assure
safe navigation for al ships that sails to ports of
Gdynia and Gdansk. The most important part of the
VTS Zatoka system are shore based maritime radars.
Reliability of that system can be evaluated in different
ways. In the paper there are proposed two possible
approaches to calculate that reliability [1].

2. Systems’ definitions
We assumethat [2]

E,i=12,..n,nl N,

are two-state components of the system having
reiability functions

R(t) =P(T; > 1), tT (-¥,%¥),i =1,2,...n,
where
T,i=12,...n,

are independent random variables representing the
lifetimes of components E; with distribution functions

FE) =P £1), tT (-¥,¥),i=12...,n.

Definition 1. A two-state system is called seriesif its
lifetime T is given by

T=mn{T}.

1£iEn

— E E, — ... 4 E, —

Figure 1. The scheme of a series system

The above definition means that the series system is
not failed if and only if al its components are not
failed, and therefore its reliability function is given by

R(t) :QR(t),tT (-¥,¥), (1)

Definition 2. A two-state series system is called non-
homogeneous if it is composed of a, 1 £ a £ n,
different types of components and the fraction of the
ith type component in the system is equal to g;, where

g >0, é’laqi =1. Moreover
i=1

R(i)(t) =1- F(i)(t), t1 (_¥,¥), i=12..a (2

isthereiability function of the ith type component.
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The scheme of a non-homogeneous series system is
givenin Figure 2.

QL G Ca

1 g E, L. B

Figure 2. The scheme of a non-homogeneous series
system

It is easy to show that the reliability function of the
non-homogeneous two-state series system is given by

R (t)=§ (RO@)I" tT (-¥,¥). )

A two-state system is called an “m out of n” system if
itslifetime T is given by
T=T,

(n- m+1)?

m=12,...,n,

where T, .., isthe mth maximal order statistic in the

sequence of component lifetimes T, T, ..., T, .

The above definition means that the two-state “m out
of n” system is not failed if and only if at least m out
of its N components are not failed. The two-state “m
out of n” system becomes a paralld system if m =1,
whereas it becomes a series system if m = n. The
reliability function of the two-state “m out of n” system
isgiven either by

RP®=1- & SROIFONM @
tT (-¥,¥), o
or by

RP®= & OFOIROM. ©

r,r2,..,M=0i=1
r+ro+.+rpfEm

th (-¥,¥), m=n-m

Definition 3. A two-state “m out of n” system is called
non-homogeneous if it is composed of a, 1 £ a £ n,
different types of components and the fraction of the
ith type component in the system is equal to g;, where

qi >0, é’laqi =1. Moreover
i=1

RO@M) =1- FOt), tT (-¥,¥),i=12..a (6)

The scheme of anon-homogeneous “m out of n”
systemis given in Figure 3, where

iy, 0y, ...,inT {12,....,n} and i; * i, for j* k.

The reliability function of the non-homogeneous two-
state “mout of n” systemis given either by

R (©
=1 & S(VROOITFO 0P @)

OEr £g;n i=1
r+r+. +rgEm-1

tT (-¥,¥%),
or by
RV (1)
= a 5 (Qir?)[ =10 (t)] T [R(i) (t)] gn-r , (8)
OEri£qin _ i=1

r+rp+..+rgfm
tT (-¥,%),

wheeem=n- m

Oy
d>
| |
! !
| |
:_ Ein _: Ua

Figure 3. The scheme of a non-homogeneous “m out of
n” system

Definition 4. A multi-state system is called series- “m
out of k" if itslifetime T is given by

T :T(kn_ m+1) ’ m :1121'"1kn1

where Ty .y IS M-th maximal statistics in the

random variables set
T = min{T;}, i =12,k

1£El;

-29-



T.Budny Two various approaches to VTS Zatoka radar system reliability analysis -

RTA # 3-4, 2007, December - Special Issue

The above definition means that series mout of k"

system is composed of k, series subsystems and it is
not failed if and only if at least m out of its k, series
subsystems are not failed.

The reiability of the series“m out of K.,” system is

given ether by

I:Q'Enmy)|j|_,|2,...,Ikn (t) =1-

Kp

& SIORMI- OR,(t)]l )

.02, =0 i=1 j=1
rp+rp+etng £m-1
tT (-¥,¥%),
or by
R™ ()=
1
a O[l O R o1 [O R or-" (10)
r,ro,.., I’kn =0 =1

rp+rp+..+n, £m
tT (-¥,¥%),
where m=k, - m

2. System of VTS Zatoka radars

Radars system is the basic subsystem of whole VTS
system and also part of identification and watching
system at the Gulf of Gdansk region. The purpose of

Granica VTS Zatoka Gdanska 5035 O

Limit of VTS Zatoka Gdanska ¥ G,

Fi gure 4 Posm onsof VTS Zatoka shore based radars
(dots)

that system is assuring real time information about
ships traffic in that region [3]. VTS Zatoka system
works involving five shores based radars, which are
put in following places:

Lighthouse Hel, (radar height 42,5 ma.s.l.);

Port of Gdynia Harbourmaster Office building

(HMO), (32,5 masl.);

Northern Port of Gdansk Harbourmaster

Office building, (66 ma.s.l.);

Western Hills?, (17,5 mas.l.);

Lighthouse Krynica Morska, (26 mas.l.).
Radars work permanently and their range cover whole
responsibility area assigned to VTS Zatoka. Two, or
even three, radars cover most part of Gulf of Gdansk
simultaneously. That situation has great matter in case
of failure of singleradar.

For the VTS Zatoka systems’ radars, apart from
standard equipment, additional Radar Data Processor
(RDP) has been installed. RDP changes radar data
from analogue to digital form. This digital information
is next transferred to VTS centre by wireless line or
light cable, which connect two Harbourmaster’ s offices
of Ports in Gdynia and Gdansk. Signals from radars,
after preiminary treatment, are transferred to the VTS
Centre. Then after final processing signals are sending
out and visualized (with use of computer program
ARAMIS) at VTS Centre itsdf, Harbourmaster's
offices of Gdynia and Gdansk ports and at
Harbourmaster’ s office of Krynica Morska port.

Scheme of the radar’ subsystem and data
transmission is showed on Figure 5.

Radar HMO VTS
Gdynia - Center e
Wegern
Hills Radar

Radar HMO
Gdansk

Lighthouse
»Hel” Radar

— —> - light cable Lighthouse
——>» -wirdessline »Krynica Morska’

Radar
........ .> _ net Cable

HMO — Harbormaster Office building

Figure 5. Scheme of VTS Zatokaradars system

3. VTS Zatokaradar system reliability

In order to analyse the considered system reliability we
will firstly calculate reliability parameters of single
radar.

3.1. Singleradar reliability

VTS Zatoka system has been designed and constructed
by Holland Institute of Traffic Technology (HITT). It
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came into service on the 1% of May 2003. Used radars
were produced by Danish corporation Terma
Electronic AS (frequency 9735 MHz). Mean time
between failure and mean timeto repair given by HITT
have been used to construct VTS Zatoka radars
subsystem reliability model (Table 1). Times to repair
givenin Table 1, concern the situation in which service
team is near damaged radar. In fact, sustaining service

Table 1. MTBF, — mean time between failure and
MTTR; —mean timeto repair [5]

Device/component | MTBF; [h] N MTTR; [h]
Antenna 50 000 0,00002 3
Single radar 13000 | 0,000077 | 05

transmitter
Receiver 17 390 0,000058 0,34
Video processor 40000 | 0,000025 0,25
Radar processor 20 000 0,00005 0,25
Data transmitter 87 500 0,000011 0,5

team near each radar is very expensive. For further
consideration we assume that service team is in Tri-
city i.e. in Gdynia, Sopot or Gdansk. Taking into
account access time, time needed to fix what device is
damaged and mean time of device exchange, mean
time to repair of the single radar (MTTRs) is about 3
and a half hours. After considering frequency of
failures of particular parts of radars, the mean time of
exchanging damaged part is about 40 minutes.

To find single radar reliability we assume that the
radar is a series system. This means that the failure of
one component of radar causes the failure of the whole
radar. Two radars placed at Harbourmaster office
buildings have five elements (antenna, single radar
transmitter, receiver, video processor, radar processor),
three others additionally have data transmitter. We
assume that component reliability functions are
exponential and given by the equation

R® =exp(-1;>t),t2 0. (11)
When we put data from Table 1 to (11), and then to
equation (1), as a result we obtain the single radar
reliability function for radars at harbourmaster office
buildings

R, (t) = exp(- 0,000229>t),t 2 O, (22)
and for three others radars

R, (t) = exp(- 0,0002355t) ,t 2 0. (13)

Mean time between failures of single radar is given by
equation

¥
MTBF = gR(t)dt. (14)
0

According to equations (12)-(14) and to Table 1, we
obtain mean time between failures of single radar at
harbourmaster office buildings

1

MTBF, =—
" 0,000229

= 4366h » 182 days,

and mean time between failures of three other radars

1

MTBF, =—
° " 0,000235

= 4255h » 177 days.

3.2. Reliability of radar system

In order to evaluate radars system reliability, we can
use different approaches. First, we can assume that
subsystem is series. VTS Zatoka radars subsystem is
working when all five radars are working. According
to equation (3) with parameters

2 3
N=50G=r.0% =,

and equations (12) and (13), we obtain the system
reliability function

R (t) =[exp[- 0,000229t]]2[exp[- 0,000235t]]3
= exp[- 0,001163], t2 0. (15)

Mean time between failures of that system is given by
equation

1
0,001163

¥
MTBF, = pRs(t) dt =
0
=860h » 36 days. (16)
System availability is given by equation [1]

_ MTBF
MTBFg + MTTRg

(17)

and after substituting MTBFs = 860h, MTTRs = 3,5h,
amounts
G =0,9959.
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0,8 RSM N (t)
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0 500 1000 1500 2000
t[h]

Figure 6. Radars' subsystem’ s reliability functions

Another way of describing reliability of radars
subsystem is assumption that system is ,m out of n”.
We can assume that system is working if at least four
out of five radars are working. If we take into account
that particular radars are series systems we obtain a
non-homogenous series-, 4 out of 5" system.

The above assumption is acceptable because ranges
of any four radars covered fairways to ports in Gdansk
and Gdynia and most traffic (nearly entire) is
concentrated in those fairways.

According to equations (10) and Table 1, rdiability
function of such system is given by equation

+ 3exp(- 0,000928t) - 4exp(- 0,001163t). (18)

Rsun(t) function is showed on Figure 4.
Mean time to failure of series,m out of n” system
MTBFgyn is given by equation

¥
MTBFgu = ORayy (1) dt. (19)
0

The mean time to failure of above described system
according to equations (18) and (19) equals

¥ 1
MTBFquy = 0R{3 5666 (t) dt =2%————
SVIN 8R5,5,5,6,6,6( ) 0,000934
3 [Vl 1 - 4 vl 1
0,000928 0,001163
=1935h € 81days. (20)

The availability of the series,m out of n” system is
given by equation

MTBF
an = SUN (21)
MTBFg, + MTTRg
and hence
1935
=2 =09982.
N 71935+ 35

As we can see system defined as series-,, m out of n”
has both higher reliability and availability than a series
system.

4. Conclusion

As we can see from the performed analysis evaluation
of the system reliability depends on taken assumptions.
Reliability functions are significantly different one
from the other (Figure 6), so choosing proper method
of describing of system reliability structure is very
important.

Whatever method was chosen, thanks to reliability
of components of radars, VTS Zatoka radars system is
highly reliable. Access to spare parts and organization
of service has significant matter for availability of the
subsystem. In order to sustain acceptable availability it
IS necessary to provide the service support located in
Tri-City. It allows for quick reaction in case of failures
and for repairing damaged parts of radars.
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Abstract

In this paper we propose an algorithm to calculate the optimum frequency to perform preventive maintenance in
equipment that exhibits Weibull hazard function and constant repair rate in order to ensure its availability. Based
on this algorithm we have developed another one to solve the problem of maintenance management of a series
system based on preventive maintenance over the different system components. We assume that all components of
the system till exhibit Weibull hazard function and constant repair rate and that preventive maintenance would
bring the system to the as good as new condition. The algorithm calculates the interval of time between preventive
maintenance actions for each component, minimizing the costs, and in such a way that the total downtime, in a
certain period of time, does not exceed a predetermined value

1. Introduction

Throughout the years, there has been tremendous
pressure on manufacturing and service organizations to
be competitive and provide timely delivery of quality
products. In many industries, heavily automated and
capital intensive, any loss of production due to
equipment unavailability strongly impairs the company
profit. This new environment has forced managers and
engineers to optimise all sectors involved in their
organizations.

Maintenance, as a system, playsakey role in achieving
organizational goals and objectives. It contributes to
reducing costs, minimizing equipment downtime,
improving quality, increasing productivity, and
providing reiable equipment that are safe and well
configured to achieve timely delivery of orders to
costumers. In addition, a maintenance system plays an
important role in minimizing equipment life cycle cost.
To achieve the target rate of return on investment,
plant availability and equipment effectiveness have to
be maximized.

Grag and Deshmukh [38] had recently review the
literature on maintenance management and points out
that, next to the energy costs, maintenance costs can be
the largest part of any operational budget.

A brief bibliographic review, (Andrews & Moss [1],
Elsayed [5], McCormick [9] and Modarres et al [10]),
is enough to conclude that the discipline known as
reliability was developed to provide methods that can
guarantee that any product or service will function
efficiently when its user needs it. From this point of
view, reliability theory incorporates techniques to
determine what can go wrong, what should be done in
order to prevent that something goes wrong, and, if
something goes wrong, what should be done so that
there is a quick recovery and consequences are
minimal.

So, reliability has several meanings. However it is
usually associated to the ability of a system to perform
successfully a certain  function. To measure
quantitatively the reliability of a system it is used a
probabilistic metric, which we state next.
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Reliability of a system is the probability that a system
will operate without failure for a stated period of time
under specified conditions.
Another measure of the performance of a system is its
availability that reflects the proportion of time that we
expect it to be operational. Availability of a system is
the probability to guarantee the intended function, that
is, the praobability that the system is normal at time t.
The availability of a system is a decreasing function of
the failure rate and it is an increasing function of the
repair rate.
According to Elsayed [5], reliability of a system
depends mainly in the quality and reliability of its
components and in the implementation and
accomplishment of a suitable preventive maintenance
and inspection program. If failures, degradation and
aging are characteristics of any system, however, it is
possible to prolong its useful lifetime and,
consequently, to delay the wear-out period carrying out
maintenance and monitoring programs.
This type of programs leads necessarily to expenses
and so we are taken to a maintenance optimisation
problem.

Basic maintenance approaches can be classified as:

Unplanned (corrective): this amounts to the
replacement or repair of failed units;
Planned (preventive):

- Scheduled: this amounts to performing
inspections, and possibly repair, following a
predefined schedule;

- Conditioned: this amounts to monitor the
health of the system and to decide on repair
actions based on the degradation level
assessed.

In the unplanned, corrective strategy, no maintenance
action is carried out until the component or structure
breaks down. Upon failure, the associated repair time
is typicaly relatively large, thus leading to large
downtimes and high costs. In this approach, efforts are
undertaken to achieve small mean times to repair
(MTTRS).

To avoid failures at occasions that have high cost
consequences preventive maintenance is normally
chosen. This allows that inspections and upgrading can
be planned for periods, which have the lowest impact
on production or availability of the systems.

The main function of planned maintenance isto restore
equipment to the “as good as new” condition;
periodical inspections must control  equipment
condition and both actions will ensure equipment
availability. In order to do so it is necessary to
determine;

Frequency of the maintenance, substitutions
and inspections

Rules of the components replacements

Effect of the technologica changes on the
replacement decisions

The size of the maintenance staff
The optimum inventory levels of spare parts

There are several strategies for maintenance; the one
we have just described and that naturally frames in
what has been stated is known as Reliability Centered
Maintenance - RCM. Gertsbakh [7] reviews some of
the most popular models of preventive maintenance.

In theory, maintenance management, facing the
problems stated above, could have benefited from the
advent of a large area in operations research, called
maintenance optimisation. This area was founded in
the early sixties by researchers like Barlow and
Proschan. Basically, a maintenance optimisation model
is a mathematical model in which both costs and
benefits of maintenance are quantified and in which an
optimal balance between both is obtained. Well-known
models originating from this period are the so-called
age and the block replacement models.

Valdez-Flores & Fddman [12] presents a
comprehensive review of these approaches. Dekker [2]
gives an overview of applications of maintenance
optimisation models published so far and Duffuaa [4]
describes various advanced mathematical models in
this area that have “high potential of being applied to
improve maintenance operations’.

More recently, Nakagawa [11] summarizes the results
of maintenance policies and Garg and Deshmukh [6]
describe the existence of 24 papers on the quantitative
approach to mai ntenance optimisation

As we have already mentioned, one of the most critical
problems in preventive maintenance is the
determination of the optimum frequency to perform
preventive maintenance in equipment, in order to
ensureits availability.

The Preventive Maintenance policies are adapted to
slow the degradation process of the system while the
system is operating and to extend the system life. A
number of Preventive Maintenance policies have been
proposed in the literature. These policies are typically
to determine the optimum interval between preventive
maintenance tasks to minimize the average cost over a
finite time span. But in many areas one complains
about the gap between theory and practice
Practitioners say maintenance optimisation models are
difficult to understand and to interpret [2]. Vatn et al
[13] clam there exists a vast number of academic
papers describing narrow maintenance models, which
are rardy, if ever, used in practice Most of these
papers are too abstract, and the modds that could be
useful are difficult to identify among this large number
of suggested models.
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In this paper we propose an algorithm to solve the
previous problem for equipment that exhibits Weibull
hazard function and constant repair rate. Based on this
algorithm we have developed another one to optimise
mai ntenance management of a series system based on
preventive maintenance over the different system
components.

This is a problem with many applications in real
systems and there are not many practical solutions for
it. The main objective of this paper is to present an
optimisation model understandable by practitioners,
simple and useful for practical applications.

Duarte and Craveiro [3] have already outlined a
solution for this problem for equipment that exhibit
linearly increasing hazard rate and constant repair rate.
We assume that all components of the system till
exhibit Welbull hazard function and constant repair
rate and that preventive maintenance would bring the
system to the as good as new condition. We define a
cost function for maintenance tasks (preventive and
corrective) for the system. The algorithm calculates the
interval of time between preventive maintenance
actions for each component, minimizing the costs, and
in such a way that the total downtime, in a certain
period of time, does not exceed a predetermined value.

2. Previous concepts and results

In this section we present the classical concept of
availability, while describing how to calculate it.
Point-wise availability of a system at timet, A(t), isthe
probability of the system being in a working state
(operating properly) at timet. The unavailability of the
system, Q(t), isQ(t) = 1 —A(t).

The pointwise availability of a system that has constant
failurerate! and constant repair rate mis

n [
+

m+ | m+ |

At) = exp[- (m+1 )] (1)

and the limiting availability is

A= lim At) =" )

t® +¥ m+1

The second parcel in formula (1) decreases rapidly to
zero astimet increases; so, we can state

At) »
(t) P

and this means that the availability of such a system is
almost constant.

Example. A system is found to exhibit a constant
failure rate of 0,000816 failures per hour and a
constant repair rate of 0,02 repairs per hour.

Using formula 1, the availability of such a system (see
Figure 1) is obtained as

A(t) = 0,9608+3.9201" 10?exp( - 2,0816" 10™t).
and the limiting availability is

lim A(t) = 09608,
wy A

0.99
0.98

0.97

0.96

0950 100 290 300 400

Figure 1. Theavailability function

It should be notice that, in this in case, we do not have
amost any variation in the value of component’'s
availability for t > 200.

We can therefore conclude that, to guarantee a value of
availability A, known the constant repair rate, m the
value of the constant failure rate of the system it will
have to satisfy the relationship

n
m+|

m(1- A)_

A» Ul »

©)

3. Model and assumptions

Suppose a system is found to exhibit an increasing
hazard rate,

.b-1
hiy =2 &2
gedo

,g>0,b>0,t2 0,

and a constant repair rate m

Our goal is to determine the interval time between
preventive maintenance tasks (we assume that the
system is restored to the “as good as new” condition
after each maintenance operation) in such a way that
the availability of the systemis no lesser than A.

The main idea for the solution of this problem consists
of determining the time interva during which the
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increasing hazard rate can be substituted by a constant
failure rate in order to guarantee the pre-determinate
availability level.

Applying the mean value theorem of integral calculus
to the function

Lb-1
hy=282  gs0b>0t30,
gedo

we obtain
\xb b-1 4 _ étb l;lx_
gt dt=IxP &g =Ix
q & Gy
b
p X =1x (4)
q

b x=0Ux="4Iq°".

Substituting | in (4) by its approximate value given in
formula 3, we have

the hazard functions,

.b-1
h =282 gsobsots0,
gedo

and

n(1- A)

h(t) ==

guarantee approximately the same value of availability.
What we have just demonstrated can formally be stated
on the following form:

Proposition: Let Sbe a system exhibiting an increasing
hazard rate,

bat o™

ht)=—¢—+ ,0>0,b>0,t30
Jedo

and a constant repair rate m To guarantee an
availability for the system equal or greater than A the
interval of time between two consecutive preventive
maintenance tasks must be equal or lesser than

1- A) ,
A4

Example. A system is found to exhibit an
increasing hazard rate, h(t) =5 10®" t**, and a
constant repair rate m(t) = 4" 1072,

What should be the greatest time interval between
preventive maintenance tasks (we assume that the
system is restored to the “as good as new” condition
after each maintenance operation) in such a way that
the availability of the system is at least 98%?

If the system had a constant failure rate, to guarantee
such availability it should be

_4710*(1- 0,98)
098

| = 0,0008163.

We want to calculate the instant x in order to satisfy
the following condition

g5 10°%" t*?dt = 0,0008163x

- -8 - 2,25
b 210 X _ ) 0008163x
225

b x=0U x=4488.

We can therefore conclude that the system must be
restored to the “as good as new” condition after each
maintenance task every 4488 hours in order to achieve
the availability target of 98%.

Figure 2 illustrates this example.

0.0018
0.0016
0.0014
0.0012

0.001
0.0008
0.0006
0.0004
0.0002

0 1000 2000 t 3000 4000 5000

Figure 2. Hazard functions h(t)=5 10%"* and
h(t)=0,0008163 over theinterval [0, 4488]
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4. Optimisation of the preventive maintenance
plan of a series components system

In this section we will present a model for the
preventive maintenance management of a series
system.

The system is composed by a set of n components in
series as Figure 3 shows.

T e

Figure 3. A series system of nh components

Let ty, ty, ..., ty bethetime units between preventive
maintenance tasks on components 1, 2, .., n,
respectively (Figure 4); assuming that these actions
will restore periodically the components to the "as
good as new" condition, they will have, therefore,
consequences at the rdiability and availability levels of
the system.

ty

3

| | |
[[comrens F— 1| [ [
]

[ [
Component 3 L L LI

N e
campmentn 0 oy 8

Figure 4. A preventive maintenance plan.

Our goal isto calculate the vector
T
oot ts Lotg]

in such a way that the total down time in a certain
period of time does not exceed a predetermined value,
that is to say, that it guarantees the specified service
level and simultaneously minimizes the maintenance
costs.

We assume that each component has a Weibull hazard
function,

1

b ot o
e~ T ,0,>0b, >0t30

h(t) =—&—:
di &di g

and a constant repair rate

m (t) =m;.

The cost of each preventive maintenance task is cmp;
and the cost of each corrective maintenance task is
cme.
Since the availability of the system consisting of n
components in series requires that al units must be
available (assuming that components failures are
independent), system availability Ais
n
A=0A
i=1
where A isthe availability of component i.
Applying proposition presented in section 3 we can
write that the availability of each component i is A
over theinterval

é 1- U
i@,bi- qubl L:J;
é é A G

and its hazard function can be approximated by the
constant function

__m@-A)
h ()= —">———12
(1) !

Then, the expected number of failuresin that time
interval is

o M- A q_bi,m(l-A)
A % A

The abjective function (defined as a cost function per
unit time) is

c(Al.Az.K.An):ié:\l

fﬂD>gD>('D D> D> D
3
> 5
>
ES
o
>|7
>
S
aoN.ononoonc

subject to

i 2
[OA3A
li=1

fo<A <1i=12K,n.

5. Numerical example

The model described on section 4 was implemented to
a three components series system.
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We assume that each component has a Weibull hazard
function and a constant repair rate. Components are
maintained preventively at periodic times.

Datais presented on Table 1.

First we present the nomenclature.

g, bi — parameters of hazard function.

TTR —Mean Time to Repair (corrective maintenance).
TTP —Time of one preventive maintenance action.
PMC — Preventive maintenance cost.

CMC — Corrective maintenance cost.

t - time between two consecutive preventive
mai ntenance tasks.

Table 1. Initial conditions

Compon | g b TTR | TTP PM CM ti
ents Cost | Cost

1 4472,136 2 100 10 2000 | 4000 | 2000
2 1873,1716 2 50 40 2500 | 5000 | 1500
3 500,94 2 80 10 1000 | 2000 | 250

With this preventive maintenance plan the availability
achieved is about 90,30% and the life cycle cost is
122055,79.

Thetarget for availability is 90%.

The objective function was dlightly modified in order
to include the cost of down time.

MATLAB was used to optimise the objective function.
Table 2 shows the results. With this new preventive
maintenance policy we have a reduction of 5,5% in
Life Cycle Cost (LCC) and simultaneously the
availability A achieved (92,70%) is greater than the
existing one (90,30%).

Table 2. Results of MatL ab optimisation

ty 1600.2
t, 1246.8
MatLab ts 170.7535
Optimisation | A-% 92.70
LCC 115345.22
DLCC-% |-55

With these results as initial conditions we have applied
the tool “SOLVER” of Excel and we got a better
solution (Table 3).

Table 3. Results of MatLab + Excel optimisation

ty 1606.498
t, 1255.498
MatLab + Excd | t3 175.4996
Optimisation A-% 93.02
LCC 113809.75

DLCC-% | -6.8

5. Conclusion

This paper deals with a maintenance optimisation
problem for a series system. First we have developed

an algorithm to determine the optimum frequency to
perform preventive maintenance in systems exhibiting
Weibull hazard function and constant repair rate, in
order to ensure its availability. Based on this algorithm
we have developed another one to optimise
mai ntenance management of a series system based on
preventive maintenance over the different system
components. We assume that all components of the
system ill exhibit Weibull hazard function and
congtant repair rate and that preventive maintenance
would bring the system to the as good as new
condition. We define a cost function for maintenance
tasks (preventive and corrective) for the system. The
algorithm calculates the interval of time between
preventive maintenance actions for each component,
minimizing the costs, and in such a way that the total
downtime, in a certain period of time, does not exceed
a predetermined value. The maintenance interval of
each component depends on factors such as failure
rate, repair and maintenance times of each component
in the system. In conclusion, the proposed analytical
method is a feasible technique to optimise preventive
maintenance scheduling of each component in a series
system.

Currently we are developing a software package for the
implementation of the algorithms presented in this

paper.
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Abstract

A multi-state approach to defining basic notions of the system safety analysis is proposed. A system safety
function and a system risk function are defined. A basic safety structure of a multi-state series system of
components with degrading safety states is defined. For this system the multi-state safety function is determined.
The proposed approach is applied to the evauation of a safety function, a risk function and other safety
characteristics of a ship system composed of a number of subsystems having an essential influence on the ship
safety. Further, a semi-markov process for the considered system operation modelling is applied. The paper aso
offers a general approach to the solution of a practically important problem of linking the multi-state system safety
model and its operation process model. Finally, the proposed general approach is applied to the preiminary
evaluation of a safety function, a risk function and other safety characteristics of a ship system with varying in
time its structure and safety characteristics of the subsystems it is composed of.

1. Introduction

Taking into account the importance of the safety and
operating process effectiveness of technical systems it
seems reasonable to expand the two-state approach to
multi-state approach in their safety analysis [2]. The
assumption that the systems are composed of multi-
state components with safety states degrading in time
gives the possibility for more precise analysis and
diagnosis of their safety and operational processes
effectiveness. This assumption allows us to distinguish
a system safety critical state to exceed which is ether
dangerous for the environment or does not assure the
necessary level of its operational process effectiveness.
Then, an important system safety characteristic is the
time to the moment of exceeding the system safety
critica state and its distribution, which is called the
system risk function. This distribution is strictly related
to the system multi-state safety function that is a basic

characteristic of the multi-state system. Determining
the multi-state safety function and the risk function of
systems on the base of their components safety
functions is then the main research problem. Modelling
of complicated systems operations processes is
difficult mainly because of large number of operations
states and impossibility of precise describing of
changes between these states. One of the useful
approaches in moddling of these complicated
processes is applying the semi-markov model [3].
Modelling of multi-state systems' safety and linking it
with semi-markov model of these systems operation
processes is the man and practically important
research problem of this paper. The paper is devoted to
this research problem with reference to basic safety
structures of technical systems [9], [10] and
particularly to safety analysis of a ship series system
[5] in variable operation conditions. This new approach
to system safety investigation is based on the multi-
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state system reliability analysis considered for instance
in [1], [4], [6], [7], [8], [11] and on semi-markov
processes modelling discussed for instance in [3].

2. Basic notions

In the multi-state safety analysisto define systems with
degrading components we assume that:

- N isthe number of system's components,

- E;, 1 =1,2,...,n, are components of a system,

- al components and a system under consideration
have the safety state set {0,1,...,2}, z3 1,

- the safety state indexes are ordered, the state O is the
worst and the state z is the best,

- Ti(u), i = 1,2,...,n, are independent random variables
representing the lifetimes of components E; in the
safety state subset {u,u+1,...,z}, while they were in the
state z at the moment t =0,

- T(u) is arandom variable representing the lifetime of
asystem in the safety state subset {u,u+1,...,zZ} while it
was in the state z at the moment t = 0,

- the system and its components safety states degrade
with timet,

- Ei(t) is a component E; safety state at the moment t,
t1 <0,¥).

- St) is a system safety state at the moment t,
t1 <0,¥).

The above assumptions mean that the safety states of
the system with degrading components may be
changed in time only from better to worse. The way in
which the components and the system safety states
changeisillustrated in Figure 1.

trangtions
, \ 4
0.00.60
worst state best sate

Figure 1. lllustration of a system and components
safety states changing

The basis of our further considerations is a system
component safety function defined as follows.

Definition 1. A vector

s(t,>) =[s(t,0), s(t.1),..., st.2], tT1 <0,¥), (D)
i=12,...n,

where

s(t.u) = P(E(t) ® u|E(0) =2) = P(Ti(u) > 1) )

for t1<0,%), u = 01,.,z i=12..,n, is the
probability that the component E; is in the state subset
{u,u+1...,7 atthemomentt, t| <0,¥), whileit was
in the state z at the moment t = 0, is called the multi-
state safety function of a component E;.

Similarly, we can define a multi-state system safety
function.

Definition 2. A vector
sty ?) = [$(t0), (L), (LD, tT <0¥), (3)
where

si(tu) =PE) 2 u|0) =2) = P(T(u) > 1) (4)

fortT <0,¥), u=0,1,...z is the probability that the
system is in the state subset {u,u+1,...,z} at the
moment t, tT < 0,¥), whileit wasin the state z at the

moment t = 0, is called the multi-state safety function
of asystem.

Definition 3. A probability

r(t) =P(St) <r | S0) =2) =P(T(r) £ 1), )
tl <0,¥%),

that the system is in the subset of states worse than the
critical stater, r 1{1,...,Z} while it was in the state z at
the moment t = 0 is called a risk function of the multi-
state system.

Under this definition, considering (4) and (5), we have

r) =1-PEH3 r[0) =2 =1-s(tr), (6)
tl <0,¥),

and, if t is the mpment when the risk exceeds a
permitted level d, d | <0,1>, then

t=r(d), (7)

wherer (1), if it exists, is the inverse function of the
risk function r(t) given by (6).

3. Basic system safety structures

The proposition of a multi-state approach to definition
of basic notions, anaysis and diagnosing of systems’
safety alowed us to define the system safety function
and the system risk function. It also allows us to define
basic structures of the multi-state systems of
components with degrading safety states. For these
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basic systems it is possible to determine their safety
functions. Further, as an example, we will consider a
series system.

Definition 4. A multi-state system is called a series
systemif it isin the safety state subset {u,u+1,...,2 if

and only if all its components are in this subset of
safety states.

Corollary 1. The lifetime T(u) of a multi-state series
systemin the state subset {u,u+1,...,Z} isgiven by

T(u) = 1rgiﬁr;{Ti wy,u=12..z

The scheme of aseries systemisgivenin Figure 2.

— El E2 — . . . En —

Figure 2. The scheme of a series system
It is easy to work out the following result.

Corollary 2. The safety function of the multi-state
series system is given by

“si(t,0) = 1 s(tD), ., s(t2)], tT < 0,¥), (8)

where
sty =0stu),t1 <0¥), u=12..z (9
i=1

Corollary 3. If components of the multi-state series
system have exponentia safety functions, i.e., if

s(t,?) =[1 s(t1),..., s(t2)], tT <0,¥),
where

s (t,u) =exp[- |, (u)t] for tT <0,¥),1,(u)>0,
u=12,..z1i=212...,n,

then its safety function is given by

st ) =[Ls(tD),. (D), (10
where
“situ) = expl- &1, ()] for tT <0,¥), (11)
i=1
u=12,..,2

4. Basic system safety structuresin variable
operation conditions

We assume that the system during its operation process
has v different operation states. Thus we can define
Z(t), t1<0,+¥>as the process with discrete
operation states from the set

Z2={z,2,,...2},

In practice a convenient assumption is that Z(t) is a
semi-markov process [3] with its conditiona lifetimes

g, at the operation state z, when its next operation

state is z,, b,I=12..,v, bt In this case the
process Z(t) may be described by:

- the vector of probabilities of the process initid
Opaation states [ pb (0)] 1xn ?

- the matrix of the probabilities of the process
transitions between the operation states [p, ]
where p,, (t) =0 for b=122,...,v.

- the matrix of the conditional distribution functions
[H, (t)],,, of the process lifetimes q,,, bt 1, inthe
operation state z, when the next operation state is
z,,where H, (t) =P, <t) for b,I =12,...,v, bt |,
and H,, (t)=0 for b=12,..,v.

Under these assumptions, the lifetimes q,
values are given by

nxn ?

mean

M, =E[q,] = gtdH, (1), b1 =12,...,v, b1 1. (12)

The unconditional distribution functions of the
lifetimes q, of theprocess Z(t) at the operation states

z,, b=12,.. v, aregiven by

Py Hbl (t), b=12,..,v

Qo<

H, () =

11,
i

The mean values E[q, ] of the unconditional lifetimes
q, aregiven by

Qo<

M, =E[q,] =&p,M,.b=12..yv,

1

where M, are defined by (12).

Limit values of the transient probabilities at the
operation states

p, ()= P(Z(t) = z,),t1 <0,+¥), b=12,.,v,
are given by
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M
Py = lim Py (t) = —Vp*’ b b=12,..V, (13)
t® ¥ élel

where the probabilities p,, of the vector [p],,, Satisfy
the system of equations

}[pb]:[pb][pu]
iy
a__pl =1.

We assume that the system is composed of n
components E, i=12..,n, the changes of the
process Z(t) operation states have an influence on the
system components E, safety and on the system safety
structure as well. Thus, we denote the conditional
safety function of the system component E, while the

systemis at the operational state z,, b=12,...,v, by
sO(t, y=[1, s”(t, 1), s”(t, 2), ..., s, 2)],
where
s (t,u) = P(T® (u) >t|Z(t) = ,)
for t1<0¥), b=12..v, u=12..zand the

conditional safety function of the system while the
systemis at the operational state z,, b=12,...,v, by

st =11, sP D, sP .2, ...
n, T {12,..,n},

sP(t.2)],

where n, are numbers of components in the operation
states z, and

sy (t,), = PT® () >1|2(t) = z,)

for t1 <0,¥), n,1{12,.,n},b=12..,n,

u=212,..,z

The safety function s™(t,u) is the conditional
probability that the component E, lifetime T, (u) in
the state subset {u,u+1,...,Z isnot less than t, while
the process Z(t) is at the operation state z, . Similarly,

the safety function sr‘f;)(t,u) is the conditional
probability that the system lifetime T ® (u) in the state

subset {u,u+1...,Z is not less than t, while the
process Z(t) is at the operation state z,, .

In the case when the system operation time is large
enough, the unconditional safety function of the system
isgiven by

s (ty=[L s @D, s (42, - s (2] t3 0,

where
s,(t,U) = P(T(U) >t) @4 pysty (L) (14)

for t3 0, n 1 {L12,...n}, u=12..,2z and T(u) isthe
unconditional lifetime of the system in the safety state
subset {u,u +1,...,2}.

The mean values and variances of the system lifetimes
in the safety state subset {u,u+1,...,2z are

m(u) = E[T(u)] @& p,m® (u), u=12,..,2, (15)
b=1

where[2]
m® (u) =Es;';> (t,u)dt, n T {12,...,n}, (16)
u=12,...,z

and
(s @ W) =245, (tudt- [m® )7, a7
u=12,...,z

for b=12,...n, and
[s (u)]2=2§sn(t,u)dt-[n(u)]2, u=12..,z (16)

The mean values of the system lifetimes in the
particular safety states u, are[2]

mu)=m(u)- mu+1),u=12,...,z-1,
m(z) = m(2). (19

5. Ship safety Model in constant operation
conditions

We preiminarily assumethat the ship is composed of a
number of main technical subsystems having an
essential  influence on its safety. There are
distinguished her following technical subsystems:
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S, - anavigational subsystem,
S, - apropulsion and controlling subsystem,

S, - aloading and unloading subsystem,
S, - ahull subsystem,

S, - aprotection and rescue subsystem,

S, - ananchoring and mooring subsystem.

According to Definition 1, we mark the safety
functions of these subsystems respectively by vectors

s(t,>) =[s(t,0), s(t,1),... st.2], tT1 <0,¥), (20)
i=12,...,6,

with co-ordinates
s(t,u) = P(S(t) ® u|S(0) =2) = P(Ti(u) > 1) (21)

fortT <0,¥), u=01,....z i =12,....6,where Ti(u), i =
1,2,...,6, areindependent random variabl es representing
the lifetimes of subsystems S in the safety state subset
{u,u+l,...,z}, while they were in the state z at the
moment t = 0 and S(t) is a subsystem S safety state at
themoment t, tT < 0,¥).

Further, assuming that the ship is in the safety state
subset {u,utl,...,z} if al its subsystems are in this
subset of safety states and considering Definition 4, we
conclude that the ship is a series system of subsystems
S.S,.S,. S,, S, S, with a scheme presented in
Figure 3.

1sHsSHSHSHSHSH

Figure 3. The scheme of a structure of ship subsystems

Therefore, the ship safety is defined by the vector

S, (t,3=[5,(t,0): 5t 5,21, (22)
t] <0,%),

with co-ordinates
S (t,u)=P(St) 2 u|S0) =2 =P(T(u) > 1) (23)

for t1 <0,¥), u=01,..,z where T(U) is a random
variable representing the lifetime of the ship in the
safety state subset {u,u+1,...,.zZ2 while it was in the
state z at the moment t = 0 and St) is the ship safety
state at the moment t, t1 <0,¥), according to

Corollary 2, isgiven by the formula

5.(t,3=[L 5(t1)... 5(t,2)]. t1 <0¥), (24

where

s(tu),tl <0,¥),u=12..z (25

QO

Ss(t,u)=

i=1

6. Ship operation process

Technical subsystems S, S,, S,, S,, S,, S, are
forming a general ship safety structure presented in
Figure 3. However, the ship safety structure and the
ship subsystems safety depend on her changing in time
operation states.

Considering basic sea transportation processes the
following operation ship states have been specified:

z, - loading of cargo,

z, - unloading of cargo,

z, - leaving the port,

z, - entering the port,

Z; - navigation at restricted water areas,

Z5- navigation at open sea waters.

In this case the process Z(t) may be described by:

- the vector of probabilities of the initial operation
states [ py, (0)] 16 »

- the matrix of the probabilities of its transitions
between the operation states [pylee, Where
Py, (t) =0 for b=12,...,6,

- the matrix of the conditional distribution functions
[H, O)]se Of the lifetimes q,, b®l, where
H,®)=P@q, <t) for b,l1=12..6 Dbl and
H, (t)=0 for b=12,..,6.

Under these assumptions, the lifetimes q,
values are given by

mean

M, =E[q,] = gtdH, (1), b,1=12,..6, bl l. (26)

The unconditional distribution functions of the
lifetimes q, of the process Z(t) at the operation states

z,, b=12,..,6, aregiven by
8
H, () = Ia_llpble, t), b=1,2,..,6.

The mean values E[q, ] of the unconditional lifetimes
q, aregiven by

<
o

1
|
o]
-

I
Qoo

pb|Mb| 1 b=1121"'161 (27)

.ﬂ

where M, are defined by (26).
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Limit values of the transient probabilities at the
operation states

P, (t) = P(Z(t) = z,), tT <0,+¥), b=1,2,...,6,

aregiven by
M
o = lim P, (0= 220, b=12...6, (29)
éP|M|

where the probabilities p,, of the vector [p,],,, Satisfy
the system of equations

}[pb]:[pb][pu]
I § (29)
ap, =L

1=1

7. Safety model of ship in variable operation
conditions

We assume as earlier that the ship is composed of
n=6 subsystems S, i=12..6, and that the
changes of the process Z(t) of ship operation states
have an influence on the system subsystems S, safety

and on the ship safety structure as well. Thus, we
denote the conditional safety function of the ship
subsystem S while the ship is at the operational state

z,, b=12,..6, by

S.(b) t,y=[1, S.(b) (t, 1), S.(b) t,2), . S.(b) (t, 2)],
where

s (t,u) = P(T® (u) >t|Z(t) = z,)
for t1<0,¥), b=12..6, u=12..2z and the

conditional safety function of the ship while the ship is
at the operational state z,, b=12,...,6, by

sOt y=[1, s? D, s, .., s,
where

%?“JU,=PG*m@0>qZG)=ZQ
for  tl <0,¥),
u=12,.., z

The safety function s®(t,u) is the conditional
probability that the subsystem S lifetime T, (u) in

b=12..6,  n,1{123456},

the state subset {u,u+1,...,Z isnot less than t, while
the process Z(t) is at the ship operation state z,, .
Similarly, the safety function SO (t,u) is the
conditional probability that the ship lifetime T® (u)
in the state subset {u,u+1,...,Z is not less than t,

while the process Z(t) is at the ship operation state z, .

In the case when the ship operation time is large
enough, the unconditional safety function of the system
isgiven by

se(t, 3= (1 s4(t,2), s4(t,2), - s(t,2)], 12 0,

where
(L) = P(T() >1) @4 p,s? (L) (30)

for t3 0, n,1{123456}, u=12,..,z and T(u) is
the unconditiona lifetime of the ship in the safety state
subset {u,u +1,...,7}.

The mean values and variances of the ship lifetimes in
the safety state subset {u,u+1,...,7Z are

m(u) = E[TW)} @4 pym® (), U=12..2 (@)
where

m® ()= 66t Uk, @)
for b=12,...,6, n, 1 {1,2,3456},u=212,...,z ad

[s @)° = D[TW)] = 2}s6(t, wdt- [mu)?, (39

u=12,...,z

The mean values of the system lifetimes in the
particular safety states u, are

m@u)=m(u)- mu+1),u=12..,z-1

m(z) =m(2). (34)

8. Preliminary application of general safety
model of ship in variable operation conditions
According to expert opinions [5] in the ship operation
process, Z(t), t3 0, we distinguished seven operation
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states: z,, z,, z,, z,, Z;, zz. On the basis of data
coming from experts, the probabilities of transitions
between the operation states are approximately given

by

0.00
0.00
0.00
0.49
0.02
0.02

0.96
0.48
0.00
0.02
0.00
0.00

0.00
0.00
0.02
0.00
048
0.01

0.02
0.02
0.96
0.00
0.00
0.95

0.02¢
u
0.02
0.020
U
0.00
0.48u
u
0.004

€0.00
20.48
€0.00
&

.49
€0.02
e

&0.02

[PuJexe =

and the distributions of the ship conditional lifetimesin
the operation states are exponential of the following
forms:

Hos(t) =1- exp[- 0.5t], H(t) =1- exp[- 1.0t],
Hog(t) =1- exp[- 1.0t], H,,(t)=1- exp[- 0.5t],
Hos(t) =1- exp[- 0.5t], H,(t)=1- exp[- 1.0t],
Hos(t) =1- exp[- 1.0t], Hg,(t) =1- exp[- 25.0t],
Ha(t) =1- exp[- 25.0t], H g4 (t) =1- exp[- 12.5],
He, (t) =1- exp[-0.33t], H,(t)=1- exp[- 0.331],
He, () =1- exp[- 0.5t], Hg,(t)=1- exp[- 0.5],
Hegy () =1- exp[- 0.2t], H gy (t)=1- exp[- 0.21],
Heg,(t) =1- exp[- 0.25t], H g (t)=1- exp[- 0.25t]

for t3 0.

Hence, by (26), the conditional mean values of
lifetimes in the operation states are

Mg, =0.04, M, =0.04, M, =0.08,

M, =0.08, M,, =0.08, M, =0.04,
Mg =3 Mg, =3 Mg =2 Mg =2,

Mg =5 Mg, =5 Mg, =4, Mg =4.

Whereas, by (27), the unconditional mean lifetimes in
the operation states are

M, =E[q,] = psM; + psM s + psMyg
=0.96>2+0.02>1+0.02>1=1.96,
M, =Elq,]
= PuMy + PiMog + PxM s + PisM g
=0.48>2+0.48>2+0.02>1+0.02>1=1.96,
M, = E[q;] = payMy, + PasM g + PgsM g4
=0.02>0.04 + 0.96>0.04 + 0.02>0.08 = 0.0408,
M, =El0,]= puMy + PpMy + PiMyg
=0.49>0.08 + 0.49>0.08 + 0.02>0.04 = 0.0792,
M s = E[qs]
= P Mgy + PMg, + PsyMgy + PsgMgg
=0.02>3+0.02>3+0.48>2+0.48>2=2.04,
Mg = E[q5]
= PeMer + PeeMey + PesM gy + PesM s
=0.02>5+0.02>5+0.01>4+ 0.95>4 = 4.04.

Since from the system of equations

1[P1,P2.P3.P4.P5.Pe]
1=[01P2.P 5P 4P PellP Jess
1Py 4P, +P3+Py +Ps +Ps =1

we get
p, =0.126, p, =0.085, p, =0.165,
p, =0.155 p, =0.312, p, =0.157,

then the limit values of the transient probabilities
p, (t) at the operational states z,, according to (28),
are given by

p, =0.145, p, =0.098, p,=0.004, p, =0.007,
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ps =0.374, p, =0.372. (35)
We assume that the ship subsystems S, i=12,...86,

areits five-state components, i.e. z= 4, with the multi-
state safety functions

sP(t, ¥=[L s (t,2), sP(t, 2), ... s”(t, 2)],
b=12,..6,i=12,..,6,

with exponential co-ordinates different in various ship
operation states z,, b=12,...,6.

At the operation states z;and z,, i.e. at the cargo
loading and un-loading state the ship is built of
n =n, =4subsystems S;, S,, S; and Sy forming
a series structure shown in Figure 4.

S3 Sy Ss Se

Figure 4. The scheme of the ship structure at the
operation states z;and z,

We assume that the ship subsystems S, i=345,6,

are its five-state components, i.e. z = 4, having the
multi-state safety functions

s (t,¥=[Ls" D, s (t,2), s (t.3), s (t.4) ],
i=3456, b=12,

with  exponential for b=12,

respectively given by:

co-ordinates,

- for the loading subsystem S,
s (t,1) = exp[- 0.06t], s{” (t,2) = exp[- 0.071],
s (t,3) = exp[- 0.081], s{” (t,4) = exp[- 0.09],
- for the hull subsystem S,
s (t,1) = exp[- 0.03t], s\ (t,2) = exp[- 0.04t],

s (t,3) = exp[- 0.06t], s{” (t,4) = exp[- 0.071],
- for the protection and rescue subsystem S,

s (t,1) = exp[- 0.10t], st (t,2) = exp[- 0.121],

s (t,3) = exp[- 0.15t], s{” (t,4) = exp[- 0.16t],

- for the anchor and mooring subsystem S,

s (t,1) = exp[- 0.06t], s (t,2) = exp[- 0.08t],

s (t,3) = exp[- 0.10t], s{” (t,4) = exp[- 0.121].
Assuming that the ship is in the safety state subsets
{u,u+l...,Z}, u=21234, if dl itssubsystems arein
this safety state subset, according to Definition 1 and
Definition 4, the considered system is a five-state
series system. Thus, by Corollary 3, after applying
(20)- (12), we have its conditional safety functions in

the operation states z and 2z, respectively for
b=12, givenby

SR

=[L 5 (t.D, 57 (1.2, 80 (t,3), 5 (t,4) ],
t30,b=12,

where

5 (t,1) = exp[- (0.06 + 0.03 + 0.10 + 0.06)t]
= exp[- 0.25t],

5 (t,2) = exp[-(0.07 + 0.04 + 0.12 +0.08)1]
= exp[- 0.31i],

5™ (t,3) = exp[- (0.08 + 0.06 + 0.15 + 0.10)1]
= exp[- 0.39],

s (t,4) = exp[- (0.09 + 0.07 + 0.16 + 0.12)t]
=exp[-0.44t] fort3 0, b=12.

The expected values and standard deviations of the
ship conditiona lifetimes in the safety state subsets
calculated from the above result, according to (16)-
(17), for b=1,2, are

m® (1) €4.00, m® (2) €3.26, m® (3) €2.56,

m® (4) €2.27 years,

s ®(1) €4.00 s ®(2) ¢3.26 s ™ (3) €256,
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s ®(4) ¢2.27years,

and further, from (10), the ship conditional lifetimesin
the particular safety states, for b =1,2, are

m® (1) ¢0.74, m®(2) €0.70, m® (3) €0.29,

m® (4) €2.27 years,

At the operation states z;and z,, i.e. a the leaving
and entering state the ship is built of n, =n, =5
subsystems S, S,, S,, S; and S; forming a series
structure shown in Figure 5.

—HssH s H s H s H s -

Figure 5. The scheme of the ship structure at the
operation states z;and z,

We assume that the ship subsystems S, i =1,2,4,5,6,
are its five-state components, i.e. z = 4, having the

multi-state safety functions

st y=[1 s (D, s” (t.2), s (3, s t4)],
i=12456, b=34,

with exponential co-ordinates, for b =34, respectively
given by:

- for the navigational subsystem S
s® (t.1) = exp[- 0.15t], s (t,2) = exp[- 0.201],
s® (t,3) = exp[- 0.221], s (t,4) = exp[- 0.25t],
- for the propulsion and controlling subsystem S,
s (t,2) = exp[- 0.05t], s{ (t,2) = exp[- 0.06t],
s (t,3) = exp[- 0.07t], s (t,4) = exp[- 0.08t],
- for the hull subsystem S,
st (t,2) = exp[- 0.04t], s{ (t,2) = exp[- 0.05t],

st (t,3) = exp[- 0.07t], s{ (t,4) = exp[- 0.08t],

- for the protection and rescue subsystem S,

s (t,1) = exp[- 0.12t], st (t,2) = exp[- 0.14t],

s (t,3) = exp[- 0.16t], s{” (t,4) = exp[- 0.18t],
- for the anchor and mooring subsystem S,

s (t,1) = exp[- 0.02t], st (t,2) = exp[- 0.04t],

s (t,3) = exp[- 0.06t], s{” (t,4) = exp[- 0.08t].
Assuming that the ship is in the safety state subsets
{u,u+1,...,z}, u=21234, if al itssubsystems are in
this safety state subset, according to Definition 1 and
Definition 4, the considered system is a five-state
series system. Thus, by Corollary 3, after applying

(10)- (12), we have its conditional safety functions in
the operation states z, and z, respectively for

b =34, givenby

s, ¥

=[1 5" t,1), s”(t,2), s (t,3), s (t,4) ],
t30,b=34,

where

5 (t,1) = exp[- (0.15+ 0.05 + 0.04 +0.12 + 0.02)t]
=exp[- 0.38],

5 (t,2) = exp[-(0.20 + 0.06 + 0.05 +0.14+ 0.04)t]
=exp[- 0.4%],

5 (t,3) = exp[- (0.22 + 0.07 + 0.07 + 0.16 + 0.06)t]
=exp[- 0.58¢],

5 (t,4) = exp[- (0.25 + 0.08 + 0.08 + 0.18 + 0.08)t]

=exp[- 0.67t] fort3 0, b=34.

The expected values and standard deviations of the
ship conditiona lifetimes in the safety state subsets
calculated from the above result, according to (16)-
(17), for b=34, are
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m® (1) €2.63, m® (2) €2.04, mM®(3) €1.72,
m® (4) €1.49 years,
s ™) €263 s ™(2) €204 s (@) €172

s ®(4) ¢1.49years,

and further, from (10), the ship conditional lifetimesin
the particular safety states, for b =1,2, are

m® (1) ¢0.59, m®(2) €0.32, M (3) €0.23,
m® (4) €1.49 years,

At the operation state z;, i.e at the navigation at
restricted areas state the ship is built of n; =5
subsystems S, S,, S,, S; and S; forming a series
structure shown in Figure 6.

— st H s: H si H ss [ ss |-

Figure 6. The scheme of the ship structure at the
operation state z

We assume that the ship subsystems S, i =1,2,4,5,6,
are its five-state components, i.e. z = 4, having the

multi-state safety functions

sOt=[159(t),s9 (t,2),59 3 s ¢4)],
i =1,2,4,5,6,

with exponential co-ordinates respectively given by:
- for the navigational subsystem S
s® (1,1) = exp[- 0.18t], s (t,2) = exp[- 0.221],
s® (t,3) = exp[- 0.24t], s® (t,4) = exp[- 0.26t],

- for the propulsion and controlling subsystem S,
s (t,1) = exp[- 0.06t], s{? (t,2) = exp[- 0.071],

s (t,3) = exp[- 0.08t], s (t,4) = exp[- 0.09t],
- for the hull subsystem S,

st (t,1) = exp[- 0.06t], s{? (t,2) = exp[- 0.08t],

s (t,3) = exp[- 0.09t], s{? (t,4) = exp[- 0.10t],
- for the protection and rescue subsystem S,

s (t,0) = exp[- 0.14t], s (t,2) = exp[- 0.15],

s (t,3) = exp[- 0.171], s (t,4) = exp[- 0.20t],
- for the anchor and mooring subsystem S,

s (t,0) = exp[- 0.021], s{ (t,2) = exp[- 0.03],

s (t,3) = exp[- 0.04t], s (t,4) = exp[- 0.05t].
Assuming that the ship is in the safety state subsets
{u,u+l...,Z, u=21234, if dl itssubsystems arein
this safety state subset, according to Definition 1 and
Definition 4, the considered system is a five-state

series system. Thus, by Corollary 3, after applying
(10)- (12), we have its safety function given by

()
=180, 892, s7(t3), st 4] t* 0,
where

§é5) t,1= exp[- (0.18 + 0.06 + 0.06 + 0.14 + 0.02)t]
=exp[- 0.46t],

5 (t,2) = exp[-(0.22 + 0.07 + 0.08 +0.15+ 0.03)t]
=exp[- 0.55t],

59 (t,3) = exp[- (0.24 + 0.08 + 0.09 + 0.17 + 0.04)(]
=exp[- 0.62t],

59 (t, 4) = exp[- (0.26 + 0.09 + 0.10 + 0.20 + 0.05)(]
=exp[- 0.70t] fort3 O.

The expected values and standard deviations of the
ship lifetimes in the safety state subsets calculated
from the above result, according to (16)-(17), are:

m® 1) €2.17, m®(2) €1.82, m® (3) €1.61,
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m® (4) €1.43 years,
s©@1) €217,s®2) €1.82,s©(@3) ¢1.61,

s ©(4) €1.43years,

and further, from (10), the ship lifetimes in the
particular safety states are:

m® (1) ¢0.35 M (2) €0.21, M®(3) €0.18,
m® (4) €1.43 years.

At the operation state z,, i.e. at the navigation at open
sea state the ship isbuilt of ng =4 subsystems S, S,,
S,, and S; forming a series structure shown in Figure
7.

— S S [ S [ S

Figure 7. The scheme of the ship structure at the
operation state z,

We assume that the ship subsystems S, i=1245,
are its five-state components, i.e. z = 4, having the

multi-state safety functions

s (=15 (D, s (t2),s? (1.3, s (t4)],
i =1,2,4,5,

with exponential co-ordinates respectively given by:
- for the navigational subsystem S
s® (t.1) = exp[- 0.18t], s (t,2) = exp[- 0.221],
s (t,3) = exp[- 0.24t], s® (t,4) = exp[- 0.26t],
- for the propulsion and controlling subsystem S,

s{9 (t,2) = exp[- 0.06t], s{ (t,2) = exp[- 0.071],
s{9 (t,3) = exp[- 0.08t], s{ (t,4) = exp[- 0.09t],

- for the hull subsystem S,
st (t,2) = exp[- 0.05t], s{(t,2) = exp[- 0.06t],

si9(t,3) = exp[- 0.07t], s{? (t,4) = exp[- 0.08t],

- for the protection and rescue subsystem S,
s{9 (t,2) = exp[- 0.15t], s{(t,2) = exp[- 0.16t],
si9(t,3) = exp[- 0.18t], s (t,4) = exp[- 0.221].
Assuming that the ship is in the safety state subsets
{u,u+l...,z, u=21234, if dl itssubsystems arein
this safety state subset, according to Definition 1 and
Definition 4, the considered system is a five-state
series system. Thus, by Corollary 3, after applying
(10)- (12), we haveits safety function given by
sV (Y
=[1, s{(t,1, 5{"(t,2), 5{"(t,3), 5" (t,4)],t* O,
where
59 (t,1) = exp[- (0.18 + 0.06 + 0.05 + 0.15)t]
=exp[- 0.441],
58 (t,2) = exp[-(0.22 + 0.07 + 0.06 +0.16)t]
=exp[- 0.51t],
59 (t,3) = exp[- (0.24 + 0.08 + 0.07 + 0.18)t]
=exp[- 0.57t],
5.9 (t,4) = exp[- (0.26 + 0.09 + 0.08 + 0.22){]
=exp[- 0.67t] fort3 O.

The expected values and standard deviations of the
ship lifetimes in the safety state subsets calculated
from the above result, according to (16)-(17), are:

m® (1) €2.27, m® (2) €1.96, m® (3) €1.75,
m® (4) €1.49 years,
s©@1) €227,s®©2) €196, s ©@3) €1.75,

s ©(4) €1.49years,

and further, from (18), the ship lifetimes in the
particular safety states are:
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m® @) ¢0.31, m®(2) €0.21, m®(3) €0.26,

m® (4) €1.49 years.

In the case when the system operation time is large
enough, the unconditional safety function of the ship is
given by the vector

Ss(t,
=[1, s, (t,2), s4(t,2), s5(t,3), ss(t,4)], 12 0,
where, according to (14), the co-ordinates are
S (1) = 55 (LD + P, 557 (11) + PS5 (1D
+ P57 (6D + ps S (1) + P57 (D)
=0.145>exp[- 0.25t] +0.098>exp[ - 0.25t]
+0.004 > exp[ - 0.38t] +0.007 >exp[ - 0.38t]
+0.374>exp[- 0.46t] + 0.374>exp[- 0.44t],
ss(t,2) = p 3P0 (t,2) + p,52(t,2) + p,32 (t,2)
+p, 57 (t,2) +ps&7 (1,2) + PS5 (1,2)
=0.145>exp[- 0.31t] +0.098> exp[- 0.31f]
+0.004 > exp[ - 0.49t] +0.007 >exp[ - 0.49t]
+0.3.74>exp[ - 0.55t] +0.372>exp[- 0.511],
ss(t,3) = p, 5O (t,3) + p, 52 (t,3) + p,382(t,3)
+p, 57 (1,3 + ps &7 (1,3 + P57 (1,3
=0.145>exp[- 0.39t] +0.098>exp[ - 0.39%]
+0.004 > exp[ - 0.58t] +0.007 >exp[ - 0.58t]
+0.0374>exp[ - 0.62t] +0.372>exp[- 0.571],
ss(t,4) = ps0 (t,4) +p,52 (t,4) + p,38 (t,4)
+ P, 57 (t,4) + P57 (t,4) + peSLY (4,4)

=0.145>exp[- 0.44t] +0.098>exp[- 0.44t]

+0.004>exp[ - 0.67t] +0.007>exp[- 0.67t]

+0.374>exp[- 0.70t] +0.372>exp[- 0.67t] fort3 O.

The mean values and variances of the system
unconditiona lifetimes in the safety state subsets,
according to (31) and (33), respectively are

m@) = p,m® (D) + p,m? (D) + p;m (1)
+p,m? (D + psm® (1) + psm® (D),

€0.145>4.00 +0.098>4.00 +0.004>2.63

+0.007:2.63 +0.374:2.17 +0.372>2.27 = 2.66.
[s (1)]? @2[0.1454.00]? + 0.098 X 4.00]
+0.004%2.63] + 0.007 §2.63] +0.3742.17]?
+0.37242.27]%] - [2.66]% =[2.87]?, s (1) €2.87,
m(2) = p,m? (2) + p,m?(2) + p;m®(2)
+p,m?(2) + psm® (2) + pm®(2),

€0.145>3.26 +0.098>3.26 + 0.004:2.04

+0.007:2.04 +0.374>1.82 + 0.372:1.96 =2.22,
[s (2)]* @20.145%3.26]* + 0.098 4 3.26] >
+0.00452.04]% +0.007 4 2.04]% + 0.374{1.82]>
+0.3725{1.96]%] - [2.22]% =[2.38]%, s (2) €2.38,
m(3) = pm® (3 + p,m? (3) + p,m? (3
+p,m? (3) + psm?(3) + p,m®(3),

€0.145>2.56 +0.098>2.56 +0.004:1.72

+0.007>1.72 +0.374>1.61 + 0.372>1.75 =1.89,
[s (3)]2 @2[0.1455{2.56]% + 0.098 % 2.56]

+0.00451.72]% +0.007 §1.72]% + 0.3741.61]°
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+0.3725{1.75)%] - [1.89]% =[1.97]%, s (3) €1.97,
m(3) = p,m® (4) + p,m? (4) + p,m (4)
+p,m? (4) + p;m® (4) + p;m® (),

€0.145>2.27 +0.098>2.27 +0.004:1.49

+0.007>1.49 +0.374>1.43 +0.372>1.49 =1.66,
[s (4)]° @2[0.145%2.27]? +0.098{2.27]>

+0.00451.49]% +0.007 §1.49]% + 0.3741.43)>
+0.372>{1.49)%] - [1.66]2 =[1.73)%, s (4) €1.3.

The mean values of the system lifetimes in the
particular safety states, by (34), are

m(D) =m(1) - m(2) =0.44,
m(2) =m(2) - m(3)=0.33
m(3) = m(3) - m(4) =0.23,
m(4) = m(4) =1.66.

If the critical safety state isr = 2, then the system risk
function, according to (6), is given by

R(t) = 1- s,(t,2)

=0.145>exp[- 0.31t] +0.098>exp[- 0.31f]
+0.004 > exp[ - 0.49t] +0.007 >exp[ - 0.49t]
+0.3.74>exp[- 0.55t] +0.372>exp[- 0.51t] fort3 O.

Hence, the moment when the system risk function
exceeds a permitted level, for instance d = 0.05, from
(7),is

t =r (d) €0.11 years.

9. Conclusion

In the paper the multi-state approach to the safety
analysis and evaluation of systems related to their
variable operation processes has been considered.
Theoretical definitions and preliminary results have
been illustrated by the example of their application in
the safety evaluation of a ship transportation system
with changing in time its operation states. The ship
safety  structure  and  its  safety  subsystems
characteristics are changing in different states what
makes the analysis more complicated but also more
precise than the analysis performed in [2]. However,
the varying in time ship safety structure used in the
application is very general and simplified and the
subsystems safety data are either not precise or not real
and therefore the results may only be considered as an
illustration of the proposed methods possibilities of
applications in ship safety anadysis. Anyway, the
obtained evaluation may be a very useful example in
smple and quick ship system safety characteristics
evaluation, especialy during the design and when
planning and improving her operation processes saf ety
and effectiveness.

The results presented in the paper suggest that it seems
reasonable to continue the investigations focusing on
the methods of safety analysis for other more complex
multi-state systems and the methods of safety
evaluation related to the multi-state systems in variable
operation processes [9], [10] and their applications to
the ship transportation systems [5].
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Abstract

The performance of cellular manufacturing (CM) is conditioned by disruptive events, such as failure of machines,
which randomly occur and penalize the performance of the cells and disturb seriously the smooth working of the
factory. To overcome the problems caused by the breakdowns, we develop a solution, based on the principle of
virtual cell (VC) and the notion of intercellular transfer that can improve performances of the system. In this
context, we use an analytical method based on Markov chains to model the availability of the cell. The found
results are validated using ssimulation. The proposed solution in this paper confirmed that it is possible to reduce
the severity of breakdowns in the CM system and improve the performances of the cdlls through an intercellular
transfer. Simulation allowed a validation of the analytical model and showed the contribution of the suggested

solution.

1. Introduction

Group technology (GT) is a manufacturing philosophy
that has attracted a lot of attention because of its
positive impacts in the batch-type production. Cellular
manufacturing (CM) is an application of GT to
manufacturing. It has emerged in the last two decades
as an innovative manufacturing strategy that collects
the advantages of both product and process oriented
system for a medium-volume and medium-variety
production. By applying the GT concept and CM
system, manufacturing companies can achieve many
benefits including reduced set-up times, reduced work-
in-process, less material handling cost, higher
throughput rates.

The performance of a cellular manufacturing system is
conditioned by disruptive events (eg., falures of
machines) that randomly occur and penalize the
performance of the system. Therefore, equipment that
falls in breakdown generates eventually the
interruption of the whole cell. Consequently, failure of
the machine implies total loss of cell capabilities and it
leads to the partial deterioration of the performance of
the total system [1]. Therefore, the application of an
efficient strategy against these perturbations permits to
improve the performance of those production systems.

Few researches can be found related to the effect of the
failure on the operation of CM system. Some of these
discussed the efficient maintenance politics to improve
the performance of the cellular manufacturing [1], [4]
and [5]. Others developed new coefficients of
similarity that consider a number of alternative ways
during the machine breakdown [3].

This paper is concerned with problems of the
availability of production cells facing random event
due to an interna disruption of breakdown-machine
type. It uses intercellular transfer as a policy to
surmount this type of disruption. The proposed
solution is based on the external routing flexibility: the
ability to release parts to alternative cell. This policy is
assessed through modelling of the production cell and
its ssimulation with Arena software.

The remainder of this paper is organized as follows. In
section 2 and 3, we formulate a comprehensive idea of
intercdlular transfer policy and we give the method for
modelling the availability of the cell. Section 4
presents a comprehensive simulation model to validate
the analytical model and evauate the policy of
intercdlular transfer. Finally, we recapitulate in section
5 the main conclusion of this work and we make
recommendations for future research.
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2. Description of the manufacturing cell

The shop consists of several machines that are grouped
into different group technology cells operating in a
dtatic environment. Each cell is characterized by a
classically structured flow line with (m) machines in
series. These machines are unreliable, with operation
dependent failures, and have a constant failure and
repair rates| jand m (i = 1... m).

In this section, we introduce the parameters that
characterize the behaviour of machines in a materia
flow model. Each machine M; is characterized by three
parameters:

- Average utilization rate Tu;: This is the rate at which
material flows gets processed through the machine M;
in the absence of failure.

- Average failure rate | ;: This is the rate at which
machine M; fails when working at its maximum
processing rate (100%).

- Average repair rate m: This is the rate at which
machine Mi gets repaired if it is down for a failure.
Using theses parameters Tu;, | ; and m, we can define
the basic parameters of an isolated machine M;:

- There isthe average failurerate | i This is the rate
at which machine Mi fails when working at its
utilization rate Tu;.

Fire =112 (1)
where
Fe=Tu. 2

- Isolated efficiency Ai(e): that is the average
proportion of time during which machine Mi would be
operationa. It is equal to the steady-state availability.
Ai(0) isdefined in terms of parameters as follows:

Ai(¥):| i.Fl:lm. )

If the single machine, whose parameters are defined as
above, were part of a production cell, additiona
parameters would be needed to characterize it. These
parameters are given below.

- Average utilization rate Tu,": in a production cell
environment, a cell allows the manufacturing of family
products that made of several types, which forms
various batches, having different sequences of
operations. Weregard Tu; as the utilisation rate of the
machine M; during the manufacture of the batch k.
Therefore to determine the machine utilisation rate, it
is enough to calculate its utilisation rate during the

manufacturing of family products (various batches
allocated to cell) without taking account of the effect
of the breakdowns of the other machines. This rate is
given by the following expression:

Tuix %ix
=ea @
tti

Qo-

=

Tui

with:
-t the time put by the machine (i) to
manufacture the batch k,
-t the total time to manufacture family
products on the machine (i),
- n: number of batches treated in manufacturing
cdl.

Taken account of the condition which says that the
breakdown of a machine generates the interruption of
the cdll, i.e that we do not have a breakdown at the
same time inside a céll; the utilization rate will be
approximated by the following expression:

Tu =Tu xE, (5)

- where E isthe eficiency of the cell given by
the following expression [2]

Ee— . (6)
l+° _i.Fc
2

- Failurerate | ; r+: This is the rate at which machine
M; fails when it work ina cel.

I =1 F (7)
where
FC*:Tuix+1 (8)
1+4 M

with: m represents the number of machine in the cell.
Then the stationary availability will be given by the
expression (9).
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3. Problem definition and solution technique

The failure of only one machine in the cdlular
manufacturing system can disrupt the product flow in
the whole system. Indeed, this failure is going to
generate the interruption of different machine in the
corresponding cdl. It implies a reduction of the
machine utilization rate, a reduction of the production
capacity and a dissatisfaction of customers. In this
study we are interested in a solution based on the
external routing flexibility. This solution has the
tendency to apply a strategy that permits to reduce the
severity of the failure by the application of an
intercelular transfer policy in case of breakdown of a
machine of the cell. For a production cell treating a
type of product, the breakdown of a machine doesn't
imply the interruption of the production in this cell.
Sometimes the continuity of the production will be
assured by the transfer of the product flow toward a
neighbouring cell admitting an inactive machine
capableto treat this product type. By this action, it will
be possible to continue the process of manufacturing in
presence of the fault. The cel will be formed by
machines of the first cell and the standby machine of
the second cell. The creation of this intercellular
transfer is the origin of the formation of the virtual
cdls. Then virtual cdls are created periodically, for
instance at machine breakdown, depending on the
presence of the failure and the standby machine. It is
necessary to note that the realization of intercellular
transfer can bring advantages at the leve of
performance of the system taking into account the
transfer duration, the inactivity delay of the standby
machine and the repair duration.

Therefore, for the studied system the strategy consists
in applying the intercellular transfer of the cel (a)
toward the cell (b) in case of failure of one of machines
of thefirst cell (see Figure 1).

The production cell can be assimilated to a repairable
system operating according to a set structure composed
of (M) independent modules. The number of modules
is equal to the number of machines constituting the
studied cell (a). Then the block diagram of cell
reliability (a) is given by Figure 2.

We study the system in steady state; that is where the
probability of the system being in a given state does
not depend on the initial conditions. In the case of an
application of a transfer policy, the availability of the
cdl is determined from different module availability.
The availability of module (2) will be determined with
the process of Markov chains.
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Figure 1. Manufacturing system with intercellular
transfer
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Figure 2. Function block diagram of cdl reliability (a)

For this raison, we are considering the module
represented by both machines: the main machine and
the standby one. The main machine M; belonging to
the studied cell, exhibits breakdown and repair rates | ;
and m respectively. The standby machine M, is
characterized respectively by breakdown and repair
rates | , and M. In case of a breakdown of the main
machine, the probability of transfer toward the
replacement machine M is equal to Pt, with a transfer
rate equal to dy,.

The Markov process describing the evolution of the
stochastic behaviour of the module is given by the state
diagram depicted in Figure 3.

Given a set of differential equations developed from
the diagram, we can determine the module availability
represented in the following operational states 1, 2;,
and 2,. Therefore, the stationary availability is valued
by the expression (10).

_dmm{m 1+ mer )+ Pt mom 1 m +m?)
AModI (¥)_ -
e a1 28 PL(M+ ) +dml A{m o+ )+ {m e+ L) 0
+ 1M Xm, X 1’@[2’0 otm+m+| 1)+n1m)d12)<n1+2)1 1+nE)E

(10)
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Q Operdtiond state
Transitory state

@ Not-operetiona state

Figure 3. Diagram of module state

Besides, the expression (10) shows that intercellular
transfer in case of failure permits to improve the
stationary availability of the module, only in the case
where the transfer rate is superior to a limit value
(di2*). Thisvalueis given by the expression (11).

. m’Am+ltmt )
d

_ (11)
M +2Xm4 1+ 2+ mpmy+m

With the help of a good team of maintenance arranging
some necessary logistical means, the time of
preparation of an intercellular transfer can be reduced.
In these conditions, times of transfer preparation can
be disregarded in front of times between failings and
repair machine times. Therefore, the expression of the
availability of the module will be given by the
expression (12).

Au (¥): (Mm’(ml"'l 1tmy+ 2)+| 1)‘Ptz>{ml)1 2t mym, +| 1)m2+mzz))
e gt 1 2P M+ m{ o{my 1)+ {mr o
o+ myxm, {my+ 24 1+ m) 5
(12)

4. Simulation of manufacturing cells

To conduct our simulation, we defined first the
problem and stated our objectives. The problem facing
cdlular manufacturing is the effect of breakdown
machines. The objectives of this simulation were to
examine the performance of the system with and
without the policy of intercdlular transfer in the event
of breakdowns and to validate the analytical model.

We consider the system shown in the Figure 4. The
cdl (a) is condtituted of three different machines
dedicated to the manufacturing of two product types.
The cel (b) is formed of four different machines
capable to manufacture three product types.

\ 4

Mla

\ 4
<
)
o

1

M2y Mip|<

A

J :
M3a M3b

A\ 4

Map

Cell a Cellb

Figure 4. Manufacturing system with intercellular
transfer

Table 1 summarizes the routing and the processing
time information of each part

Table 1. Therouting and processing times of each part

Product BatCh Machine (Processing times)
type | size
cel 19 | My(19) & My(12) & M(13)
a 2 30 M(10) & M5(9)
3 16 | My(14) & My(11) & M4(13)
2 [ 25 [mue amgaa amy
5 20 | My(17) & M5(13) & My(7)

The mean time to failure (MTTF) and the mean time to
repair (MTTR) for all machines are shown in Table 2.

Table 2. MTTF and MTTR of each machine in the
system

v

Machine Mz Moy Mza My Mp Mg My
MTTF |6000 3500 3000 5500 4000 3500 6500
MTTR | 500 420 350 400 400 360 380

In this paper, the batches arrival is considered cyclic.
Indeed, the manufacturing of a new batch is only
permitted if the previous batch is finished. In addition,
products are generated in a cyclic manner. For a given
batch, the time between the arrivals of two products is
equal to the time of execution of thefirst operation.

We perform discrete flow simulation using simulation
software called ARENA. We simulate the system
during a 12 years horizon; during the first 60000
minutes, statistics are not collected. This warm-up
period (the first 60000 minutes) is used to avoid
transient effects on the final results.
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4.1. Study of the system without intercellular
transfer

In this section we simulate our system without the
intercdlular transfer policy in order to validate our
model of cellular system and the developed
expressions. The following table summarizes the
values of the parameters developed according to the
analytical model and that of simulation.

Table 3. Results from the approximate method and
simulation

Machines Mia Mz, M3z, Mp1 M2 Mus Mps

TU* analyiic (%) 4253 6221 6091 50.77 41.98 49.63 50.69

TU* smuiation (%0) | 42.56 62.26 60.96 50.61 41.85 49.47 50.53
Error (%) <1%

A(o0)analytic (%0) 96.46 9254 92.89 96.31 958 949 97.04
A(OO)SimuIalion (%)

Error (%)

96.53 92.67 92.84 96.01 95.68 94.79 97.37

< 05%

The obtained results show that the error between the
vaues given by the anaytica formulation and
simulation is relatively small. Then the approximation
of the cell to a production line working under a
continuous and constant load is sufficiently robust to
estimate the availability of the autonomous cells.

4.2. Study of the system with intercellular
transfer

For the studied system, the strategy consists in
applying the intercelular transfer of the cell (a) toward
the cell (b) in case of failure of one of machines of the
first cell (see Figure 4). We assume that preparation
times of intercellular transfer are negligible compared
to times between failings and repair machine times.
The values of the availability governed by the two
types of policy with and without transfer are calculated
according to the analytical model. The obtained results
show the improvement made by the application of the
intercellular transfer policy in term of cdl availahility
(see Figure 5).

To evaluate the performance of our policy with
simulation tool and to support the results of the
analytical model, we select the productivity of the cell,
presented in the number of produced pieces, and
machine utilization rate as performance criteria (see
Table 4).

100 -
B8 A(~)analytic (%)

95 -

%0 B A(~)analytic_tr (%)

85 A

80 A

75

M1la M2a M3a Cell (a)
Figure 5. Improvement of the availability by the
intercellular transfer policy predicted by the analytical
model

Table 4. Performance of the cdl (a) with and without
intercelular transfer policy from simulation

Cel (a)
Machine Maa M2a Maa
Utilization | Without transfer | 42.56 62.26 60.96
rate (%) Withtransfer [44.12 62.95 62.40
Number of | Without transfer 346650
manufactured -
products With transfer 359337

The simulation results show that intercellular transfer
policy improves the machines utilisation rate and the
productivity of the cell. This improvement reflects the
augmentation of cell availability.

5. Conclusion

In this paper, an analysis of cellular manufacturing
system is presented. The notion of virtual cells and
intercdlular transfer alowed the development of a
solution, which overcomes the effect of failures by
continuing the process with the machine of the
adjacent cell. Analytica modelling makes possible to
determine the expression of the availability of the cell
and to explain the improvement obtained by applying
the intercelular transfer policy. The simulation results
validated our analytica model and proved the
effectiveness of the applied policy in the improvement
of the system performance.
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Abstract

The basic definitions and theorems from the semi-Markov processes theory are discussed in the paper. The semi-
Markov processes theory allows us to construct the models of the reliability systems evolution within the time
frame. Applications of semi-Markov processes in reliability are considered. Semi-Markov model of the cold
standby system with repair, semi-Markov process as the reliability model of the operation with perturbations and
semi-Markov process as a failure rate are presented in the paper.

1. Introduction

The semi-Markov processes were introduced
independently and almost simultaneously by P. Levy,
W.L. Smith, and L.Takacs in 1954-55. The essentia
developments of semi-Markov processes theory were
proposed by Cinlar [3], Koroluk & Turbin [13],
Limnios & Oprisan [14]. We would apply only semi-
Markov processes with a finite or countable state
space. The semi-Markov processes are connected to
the Markov renewal processes.

The semi-Markov processes theory alows us to
construct many  models of the reliability systems
evolution through the time frame.

2. Definition of semi-M arkov processes with a
discrete state space

Let Sbe adiscrete (finite or countable) state space and
le¢ R, =[0,¥), N,={012,..}. Suppose that
X,,Jd,,N=012,... aretherandom variables defined
on a joint probabilistic space (W, F, P) with values
onSand R, respectively. A two-dimensional random
sequence {(X,,,J,), n=012,...} is caled a Markov
renewal chainif for all

igreerrdgsi] Sitgrent TR, Nl Ny:

1. P = 59 £ Xy =135 =t Xo =ig,dg =t

=P = 3 ELIX, =i} = Q) (1), 1)

2. P{Xg =i5,d 0= 0 = P{Xy =ig} = p,, 2
hold.

From the above definition it follows that a Markov
renewal chain is a homogeneous two-dimensional
Markov chain such that the transition probabilities do

not depend on the second component. It is easy to
notice that arandom sequence {X,:N=012,...} isa

homogeneous one-dimensional Markov chain with the
transition probabilities

Py = P{Xpa =] X, =1} :tlgg Q; (®). )
The matrix
QM) =|Q;®: il 8] (4)

Is called a Markov renewal kernel. Both Markov
renewal kernel and the initial distribution define the
Markov renewal chan. This fact dlows us to
construct a semi-Markov process.

Let

to=J,=0,
t,=J;+..+J,,t, =sup{t,,:nl Ny}

A stochastic process {X(t):t3 O} given by the
following relation
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X(t) :Xn for ti [t n’t n+1) (5)

iscalled asemi-Markov processon S generated by
the Markov renewal chain related to the kernel
Q(t), t3 0 andtheinitial distribution p.
Since the trajectory of the semi-Markov process keeps
the constant values on the half-intervals [t ,,t ,,) and
it is a right-continuous function, from
equality X(t ,,) =x,, it follows that the sequence
{X(t,):n=012.} is a Markov chain with the
transition probabilities matrix
P:[pij:i'jl S (6)
The sequence {X(t,):n=012..} is caled an
embedded Markov chain in a semi-Markov process
{X(t):t30}.
Thefunction

Fi () = P{t oy -t ELIXE ) =0, X(E ) = )

Q; (M

P;

(7)

is a cumulative probability distribution of a random
variable 'I'ij that is caled holding time of a state i, if

the next state will be j . From (11) we have

Q; (t) = py Fy (1) - 8

The function

Gi(t):P{tn+1-tn£t|><(tn):i}:ngQij(t) (9)

is a cumulative probability distribution of a random
variable T, that is called waiting time of the state i .

The waiting time T. means the time being spent in

state i when we do not know the successor state.

A stochastic process {N(t) s O} defined by
N({t)=n for tI[t,,t,.) (10)

is called a counting process of the semi-Markov

process {X(t):t3 O}.

The semi-Markov process {X(t):t3 O} is said to be

regular if foral t3 0

P{N(t) <¥} =1

It means that the process {X(t):t3 O} has the finite
number of state changes on afinite period.

Every Markov process {X(t) ts O} with the discrete
space S and the right-continuous trajectories keeping
constant values on the haf-intervals, with the
generating matrix of the transition rates
A=[a;: i,jl §, 0<-a; =a, <¥ is the semi-
Markov process with the kernel

Q) =[Qy():i, T 9],

Where

Q;(t) =p; (- e_aiit% t3 0,

a.
P =—'_’fori1 jad p, =0

In the rdiability models the parameters and
characteristics of a semi-Markov process are
interpreted as the rdiability characteristics and
parameters of the system.

3. Transition probabilities of a semi-Markov
process

The trangition probabilities of the semi-Markov
process areintroduced as follows:

P =P{X®)=iIx©O=i}, i,jiTs @

Applying the Markov property of the semi-Markov
process at the jump moments, as a result, we obtain
Markov renewal equation for the trangitions
probabilities, [4], [12]
t
P, () =d;[1- G )]+ k‘?ls?P"" (t- x)dQ (%), (12
i,jl S.

Using Laplace-Stieltjes transformation we obtain the
system of linear equation

5ij (s) =d;[1- g; (9] + k;;lsaik () rjkj (s), (13

i,j (S
wherethe transforms

~ ¥ _
p;(s) = g)e Sthj (t)

are unknown while the transforms

-61-



F.Grabski

Applications of semi-Markov processes in reliability - RTA # 3-4, 2007, December - Special Issue

G (9) = }e‘“qu(t) NACE oedG ®

aregiven.
Passing to matrices we abtain the following equation

p(s) =[I - g(9)]+a(s)p(s), (14
where
p(s) =[P, (s):i,j1 S|, a(s) =[q;(9):i,jT 8],
a(s) =[d; (- g (9):i,jT 8].

In many cases the tranditions probabilities B, (t) and
the states probabilities

P =P{x®)=}, il s (15)
approach constant values for large t
R, =limP; (1), Py =limP; (1) . (16)

To formulate the appropriate theorem, we have to
introduce a random variable

D, =min{nl N:X(,)=j}, (17)

That denotes the time of first arrival at state j. A
number

fi =P{D; <¥[|X({,) =1} (18)
is the probability that the chain that leaves state i will
sooner or later achieve the state j.

As a conclusion of theorems presented by Korolyuk
and Turbin [13], we have obtained following theorem

Theorem 1.

Let {X(t) 3 O} be a semi-Markov process with a
discrete state space S and continuous kernel
QM) =|Q,(1): i,j1 S|. If the embedded Markov

chain {X(t,):n=0412..}, contains one positive
recurrent class C, such that for each state
il S, j1C, f,=landO<E(T,)<¥,il S, then

pE(T))

- (@
AP EM)

P = !!@T Rt)=P = !!@T P (t)= 9)

where p =[p;, jI ] is the unique stationary

distribution of the embedded Markov chain that
satisfies system of equations.

apip;=p;, jiTs, ap; =L (20)
s s

4. First passage time from the statei tothe
states subset A.

The random variable
Qa=tp,,
where
D, =min{nl N: Xt )T A},
denotes the time of first arrival of semi-Markov

process, at the set of states A.
Thefunction

Fin() =P{QAEL]X(0) =i}. (21)

is the cumulative distribution of the random variable
Q,, that denotes the first passage time from the statei
to the states subset  A.

Theorem2. [4], [13]
For the regular semi-Markov processes such that,

f.=P(D,<¥|X(0)=i}=1 il A (22)

the distributions F,,(t), i1 AC are proper and they
are the unique solutions of the system of equations

"L0=8Q,07 4

}?F (t - X0, (%),
il A

Applying Laplace-Stieltjes transformation we obtain
the system of linear equations

fia(9) = & G;(9+ &T (9T (), IT A (29)
A K A
with unknown transforms

- ¥
fia(s) = e “dF ia(l) -
0

Generating matrix form we get equation
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(1 - Ga(9)iu(s) =D(s), (24)
where
L =[d; i, jT AT, Ga () =[G;(s):i, i1 Al
are the square matrices and
i (9) =[Tia(9):i1 AT
.

~ é, - .~ U
b(s):é_g a; (s):il Ay
€il A u

are the one-column matrices of transforms. The
formal solution of the equationis

ia(9)=(1-da(9)b(s).

To solve this equation we use any computer programs,
for example MATHEMATICA. Obtaining the inverse
Laplace transform is much more complicated.

It is essentialy simpler to find the expected values
and the second moment of the random variables

Q. i1 AC If the second moments of the waiting
times T, i1 ACare positive and commonly bounded,
and f, =1, il AC, then the expected values of the

random variables Q,,,i1 AC are the unique solution
of equation

(I - PA‘)ﬁA‘ :TAW (25)

U, =[EQu): i1 Al T =[EM):iT AT

and the second moments of the time to failure are the
unique solution of equation

(I } PA‘)ﬁ/Zxcz B (26)
where

| =|d; =i, jT A], Py =|py i, iT Al

ﬁic:[E(inA)i il A‘]T,BA, =[b:iT A]",

by = E(T;) + széA‘pik E(T)EQa) -

5. Semi-Markov model of the cold standby
system with repair

The problem is well known in reliability theory
(Barlow & Proschan [1]). The model presented hereis

some modification of the modd that was considered
by Brodi & Pogosian [2].

5.1. Description and assumptions

A system consists of one operating component, an
identical stand-by component and a switch, (Figurel).

AN

Figure 1. Diagram of the system

When the operating component fails, the spare is put
in motion by the switch immediately. The failed unit
(component) is repaired. There is a single repair
facility. The repairs fully restore the components i.e.
the components repairs means their renewals. The
system fails when the operating component fails and
component that was sooner failed in not repaired yet
or when the operating units fail and the switch fails.
We assume that the time to failure of the operating
components are represented by the independent copies
of a non-negative random variable V with distribution
given by a probability density function (pdf)
f(X), x3 0. We suppose that the lengths of the repair
periods of the components are represented by the
identical copies of the non-negative random variables
g with cumulative distribution function (CDF)

G(X) =P(g £ x). Let U bearandom variable having
binary distribution

b(k)=PU =k)=a*(1- a)**,k=01,0<a<1,

where U =0, when a switch is failed at the moment
of the operating component failure, and U =1, when
the switch work at that moment. We suppose that the
whole failed system is replaced by the new identical
system. The replacing time is a non-negative random
variableh with CDF H(x) = P(h £ X).
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Figure 2. Reliability evolution of the standby system

Moreover we assume that the all random variables,
mentioned above are independent.

5.2. Construction of the semi-M arkov model

To describe reliability evolution of the system, we
have to define the states and the renewal kernel. We
introduce the following states:

0 - thesystemisfailed

1 - the failed component is repaired, spare is operated

2 - both operating component and spare are “up”.

Let 0=t,,t,,t,,..denote the ingtants of the states
changes, and {Y(t):t3 O} be a random process with
the state space S={012, which keeps constant
values on the haf-intervals [t .t,.,),0L... and is

right-continuous. The realization of this process is
shown in Figure 1. This process is not semi-Markov,
because the condition (1) of definition (2) is not
satisfied for al instants of the state changes of the
process.

Let us construct a new random process a following

way. Let 0=t  and t,,t,,... denotetheinstants of

the system components failures or the instants of
whole system renewal. The random process
{X(t):t3 O} defined by equation

X(0)=0, X(t)=Y( ,)fortl [t ,,t,.)

is the semi-Markov process.

To have semi-Markov process as a model we must
define its initial distribution and all elements of its
kernel

¢ 0 0 Quz2()u
QM) =) Qu®) 0
Qn) Qu) 0

(woxY ey eny e

For t3 O weobtain

Q) =Ph £1)=H (1),

Q) =P(VEt,g>2)

+PU =0,VEt,g<z)
=§[1- G(X)]dF(x) + (L- a)gG(x)dF(x)

=F(t) - agG(xdF(x),
Qu(t)=PU =LVEt,g<z)=agG(xdF(x),
Q, (1) =PU =0,VEL) =(1- a)F(t),

Q,, (1) =PU =LVEt)=aF(t).

We assume that, theinitia state is 2. It means that an
initial distribution is

p©@=[0 0 1.
Hence, the semi-Markov model is constructed.

5.3. Thereliability characteristics

The random variable Q,,, that denotes the first

passage time from the state i to the states subset A,
for i=2 and A={0} in our model, represents the

timeto failure of the system. The function
R(t) =P(Qyp >1) =1- F (1), t30 (27)
is the rdiability function of the considered cold
standby system with repair.
System of linear equation (23) for the Laplace
Stidtjes transforms of the functions
Fio(t),t30,i=12,
inthiscaseis

f~10 (S) =Gy (9)+ f~10 ()0, (s)

f~20 () = Oy (9)+ f~10 (5)0(9)

Thesolution is

O (S)

1- Gu(s)

021 (S)Gho (S)
1- Qu(s)

f-;O (s) =

f~20 () =00 (9) + (28)
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Hence, we obtain the Laplace transform of the
reliability function

~ 1- f (s
MQ:——%il. (29)
The transition probabilities matrix of the embedded
Markov chain in the semi-Markov process
{X(t):t3 O} is
€0 0 1u
P= gplo Pu OH (30)
€Pxn P Of
Where
Py =1- py

py =PU =1g<z)=ag G(X)dF (x)
Py =1-a py=PU=D)=a

Using formula (9) we obtain the CDF of the waiting
timesof T,,i=012.

Go(t) = H(t), G,(t) =F(t), G,(t) = F(t).
Hence

E(T,) =EM), E(T) =E(V), E(T;) =E(V).
The equation (25) in this case has form

é].' p]_]_ Ol:BiE(Qlo)gzéE(V)@
8 -a 1£E(Q20)H gE(V)H

Thesolution is

aw

11

E(Qu) =

a E(V)

E(Qyp) =EM) +—— 1
p11

(31)

We will apply theorem 1 to calculate the limit
probability distribution of the state. Now, the system
of linear equation (20) is

P1Pwp TP2Px =Pg

P1P2 TP2P2x =P1s
Po =Py
Po+tP;+P, =1

Since, the stationary distribution of the embedded
Markov chainis

_ Pu
Po =77,
° 2Py + Py
_ P2y
p=———,
! 2Py + Py
_ Pu
p,=—4%
? 2Py + Py

Using formula (19) we obtain the limit distribution of
semi-Markov process

P = puEM)
° puEh)+ puEV) + pyE(V)

(32)

P = PnE(V)
Y puEh) + pyEV) + pyE(V)

P, = PuE(V)
PuEM) + Py EV) + pyEV)

5.4. Conclusion
The expectation E(Q,,) denoting the mean time to
faillureis

E(Qu) = EV) +ng’)
where

py =ag G(x)dF(X) .

Let us notice, that the cold standby determines

increase the meantimeto failure 1+ times.

1- py
Thelimiting availability coefficient of the systemis

P, EV) + pE(V)

A=P +P, = :
pllE(h) + leE(\/) + pllE(\/)
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6. Semi-Markov processasthereliability
model of the operation with perturbation

Semi-Markov process as the reliability model of
multi-stage operation was considered by F. Grabski in
[8] and [10]. Many operations consist of some
elementary tasks, which arerealized in turn. Duration
of the each task realization is assumed to be positive
random variable Each elementary operation may be
perturbed or failed. The perturbations increase the
time of operation and the probability of failure as
well.

6.1. Description and assumptions

Suppose, that the operation consists of n stages which
following in turn. We assume that duration of an i-th
stage, (i = 1, ..., n) isanonnegative random variable
X;;1=14L,n with a cumulative probability
distribution

t
F (t)=P(x, £1)=of (x)dx, i =LK,n,
0
where f, (X) denotesits probability density function
in an extended sense.

Time to failure of the operation on the i-th stage
(component) is the nonnegative random variable h,,

i =1, L,n with exponentia distribution
Ph, £1)=1- 'l"; i =1K,n.

The operation on each step may be perturbed. We
assume that no more then one event causing
perturbation on each stage of the operation may occur.
Timeto event causing of an operation perturbation on
i-th stage is a nonnegative random variable
z;;1 =1LK,n with exponentia distribution

Pz, £t)=1- ", i=1K,n .

The perturbation degreases the probability of the
operation fail. We suppose that time to failure of the
perturbed operation on the i-th stage is the

nonnegative random variable ni,i =12....n that

has the exponentia distribution with a parameter
b, >I,

Ph, £1)=1- e, i =1K,n.
We assume that the operation is cyclical.
We assume that random variables
X; ,h; ,ny,z;, i=1..,n aemutually independent.

6.2. Semi-M arkov model

To construct reiability model of operation, we haveto
start from definition of the process states.

Let €, i=1,...,n, j=0,1 denotes j-th rdiability state
on i-th step of the operation where, j=0 denotes
perturbation and j=1 denotes success

€., - failure (un-success) of the operation

€, - aninitial state.
For convenience we numerate the states

g, « I, 1=1..,n

8, « i+n, i=1...n

€ € 2N+],

Under the above assumptions, stochastic process
describing of the overall operation in rdiability
aspect, is a semi-Markov process { X(t): t3 O} with
a space of states S={1,2,....2n,2n+1} and flow
graph shown in Figure 3.

Figure 3. Transition graph for n-stage cyclic operation

To obtain a semi-Markov mode we haveto define all
nonnegative dements of semi- Markov kernel

QM) =[Q;®:i,jl 8
Q1) = P{X(t por) = j b gy - t L] X(t,) =i}

First, we define transition probabilities from the state i
to the state | for time not greater than't for i=1,...,n-1.

Qult)=Ptx £Lh >X 7, >X)
= (ﬁ\ﬁie_aiyl i€ iz fi (x)dxdy dz
D

where

D={(x,y,2): x30,y30,2z30,
XEt, z>X%, X>V}
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Since, we have

t X ¥
Qi+1(t) =of (Ydx e Vdy d .€'i°dz
0 0 X

Ae R () dX .

cq -

Fori=n+1...2n- 1 weobtain

Qilt)=P@E, £t >2,,2, >x))

t
:Cﬁie-(li+ai)u[1_ Fi (u)]du,i =1...,n- 1.
0

For i =1,...,n weget

Qi2n+l(t):P(hi £t,h; <z;,h; <x;)

t

=o1,e N [L- F (u)]du,

0
i=1...,n-1.
If on i-th stage a perturbation has happened the
transition probability to next state for time less then or

equalto t is

Qnsinsinn() =PX; - z; £t,n; >X; - 2, [X; >2Z)

diR e *’b,e " f; (x)dxdydz

)

an e f; (x)axdy
E

where

D={(x,y,2): x30,y30,2z3%0,

O0Ex- yEt, z>Xx-y, X>Vy}

E={(x,y): x30,y30, x>V}.

To find thetriple integral over the region D, we apply
change of coordinates:

U=x-y, v=y, w=2z

Hence

X=u+v, y=Vv, z=w.
This mapping assigns to points from set
D={(u,v,w):0£u£t,v3 0,w>u}

the points from plane region D. The Jacobian of this
mapping is

J(u,v,w) =1.
Since, we get

aa e b, e "% f, (x)dxdy dz

D

= gin € *Vb,e "™ f, (u +v)J(u,v, w)du dvdw
D
¥ ¥ ) t

= ¢a,€ *Vdvo,e " Mdwof, (u +v)du
0 u 0
t o ¥ )

=0 "du ¢a, e f; (U +V)dv.
0 0

Let us notice that

¥ ¥
aa etV f (x)dxdy = ¢ga, e Y of, (X)dx
E 0 y
¥
=&,eV[1- F(y)ldy
0

¥
=1- g, *F (y)ady.
0
Finally, we abtain

t ¥
oe [ e Y f (u+v)dvldu
Qn+i n+i+1(t) = L ¥ 0 '

g)aie'aiyll- F (y)ldy

In the same way we get
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Qusiznsn(t) =P, £t,n; <x; - 2, |X; >Z;)

@A, e " Vb e 7 f, (x) dxly dz

_ D

aa e Y f (x)dx dy
E

i=1..n
where
D={(x,y,2): x20,y20,
O£zE£t, z<x-Yy, x>V}
E={(x,y): x30,y30, x>V}.
Hence
b :‘3e' binWE@'“"dVEﬁ (u+v)du
0

Qn +i 2n+1 (t) = £ ¥ =
gﬁieaiy[l' Fi (y)ldy

i=1...n
Similar way we obtain

in(t) = P(Xn £t1hn >Xn Zn >Xn)

= oe (n*an)i £ (4)du

Q2nl(t) = P(Xn - Zy £t1nn >Xn = Zy X, >Zn)

t ¥
oe Pndu ¢a e v f, (u+Vv)dv
0

_0

¥
A ,e ™ [1- F, (X)]dx
0

Therefore the semi-Markov reliability model  of
operation has been constructed.

6.3. Two-stage cyclical operation

We will investigate particular case of that mode,
assuming n=2. A transition matrix for the semi-
Markov model of the 2-stage cyclic operation in
reliability aspect takes the following form

0 Q) Qu®) 0 QsMu
a) 0 0 Qu®) Qg

D> %CD) [} %D) D

QM)=¢€ 0 0 0 Qu® QWY
a(t) 0 0 0 Qs My
0 o 0 0 QMY
where

Qalt)= g6 R (u),

0

Qus(t)= toale’ (1i*adup] - F (u)]du,
0

Qult)=¢ ;e 132 [L- Fy(u)ldu,
0

Qu(t)= oe 272 (u),

Qult)= & ,e 272110 F (u)]du,
0

Q)= L& 1222 1- F, (u)]du,
0

¥
o " 0,6 F, (u+ V)dvidu
Q34(t) = g ¥ 9 . [}
e [1- Fy(y)ldy

t ¥ ¥
b, oe " dwea, e dvf, (U + v)du
Q35 (t) = 0 ¥ = 0 ’
07,6 1~ Fy(x)]dx
0

t ¥
e "2'duga e 2 f,(u+v)Jdv
Q4l(t) = 0 ¥ 0 ’
oaze"“zx[l- F>(X)]dx

b Wewill consider 3
bzoe 2Wdwoa eaz"dvof (u+v)du

Q45(t) = s ¥ = ’
R ,€ 2 [1- F, (X)]dx
0

Qss (1) =U (1)
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That model allows us to obtain some rdiability
characteristics of the operation. The random
variableQ,. denoting the first passage time from state

1 to state 5 in our model, means time to failure of the
operation. The Laplace-Stieltjes transform for the
cumulative distribution function of that random
variable we will abtain from a matrix eguation (25).

Inthis case we have A(={1,2,34}, A={5 and

g 5(S)u éals (S)U
(q) =€ 25 (S)u _ eqzs( )
HA(S) e~35( )U ( ) Zqi35( )U’
g (98 &5 (S)u
¢ 0 (9 Ou(s) O U
@ 0 0 Gy
qa(s) = g 0 0 0 u
€ O (S)U
&a 0 0 0 g

From the solution of equation (24) we obtain Laplace-
Stieltjes transform of the cumulative distribution

function of the random variable Q,. denocting time to
failure of the operation

_a(S) 33
fis(9) = 5 (33)

a(s) = Gys(S) + 012 (S)05(S) + Gy () 0as (9)

+ 012 (S) G4 (S)Glas (S) + Gia (S)0laa (S)Clas (9)

b(8) =1- T (9T (S) - Tz (9F2a (9Tar (9)
- 513 (3)634 (8)541 (9).

The Laplace transform of the reliability function is
given by the formula

R =210, (34

6.4. Examples

Example 1
We suppose that

Fo(t)=1- e ' t30,i=12.

Then
kl -(Ip+ay +kq)t O
Qul)=— e
1ta; ke g
_ a - (I1+ay +kq)t O
Q13(t)—| -€ ! K
1ta; kg e [}

o (1vag k)t 0

Q15(t):|—1§'

|, +a, +k, & i
Qu (1) _ﬁ (1_ g (2+az+ko)t ),
Qy4(t) :Iz"':ﬁ (1- g (l2raz+ko)t ),
Qu5(t) —ﬁ (1- g (2+az+ko)t ),

Q)= e o)

Q)= 2 eu)

Qu1(t) =

- k+2k2 @_ e-(b2+k2)t),

2

b
t) = 2 _ o (batk)t
Qus() =32~ )

2

Laplace-Stidltjes transform of these functions are:

_ Kk,

s)= ,
G2 (S) s+l +a, 7k,
_ a,

s)= ,
O3 (S) S+, +a, +k,
e (S) = [,
s s+l,+a, +k,
~ _ k,
U (9) =<1 va, vk
o a,
024 (S) = |, +a, +k
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P

= (9= ,
025 (9) stl, +a, +k,
- K,
Sy=—-—+——,
B (9= 5 p 7
- b,
S)=—F———,
0= 5 7k
- K,
s)=——< |
0= 5 71
- b,
Sy=———=
09 = 575 7
For k,=01; k, =012; |, =0,002; 1, =0,001,
a, =0,02; a,=004; b,=001; b,=001,
applying (33) and (34), with hep of

MATHEMATICA computer program, we obtain the
density function and therdiability function as inverse
Laplace transforms .

The density function is given by the formula

f 15 (t)
=0.00712201e **¥7" - 0.00872613 e ¥

- 0.000144434 e *#%M +0,00374856 e >

Thisfunction is shown in Figure 4.
Thereliability functionis

R(t) =3.79823" 10 '® + 0.0333808 ¢ *#**""
- 0.0484641e *%%5! - 00011472 20
+1.01623 " 059!

0.003
0. 0025
0.002
0. 0015
0.001
0. 0005

200 400 600 800 1000

Figure 4. The density function the timeto failure of
2-stage cyclic operation

Thisfunction is shown on Figure 5.

1
0.8
0.6
0.4

0.2

200

Figure 5. The rdiability function of 2-stage cyclic
operation

400 600 800 1000

Mean time to failure we can find solving the matrix
equation

(I - PA‘)(_QA‘ :-FA‘ (39)
where
€0 p, p3 OuU
e u
P - &P 0 0 pyuy
Yeo 0 0 pyulf
e u
Py O 0 0q
SE(T,)0 6E(Qus)
€ €
T — eE(Tz)a GA' — eE(st)a
gE(rs)H SE(QBS)H
eE(T,)a eE(Qus)a

From this equation we obtain the mean time to failure

E(Q,) =275378
Example 2
Now we assume that

i0 da tE£L

i (t):}l da t>L '

i=12.

It means that the duration of the stages are determined
andthey areequal X, =L, for i =12
In this case the e ements of Q(t) are:

i0 for tEL
=l

-(l1+ay) L
te 1 for t>L,

Qy(t)
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1 a - 0
J|| +la gi- e ( 1+al)t+ for tELl N a, ae (I1+a1+s)ly
Qult)=1 'a H " fj(-j WO = va, s+l va
'If I +1 - erh2 for t>1, to t
ae [}
1 1
_ I L I le» (I1+a1+s)ly
i : Gis(9) = :
i: |IT1§ e 112)tQ ¢ tEL, s+l,+a; s+l,+a;
Q15(t):_|" ! | A | ﬂ('j = — a-(l2+an+s)Lp
1 &g (NE for > O () =e :
f litae
a (S) _ a2 ] aze»(l ,ta,+s)L,
N 24
Qull) = frnie sy 1o stlo+a, s+l v,
je 2@z for t>|,
| | e»(I2+a2+s)L21
~N — 2 2
1 a, -(12+a )t Q %es () = s+l,+a, s+l,+a
. +a gi = for t£L, 27%2 27%2
Q24(t) jl27%¢ St )|_g20 ail gy g (a9l
i 2 ~ ae - et 0
fl,+ ? 2 for 1>k G (8) = -aly b -
l-e stb,-a; g
JI I |+2 a_ e'(l z+a2)t9 for t£L, B9 = b, aa- g (brrola ) e'a1L1(1- e'(bl—a1+s)L1)'_(:j
Q25(t)=:' 27828 e, RS e_alLlé s+by s+b;-a; 2
i &- 2222 for t>1,
1 l,+a,e 2 N aze-asz & - g (h2raz+s)lz
Au(s) = “aglz b T
i ae’ bray l-e st+b,-a, 4
Geetr) . ogeel,
1(b al)(l-e X )
(t) 61L1 6 brag ) ) _ () b2 ? e(b2+s)L2 —asz(l_ é( —a2+s)L2)9
V t>|— q45 S : a2L2 -
(b al)(l e 1) 1- 8 s+b, s+b,-a, 5
i ol The mean time to failure we can find solving the
o ealLl)gl ebt). (E a])(l st avt)g’ OEtEL, matrix equation (35), where
QE(t) |l b1|-10 bleail N (I1+a1)lg
i (br-aply —e
Tl S T b I -
) s 0 = a,1-e ) 0 = [,1-e )
i ) 3 = s =
i aze (1_ e-(bz—az)l), 0£t£|_2 I 1 +al I 1 +al
_1(b,-a,)1- e?)
Q4l(t)_-|- a,e 22 - (I g+ag)L
'I_ 2 - (1_ e-(bz-az)Lz), t>L2 P, =€ 2+az)l2
b (by-a,)@l-e%2)

az(l_ e’ ( 2+a2)|—2)

| 4 r gl ] p24 =
i la . gl e—bzl) bze (1 e—(bz-azt)g O£t£|_2 I 2 +a2
[(L-e%2)g (b a,)
Q45(t) .|. 1 g a2L2 (b le_,l
[ szl g 2:22) >L, - (I p+az)Ly
fa-e®2)g (b a,) 0 _1,@a-e )
. . . I 2 +a2
The Laplace a-Stieltjes transform of these functions
ae a.e 4 5. e (brrah 0
— 1
p34 =

Gy (5) =€ (17219 1- e b,-a;, 5
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_bilg
_ by 1l-e
Pas Tl ool ( b,
e aih (1_ e-(bl-al)Ll
b,-a,;
aze-asz o - e-(bz-az)Lz o}
Par 1o @22 b,-a, EJ
_ b,
Pos = gans
?‘_ e—b2L2 ] e—asz(l_ e‘(b ‘aZ)LZ)Q'
& b, b, - a P
Psy =1
1 e @il
E(T) = -
a;+l;, a;+l,
1 g (@z+2)L2
E(T,) = -
a,+*l, a,+l,
_ d(@x(s) +as(9)
E(T3) - = ds = |s:0
_ d(u(9) +0us(9))
E(T4) - = ds = |s:0

For the same parameters k; =01; k, =012;
[, =0,002;1,=0,001; a, =0,02; a, =0,04;
b, =0,01; b, =0,01,

and L, -1 i L, :i,themeantimetofailureof
k k

1 1
the operationis

E(Q,5) =366.284.
In previous case the mean timeto failureis

E(Qs) = 275,378.

6.5. Conclusion

It means that for the determined duration of the stages
mean time to failure of the operation is essentially
greater than for exponentially distributed duration of
the stages with the same expectations.

To assess reliability of the many stage operation we
can apply a semi-Markov process. Construction of the
semi-Markov model consist in defining a kernel of
that process. A way of building the kerndl for the
semi-Markov model of the many stage operation is
presented in this paper. From Semi-Markov model we
can obtain many interesting parameters and
characteristics for analysing rdiability of the
operation.

From presented examples we get conclusion that for
the determined duration of the stages, mean time to
failure of the operation is essentially greater than for
exponentially distributed duration of the stages with
the same expectations.

7. Semi-Markov processas a failurerate

The reliability function with semi-Markov failure rate
was considered by Kopocinski & Kopocinska [11],
Kopocinska [12] and by Grabski [4], [6], [9]. Suppose
that the failurerate {I (t):t3 O} isthe semi-Markov
process with the discrete state space S={I ;:j1 J},
J={0L...,m} or J={012..}, Ofl, <l <..
with the kernel

Q(t) =[Q; (1)1, jim J]
and theiinitial distribution p=[p, :il J].
We define a conditional reliability function as

R(t)zE(?@xp‘?;ﬁu(u)dual ©=1,4. t30, i3
e eo u

In [6] it is proved, that for the regular semi-Markov
process {l (t):t3 0} the conditional reliability
functions R (t) ,t2 0, il J defined by (17), satisfy
the system of equations

R(t)=€"""[1- G(t)]+éflt6€'”|%(t- QdQ(9,iT J
IN¢)

Applying the Laplace transformation we obtain the
system of linear equations

RE©=—1 - G(s+ )+&R (98, (s+,).iT J,
]

s+l

where

R (9= & R t)dt, G(s) = o8 G, ()t
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- st 1 50(S+| O)l:J,
G;(9) = 0e™™dQ; () AOFE ey e
In matrix notation we have where
[1- @ (9]R(S) =H(s), _ -
9o(9) = qu(S) = dG,(t)
where
[I-q; ()] 01(9) = Gy (8) = o' dG, (1),
él- Qoy(s+! - Oy (s+]1 - Oy (s+ Lo
< 900( 0) qu( 0) (102( 0) l] = o eRO(S)
_é- Oo(s+ly) 1-du(s+ly) - du(stly) Ly (s) = Rl( )
& Gpp(s+l,) - Gulstl,) 1- Gp(s+l,) LU RSu
é G
é N M M o
~ G s+ )U
(9= Gl(( ; 0)) .
_ . 1 N . 3 s
?RO(S)U Ss+| ) GO(SHO)H Sll ' H
e~ u é 0 U
R(s) = eRi(9)y _ el g+t The solution of (20) takes the form
€R,(9)U H(s)=és+1, a
¢ el - G,(s+I )3 R(S)
g g g5+l 1 2 d Ry
e i 5| _ _
- GylsH )+ Bo(sH o) - Gils+ )
The conditional mean times to failure we obtain from = = = )
the formula 1- go(s*l g)Gi(s+1 1)
m = lim R (p), pl (0,¥), il J 1) Ry(9)
p® 0"
The unconditional mean time to failure has aform =T - Gy(s+1 ) +Gy(s+ |2 S0 - Go(s+l o)

m=4P( (0)=1,) m.

7.1. Alternating random process as a failure
rate

Assume that the failure rate is a semi-Markov process
with the state space S={l ,, | ;} andthekernel

_é0
07 &

where G,(t), G,(t), are the cumulative probability
distribution functions with nonnegative support.
Suppose that at least one of the functions is absolutely
continuous with respect to the Lebesgue measure. Let
p=[p,, P,] bean initial probability distribution of
the process. That stochastic process is caled the
alternating random process. In that case the matrices
from the equation (20) are

Gy(t)u
0y

1- Qo (s+l )Gy (s+1 )

The Laplace transform of the unconditional reliability
functionis

R(S) = PoRo(S) + PRy (9).

Example 3.
Assume that

t t
Go(t) = (()‘)go(x)dx, G ()= (?gl(x)dx1

where
bg° 1-b
gO(X):G(O )Xao' e x30,
ag
b2t
g, (t) =—=—xte X 30,
Ga,)
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Suppose that an initial state is | ,. Hence the initia
digtribution is p(0)=[1 0] and the Laplace
transform of the unconditiona reliability function
is ﬁ(s) = ﬁo(s). Now the equation (20) takes the
form of

é ba0 u

¢ 0 UéR, (s)u
e 1 '—aL,JgRO u
é (s+b0+I0) LJé G
€ b 21 ue a
€ 1 Ués U
e 1 &Rl
g (s+by+ly) a

é a u

~ 0 Z

e 1 . s q
8+l (sl ) (s+ by +1 )0

e 1 b1 u

¢ - 2 4

gstly (s+l)(s+b +1,)* g
For

a,=2,a,=3,b,=02,b, =05,1,=0,1, =02,

we have
1004 Q04 €1 0125 U
9= (s+02° (s+02P&+02 (s+02)(s+077h
R(9 = .. 004 0125

 (s+02 (s+07°

Using the MATHEMATICA computer program we
obtain the reiability function as the inverse Laplace
transform.

R(t) =1.33023exp(- 0.0614293t)

+exp(- 0.021)(1.34007 X10"** +9.9198X10 *°1)

- 2exp(- 0.843935t)[0.0189459 cos(0.1717891t)

+0.00695828sin( 0.1717891t)]

- 2exp(- 0.375351)[0.146168.c0s(0.224699 )

+0.128174sin(0.224699t)]

Figure 6 shows the reiability function.

1

0.8

0.6

0.4

0.2

20 40 60 80 100

Figure 6. Thereliability function from example 2
The corresponding density function

f(t) =-R(t)
isshownin Figure7

0.04
0.03
0.02

0.01

20 40 60 80 100

Figure 7. The density function from example 2

8. Conclusion

The semi-Markov processes theory is convenient for
description of the reliability systems evolution
through the time. The probabilistic characteristics of
semi-Markov processes are interpreted as the
reliability coefficients of the systems. If A represents
the subset of failing statesand i isan initial state the

random variable Q,, designating the first passage

time from the state i to the states subset A, denotes
the time to failure of the system. Theorems of semi-
Markov processes theory alows us to find the
reiability characteristic, like the distribution of the
time to failure, the reliability function, the mean time
to failure, the availability coefficient of the system
and many others. We should remember that semi-
Markov process might be applied as a model  of the
real system rdiability evolution, only if the basic
properties of the semi-Markov process definition are
satisfied by the real system.
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Abstract

A failure rate of the object is assumed to be a stochastic process with nonnegative, right continuous trajectories. A
reliability function is defined as an expectation of a function of a random failure rate process. The properties and
examples of the reliability function with the random failure rate are presented in the paper. A semi-Markov

process as the random failure rate is considered in this paper.

1. Introduction

Often, the environmental conditions are randomly
changeable and they cause a random load of an object.
Thus, the failure rate depending on the random load is
a random process. The reliability function with semi-
Markov failure rate was considered in the following
papers Kopocinski & Kopocinska [5], [6], Grabski
(3], [4].

2. Reliability function with random failure
rate

Let {a(t): t3 O} be a random failure rate of an
object. We assume that the stochastic process has the
nonnegative, right continuous trajectories. The
reiability function is defined as

R(t) = Efexp® on(x)dx% t2 0. (1)
e €eo %

It means that the reliability function is an expectation
of the process {o(t):t 3 O}, where

o(t) =exp® o1 t3 0. @
e o %)
Let
o = exp® SELa]Xd, t3 0. 3
e o 9

From Jensen’ s inequality we get very important result

R(t) = Egexpg? (e
g &o o al
(4)
Fg(t), t3 0.

t )
3 expg? (?E[n(x)]dx%:

The above mentioned inequality means that the
reliability function defined by the stochastic process
{at): t3 0 is greater than or equal to the
reiability function with the deterministic failure rate,
equal to the expectation | (t) = E[a(t)].

It is obvious, that for the stationary stochastic process
{at): t3 0, that has a constant mean vaue
| (t) = E[a(t)] =1 , the reliability function defined by
(3)is

Fg(t)zexpg;? | oax@=exp(-1 1), t2 0.
e 0o g
®)

Hence, we come to conclusion: for each stationary
random failure rate process, the according reliability
function for each t3 O, has values greater than or
equal to the exponentia reliability function with
parameter | .
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Example 1.
Suppose that, the failure rate of an object is a
stochastic  process  {a(t):t3 0}, given by

a(t)=Ct, t3 0, where C is a nonnegative random
variable. Trajectories of the process {o(t):t 3 O}, are

2

X (t) = exp(- c%), t3 0,

where ¢ is a value of the random variable C. Assume
that the random variable C has the exponentia

distribution with parameter b :

P(CEu)=1- e ™, us 0.

Then, according to (1), we compute the reiability
function

2

A t oy ¥ _u—
R(t) = Egexp oCxckdj = ¢ 2 be ™du
e eo 0

Figure 1 shows that function.
1

08

06

04

0.2

0.5

Figure 1. Reliability function R(t)

1 15

In that casethe function (3) is

d L
(t) = equ, oE[Cx]dx— expg- —x, t3 0.

Figure 2 shows that function.

Suppose that a failure rate process {a(t):t3 0} isa
linear function of a random load process {u(t) :t2 O} :

a(t) =eu(t) .

0.8

0.6

0.4

0.2

0.5 15

Figure 2. Reliability function R(t)

1

Assume that the process {u(t):t3 O} has an ergodic
mean, i.e.

lim %I‘;u(x)dx: E[u(t)] =T.

Then, [2], [3]
limR() = exp[- Ut]

It means, that for small e
R(x) » exp[- e ux] .

3. Semi-Markov processas arandom failure
rate

The semi-Markov process as a failure rate and the
reiability function with that failure rate was
introduced by Kopocinski & Kopocinska [5]. Some
extensions and developments of the results from [3]
were obtained by Grabski [3], [4].

3.1. Semi-M arkov processes with a discrete
state space

The semi-Markov processes were introduced
independently and almost simultaneously by P. Levy,
W.L. Smith, and L.Takacs in 1954-55. The essentia
developments of semi-Markov processes theory were
achieved by Cinlar [1], Koroluk & Turbin [8],
Limnios & Oprisan [7], Silvestrov [9]. We will apply
only semi-Markov processes with a finite or countable
state space. The semi-Markov processes are connected
to the Markov renewal processes.

Let S be a discrete (finite or countable) state space
and let R, =[0,¥), N, ={012,..}. Suppose, that

Xp,Jd,,N=012,... are the random variables defined
on a joint probabilistic space (W, F, P) with values
onSand R, respectively. A two-dimensional random
sequence {(x,,J,),n=012,...} is called a Markov
renewal chain if for all

igseeemsipgsi ] Sitgrent, T R, NT N .
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The equalities
1 Pt = .3 pa £y =10, =t Xo Zigudg =t

= I:){Xn+1 = 1Jdna EtX, =i} = Q;(t) (6)

2. P{xo =i5,d =0 =P{X, =ic} = p,, (7

hold.

It follows from the above definition that a Markov
renewal chain is a homogeneous two-dimensional
Markov chain such that the transition probabilities do
not depend on the second component. It is easy to
notice that a random sequence {x,:n=012,..} isa
homogeneous one-dimensional Markov chain with the
transition probabilities

Py = P{Xpa =] [X, =1} :tlgg Q; (1). (8)

A matrix
QM) =|Q; ©): i,iT S|

Is caled a Markov renewal kerne. The Markov
renewa kend and the initid distribution

p=[p :il S] define the Markov renewal chain.

That chain allows us to construct a semi-Markov
process.
Let

t,=J,=0t,=J;+..+J ,ty, =supft,:nl N}
A stochastic process {X(t):t3 0} given by the
following relation

X()=x, for t1[t,.t,.) (©)

iscaled asemi-Markov process on S generated by
the Markov renewal chain related to the kernel
Q(t),t3 0 andtheinitia distribution p.

Since the trajectory of the semi-Markov process keeps
the constant values on the half-intervals [t .t ;) and
it is a right-continuous function, from
equality X(t ,,) =x,, it follows that the sequence
{X(t,):n=012.} is a Markov chain with the
transition probabilities matrix

P=[p, :i.jl SI. (10)
The sequence {X(t,):n=012,..} is cdled an

embedded Markov chain in a semi-Markov process
{X@):t3 0}.

Thefunction
Fi () =P{t oy - t o ELIX(E ) =1, X er) = i}

_Q

(11)
P;

is a cumulative probability distribution of a holding
time of astate i, if the next state will be j. From

(11) we have

Q; (1) = py F (1) - (12)

Thefunction

G () =Pt -t £t]X(E,)=i}=3aQt) (13
jIs

is a cumulative probability distribution of an
occupation time of the state i.

A stochastic process J{N(t) s 0} defined by

N(t)=n for tT [t,,t,.) (14)

is called a counting process of the semi-Markov
process {X(t):t3 O}.
The semi-Markov process {X(t) s 0} is said to be
regular if foral t3 0

P{N(t) <¥} =1. (15)

It means that the process {X(t) s 0} has the finite
number of state changes on afinite period.

Every Markov process {X(t) s 0} with the discrete
space S and the right-continuous  trajectories
keeping constant values on the half-intervals, with the
generating matrix of the transition rates
A=[a;:i,jl §], 0<-a; =a, <¥ is the semi-
Markov process with the kernel

Q) =[Q; (1):i, jT S,

where

Q) =p;@A- e_aiit) 130,

aji o
P :a—_’forl 1

and
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p; =0.

3.2. Semi-M arkov failurerate

Suppose that the random failurerate {I (t):t3 O} is
the semi-Markov process with the discrete state space

S={l,:j1 J},J={0L...m} o J={012.1},
0£1,<I,<.. withthe kernel
Q) =[Q; (1):i, jT J]

and theinitial distribution p=[p, il J].
We define a conditional reliability function as

R(t) = Egexp t@n(u)du%l ©=1,g, t2 0, il J. (16)
e €eo u

In [3] it is proved, that for the regular semi-Markov

process {l (t):t3 O} the conditional reliability

functions R (t),t3 0, il J defined by (16), satisfy
the system of equations

Rt =¢"1"[1- Q(O]*%‘ég PR (t- )dQ (%), (17)
il J.

Using the Laplace transform we obtain the system of
linear equations

RO=— G(s+1)+aR©T(s+1). 113 (19)
where

R(9) =}e’“a (b,
G.(9) = o G, (),

¥
q;(s)=oe o dQ; (t) .
0
In matrix notation we have

[1- G (9IR(9) =H(s), (19)

where

R =[R(9:i1 I,

[1-d, (s)]=|d; - G (s+1):i, i1 3],

_ 6 N D
f(s) = G (s+1 ):il 3§
és+l, a

The conditional mean times to failure we obtain from
the formula

m = lim R (p), pl (0.¥), il J (20)
p® 0"
The unconditional mean time to failure has aform
mzaP(I O =1,)m. (21
il J

3.3. 3-state random walk processas afailure
rate

Assume that the failure rate is a semi-Markov process
{na(t):t3 O} with the state space S={I ,, 1,1 ,} and
the kernel

é 0 Gyt) 0 0
QV=gG(t) 0 (- aGWy
€ 0 G 0 H

where G, (t), G, (t),G,(t) are the cumulative
probability distribution functions with nonnegative
support. Suppose that at least one of the functions is
absolutdy continuous with respect to the Lebesgue
measure. Let p=[p,, p;, p,] beaninitial probability
distribution of the process. That stochastic process is
called the 3-state random walk process. In that case
the matrices from the equation (19) are

[1- 6 (9=
é 1 - gO(S+| o) 0 [;]
=& agy(s+,) 1 - @- a)Gy(s+1 ) (22
B 0 -Ty(s+ly) 1§
where

gi(s)= f‘ﬁ’ G, (t),i =0.1,2.
0

ERo(9)0
R(9=6R (S5
ng (S)H
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a=04, b=004,9g=002 1,=01,=011,=
As+| -G o(s+l 0)u Since the matrices (22) and (23) are
H(s) S+| -G L(s+1)0 u (23) - B
[I-q (9]=
§s+| Gz (s+I z)g
é 0.0025 0 u
The Laplace transform of unconditional reliability é oon (005+5)? oos a
function is =8 045545 1 -06g5:4
g 0 00004 1 E
-~ ~ ~ ~ (0.22+5)2
R(S) = poRy(s) + P,R.(S) + PR (9)
é 1_ _00025 u
Example 2. 5 & 5 s00+9?
Assume that H (S) = g s+%).l B (s+0. 8(?)414+s) tjl
1 0.0004
Po =1 p, = 0, p, = 0 s+l 2 (s+0.2)(0.22+s)2
and From solution of equation (19), in this case, we obtain

G, (t)=1- (L+at)e?",
G,(t)=1- "
G,(t)=1- (L+gt)e 9, t3 0.

The corresponding Laplace transforms are

~ . a
o(S) ss+a)
~ b
Gy(s) S5+ D)
Z(S)_S(S+g)2’
-
5= oy
- b
91(5)—Tb,
_ g’
,(s 5
d,(9) (5+)
Let
p=[100], a=04
and

a(s)

R(S) =
(s) = Ry(s) = 5()

where

a(s) = (0.01623+ 0.23349s + s?)

%(0.05002 + 0.44655s + s°)

b(s) = (0.03083 + 5)(0.07486 + 5)(0.13292 + )

x(0.04882 + 0.44138s + 5?)

Using the MATHEMATICA computer program we
obtain the reiability function as the inverse Laplace
transform

R(t) =0.51646e 12t + 0,23349e 07t

+ 2.28565¢ 013292t

- 2>0.01539" %%t ¢05(0.01075t)
- 2>0.01343e 0%%9 05(0.01075t) .

Figure 3 shows this reliability function.
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Figure 3. Therdiability function from example 2
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The corresponding density function is shown in
Figure 4.
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Figure 4. The density function from example 2

3.4. The Poisson processas afailurerate

Suppose that the random failure rate{l (t) :t3 O} isthe
Poisson process with parameter | > 0. Of course, the
Poisson process is the Markov process with the
counting state space S={012,...}. That process can
be treated as the semi-Markov process defined on by
theinitial distribution p =[1,0,0,...] and the kernel

€0 G,(t) 0 0 Y|
é u
éO 0 G, (1) 0 ]
Q=€ 0 0 Gyt 04
é u
8. -H

where

G (t)=1-¢'"130,i=012,..

The Poisson process is of course a Markov process
too.

Applying equation (19), Grabski [3] proved the
following theorem:

If the random failure rate {I (t):t3 O} isthe Poisson

process with parameter | >0, than the reliability

function defined by (16) takes form
R(t) =exp{- 1 [t- 1+exp(-1)]},t3 0.

The corresponding density function is given by the
formula

f@t)=1 exp{-| [t- 1+exp(-t)]}[1- exp(-1)],t3 O.
Those functions with parameter | = 0.2 areshownin
Figure 5 and Figure 6.

1
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0.2
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Figure 5. The rdiability function for the Poisson
process
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Figure 6. The density function for the Poisson process

3.5. The Furry-Yule processas a failurerate

The Furry-Yule is the semi-Markov process on the
counting state space S={012,..}with the initial
distribution p =[1,0,0,...] and the kernel similar to the
Poison process

€0 Gy(t) O 0 .0
e u
@0 0 GO 0 .
Q=€ 0 0 G,(1) oy
e u
g.. .H

where

G (t)=1- '™ t30,i=012,..

The Furry-Yule process is also the Markov process.
Assume that the random failure rate {I (t):t3 O} is
the Furry-Yule process with parameter | >0. The
following theorem is proved by Grab ski [4]:

If the random failure rate {I (t):t3 O} is the Furry-
Yule process with parameter | >0, then the
reliability function defined by (1) isgiven by

-81-



F.Grabski The random failure rate

- RTA# 3-4,2007, December - Special Issue

__(+Dep-10 o

RO 1+1 exp[- (I +Dt]’

The corresponding density functionis

_(+Dexp[l- (I +1)t] 20

' {1+1 exp[- (I +Dt]}?

Those functions with parameter | = 0.2 are shownin
Figure 7 and Figure 8.

1
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Figure 7. The rdiability function for the Furry-Yule
process
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Figure 8. The density function for the Furry-Yule
process

4. Conclusion

Frequently, because of the randomly changeable
environmental conditions and tasks, the assumption
that a failure rate of an object is a random process
seems to be proper and natural. We obtain the new
interesting classes of reliability functions for the
different stochastic failure rate processes.
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Abstract

The models of the non-renewal reliability systems with dependent times to failure of components are presented.
The dependence arises from some common environmental stresses and shocks. It is assumed that the failure
occurs only because of two independent sources common for two neighbour components. The reliability function
of series and paralle systems with components depending on common sources are computed. The rdiability

functions of the systems with dependent and independent life lengths of components are compared.

1. Introduction

The problem of determining the rdiability function of
the system with dependent components is important
but difficult to solve. Many papers are devoted to it i.e.
[1],[2], [3], [4]- Inthe Barlow & Proshan book [1975],
there is defined, based on the reliability theory,
multivariate exponential distribution as a distribution
of a random vector, the coordinates of which are
dependent random variables defining life lengths of the
components. Their dependence arises from some
environmental common sources of shocks. Using that
idea we are going to present some examples of systems
with dependent components, giving up the assumption
that the joint survival probability is exponentia and
accepting the assumption that the failure occurs only
because of two independent sources common for two
neighbour components.

Assume that due to rdiability there are n ordered
components

E=(e,e,,....€,).

Assume also that n+1 independent sources of shocks
are present in the environment

Z=(2,,2y,y2,,Zp41)

and each component e can be destroyed only because
of shocks from two sources z and Zzi.

Let U; be non-negative random variable defining the
time to failure of the component caused by the shock
from the source z. Thus the life length of the object
depends on the random vector

U=U,U,....U,U.,). )

Admit that the coordinates of the vector are

independent random variables with distributions
defined as follows

G (u)=PU, £y;), i=12..,n+1 2
The life length of the component ¢ is a random
variable satisfy

T, =min(U;,U,,), i=12..,n. 3

Notice that two neighbour components in the sequence
(e,e,,...,e,) have one common source of shock —
depend on the same random variable. The random
variables Ty, T,,...,T, are dependent. Ther joint
distribution is expressed by means of the multivariate
reiability function and it can be easily determined:
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R(t,,t,,....t,)=P(T, >t,,T, >t,,.. T, >t,)
=P(min(U,,U,)>t;,,mn(U,,U;)>t,,

o min(U U 1) >t,)

=PWU, >t,,U, > max(t,,t,),

U, >max(t,q,t,),U, 4 >t,)

' n+l
=PU,>t)PU, >max(t,,t,))

..PU, >max(t, ,,t,)PU >t,).

n+l

Thus

R(t;,t, . t,) =G (t,) G, (Max(ty,t,)) ...
4)
Gn (max(tn-btn) Gn+1(tn)

where

Gi(u)=PU, >u)=1- G (u) =P(T £u;),
i=12,..,n+1.
The reliability functions of the components can be

obtained as marginal distributions computing the limit
of the function (4), when

t.,®0",..,t ® 0"

P41 yeey Uy

t,® 0",..,t, , ® 0,
R () =P(T, >t) =G (t) G (t), 1=12..,n. (5)

Thebivariate reliability functions can be determined

by computing the limit of (4), when
L®0",..t,®0", t,®0,.t,®0",
t,,®0",.,t ®0".

j+1 1 bp
Rij (ti1tj):P(Ti >ti1Tj >tj)

R (6)
=G, (1) Gru(t) G; (t;) Galt)),

i+1<j, i,j=12,..,n-1,

R (t,t;) =P(T; >t,,T; >t;)
:C_gi (ti)C_5i+1(max(ti1ti+1))c_5i+z(ti+1)1 (1)
i+1=j, i,j=12..,n-1

it could be proved that

P(T, >t |T, >t,,..., T, >t,)

(8)
=P(M >t T, >t,)
and generally
P(Ti >tl |Ti+l >1:i+11"'1-|-n >tn)
(9)

=P(T; >t [Ty >ty), 1=12,...,n- 1.

That property asserts that the life length of e depends
only on thelife length of the next component e.,, does
not depend on the life lengths of the rest of the
components. That is a certain kind of Markov property.

2. Reliability of the object with the series
structure

If the object has a series rdiability structure then its
life length T is the random variable defined by the
formula

T =min(T,,T,,....T,). (20)
Using (4) we can determine the reliability function:

R(t) = P(T >t) = P(T, >t,T, >t,..., T, >t)
=R(t,t,...,) (11)

=G, (1) G, (1) ... G, (t) Gy (1).

Let us compare the function with the reliability
function of a series system in which the life lengths of
the components Ty, T,, ..., T, are independent and
their rdiability functions are defined by (5). Let

R(t),t3 0 be a rdiability function of that system. It
satisfies
R(t)=P(T >t)=P(T, >t,T, >t,K,T, >t)

=R (R (KR, (1)
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=G, (1)G, (1)G, (G5 KG, ()G, (1)Gaa (1)
=G,()G,(KG,(HR(1) (12)

Thus, for t3 0

R(t) £ R(t)
holds.
The inequality means that the reliability of a series
system with dependent (in the considering sense) life
lengths of components is greater than (or equal) to the
reliability of that system with independent life lengths
of components and the same distributions as the
marginalsof Ty, Ty, ..., T, .
Accepting the assumption about independence of the
life lengths of the components even though the random
variables describing the life lengths are dependent, we
make an obvious mistake but that eror is , safe”
because the real series system has a greater reliability.
That estimation is very conservative.

Example 1.

Assume that a non-negative random variable Ui,
describing time to failure of the component caused by
the shock from source z  has a Welbull distribution
with parameters

a;,l,,1i=12..,n+1
for uy;>0
G (u)=PU, >u)=e'"%" =12 n+1.

The rdiability function of a series system with
dependent components satisfies

R(t) = P(T >t) =G,(t) G, (1) ... G, (t) G, (1)
= o (1%t pagt®Hl)
For n=3 and
a, =12 ,1,=01a,=2 1,=02,
we get
R(t) = P(T >t) = g 02 +02%+01?2s02%)

The graph of the function is presented in Figure 1.

R(Y)

0.8
0.6
0.4

0.2

0.5 1 15 2t

Figure 1. The graph of the seriesreliability function
with dependent components

Thereliability function F~z(t),t3 0 of the series system
with independent life lengths of components, the same
marginals satisfies

R(t) = P(T > 1) = & @12 +04 02?2 0%

3. Reliability of the object of the parallel
structure

The life length of the object of a paralle structureisa
random variable defined by

T =max(T,, T, T,). (13)

Let us compute the reliability function of the object:

R(t)=P(T >t)=1- P(T £1)
=1- P(T,E£t,T, £t,.., T, £1) (14)

— P({Tl >t} E{T2 >t} E .. E{Tn >t})'

Using the formula of probability of a sum of events we
obtain

R(t)=P(T >t)= 4 P(T, >t)- & P(T, >t,T, >t)
i=1 i

ij=1

n
+ a P(T>tT,>t,T >t)-..
i,j k=1
i<j<

Fl

+(-D"P(T, >t,T, >t,..., T, >t).

gy I

Hence and from (4), (6), (7) we get
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RO=8G G0 & GGG 1T

i,j=1
i+1<j

-8G5, 0G0 (15)

W (-D™G, (1) G, (1) ... G, (1) G, ., (1)
Particularly, for n=3 wehave,
R(t) =G, (t) G, (t) + G, (t) G4 (t) + G4(t) G, (1)
- G,(1) G,(1) G5(t) - G, (1) G4(1) G, (1)

- Gy(t) G, (1) Gs(1) G4 (1)
(16)
+Gy(t) G, (1) G (1) G4 (1)

=G, (1) G, (1) + G, (t) G, (t) + G4(t) G, ()
+G,(t) G, (t) G,(t) - G, (1) G,(t) G, (1)

If Ty, Ty, ..., T, areindependent then

=1- P(T, £0)P(T, £1)..P(T, £1)
=1-[1- R(®I1- R®)]...[1- R, 1)]
=1- [1- G, (1) G, (D][1- G, (1) G5(1)]
1 By () By (O],
Forn=3
R(t)=1- [1- G, G,M][1- G, (1) G,(t)]
{1- G4(t) G, (1)].
After multiplication we get
R(t) =G, (1) G, (t) + G, (t) Gy (t) + Gy (t) Gy (1)

- G,(1) G, () G, (1) G4 ()

- Gy(t) G, (1G5 (1) G, ()
- G,(t) G5(1) G5 (t) G4 (1)
+G,(1) G, (1) G, (1) G, (1)G4(t) G, (1)
Notice that
ﬁz(t) - R(t) =G, (t) G, (t) G4(t) + G, (t) G4(t) G, (t)
- Gi(1) G, (1) G, (1) Gs (1)

- Gi(t) G, ()G (1) G, (1)

- G, (t) G5(t) G5(t) G, (1) +

+G, (1) G, (t) G, (t) G5(t)Gs(t) G, (1)
=G, (1) G () [G, (1) + G, (1)

- Gy(1) G, (1) - Gy (1) G, (1)

- G4(t) G,(t) + G,(t) G,(1)G,(t) G, (1))

Let A, i=1, 2, 3,4 beindependent events with
probahilities defined by

P(A)=G(t), i=1234.
The expression

G(t) +G, (1) - G, (1) G, (1) - G, (1) G, (1)

- G4(t) G, (t) + G, (1) G, (t)G;(t) G, ()
can be rewritten as

P(A) +P(A,)- P(A)P(A,)

- P(A)P(A,)- P(A5)P(A,)

+ P(A)P(A,)P(A;)P(A,)

=P(AEA)- P(AGA)EP(ACA)).

As
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AEAEACA)E(ACA),

So

P(ALEA)® P(ACA)E(ACA)).
Thus

R()3 R(1).

The inequality can be proved for any n by the
induction. It assures that the reliability of the paralle
system with the independent components is greater
than (or equal) to the reiability of that system with
dependent components.

Computing the reliability of the real systems we often
assume that the components life lengths are
independent even though the random variables
describing the life lengths are dependent. That example
shows that such assumption leads towards careless
conclusions. The real parald system may have
significantly lower reliability. Moreover, we come to
the ssimilar conclusions if we take under consideration
more general assumption about the association of the
random variables Ty, Tp, ..., Ty [1].

Example 2.

Assume as previoudy that a non-negative random

variable U; , describing time to failure of the
component caused by the source z has a Waeibull
distribution with parameters

a;,l;,i=12..,n+1L
Let n=3. Thenfor u >0

G (u)=PU; >u) =e'M | 121,234,
As previously

a;, =12 ,1,=0%4a,=2 1,=02

a,=22, 1,=01 a,=3 1,=02

Using (16) we obtain the reliability function of the
paralld system with dependent components. For t > 0
it satisfies

30)

0.8 -
0.6
0.4+

0.2+

1 2 3 4 5 6t

Figure 2. The graph of the reliability function of the
paralld system with dependent components

R(t) =G, (t) G, (1) + G, (t) G4(t) + G4(t) G, (t)
+G,(1) G, (1) G, (1) - G,(t) G,(t) G,(t)
—e 0.112+0.2t2) e (0.2t2+0.122)

22 3 12 2 22
- (0.1t5<+0.2t - (0.1t—<+0.2t“+0.1t
+el ). e )

e (0.22+0.1t%2+0.2t3)

Figure 2. Presents its graph.

4. Conclusion

The rdiability of a series system with dependent (in
the considered sense) life lengths of components is
greater than (or equal) to the reliability of that system
with independent life lengths of components.

Assuming the independence of the life lengths of the
components even though the random variables
describing the life lengths are dependent, we make a
mistake but that error is ,,saf€’ because the real series
system has a greater reliability. The estimation of the
reliability function is very conservative.

The reliability of the paralel system with the
independent components is greater than (or equal) to
the rdiability of that system with dependent
components.

Computing the reliability of the real systems we often
assume that the components life lengths are
independent even though the random variables
describing the life lengths are dependent. The
examples presented here show that such assumption
leads towards careless conclusions. The real paralle
system may have significantly lower reliability.
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Abstract

Repairable system analysis is in nature an evaluation of repair effects. Recent tendency in reliability engineering
literature was estimating system repair effects or linking repair to certain covariate to extract repair impacts by
imposing repair regimes during system reliability analysis. In this paper, we develop a differentia equation
motivated regression (abbreviated as DEMR) model with a random fuzzy error term based on the axiomatic
framework of self-dual fuzzy credibility measure theory proposed by Liu [5] and grey differential equation
models. The fuzzy variable indexes the random fuzzy error term will be used to facilitate the evaluation of repair
effects. We further propose a parameter estimation approach for the fuzzy variable (repair effect) under the

maximum entropy principle.

1. Introduction

Repairable system analysis is in nature an evaluation
of repair effects. Recent tendency in reliability
engineering literature was estimating system repair
effects or linking repair to certain covariate to extract
repair impacts by imposing repair regimes to the
system. Guo [3], [4] proposed an approach to isolate
repair effects in terms of grey differential equation
modelling, particularly, the one-variable first order
differential equation model, abbreviated as GM (1,1)
model, initiated by Deng [2]. The efforts of modelling
of system repair effects in terms of grey differential
equation models has attracted attention from because
it is easy to calculated, for example, in Microsoft
Excd. However, thee were two fundamental
problems necessary to be addressed. The first issueis
the nature of the GM(1,1) model. In The second
fundamental problem is GM(1,1) model is a
deterministic approach and is just a delicate
approximation approach and in nature ignores the
regression eror structure, which may be very
reasonable if the sample size istoo small, however, in
general, Deng's approach results in information loss,
particularly he used the adjective word "grey",
implying grey uncertainty involved, but there was not
uncertainty structure build up to describe "grey
uncertainty”. In other words, the existing GM(1,1)

model has a good idea without a convincingly
rigorous mathematical foundation yet.

In this paper, we will review the coupling principle
materidization in GM(1,1) model in section 2. In
section 3, will propose a families of first order
differential equation motivated regression models
under unequal-gaped data, which is suitable for the
usages in system functioning time anaysis. In section
4, we argue that the differential equation motivated
regression model is a coupling regression model with
random fuzzy error terms in nature. In section 5,
review Liu's [5] fuzzy credibility measure theory and
then discuss the random fuzzy variable theory in order
to establish the differentiad equation motivated
regression models as a coupling regression with
random fuzzy eror terms. In section 6, we will
discussthe parameter estimation for the fuzzy variable
repair effect indexing the random fuzzy error terms of
the differential equation motivated regression
modelling on system functioning time sequence under
maximum entropy principle. Section 7 concludes the

paper.
2. An univariate DEMR model

The success of GM(1,1) model lies on the following
two aspects: data accumulative generation operator
(abbreviated as AGO), which is the partial sum
operation in algebra, and a simple regression model
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coupled with a first-order linear constant coefficient
differential equation model, which Deng [2] called is
as whitening differential equation or the shadow
differential equation. Let X =(xX? (1), X (2),..., X?
(n)) be a data sequence, and the partial sum with
respect to X©

Kk
a x9(3), k=234K,n,

i=1

xY (k) = @)

and the mean of two consecutive partial sums, which
is used as an approximation to the primitive function

of X (t)

20 (k) = %[xﬂ) (k) +x9 (k- 1)]. @

Definition 1. Given a (dtrictly positive) discrete real-
valued data sequence X© =(xX%(1), X9(2),..., XO(n)),
the equation

xOk)=a +b(- 2% (K))+e,,
k=234K,n,

)

“coupled” with the first-order constant coefficient
linear ordinary differential equation.

1 @
| dX (t) + bX(l) (t) =a
P at

i
ixO(k)=a + b(— z® (k))+ e.,.k=234,K,n

is called a univariate DEMR mode with respect to the
data sequence X@ = (xX21), X9 (2), ..., X%n)) .
Parameter B is called the develo Jomg coefficient,
parameter a isthe grey input, term xX? is called agrey
derivative and term xX®(K) is called the K" 1-AGO of
X© value (partial sum in fact). Furthermore, the
differential equation dx®/dt + px® = « in Eq. (4) is
called the whitening differential equation or the
shadow equation of the grey differential equation Eq.
(3) by Deng [2]. The unknown parameter values (a.[3)
can be estimated in terms of a standard regression.
Note that Eqg. (3) can be re-written as in a simple
regression form,

Yy, =a +bx, +e,, k=234,K,n, 5)

where

y, =x9(), x. =-z9(k), k=234,K,n. (6)

The estimate for regression parameter pair(a,b),
denoted as (a,b), can be calculated by,

(@b =(X"x)"xTY @)
where
a - z9Q2)u & (2)u
X :3 ' Z(; (3)§ Y= §X<0;A(3)§. ®
8 -2m8 &M
The grey filtering-prediction equation is thus
£ (k) =& (k) - £9(k- 1), 9
where
£9 (k +1) = gx“” 1- aﬁe . (10)

Note that Eq. (10) is the discrete version of the
solution to the differential equation (Eq. (4))

x® = (11)

co:rg<co~
o | o)

® au
0) - b uue

The typica goodness-of-fit measure of GM(1,1)
model is the (absolute) relative error described by
Deng[2], i.e

X9 ()- €2
ek) = O (K) , k=234K,n, (12
and the modd efficiency is defined as
nlaz e(i) . (13)

The nature of the univariate DEMR mode can be
identified as that the model couples a differential
equation model and a simple regression mode
together organically. The form of the motivated
differential  equation (i.e, Deng's whitening
differential equation) in Eq. (4) determines the form
of the coupling regression (i.e., CREG) in Eq. (3). The
data assmilated parameter pair (a,b) in CREG
determines the system parameter pair(a,b). The
coupling trandlation ruleislisted in Table 1.
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Table 1. Coupling Rule in Univariate DEMT M odel

Tem | MotivatedDE | Coupling REG
Trandation between MDE and CREG
Intrinsic Continuous Discrete
feature
Independent t k
Variable
1%-order o) (0)
Derivative dx™ (1) / dt x7 (k)
2%-order (2@ 2 -1
Derivative dxT () /at x 7 (k)
Primitive @ @
function X (t) z (k)
Model ax® . (0) (1) —
Formation 7(t)+bx()(t):a X (k)+bZ (k) -a
Parameter Coupling
Parameter (a , b) (a,b)
Dynamics X (t) = B (k+D) =
(Solution) & ad a 3 N
&9 (- Euerhurg € 0 ())- BlUn, 8
é u bH b
Filtering 0) (4} = ) (+) —
(Prediction) | X (D) ()=
g - X (pe”| B k+)- £K

In DEMR modelling, the motivated differentia
equation and the coupling regression model are not
separable but are organic integration. The DEMR
models are differential equation motivated but defined
by syssem data A DEMR model sarts with a
motivated differential equation, then the coupling
regression mode! is specified in the form “trandated”
from the form of the motivated differential equation,
in return, in terms of coupling regression model, the
parameters specifying the motivated differential
equation are estimated under L,-optimality, and
finally, the solution to the motivated differential
equation (or the discredited solution) equipped with
data-assimilated parameters is used for system
analysis or prediction. In nature a DEMR model is a
coupling of a motivated differential equation and a
regression formed by the discredited version of the
motivated differential  equation. We cal the
“trandation” rule in grey differential equation
modelling as a coupling principle.

3. Unequal-gapped differential equation
motivated regression model with term of

product of exponential and sine function

The basic form of the first order linear differentia
equation with constant term inright sideis

%+bx=aedtsin(wt +v ) (14)

Note here, the proposal of the motivated differential
equation in Eqg. (14) is featured by the term

ae™ sinwt to replacing the constant term a in Eq. (4)
with an intention that the fluctuating pattern of

e sin(wt +v ) will help the model goodness-of-fit.
Then the solution to Eq. (14) is

X=X, X, (25
where

X, =c,e’”, (16)
is the solution to the homogeneous equation

o +ax=0 17)

dt
while a particular solution to the motivated
differential equation Eq. (14) takesaform

x, = e*(A,sin(wt +v )+ B, coswt +v )). (18)

Note that X, satisfies Eq. (14), thus substitute the
particular solution into Eq. (14), we obtain

dxp
— + bx
dt

p
= Ade® sin(wt +v )+ Bde™ cos(wt +v )
+ Awe™ coswt +v )+ Bwe® sin(wt +v )
+ Ajbe* sin(wt +v )+ B,be® coswt +v )
=ae® sn(wt +v ), (19)

which leads to an eguation system by comparing the

coefficients of tem e*sin(wt+v) and term
e (wt +Vv ) respectively,

1A(d +b)- Bw=a

% (20)

f Aw + By (d +b)=0

Solving the linear equation Eq. (19), we obtain
the coefficients A, and B, respectively as follows
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i _ (d+b)a
i o= +(b +d)? +b(- 29@t))+e,, k=234,K,n,(24)
[ (21)
T aw where
[Bp=-—5———
£ w?+(b+d)

In theory, the expressions of A, and B, will
determine the particular solution x;,

X, = A" sin(wt +v )
+ B,e" cos(wt +v ) (22)
which will result in the general solution to Eq. (14) as
x=ce ™ +Ae" sin(wt+v )

+ B,e" cos(wt +v ) (23)
Note that for the unequal-gapped data sequence,
x© = (x(o) (), X0 (t,).L, X0 (tn)) , the coupling (or

trandation) rule is dlightly different from the equal-
gapped data sequence.

Table 2. Coupling Principle in unegual gapped
GM(1,1) Modd.

Tem [ MotivatedDE | Coupling REG
Model Formation
Intrinsic Continuous Discrete
feature
Independent t ty
Variable
Response 0 0
X (t) X (t)
1%-order @ 0
Derivative dx (t) /dt X( ) (tk)
2" order 2,0 2 o)(t 0
Derivative d°x (t)/dt M
f- T
Primitive @ D
function X7 (1) 27 ()
Data Assimilation in M odel
Parameter (@.,b) (a,b)
Dynamic %+bx:ae“s'n(wt+v) K (t,) =ae* sin(wt, +v ) +b(- 27 (1))
law dt
Dynamics x® (¢ =ce™ @ (1) = e
(Solution) ( u)1 ; +AeM sin(wt, +v)
+Aetsin(wt+v) «
@ +Bye™ cos(wt, +V)
+Bye™ cos(wt +v )
Filtering X9 (t) =- boe™ K (t,)=-bge
(Prediction) | +(Aw+Bd)e* cos(wt+v) +( A+ Byd) e cos(wt, +v )
+(Ad- Bw)e*sin(wt+v) +(Ad- Bw)e*sin(wt, +v)

The coupling regressionis

xO(t,) =ae™ sin(wt, +v )

29(t,) = 22 (L),

29, ) = z29(t,,) + 22t ), - t,_,)
k=234,K,n. (25)
The parameter pair (a,b) is obtained by least-square

estimation (a,b)" =(XTX)_l XY , where

ée™ dn(wt, +v ) - z9(t)U
e sinwt, +v ) - z29(t,)g

-€
e i g

e

g™ sn(wt, +v) - 29,4

€z (t,)u

e(o) u

~ )

e ) U

e

ez (t.)g

since dand ware given (in a manner by trials and

errors).
Formally, we have a DEMR model as

10X

i +bx=ae® sinfwt +v )
P (27)

:
ixOt,) =ae® st +v )+b(— z® (tk))+ek.

4. Fuzzy repair effect structure

In standard regression modelling exercises, it is often
to assume that the error terms e, i=12L,n are
random with zero mean and constant variance, i.e.,
E[e]=0 and VAR[g]=s? i=12L,n. It is
typically assuming a normal distribution with zero
mean and constant variance, i.e., N(O,sz).

Furthermore, as we pointed out that a grey differential
equation model is a motivated differential equation
motivated regression, which takes the form trandated
from the motivated differentia equation, as shown in
Table 1 for GM(1,1) case. However, we should be
fully aware that trandation back and forward between
the motivated differential equation and the coupling
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regression will bring in new error which is different
from the random sampling error N (0,32). The errors
brought in come from the steps of the usage of
difference X% (k) =x¥ (k)- x¥ (k- 1)to replace the
derivative (dx/dt)_ and the usage of the average
accumulated partid sum Z7(t)to replace the

primitive function x“(t,) during the trandation

between the motivated differential equation and the
coupling regression.

Our simulation studies have shown that the coupling-
introduced error is dependent upon the grids sizeD, or
equivalent to the total number of approximation N.
The simulation evidences have shown that the larger
the number of approximating grid, or equivalently, the
smaller the approximating grid, the coupling
trandation error is smaller. However, the coupling
trandation error and the approximating grid do not
hold a deterministic functional relation. What we can
see is the functional rdation has a certain degree of
beongingness. In other words, the coupling
tranglation process induces a fuzzy error term, denoted
as Vv with a membership function.

We perform a simulation study of the error occurrence
frequencies of approximating cos(p/2) by

(sin(p/2) - sin(p/2+Dx))/Dx.

error's frequency Chart

for)
e

Y

N\
4\&@

0 05

frequency
N

oS

2
z

error

Figure 1. Error occurrence frequency

Therefore, in general the error terms of a differential
equation motivated regression model (i.e, grey
differential equation in current grey theory literature)
is fuzzy because the vague nature of the error
OCCurrences.

As a standard exercise, the fuzzy error component g

may be assumed as triangular fuzzy variable with a
membership function

1s+o0 if - 0£s<0
: )
10-S if 0Esfo
m(s)=f—— (28)
-'1-0 otherwise
1

which has afuzzy mean zero.

However, in the modelling of system functioning
times, we further note that the repair will reset the
system dynamic rule so that the repair impact may be
understood as a fuzzy variable having a triangular
membership

:z_a if af z<b
:|:b' a
c-z .
2)={—— if bEz<c 29

m (2 :c b (29)

%O otherwise
Thefuzzy mean of the fuzzy repair effect isthus

1

E,(r) =, (a+2+0), (30)

which provides a repair effect structure. Therefore, the
“composite’ fuzzy “eror” term appearing in the

differential  equation motivated regression for
modelling a system function time will be
z,=g+r, i=23K,n, (31)
with a triangular membership function, i.e.,
:m if a-v £W<b
.{ b- a+v
[c+v - w .
W) =j—— if bEw<c+v 32
MW=L (32)
%0 otherwise

because the sum of two triangular fuzzy variables is
still atriangular fuzzy variable. Thetotal error

X,=z,+e =(r,+g)+e, i =23K,n, (33)
which is a sequence of random fuzzy variables
because the summation nature of a random fuzzy
variable and a fuzzy variable according to Liu [5].

Now, we reach a point that the random fuzzy variable
concept is involved and therefore it is necessary to
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have a quick review on the relevant theoretical
foundation.

5. A random fuzzy variable foundation

First we need to review the fuzzy credibility measure
theory foundation proposed by Liu [5], then we will
establish the normal random fuzzy variable theory for
a facilitation of error anadysis in the differential
equation motivated regression models.

Let Q be a nonempty set, and 2° the power set on
Q. Each dement, let ussay, Al Q,Al 2% iscalled
an event. A number denoted as Cr{A},
OE£Cr{A} £1, is assigned to event Al 29, which
indicates the credibility grade with which event
AT 2° occurs. Cr{ A} satisfies following axioms
given by Liu [5]:

Axiom1. Cr{Q} =1.

Axiom 2. Cr{}is non-decreasing, i.e, whenever
Al B,cr{A £Cr{B}.

Axiom 3. Cr{¥ is sdf-dual,
Al 2°,cr{ A +cr{ A} =1.
Axiom4. Cr{U; A} U0.5=supgCr{ A} for any { A}
with Cr{A} £ 05.

Axiom 5. Let set functions Cr {¥ : 2% ® [0,]] satisfy
Axioms1-4,and Q=Q," Q,” L™ Q,, then:

i.e, for any

cria,,a,,K,q,} = Cr{a,} Ucr{g,} UL UCHg,} (34)
for each {ql,qz,K,qp}T 22,

Definition 5.1. Liu [5] Any set function
Cr:2° ® [0,1] satisfies Axioms 1-4 is called a (U,U)-
credibility measure (or classical credibility measure).
The triple (Q,2°,Cr) is called the (U,U)-crediibility
measure space.

Definition 5.2. Liu [5] A fuzzy variable X
mapping from credibility spaoe(Q,ZQ,Cr) to the set
of real numbers, i.e, X :(Q,ZQ,Cr) ® R.

is a

Definition 5.3. Liu [5] The (induced) membership
function of afuzzy variable X on (Q,ZQ,Cr) is:

m(x) =(2Cr{x =x})U1, xI R (35)

Conversely, for given membership function the
credibility measure is determined by the credibility
inversion theorem.

Theorem 5.4. Liu [5] Letx be a fuzzy variable with
membership function m. Thenfor” BT R,

cr{x1 B} :%gf;eij’r(xﬁl- supr’r(x)g (36)

xi B xi B®

As an example, if the set B is degenerated into a point
X, then

Cr{x x}:igen(x)ﬂ- supm(y)2 " xi R(37)
2¢ yix 2

Definition 5.5. Liu [5] The credibility distribution

F:R® [0,1] of afuzzy variable x on (Q,ZQ,Cr) is

Foo=crfaT Q@) £%. (39)

The credibility distribution F(x) is the accumulated
credibility grade that the fuzzy variable X takes a

value less than or equal to a rea numberx| R.
Generally speaking, the credibility distribution @ is
neither left-continuous nor right-continuous.

Theorem 5.6. Liu [5] L&t X be a fuzzy variable on

(Q,ZQ,Cr) with membership function p. Then its
credibility distribution,

1% O n T
F(X)=§gsupm(y)+1- supm(y)5 " xI R (39)
€ yEx y>x 1]

Definition 5.7. Liu [5] Let ® be the credibility
distribution of the fuzzy variable x . Then function

f :R® [0,+¥) of a fuzzy variable x is called a
credibility density function such that,
F()= ¢ (ydy, "xI R. (40)
-¥

Now we are ready to state the normal random fuzzy
variable theory for the error analysisin the repairable
system modelling.

Liu [5] defines a random fuzzy variable as a mapping

from the credibility space (Q,ZQ,Cr) to a set of

random variables. We would like to present a
definition similar to that of stochastic process in
probability theory and expect readers who are familiar
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with the basic concept of stochastic processes can
understand the comparative definition.

Definition 5.8. A random fuzzy variable, denoted as
x={Xb(q),qT Q} , iIsa collection of random variables
Xb
(W,A,Pr) and indexed by a fuzzy variable b(q)

defined on the credibility space (Q,29,Cr ).
Similar to the interpretation of a stochastic process,
X ={Xt,tT R*}, a random fuzzy variable is a

defined on the common probability space

bivariate mapping from (W QA" ZQ) to the space

(R,B). As to the index, in stochastic process theory,

index used is referred to as time typically, which is a
positive (scalar variable), while in the random fuzzy
variable theory, the “index” is a fuzzy variable, say,
b. Using uncertain parameter as index is not starting

in random fuzzy variable definition. In stochastic
process theory we already know that the stochastic

process X={Xt(w),wi V\} uses stopping time

t (W), wOW, which is an (uncertain) random variable

asitsindex.

In random fuzzy variable theory, we may say that that
average chance measure, denoted as ch, plays a
similar role similar to a probability measure, denoted
as Pr, in probability theory.

Definition 5.9. Liu and Liu [6] Let x be a random
fuzzy variable, then the average chance measure
denoted by ch{J}, of a random fuzzy event{x £ x},

is
chix £ x} = i‘)Cr{qT QPrix(@)exs alda. (41)

Then function Y() is caled as average chance
distribution if and only if

Y (X) =chfx £ x}. (42)

Liu [5] stated that if a random variable h has zero
mean and a fuzzy variablez , then the sum of the two,
h +z , results in a random fuzzy variable x . Now, it
is time to find the average chance distribution for a
normal random fuzzy variable x:d N (z,sz), where z is

atriangular fuzzy variable and s ?is a given positive
real number. Note that fuzzy event
{al Q:Prix@) £x°a}

0 iql Q:F(;ae(' Z(q)93 ad
T e S o %

L (43)

0 {97 Q:x®z(a)+sF @)}

0 {qT Q:z(q)£ x- sF'l(a)} (43)
The fuzzy mean is assumed to have a triangular
membership function

1T w-a,
T a, EwEND,
T bz - &
i G-w
mWw=i ——— b Efwfa, (44)
i G-h
: 0 otherwise
1
and
i
P00 wes
::: Mo L ewen,
I 5(—)
F(wW=Crlz £w}=| w+béz _aé% (45)
! £w<
(e on) 2
! 1 w3 ¢,
t

which gives the credibility distribution for the fuzzy
mean, z .

Then the critical step is to derive the expression of
criz @)1 QPfxw.q)£x}2a}.  For  norma
random fuzzy variable with a triangular fuzzy mean,

z@):Prix(w,q)£x3 a}

U {qT Q:z(q)£x-sF'1(a)}. (46)
Then the range for the integration of the integrand
Cr{qT Q:z() £ x- sF'l(a)} with respect to a
islisted in Table 3.

‘ Rangefor a

‘ cr{q0Q:z(@) x- sF*@)} ‘
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- as 0
¥<gfa)<a F(:;a( az2<a<l
s
e [
—ad _sE1(a)-
a £g(a)<h F?( bo_, p@-asd x- sF*(a)- a,
S o e S g 2(bz—a2)
N o
b, £g(a)<c an( €06, p®bo | x-sFi(a)+c-2n
S g e S g 2(Cz-bz)
a)3 5 1
g( ) G 0<a<FQ 09
[

Table 3. Integration range with respect to a

where z=g(a)=x- sF*(a).
Then we obtain the average chance measure for the
event {x (w,q) £ x}

Fae<—azg
sx-sF'@)- aZ
chixw,q)Ext= "¢
b g Z(bz'az)
s 5
ae(—bzg &Gz O
F§T?zfx-sF‘l(a)+cz-2bZ s g
+ 0 da+ olx (47)
0 0 e, - b,) 0
s s
which leads to the average chance distribution
) B . A & Ch s
e
2b-a)s & s 5 &S &
+c, -2bh & ax-b o -C, 0
JXEG -2 ng bzg_ng 2
2. -b) 5 & s 5 &s
&-C, 0 S s
+F z- ouf (u)du
g s g 2b -a)ch
x- by
-y o (Wdu (48)
2e, - b, )

S

6. Fuzzy repair effect estimation under fuzzy
maximum entropy principle

Entropy is a measure of uncertainty. The entropy of
De Luca and Termini [1] characterizes uncertainty
resulting primarily from the linguistic vagueness
rather than resulting from information deficiency, and
vanishes when the fuzzy variable takes al the values
with membership degree 1. However, we hope that the
degree of uncertainty is O when the fuzzy variable

degenerates to a crisp number, and is maximum when
the fuzzy variable is an equi-possible one, i.e., al
values have the same possibility. In order to address
such a requirement, Li and Liu [6] provided a new
definition based on credibility measure.

Definition 6.1.(Fuzzy Entropy) Let x be a continuous
fuzzy variable defined on a credibility space
(Q,ZQ,Cr), then the fuzzy entropy, H[x], is defined
by

H[x]= gsler(fa :x @) = u}))u (49)
where
S(t) =-tint- (1- t)In1- t) (50)

For convenience, we name S(t) as entropy density at
point t.

The maximum entropy principle provides aroute such
that it is possible to select the parameter(s) | that

maximizes the value of entropy function and satisfies
certain given constraints for specifying a membership
function with a given form. However, what we aim at
is not obtaining parameters from the theoretical
entropy function rather we must determine the
parameters based on observations of the fuzzy
variable, say, x . In other words, we need to develop a

criterion to obtain data-assimilated membership
function. Therefore, we suggest an empirical fuzzy
entropy function for parameter searching since the
optimal vaue of the data-dependent object function
has to reflect the constraints specified by
observational data implicitly. The data assimilated
object function is the average of entropy densities
evaluated at {z,z,,L ,z} respectively, i.e,

o Lt]=H slefz@=z:@n)) 6D
where a finite interval [-L,L,], L,>L 30 is

defined for the domain of the entropy. Note that with
the finiteness of empirical entropy,

J-L,L]1® H[Z;]] asymptotically with
parameter constrained by the data structure and
Z1[-L,L], L,>L, %0 which guarantees the
theoretical entropy H [Z] exists and finitein general.

Then, we can estimate the parameter (aZ N ,cz) of

the membership of fuzzy composite error in terms of
maximum entropy principle. Furthermore, we can
isolate a few repair as bad-as-old regime and thus
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repair effect is zero for estimation parameter o for
specifyinge,, the trandation error because under
triangular membership assumption, the empirical
membership can be defined and satisfies the
asymptotical requirements.

7. Conclusion

In this paper, we argue that a differential equation
motivated regression model will result in a regression
model with random fuzzy error terms and thus
complete our mission for solidifying a rigorous
mathematical foundation for the grey modelling on
system repair effects proposed by Guo [3], [4]. The
maximum entropy principle facilitates a way for fuzzy
parameter estimation. However, the average change
distribution is also providing a way for parameter
data-assimilation.
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Abstract

An approach to reliability analysis of two-state systems is introduced and basic reliability characteristics for such
systems are defined. Further, a two-state consecutive “kout of n: F’' sysem composed of two-date
components is defined and the recurrent formulae for its reliability function are proposed. The algorithm for
numerical approach to reliability evaluation is given. Moreover, the application of the proposed rdiability
characteristics and formulae to reiability evaluation of the system of pump stations composed of two-state

componentsisillustrated.

1. Introduction

The assumption that the systems are composed of two-
state components gives the possbility for basic
andysis and diagnosis of ther rdiability. This
assumption allows us to distinguish two states of
system reliability. The system works when its
reliability state is equal to 1 and is failed when its
reliability state is equal to O. In the stationary case the
system reliability is the independent of time probability
that the system is in the rdiability state 1. The main
results determining the stationary reliability and the
algorithms for numerical approach to this reliability
evaluation for consecutive “k out of n: F’ systems are
given for instance in [1], [5]-[6]. An exemplary
technical consecutive “k out of n: F' system can be
found in [3]. Thereis considered the ordered sequence

of n rday sations E, E,,K,E,,, which have to
reroute a signal from a source station E, to a target
station E
means, when the station E;, 1 =0,1,...,n, is operating,
it sends a sggna directly to a sation
E E .The failed station does not send any

i+17***y =min(i+k,n)

n'?

A range of each station is equal to k. It

n+l-

signal. The probability of efficiency of the stations E,
and E ,, isegua to 1. Thesigna from E, to E_,;

cannot be sent, if at least k consecutive stations out of
E.E,.K, E,, aredamaged.

The paper is devoted to extension of these stationary
results to the non-stationary case and applying them in
transmitting then for two-state consecutive “ k out of
n: F sysems with dependent of time rdiability
functions of system components ([3]). Then, the
reiability function, the lifetime mean value and the
lifetime standard deviation are basic characteristics of
the system.

2. Reliability of two-state consecutive “k out of
n: F’ systems

In the non-stationary case of two-state reliability
analysis of consecutive “k out of n: F’ systems we

assumethat ([3]):
— nisthenumber of system components,

E . i=12,...,n, arecomponents of a system,
T. are independent random variables representing

the lifetimes of components E;, i =12,...,n,
— R@®)=P(T >t),t1 <0,¥), is a reliability
function of component E;, i =12,...,n,

F (t)=1- R(t) =P(T, £1),t1 <0,¥), isthe
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distribution function (unrdiability function) of
component E;, i =12,...,n.

Definition 1. A two-state system is called a two-state
consecutive “ k out of n: F’ systemif itisfailed if and
only if at least its k neighbouring components out of

n its components arranged in a sequence of E,, E,,
.., E,, arefailed.

Thefollowing auxiliary theorem is proved in [3], [6].

Lemma 1. The stationary rdiability of the two-state
consecutive “k out of n: F' system composed of
components with independent failures is given by the
following recurrent formula

i
.:.1 for n<k,
| A
i1- Oq; for n=Kk,
1 =1
|

Rk,n :_|,_ pn Rk,n—l (1)
[
:+a Pni Renia
i
'x QO q for n>Kk,
T j=n-i+l

where

— p is a datonary rdiability coefficient of
component E;, i=12,...,n,

— g is a dationary unreliability coefficient of
component E;, i=12,...,n,

- R, isthe dtationary reliability of consecutive “k
out of n: F" system.

After assumption that:

— T, isarandom variable representing the lifetime
of a consecutive “k out of n: F’ system,

— R, () =P(T,, >t),tT <0,¥), is the reliability
function of consecutive “k out of n: F’ system,
Feo(®) =1- R, (t) =P(T,, £1),t1 <0,¥), is

the distribution function of consecutive “k out of n:
F’ system,

we can formulate the following result.

Lemma 2. The reliability function of the two-state
consecutive “k out of n: F' system composed of

components with independent failures is given by the
following recurrent formula

.:.1 for n<Kk,
i1- OF, @) forn=k,
) =1
Ren() =1 R (DR 1) @

Ik
[+ R (ORa()
iy
+><OFJ.(t) for n>k,

for tT <0,¥%).

Motivation. When we assume in formula (1) that

p.(t) =R (), g () =F() for tT <0,¥),
i=12,...,n,

we get formula (2).

From the above theorem, as a particular case for the
system composed of components with identical
reiability functions, we immediately get the following
corollary.

Corollary 1. If components of the two-state

consecutive “ k out of n: F’ system are independent
and have identical reliability functions, i.e.

R () = R(t), F (t) = F(t) for tT <0,¥),
i=12,...,n,

then the reliability function of this systemis given by

i

:::1 for n<k,
il- [F()]" for n=Kk,
Ren()= I ROR 1) k)

I k-1 .
T+R(t)a F'(t)
I i=1

IRy i1 (1) for n>k,
for t1 < 0,¥).

In further considerations we will used the following
reliability characteristics:
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- the mean value of the system lifetime,
¥
E[T, ] = 0 Ren(dat, 4
0

- the second order ordinary moment of the system
lifetime,

E[TZ] = 20 Ren(t)dt, (5)
0
- the standard deviation of the system lifetime,
S = \/ D[Tkn] ' (6)
where
D[Tkn)] = E[Tkzn] - (E[Tkn])2 (7)

3. Algorithm for reliability evaluation of a two-
state consecutive , k out of n: F” system
For numerical approach to evaluation of the reliability

characterigtics, given by (3)-(6), we use the trapezium
rule of numerical integration.

In particular situation, for t, =0, step h, we have

E[T,,]= 0 Ren(D)ct
0
=Za R+ +R, G+ (+D0)] @

¥
E[TZ] = 2¢% Ren(t)dt
0

n-1
[o}

=h

i=0

{t, +ih) R, (t, +ih)

+(to + (I +1) ) R, (, + (i +1) X)), 9

Necessary in (7)-(8) values of function Ry,(t) are
calculated from (2) using the following algorithm.

Algorithm 1.

1. Given:t, k, n, F(t), R(t);

2. Ifk>nthen R (t)=1
3. dseifk=n Rkyn(t) =1-[F@®]"
4. dse
5. fori=0totdo
6. {
7. forj=1tok-1do
8. temp:=temp+ [F(i)]' R .., (0);
9. Ryn(i) = R() MR, (i) +temp;
10.}

where

- k is a length of the sequence of consecutive
components,

nisanumber of al components in sequence,

tisan end of thetimeinterval,

F(t) isadistribution function of components,

R(t) isardiability function of components.

Example implementation of Algorithm 1 and formulas
(3), (8)-(9) in the D programming language is given in
Appendix.

4. Application

From Corollary 1, in a particular case, substituting
k =3 in(3), we get:

-for n=1

R,,(t) =1 for t1 <0,¥), (10)
-for n=2

R,,(t) =1, for t1 <0,¥), (11)
-forn=3

R,5(t) =1- F3(t) for t1 <0,¥), (12)
-for n3 4

Ry, (1) = R(t) Ry, (1) + RE)F (1) Ry, , (1)

+RM[F(1)]® R, 5(t) for tT <0,¥), (13)

Example 1. Let us consider the pump stations
system with n=20 pump stationsE,E,....,.E,.
We assume that this system fails when at least 3
consecutive pump stations are down. Thus, the
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considered pump stations system is a two-date
consecutive “3 out of 20: F’ system, and
according to (9)-(12), its the reliability function is
given by
Rs,zo (t) = R(t) R3,19 (t)

+ROF () Ryy5(t)

+ROIF (O] Ry, (1) (14)
for tT <0,¥).

In the particular case when the lifetimes T, of the
pump stations E, 1=12,K,20 have exponentia
distributions of the form

F(t)=1- e®™ for t3 0,

i.e if the reliability functions of the pump stations E,,
i =1,2,K,20 aregiven by

R(t) =€ %™ for t 3 0,

considering (9)-(12), (13) we get the following
recurrent formula for the reliability R, ,(t) of pump
stations system

R,.(t) =1 for tT <0,¥), (15)
R,,(t) =1 for tT <0,¥), (16)
R,5(t) =1- [1- €®™]° for t1 <0,¥), (17)

R, () =€ oon Rsp.1(t)
+e 0.01t [1 -e 0.0lt] R3Yn_ , (t)

+ oo [1- e»o.on]z Rs,n-3(t) for t1 <0,¥), (18)
n=4y5,...,20.

The values of rdiability function of the system of
pump stations given by (14), calculated by the
computer programme based on the formulae (10)-(18)
and Algorithm 1, are presented in Table 1 and
illustrated in Figure 1.

Table 1. The values of the two-state reliability function
of the pump stations systemfor | =0.01

t R; .2 () 2t R; (1)
0.0 1.0000 0.0000
5.0 0.9980 9.9800

10.0 0.9859 19.7189
15.0 0.9583 28.7499
20.0 0.9137 36.5474
25.0 0.8535 42.6743
30.0 0.7811 46.8657
35.0 0.7008 49.0561
40.0 0.6170 49.3614
45.0 0.5337 48.0347
50.0 0.4541 454117
55.0 0.3805 41.8584
60.0 0.3144 37.7282
65.0 0.2564 33.3331
70.0 0.2066 28.9274
75.0 0.1647 24.7024
80.0 0.1299 20.7893
85.0 0.1016 17.2662
90.0 0.0787 14.1688
95.0 0.0605 11.5004
100.0 0.0462 9.2416
105.0 0.0350 7.3588
110.0 0.0264 5.8107
115.0 0.0198 4.5531
120.0 0.0148 3.5426
125.0 0.0109 2.7385
130.0 0.0081 2.1044
135.0 0.0060 1.6082
140.0 0.0044 1.2229
145.0 0.0032 0.9255
150.0 0.0023 0.6974
155.0 0.0017 0.5235
160.0 0.0012 0.3916
165.0 0.0009 0.2918
170.0 0.0006 0.2168
175.0 0.0004 0.1607
180.0 0.0003 0.1188
185.0 0.0002 0.0876
190.0 0.0002 0.0644
195.0 0.0001 0.0473
200.0 0.0000 0.0347
205.0 0.0000 0.0253
210.0 0.0000 0.0185
215.0 0.0000 0.0135
220.0 0.0000 0.0098
225.0 0.0000 0.0072
230.0 0.0000 0.0052
235.0 0.0000 0.0038
240.0 0.0000 0.0027
245.0 0.0000 0.0020
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250.0 0.0000 0.0014
255.0 0.0000 0.0010
260.0 0.0000 0.0007
265.0 0.0000 0.0005
270.0 0.0000 0.0004
275.0 0.0000 0.0003
280.0 0.0000 0.0002
285.0 0.0000 0.0001
R (t)
1

0.9

0.8

0.7 1

0.6

0.5

0.4
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0.1 1
0 ‘ ‘ ‘ t

0 50 100 150 200

Figure 1. The graph of the pump stations system
reliability function

Using the values given in the Table 1, the formulae
(4)-(9) and numerical integration we find:

- the mean value of the pump stations system lifetime

¥
E[Ts,zo] = 0 Rs0(t)dt €50.8639,
0

- the second order ordinary moment of the pump
stations system lifetime

¥
E[T20 (D] = 26t Raxft)dlt €3246.69,
0

- the standard deviation of the pump stations system
lifetime

s =/D[T, ] =+/659.558 @25.6819.

5. Conclusion

Two recurrent formulae for two-state system reliability
functions, a general one for non-homogeneous and its
simplified form for homogeneous two-state
consecutive “k out of n: F’ systems have been
proposed. The algorithm for rdiability evaluation of

two-state consecutive “k out of n: F’ system has been
shown as well. The formulae and algorithm for two-
state reliability function of a homogeneous two-state
consecutive“ k out of n: F’ system have been applied
to reliability evaluation of the pump stations system.
The considered pump stations system was a two-state
consecutive “3 out of 20: F* system composed of
components with exponential rdiability functions. On
the basis of the recurrent formula and the algorithm for
two-state pump stations system rdiability function the
approximate values have been calculated and presented
in table and illustrated graphically. On the basis of
these values the mean value and standard deviation of
the pump stations system lifetime have been estimated.
The input structural and reliability data of the
considered pump stations system have been assumed
arbitrarily and therefore the obtained its reliability
characteristics evaluations should be only treated as an
illustration of the possibilities of the proposed methods
and solutions.

The proposed methods and solutions and the software
are general and they may be applied to any two-state
consecutive “k out of n: F* systems.

Appendix
We present the D programming language code for
formulas (3), (8)-(9) and Algorithm 1.

import std.stdio;
import std.stream;
import std.math;
import std.string;

const real LAMBDA1 = 0.01;

real Ft(real t) {
return (1-exp(-(LAMBDA1)*t));

real Rt(real t) {
return exp(-(LAMBDA1L)*t);

}
real SigmaFi(redl ii, real k, real t, real n) {
real result = O;
for(real i = ii; i <k; i++) {
result += pow(Ft(t),i)* Rkn(t,k,n-i-1);
}
return result;
}
real Rkn(real t, real k, real n) {
if (n<Kk)
return 1;
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if (n==Kk)
return 1 — pow(Ft(t),n);
return Rt(t)*(Rkn(t, k, n-1) + SigmaFi(1, k, t, n));
}

real trapeziumT (real k, real n, uint p, real t){

real integ = 0;
real step=0;
step=t/p;

for(red i = 0; i <p;i =i+ step){
integ += ((Rkn(i, k, n) +
Rkn(i + step, k, n))*step)/2);
}
return integ;

real trapezium2T (real k, real n, uint p, real ty{
real integ = 0;
real step=0;

step=t/p;

for(real i=0; i <p;i =i+ step){
integ += (((i*Rkn(i, k, n) +
(i + step)*Rkn(i + step, k, n))*step));

return integ;
}

int main(char([][] args) {
real integral = 0;
real integrall = 0;
real dif = 0;
real sq=0;

if (args.length < 3) {
writefIn("Usage\n "~ argg0] ~" t k n\n");
return O;

}

for(real 1 = 0; i < atoi(argd1]); i =1+ 5){
writefIn("%s\t%4s\t%4s\t%s", i, Rkn(i,
atoi(argy2]), atoi(arg9 3])), 2*i*Rkn(i,
atoi(argd2]),atoi(argy 3])), 1 - Rkn(i,
} atoi(args(2]), atoi(args(3])) );

integral=trapeziumT (atoi(argq 2] ), atoi(argd 3]),
atoi(args{4]) );

integral 1=trapezium?2T (atoi(argg[2]), atoi(argd3]),
atoi(argg[4]) );

}

diff=(integral 1)-pow(integral ,2);
sg=sgrt(diff);

writefIn(* The mean value of the system lifetime”);

writefIn("%s", integral );

writefIn(* The second order ordinary moment of the
system lifetime™);

writefIn("%s", integrall);

writefIn("%s", diff);

writefIn(* The standard deviation of the system
lifetime”);

writefIn("%s",sq);

return O;
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Abstract

A multi-state approach to rdiability analysis of systems composed of ageing components is introduced and basic
reliability characteristics for such systems are defined. Further, a multi-state consecutive “ k out of n: F’ system
composed of ageing components is defined and the recurrent formulae for its reliability function are proposed.
Moreover, the application of the proposed reliability characteristics and formulae to reliability evaluation of the

steel cover composed of ageing sheets isillustrated.

1. Introduction

Taking into account the importance of the safety and
operating process effectiveness of technical systems it
seems reasonable to expand the two-state approach to
multi-state approach in their rdiability analysis. The
assumption that the systems are composed of multi-
state components with reliability states degrading in
time [4]-[5], [10] gives the possibility for more precise
anaysis and diagnosis of their reiability and
operational processes’ effectiveness. This assumption
allows us to distinguish a system reliability critical
state to exceed which is either dangerous for the
environment or does not assure the necessary level of
its operational process effectiveness. Then, an
important system safety characteristic is thetimeto the
moment of exceeding the system reliability critical
state and its distribution, which is called the system
risk function. This distribution is strictly related to the
system multi-state reiability function that is a basic
characteristic of the multi-state system. The main
results determining the multi-state reliability functions
and the risk functions of typica series, parallel, series-
paralld, parallel-series, series-“k out of n” and “k out
of n"- series systems with ageing components are
given in [4]-[5]. The paper is devoted to transmitting
these results on the multi-state ageing consecutive “ k
out of n: F" systems[1], [2]-[3], [6], [7]-[8], [9].

2. Multi-state system with ageing components

In the multi-state rdiability analysis to define systems
with degrading components we assume that [4]-[5],
[10]:

- E,i1=12,...,n, arecomponents of a system,

— all components and a system under consideration
havethereliability state set {0,1,...,7}, z3 1,

— thestateindexes are ordered, the state O is the worst
and the state z is the best,

- T, (u),i=12..,n, are independent random
variables representing the lifetimes of components
E; inthe state subset {u,u+l,...,z}, while they were
in the state z at the moment t = 0,

— T,(u), is a random variable representing the
lifetime of a system in the state subset {u,u+1,...,.7z}
whileit was in the state z at the moment t = 0,

— the system state degrades with timet without repair,

e (t) is a component E,; state at the moment t,

t3 0,

— (t) isasystem state at themoment t, t 3 O.

The above assumptions mean that the reliability states

of the system with degrading components may be

changed in time only from better to worse. The way in
which the components and the system reliability states

changeisillustrated in Figure 1.
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transitions
M " T
ojcoNco)
worst state best state

Figure 1. lllustration of reliability states changing in
system with ageing components

The basis of our further consideration is a system
component rdiability function defined as follows.

Definition 1. A vector

R(t») = [R(t0),R(t1).....R(t2)], t* 0,
where

R(t.u) =P(e() * ule(0) =2 = P(Ti(u) > 1)

for t3 0, u=01,..7z i=12..,n, is the probability
that the component E; isin the reiability state subset
{u,u+1,.., 7 a the momentt, t3 0, while it wasin
the reliability state z at the moment t = 0, is called the
multi-state reliability function of a component E;.

Similarly, we can define a multi-state system reliability
function.

Definition 2. A vector

R, () =[1R, tO.R, (t1)...R, (t2)], t3 0,
where

R (tu) =P(s(t) * u[s(0) =2) = P(T(u) > 1),

for t3 0, u=0,1,...,z isthe probability that the system
is in the reliability state subset {u,u+1,...,zZ} at the
moment t, t 3 O, whileit wasintherdiability state z at

the moment t = 0O, is caled the multi-state reliability
function of a system.

Under this definition we have

Ra(t,0) 3 Ry(t,1) 3 ...3 Ry(t,2), t 2 0,
and if

p(t) = [p(t,0), p(t.1)...., p(t.2)], t 2 G,

where

p(t,u) = P(s(t) = u | s(0) = 2),
for t3 O,u=0,1,...,z isthe probability that the system
isinthe stateu at themoment t, t 3 0, whileit wasin
the state z at the moment t = 0, then

Rn(t,0) =1, Ry(t,2 = p(t,2), t 3 0, Q)
and

p(t,u) = Ry(t,u) - Ry(t,u+l),u=0.1,...,21,t3 0. (2
Moreover, if

Rn(t,u)=1for t<0, u=12,..,7z

then
M(u) =E[T(u)] = t‘) Ra(t,u)dt, u=1,2,....2, 3
0

is the mean lifetime of the system in the state subset
{u,u+1l.., 7,

s (u) =4/D[T(u)] = JN(U) - [M()?, (4)
u=12,...,z
where
N(u) = Zt‘)t Rn(t,u)dt, u=1.2,....2, (5)
0

is the standard deviation of the system lifetime in the
state subset {u,u+1,...,Z and moreover

M (u) = t‘)p(t,u)dt, u=1.2..z2 (6)
0

is the mean lifetime of the system in the state u while
theintegrals (3), (4) and (5) are convergent.
Additionally, according to (1), (2), (3) and (6), we get
the following relationships

M (u) = M(u) - M(u+1), u=1.2,...,z-1, (7)
M (2) = M(2).
Close to the multi-state system reliability function its
basic characteristic is the system risk function defined

asfollows.

Definition 3. A probability
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rt) =P(s(t) <r|s(0)=2)=P(T(r) £1t),t3 O,

that the system is in the subset of states worse than the
critical stater, r T{ 1,...,z2 while it was in the reliability
state z at the moment t = 0 is caled arisk function of
the multi-state system.

Considering Definition 3 and Definition 2, we have
r(t) =1- R, (t,r), t30, (8)

and if t is the moment when the system risk function
exceeds a permitted level d, then

t =r'(d), (9)

wherer'l(t), if it exists, is the inverse function of the
risk function r(t).

3. Reliability of a multi-state ageing consecutive
»kout of n: F” system

Definition 4. A multi-state system is called an ageing
consecutive “ k out of n: F” system if it is out of the
reiability state subset {u,u+1,....z if and only if at
least its k neighbouring components out of n its
components arranged in a sequence of E, E,, ..,

E,, areout of thisriability state subset.

In our further analysis, we denote by s ,(t) the
reliability state of the ageing consecutive “ k out of n:
F” system at the moment t, t1 <0,¥), andby T,  (u)

the lifetime of this system in the reliability subset
{u,u+1,...,z. Moreover, we denote by

Ren(tu) = P(s (1) * u[s(0) =2) =P(T ,(u)>1)

for t3 0, u = 0,1,..,z the probability that the
ageing consecutive “ k out of n: F’ system is in the
reliability state subset {u,u+1...,7} a the moment
t, t 2 0, while it wasin the reliability state z a the
moment t = 0 and by

Fk,n(t1u) :1_ Rk,n(t1u) = P(Tk,n(u)f:t)

for t3 0, u=0,1,...,z the distribution function of
the lifetime T, (u) of this system in the reliability
state subset {u,utl,...,z2 while it was in the state z at
the moment t = 0.

Theorem 1. The reliability function of the ageing
consecutive “k out of n: F' system composed of

components with independent failures is given by the
following recurrent formula

Ren(t)= [L R, (tD), Ren(t,2), o Ren (t,2)],

where
]
.:_1 for n<k,
f:ﬁl- O F, (t,u) for n=k,
Ren(t,U) =l R, (t, U)Ry .1 (t, L) (10)

T+ %an-i (LU R i1 (t, )
| i=1

P
ix O F(tu)

T j=n-itx1

for n>Kk,

fort1 <0¥ > u=12,..z2

Motivation. Since for each fixed u, u=12,..,z the
assumptions of this theorem as the same as the
assumptions of Theorem 2 proved in [2] and the
formula (10) is equivalent with the formula (12) from
[2], then after considering Definition 4, we conclude
that this theorem isvalid.

From the above theorem, as a particular case for the
system composed of components with identical
reliability, we immediately get the following corollary.
Corollary 1. If components of the ageing consecutive
“k out of n: F' system are independent and have
identical reliability functions, i.e.

R (t,u) = R(t,u), F (t,u)=F(t,u) for tT <0,¥),
u=12,..z1i=212,...n,

then the reliability function of this systemis given by

Ren(t,)= [L R, (tD), Ren(t2), . Ren(t,2)],

where
i
i1 for n<k,
[
il- [F(t,u)]” for n=Kk,
|
Ren (tU) = [ REUR, 1 (8,U) (11)

I kel

I+ R(t,u)a F'(t,u)
| i=1

IxRy i1 () for n>k,

for t1 <0,¥), u=12,...,z
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From Corollary 1, in a particular case, substituting
k=2 in(11), we get:

-for n=1

R, (1) =[1, R, (1D, Ry1(1,2), ..., Ry (1, 2)], (12)
where

R, (t,u)=1for tT <0,¥), u=12,..,7 (13)

-forn=2

R,2(t)=[1,R,, (1), R,,(1,2), ..., R,,(t,2) ], (14)

where
R,,(t,u)=1- F2(t,u) for tT <0,¥), (15)
u=12,...,z

-for n3 3

RZ,n(t1>) = [1’ RZ,n(t1l)1 R2,n (t12)1 R RZ,n(t1 Z) ]l (16)
where
Ry (t,u) = R(t,u) Ry, 4(t,u)

+R(t,u)F (t,u) R, ,(t,u) for tT <0,¥),
u=12,..,z

(17)

4. Application

Example 1. Let us consider the steel cover
composed of n=24 arranged identical sheets
E,.E,.....E,. Weassume that z=4, i.e. the cover

and the sheets it is composed of may be in the one
of the reliability states from the set {0,1,2,3/4}. The

cover is out of the reliability state subset
{uu+1..4 if a least k=2 of its neighbouring
sheets is out of this reliability state subset. If the
considered steel cover critical reliability state is
r =2, then this steel cover is falled if at least 2
neighbouring sheets from 24 sheets are out of the
reliability state subset {2,34}. Thus the
considered steel cover is a five-state ageing
consecutive “2 out of 24: F’ system, and
according to (16)-(17), its the reliability function
isgiven by

Ry (%) =

[1, Ry 24 (1.1), Ry 54 (1.2), Ry 54 (1,3), Ry (t,4) ], (18)
where
Rp24(t,U) = R(t,u) Ry 55(t,u)

+R(t,u)F (t,u) R, (t,u) for tT <0,¥),
u=1234.

(19)

In the particular case when the lifetimes T, (u),
u=1234, of the sheets E, i=12345, in the

reliability state subsets have Weibull distributions of
theform

F(t,u)=1- &' @ for t3 0, u=1234,
where
| (1)=0.01 | (2)=0.02 | (3 =0.05, | (4) =0.10,

i.e. if the rdliability function of the sheets E,
i =1,2,3,4,5, isgiven by

R(t,>) = [LR(t1), R(t,2), R(t,3), R(t,4)], t T <0,¥),
where

Rt =e %™, R(t,2) =e %", R(t;3)=e ™",

R(t,4) = €% for t3 0,

considering (12)-(19), we get the following recurrent
formulafor the cover reliability

R, () =
[1, Ry 04 (8D, Ry 00 (1,2), Ry 04 (1.3), Ry (t4) ], (20)
where

- Ry 54 (t,1) isdetermined by the formulae

R, (t1) =1 for t1 <0,¥), (21)

R,,(t) =1- [1- €°%]? for tT <0,¥), (22)

~ 2
R,,(t.]) =™ R, ,(t.,)
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+e 0% 1. @O R, (t,D) for t] 23
€ [L-e IR (L1 for th <0,%), (23) The values of the sted cover risk function are given in

n=34,..24, Table 5 and illustrated in Figure 2.
- R, 54 (t,2) isdetermined by the formulae Table 1. The vaues of the steel cover multi-state
reliability function vector component u=1
R, (t,2) =1 for t1 <0,¥), (24)
t &ﬂ“@ ZF%%“@
Rz 5 (t,2) =1- [1_ e 0.02t? ] 2 for t ’I‘ < 0,¥ ), (25) OO 10000 00000
’ 1.0 0.9978 1.9955
) 2.0 0.9664 3.8657
R,,(t.2) =e°®" R, ,(t,2) 3.0 0.8531 5.1183
4.0 0.6362 5.0889
002t [q_ 40022 5 5.0 0.3750 3.7499
+f [1-e ] Ry,.2(t,2) for t1 <0,¥),(26) 6.0 0.1664 19957
n=34,...24, 7.0 0.0538 0.7534
8.0 0.0125 0.2001
- R, 5 (t,3) isdetermined by the formulae 90 0.0021 0.0374
10.0 0.0002 0.0049
R,,(t,3) =1 for tT <0,¥), (27
Table 2. The values of the steel cover multi-state
R reliability function vector component u =2
R,,(t,3)=1- [1- e 9% 12 for t1 < 0,¥), (28) y PO
, t Ry 24 (1:2) 2t Ry 54 (t,2)
Ry (t,3) =™ R,,.1(t,3) 0.0 1.0000 0.0000
0.5 0.9994 0.9994
-0.05t% 11 _ 0052 o 1.0 0.9912 1.9824
+f [1-e ] Ryno(t,3) for tl <0,¥), (29) 15 0.9580 > 8742
n=34...24, 2.0 0.8802 3.5207
_ _ 25 0.7479 3.7398
- R, 5 (t,4) isdetermined by the formulae 3.0 0.5731 3.4388
3.5 0.3876 2.7131
Ry, (t,4) =1 for t1 <0,%), (30) 4.0 0.2275 1.8200
4.5 0.1145 1.0307
N 5.0 0.0491 0.4905
R,,(t4)=1- [1- €2 for t1 <0,¥), (31 o 0018 01958
6.0 0.0055 0.0655
R,,(t.4) =e**" R, .(t,4) 6.5 0.0014 0.0184
7.0 0.0003 0.0044
+e 007 [1. @O R, (t,4) for tT <0,¥),(32)
n=34,..24. Table 3 The values of the sted cover multi-state
The values of the particular vector components of the reliability function vector component u =3
multi-state reliability function of the steel cover given
by (20), calculated by the computer programme based t R, ., (t,3) 2t R, ,,(t,3)
on the formulae (21)-(32), are presented in the Tables : \
1-4 andillustrated in Figure 1. As earlier we have 88 égggg ggggg
assumed that r =2 isthe cover critical reliability state, 0. Z 0.9986 0.7988
then according to (8) and (26) itsrisk function is given : : :
0.6 0.9928 1.1914
b
y 0.8 0.9781 1.5649
0ot? 1.0 0.9489 1.8978
M =1-R,%(t2) =1- e R,x5(t,2) 1.2 0.9005 2.1613
14 0.8302 2.3246
. 002 [1- e—0.02t2] R, (t,2) for tT <0,¥). (33) 1.6 0.7385 2.3632
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1.8 0.6299 2.2675

2.0 0.5122 2.0489 Ra24(tU)

2.2 0.3953 1.7392 1

24 0.2883 1.3837

2.6 0.1980 1.0298 08 -

2.8 0.1278 0.7158

3.0 0.0774 0.4642

32 0.0438 0.2806 0.6 1

34 0.0233 0.1581

3.6 0.0115 0.0830 0.4 -

3.8 0.0053 0.0406

4.0 0.0023 0.0185 0.2 |

Table 4. The values of the sted cover multi-state
reliability function vector component u =4 0 t
0 2 4 6 8 10

t R, 54 (t,4) 2t R, (t,4) _ .

0.0 1.0000 0.0000 Figure 1. The graphs of the steel cover multi-state

01 0.9999 0.0399 reliability function vector components

8; ggggg géggg Table 5. The values of the sted cover multi-state
: : : reliability function vector component u=2 and itsrisk

0.4 0.9943 0.6364 function

0.5 0.9864 0.9864

r L e C [ R8 [05 R0

08 0.9195 23540 0.0 1.0000 0.0000

0.9 0.8775 28433 0.5 0.9994 0.0006

10 0.8244 3.2975 1.0 0.9912 0.0088

11 0.7605 16731 15 0.9581 0.0419

12 0.6875 1.6499 2.0 0.8802 0.1198

13 0.6076 15799 25 0.7480 0.2520

14 0.5242 14677 3.0 0.5731 0.4269

15 0.4406 13217 35 0.3876 0.6124

16 0.3602 11528 4.0 0.2275 0.7725

17 0.2862 0.9731 45 0.1145 0.8855

18 0.2207 0.7944 5.0 0.0490 0.9510

19 0.1650 0.6269 55 0.0178 0.9822

20 0.1195 0.4779 6.0 0.0055 0.9945

21 0.0838 0.3519 6.5 0.0014 0.9986

292 0.0569 0.2502 7.0 0.0003 0.9997

2.3 0.0373 0.1718

24 0.0237 0.1138

25 0.0146 0.0728

2.6 0.0086 0.0450

2.7 0.0050 0.0268

2.8 0.0028 0.0154

29 0.0015 0.0086

3.0 0.0008 0.0046
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Figure 2. The graphs of the steel cover risk function

Using the values given in these Tables 1-4, the
formulae (3)-(7) and numerical integration we find:

- the mean values of the cover lifetimes in the
reliability state subsets

M (@) = E[T,, D] =6 Rea(tL)ct €4.5634,
0

¥

M (2) = E[T,,, (2] = 0 Roa(t,2)dt €3.2268,
0

w

M (3) = E[T, (3] = 0 Roa(t,3)dt €2.0408,

K O

M (4) = E[T, 4 (9] = 0 Roz4(t,4)dt €1.4431,
0

- the second ordinary moments of the cover lifetimesin
the reliability state subsets

N@Q) = E[T2, D] = 2} Ro4(t,1)dt €22.9715,
N(2) = E[T2 (2] = 2} Ro.24(t,2)dt €11.4879,
N(3) = E[T 4 (3] = 2} Ro24(t,3)dt €4.5944,
N(4) = E[T 2. (4)] = 2} Ro.4(t,4)dt €2.2967,

- the standard deviations of the cover lifetimes in the
reliability state subsets

s (1) =N@ - [M@Q)]* @1.4651,
s (2)=+/N(2) - [M(2)]?> @1.0370,
s (3)=4/N(3) - [M(3)]> @0.6553,

s (4) =+4/N(4) - [M (4)]?> @0.4628,

- the mean values of the cover lifetimes in the
reliability particular states

M(1)=M()- M(2) @.5634 - 3.2268 = 1.3366,
M (2) =M (2)- M (3) @8.2268 - 2.0408 = 1.1860,
M (3) =M (3) - M (4) @.0408 - 1.4431 = 0.5977,
M (4) =M (4) @ 1.4431.

Using the values given in these Tables 5 and the
formula (9) we find the approximate value of the
moment when the system risk function exceeds an
exemplary permitted level d = 0.05, namely

t =r 1(0.05) @1.58.

5. Conclusion

Two recurrent formulae for multi-state reliability
functions, a general one for non-homogeneous and its
simplified form for homogeneous multi-state
consecutive “k out of n: F’ systems composed of
ageing components have been proposed. The formulae
for multi-state reliability function of a homogeneous
multi-state consecutive “k out of n: F’ system has
been applied to reliability evaluation of the steel cover
composed of ageing components. The considered steel
cover was a five-state ageing consecutive “ 2 out of 24:
F' system composed of components with Weibull
reiability functions. On the basis of the recurrent
formula for steel cover multi-state reliability function
the approximate values of its vector components have
been calculated and presented in tables and illustrated
graphically. On the basis of these vales the mean
values and standard deviations of the steel cover
lifetimes in the reiability state subsets and the mean
values of the steel cover lifetimes in particular
reliability states have been estimated. Moreover, the
cover risk function and the moment when the risk
function exceeds the permitted risk level have been
determined.

The input structural and reliability data of the
considered steel cover have been assumed arbitrarily
and therefore the obtained its reliability characteristics
evaluations should be only treated as an illustration of
the possibilities of the proposed methods and solutions.
The proposed methods and solutions and the software
are general and they may be applied to any multi-state
consecutive “k out of n: F’ system of ageing
components.
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Abstract

This paper describes a simple technique for approximating the mean time between failures (MTBF) of a system
that has periodic maintenance at regular intervals. We propose an approximation of MTBF for vide range of

systems than IFRA class of distributions.

1. Introduction

One important research area in reliability engineering
is studying various maintenance policies. Maintenance
can be classified by two major categories: corrective
and preventive. Corrective maintenance is any
maintenance that occurs when the system is failed.
Some authors refer to corrective maintenance as repair
and we will use this approach in this paper. Preventive
maintenance is any maintenance that occurs when
system is not failed.

A common measure used to describe the reliability
characteristics of a repairable system is mean time
between failures (MTBF). In most repairable systems,
preventive maintenance used to reduce system failure
frequency and hence increase the MTBF. It is easy that
MTBF is the mean time to a repair service or an age
replacement.

The MTBF for a system that has periodic maintenance
at atimet can be described by [1], [10]:

t
OR(s)ds
MTBF =% —. (1)
F(t)

In paper [1], [10] an approximation to MTBF is
provided. Moreover in [10] is proved that

LiOFIV) Ly
F(t) F(t)

and for increasing failure rate on average (IFRA) class
of distributions in [1] the following relation by
proposed

t £EM
In(R(t)

TBF £
F(t)

In this paper, we propose an approximation to MTBF
for wide class than IFRA. The equality (1) can be a
basis to introduction a new class of ageing distributions
(see[7], [8]).

Let us assumption the following notation

1
M (t) = .
® MTBF

The case when M(t) is monotonic was considered by
Barlow and Campo [2], Marshall and Proschan [9],
Klefsjo [5] and Knopik [7], [8].

Definition 1. The lifetime T belongs to the class (mean
time to failure or replacement) MTFR, if the function
M (t) is non-decreasing for tT {t: F(t)>0}.

It has been shown in Barlow [2] and Klefsj6 [5] that

IFRI MTFR I NBUE,

where IFR is increasing failure rate class, NBUE is
new better than used in expectation class.

For absolutely continuous in [2] and for any random
variablein [8] it has been proved, that
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IFRA | MTFR,

where IFRA is increasing failure rate on average class

of distributions. Preservation of life distribution classes

under reliability operations has been studied in [7], [8].

Theclass MTFR is closed under the operations:

(@) formation of a paralld system for absolutely
continuous random variables,

(b) formation of series system with identically
distributed and absolutely continuous random
variables,

(c) weak convergence of distributions,

(d) convolution.

In this paper we propose new approximation and

bounds, applicable for a wide range of systems. It is

MTFR class of distributions, such that MTBF is non-

increasing. The class MTFR contains distributions with

unimodal failure rate function. We analyze special case
of distribution with MTBF non-increasing as mixture
of an exponential distribution and Rayleigh's
distributions. This distribution has unimodal failure
rate function. However, it is not easy to obtain
distribution from mixtures with unimodal failure rate
function [12]. The mixtures of two increasing linear

failures rate functions were studied in [4]. In [4]

snhowed that a mixture of two distributions with

increasing linear failure rate functions does not give
distributions with unimodal failure rate function.

In section 2, we introduce the proposed model of

mixture and we estimate their parameters for an

example of lifetime data [11]. In section 3 we propose

a smple approximation of to MTBF for lifetime

distributions with MTBF non-increasing.

2. Mixture of distributions

We consider a mixture of two lifetimes X; and X, with
densities fy(t), fo(t), reiability functions Ry(t), Ra(t),
failure rate functions ry(t), rp(t) and weights p and
g=1- p, where 0 < p < 1. The mixed density is then
written as

f(t)=pfy(t)+(1- p)fa(t)
and the mixed rdiability function is
R () =pRu(f) + (1-p)R: (1).

The failure rate function of the mixture can be written
asthe mixture

r)=ow(t) rit)+[1 - ()] r(t),
where o(t)=pRy(t)/R().

Moreover, from [3], we have under some mild
conditions, that

limr(t)=limmin{r/(t),ry(t)}.
t® ¥ t® ¥

In the following propositions, we give some properties
for the mixture failure rate function.

Proposition 1. For thefirst derivative of w (t), we have

o' (t) = o(O[1 -] [r2(t) —ru(t)].

Proposition 2. For thefirst derivative of r(t), we have

I’ (©)=[1- o(®] (- o)(r2(t) —ra(t))*+r o(t)
+ o(O)r'(b).

Proposition 3. If X; is exponentially distributed with
parameter A, then

(=1~ o] (= o®)(rat) =) r2(1).

We suppose that r(t) =at, where a>0. Consequently,
the reliability function of X; is the reliability function
of Rayleigh’s distribution of the form

Ro(t) =exp { - %tz} for 0.

Proposition 4. If pi®<a, thenr (t) is unimodal.

Proof. By Proposition 1, we conclude that o (t) is
decreasing for t 1 (O, t;), where t; = /o and is
increasing for t | (t;, «©). Hence, if t < t;, then
w(t)(ra(t) —2)? is decreasing from pA°< ato 0, and if t
> t; then w(t)(ro(t) — 4)® is incressing from 0 to co.
Thus the equation o (t) (ro(t) — 4)? = 4 has only one
solution t, and r (t) is increasing for t < t, and
decreasing fort > t,.

Proposition 5. If pA® > q, then there exist ts, and ty, ts
< ty< t4, suchthat r (t) decreasesin (0, t3), increasesin
(ts, t4) and decreases in (ts, ).

Proof. Let h(t)=a — o(t)(ro(t) — ). It is easy to find
that h(0)=o — pA°<0, h(ty))= a, h(co)=—x.

The function h(t) is increasing from h(0) < 0 to
h(ty)=a>0, and is decreasing from h(t;))=a>0 to
h(o0)=—0.

Thus, there exist t3 and t4, O<ts<t;<t, suchthat r (t)
decreases on (0, t3), increasesin (i3, t4) and decreasesin
(ts, o). This completes the proof.

Example 1. In this example we consider a real life
time data from the [11]. We estimate the parameters p,
a, /. of the model with reliability function

R () = pexp (- At) + (1—p) exp (- 0,5at?) for x> 0.
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By maximizing the logarithm of likelihood function for
grouped data, we calculate p = 0.643316,

a = 0.001284, 4 = 0.0288. For these values of
parameters, we prove Pearson’ s test of fit and compute
2= 0.68. By Proposition 4, we conclude that r (t) is
unimodal.

3. Bounds and Approximation

In this section we cover some of the wel known
bounds and approximations to the MTBF.
By theinequality

t
OR(s)dsE min{t,ET},
0

where ET is the mean value of T, we abtain the upper
bound for MTBF:

MTBF, :ﬁmin{t,ET}.

In [1] for MTBF proposed is the following average
approximation

T1+R(t)

MTBF, = 2 F()

Proposition 6. If f (t) is unimodal, then these exist t;
such that MTBF, is a lower bound of MTBF for t |
<0, t;) and it is an upper bound of MTBF for t I (t;, «0)

Proof. We consider the difference

t
OR(s)ds

o(ty=0 - RO

2 F(t)

F(t)

and
t 1
gu(t) = Oc‘fe(t)dt - Et( R(t)+1).

It iseasy to find that g;(0) = 0, gi(+) = —co. Thefirst
derivative of g'4(t) is

g’l(t)%[tf(t)- F(1)].

If f (t) is decreasing then g’'1(t) < 0 and MTBF, is a
lower bound for MTBF.

If f (t) isunimodal then exists t,, and t; such that f (t.,)
=0, t<tyand g(t)>0 for t I (O,t,), g(t)<Ofor tl (ty, ).

Proposition 7. If T I MTFR, then

MTBF > i fort> 0.
r(t)

Proof. By Definition 1, if M (t) is non-decreasing, then
we have

t
f(t)OR(s)ds- F(t)R(t)
[M(t)]'=—2 20

t
(OR(s)ds)?
0

and

MTBF 3 MTBF, :% for t1 {t: r (t)>0}.
r

Proposition 8. If the lifetime T has unimodal failure

rate function r (t), then TT MTFRIif and only if
F(o) ET—1>0.

Proof. Let
t

h({t)=r (t)(‘)Q(s)ds —F ().
0

It is easy to show that h (0) = 0 and
h () = r (00) ET - 1.
Thefirst derivative of h (1) is

t
h' (t) = r’ (t) OR(s)ds.
0

If r () isincreasing, then h (t) isincreasing and if r (t)
is decreasing, then h (t) is decreasing. This completes
the proof.

Example 2. Consider the system with failure rate
function proposed in Example 1. The exact and
approximate results for MTBF are shown in Table 1
for varying R (t) with the corresponding t. The results
show that the average approximation MTBF, is greater
than MTBF. For this data, we compute ET = 34.81 and
AET — 1> 0 and by Proposition 8 we obtain that T 1
MTFR.

Table 1. The values of the exact and approximate
MTBF of lifetime data
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R(t) t MTBF|MTBF,| MTBF_| MTBF,
0.99999 | 0.00054 | 53.97 | 53.97 53.97 53.97
0.9999 | 0.0054 | 53.97 | 53.97 53.97 53.97
0.999 |0.05398| 53.95 | 53.98 53.93 53.95
0,99 |0.54031| 53.76 | 54.03 53.55 53.76
0.9 |[543971| 51.67 | 5440 | 49.22 51.68
0.8 [10.9261| 49.15 | 54.63 | 44.05 49.17
0.7 |16469% | 46.62 | 54.90 39.17 46.66
0.6 |[221619| 4421 | 55.40 34.90 44.32
05 |[29.1751| 4198 | 56.35 34.81 42.26
04 |34.8007| 39.94 | 58.00 34.81 40.60
0.3 |[425854| 38.11 | 49.73 34.81 39.54
02 |528174| 36.50 | 4351 34.81 39.61
0.1 |70.2655| 35.23 | 38.68 34.81 42.94

4. Conclusion

In this paper we show that, from a practical point view,
the unimodal failure rate model can be obtained from a
mixture of two common IFR models. This model is
flexibility. Practical reevance and applicability have
been demonstrated using well known data. In this
paper a simple approximation of the MTBF of systems
subjected to periodic maintenance has been proposed
aswell.
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Abstract

The paper is concerned with the application of limit reliability functions to the reliability evaluation of large
systems. Two-state large non-repaired systems composed of independent components are considered. The
asymptotic approach to the system reliability investigation and the system limit reliability function are defined.
Two-state homogeneous series, parallel and series-parallel systems are defined and their exact riability functions
are determined. The classes of limit reiability functions of these systems are presented. The results of the
investigation concerned with domains of attraction for the limit reliability functions of the considered
systems and the investigation concerned with the reliability of large hierarchical systems as well are
discussed in the paper. The paper contains exemplary applications of the presented facts to the reliability

evaluation of large technical systems.

1. Introduction

Many technical systems belong to the class of complex
systems as a result of the large number of components
they are built of and their complicated operating
processes. As arule these are series systems composed
of large number of components. Sometimes the series
systems have either components or subsystems
reserved and then they become parallel-series or series-
paralld reliability structures. We meet large series
systems, for instance, in piping transportation of water,
gas, ol and various chemical substances. Large
systems of these kinds are also used in eectrical
energy distribution. A city bus transportation system
composed of a humber of communication lines each
serviced by one bus may be a modd series system, if
we treat it as not failed, when all its lines are able to
transport passengers. If the communication lines have
at their disposal several buses we may consider it as
either a paralel-series system or an “m out of n”
system. The smplest example of a paralld system or
an “m out of n” system may be an electrical cable
composed of a number of wires, which are its basic
components, whereas the transmitting electrical
network may be ether a parallel-series system or an
“m out of n"-series system. Large systems of these

types are also used in telecommunication, in rope
transportation and in transport using belt conveyers
and elevators. Rope transportation systems like port
elevators and ship-rope eevators used in shipyards
during ship docking are model examples of series-
paralld and parallel-series systems.

In the case of large systems, the determination of the
exact rdiability functions of the systems leads us to
complicated formulae that are often usdess for
reliability practitioners. One of the important
techniques in this situation is the asymptotic approach
to system rdiability evaluation. In this approach,
instead of the preiminary complex formula for the
system rdiability function, after assuming that the
number of system components tends to infinity and
finding the limit reiability of the system, we obtain its
simplified form.

The mathematical methods used in the asymptotic
approach to the system rdiability analysis of large
systems are based on limit theorems on order statistics
distributions, considered in very wide literature, for
instance in [4]-[5], [7], [12]. These theorems have
generated the investigation concerned with limit
reliability functions of the systems composed of two-
state components. The main and fundamental results
on this subject that determine the three-element classes
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of limit reiability functions for homogeneous series
systems and for homogeneous parallel systems have
been established by Gniedenko in [6]. These results are
also presented, sometimes with different proofs, for
instance in subsequent works [1], [8]. The
generalizations of these results for homogeneous “m
out of n” systems have been formulated and proved by
Smirnow in [13], where the seven-element class of
possible limit rdiability functions for these systems
has been fixed. As it has been done for homogeneous
series and paralldl systems classes of limit reliability
functions have been fixed by Chernoff and Teicher in
[2] for homogeneous series-parallel and parallel-series
systems. Ther results were concerned with so-called
“quadratic’ systems only. They have fixed limit
reiability functions for the homogeneous series-
parallel systems with the number of series subsystems
equal to the number of components in these
subsystems, and for the homogeneous parallel-series
systems with the number of paralld subsystems equal
to the number of components in these subsystems.
Kolowrocki has generalized their results for non-
“quadratic’ and non-homogeneous series-parallel and
paralld-series systems in [8]. These all results may
also be found for instance in [9].

The results concerned with the asymptotic approach
to system reliability analysis have become the basis
for the investigation concerned with domains of
attraction ([9], [11]) for the limit reliability functions
of the considered systems and the investigation
concerned with the reliability of large hierarchical
systems as well ([3], [9]). Domains of attraction for
limit reliability functions of two-state systems are
introduced. They are understood as the conditions
that the reliability functions of the particular
components of the system have to satisfy in order
that the system limit reliability function is one of the
limit reiability functions from the previously fixed
classfor this system. Exemplary theorems concerned
with domains of attraction for limit rdiability
functions of homogeneous series systems are
presented here and the application of one of them is
illustrated. Hierarchical series-paralld and parallel-
series systems of any order are defined, ther
rdiability functions are deteemined and limit
theorems on their rdiability functions are applied to
reiability evaluation of exemplary hierarchica
systems of order two.

All the results so far described have been obtained
under the linear normalization of the system lifetimes.
The paper contains the results described above and
comments on their newest generalizations recently
presented in [9].

2. Reliability of two-state systems
We assume that

E,i=12,..nnlN,

are two-state components of the system having
reiability functions

R(t) =P(Ti > 1), tT (-¥,¥),
where
Ti,i=12,...,n,

are independent random variables representing the
lifetimes of components E; with distribution functions

F,(t) = P(T| £t), t1 (-¥,¥).

The simplest two-state rdiability structures are series
and parallel systems. We define these systems first.

Definition 1. We call a two-state system series if its
lifetime T is given by

T=min{T;}.

The scheme of aseries systemisgivenin Figure 1.

Figure 1. The scheme of a series system

- & =) .. — B —

Definition 1 means that the series systemis not failed if
and only if al its components are not failed, and
thereforeitsreiability function is given by

R0 =GR 1T (¥.¥) (1)

Definition 2. We call atwo-state system paralldl if its
lifetime T is given by

T=max{T;}.

1£iEn

The scheme of a paralld systemis givenin Figure 2.

Figure 2. The scheme of a paralld system
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Definition 2 means that the parallel system is failed if
and only if al its components are failed and therefore
itsrdiability function is given by

R =1- OF (), tT (-¥%). )

Another basic, a bit more complex, two-state reliability
structure is a series-paralle system. To define it, we
assume that

Ej, i =12, Kk, =12l Ky, |1, Iz,...,lknT N,

are two-state components of the system having
reiability functions

R.J(t) = P(Tij > t), ti ('¥,¥),
where
Tij, i= 1,2,...,kn,j = 1,2,...,|i,

are independent random variables representing the
lifetimes of components E;; with distribution functions

Fi(t) = P(T; £1), tT (-¥,¥).

Definition 3. We call a two-state system series-paralle
if itslifetime T is given by

T= E?é{ﬁ}'g’?i”u }.

By joining the formulae (1) and (2) for the reliability
functions of two-state series and parallel systems it is
easy to conclude that the reliability function of the
two-state series-paralld systemis given by

Ry @ = 1- G- OR (O], tT (-¥,¥), (3
=1 j=1

Knil1:02 e

where k, is the number of series subsystems linked in
paralld and |; are the numbers of components in the
series subsystems.

Definition 4. We call a two-state series-parallel system
regular if

i.e if the numbers of components in its series
subsystems are equal.

The scheme of aregular series-parallel systemis given
in Figure 3.

By Ep» T E1|n
— Ex S N i — E2|n I
L | Eknl Ean A Eknlni

Figure 3. The scheme of a regular series-paralléd
system

Definition 5. We call a two-state system homogeneous

if its component lifetimes have an identical distribution
function F(t), i.e. if its components have the same

reliability function
R(t) =1- F(t), tT (-¥,¥%).

The above definition and equations (1)-(3) result in the
simplified formulae for the reliability functions of the
homogeneous systems stated in the following
corollary.

Corollary 1. The reliability function of the
homogeneous two-state system is given by

- for a series system
R, (1) =[ROI" tT (-¥,¥), (4)
- for aparallel system

Ru(t) = 1- [F(1)]", tT (-¥,¥), )

- for aregular series-paralld system

Ry, (1) = 1- [1- [ROI"T, tT (-¥,¥). (6)
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3. Asymptotic approach to system reliability

The asymptotic approach to the rdiability of two-state
systems depends on the investigation of limit
distributions of a standardized random variable

(T-by)/a,,

where T is the lifetime of a system and a, > 0 and
b, T (-¥,¥) are suitably chosen numbers called

normalizing constants.
Since

P((T- b,)/a, >t)=P(T >at+b,) =Ruadt + by),

where Ry(t) is a reliability function of a system
composed of n components, then the following
definition becomes natural.

Definition 6. We call a rdiability function A(t) the
limit reliability function of a system having a rdiability
function Ry(t) if there exist normalizing constants a, >
0, b1 (-¥, ¥) such that

lim Rn(aqt + by) = A(t) for t T Ca,
n® ¥

where C; isthe set of continuity points of A(t).

Thus, if the asymptotic reliability function A(t) of a
system is known, then for sufficiently large n, the
approximate formula

Ru(t) @A((t - by)/an), tT (-¥,¥). (7)

may be used instead of the system exact rdiability
function Ry(t).

3.1. Réliability of large two-state series systems

The investigations of limit reliability functions of
homogeneous two-state series systems are based on the
following auxiliary theorem.

Lemma 1. If

(i) A@®)=exp[-V({)] is a
reliability function,
(i) R, (t) isthe reiability function of a homogeneous
two-state series system defined by (4),
(iiiya, >0, b, T (-¥,¥),
then

L|®rg R, (ant + by) =A (1) for tT Ct

non-degenerate

if and only if

rI1|®rr;€l nF(aqt +by) =V (t) fort C;

Proof. The proof may befoundin [1], [6], [8].

Lemma 1 is an essential tool in finding limit reliability
functions of two-state series systems. It aso is the
basis for fixing the class of all possible limit reiability
functions of these systems. This classis determined by
the following theorem.

Theorem 1. The only non-degenerate limit reliability
functions of the homogeneous two-state series system
are

AL(t) = exp[-(-1)2] fort <0,

A, (t)=0fort3 0,a>0;

A,@t) =1fort<o,

AL(t) = exp[-t?] fort3 0,a>0;

A ,(t) = exp[- exp[t] for tT (-¥,¥).
Proof. The proof may befoundin [1], [6], [8].

3.2. Reliability of large two-state parallel
systems

The class of limit rdiability functions for
homogeneous two-state paralld systems may be
determined on the basis of the following auxiliary
theorem.

Lemma 2. If

() A® = 1- expl-V()]
reliability function,

(i) Rn(t) is the reliability function of a homogeneous
two-state parallel system defined by (5),

(iiiya, >0, b, T (-¥,¥),

then

iS a non-degenerate

lim Ry(a.t + by) = A(t) for t1C;
n® ¥

if and only if

Ii®rg nR(at + by) = V(t) fortTC, .
n
Proof. The proof may befound in [1], [6], [8].

By applying Lemma 2 it is possible to fix the class of
limit reliability functions for homogeneous two-state
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paralld systems. However, it is easier to obtain this
result using the duality property of parallel and series
systems expressed in the relationship

Ra(t) = 1- R, (-t) for tT (- ¥,¥),
that results in the following lemma, [1], [6], [8]-[9].

Lemma 3. If A (t) isthe limit reliability function of a
homogeneous two-state series system with reliability
functions of particular components R(t), then

At)y=1-A(-t) fortl c;

is the limit reliability function of a homogeneous two-
state parallel system with reliability functions of
particular components

R(t)=1- R(-t) for tT Cs.

At the same time, if (a,b,) is a pair of normalizing
constants in thefirst case, then (a,, - b,) issuch a pair
in the second case.

The application of Lemma 3 and Theorem 1 yields the
following result.

Theorem 2. The only non-degenerate limit reliability
functions of the homogeneous paralle system are:

Ayt)=1fort£0,

Ayt)=1- exp[-t?] fort>0,a>0;

Ay(t) =1- exp[- (-1)?] fort <0,

Ayt) =0fort3 0,a>0;

As(t) =1- exp[- exp[-t]] for tT (- ¥ ¥).
Proof. The proof may befound in [1], [6], [8].

3.3. Réliability evaluation of large two-state
series-parallel systems

The proofs of the theorems on limit reliability
functions for homogeneous regular series-parallel
systems and methods of finding such functions for
individual systems are based on the following essential
lemmas.

Lemma 4. If

(i) k. ® ¥,

(i) A(t) = 1 - exp[-V(t)] is a non-degenerate
reliability function,

(i) Rk,,,|n(t) is the rdiability function of a
homogeneous regular two-state series-parallel system
defined by (6),

(iv) @, >0, b, T (- ¥ ¥),

then

rI1|®rr;€1 R, ;. (at+b) =A(t) fortiCs

if and only if
|i®rg ki[R(@qt + by) ] =V(t) fortic, .

Proof. The proof may befoundin [8].

Lemma 5. If

Nk ® Kk k>0,1,® ¥,

(ii) A(t) is a non-degenerate reliability function,

(i) Ry, (t) is the rdiability function of a
homogeneous regular two-state series-parallel system
defined by (6),

(iv) @, >0, b, T (-¥.¥),

then

lim R, | (aqt+by) =A(t) forticCy ,

if and only if

lim [R(@nt + br) ] = Ad(t) for t TGy,

where A(t) is a non-degenerate reliability function and
moreover

Aty =1-[1- Ag®)]* for tT(-¥,¥).
Proof. The proof may befoundin [8].

The types of limit rdiability functions of a series-
paralld system depend on the system shape [7], i.e. on
the relationships between the number k, of its series
subsystems linked in paralld and the number |, of
components in its series subsystems. The results based
on Lemma 4 and Lemma 5 may be formulated in the
form of the following theorem.

Theorem 3. The only non-degenerate limit reliability
functions of the homogeneous regular two-state series-
parald system are:

Casel k,=n,%,- clogn¥z>>s,s>0,c>0.

Ayt)=1fort£0,
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At)=1- exp[-t3]fort>0,a>0;

Ay(t) =1- exp[- (-t)*] fort <0,

Ayt) =0fort3 0,a>0;

As(t) =1- exp[- exp[-t]] for tT (- ¥ ¥);
Case2. k,=n,l,- clogn»s si(-¥¥),¢c>0.

Ayt)=1fort<0,

Aut) = 1- exp[- exp[-t* - g/c]] fort3 0,a>0;

As(t) = 1- exp[- exp[(-t)* - s/c]] fort <0,

As(t) =0fort3 0,a > 0;

Ag(t) = 1- exp[- exp[b(-t)* - s/c]] fort <0,

Agt) =1- exp[- exp[-t* - g/c]] fort 3 0,
a>0,b>0;

A (t) = 1fort<ty,
A(t) = 1- exp[- exp[- g/c]] fort, £t <t
As(t) =0fort3 tp, t; <ty
Case3 k,® k, k>0,1,® ¥.
Agt)=1- [1- exp[- (-t)®]]*fort <0,
Ag(t) =0fort3 0,a>0;
Ag(t) =1fort<0,
Agt) =1 - [1- exp[-t*]]*fort3 0,a>0;
Apt)=1- [1- exp[-expt]]“fort1 (- ¥,¥).
Proof. The proof may befound in [8].
Using the duality property of parallel-series and series-
parald systems similar to this given in Lemma 3 for
parallel and series systems it is possible to prove that

the only limit reliability functions of the homogeneous
regular two-state parallel-series system are

A t)=1- A(-t) fortT C4 , i=12,..]10.

Applying Lemma 2, it is possble to prove the
following fact ([9]).

Corollary 2. If components of the homogeneous two-
state parallel system have Weibull reiability functions

R(t) =exp[-bt*] fort3 0,a>0,b>0
and

a, = by/(alog n), b, = (log n/b)*2,
then

As(t) = 1- exp[- exp[-t]], tT (- ¥,¥),
isits limit reliability function.
Example 1 (a steel rope, durability). Let us consider a
stedl rope composed of 36 strands used in ship rope
elevator and assume that it is not failed if at least one
of its strands is not broken. Under this assumption we
may consider the rope as a homogeneous paralle
system composed of n = 36 basic components. Further,

assuming that the strands have Weibull reliability
functions with parameters

a=2b=(7.07)7%

by (5), the rope's exact reliability function takes the
form

Ras(t) = 1—[1- exp[- (7.07) % * fort 3 0.

Thus, according to Corollary 2, assuming

a, = (7.07)%(2+/10g 36 ), b, =(7.07)*\/log 36

and applying (7), we arrive at the approximate formula
for the rope reliability function of the form

Ras(t) @As((t - by)/ay)
=1- exp[- exp[- 0.01071t + 7.167]]
for t1 (- ¥ ¥).
The mean value of the rope lifetime T and its standard
deviation, in months, calculated on the basis of the

above approximate result and according to the
formulae

E[T] =Ca, + by, s =pa, /48,
where C @0.5772 is Euler's constant, respectively are:

E[T] @723, s @120.
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The values of the exact and approximate reliability
functions of the rope are presented in Table 1 and
graphically in Figure 4. The differences between them
are not large, which means that the mistakes in
replacing the exact rope reliability function by its
approximate form are practically not significant.

Table 1. The values of the exact and approximate

reliability functions of the steel rope

~ t-b
t R36(t) A3 ( n) D= R36' Ag
n
0 1.000 1.000 0.000
400 1.000 1.000 0.000
500 0.995 0.988 -0.003
550 0.965 0.972 - 0.007
600 0.874 0.877 - 0.003
650 0.712 0.707 0.005
700 0.513 0.513 0.000
750 0.330 0.344 -0.014
800 0.193 0.218 - 0.025
900 0.053 0.081 -0.028
1000 0.012 0.029 -0.017
1100 0.002 0.010 - 0.008
1200 0.000 0.003 -0.003
Res(t), As((t - bn)/ay)
1
0.8
0.6|
0.4]
0.2]
0 200 400 600 800 1000 t

Figure 4. The graphs of the exact and approximate
reliability functions of the steel rope

4. Domains of attraction for system limit
reliability functions

The problem of domains of attraction for the limit
reliability functions of two-state systems solved
completely in [11] we will illustrate partly for two-
state series homogeneous systems only. From
Theorem 1 it follows that the class of limit reliability
functions for a homogeneous series system is

composed of three functions, A (t), i =1,2,3. Now
we will determine domains of aftraction p_ for

u

these fixed functions, i.e. we will determine the
conditions which the rdiability functions R(t) of the

particular components of the homogeneous series
system have to satisfy in order that the system limit
reliability function is one of the reliability functions

A (1),i=123.

Proposition 1. If R(t)is a rdiability function of the
homogeneous series system components, then

R(t)1 DA,l
if and only if

m 1- R(r)

i =1t° for t>0.
r@-¥1- R(rt)

Proposition 2. If R(t)is a rdiability function of the
homogeneous series system components, then

R(t)1 D,
if and only if
(i) $yl (-¥,¥) Ry)=1andR(y +e) <1fore>0,

iy fim 2 RUEEY) o g5,
wor 1- R(r +Y)

Proposition 3. If R(t)is a rdiability function of the
homogeneous series system components, then

R(t)1 D,
if and only if

limn[1- R(a,t +b,)] =€ for tT (-¥,¥)
with

b, =inf{t: R(t+0) £1- %£ R(t- 0)},

a_ =inf{t:R(t(L+0)+h,)
£1- EE R(t(L- 0) +b,)}.

Example 2. If components of the homogeneous series
system have reliability functions
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il t<0
R(t)—|1 t, O£ t<1
10 t3 1,
then
R(t) 1 DﬁTz'

The results of the analysis on domains of attraction for
limit reliability functions of two-state systems may
automatically be transmitted to multi-state systems. To
do this, it is sufficient to apply theorems about two-
state systems such as the ones presented here to each
vector co-ordinate of the multi-state reliability
functions ([9], [14]).

5. Reliability of large hierarchical systems

Prior to defining the hierarchical systems of any order
we once again consider a series-paralld system like a
system presented in Figure 3. This system here is
called a series-parallel system of order 1.

It is made up of components

E,. i =12..k, j,=12.

i1j1? I1 ’

with the lifetimes respectively
T =120k, =120
Its lifetime is given by

T= max{ min{T_}}. (8)

1£i1 £kp l£Jl£|
Now we assume that each component

E, i, =12..k, j,=12..

i1j1? I1 ’

of the series-paralel system of order 1 is a subsystem
composed of components

i, =12,k M, j, =1,2,..,100),

i1i2i2 7 72

and has a series-parallel structure.

This means that each subsystem lifetime T, ; is given
by
Ty = max AR o ©)

X min
1£ip£k(LiD) 1£j2£|i(2l111)

il:]'121 " n1 Jl 112

Il’

where

T 112 '111 J =12,.. ’('1J1)’

i1j1izj2 ! 2

arethe lifetimes of the subsystem components E; j ;. ;, -

The system defined this way is caled a hierarchical
series-parallel system of order 2. Its lifetime, from (8)
and (9), isgiven by the formula

T=max{ min[ m min T )]},
1£i1£kn{1£1'1£|i1[1£i2£kn i1i1) 1£j2£|i£ljl) 212 N}

where k. is the number of series systems linked in
paralld and composed of series-parallel subsystems

S Iil are the numbers of series-paralldl subsystems

E, . inthese series systems, k ™ are the numbers of

1

series systems in the series-parallel subsystems E,

linked in parallel, and Iiz'1Jl
components in these series systems of the series-
parallel subsystems E,; .

In an analogous way it is possible to define two-state
paralld-series systems of order 2.
Generally, in order to define hierarchical series-paralle

I1J1
are the numbers of

and parallel-series systems of any order r, r31, we
assume that
iig i ir 7
where
=120k, =120 1, =120k,

j, =12 | (iain) i =12  (in-ir-gir-1)
[REEL RPN y weay r ,..., n s

j = 112,_"’ |_(i1jl---ir-1jr.1)

and
kK | k(i) i) (i-ir-ir-1)
n? tipg? Tn T i T n '
I_(iljl...ir.ljr.l)T N,

are two-state components having reliability functions
Riljlmirjr (t) = P(Tiljlmirjr >t) ’ tT (_¥ 1¥),

and random variables

i1 jr
where

i =12k, j,=12. =1,2,....k @),

I]_’ 2
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=12... |111 i :lz’...,k(i1j1~~~ir-1jr-1),
j :112,"_,|_('1J1 dr- 1jr-1),

are independent random variables with distribution
functions

) =P, £1),t1(=¥¥),

I1J1 Ardr

representing the lifetimes of the components E, ; ; ;. -

Definition 7. A two-state system is called a series-
parallel system of order r if itslifetime T is given by

T=max{ min{ max { min
i £kn 1€ 1l 15k (111) ]£J-2£|i2'111)

i1j1...irjr )] }}} ’

. {nax ( min
"1y £l (1L 20 1) g E,(I1J1 dr-ir-1)

where k_, k Wk (B2iz-1r1) ape the numbers
of suitable series systems of the system composed of

series-parallel subsystems and linked in paralld, I

77
| (i) ) lai2iz-de2ie2) gre the numbers of suitable

S
series-parallel subsystems in these series systems, and
| (ainizi2€i-ir-1) - gre the numbers of components in the

Ir

series systems of the series-paralle subsystems.

Definition 8. A two-state series-paralld system of
order r is caled homogeneous if its component

lifetimes T, ; ;; have an identica distribution
function

F()=P(T, .. £, tT (-¥,¥),
where

L =12,..,K,, J;=12,.. '1’ i, =12, |111
j2 :LZ |_(I1J1) i :112 |1J1m|r_1jr_1)
e by yurny r ,..., n s

| (i2j1-ir-1ir-1)
i ,

i, =121

i.e. if its components E, have the samereliability

i1j1-ir Jr
function
R(t) =1— F(t), tT (=¥ ,¥).

Definition 9. A two-state series-parallel system of
order r is called regular if

— 1 (1i1) = — 1 (iir-ir-1ir-1) —
I =1l I |
it i =

and

Kk (nir) = — Kk (injg-ir-1ir-1) — k

n fa n n

where k;, isthe number of series systemsin the series-
paralld subsystems and | are the numbers of series-

paralld subsystems or respectively the numbers of
components in these series systems.

Using mathematical induction it is possible to prove
that the rdiability function of the homogeneous and
regular two-state hierarchical series-paralld system of
order r is given by

(t)=1-[1- [R ®]"1 for k=23,...,r

kknln k- Lkn In

and
R, () =1-[1- [RO]"]", tT(=¥¥),

wherek, and |,, are defined in Definition 9.

Corollary 3. If components of the homogeneous and
regular two-state hierarchical series-paralld system of
order r have an exponential reliability function

R(t) =exp[-It] fort2 0,1 >0,
then its rdiability function is given by

Ry, ®=1-[1- [R ®]" 1% for t3 0

k-1kn.In
for k=23,...,r and

L (®) =1- [1- exp[- | I t]]* for t3 0.

lkn

Theorem 4. If
(i) A(t) =1- exp[-V(t)], tT (-¥,¥), isanon-
degenerate reliability function,
1

(i) liml™k '" =0 for r31,
n® ¥
(iii) |i®rgk'j'1+~“”[R(ant+bn)]'n =v(t) for ti C,,
ra1 th (-¥,¥),
then

imR, ., (@t+b,) =A@ forti Ca, r?1,
tT (-¥,¥).
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Proposition 4. If components of the homogeneous and
regular two-state hierarchical series-paralld system of
order r have an exponentia reliability function

R(t) =exp[-1t] fort3 0, | >0,

1
Ig)rglg'lkn'” =0 forr31y,
n

and
then

As(t) =1- exp[- exp[-t]] for tT (-¥,¥), (10
isitslimit reliability function.

Example 3. A hierarchical regular series-paralld
homogeneous system of order r=2 is such that
k,=200, |,=3. The system components have
identical exponential reiability functions with the
faillurerate | =0.01.

Under these assumptions its exact reliability function,
according to Corollary 3, is given by

R;2003(t) =1-[1- [ 1- [1- exp[- 0.013t]]* I°1**
for t3 0.

Next applying Proposition 4 with normalising
constants

1
a,=———=11.
" 0.019 L
1 11
b, =——(=+=)log 200 = 235.5,
! 0.01(3 9)09

we conclude that the system limit rdiability functionis
given by

As(t) =1- exp[- exp[-t]] for tT (-¥,¥),

and from (7), the following approximate formula is
valid

R, ms () @A3(0.09t - 21.2)

=1- exp[- exp[- 0.09t +21.2]] for tT (- ¥,¥).

Definition 10. A two-state system is called a paralld-
series system of order r if itslifetime T is given by

T=min{max{ min { max
1801 £kn 16 jEli;  1gip £k, 0111) 1£J-2£|iI111)
2

min max T .. ).},
1£ir£kn(i1j1"'if‘1jf‘1)(1£jr£|i(i1J1---ir-1Jr-1) ia-drde -1
r

where k, k (W) @Wi2i2-ir1ie1) are the numbers

of suitable parallel systems of the system composed of
paralld-series subsystems and linked in series, |,

ih?
() ., | ai2iz-ir-2ir-2) gre the numbers of suitable

paralle-series subsystems in these parallel systems,
and |szi2-ir-1ir-1) gre the numbers of components in

the parallel systems of the paralld-series subsystems.

Definition 11. A two-state parallel-series system of
order r is caled homogeneous if its component
lifetimes T, have an identical distribution

ijg-ir Jr

function
F@) =P, £V,
where

il :1121---1 kn1 j1 :1'2""’|i1’ i2 :lz,...,kn(iljl),
i, =12, 100

2

i =12,...k (i111~~~ir-1jr-1), i :LZ,...,I(iljl---ir-ljr-l)’

ir

i.e. if its components E,

igjg--ir Jr

have the samerdliability
function

R(t) =1 —F(t), t T (=¥ ¥).

Definition 12. A two-state paralld-series system of
order r is called regular if

| = |_(i1J'1) -
i2

= (ija-ir-1ir-1) = |
i1 -t i n

and

Kk (ini) - =k (inj-ir-1ir-1) — Kk
where k, is the number of parallel systems in the
parallel-series subsystems and |, are the numbers of

paralld-series subsystems or, respectively, the
numbers of components in these parallel systems.
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Applying mathematical induction it is possible to
prove that the reliability function of the homogeneous
and regular two-state hierarchical parallel-series
system of order r is given by

R @ =[1-[1- R, ("] for k=23...r
and

R (O =[1- [FOI 1, tT(=¥,¥),
wherek, and |,, are defined in Definition 12.
Corollary 4. If components of the homogeneous and
regular two-state hierarchical parallel-series system of
order r have an exponential reliability function

R(t) =exp[-1t] fort3 0, | >0,
then its rdiability function is given by

R O =[1-[1- R, (®) 1] for k=23,...,r
and

Ry, (1) =[1- [1- exp[- I t]]"]* for t2 0.

Theorem 5. If
() A (t) =exp[-V ()], tT (-¥,¥), isanon-
degenerate reliability function,

1
(if) lim1; ™k, =0 for r21,

(iii) |i®rgk'j'1+“~+1[F(ant+bn)]'5 =V (t) for tT C,,

ral tl (-¥,¥%),
then

imR., ., @t+b) = A() for tl C;, r3y,
tT (-¥,¥).
Proposition 5. If components of the homogeneous and
regular two-state hierarchical paralld-series system of
order r have an exponentia reliability function
R(t) =exp[-1t] fort3 0, | >0,
1

liml*k ' =0 for r31 liml_=I, IT N,
ne® ¥ ne® ¥

and

&= 1 =0
i
then
“Ag(t) =exp[-t"' ] for t2 0 (11)

isitslimit reliability function.

Example 3. We consider a hierarchical regular paralld-
series homogeneous system of order r =2 such that
k, =200, |,=3, whose components have identical
exponentia rdiability functions with the failure rate
| =0.01.

Its exact rdiability function, according to Corollary 4,
isgiven by

R, x05(t) =[1- [1- [ 1- [1- exp[- 0.01t]]*]™ J°]*
for t3 0.

Next applying Proposition 5 with normalising
constants

1 1

8, =5 o1 ogree ~ 94912, b,=0,

we conclude that
A, (t) =exp[-t°] for t3 0

is the system limit reliability function, and from (7),
the following approximate formulais valid

R, x05(t) @A , (0.1054t) = exp[ - (0.1054t)°]
for t3 0.

6. Conclusion

Generalizations of the results on limit reliability
functions of two-state homogeneous systems for these
and other systems in case they are non-homogeneous,
are mostly given in [8] and [9]. These results alow us
to evaluate reliability characteristics of homogeneous
and non-homogeneous series-paralld and parallel-
series systems with regular rdiability structures, i.e.
systems composed of subsystems having the same
numbers of components. However, this fact does not
restrict the completeness of the performed analyss,
since by conventional joining of a suitable number of
components which do not fail, in series sub-systems of
the non-regular series-parallel systems, leads us to the
regular non-homogeneous series-paralld systems.
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Similarly, conventional joining of a suitable number of
failed components in parallel subsystems of the non-
regular parallel-series systems we get the regular non-
homogeneous parale-series systems. Thus the
problem has been analyzed exhaustively.

The results concerned with the asymptotic approach to
system reliability anaysis, in a natural way, have led to
investigation of the speed of convergence of the system
reiability function sequences to their limit reiability
functions ([9]). These results have also initiated the
investigations of limit reliability functions of “m out of
n’-series, series“m out of n” systems, the
investigations on the problems of the system reliability
improvement and on the reliability of systems with
varying in time their structures and their components
reliability described briefly in [9] and presented in Part
2 ([20Q]) of this paper.

More general and practically important complex
systems composed of multi-state and degrading in time
components are considered in wide literature, for
instance in [14]. An especialy important role they play
in the evaluation of technical systems reliability and
safety and their operating process effectiveness is
described in [9] for large multi-state systems with
degrading components. The most important results
regarding generalizations of the results on limit
reiability functions of two-state systems dependent on
transferring them to series, paralld, “m out of n”,
series-parallel and parallel-series multi-state systems
with degrading components are given in [9]. Some
practical applications of the asymptotic approach to the
reliability evaluation of various technical systems are
contained in [9] as wdl.

The proposed method offers enough simplified
formulae to allow significant simplifying of large
systems  reliability evaluating and optimizing
calculations.
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Abstract

Series-“m out of n” systems and “m out of n”-series systems are defined and exemplary theorems on their limit
reliability functions are presented and applied to the reliability evaluation of a piping transportation system and a
rope elevator. Applications of the asymptotic approach in large series systems reliability improvement are also
presented. The paper is completed by showing the possibility of applying the asymptotic approach to the reliability
anaysis of large systems placed in their variable operation processes. In this scope, the asymptotic approach to
reliability evaluation for a port grain transportation system related to its operation process is performed.

1. Reliability of large series-“m out of n”
systems

Definition 1. A two-state system is called a series“m
out of ky" systemif itslifetime T is given by
T=T

(kn-m+1)’

m=1,2,...k,

whereT , .. isthemth maximal order statisticin

the set of random variables

T= min), 1212,k

The above definition means that the series“m out of
k,” system is composed of k, series subsystems and it

is not failed if and only if a least m out of its k,

series subsystems are not failed.

The series-“m out of k,” system is a series-parallel for
m = 1 and it becomes a series system for m= k.

The reliability function of the two-state series“m out
of k,” system is given ether by

R™ (t)=1

kn ,Il,lz,...,lkn

[

1 j=1

1
o
- a
1,02y rkn =0
Lt £m-1

O
Or

R,OI'[L- 6 R,(0I,

fort1 (—¥,¥)orby

RM™ (t)

kn,ll,lz,m,lkn

°1 & A i A il
= a4 O[1-0 RWI"[O R;M®I"",
11,12, Tkpy zg i=1 j=1 j=1
I':|_+I'2+m+l'krI m

fort1 (=¥,¥), whee m=k,-m

Definition 2. The series“m out of k,” system is called
regular if

Definition.3. The series-“m out of k,” system is called
homogeneous if its component lifetimes T; have an
identical distribution function

Ft) =P(T; £6),tT (¥¥),i=12,...k,j=12,...,l;,

i.e. if its components E; have the same reliability
function

R(t) =1—-F(), tT (=¥.¥).
From the above definitions it follows that the reliability

function of the homogeneous and regular series-“m out
of k,” system is given ether by
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RO, 0=1-% (' R ea- R
fortT (=¥,¥)orby
R, © = EO(T” Jiz- R o (RY

fort1 (=¥¥), m=k - m, where k, is the
number of series subsystems in the “m out of k,”
system and |, is the number of components of the
series subsystems.

Corollary 1. If components of the homogeneous and
regular two-state series“m out of k,” system have
Weibull reliability function

R(t) =exp[- bt?] for t3 0,a >0, b >0,
thenits rdiability function is given either by

R, (1)

3

=1- % (" Jlexp[- il bt* ]][1- exp[-1,bt" ]

) i
0

Qo

for t3 Oor by

ﬁ,ffj,)n (t)

Qo3|

=& ()11~ exp-1,bt*IT'[expl- (k, - DI,bt*]]  (2)

n
o

fort3 0, m=k,-m

Proposition 1. If components of the two-state
homogeneous and regular series-“mout of k,” system
have Weibull rdliability function

R(t) =exp[- bt?] for t3 0,a >0, b >0,
and

limk, =k, k>0, 0O<m£k, liml =¥,
n® ¥ n® ¥

1
a,=(bl,)*, b, =0,
then

A2 ()

(4 )expl-it* ][1- exp[-t*1]*" for t2 0

o3

=1-

isitslimit reliability function, i.e, for t 3 0, we have

R (1) @ & ()
an
=1- nél('i‘)ap[-iblnta][l- exp[- bl t* 11", (3)
i=0

Example 1. The piping trangportation system is set up to
receive from ships, store and send by carriages or cars
oil products such as petrol, driving oil and fud oil.
Three terminal parts A, B and C fulfil these purposes.
They are linked by the piping transportation systems.
The unloading of tankers is performed at the pier. The
pier is connected to termina part A through the
trangportation subsystem S built of two piping lines. In
part A there is a supporting station fortifying tankers
pumps and making possible further transport of oil by
means of subsystem S; to terminal part B. Subsystem S,
is built of two piping lines. Terminal part B is connected
to terminal part C by subsystem S;. Subsystem S; is built
of three piping lines. Termina part C is set up for
loading the rail cisterns with oil products and for the
wagon carrying these to therailway station.

We will analyse the reliability of the subsystem S,
only. This subsystem consists of k, = 3 identical piping
lines, each composed of |, = 360 steel pipe segments.
In each of lines there are pipe segments with Weibull
reliability function

R(t) = exp[- 0.0000000008t"] for t 2 O.

We suppose that the system is good if at least 2 of its
piping lines are not failed. Thus, according to
Definitions 2-3, it may be considered as a
homogeneous and regular series-“2 out of 3" system,
and according to Proposition 1, assuming

1 1
an = - = e bn =
(b1, )Y*  (0.000000288)"

and using (3), its reliability function is given by
RO, (1) @A P ()
. a
=4 ?g@(p[- i »0.0000002881 ]
i=0@l g

»1- exp[- 0.000000288t*]]*" for t 3 0.
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2. Reliability of large “m out of n”-series
systems

Definition 4. A two-state systemiscaled an“ m out of
l; ”-series system if its lifetime T is given by

T=mnT; ., M=12.

1£i£kp

whereT(I__mﬂ) is the mth maximal order statistic in

the set of random variables

Ti11 Tiz, ""T“i y i =1,2,...,kn

The above definition means that the “m out of |;”-
series system is composed of k, subsystems that are
“m out of I;” systemsand it isnot failed if all its“ m
out of |,” subsystems are not failed.

The “m out of I,”-series system is a paralld-series
system if mp=mp=. .. =mkn=1 and it becomes a
seriessystemif m=1I;forali =12, ... k..

Therdiability function of the two-state“ m out of |, ”-
series system is given either by

R

ko g " 1t
=O[1- a [O R (D" [1- O Ry (O] "]

i=1 I':|_,I'2,...,I'|i =0 j— =1

M+ £mp- 1

fort1 (—¥,¥)orby

(M, My... mkn
Kn bl (D)
Kk 1 i ol L
=0[ a [1- O RyMI"[O Ry "]
i=1 P T2 =0 j=1 j=1

r o+ £m

fortT (=¥ ¥),wheem =I. - m, i=12..,kK,

Definition 5. The two-state “m out of [, "-series

system is called homogeneous if its component
lifetimes T;; have an identical distribution function

F(t) =P(Ty £6),tT (¥¥),i=12,...k, j=1,2,....li ,

i.e. if its components E; have the same reliability
function

Rt =1—-F(), tT (=¥.¥).

Definition 6. The“ m out of |, ”-series systemis called
regular if

and

m =m,=...=m_=m, wherel,, m N, m£l,
The reliability function of the two-state homogeneous
and regular ,, m out of |,”-series system is given either
by

N m-1

REY, O =0 & (7 Jror - ropey

fort1 (=¢¥)orby

“Moﬂa@thmHmm“w

fortT (—¥,¥), m=l_-m where k, is the
number of “mout of |,” subsystems linked in series
and |, is the number of componentsin the “m out of |,
subsystems.

Corollary 2. If the components of the two-state

homogeneous and regular “mout of |,,”-series system
have Weibull reiability function

R(t) =exp[- bt?] for t3 0,a >0, b >0,
thenits rdiability function is given either by

R™ (1)

=[1- & (7 Jepl- ibt* Ji2- epl- bE]" 1 (@

for t3 0 or by

R, © =[§0(Ii” )[1' expl- bt* 11" exp[- (I, - i)bt? ]]*

fort3 0, m=I,-m
Proposition 2. If components of the two-state

homogeneous and regular “mout of |,"-series system
have Weibull rdliability function

R(t) =exp[- bt?] for t3 0,a >0, b >0,

and
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limk, =k, k>0, 0<m£Kk, Ig‘gln=¥,

n® ¥

b, =%, 5
then
AL O =1- expl- expl- 01 2Py

for t1 (-¥,¥), isitslimit rdiability function, i.e.

Re (1) @A “”( £ By

t-b
exp[-i—"]
1 a

-1 el epl- 2 ——2 0 (@

for tT (-¥,¥), where a, and b, are defined by (5).

Example 2. Let us consider the ship-rope transportation
system (elevator). The elevator is used to dock and
undock ships coming in to shipyards for repairs. The
elevator is composed of a sted platform-carriage
placed in its syncline (hutch). The platform is moved
vertically with 10 rope hoisting winches fed by
separate electric motors. During ship docking the
platform, with the ship settled in special supporting
carriages on the platform, is raised to the wharf level
(upper position). During undocking, the operation is
reversed. While the ship is moving into or out of the
syncline and while stopped in the upper position the
platformis held on hooks and the loads in the ropes are
relieved.

In our further analysis we will discuss the reliability of
the rope system only. The system under consideration is
in order if all its ropes do not fail. Thus we may assume
that it is a series system composed of 10 components
(ropes). Each of the ropes is composed of 22 strands.
Thus, considering the strands as basic components of
the system and assuming that each of the ropes is not
failled if at least m=5out of its strands are not failed,
according to Definitions 5-6, we conclude that the rope
devator is the two-state homogeneous and regular
»Dout of 22”-series system. It is composed of k, = 10
series-linked “5 out of 22" subsystems (ropes) with |, =
22 components (strands). Assuming additionally that
strands have Waeibull reiability functions with
paramegersa =2, b =0.05, i.e

R(t) = exp[- 0.05t%] for t3 O,
from (4), we conclude that the eevator reliability
function is given by

Rl(g,)zz(t) =
[1- & (Z)exp[- 10.05t2][1- exp[- 0.05t2]]%Z ]
i=0

for t3 0.

Next, applying Proposition 2 with

a, = 78626@2718 b, [IogZZ
2log 22 0.0

12 @7.8626,

and (6) we get the following approximate formula for
the elevator reiability function

RO, ) @A (¥ (0.7863 - 6.1821)]"
=[1- exp[- exp[- 0.7863 +6.1821]]

¢ ool 07863t + 61821
& expl- 0.7863it + 6.1821i],

i=0 i!

10 17 (-¥,¥).

3. Asymptotic approach to systems reliability
improvement

We consider the homogeneous series system illustrated
inFigure 1.

] Ell E21 — B Enl _

Figure 1. The scheme of a series system

It is composed of n components E,, i=12,...,n,
having lifetimes T,;, i=12..,n, and exponential
reiability functions

R(t)=exp[-It] for t3 0, | >0.

Its lifetime and its rdiability function respectively are
given by

TO —mln{ "

R, (t) =[R(t)]" =exp[- I nt], t3 0.

In order to improve of the rdiability of this series

system the following exemplary methods can be used:

— replacing the system components by the improved
components with reduced failure rates by a factor r,
O<r <1,

—awarm duplication (a single reservation) of system
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components,
—acold duplication of system components,
—amixed duplication of system components,
—ahot system duplication,
—acold system duplication.
It is supposed here that the reserve components are
identical to the basic ones.
The results of these methods of system reliability
improvement are briefly presented below, giving the
system schemes, lifetimes and reliability functions.

Case 1. Replacing the system components by the
improved components Ei'l i=12,...,n, with reduced
failure rates by a factor r, 0 <r < 1, having lifetimes
T, i=12,.,n, and exponential reliability functions

J— E’]_]_ E’zj_ - — E,nl —
R(rt) =exp[-rlt] fortz 0, | >0.

Figure 2. The scheme of a series system with improved
components

T =min{T,},

1£iEn
RO ) =[R(rt)]" =exp[-rlnt], t2 0.

Case 2. A hot reservation of the system components

Eir =% - - Enn Ent

Ew Ex En1o Enz

Figure 3. The scheme of a series system with
components having hot reservation

@ =mi "
T =min{max(T, }},

R® (1) =[1- [FM]?]" =[1- [1- exp[-1t]]%]", t3 .

Case 3. A cold reservation of the system components

— Eu b~ Ex}l— . Enap— En |—

Hey EHg

Figure 4. The scheme of a series sysem with
components having cold reservation

2
T® =min{&T;},
1£i£n j=1

R ) =[1- [FOI* [FON" =[L+1 ]" exp[-nl 1], t3 O.

Case 4. A mixed reservation of the system components

| En |- Em

o |15 )

Figure 5. The scheme of a series system with
components having mixed reservation

2
(4 — . ST . 3
T =min(min(AT,}, min (ma (T, }}).

R 1) =[1- [FOI* [FON™[1- RP@®]™"
=[1+1t]" exp[- | nt][2- exp[- 1 t]]" ™, t3 0.
Case 5. A hot system reservation

T E]_]_ EZl I En]_
E12 E22 e En2 :|7

Figure 6. The scheme of a series system with hot
reservation

G = i "
T = mad min{T; }},

R ©=1- [1- [ROI"T® =1- [1- expl-nl )%, t2 0,

Case 6. A cold system reservation

— Ell EZl — . . . T Enl

LE]_Z Ex [ . . . EnzJ

Figure 7. The scheme of a series system with cold
reservation

-132-



K.Kotowrocki Reliability modelling of complex systems-Part 2 -

RTA # 3-4, 2007, December - Special Issue

2
T® =38 min{T;},
1—11£|£n

R (t)=1- [1- [RO]"T*[1- [R®]"]
=[1+nl t]exp[-nl t], t3

The difficulty arises when sdlecting the right method of
improvement of reliability for a large system. This
problem may be simplified and approximately solved
by the application of the asymptotic approach.
Comparisons of the limit reliability functions of the
systems with different types of reserve and such
systems with improved components allow us to find
the value of the components decreasing failure rate
factor r, which givesrise to an equivalent effect on the
system reliability improvement. Similar results are
obtained under comparison of the system lifetime
mean values. As an example we will present the
asymptotic approach to the above methods of
improving reliability for homogeneous two-state series
systems.

Proposition 3.Case 1. If
an=1Ulrn, b,=0,
then

A ®t) = exp[] fort3 0,

is the limit reliability function of the homogeneous
exponential series system with reduced failure rates of
its components, i.e.

ROy = AD(Irnt) =exp[- | rnt] for t3 0

and

(l) E[T (l)] - |_
rn

Case2. If
a, =1/1+/n, b, =0,
then
A@(t) = exp[t] fort3 O,

is the limit reliability function of the homogeneous
exponential series system with hot reservation of its
components, i.e.

RO @A @@ Jnt) =exp[-12nt?] for t3 0

and

T(2>—E[T‘2>]@G( )7'

Case3. If
a, =+/2/1+/n, b, =0,
then
A®(t) = exp[-t] for t 3 0,
is the limit reliability function of the homogeneous

exponential series system with cold reservation of its
components, i.e.

RO () @A O \/g) = exp[- %I ’nt’] for t2 0

and
T‘3>-E[T‘3>]@G( \f
Case 4. If
1 2
== , b, =0,
@n I Voan-m’ "
then

AY(t) = exp[t] fort3 O,

is the limit reliability function of the homogeneous
exponential series system with mixed reservation of its
components, i.e.

RO @A (2T

=exp[- 2n2m| t?] fort3 0

and

TO=ETY @6 )

Caseb. If
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1
a, :m, bn :0,

then
A®(t) = 1- [1- exp[-t]]? for t3 O,

is the limit reliability function of the homogeneous
exponential series system with hot reservation, i.e.

RO@W= A ®(nt)=1- [1- exp[- | nt]]? for t2 0

and

TO=ETO] =3
2

Case 6. If
1
an :m, bn :0,
then

A®(t) = [1+t]exp[-t] fort3 0,

is the limit reliability function of the homogeneous
exponential series system with cold reservation, i.e.

RE®t)= A ©(nt)y=[1+Int]exp[-I nt] fort3 0

and

-|-(6)_E[-|-(6)]=£
I'n

Corollary 3. Comparison of the system reiability
functions

AO@) =A®(),1=23,...6,

results respectively in the following values of the
factor r :

r=r()=I1t fori=2
r=r(t)=%|t fori=3,

2n- m

It fori=4,
2n

r=r()=

r =r(t)=1- log[2- exp[- | nt]] fori=05,
1 .
r=r()=1- mlog[lﬂ nt] fori=6,

while comparison of the system lifetimes
TOM) = T9(), 1 =23....6

results respectively in the following values of the
factor r :

r= 3 for i =2,
GWn
2
rz% fori=3,
GV
— - fori=4,
G()
r:E fori =5,
r=1 fori=6
2

Example 3. We consider a simplified bus service
company composed of 81 communication lines. We
suppose that there is one bus operating on each
communication line and that all buses are of the same
type with the exponential reliability function

R(t) =exp[-It] fort3 0, | >0.

Additionally we assume that this communication
system is working when all its buses are not failed, i.e.
itis failed when any of the buses arefailed. Thefailure
rate of the buses evaluated on statistical data coming
from the operational process of bus service company
transportation system is assumed to be equal to 0.0049
h™t.

Under these assumptions the considered transportation
system is a homogeneous series system made up of
components with a reliability function

R(t) = exp[- 0.0049t] for t3 0.

Here we will use four sensible methods from those
considered for system reliability improvement.
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Namely, we apply the four previously considered
Cases.

Case 1. Replacing the system components by the
improved components with reduced failure rates by a
factor r.

Applying Proposition 3 with normalising constants

= 1 -1y -0
%= 0004081 0307r | B

we conclude that
AD(t) = exp[—t] fort3 0,
isthe limit reliability function of the system, i.e.

R )= A®(0.397rt) =exp[- 0.397rt]for t2 0

and
TO=gr®)=_ 1
0.397r
Case 2. Improving the reliability of the system by a

single hot reservation of its components.

This means that each of 81 communication lines has at
its disposal two identical buses it can use and itstask is
performed if at least one of the buses is not failed.
Applying Proposition 3 with normalising constants

1 1
Qo = =
o 0.0049%/81

1 b -
0.0441" %

we conclude that
A @) =exp[-t?],t3 0.
isthe limit reliability function of the system, i.e.

R () @A @(0.0441) @exp[- 0.0019t%], 3 0,
and

TO=ET?] @ )OOOM— @0.10h

Case 4. Improving the reliability of the system by a
single mixed reservation of its components.

This means that each of 81 communication lines has at
its disposal two identical buses. There are m=50
communication lines with small traffic which are using
one bus permanently and after its failure it is replaced
by the second bus (a cold reservation) and
n- m=81- 50=31 communication lines with large

traffic which are using two buses permanently (a hot
reservation).
Applying Proposition 3 with normalising constants

1 | 2 1
an - —_—= ] bn = 0,
0.0049 V112 0.0367

we conclude that

AY(t) = exp[t] fort3 O,
isthe limit reliability function of the system, i.e.

R@ @t @A® (0.0367t) =exp[- 0.00135t2] for t3 0

and
2
T@O=ET® = 4.15h.
[T @3(2)00049 112 @
Case 5. Improving the rdiability of the system by a

single hot reservation.

This means that the transportation system is composed
of two independent companies, each of them operating
on the same 81 communication lines and having at
their disposal oneidentical bus for use on each line.
Applying Proposition 3 with normalising constants

1 1

= = , be; =0,
%1 = 0.004981 0397 &

we conclude that
A®(t) = 1- [1- exp[-t]]? fort3 O,

isthe limit reliability function of the system, i.e.
RO )= A®(0.3971)

= 1- [1- exp[- 0.397t]]? for t2 0

and
TO=gT%1=— 3 @878h
[ ] 2><O.OO49>81@8
Comparing the system reliability functions for

considered cases of improvement, from Corollary 3,
results in the following values of the factor r :

r=r(t)=0004% for i =2,

r =0.0340t fori =4,
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r =r(t)=1- log[2- exp[-0.397t]] fori=5,

while comparison of the system lifetimes results
respectively in:

r =0.1254 for i =2,
r =0.1043 fori =4,
r =0.6667 fori=5.

Methods of system rdiability improvement presented
here supply practitioners with simple mathematical
tools, which can be used in everyday practice. The
methods may be useful not only in the operation
processes of real technical objects but also in designing
new operation processes and especially in optimising
these processes. Only the case of series systems made
up of components having exponential rdiability
functions with single reservations of their components
and subsystems is considered. It seems to be possible
to extend these results to systems that have more
complicated reliability structures, and made up of
components with different from the exponential
reiability functions.

4. Reliability of large systemsin their operation
processes

This section proposes an approach to the solution of
the practically very important problem of linking
systems' reliability and their operation processes. To
connect the interactions between the systems
operation processes and their reiability structures that
are changing in time a semi-markov moddl ([1]) of the
system operation processes is applied. This approach
gives a tool that is practically important and not
difficult for everyday use for evaluating rdiability of
systems with changing reliability structures during
their operation processes. Application of the proposed
methods is illustrated here in the reliability evaluation
of the port grain transportation system.

We assume that the system during its operation process
istaking different operation states. We denote by Z(t),

t1 <0,¥ >, the system operation process that may
assume v different operation states from the set

Z2={z,z,,...,2,}.

In practice a convenient assumption is that Z(t) is a
semi-markov process ([1]) with its conditional sojourn

times q, at the operation state z, when its next
operation stateis z,, b,1=12,...,v, b |. Inthiscase
this process may be described by:

- the vector of probabilities of theinitial operation
states [ py, (0)]1xn »

- the matrix of the probabilities of its transitions
between the states [ py ] »
- the matrix of the conditional distribution functions

[Hy ()], of thesojourntimesq,, b I, where
H, (t)=P@y <t) for b,I =1,2,...,v, bt [,

and
Hy () =0 for b=12,...,v.

Under these assumptions, the lifetime q,, mean values
are given by

M, =Efqy] = gtdH, (©), b 1=12..v, b1 1. (7)
0

The unconditional distribution functions of the sojourn
times g, of the process Z(t) at the states z,,

b=12,..,v, aegivenby
H, @) = Ié_llpble, ®, b=12,..,v.

The mean values E[q,] of the unconditional sojourn
times g, aregiven by

M, = Eld,] = & PyMy , b=12...v. ®)

where M, aredefined by (7).
Limit values of the transient probabilities at the states

p,(t) = P(Z(t) = z,), tT1 <0,¥), b=12,..,v,

aregiven by ([1])
M
P, = limpy(t) = fb—", b=12,...V, 9)
ap M,
1=1

where the probabilities p, of the vector [p,],,, Satisfy
the system of equations

}[pb]:[pb][pu]

Iy

We consider a series-paralld system and we assume
that the changes of its operation process Z(t) states
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have an influence on the system components E;

reliability and on the system rdliability structure as
well. Thus, we denote ([13]) the conditional reliability
function of the system component E; while the

systemis at the operational state z,, b=12,...,v, by
R 010 =P 2 t/12() =2,),

for t T <0¥), b=12..n, and the conditional
reiability function of the non-homogeneous regular
series-parallel system while the system is at the

operational state z,, b=1.2,...,n, by

[Ry,,, 01V =PT® 2 t/Z(t)=2,)
=1- O- [ROMI”1"1* (10
for tT <0,¥) and
RO®1® = jcg:)l[[R(i’j)(t)](b)]p”, i=12..a (11

The reliability function [R"? (t)]® is the conditional
probability that the component E; lifetime T,*) inthe
is not less than t, while the process Z(t) is at the
operation state z,. Similarly, the rdiability function
[R,., 1] is the conditional probability that the
series-parallel system lifetime T® is not less than t,

while the process Z(t) is at the operation state z,. In
the case when the system operation time is large
enough, the unconditional rdiability function of the
series-parallel systemisgiven by

R, =PT>0) @4 p[R, 17  (12)

for t3 0 and T is the unconditional lifetime of the
series-parallel system.

The mean values and variances of the series-paralld
system lifetimes are

n
M @bé- pb M b (13)
=1
where
¥
My = dR, , (017 dt, (14)
0

and
DIT®]=261[R, , OV ct-[M,]7,  (15)

for b=12,...,n.

Example 5. We analyse the reliability of one of the
subsystems of the port grain elevator. The considered
system is composed of four two-state non-
homogeneous series-parallel transportation subsystems
assigned to handle and clearing of exported and
imported grain. One of the basic eevator functions is
loading railway trucks with grain.

In loading the railway trucks with grain the following
elevator transportation subsystems take part: S —
horizontal conveyors of the first type, S — vertical
bucket elevators, S — horizontal conveyors of the
second type, S; —worm conveyors.

We will analyze the reliability of the subsystem S,
only.

Taking into account experts opinion in the operation
process, Z(t),t3 0 of the considered transportation

subsystem we distinguish the following as its three
operation states:

an operation state z, — the system operation with the
largest efficiency when al components of the
subsystem S, are used,

an operation state z, — the system operation with less

efficiency system when the first and second conveyors
of subsystem S, are used,

an operation state z, — the system operation with least

efficiency when the first conveyor of subsystem S, is

used.
On the basis of data coming from experts, the

probabilities of transitions between the subsystem S,
operation states are given by
¢ 0 0357 0.6430

_é u
[Py =¢ 0.8 0 0.2 i
€385 0615 0 §

and their mean values, from (8), are

M, = E[q,] = 0.357>0.36+ 0.643>0.2 @0.257,
M, = E[q,] = 0.8>0.05+0.2>0.2 @0.08,
M, = E[q,] = 0.385>0.08+0.61550.05 € 0.062.

Since from the system of equations
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é 0 0357 0.643u

[P1,P2.Ps] :[prpz’ps]g 0.8 0 0.2 3
€0.385 0615 0 {

i
I
|
|
I
tpy+p, +ps =1
we get

p, =0374, p, =0.321 p, =0.305,

then the limit values of the transient probabilities
p, (t) at the operation states z,, according to (9), are
given by

p, =0.684, p,=0.183 p, =0.133, (16)

The subsystem S, consists of three chain conveyors.
Two of these are composed of 162 components and the
remaining one is composed of 242 components. Thus it
is a non-regular series-parallel system. In order to
make it a regular system we conventionally complete
two first conveyors having 162 components with 80
components that do not fail. After this supplement
subsystem S, consists of k, = 3 conveyors, each
composed of |, = 242 components. In two of them there
are

- two driving wheels with reliability functions

R(t) = exp[- 0.0798t],
- 160 links with reliability functions
R(t) = expl- 0.1241],

- 80 components with “reliability functions’
RY(t) = exp[ - 1 ,(1) 1], where 1, (1) = 0.

Thethird conveyer is composed of:
- two driving wheels with reliability functions

R®D(t) = exp[- 0.1671]
- 240 links with reliability functions

R%3(t) = exp[- 0.208].
At the operation state z, the subsystem S, becomes a
non-homogeneous regular series-parallel system with
parameters

ke =3,1n,=242,a=2,0, = 2/3, 0, = 1/3,

e=3 =2

Pu = 2/242, pyp = 1601242, py; = 80/242,
Po1 = 2/242, Py = 240/242,

and from (10)-(11) the rdiability function of this
system s given by

[R50 (1)

= 1—[1—exp[~19.98921]]%[1 — exp[-50.2628]]

= 2exp[- 19.9892t] - 2exp[- 70.252t]

+ expl - 50.26281] + exp[- 90.2412t]

- exp[- 39.9784t] for t 2 0. 17

According to (14)-(15), the subsystem lifetime mean
value and the standard deviation are

M, @.078 s, @0.054. (18)

At the operation state z, the subsystem S, becomes a

non-homogeneous regular series-parallel system with
parameters

kn=2,1,=162,a=1, u=1e=2
pu = 2/162, p» = 160/162.

and from (10)-(11) the reliability function of this
systemis given by

[R .16, ()] ® = 1 —[1 - exp[-20.0071]]®
= 2exp[- 20.007t] - exp[- 40.014t] fort3 0. (19)

According to (14)-(15), the subsystem lifetime mean
value and the standard deviation are

M, @.075, s , @0.056, (20)

At the operation state z, the subsystem S, becomes a

non-homogeneous regular series-parallel  (series)
system with parameters

ke=1, I,= 162, L= 1 =3,
pu = 2/162, p;2 = 160/162,

and from (10)-(11) the reliability function of this
systemis given by
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[ Ry ()] = exp[-19.999] for t 2 0. (21)

According to (14)-(15), the system lifetime mean value
and the standard deviation are

Finally,

M, €0.050, s, €0.050. (22)

consdering (12), the subsystem S,

unconditional reliability is given by

R(t) @0.684{R; 54, (1)] @ +0.1834 R, 162(t)] @

+0.133 R4, (1)] ¥, (23)

where [R;,,, ()] @, [Ry16 (V)] @0 Ri162 (O] ®, are
given by (17), (19), (22).

Hence, applying (16) and (18), (20), (22), we get the
mean values and standard deviations of the subsystem
unconditional lifetimes given by

M € 0.684°0.078 +0.183:0.075

+0.133>0.050 ¢ 0.074, (24)
s (1) €0.054. (25)
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Abstract

The need to use unsophisticated probability-based approaches and models in the structural safety analysis of the
structures subjected to annual extreme service, snow and wind actions is discussed. Statistical parameters of single
and coincident two extreme variable actions and their effects are analysed. Monotone and decreasing random
sequences of safety margins of not deteriorating and deteriorating members are treated, respectively, as ordinary
and generalized geometric distributions representing highly-correlated series systems. An analytical analysis of the
failure or survival probabilities of members and their systems is based on the concepts of transformed conditional
probabilities of safety margin sequences whose statistically dependent cuts coincide with extreme loading
situations of structures. The probability-based design of members exposed to coincident extreme actions is

illustrated by a numerical example.

1. Introduction

The stochastic systems and their subsystems consist of
some particular members representing the only
possible failure mode. To particular members belong
cross and oblique sections of tension, compression,
flexural and torsional structures. The structura
members (beams, dabs, columns, walls) of buildings
consist of two or three design particular members and
may be treated as auto systems representing
multicriteria faillure modes. An overloading of
members during severe service and climate actions
may provoke a falure of structures. Therefore, the
requirements of design codes should be satisfied at all
sections along structural members.

Structural failures and collapses in buildings and
congtruction works can be caused not only by
irresponsibility and gross human errors of designers,
builders or erectors but also by some conditionalities of
recommendations and directions presented in design
codes and standards. A possibility to ensure objectively
the safety degree of structures subjected to extreme
service loads, wind gust and snow pressures or wave
surfsis hardly trandated into reality using the traditional
deterministic design methods of partial safety factors in
Europe or load and resistance factorsin the USA.

It is understandable that probabilistic design
approaches are inevitable for the calibration of partial
factors. However, it should be more expedient to

analyse the structural safety of particular members and
their systems by probability-based methods.
Regardless of efforts to improve and modify
deterministic design approaches, it is inconceivable to
fix areal rdiability index of structures afailure domain
of which changes with time. The time-dependent safety
assessment and prediction of deteriorating members
and systems using unsophisticated methods is a
significant concern of researchers.

Despite of fairly developed up-to-date concepts of
reiability, hazard and risk theories, including the
general principles on reliability for structures [6], [7],
[15], it is difficult to apply probability-based
approaches in structural safety analysis. These
approaches may be acceptable to designers and
building engineers only under the indispensable
condition that the safety performance of members and
their systems may be considered in a smple and easy
perceptible manner. In other words, probabilistic
methods may be implanted into structural design
practice only using unsophisticated mathematical
models helping us to assess al uncertainties due to the
features of resistances and action effects of structures.
This paper deals with probability-based safety analysis
of deteriorating and not deteriorating members and
their systems under extreme gravity and lateral
(horizontal) actions using unsophisticated but fairly
exact design models.
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2. Time dependent safety margin

According to probability-based approaches (design
level 111), the time-dependent safety margin as the
performance of deteriorating particular members may
be presented as follows:

Z(t) = o[, X (1)) = qrR() - 0gSy - g Sq, ) -

- qq25q2 (t) - qwsw(t) | (1)

where u is the vector of additional variables
characterizing uncertainties of models which give the
values of resistance R, permanent Sg , Sustained Sql

and extraordinary S, service and extreme wind S,
2

action effects of members (Figure 1, @). This vector
may represent also the uncertainties of probability
distributions of basic variables.

According to Rosowsky and Ellingwood [11], the
annual extreme sum of sustained and extraordinary
occupancy live action effects Sy(t) = Sy (t) + S, (1)
can be modelled as an intermittent process and
described by a Type 1 (Gumbel) distribution with the
coefficient of variation nSq =0.58, characteristic qu

and mean S, = 0.47Sy values. Latter on Ellingwood

and Tekie [4] recommended modelling extreme values
of this sum during a 50 years period by a Type 1

It is proposed to model the annual extreme climate
(wind and snow) action effects by Gumbel distribution
law  with  the mean values equal to

Sum = S/ L+ kooenSyy) - and Sy = S/ (L+koeenS: )
[3, 6, 7, 13, 15]. According to meteorological data, the
strong wind conditions are characterized by a small
wind extreme velocity variation, i.e. gv » 0.1. On the
contrary, a large variation is characteristic of strong
snow loading. Therefore, the coefficients of variation
of wind and snow loads depending on the feature of a
geographical area are equal to aw=0.2- 0.4 and
ns=0.3- 0.7.

Probability distributions of material properties are
close to a Gaussian distribution [3], [6], [9], [12].
Therefore, a normal distribution or a log-normal
distribution may be convenient in resistance analysis
models [5], [6], [7]. The permanent action effect Sy

can be described by a normal distribution law [4], [5],
[6], [10], [12]. Thus, for the sake of design
simplifications, it is expedient to present the expression
(1) intheform:

Z(t) =R.(t) - S(1), (2
where the component process

Re(t) = arR(t) - 9¢Sy 3

distribution with the coefficient of variation may be considered as the conventional resistance of
S, =0.25 and mean value Sy, = Sy - members which may be modelled by a normal
distribution;

- - __ Ry ]

a) S’ R L tl 1 y M t| > K 7/ |
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Figure 1. Real (a) and conventional (b) models for safety analysis of particular members (sections) of

deteriorating structures
S(t) = dqSq(®) + [awSu ®)] @)

S(t) = 95 Ss (t) + [AwSw 1)) )
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arethe joint processes of two annual extreme action effects
when floor and rodf dructures, respectively, are under
condderation. The components in square brackets belonging
to thewind action effect are used in design andlysis of wind-
resstant members and systems. The action effect S¢(t) in

Equation (5) is caused by extreme snow loads.

3. Safety mar gin sequences with independent cuts

The data presented in Section 2 alow us to model
extreme service and climate action effects as
intermittent rectangular pulse renewal processes. These
time-variant intermittent action effects belong to
persistent design situations in spite of the short period
of extreme events being much shorter than the design
working life of structures. When variable action effects
may be treated as rectangular pulse processes, the
time-dependent safety margin (2) may be expressed as
thefinite rank random sequence and written as:

Zy =Ry - S, k=12 3 .., n-1 n. (6)
There
Rk =arR - dg Sy, (7)

Sk = clqsqk +qWS\M( or Sk = qusk +quwk1 (8)

are the components of this non-stationary sequence;
n=1t, is the number of sequence cuts as critical

events (situations) during design working life t,, of
members (Figure 1, b), where | =J/t; is a mean
renewal rate of these events per unit time when their
return periodis t; .

Usually the components Ry and S, are stochastically

independent. The instantaneous survival probability of
a member at k-th extreme situation (assuming that it
was safe at the situations 1, 2, ...,k - 1) is:

P, = PRy >S,} = ofRC (X)Fs, (¥, ©

where fg, (X) and Fg (x) are the density and

distribution functions of a conventional resistance R,
by (7) and an extreme action effect S, by (8). In this

case, the instantaneous failure probability of members
may be presented as:

ko1
Py = (- Ps)JOPs - (10)
i-1

Thus, the random sequence of safety margins may be
treated as a geometric distribution with ranked

instantaneous survival probabilities of members
Pf1 <Py <...<Pg <..Pf .1 <Py caculated by

Equation (10).

Pa > Po>..>Pg >..>Psn1> Ps

— Zl — Z2 |0 0 o Zk |—o 0 o] Zn—l_ Zn —

Pr1 Pr2 Pr Prn1 P

Figure 2. The scheme of series systems

Failure probabilities of structures should always be
defined for some reference period t,, or as a number of
extreme events n during this period. The scheme of
series  systems  representing the safety  margin
sequences is given in Figure 2. When the cuts of rank
random sequences are datistically independent, the
cumulative distribution function and similarly a failure
probability of members during their service life [O,tn]
with n extreme situations may be presented as
follows:

Pr=Fy(=PNEN}=4H1- P,)O Py

k-1
=1- Py +(1- P,)Py +...+(1- P )O P,
i=1

n

1 0
ot (1- P, )O Py =1- O Py. (11)

i=1

When the resistance R(t) is a time-invariant function
and treated as a stationary process, the instantaneous
survival probability Py by (9) is characterized by the
same value for all cuts of the monotone sequence. In
this case, Equation (11) becomes a cumulative
distribution function of an ordinary geometric
distribution as follows:

P, =Fy(M=P{NER}=1- 1- P,) ". (12)

The falure probability of members may be
approximated by Equations (11) and (12) only for

situations in which a variance of the action effect yZS

is much larger than the value y?R. for their
conventional resistance by (7).
4. Safety margin sequences with dependent cuts

In design practice, only recurrent extreme action
effects caused by extraordinary service and climate
loads may be treated as stochastically independent
variables. Usually, random sequence cuts of the safety
margin (6) are dependent. The value of a coefficient of
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autocorrelation r, of segquence cuts depends on é ®1 &
uncertainties of material properties and dimensions of »1- Pgdl+ryg gpf -1l . (17)
e x A

members. This coefficient may be defined as:
rw=r(z¢.z))=Cov(z.2))/vZ¢ " vZ)), (13)

where Cov(Z,,Z,) and yZ,,yZ, ae an
autocovariance and standard deviations of the random
safety margins Z, and Z, .

The finite random sequence of member safety margins
may be treated as a series stochastic system. The
survival probability of highly corrdated series systems

consisting of two dependent elements can be expressed
asfollows:

P{z,>012,>01=P," P{z,>0z, >0}

=Py Py +ra(Psz - PR P2)1 (14)
where a»4.5/(1- 0.98r,,) is the bond index of

survival probabilities of second-order series systems.
The data calculated by (14) and computed by the
complex numerical integration method presented by
Ahammed and Melchers [1] are very close. Thus, a

conditional  probability P{Z2 > O|Zl > 0} may be
transformed to a probability P 2é1+l’ ? 1:u
Therefore, Equation (14) may be presented in theform.
P{z,>012,>0}»P, " P,
é & oV}
’ e1+rf2§i- 1 (15)

é Pa o
For not deteriorating structures, a member resistance is
a time-invariant fixed random function the numerical
values of which are random only at the beginning of a

process. Therefore, the coefficient of correlation (13)
of monotone sequence cuts may be expressed as:

rw =Y flry2s, /y7R,). (16)
When the monotone rank sequence of safety margins

consists of n dependent elements, a failure probability
of membersis:

P, =P{NER=P! Uz, £o§=1- F>{‘|£lzk >o§

When a ratio of variances y2S,/y?R. >1, the
coefficient r§ »0 and the failure probability (17)
becomes Py =1- L- Py ) "

Equation (12).
A long-term survival probability of not deteriorating
membersis:

as it is expressed by

n-1

2 au
P, =1- P, —Pské1+rk|§i-1:gu . (18)
Py 4

A

(1)

The decreasing rank sequence of safety margins of
deteriorating members may be treated as a generalized
geometric distribution. Similar to Equation (17), the
failure probability of these members as series systems
may be calculated by the formula:

P, =P{N£n}»1- oP é1+r r 1

e el
é+r k'”lé -1
é I:>s,k—l m
é ® U
’ e1+rgl§i- 1, (19)
e Pa o

where the transformed rank coefficient of corrdationis

Fea =(Mkes k2 +- +rk2+rkl)/( 1) (20)
The long-term survival probability of deteriorating
members P =1- P;, where the probability P; is
givenin (19).

The presented method of transformed conditional
probabilities may also be successfully used in the
reiability analysis of random systems consisting of
individual components and characterizing different
failure modes of structures. In this case, it is expedient
to base the structural safety analysis of systems on the
ranked surviva probabilities of their members as:
Py >Ps; >...>Py >..> P51 >Pg, (Figure 2). A

rank correlation matrix of systems is constructed
taking into account this analysis rule.

4. The system of safety margin sequences
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Due to the complexity of mathematical models, it is
rather difficult to assess and predict a failure probability
of structures subjected to two and more coincident
recurrent and different by nature extraordinary actions.
The methods based on the Markov-chan mode and
Turkstra's rule [14] may be quite unacceptable in a
probabilistic anaysis of not only deteriorating but also
not deteriorating membeas and their sysems. The
Markov-chain modd may be quite inaccurate for
religbility analysis of members exposed to multiple
combination of action-effect processes [12]. The
Turkstra srule may be assumed only in the case when the
principal extreme load is strongly dominant [10].

Failure probabilities of members may be computed by
modified numerical integration methods. It is suggested
to use the theoretical expression of the cumulative
distribution function of the maximum intensity of two
load processes [10], the load overlap method [12] and the
improved upper bounding techniques [13]. It leads to
sufficiently accurate values but it is hard to realize these
recommendations in engineering practice

The need to smplify a rdiability analysis of
deteriorating structures is especially urgent. In any
analysis case, it must be taken into account that a
member failure caused by two statistically independent
extreme action effects may occur not only in the case of
their coincidence but also when the value of one out of
two effects is extreme Therefore, three finite random
sequences of safety margins should be considered:

My =Re - S, k=1 2, .., m, (21)
Mok = Rk - Sak» k=1 2, ..., g, (22)
My =Ry - Sy K=1 2, o g 23)

There S; =S +S, is the joint action effect, the
recurrence number of which during the period of time
[O,tn] may be calculated by the equation:

ng =ty(dy +dy) 14l 5, (24)

where d;, d, and | ;, | ,are durations and renewal
rates of extreme actions[8].

Mostly, the duration dg of annual extreme gravity
sarvice loads is from 1 to 3 days. The durations of annual
extreme snow and wind loads, respectively, are: dg =14-
28 days and d,, =8-12 hours. The renewal rates of these
actions are: | =1 =1, =1year. Therefore for 50
years reference period, the recurrence numbers of
extremeactionsare: ng,, =0.2-0.5and ng, =2-4.

When probability distributions of random variables X
and Y obey a Gumbel distribution law, the bivariate
density function of the random variable Z = X +Y
may be presented in the form:

¥
f,(2) = of,(z- v, X,, - 0.45yX)
-¥

" £y (Y, Y - 0.45yY)dy, (25)

where X, Y, and yX, yY are means and standard
deviations of these variables.

Taking into account that y?Z =y2X +y?Y is the
variance of bivariate probability distribution, the joint
density function may be expressed as:

f2(2» f2(za,), (26)
8, = Xy +Ypy - 049(yX +yY)- 048y 2X +y2y[?.

fZ (Z) B a) /2
0.6

05

04}

03
0.2

0.1F

5 6 7 8 9 10 11 12 13 14 15 16 z=x+y
Figure 3. Bivariate density functions calculated by
Equations (25) — 1 and (26) — 2: the coefficients of
correlation xX =y =0.10 (a) and 0.224 (b)

The probability density curves of joint extreme
variable Z =X +Y are given in Figure 3. It is not
difficult to ascertain that the difference between the
values computed by Equations (25) and (26) is fairly
small. Besides, the upper tails of both density curves
coincides. Therefore, in design practice it is expedient
to use the conventional bivariate distribution function
of two independent extreme action effects with the
mean Sy =Sym *Sxkm and the variance

2 _ .2 2
Y Sy =Y Sk ty Sk

6. Numerical example

The knee-joints of not deteriorating concrete frames of
reiability class RC2 are under exposure of shear forces
during 50 years period (Figure 4). The shear resistance
of knee-joints is expressed as. R=0.068bhf.. The
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characteristic, design and mean values of the concrete
compressive strength and shear resistance of knee-
joints are:

fq =30MPa, fy =20 MPa, f,, =38 MPa;
R, =306 kN, Ry =204 kN, R, =387.6 kN.

The variance of shear resistance of knee-jointsis:

y?R=(0.128" 387.6)* = 2461.4 (kN)>.

~ // )
yd' 994
7~
e v v W
1-1
1 1
| | b=03m
h=05m I\/

Figure 4. The knee-joint of concrete frames

The characteristic and design values of shear forces
caused by permanent, snow and wind loads are:

Vg = 77.72kN,

Vg =V, =38.86 kN;

Vga = 77.72° 1.35=104.92 kN,

Vg =38.86 x 1.5=158.29 kN,

Vg =38.86" 0.7 1.5=40.8 kN.
Thus, the joint design shear force

Vi =Vgg Vg +Vyg =204 kKN=R;.

Therefore, according to deterministic calculation data,
the frame knee-joints arereliable.

The coefficients of variation, means and variances of
these extreme shear forces are:

1V, =0.1,

Vgm =V = 77.72 kN,

Y2V, =60.4 (kN
aVg =0.6,
Vgn =V /(14 ko ggnVs) = 15.21 kN,
y 2V, =83.25 (kN)?
aV,, =0.3,
Vi = Vi /(L + Ko ggV,, ) = 21.86 kN;
y2V,, =43.0 (kN)2
The parameters of additiona variables are:
Jrm = 1.0,
aggr =0.1;
Ovm = 1.0,
ndy =ngs = aq,, =0.1,
nqg, =0.15.
Thus, the variances of revised shear forces are:

y2(a,V, ) =120.8 (kNY?
y2(qeVs) =85.56 (kN)?,
y 2 (quw) =478 (kN)21

y2(qgyVey ) =157.17 (kN)>.

The parameters of conventional shear resistance (3)
are

Roy, =387.6 — 77.72 =309.9 kN,
y2R, =1.0 x 2461.4 + 387.6?x 0.01

+120.8 = 4084.6 (kN)>.
According to (16), the coefficients of autocorrelation
of the safety margins Z,, =R, - V,,, Z; =R, - Vg and
Zgy, =R, - Vg -V, of considered knee-joints are:

r w,kl :09884,
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r skl = 09795,
r sw,k =0.9629.

The recurrence number of joint action effect

V, +V,,calculated by Equation (24) is:
Ny =50 [21/365 + 12/(24 x 3.65)] 1 x 1 =2.945.
survival

According to (9), the instantaneous

probabilities of membersare:

Py =0.99999617,
Py s =0.99999728,
Py s =0.9999837.

Therefore, according to (18), the partial long-term
survival probabilities of analysed knee-joints are:

P,, =0.9999717,
P, =0.9999710,
P, g = 0.9999747.

According to (13), the coefficients of cross-correlation
of safety margins arel

r g, =0.9839,
[ .oy = 0.9871,
 son =0.9914.

From Equation (19), the total survival probability of
knee-jointsis:

P= 0 9999747 x 0.9999717 x 0.9999710

x e1+ ogererie® L 49
809999717
x e1+ 09871173 =~ L = 0.9999635.
&80.9999747 %

It corresponds to the index

b=3.97>b,;(=3.8) [5].

reliability

Despite high-corrdated cuts of the safety margin
sequences Z,,, Zg and Zg, of Kkneejoints,
considerable differences among their instantaneous and
long-term survival probabilities are corroborated.

The reliability verification of knee-joints of concrete
frames by the deterministic partial factor method and
probability-based approaches practically gave the same
results.

7. Conclusion

When the system may be subjected to annual extreme
service and climate actions, it is expedient to express
its member performance processes by finite random
sequences of safety margins, the dependent cuts of
which coincide with the extreme loading situations of
structures. Therefore, the generalized geometric
distribution as the decreasing stochastic sequence may
be successfully used in failure or surviva probability
anaysis of highly correlated series systems. It leads to
considerable perfections of probability-based analysis
of deteriorating structures subjected to recurrent single
and coincident actions as intermittent rectangular pulse
renewal processes. A Gumbel distribution law may be
used not only for joint sustained and extraordinary
variable service loads but also for the sum of annual
extreme action effects.

For the sake of simplifications of probabilistic time-
dependent safety anadysis of members, it is
recommended to use design models with ther
conventional resistances and correlated sequence cuts
of safety margins representing a variety of load
combinations. The  presented  unsophisticated
probability-based approaches and models may
stimulate engineers having minimum appropriate skills
to use full probabilistic methods in their engineering
practice more courageously and effectively. It should
be one more remedy in the struggle against
deterministic approaches in the structural design.
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Abstract

The paper is composed of two parts, in this part after introducing the multi-state and the asymptotic approaches to
system reliability evaluation the multi-state homogeneous series and parallel systems with reserve components are
defined and their multi-state limit reiability functions are determined. In order to improve of the rdiability of
these systems the following methods are used: (i) a warm duplication of components, (ii) a cold duplication of
components, (iii) a mixed duplication of components, (iv) improving the reliability of components by reducing

their failurerate. Next, the effects of the systems’ rdiability different improvements are compared.

1. Introduction

Mogt real systems are very complex and it is difficult
to andyze and to improve ther reliability. Large
numbers of components and subsystems and their
operating complexity cause that the evaluation of their
reiability is complicated. As a rule these are series
systems, paralld systems or “m out of n” systems
composed of a large number of components. One of
the important techniques for reliability evaluation of
large systems is the asymptotic approach. The
mathematical methods are based on the limit theorems
of order statistics distributions considered in a wide
literature. These theorems generated investigations on
limit rdiability functions for systems with two-state
components. Next, more general systems with multi-
state components began to be considered. The
asymptotic approach is also very useful in reliability
improvement of large multi-state systems because of
simplifying the calculation.

2. Multi-state and asymptotic approach

In multi-state reliability analysis presented in this

paper it is supposed that:

- E;, 1 =1,2,...,n, are components of a system,

- all components and a system under consideration
havethe state set {0,1,...,2},

- the state indices are ordered, the state O is the worst
and the state z is the best,

- Ti(u), i = 1,2,...,n, are independent random variables
representing the lifetimes of the components E; in the
state subset {u,utl,...,z} while they were in the state
zat themoment t = 0,

- T(u) isarandom variable representing the lifetime of
asystemin the state subset { u,u+1,...,zZ} whileit was
in the state z at the moment t = 0,

- the system state degrades with timet without repair,

- g(t) isacomponent E; state a thetimet, t > 0,

- §(t) isasystem state at the moment t, t > O.

Definition 2.1. A vector

R (t) =[R (t,0), R (tD....R (t, 2],
tT(¥¥),i=12,..n,

where

R (t,u) =P(e ()2 u| & (0) = 2) = P(T; (u) >t),
tT(¥¥),u=01..,z2

is the probability that the component E; is in the state
subset {u,u+1,...,z} at thetimet, t T (-¥,¥) while it was
in the state z at the moment t = 0, is called the multi-
state reliability function of a component E,.

Definition 2.2. A vector
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R, () =[R,(t,0), R, (tD).... R, (t, 2],
t1(-¥.¥%),

where

R, (t,u) = P(s(t) 3 u| s(0) = 2) = P(T(u) >1),
tT1(-¥¥),u=01...2
is the probability that the system is in the state subset
{u,u+l,....z} at themoment t, t | (-¥,¥) whileit wasin
the state z at the moment t = O, is called the multi-state
reliability function of a system.
In the asymptotic approach to system reliability

analysis we are interested in limit distributions of a
standardized random variable

(T(u) - ba(u))/an(u), u=1,2,...,z,
where T(u) is the lifetime of the system in the state
subset {u,u+1,...,z2 and a_ (u)>0, b ()T (-¥,¥),u=
1,2,...,z, are some suitably chosen numbers, called
normalizing constants.
Since

P((T(u) - b, (u))/a,(u)>1)

=P(T(u) >a, (Ut +b,(u))
=R, (a, (Ut +b,(u),u), u=12,...z
where
R, () =[R,(t,0), R, (t1),....R (t,2)], tT(-¥ ¥),

is the multi-state rdiability function of the system, then
we assume the following definition.

Definition 2.3. A vector

Ay =[LA (t)D),...At 2] tT(-¥¥),
is called the limit multi-state reliability function of the
system if there exist normalizing constants a,(u) > 0,

ba(U) T (-¥ ,¥) such that

lim R, (a, (u)t +b, (u),u) =A (t,u)
tT CA(U), u= 1,2,...,2,

where Ca(, isthe set of continuity points of A(t,u).

The knowledge of the system limit reliability function
allow us, for sufficiently large n, to apply the following
approximate formula

R, (t) =A ((t- b, (W)/a,(u),), tT(-¥¥). (1)
3. System reliability improvement

3.1. Reliability improvement of a multi-state
series system

Definition 3.1. A multi-state system is called a series
system if its lifetime T(u) in the state subset
{u,u+1,...,7Z} isgiven by

T(U) =min(T, (W}, u=12,..2

— Ei | HE |- B En [ —

Figure 1. The scheme of a homogeneous series system
Definition 3.2. A multi-state series system is called
homogeneous if its component lifetimes T;(u) in the

state subsats {u,u+1,...,zZ} have an identical distribution
function

Fi(t,u) = F(tu),u=12,..zt1 (¥ ¥),i=12,...n,

Thereliability function of the homogeneous multi-state
series system is given by

R, (3 =[LR, Y, R, 2],
where

R, (tu) =[R@Et,W]", tT(-¥,¥),u=12,..z2
Definition 3.3. A multi-state series system is called a
system with a hot reserve of its components if its
lifetime T(u) in the state subset {u,u+1,...,7} is given
by

T ) =min{max{T, (W}}, u=12...z

1EiEN 1£j£2

where Tjy(u) are lifetimes of components in the basic
system and Ti,(u) are lifetimes of reserve components.

The reliability function of the homogeneous multi-
dtate series system with a hot reserve of its
componentsis given by

IR @t,) =[1, IR,®t1),..., IR, (2],
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where

IR, @ (t,u) =[1- (F(t,u))?]", t T (-¥,¥). 2)
Lemma 3.1. If
(i) IA @ (t,u) =exp[-V(t,u)],u=12,..,z isnon-

degenerate reliability function,
(i) IRO@u), t 1T (¥¥), u=12..,7z2 is the
reliability function of non-degenerate multi-

state series system whit a hot reserve of its
components defined by (2),

(i)  a(u)>0 by (U (-¥¥),u=12..z2
then

im R ® — A ® Tc._
l!@”;! IR, (a, (Wt+b,(u) =1A®¢u),tT C -,
u=12,...,z

if and only if
I!@n; n[F (a, (ut+b, (u)]* =" V(tu), tT C,,

n
u=12,..,2

Proposition 3.1. If components of the homogeneous
multi-state series system with a hot reserve of its
components have multi-state exponentia reliability
functions

and aq(u) = %  ba(U) =0, u=12,....2,
then

IA®(tu=1t<0,
IA @ (t,u) = exp[-t],t3 O,u=1.2,...,2,
isitslimit reliability function.
The proof of Proposition 3.1 isgivenin[9].
Corollary 3.1. The reliability function of exponentia
series system whit a hot reserve of its components is

given by

IR @ (t,u)=1,t<0,

IR, (t,u) @xp[- | 2(Wnt?],t3 0,u=12....z. (3)

Definition 3.4. A multi-state series system is called a
system with a cold reserve of its components if its
lifetime T@(u) in the state subset {u,u+1,...,2} is given
by

2
TO) = min{ alTij (u}, u=12,...z2
I j=

where Tiy(u) arelifetimes of componentsin the basic
system and Ti,(u) arelifetimes of reserve components.
The reliability function of the homogeneous multi-state
series system with cold reserve of its components is
given by

IR,? () =[1 IR,” (t1).... IR,?t.2],
where

IR @ (t,u) =[1- F(t,u)* F(t,u)]", tT (-¥¥), (4
u=12,..,2

Lemma 3.2. If

(i) IA @ (t,u) = exp[-V(t,u)] u=1.2,...,z isnon-
degenerate reliability function,

(i) IRP@tu), t T (-¥¥), u=12..7z is the

reiability function of non-degenerate multi-
state series system whit a cold reserve of its
components defined by (4),

(i) an(u)>0, by (U (2¢.¥),
then

lim 1R, (a, ()t +b, () =IA @), tT C
n

1A ?

u=12,..,2
if and only if

lim n{F (a, (W)t +b, (W) * F(a, (Wt +b, (W)]

= V(tu), tT C,

g, u=12,..2

Proposition 3.2. If components of the homogeneous
multi-state series system with a cold reserve of its
components have multi-state exponentia reliability

functions
and a,(u) :i, b,(u)y=0,u=12,..,
| (u)vn
then
IA @(tu=1,1t<0,
IA @ (t,u)= exp[-t]], t3 O, u=12,...,2
isitslimit reliability function.

The proof of Proposition 3.2 isgivenin[9].
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Corollary 3.2. The reliability function of exponentia
series system whit a cold reserve of its components is
given by

IR @(t,u)=1,t<0,

IR @ (t,u) @xp[- 1 2(u)nt?/2],t3 O, (5)
u=12,..,z

Definition 3.5. A multi-state series system is called a
system with a mixed reserve of its components if its
lifetime T®(u) in the state subset {u,u+1,...,7} is given
by

T®O (u)

: , L2
=min{ min{ma(T; (W}}, min {47, (W},
u=12,..,2

where Tjy(u) are lifetimes of components in the basic
system and Ti,(u) are lifetimes of reserve components
and s, s, where si+ s, = 1 are fractions of the
components with hot and cold reserve, respectively.

Thereliability function of the homogeneous multi-state
series system with a mixed reserve of its components is
given by

Iﬁn(S) (t ;)) = [1! Iﬁn(S) (t11)7"" Iﬁn(S) (t’ Z) ]’
where

IR, (t,u) =[1- (F(t,u))’1*"[1- F(t,u)* F(t,u)]*2", (6)
tT (¥ ¥),u=12..z

Lemma 3.3. If

(i) IA®@tu) = exp[-V(tu], u=12..7zis
non-degenerate reliability function,

(i) IR @ (tu), tT(-¥,¥),u=12,..,7zisthe
reliability function of non-degenerate multi-

state series system whit a mixed reserve of its
components defined by (6),

(i)  a(u)>0 by (U (¥¥),u=12..z2
then

PN ) — 1A ® Tc.
lg@rg IR, (&, (ut+b, (u)) =1A P (t,u), tl Cx,
u=12,..,2

if and only if

lim 2ns,[F (a, ()t + b, (W)]

+ns,[F(a,(u)t +b,(u))* F(a,(u)t +b,(u))] =" V(t,u),
th c;,u=12,..2z

Proposition 3.3. If components of the homogeneous
multi-state series system with a mixed reserve of its
components have multi-state exponential reliability
functions

and an(u)=I 1

u)\/ﬁ ’

b,(u)=0,u=12,...z

then

IA (t,uy=1fort<o,

IA (t,u) = exp[-(2s:+Sy) t72] ,t3 O, u=12,...,2
isitslimit reliability function.
Corollary 3.3. The reliability function of exponentia
series system whit mixed reserve of its components is

given by

IR @ (t,u)=1,t<0,

IR, (t,u) @expl- 1 2(u)n(2s, +s,)t*/2],t3 0,  (7)
u=12,...,z

Proposition 3.4. If components of the homogeneous
multi-state series system have improved component
reliability functionsi.e. its components failure rates

| (u) isreduced by afactor r (u), r (u)i <0,1>,
u=12,..zie

R(tu)=1t<0,
R (t,u) = exp[-1 (u)r (u)t], t3 0, I (u)>0,

u=12,...,z

and ay(u) = b,(u)=0,u=12,...z

1
| (u)r (un’

then

IA @ (tu=1,t<0,

IA @ (t,u) =exp[-],t3 0,u=1.2,...,2
isitslimit reliability function.

Corollary 3.4. The reliability function of exponentia
series system whit improved reliability functions of its
components is given by
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IR “(t,u)=1,t<0,
IR “(t,u) =exp[- | (u)nr (u)t], t3 0,u=12,...,z (8)

3.2. Réliability improvement of a multi-state
parallel system

Definition 3.6. A multi-state system is called a parallel
system if its lifetime T(u) in the state subset
{u,u+1,...,7Z} isgiven by

T(W=maqT, W}, u=12,..2

Figure 2. The scheme of a homogeneous parallée
system

Definition 3.7. A multi-state parallel system is called
homogeneous if its component lifetimes T;(u) in the
state subsats {u,u+1,...,zZ} have an identical distribution
function

Fit,u) = F(tu),u=12,..zt1 (¥ ¥),i=12,...n

Thereliability function of the homogeneous multi-state
paralld system is given by

R, () =[L R, (tD,...,R,(t,2)],
where

R, (t,u)=1- [F(t,u)]", tT(-¥¥),u=12..z
Definition 3.8. A multi-state parallel system is called a
system with a hot reserve of its components if its

lifetime T(u) in the state subset {u,u+1,...,7} is given
by

T u) =max{max{T, (W}}, u=1.2,...z

1EiEN 1£jE2

where Tjy(u) are lifetimes of componentsin the basic
system and Ti,(u) are lifetimes of reserve components.

Thereliability function of the homogeneous multi-state
paralld system with a hot reserve of its components is
given by

IR, () =[1, IR,“ (tD),..., IR,“(t2)],

where
IR, (t,u) =1- [(F(t,u))?]", t T (-¥ %), (9)
u=12,..,2
Lemma 3.4. If
(i) IA @ (tu) = exp[-V(t,u)], u=12,..,2 is non-
degenerate reliability function,
(i) IR®@tu), t T (-¥¥), u=12..z is the

reiability function of non-degenerate multi-
state parallel system whit a hot reserve of its
components defined by (9),

(i)  a(u)>0 by (U (-¥¥),u=12..z2

then

lim 1R, (@, Wt +b, @) =1A (L,u), tT Cp4,

u=12,..,2
if and only if

lim 2n[R(@, (Wt +b, )] 2V(t), tT Cy,

u=12,..,2

Proposition 3.5. If components of the homogeneous
multi-state parallel system with a hot reserve of its
components have multi-state exponential reliability
functions

1 _log2n
and el =y MY =G

,u=12,...,z2
then

1A P1) =1 -exp[-exp[-t]], tT (-¥¥),u=12..7z
isitslimit reliability function.

Proof: Sincefor all fixed u, we have

an(u)t+bn(u):”|'%2”® ¥ asn® ¥
u

for tT (-¥,¥),u=12,...,z

Therefore

V(t,u) = lim 2nR(a, (U}t + b, (u)
= lim 2nexp[- | (u)(@, (u)t +b;, (u))]

= l!@rg 2nexp[-t- log 2n]
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=exp[-t],tT (- ¥,¥),

which by Lemma 3.4 completes the proof.

Corollary 3.5. The reliability function of exponentia
paralld system whit a hot reserve of its components is
given by

IR @ (t,u) @L- exp[- exp[-| (u)t +log2n], (10)
th (-¥,¥),u=12,..,2

Definition 3.9. A multi-state parallel system is called a
system with a cold reserve of its components if its
lifetime T¥(u) in the state subset {u,u+1,...,7} is given
by

2
TOWU =max{aT, (W}, u=12..z
£iEn j=1

where Tjy(u) are lifetimes of componentsin the basic
system and Ti,(u) are lifetimes of reserve components.

Thereliability function of the homogeneous multi-state
paralld system with a cold reserve of its components is
given by

IR,?(t>)=[1, IR,? (t,1),....IR,?(t2)],
where

IR @ (t,u) =1- [F(t,u)* F(t,u)]", (11)
tT (¥ ¥),u=12..z

Lemma 3.5. If

(i) IA @ (t,u) = exp[-V(t,u)], u = 1,2,...,z, iS non-
degenerate reliability function,

(i) IR@tu), t T (-¥¥), u=12..z is the
reliability function of non-degenerate multi-
state parallel system whit a cold reserve of its
components defined by (11),

(i)  a(u)>0 by (Ul (¥¥),u=12..z2

then

lim IR, (a, (Wt-+b, () =1A @ (t,u),

tic,,u=12..z
if and only if

lim n{1- F(a, (Wt +b, (W) * F (@, (W)t+b, (W)

=V(tu),tT C,u=12...z2

Proposition 3.6. If components of the homogeneous
multi-state parallel system with a cold reserve of its
components have multi-state exponential reliability
functions

1 expll by ()] _
)" T @b,

and a,(u) = n, u=12,...z
then

IA®@ (tu) = 1 - exp[-exp[-t]], tT (-¥.%),
u=12,.,2

isitslimit reliability function.
Proof: Sincefor all fixed u, we have

a,(Wt+b (U)® ¥ asn® ¥, tl (-¥,¥), u=
1,2,....z.

Therefore
V(t,u)

=lim ni1- F(a, (W)t-+b, (W)* F (a, ()t +b, (W)]
= lim r(L+1 (U@, (Wt +b, (W)

expl- | (U)(a, (Ut +b, (W)

= lim L+ +1 ()b, (4) expl- (¢ +1 (Wb, (W)]

» 1+t | ()b, (u) _
=% Vel W] el @b, @) Y

=exp[-t] for tT (-¥,¥),

which by Lemma 3.5 completes the proof.

Corollary 3.6. The reliability function of exponentia
paralld system whit a cold reserve of its components is
given by

IR, (t,u) @- exp[- exp[- | (U)t+I (Wb, (W],  (12)
tl (-¥,¥),u=12..z

Definition 3.10. A multi-state parallel system is called
a system with a mixed reserve of its components if its
lifetime T®(u) in the state subset {u,u+1,...,7} is given
by
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T (u) = max{ mex{max(T, (W)},

2
Jmax (8T, (W)},
u=12,..,z

where Tjy(u) are lifetimes of components in the basic
system and T (u) are lifetimes of reserve components
and s, S, where si+ s, = 1 are fractions of the
components with hot and cold reserve, respectively.

Thereliability function of the homogeneous multi-state
parallel system with mixed reserve of its components is
given by

IRn(S) (t ;)) = [1! IRn(?)) (t11)7"" IRn(S) (t,Z)],
where

IR, (t,u) =1- [(F(t,u))*]*"[F(t,u)* F(t,u)]*=", (13)
tT (¥ ¥),u=12..z

Lemma 3.6. If

(i) 1A @(tu) =exp[-V(t,u)], u=12,..,2z isnon-
degenerate reiability function,

(ii) IR @ (t,u), t1T(-¥,¥),u=1.2,..7z istherdiability
function of non-degenerate multi-state parallel
system with a mixed reserve of its components
defined by (13),

(iii) an(u) >0, b, (W)l (-¥,¥),u=12..72

then

lim IR ®(a, (u)t+b, (u)=1A®tu)tl C,,
n® ¥
u=1,...,z,

if and only if

lim 2ns; [R(a, (u)t +b, (1))]

+ns,[1- F(a, (u)t +b, (u))* F(a, (u)t +b, (u))]
=V(tu), tT C,u=12,...2

Proposition 3.7. If components of the homogeneous
multi-state parallel system with a mixed reserve of its
components have multi-state exponentia reliability
functions and

1 expll (Wb, )] _
| (b, (u)-1" 1 (u)b, (u) ?

a (u) =

then

IA® (t,u) =1 - exp[-exp[-t]], t] (¥ ¥),u=1,...,2
isitslimit reliability function.

Proof: Sincefor all fixed u, we have
a,(Ut+b, (U)® ¥ asn® ¥, tl (-¥,¥),

and

;® Dasn® ¥, tl (- ¥,¥).
[ (u)b,(u)-1
Therefore

V(t,u) = lim n{2s, epl- 1 (u)(@, (W)t +b, (W)]
+5,[(A+1 (U)(@, (Wt +b, (W)
expl- 1 (u)(a, (W)t +b, (W)]]
= lim nexpl- | (U)(@, (W)t +b, (W)

s, (U)(@, ()t +by, (u)

S, +25

[1+
S,l (u)(@, (u)t +b, (u))

]
= lim exp[- | (u)a, ()]

exp[- | (u)b, (u) +log ns,l (u)b, (u)

[1++o()]][1+o(1)] = exp[-1],
th (-¥,¥%),u=12,...2

which by Lemma 3.6 completes the proof.

Corollary 3.7. The reliability function of paralle
system whit a mixed reserve of its componentsis given

by

IR, (t,u)
@ expl- expl- %t +( ()b, (u)- 1],
th (-¥,¥), u=12,..2 (14)

Proposition 3.8. If components of the homogeneous
multi-state parallel system have improved component
reiability functions i.e. its components failure rates
| (u) isreduced by afactor r (u), r (u)i <0,1>,
u=12,..,z and

- 156 -



B. Kwiatuszewska-Sarnecka

with components quantitative and qualitative redundancy: series and parallel systems -

On asymptotic approach to reliability improvement of multi-state systems

RTA # 3-4, 2007, December - Special Issue

_ 1 _ logn —
an(u) = m, br(u) =T (o W@’ u=12,...,z
then
IA @ (t,u)=1- exp[- exp[-t]],t T (-¥,¥),
u=12,..,2

isitslimit reliability function.

Corollary 3.8. The reliability function of exponentia
paralld system whit improved rdiability functions of
its components is given by

IR,“(t,u) @- exp[- exp[-1 (W) (U)t+logn],  (15)
tlh (-¥,¥),u=12,...,2

4. Comparison of reliability improvement
effects

The comparisons of the limit reliability functions of the
systems with different kinds of reserve and such
systems with improved components allow us to find
the value of the components decreasing failure rate
factor r (u), which warrants an equivalent effect of the
system reliability improvement.

4.1 Series system

The comparisons of the system rdiability improvement
effects in the case of the reservation to the effects in
the case its components rdiability improvement may
be obtained by solving with respect to the factor
r (u) =r (t,u) thefollowing equations

1A ((t- b,(u)/a,u)

=IA O((t- b, (u)/a,(u),u=12,..2 (16)
k=123
The factors r (u) =r (t,u)decreasing components

failure rates of the homogeneous exponential multi-
state series system equivalent with the effects of hot,
cold and mixed reserve of its components as a solution
of the comparisons (16) are respectively given by

k=1 r@u=r¢u=Il@t, u=12..z
k=2 r(U=r(tu)=" (;)t L u=12,..z2
2s +5s,

k=3 r(u)=r(t,u)=

[ (ut, u=12...z

4.2. Parallel system

The comparisons of the system rdiability improvement
effects in the case of the reservation to the effects in
the case its components rdiability improvement may
be obtained by solving with respect to the factor
r (u) =r (t,u) thefollowing equation

1A @((t- b,(u)/a,()

=1A ®(t- b,(u)/a,(u),u=12,...z (17)
k=123
The factors r (u)=r (t,u) decreasing components

failure rates of the homogeneous exponential multi-
state paralld system equivalent with the effects of hot,
cold and mixed reserve of its components as a solution
of the comparisons (17) arerespectively given by

k=1r(u)=r(tu)=1- log2

, u=1.2,...,z
I (u)t

| (u)b, (u)- logn

k=2r(u)=r(tu)=1-

[ (u)t

u=12,.,2

k=3

r(u)=r(t,u) _ (Wb, () -1 (U)|bEL(J;J) -1

1 (u)b,(u) - 1- logn
[ (u)t
u=12,..,2
5. Conclusion

Proposed in the paper application of the limit multi-
state reliability functions for reliability of large
systems evauation and improvement simplifies
calculations. The methods may be useful not only in
the technical objects operation processes but also in
their new processes designing, especidly in their
optimization. The case of series, parallel and "m out of
n” (in part 2) systems composed of components having
exponential rdiability functions with double reserve of
their components is considered only. It seems to be
possible to extend the results to the systems having
other much complicated reliability structures and
components with different from the exponential
reiability function. Further, it seems to be reasonable
to elaborate a computer programs supporting
calculations and accderating decision making,
addressed to reliability practitioners.
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Abstract

The paper is composed of two parts, in this part the multi-state homogeneous ,, m out of n” systems with reserve
components are defined and their multi-state limit reliability functions are determined. In order to improve of the
reiability of these systems the following methods are used: (i) a warm duplication of components, (ii) a cold
duplication of components, (iii) a mixed duplication of components, (iv) improving the reliability of components

by reducing their failure rate. Next, the effects of the systems’ reliability different improvements are compared.

1. Introduction

Presented paper is continuation of a work about
reiability improvement of large system. In the first
part of this work are defined the component’s and
system’s multi-state reliability functions and next the
asymptotic approach are brought forward. There are
presented results concerned with improvement of large
series and paralld systems, their multi-state limit
reiability functions in case when the systems have
reserve components and in case when the reliability of
components is improved by reducing their failure rate.
As the main result are found the forms of reducing
their failure rate factor for both kinds of large systems.

2. Reliability improvement of a multi-state ,,m
out of n” system
Definition 2.1. A multi-state system is called an ,, m out

of n” system if its lifetime in the state subset
{u,u+l,...,7Z} isgiven by

TU) = Ty ey (W), M=1,2,..,n, u=12,...7

where T ., (U) isthe mth maximal order statisticsin

the sequence of the component lifetimes

T, (u), T, (u),..., T, (u).

Figure 1. The scheme of a homogeneous ,,m out of n”
system

The above definition means that the multi-state ,, m out
of n” system is in the state subset {u,u+1,...,z} if and
only if at least m out of n its components is in this state
subset and it is a multi-state paralld system if m=1
and it isamulti-state series system if m=n.

Definition 2.2. A multi-state ,m out of n” system is

called homogeneous if its component lifetimes T;(u) in

the state subsets have an identical distribution function
Fi(t,u) = F(tu),u=12,...zt1 (-<¥¥),i =12,...,n

Thereliability function of the homogeneous multi-state
»mout of N” system is given ether by

RM(t») =[LR™ (t,1),...R™ (2],

where
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RO (t,u) =1- & ()R Wl [F € u]™
tT(-¥¥),u=12..2

or by
R™ty =[LRMEY ... R (2],
where
RVGw=4 (1)IFCuITREWI™ 1 (¥ %),

m=n-m u=12,..,z
Definition 2.3. A multi-state system is called an ,, m out
of n” system with a hot reserve of its components if its
lifetime T(u) in the state subset {u,u+1,...,7} is given
by

TO(U) = T ey (U), M=1,2,..,n,u=12,....7,

where T .., (U) isthe m-th maximal order statisticsin

the sequence of the component lifetimes

Ti(u) = lTj?z({Tij wy, i=12,.,n, u=12...z

where T;y(u) are lifetimes of components in the basic
system and Ti,(u) are lifetimes of reserve components.

Theredliability function of the homogeneous multi-state
.,m out of n” sysem with a hot reserve of its
components is given either by

IROY (t) =[1, IR (1,2),..., IR (t.2)],

where

IRO (t,u) =1- a( )[1 (F,w) 2] TFEw®™ , (1)
t1 (-¥¥),u=12..z7

or by
ROy = [1, IR (D) ... IROY(t,2)],
where

IROT (¢, u)

5” ( JIF @)L (FEu)?e, )
m—n m, tl(¥¥)u 1,2,....z

Lemma 2.1.
case 1: If

() IA O™ ¢ y)=

u=12,.
function,
(i) IR (t,u)is the reiability function of non-

degenerate multi-state ,m out of n” system
with a hot reserve of its components defined by
(16),

(i)  a(u)>0 by (U (-¥¥),u=12..z2

(iv) m=constant (m/n® 0, as n® ¥ ),

then

e 1 oVt )]

,Z, isnon-degenerate reliability

|—0

||m|R<1>n (a, ()t +b, (W) =1A @t u),
t1 Cai,u=12..z
if and only if

lim n[1-F (a, (Wt +b, )] = V(tw), tT Cy,
u=12,..z

case 2: If
() IA (l)(m)(t ) 1 1 vt 'Ljd
[ u=1l-— o e 2dx,
N2p  -¥
u=12,.,z isnon-degenerate reliability
function,
(ii) IROY (t,u) is the reliability function of

non-degenerate multi-state ,m out of n”
system with a hot reserve of its components
defined by (16),

(iii) a,(u) >0, b, (U (-¥,¥),u=12,..z2

(iv) m/n® m, 0<n<l,asn® ¥,

then

lim IRV (2, (Ut +b, (W) =1A O (t,0),
n
t] Ca,u=12,...2

if and only if
lim (n+D[1- F?(a,(u)t+b, (u)]- m —n(t.u),
n+1
u=12,..,2
case 3: If B _
0 &9 = EC ey,
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m=n-m, u=12,..,z isnon-degenerate
reliability function,
(ii) IR®™ (t,u) isthereliability function of non-

degenerate multi-state ,mout of n” system
with a hot reserve of its components defined

by (17),
(iii) a,(u) >0, b, (U (¥¥),u=12..z
(iv) n-m=m =constant (M/n® lasn® ¥),

then

lim IR;™ (a, (U}t +b, (1) 1A O™ ¢ u),
tiC ., u=12,.

1A ?

if and only if

lim n[F (a, (u)t +b, ()] Z=V(tu)tic,,
u=12,...z

Proposition 2.1. If components of the homogeneous
multi-state ,, m out of n” system with a hot reserve of its
components have multi-state exponentia reliability
functions

and

case 1 m = constant,

_ 1
an(u) = (), n()—m|092n u=12..z

then

IA 0™ (tu)=1- & exp[_ 4 exp[-exp[-t]],

i=0

tT (¥ ¥),u=12..z2

case?2 m/n® m, 0<n<l, n® ¥,

an(u):L, bn(u):i 1- m,

| (u)2vn+1 I (u)
u=12,.,2
then
2
R 1 t X
1A O™ u =1- — e 2dx,
N2p -¥

tT (¥ ¥),u=12..z2

case3 n- m= m=constant, (m/n® 1, n® ¥),

= —1 = =
a,(u) = 7 n ,bh(u)=0,u=12,...,z

then

IA O™ u)=1, t <0,

2i

mt
™ t,u) = a

A @ exp[t]t30u 1.2,..z

isitslimit reliability function.

Proof:
case 1: Sincefor al fixed u, we have

a,(wWt+b,(U)® ¥ asn® ¥.
Therefore

V(t.u) = lim n[L- F2(a, (Ut +b, ()]
= lim n2exp[-1 (u)(@, (U}t +b, ()]
- exp[- 2| (u)(a, (u)t+b, ()]
= lim 2nexp[- 1 (u)(@, (u)t + by (u))]
[1- - expl- 1 (U)(a, (Wt +b, ()]
= lim exp[- t][2nexp[ -1 (u)b, ()]
- nexp[- t]exp[- 2| (u)b, (u)]]
= lim exp[- t][2n1- ni2 exp[- t]]
n® ¥ n n
—exp[-t], tT (-¥,¥),u=1.2,...72
which by case 1 in Lemma 2.1 completes the proof.
case 2: Sincefor al fixed u, we have

a,(wWt+b,(U)® ¥ asn® ¥,

moreover

1- F2(ay(u)t +b,(u)
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=2exp[- 1 (u)(a, (u)t +b, (u))]
- exp[- 21 (u)(a, ()t +b, (u))]

= 21- 1 (U)(a, (W)t +b, (1)
+§I 2 (u)(@, ()t +by, ()]

- [1- 2 (u)(a, (u)t+Db, (u))

1
(n+1)

* % 412 (u) (@ (W)t + b, (W) ]+ 0(——)

=1- | *(u)(a, (Wt +b, (W)* +of

(n+1))’

next
(n+D[1- F*(a, (Ut +b,(u)l]- m

/m(n- m+1)
n+1

(e =i

n(1- m) 1
1[- - -
:”m(n+ | il t+m O(Jn_ﬂ)] m
n®¥ m(n- m+1)
n+1

= fim YT MO _ g vy,
n® ¥ m

u=12,...,z

which by case 2 in Lemma 2.1 completes the proof.

case 3: Sincefor all fixed u, we have

t
a,(ut+b, (u)= <0 fort<0
" " | (uWn
and
t
a,(uWt+b, (u)= 30 fort2 0,
" " | (uWn
then

F?(a,(ut+b, (W) =0, t<0
and

F*(a, (W)t +b,(u))

=[1- exp[- 1 (u)(a, (W)t +Db, )11

=[1- expl- ﬁ]]z, t3 0.

Therefore

V(t,0) = lim niF (a, (Wt +b, W)]* =0, t <0,

u=12,.,2

and

v (t,) = lim n{F (2, (W)t +b, (W)]?
= lim r{1- exp[- #}]2

t

Jn

=limn[ +o(i)]2 =t%,t3 0,
n® ¥ n

7

u=12,.,2
which by case 3 in Lemma 2.1 completes the proof.

Corollary 2.1. The reiability function of exponential
.,m out of n” sysem with a hot reserve of its
components is given by

casel

|R(1)$1m) (t,u) @.- 'gle)(p[' i(l (u)t- log 2n)]

i=0 i!

exp[- exp[- | (u)t +log2n], (3
tl (-¥,¥),u=12..z

case?2

N

! 2 dx (%)

=

IROT (t,u) @

«%>~

where

A=2I (u)«/n+1t_ 2yn+1y1- m
Jm Jm

u=12,..,z

AT (-¥,¥), (9

case 3

IRO™ (t,u)=1, t <0,
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mll nt]* (u)f DVnI™ 1 2 @nt?], ()

IROY (t,u) @

t30,u= 1,2,..., z
Definition 2.4. A multi-state system is called an ,, m out
of n” system with a cold reserve of its components if
its lifetime T@(U) in the state subset {u,u+l,...z} is
given by

T W) = Ty ey W), M=12,..nu=12..2

where T ., (u) isthe mth maximal order statisticsin
the sequence of the component lifetimes

2
Ti(u=4a T;(u),i=12,.nu=12..2
j=1

where Tjy(u) are lifetimes of components in the basic
system and Ti,(u) arelifetimes of reserve components.

Thereliability function of the homogeneous multi-state
.,m out of n” sysem with a cold reserve of its
components is given either by

IRA () =[1, IR®™" (t,2),..., IRZ™" (t,2)],
where

IRAT (t,u)

=1- '_%{:(i”)[l- F(t,u)* F(t,u)]’

=%F (t,u)* F(u)"™' (7)
tT (¥ ¥),u=12..z2

or by

ROty =11, IR?" ) ,... IR2 ¢, 2)],
where

IR® (Mt )

( JIFtu)* FLul'[1- FLu)* FEu]™ , (8)
t1 (¥,¥),m—n mu=12,..,z

ﬁ 9)03\

Lemma 2.2.
case 1: If

u=12,.
function,

(i) IR‘Z)ﬁm) (t,u) isthe reliability function of non-
degenerate multi-state ,m out of n” system
with a cold reserve of its components defined
by (24),

(i)  a(u)>0 by (U (-¥¥),u=12..z2

(iv) m=constant (m/n® 0, as N® ¥ ),

then

VOO v, u,

Z, 1S non-degenerale reliability

lim IRE” (a, (Wt +b, (W) = 1A O™ t,u)
n

Cia,

if and only if

lim n[F (@, (U)t-+B, (W) * F (@, (W)t +b, (W)]]

=V(tu),tT Cy, u=12,..z2

case 2: If
() |A (2)(m)(t ) 1 1 vt 'Ljd
[ u=1l-—— o e ?dx,
NZ2p o o-¥
u=12,...,z isnon-degenerate reliability
function,
0) IR?\" (t,u) is the reliability function of non-

degenerate multi-state ,m out of n” system
with a cold reserve of its components defined

by (24),
(i) a,(u) >0, b, (U (¥¥),u=12,..72
(iv) m/n® m, O<n<l,asn® ¥,

then
lim IR? (™ (@, (Wt +b, (W) =1A @™ (t,v),
tl Ca,
if and only if
jim (N DIL- F (@, (Wt +b, (W) * F (@, (W)t +b, (W) - m

i
n® ¥ /m(n- m+1)
n+1

=n(t,u),u=12,...z

case 3: If

0 AT = é’“m‘ U -Vt )],
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m=n-m, u=12,..,z isnon-degenerate
reliability function,

(ii) IR@{™ (t,u) isthe reliability function of non-
degenerate multi-state ,,mout of n” system
with a cold reserve of its components defined
by (25),

(iii) a,(u) >0, b, (U)T (-¥,¥),u=12,..z2

(iv) n-m=m =constant (m/n® lasn® ¥),

then

lim IR (a, ()t +b, (u)) =1A @™ (t,u),

n® ¥

t1C

1A 7
if and only if

rl1|®r‘Q nF(a, (u)t +b, (u)* F(a, (Ut +b, (W] =V (t,u),
tiCy,u=12,...,2

Proposition 3.2. If components of the homogeneous
multi-state ,,m out of n” system with a cold reserve of
its components have multi-state exponential reliability
functions

and

casel m=constant,

1 expll (u)b,(u)]

a,(u) = Q) , (Wb, (u) =n, u=12,..,z
then
IA @™ (t,u) = 1- r_?;_ile"p[" " expl-expl-4],

i=0 |

tT (¥ ¥),u=12..z2

cae?2 m/n® mo<n<l n® ¥,

I =t

an(u) = Vv

| (un+1’ I (u)

,u=12,..7z

then

2
t_L

1A @™ (¢t u)=1- 1 ® 2dx, tT (-¥.¥),

V2p ¥

u=12,..,2

case3 n-m=m =constant (M/n® 1, n® ¥),

a(u) = i, ba(W=0 u=12,..2

Jnl (u)

On asymptotic approach to reliability improvement of multi-state systems
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then

IA @™ u)=1, t<o,

_ 20
IAF(Z)(m) (t1u) = némti_l exp[-tz] ’ t3 01 u= 172""’27
i=0 I:

isitslimit reliability function.

Proof:
case 1: Since for al fixed u, we have

a,(Ut+b (U)® ¥ asn® ¥, tl (-¥,¥).
Therefore

V(tu) = limn[1+1 (u)(@, (ut+ b, (W)]

exp[- 1 (u)(@, (u)t +by, (u))]

1+t
n®n; r{m

| (u)b, (u)
—— —— —]exp[-1]
expll (u)by, (u)]

=exp[-t], tT (-¥,¥), u=12,..2
which by case 1 in Lemma 2.2 completes the proof.

case 2: Sincefor al fixed u, we have

R R
an(u)t+bn(u)—|(u)mt+l(u) 1-m

®i 1- m>0asn® ¥
I (u)

and

1- F(a, (u)t+b,(u))* F(a, (u)t+b, (u))
=[1+1 (u)(@, (Wt + b, (u)]

expl- 1 (u)(@, (u)t +b, (U))]

=[1+1 (u)(a, (u)t + b, (W)l

[1- T (u)(@, (u)t +b, (U)) +
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1,, , 1
1)@, ()t +b, ()* - o(—)]
2 n+1 L (1+tf)e>(p[_ tv2

MR
-1- %| () (@, (Ut +b, (u))?

2
:t_+o(1), t3 0.
. n n
-o(—)], tT (-¥,¥).
n+1 ( ) Therefore
Therefore v(t,u) = lim n[F (&, (u)t + b, (1)
n

v(t,u)

* F(a, ()t +b, (u)]
fim MDA~ F (@, (ut+ by (W) * F (@, (Wt +b, (W)]- m

= li
n® ¥ m(n- m+1) _ t/2 tJ/2
U oner = lim n[1- (1+ f)exp[ ﬁ]]
Jyml- m 2
(n+1[- L T 0(7)] —limn+od) =2, t5 0 u=
i \/nT rI1|®m¥ n[ - +o(n)] te,t30,u=12,..z
n®* m(n- m+1)
n+1 which by case 3 in Lemma 2.2 completes the proof.
\/7 Corollary 2.2. The reliability function of exponentia
=lim mid- mt+od _ =-t,t1 (-¥,¥), »m out of n” system whit a cold reserve of its
n®* Jml- m components is given by
casel

which by case 2 in Lemma 2.2 completes the proof.

RO o @ §EP - b )]

case 3: Since for all fixed u, we have i=0 il
_ expl- exp[- | (Wt+ (Wb, W], (9

an(u)t+bn(U)—I (u)\/ﬁ<0 for t<0 (0 C¥.¥) u=12..2
and case?2

A (Wb, ()= (tfx/ﬁ SO fort=0. IR®M” (t,u) @.- % %e_xzd (10)
then where

F(a,(ut+b,(u)=0 for t<0 Aol (u)\/n+1t_ Vn+1J1- m ey, A1)
and Jm Jm

F(a, (U)t + b, () * F(a, (Wt +b, () case 3

=[1- [L+1 (u)(a, (W)t +b, ()] IROY (=1, t<0,

expl- 1 (U@, (W)t + b, (W)] IRY” (¢, )]
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nm[l (u)ﬂ/ﬁz'

t30u 12,...2

exp[- 1 2(u)nt2 /2], (12)

Definition 2.5. A multi-state series system is called an
»,m out of n” system with a mixed reserve of its
components if its lifetime T®(u) in the state subset
{u,u+l,...,7Z} isgiven by

TO(U) = T mo ), M=12,.,n,u=12,..2

where T .., (u) isthe mth maximal order statisticsin
the sequence of the component lifetimes

T = (rax{madT, ()}, max (AT, W},
i=12,..n,u=12,...,z

where Ty(u) are lifetimes of components in the basic
system and Ti,(u) are lifetimes of reserve components
and s, S, where si+ s, = 1 are fractions of the
components with hot and cold reserve, respectively.

Thereliability function of the homogeneous multi-state
.,m out of n” system with a mixed reserve of its
components is given either by

IROY () =[1, IR®Y (t,1),..., IR (t,2)],

where
RO (0 =1- & (7 )- (Feu)?)
[1- F(t,u)* F(t w2 [Ft,u)

[F(t,u)* F(t,u)]""%2 (13)
tT (¥ ¥),u=12..72

or by
IRO™(ty =[1, IR (D) ... IR (t,2) ]
where

RO M0 =4 (1)@= Few Few

|| SD°3\

[1- (F(tu)?]™VL1- F(tu)* Ft,w]™P2, (14)
tT (¥ ¥),m=n-mu=12,..z

Lemma 2.3.

case 1: If
O APy =1- TV o0 vy,
i 0 il
u=12,.,z isnon-degenerate reliability
function,

(i) IR‘S)%m) (t,u) is the reiability function of non-
degenerate multi-state ,m out of n” system
whit a mixed reserve of its components
defined by (30),

(iii) a(u) >0, by (U (-¥¥),u=12..z2

(iv) m= constant (m/n® 0, as n® ¥ ),

then

lim IR (@, (Wt +b, () = 1A O™ t,u)
n
tl Ca, u=12,..z2

if and only if

lim n{s,[1- [F (@, (W)t +b, (1)]?]
+S5[1- F(a, (W)t +b, (1) * F (@, (Wt+b, ()]

=V(t,u), tT Cy,, u=1.2,..2

case 2: If
1 -v(t,u) LZ

- A @™ - gLt 2 -

0] 1A (tu= 1 @ _2 e 2dx, u
1,2,...,z, is non-degenerate reliability function,

(ii) IR®S™ (t,u) isthe reliability function of non-
degenerate multi-state ,m out of n” system
whit a mixed reserve of its components
defined by (30),

(i)  a(u)>0 by (U (-¥¥),u=12..z2

(iv) m/n® m, 0<n<1,przy n® ¥,

then

lim IR? (™ (a, (Wt +b, () =IA @ (t,u),
t] Ca,u=12,...2

if and only if

lim

n® ¥

(n+D[s,[1- [F(ay (W)t +by, (u)]1*]

/m(n- m+1)
n+1
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S;[1- F(a, (u)t +b, (u))* F(a, (u)t +b, (u))]] -
\/m(n-m+1) case2 m/n® m0<m<l, n® ¥,
n+1
Jm/2
a,(u) = ,
=n(t,u),u=12,..,z I (u)y(2s, +s,)(n+1)
21- m
case 3. If S+,
" V) then
() AT = & eV )],

m=n-m u= 1,2,...,2, is non-degenerat
reliability function,

(ii) IR (t,u) istherdiability function of non-
degenerate multi-state ,,mout of n” system
with a mixed reserve of its components
defined by (31),

(iii) a,(u) >0, b, (U)T (-¥,¥),u=12,..z2

(iv) n-m=m =constant (M/n® lasn® ¥),

then

lim IR (a, (W)t +b, W) =14 @™ ¢t u),
t1 Cx

1A

u=12,...,z
if and only if
lim n[s,[F (a, (W)t + b, ()] ?

+s,[F(a, (u)t +b, () * F(a, (u)t + b, (u))]]
=V (t,u)
tic,, u=12..z

Proposition 2.3. If components of the homogeneous

multi-state ,, m out of n” system with a mixed reserve of
its components have multi-state exponential reliability
functions

and

case 1 m = constant,

1 expll (ub, (W]

a,(u)= )’ 25 +5,1 (Wb, (W) =n,u=12,.,2
then
AO™ ¢y =1-% e’(p[ I]exp[-@<p[-t]],

i=0

tT (¥ ¥),u=12..z2

2
t . X

1 A
—— & ?dx,
NP -¥

tT (¥ ¥),u=12..z2

1A O™t uy=1-

case3n-m=m =constant (M/n® 1, n® ¥ ),

_ V2
| (u)y/(2s,+s,)n

b,(uy=0,u=12,...z

n

then
1A @™ (,u)=1, t<o,
_ 2i
1A O™ (¢ u) = ém—exp[t] t30,u=12,..72

isitslimit reliability function.

Proof:
case 1: Sincefor al fixed u, we have

a, (U)t+b, (U)® ¥ asn® ¥ for t1 (-¥,¥),
and

1-[F(a, (Wt+b, W)

= 2exp[- | (u)(a, (W)t +b, ()]

- expl- 21 (u)(@, (Ut +b, (W)] T (-¥,¥),

1 F(a, (Ut +b, ()* F (a, (W)t +b, (1))

=[1+1 (u)(a, (Ut +Db, (W)l

expl- | (u)(@, (Ut +b, ()], tT (-¥,¥).

Therefore
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V(t,U) = lim n{s,[1- [F(a, (Wt +b, (W)]°]
+S5l1- F(a, (Wt +b, (W)

* F(a, (Ut +b, (W)]]

= lim[ns,[2exp[- 1 (u)(a, (W)t +b, (u))]

- exp[- 2| (u)(@, (u)t+Db, (u))l]
+ns,[1+1 (u)(@, (U)t +by, (u))]

expl-1 (u)(a, (u)t+b, (u))]]

= lim[ns, 2exp[- | (u)(@, (W)t +by, (W))]

[1- 1/2exp[- | (u)(@, (u)t +b, (U))]]

1+ (u)a, (u)t

+nsel (Wb W=7 )

]

exp[- I (u)(@, (u)t +by, (u)]]

=limexp[- ]ins, 2exp[- | (u)b, (u)]

n® ¥
[1- %exp[- fexpl- 1 ()b, (W]

1+t

+ns,| (u)b, (U)[1+m

]

exp(- 1 (u)b, (U)]]

= lim exp][- t][ns; 2exp[- | (u)b, ()]
- ns, exp(- t] exp[- 2| (u)b, (u)]
+ns,l (u)b, (u) expl- 1 (u)b, (u)]
+ns,[1+t]exp[- | (u)b, (u)]]

=l ool

[1- 2

n@s + 1 Wb Ws)? Y

S,

" nus) —Y

—exp[-t], tT (-¥,¥),u=12..72

which by case 1 in Lemma 2.3 completes the proof.

case 2: Sincefor al fixed u, we have

a t+b (1) ® —— 2™ o asney,
[(u)\2s +s,
tT (-¥,¥).
and

1~ [F(a (Wt + by (W)

= 2expl- | (u)(ay ()t +b, (W)]
- expl- 21 (u)(@, (U)t +b, ()]
= 21- 1 (u)(a, (W)t +b, ()
+§I 2 (u)(@, (U}t +by, ()]

- [1- 2 (u)(@, (u)t+Db, (u))

#2402 )@, (W +b, (@)*] + o)
=1- 1 ()@, )t +b, () +ol——),
tT (-¥,¥%),

1— F(a, (Wt+b, (U)* F(ay (Ut +b, (1)
=[L+1 (U)(a, (Wt +b, (W)]

[1- 1 (u)(a, (u)t+by, (u)

#2120 (@, (Wb, (W)° - o)
-1 %| > (u)(a, (@t +b, )7 - o L),
tT (-¥,¥).

Therefore

s[1- [F(a, (Wt +b, W)]°]
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+S,[F(a, (W)t +b, (U))* F(a, (u)t +b, (u))]
=s,[1- | *(u)(a, (Wt +b, (W)*]

+s[1- %I 2 (u) @, ()t +b, ()] +o(ni+1>

=1 231—2”2' (W@, (Wt b, W) +0l—1)

_ Jmi-m

t+m- o(niﬂ), th (-¥,¥),

Vn+1
next
n(t,u) = lim (n+D[s[1- [F (@, Wt +b, u)]°]
n® ¥ M
n+1

L St F (@, (u)t+by, (U))* F(a, (u)t+b, (W)l - m

m(n- m+1)
n+1
mil- m 1
. (n+1)[- o t+m-o( " )I-m
ne¥ m(n- m+1)

n+1

 jim YT MErod _ g (-¥,¥),
n® ¥ Jﬁ%{fﬁ§

u=12,...,2

which by case 2 in Lemma 2.3 completes the proof.

case 3: Sincefor all fixed u, we have

a,(ut+b, (u) = V2 <0,t<0
I (U)y/(2s; +s;)N
and
t/2
b = 30,t30,
a, (u)t +b, (u) ades o !
then

F(a, (ut+b (u)=0, t<0,

andfor t3 0
[F(a, (u)t+b, ()]
=[1- exp[- 1 (u)(ay, ()t +b, ()II*,
F(a, (ut+b, (u))* F(a,(u)t+b,(u)
=[1- [+ (u)(@, (W)t +b, (u))]

exp[- 1 (u)(a, (u)t+b, (U)]] -

Therefore
V(t,U) = lim s, [F (@, (Wt +b, (W)]?
+S,[F (8, (Wt +b, () * F (@, (W)t +b, (W)]
= lim[ns;[1- exp[- | (U)(@, ()t +b, (W)
+,[1- [1+1 (U)(a, (W)t + b, (W)]
expl- 1 (U)(a, (Ut +b, (W)T]
= lim[ns,[1 (u)(a, (Ut +b, W)]?

+1ns,[1 *(u)(a, (W)t +b, (u))*

i %| 2(u)(a, (Ut +b, ()]

=lim nlzsl; >2 (1 (Wa, ()]

2
=lim n[t—]=t2, t30,t1 (-¥,¥), u=12,..2
n® ¥ n

which by case 3 in Lemma 2.3 completes the proof.

Corollary 2.3. The reliability function of exponential
»,m out of n” system with a mixed reserve of its
components is given by

casel

RO 1y @ §EPL I W - b, ()
i=0 i!

exp[- exp[- | (u)t+1 (Wb, (W)], (15
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tl (-¥,¥),u=12..z

case 2

IROM (t,u) @ f %e X7dx, (16)
where

A:I (u)\/(251+sz)(n+1)2t 2/n+11- m a

I T

tl (-¥,¥),u=12..z

case3
IR (t,u) =1, t <0,
RO () & [l (u)\/(2sl+s2)nt/f ”

expl-12(u)(2s, +s,)nt* /2], (18)
t3ou=12,...,2

Proposition 2.3. If components of the homogeneous
multi-state ,m out of n” system have improved
component reliability functions i.e. its components
failure rates | (u) is reduced by a factor r(u),
rui <0,1>,u=12,..z

and

casel m= constant,

.1 _logn _
an(u) = r )’ br(u) Tor @ O @ u=12,...z
then
A= 1 3P epreqra)

tT (-¥.%),

cae?2 m/n® m, 0<n<l n® ¥,

_ log(1/m)
(1) = I(u)r(u)«/n+ \/ ) = | (u)r (u)’

u=12,..,z

then

N

-

R R ] (-¥ ¥),

V2p

IA @ ¢ ) =

cae3 n-m=m constant (m/n® 1, n® ¥ ),

a,(u) = ,bh(u)y=0,u=12,...,z

1
nl (u)r (u)

then

IA @™ u)=1, t<o,

_ g
IA @™ ¢ u) = ”amt_—l expl-t], t3 0
i=0 1!

isits limit reliability function.

Corollary 2.3. The reliability function of exponentia
»mout of n” system with improved reliability functions
of its components is given by

casel

lexp[ il (u)r (u)t- logn)

|—0 i!

(m)

IRWn™ (t,u) @-

exp[- exp[- | (u)r (u)t+logn], (19
tl (-¥,¥),u=12..z

case?2

IROY (t,u) @ %ﬂo%exzdx (20)
where

A= @@V Vnstm o

Jfom

tl (-¥,¥),u=12..z

Jm

case 3
RO (tu) =1, t <0,
IRDT™ (t,u)

@: m[I (U)r (U)nt]

t3 0, u= 1,2,..., Z

exp[- | (u)r (u)nt], (22)

3. Comparison of reliability improvement
effects
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The comparisons of the limit reliability functions of the
systems with different kinds of reserve and such
systems with improved components allow us to find
the value of the components decreasing failure rate
factor r (u), which warrants an equivalent effect of the
system reliability improvement.

3.1. The“m out of n” system

The comparison of the system reiability improvement
effects in the case of the reservation to the effects in
the case its components rdiability improvement may
be obtained by solving with respect to the factor
r (u) = r (t,u) the following equations

1A @™ ((t- b, (W) /a, (u))

=1A O™ (¢t b, (W) /a, (W), (23)

u=12,..,2k=1223.

The factors r (u)=r (t,u) decreasing components
failure rates of the homogeneous exponential multi-
state ,mout of n” system equivalent with the effects of
hot, cold and mixed reserve of its components as a
solution of the comparisons (23) are respectively given

by

k=1

casel r(u)=r(t,u)=1- Il?—uz)t ,u=1.2,...,z
case2 r (U) = 2,/1- m- 2(1- ImzL;rTIogm
u=12,..,2

case3d r(u)=rtu=I@ut,u=12,..,2

k=2

casel r (u)=1- | (Wb (W)~ logn

[ (u)t
=1- M, u= ]_,2’___’2,
[ (u)t
case? r (u) = Vlr-nm_ L- T:u;nr:tOgm, u=12...2

| (ut

case3 r(u)=r(t,u)= > ,u=12,....z

k=3
| (u)b, (u)- logn
| (ut

caselr (u)=1-

L C RN O C) P
I (u)t

case?2

r(u):\/2(281+82)\/1- m 2(1- m+mlogm
m lwm

u=12,...,z

@s+s) @ |

case3 r(u)=r(t,u) = > 2y Z

4. Conclusion

Proposed in the paper application of the limit multi-
state reliability functions for reliability of large
systems evauation and improvement simplifies
calculations. The methods may be useful not only in
the technical objects operation processes but also in
their new processes designing, especidly in their
optimization. The case of series, paralld (in part 1) and
» mout of n” systems composed of components having
exponential rdiability functions with double reserve of
their components is considered only. It seems to be
possible to extend the results to the systems having
other much complicated reliability structures and
components with different from the exponential
reiability function. Further, it seems to be reasonable
to elaborate a computer programs supporting
calculations and accderating decision making,
addressed to reliability practitioners.
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Abstract

The Dempster-Shafter Theory is well-known for its usefulness to express uncertain judgments of experts. This
contribution shows how to apply the calculus to safety and reliability modelling, especialy to expert judgement;
Failure Modes, Effects, and Criticality Analysis; Event Tree Analysis, Fault Tree Analysis, and Reliability Cen-
tred Maintenance. Including a tutoria introduction to the Dempster-Shafer Theory, the differences between the
Probability and the Dempster-Shafer Theory are discussed widdly.

1. Introduction

In the middle of the 1960s Arthur P. Dempster devel-
oped a theory [1], [2], [3] that includes a kind of “up-
per and lower probabilities’. Later, it turned out that
this approach is very useful to express uncertain
judgments of experts.

About ten years later the work of Dempster was ex-
tended, refined, recast, and published by Glenn Shafer
[18] as a “Mathematical Theory of Evidence”. Shafer
e.g. rebuilt the mathematical theory around the Demp-
ster concept and introduced degrees of belief instead
of lower probabilities. The Theory of Evidence was
also denoted as the Dempster-Shafer Theory (DST) or
the Dempster-Shafer Evidential Theory.

The more the Dempster-Shafer Theory was further
developed, the more the evidence measures of DST
departed from being probabilities, e.g. Klir & Folger
[11] revised DST in that sense. As stated by [4] and
[20], the advantage of DST is that it allows coping
with absence of preference, due to limitations of the
available information, which results in indeterminacy.

2. Fundamentals

The DST became known to the safety and reliability
community in the early 1990s, refer e.g. Guth [7]. The
reliability-oriented approach to DST as presented here
is based on a scenario that contains the system with
all hypotheses, pieces of evidence and data sources.
The hypotheses represent all the possible states (e.g.
faults) of the system considered. It is required that al

hypotheses are elements (singletons) of the frame of
discernment, which is given by the finite universal set
W. The set of all subsets of Wis its power set 2. A
subset of those 2V sets may consist of a single hy-
pothesis or of a conjunction of hypotheses. Moreover,
it isrequired that al hypotheses are unique, not over-
lapping and mutually exclusive.

In this context pieces of evidence are symptoms or
events (eg. failures) that occurred or may occur
within a system. One piece of evidence isrelated to a
single hypothesis or a st of hypotheses. It is not al-
lowed that different pieces of evidence lead to the
same hypothesis or set of hypotheses.

The qualitative relation between a piece of evidence
and a hypothesis corresponds to a cause-consequence
chain: A piece of evidence implies a hypothesis or a
set of hypotheses, respectively. The strength of an
evidence-hypothesis assignment, and thereby the
strength of this implication, is quantified by a state-
ment of a data source.

Data sources are persons, organisations, or any other
entities that provide information for a scenario. In
safety and reliability engineering, data sources are
usually the results of empirical studies or they are ex-
perts, who give subjective quantifiable statements. As
required by O'Neill [13], data sources have to be rep-
resentative (e.g. studies) or as free from bias as possi-
ble (eg. experts).

Some misunderstandings in interpretations concern-
ing the plot of hypotheses have to be cleared up. From
an abjective point of view, which might e.g. be lo-

-173-



U.Rakowsky Fundamentals of the Dempster-Shafer theory and its applications to system safety

and reliability modelling

- RTA# 3-4,2007, December - Special Issue

cated outside the system (e.g. observer), exactly one
single hypothesis is true; from a subjective point of
view of a data source (eg. expert or operator), it
might be uncertain which hypothesis fits best to real-
ity. Therefore, DST makes it possible to model several
single pieces of evidence within single hypothesis
relations or
single pieces of evidence within multi hypotheses
relations
as uncertain assessments of a system in which exactly
one hypothesis is objectively true. Both points of
view, the abjective and the subjective, have to be dis-
tinguished clearly. The DST calculus describes the
subjective viewpoint as an assessment for an unknown
objective fact.
By means of a data source, a mapping

m 2¥® [0, 1] (1)

assigns an evidential weight to aset A | W, which
contains a single hypothesis or a set of hypotheses.
Thisis the most significant difference to the Probabil-
ity Theory: The DST mapping distinguishes clearly
between the evidence measures and probabilities with
mapping W® [0, 1]. Each A that holds m(A) > 0 is
called a focal element. The function mis called a ba-
sic assignment and fulfils

& ai wm(A) =1 . 2

This eguation means that all statements of a single
data source have to be normalised, just to ensure that
the evidence presented by each data source is equal in
weight, e.g. no data source is more important than an-
other one. — For the “sake of smplicity” (Klir & Fol-
ger [11]), it is assumed that

m(4) =0; ©)

however, this property requires an appropriate choice
of the universal set W. That means, the set W has to be
complete and contain all possible hypotheses of the
scenario considered.

In some publications mis called the basic probabil-
ity assignment, refer Shafer [18], which misleads to
the assumption m(A) might be a probability. Further
denotations are the basic belief assignment [19], the
belief structure [21], [4] or the mass assignment func-
tion [14].

A clear distinction has to be made between probabili-
ties and basic belief assignment: probability distribu-
tion functions are defined on W and basic assignment
functions on the power set 2" In addition, m has three
further properties, which distinguishes it from being a

probability function, refer Klir & Folger [11]: It is not
required

that m(W) =1,

that m(A) £ m(B) if Al B, or

that there is a relationship between m(A) and

m(DA).
Therefore, it seems to be useful to avoid the terms
probability and belief (which is defined next) in the
denotation of m.

By applying the basic assignment function, several

evidential functions can be created. A belief measure
is given by the function bel: 2V ® [0,1]. Thereis

beI(A):éBi ABLf m(B). (4)

The counterpart of bel is the plausibility measure pl:
2" ® [0,1] with

pl(A) =4 BCALf m(B) . )

The measure pl(A) shall not be understood as the
complement of bel(A). Only

{AT WIm(A)>0}1 £® bel(A) £ pl(A) (6)

has to be fulfilled. In addition to bel and pl, a third
evidential function can be defined. Shafer [18] intro-
duced the commonality measure with crn: 2% ® [0,1]
and

cmn(A) =4 gg AM(B) . (7)

Figure 1 shows a graphical representation of the
above-defined measures belief and plausibility. The
difference pl(A) — bel(A) describes the evidential in-
terval range, which represents the uncertainty con-
cerning the set A.

0 1
Belief o Doubt
bel(A) \ 1- bel(A)
Plausibility 1 Disbelief
pIA) [ 1- plA)
Uncertainty

Figure 1. Measures of belief and plausibility and its
complements for a given bel(A) < pl(A). The eviden-
tial or the uncertainty interval, respectively, is shaded
grey.

The complements to the measures belief and plausibil-
ity are doubt and disbelief, respectively. Although
Shafer ([18], page 43) defines doubt as a complement

-174-



U.Rakowsky Fundamentals of the Dempster-Shafer theory and its applications to system safety

and reliability modelling

- RTA# 3-4,2007, December - Special Issue

to the measure plausbility, it seems to make more
sense to distinguish between doubt and disbelief in the
way given above because DST does not require a
causal relationship between a hypothesis and its nega-
tion. As Flack [6] emphasises, lack of belief does not
imply disbelief. The disbelief of set A is the belief in
the complement. Thereis

bel(GA) = 1 -pl(A) , pl(DA) =1 —-bel(A) (8)
with
bel (DA) £ pl(DA) . 9)

The difference pl(A) — bel(A) describes the uncer-
tainty concerning the hypothesis A represented by the
evidential interval, see Figure 1.

2.1. Interpretations on Evidence M easures

Some helpful and interesting interpretations of the
evidence measures are given in the literature and cited
here.

Basic Assignment
The measure m(A) assigns an evidential weight to
theset A, refer Flack [6].
The measure m(A) is the degree of evidence that
the element in question belongs exactly to the set
A, refer Klir & Folger [11].
The measure m(A) is the degree of evidence sup-
porting the claim that a specific element of W be-
longs to the set A, but not to any special subset of
A, refer Klir & Folger [11].
The quantity m(A) is the degree of belief that the
above specified claim is warranted, refer Klir &
Folger [11].

Belief
The measure bel(A) is the degree of evidence that
the element in question belongsto the set A as well
as to the various special subsets of A, refer Klir &
Folger [11].
The measure bel(A) can be interpreted as the total
amount of justified support given to A, refer De-
noeux [4].
The measure bel(A) is the degree of evidence sup-
porting the claim that a specific element of W be-
longs to the set A, but not to any special subset of
A, refer Klir & Folger [11].

Plausibility
The quantity pl(A) is the degree of evidence that
the eement in question belongs to the set A or to
any of its subsets [or to any set that overlaps with
A], refer Klir & Folger [11].
The quantity pl(A) can be interpreted as the maxi-
mum amount of specific support that could be

given to A, if justified by additional information,
refer Smets [19].

2.2. Bayesian Statistical Modelling versus
Dempster-Shafer Theory

Flack [6] describes the differences between the Bayes-
ian statistical modelling and the Dempster-Shafer
Theory as a difference in concepts. A Bayesian model
describes a Boolean type of phenomena, which either
exist or do not exist. Little belief in the existence of a
phenomenon implies a strong belief in its non-
existence. This implication does not necessarily hold
for DST. Here, no causal relationship is required be-
tween both, bdief in exisence and bedlief in non-
existence. For example, a statement concerning the
failure probability of an item also implies a statement
about its counterpart, the reliability of the same item.
DST does not require this sub-proposition; and that
adds new aspects and possibilitiesto reliability model-
ling.

As stated by Ferson et al. [5], the Dempster-Shafer
Theory has been widely studied in computer science
and artificial inteligence, but has never achieved
complete acceptance among probabilists and tradi-
tiona statisticians. (By this, the question arises if any
other theory than the Probability Theory would ever
be accepted by probabilists or traditional statisticians.)

However, there are still some disadvantages of the
Probability Theory for the DST, which should also be
stated here. There are three undesired main properties
aslisted by [4]:

Lack of introspection or assessment strategies: The
main criticisms of the Bayesian statistical model -
ling is its unreasonable requirement for precision.
But the necessity to assign precise numbersin DST
applications to each subset A1 W by the basic as-
signment m is constraining in the same way. Pre-
cise degrees of the desired measures may exist, but
it is perhaps too difficult to determine them with
the necessary precision.

Instability: Underlying beliefs may be unstable.

Estimated beliefs may be influenced by the condi-

tions of its estimation.

Ambiguity: Ambiguous or imprecise judgement

could not be expressed by the evidence measures.

Additional statements to disadvantages of the Demp-

ster-Shafer Theory are:

- DST lists all the hypotheses into the frame of dis-
cernment W, which resembles the fault spacein the
Bayesian Theory. However, given k hypotheses, it
can consist of up to 2 elements, representing all
possible subsets of W. This leads to a similar prob-
lem encountered in the Bayesian Theory, except
that it is worse because human experts have to es-
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timate a larger number of belief values than after
the Bayesian theory [12].

Another cavesat of the applicability of DST isthat it
does not offer a procedure for implementation of a
diagnostic system [10].

2.3. Dempster-Shafer Rule of Combination

Dempster [2], [3] followed by Shafer [18] suggested a
rule of combination which allows that the basic as-
signments are combined. Thereis

a m(A)>m(B)
ACB=Z1f
1-  dm(A)xm(B)’
ACB=f

m(Z) =

(10)

with A, B, Z 1 W. Verbally: the numerator represents
the accumulated evidence for the sets A and B, which
supports the hypothesis Z, and the denominator sum
guantifies the amount of conflict between the two sets.
Depending on the application, the denominator of

a m(A)>m(B)
ACB=Z1f

& m(A)>m(B)
ACB:f

m(Z) = (12)

iseasier to apply.

3. lllustration

The following illustration is strictly step-wise struc-
tured and gives an easy-to-understand introduction to
the calculus of the Dempster-Shafer Theory.

The given scenario discusses a typical situation in a
power plant. The operators at the control panel detect
serious changes of the system properties. Some fail-
ures are detectable; however, their conseguences or
the system fault, respectively, can neither be deter-
mined exactly nor interpreted certainly. (This situation
iswidely discussed e.g. inthe ATHEANA Report [14]
and by Hollnagel [8].) To avoid an error forcing con-
text, pieces of evidence are collected, hypotheses are
postulated, and conclusions are made on this basis.
Therefore, a Dempster-Shafer approach is applied to
support the operators in decision making.

Step & — Creating the Scenario

The scenario consists of a power plant (the system
considered), two operators (data sources, denoted by
the index 1), the failures detected (pieces of evidence),
and the system fault states (set of hypotheses). As de-
scribed above, the pieces of evidence correspond to
failures or causes and the hypotheses to faults or con-
sequences.

The faults can be determined to at most three pre-

cisely defined hypotheses represented by the set W
with

W= {h]_, hz, h3} . (12)

With that, the frame of discernment of this context is
given. It should be noted that W is postulated by the
operators based on their subjective points of view,
assuming that W is complete. The corresponding
power set of Wis

2Y={/ {h},{hs}, {hs}, {hs, h}, {hy, hg},
{hg, ha}, W} . (13)

Thefirst operator mainly states that the faults h; or h,
are the reason for the problems. For example, the fail-
ure evs might have occurred and resulted in the conse-
quences h; or h,. The assignments of the second op-
erator are dightly different. Here, focus is on the
faults h, or h;. Both operators give their statements to
the four pieces of evidence found. The complete sur-
vey of the qualitative failure-fault(s) assignments is
givenin Table 1.

Table 1. Qualitative failure-fault(s) assignments given
by the operators involved

Failure Fault(s)

.'].St evy hy
€vz hy
5 €vz hy, hy
*§ eVy hl, h,, hs
§_ 2nd evy hy
€V hs
€vs hy, hs
eVy hl, h,, hs

Please note that contrary to the Fault Tree Analysis
(FTA), DST does not allow that more than one failure
lead to the same fault (hypothesis). However, different
failures may have different set of consequences,
which may contain the same hypotheses as elements,
eg. evy, evs, and ev, in Table 1 lead to hypotheses,
which al contain h; as a fault. Again, DST alows
modelling several
single-failure-single-fault relations and
single-failure-multi-fault reations
as an uncertain assessment of a system, which can
take exactly one state at a time. Generally, DST em-
phasizes more on the hypotheses (faults) than on the
pieces of evidence (failures), which are of minor in-
terest in the next steps.
As described in Section 0, the system is exactly in
one state of W. In other words, exactly one hypothesis
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of {hy, hy, h3} istrue for the given scenario and situa-
tion if the system would be observed from an objec-
tive point of view. Subjectively, the operators are not
sure, in which state the system actually is.

Step ¢ — Quantification of Statements

At this step, both operators quantify their statements
as given in Table 2. The set of hypotheses A is as-
signed to the first operator, B to the second operator.
For example, the second operator claims that the con-
sequences h; or h; may have occurred with a basic
assignment of 0.4. (Formulating this sentence ver-
bally, it is rather difficult to avoid that the tongue
mentions “probability”. Again, basic assignments are
not probabilities, see equation (1).) Non-specified
statements are assigned by 0 and are not focal ele-
ments.

The subjective quantifications of the operators are
based on their system experiences and mostly on their
“engineering feelings’. Certainly, these quantifica-
tions areimprecise.

Table 2. Quantitative statements given by the opera-
tors involved (outer columns). The inner column con-
tains all subsets of the power set 2 .

1 operator on 2" operator
m(Ay) = 0.2 {hy} m(By) = 0.2
m(Az) =0.1 {h2} m(B,) =0
m(A3) =0 {hs} m(Bs) = 0.2
m(A,;) = 0.6 {hEh} [mBy)=0
m(As) =0 {h,E hg |m(Bs)=04
mM(Ag) =0 {hE h} |mBe=0
m(A7) = 0.1 {h;E h,E hg} |m(B;)=0.2

Based on the basic assignments given by both opera-
tors, the belief and doubt, commonality, plausibility
and disbelief measures can be calculated. For exam-
ple, the belief in the set of hypotheses {h; E h,} isthe
sum of its own basic assignment with those of all of
its subsets

{hd,{h}, {hEh} I {hEhg}, (14)

see equation (4). For the fourth statement of the first
operator thereis

bel(As) = m(A;) + m(A,) + m(A;) = 0.9, (15)
with the corresponding doubt measure

1-bel(A)) =0.1. (16)
The commonality takes every statement into account,

which includes the discussed statement completely.
Thereisfor As

{hhE h},{ i EhEhg} E{hE hj}, (17)

cmn(Az) = m(Az) + m(A;) =0.7. (18)
The plausibility includes basic assignments of all
statements which have got at least one hypothesis with
those of the discussed statement in common. Concern-
ing A4, thereis

{ha}, {hg}, {h  E hg}, {h E hg}, {h: E hg},

{hEhEh} C{lEh}! A&, (19)
which resultsin the plausibility

pl(Ag) = M(Ag) + M(A2) + M(Ag) + M(As)

+ m(Ag) + M(A7) =1 (20)

and finally in no disbelief at all

1-pl(A,) =0. (21)

Table 3 shows the results for belief and plausibility of
al statements (k=1,..., 7).

Table 3. This table corresponds to Table 2 and shows
the values of basic assignments (bold typing), belief,
and plausbility for each statement and operator (first
left side, second right side).

m(A)  bel(A)  pl(A) 2" m(Bi) bel(B) pl(By)
02 | 02 | 09 {hy} 02 | 02 | 08
01| 01 | 08 {hy} 0 0 0.2

0 | 0 | 01| {(h} | 02| 02| 08
06 | 09 | 1 |{nEh}| O | 02 | 08

0 0.2 09 | {h,Ehg | 04 0.8 1
0 01 0.8 | {h, E hg} 0 0.2 0.8
0.1 1 1 W 0.2 1 1

Step € — Combining Hypotheses

The third step combines each hypothesis or set of hy-
potheses, respectively, from one data source (opera-
tor) with one from the other source and builds the cut
set of both, see Table 4. Depending on quantifications
given a Step ¢, some of the cut sets may not befocal
elements before or thereafter. Actualy, this step was
fit in for illustrative purpose and can be combined
with Step &.

Table 4. The Combination Table contains the full plot
of hypotheses cut sets of A and B
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B]_ hl /£ £ hl hl £ hl
Bz £ hz £ hz £ h2 h2
Bs £ £ hs £ hs hs hs

Step € — Reducing the Combination Table

To avoid mathematical effort, those columns and rows
of the Combination Table 4 were dropped, which are
related to non-focal eements (non-specified state-
ments with m(A,) = 0, m(By) = 0). In this context, col-
umns Az, As, As and rows B,, B4, Bg are not applica-
ble. Table 5 shows the reduced plot containing the
combinations of focal el ements exclusively.

Table 5. Thereduced Combination Table

B1 hy A hy hy
B; £ £ £ hs
Bs hl yis hl hlE h3
B~ hy h, h.eh, W

Step & — Calculating Products and Sums of Com-
bined Basic Assignments

At this step, products of the related basic assignments
are calculated from the non-empty sets. Products of
basic assignments corresponding to the same cut set
have to be added. For { h;} yields

Z1=A;C By ={h}

P m(Z;) = m(A;) xm(B;) =0.04, (22)

Z;=A;C Bs={hy}

P m(Z,) = m(A,) xm(Bs) = 0.08, (23)

Z3=A;C B7={hy}

P m(Zs3) = m(A,) xm(B;) =0.04, (249)

Z;=AsCB1={hy}

P m(Z,) = m(A,) xm(B;) =0.12, (25)

Zs=A4C Bs={hg}

b m(Zs) = M(A) xm(Bs) = 0.24 (26)
Zg=A;CBy1={hy}
P m(Ze) = m(A7;) xm(B;) = 0.02 (27)

with the sum

6
& m(Z,)=0.54. (28)
k=1

Hypotheses h, or h; are supported by

Z7;=A,C B7={hg}

b m(Zy) = m(As) xm(B7) = 0.02, (29)
Zg=A;C Bs={hg}
b m(Zs) = M(A;) xm(Bs) = 0.02.. (30)

Thereisfor thesets {h, E hy}, {h; E hs}, and {h, E h,
E h3}:

Zo=AsC B ={hy E hj}

b m(Zo) = m(As) xm(B;) = 0.12,, (31)
Z10= A7 G Bs = {h, E hg}

b m(Zy) = MA7) xm(Bs) = 0.04, (32)
Z11=A7G By ={h E hy E hg

b m(Zy) = MA7) xm(B5) = 0.02. (33)

To illustrate this formal procedure, the results are
givenin Table 6.

Table 6. This table corresponds directly to Table 5 and

represents the products (-) of basic assignments; O
means no focal element

A A A A
B, |004| O | 012 | 0.02
Bs a a a 0.02
Bs |008| O | 024 | 0.04
B; | 0.04|0.02| 012 | 0.02

Step & — Combining Basic Assignments

The sum over all combinations calculated in Step &,

11

am(zy,)=0.76. (39

k=1
is identical with the denominator of equation (11).
With that, the basic assignment of every hypothesis
can be calculated. Thereis
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6
am(zy)
m({hy}) =%——» 0.7105 (35)
élm(Zk)
for the hypothesis h; and
m{hg}) = 27), 00263 (36)
kallm(Zk)
m({hah) =428, 0.0263 37)
&1m(2k)
m({hy E h}) —M »0.1579 (39)
a m(Zk)
k=1
m({hy E ha) =410, 00526 (39)
a m(Zk)
k=1
m({hy E hy E hgh) =-21)_, 0,0263 (40)
a m(Zk)
k=1

for al relevant sets of hypotheses.

Step T — Evidence Measures of Combined Hypothe-
ses

The evidence measures of combined hypotheses are
calculated according to Step &, Table 7. The set {h; E
h,} does not occur because it vanished in Table 5.

Step T — Interpretation

Starting at the same low value, h; takes roughly half
the range of uncertainty that h, takes. However, both
hypotheses alone should not be considered further due
to the low values of belief and plausibility. With about
~0.24, the single hypothesis h; is assigned with a wide
range of uncertainty. The combination of h; and h;
covers a smaller range (~0.18) than h; alone, and it
has a higher plausibility. Finally, a combination of h;
and h, shows the smallest range of uncertainty (~0.08)
with the same (highest) plausibility as in case of the
combination of h; and hs.

The conclusion is that a combination of h; and h,
may be responsible for the serious changes of the sys-
tem properties. Please note that a probabilistic ap-

proach would have blamed h; alone for being respon-
sible. (And please consider the consequences.) This
result clearly shows the differences between both
theories, based on their different mappingsW® [0, 1]
versus 2V ® [0, 1], see Section 0.

Table 7. The basic assignments (bold) and the result-
ing evidence measures belief, commonality, and plau-
sibility are given; hypotheses are ranked by their be-
lief measures, all values are rounded.

2% m bel cmn pl

W 0.0263 1 0.0263 1
{h:E h;} | 0.1579 | 0.8947 | 0.1842 | 0.9737

{h:E hg} | 0.0526 | 0.7895 | 0.0789 | 0.9737
{hs} 0.7105 | 0.7105 | 0.9474 | 0.9471
{hy} 0.0263 | 0.0263 | 0.2105 | 0.2105
{hz} 0.0263 | 0.0263 | 0.1053 | 0.1053

4. Applications to System Safety and Reliabil-
ity Modelling

The introductory descriptions of the Failure Modes,
Effects, and Criticality Analysis, the Event Tree
Analysis, and the Fault Tree Analysis are taken from
the “System Safety Analysis Handbook” written by
Stephens & Talso [29] and published by the System
Safety Society. The descriptions are shortened and
dightly revised. The introductory description of the
Reliability Centred Maintenance is taken from [23].
Additionally, the IEC standards are recommended for
the application of all listed methods, refer to Section
0.

4.1. Failure Modes, Effects, and Criticality
Analysis

As described by Stephens & Talso [29], the Failure
Modes, Effects, and Criticality Analysis (FMECA)
tabulates alist of items in a process along with all the
possible failure modes for each item. The effect of
each failure is evaluated and ranked according to a
severity classification. An FMECA includes the fol-
lowing steps:

Define the worksheet formats and ground rules.

Give analysis assumptions.

Identify the lowest indenture level of analysis.

Code the system description.

Give failure definitions and evaluations.
The usefulness of the FMECA as a design tool and in
the decision making process depends on the effective-
ness with which problem information is communi-
cated for early design attention. Probably the most
severe criticism of the FMECA has been its limited
use for improvement of designs, as Stephens & Talso
[29] claim. The main causes for this have been the
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untimeliness and the isolated performance of the
FMECA without adequate inputs to the design proc-
ess. While the objective of an FMECA is to identify
all modes of failure within a system design, its first
purpose is the early identification of all critical failure
probabilities so that they can be eliminated or mini-
mised through design correction at the earliest possi-
bletime.

The Dempster-Shafer calculus, as described by the
illustration in Section O, can easily be applied to the
FMECA. If more than one expert is involved in the
guantitative assessments of the criticality and the oc-
currence of an item failure. The results are narrow or
wide ranges of uncertainties, which require an inter-
pretation similar to Step ¥ Section 0.

However, it is an interesting question if ingtitutions,
which conduct system homologations, would accept
theseresults.

4.2. Event Tree Analysis

As summarised by Stephens & Talso [29], the Event
Tree Analysis (ETA) is an analytical tool that can be
used to organise, characterise, and quantify potential
failures in a methodical manner. An event tree models
the sequence of events that results from a single initi-
ating event. The ETA is a bottom-up analysis versus
the top-down approach for the Fault Tree Analysis,
see Section O.

Conducting an ETA dtarts with selection of the initi-
ating events, both the desired events and the ones not
desired. Thereafter, their consequences are devel oped
through consideration of component, module, and sys-
tem failure-and-success alternatives, respectively. The
identification of initiating events may be based on re-
view of the system design and operation, the results of
another safety analysis, or personal operating experi-
ence acquired with a similar system. Then the success
and failure of the mitigating systems are postulated
and continued through all alternate paths, considering
each consequence as a new initiating event. The basic
steps for construction of an event tree include the fol-
lowing:
- List all possible initiating events.

Identify functional system responses.

Identify support system responses.

Group initiating events with all responses.

Define failure sequences.

Assign probabilities to each step in the event tree

to arrive at total probability of occurrence for each

failure sequence.
The method is universally applicable to all kinds of
systems, with the limitation that all events must be
anticipated to produce meaningful analytical results.

Among the methods presented in the “ System Safety
Analysis Handbook” by Stephens & Talso [29], the

Event Tree Analysis is definitely one of the most ex-
haustive, if it is applied properly. Axiomatically, their
use also consumes large quantities of resources. Their
use, therefore, is well reserved for systems in which
risks are regarded as high and well concealed.

As described by Stephens & Talso [29], probahilities
are assigned to each step in the event tree To apply
evidence measures instead of probabilities, the follow-
ing steps are conducted, which lead to the Dempster-
Shafer Event Tree Analysis DSETA.

It is assumed that the considered event tree consists
of bifurcations only; i.e., any symbol within an event
tree has one input and two outputs (the event “failure’
or the event “no failure’), see Figure 2.

A—r1

<
Ag—r2

A
- 1

Initial = A rs

event A = —

2 &

A2_ r4

Figure 2. Event tree with three bifurcations resulting
in four sequences, A; denotes “failure’ and A, “no
failure’

Every bifurcationi =1, ..., n of an event tree is con-
sidered separately and independently from the n — 1
other bifurcations. The assigned set of hypotheses
contains W = { Ay, A;, Az} © {“fallure’, “no failure’,
“uncertain”}. Hence, any expert (data source) | has to
give three values for the basic assignments m;(Ay), k
=1, 2, 3 of any bifurcation i, representing his’her de-
gree of bdief that A may occur. Obvioudy, the un-
certainty of an expert concerning an event Az does not
appear in the graphical representation. There is for the
Expert Assessment Matrix

em1(A) ma(A2) ma(Ag)u

g N [
Mp=ém;i(A) m;(A2) m;(Ag)l (41)

g W N g

&N n(A) M n(A2) mn(Ag)f

with m (A7) + m;(Az) + m;(A9) = 1,

The Combination Matrix C; combines each hypothe-
sis or set of hypotheses from two experts and builds
the cut set of both. Depending on the quantifications
given, some of the cut sets (here: the cut sets of “fail-
ureé’” and “no failure’) may not be focal elements be-
fore or afterwards. To avoid mathematical effort,
those columns and rows were dropped, which are re-
lated to empty cut sets or non-specified statements
(non-focal elements with a 0% basic assignment). In
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case of two experts and three possible answers, as pre-
sented here, the matrix

emyi (Ag) M (Ay) 0 My (Ag) Xy (AU
Ci=g 0 i (Ag) Xy (Ag) My (Ag) XMy (Ag)g (42)

@y (A) Xy (Ag) My (Ag)xmyi(Ag)  myj(Ag)xmy;(Ag)f]

represents the combinations of focal eements exclusively assigned to the i-th event within the tree. The focal sum
s(i) isthe sum of all matrix elements C;. In this casg, it is given by

s (1) =1- (my; (Ag) M (Ag) + My (A) xmyi (A)) (43)

considering the fact that “failure’ (A,) and “no failure” (A,) are mutually exclusive. The combined basic assign-
ments m(Ay) for a“failure’, “no failure’, and “uncertain” are

m (Ay) = T (A) My, (Ay) + My (A3S) :;‘z. (A) +my (A) i (Ag) ' (44)
m (Ag) =ML (Ag) "y (Ag) + My (A3S) ’(TT;zl (Ag) +my (Ag) Xy (Ag) ' (45)
m (Ag) = ml,i(A3S) ZT;z,i(As) _ (46)
With m(Ay) as given above, the evidence measures for a“failure’ and a*“no failure’ decision can be calculated by
bel; (A) =m (A)
pli(Ax) >belii(Aw), pli(Ax) *pli(AQ].] - (50)
pli (Ay) =m (A) +my(Ag) 5 (47)

Instead of subtraction, the complements of the evi-

bel, (Ag) =M (Ay) dence measures are applied; thisyields

beli(A,) = 1-pli(Az) , (51)

pli (Az) =My (Ap) +m (Ag) - (48) - -
. . . pli(A7) = 1 —beli(Az) . (52)

The next step of modelling applies the basic opera-

tions of interval arithmetic to the glven event tree and With the inputs and Opa'ations given, the evidence of

assigns the evidential measures as input variables. The
addition and multiplication operations are commuta-
tive, associative and sub-distributive. Thereis for i t
ii,

[beli(Aw), pli(A] + [beli(Ad), pli(Ad]

= [beli(Aw) + belii(Ay), pli(As) + pli(Ad)] , (49)

[beli(Aw), pli(A)] x[beli(Ad), pli(Ad]

= [mln[bel|(Ak) Xbelii(Ak), be||(Ak) xplii(Ak),

pli(Ax) xbelii(Ay), pli(A) xpli(A],

max[beli(Ay) xbelii(Ay), beli(A) xpli(A,

asequencer;, see Figure 2.,can be calculated easily.

As described above, the basic operations of interval
arithmetic are applied within the DSETA. Fortu-
nately, the structure avoids the trouble that the sub-
distributivity of subtraction operations may cause, e.g.
as known from the Fuzzy Fault Tree Analysis (f-FTA),
see[17].

4.3. Fault Tree Analysis

The Fault Tree Analysis (FTA) can model the failure
of a single event or multiple failures which lead to a
single system failure denoted as the top event, refer to
Stephens & Talso [29]. However, the FTA is a top-
down analysis versus the bottom-up approach for the
Event Tree Andysis; i.e, the method identifies an
undesirable top event and the contributing elements
(down to the so-called basic events) that would pre-
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cipitate it. The contributors are interconnected with
the top event, using network paths through Boolean
logic gates. The following basic steps are used to con-
duct afault tree analysis:
- Definethetop event of interest.
Define the physical and analytical boundaries.
Define the tree-top structure.
Develop the path of failures for each branch to the
logical initiating failure, represented by the basic
event.
Figure 3 shows a typical fault tree with meshed basic
events 1, 4, and 7.

Figure 3. Typical fault tree with basic events, gates,
and top event; the example represents one fault of a
braking module as applied in railway vehicles

Once the fault tree has been developed to the desired
degree of detail, the various paths can be evaluated to
arrive at a probability of occurrence. Cut sets are
combinations of components failure causing the top
event. Minimal cut sets are the smallest combinations
causing the top event. The method is universally ap-
plicable to systems of all kinds, with the following
ground rules:
- Thetop events which are to be analysed, and their

contributors, must be foreseen.

Each of those top events must be analysed indi-

vidualy.

The contributing factors have been adequately

identified and explored in sufficient depth.
The FTA has got several strengths. The procedures
are well defined and focus on failures. The top-down
approach requires analysis completeness at each level
before proceeding. It cannot guarantee identification
of all failures, but the systematic approach enhances
the likelihood of completeness. The FTA addresses
effects of multiple failures by identifying interrda-
tionships between components and identifying mini-
mal failure combinations that cause the system to fail
(minimal cut sets). The method addresses the effects
of design, operation, and maintenance. The FTA can
handle complex systems. It provides a graphical rep-

resentation that helps to understand these complex
operations and interrelationships between modules
and components. Finally, FTA provides both qualita-
tive and quantitative information.

The method is capable of producing numerical
statements of the probability of occurrence of undesir-
able events, given probabilities of contributing factors.
As Stephens & Talso ([29], page 136) claim, this ca-
pability leads to a common abuse: much effort can be
expended in producing refined numerical statements
of probability, based on contributing factors whose
individual probabilities are hardly known and to
which broad confidence limits should be attached.
Applying the Dempster-Shafer Theory to FTA can
help modelling uncertainties with less effort as shown
by Guth [7].

Guth discusses W = {hy, h,, h3} © {“event occurs’,
“uncertain”, “event does not occur”}. In the follow-
ing, two events A and B are considered as inputs and
Z as output of an And or Or gate, respectively. There
is

m(A;) = bel(A) , (53
M(Az) = pl(A) —Dbel(A) , (54)
M(Ag) = 1-pl(A), (55)
M(A1) + M(Ag) + M(Ag) = 1; (56)

the same holds for B. Please note that the Guth ap-
proach to the Dempster-Shafer Fault Tree Analysis
(DSFTA) considers events where the DSETA con-
siders bifurcations. Table 8 shows the (underlying)
combination of hypotheses with the different results
given for the And and Or gate.

Table 8. Combination Table

And A A Az Or A A Az
B, h, h, hs B, h, h, h,
B, h, h, h; B, h, h, h,
Bs h; hs h; Bs hy h, h;

Following Step & in Section 0, the combined basic
assignments are calculated. An And gateyields
m(Z;) = m(A;) m(B,) , (57)
mM(Zz) = M(A1) m(B2) + m(Az) m(By)
+m(Az2) m(By) , (58)
m(23) = m(A]_) m(Bg) + m(Az) m(Bg)+ m(Ag) m(B]_)

+mM(As) M(B2) + m(Az) m(Bs)
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=m(Ay) m(B) + m(A;) m(B3) + m(Ag) . (59)
For an or gate

M(Z1) = M(A;) M(B1) + M(A) m(B) + m(Ay) m(Bs)

+m(Az) m(By) + m(A;) m(By)

=m(Ay) + M(A2) M(By) + m(As) m(By) ,  (60)
M(Z2) = M(A2) M(By) + M(Az) m(Bs)

+m(Ag) m(B,) , (61)
M(Zs) = M(As) M(Bs) (62)

holds similarly. With that, both evidence measures
bel(Z) and pl(Z) can now be calculated recursively to
the equations (53) to (55).

Cheng [22] claimsthat a calculus based on interval
arithmetic is more concise and efficient in operation
than the calculus proposed by Guth [7] and presented
above. However, contrary to an event tree structure, a
fault tree structure may cause trouble with the sub-
distributivity property of subtraction operations as
known from the Fuzzy Fault Tree Analysis, see [17].
This applies especially if events are meshed within a
fault tree, see Figure 3.

Some authors apply an m: WxW® [0, 1] mapping
instead of the well-known m: 2% ® [0, 1] mapping
which mainly characterises the calculus of the Demp-
ster-Shafer Theory. However, an WxW rather repre-
sents operations in interva arithmetic, where the
lower bound and the upper bound are just labeled as
belief and plausibility, respectively.

4.4. Reliability Centred M aintenance

Reliability Centred Maintenance (RCM), which was
first introduced in the aircraft industry, has been used
with considerable success in the last decades in many
industrial branches. As described in [23], the RCM
analysis starts with establishing an expert group and
initiating the collection of important component and
system data based on the system documentation. Then
the system functions are broken down to the desired
component level. All relevant component information
should be collected in the form of a modified
FMECA. The main modification of the FMECA con-
sists of the inclusion of information facilitating the
choice of the optimum maintenance strategy. This is
generally performed by an RCM decision diagram.
Many different decision diagrams are proposed to ap-
ply in an RCM analysis. To illustrate the approach, a
diagram as given in Figure 4 is discussed, see [28].

Note that the given diagram is not necessarily com-
plete or applicable in every context given.

Criticality 1st line maint Detectability Maint strategy

Do Do Y| Periodical

tests

Significant | Y8 Detectability
consequence: of afailure
better design

no yes yes
0
Cond based Cond based
maint effectlve mamtenance

First Ilne First Ilne
maint, alone” malmenance
Other reasons no Corrective
for prev maint maintenance

Figure 4. Example of an RCM decision diagram [23]

First line
maint

Testability
of failure

YeS| scheduled
/. maintenance

no

Increasing Find a

failure rate

Supported by the diagram and the integrated ques-
tions, a choice for the best fitting maintenance strat-
egy should be made. Finally, the maintenance pro-
gram should be implemented, and feedback from op-
eration experience and new data should be used to
improve the program regularly.

The choice of the best maintenance strategy is the
objective of applying RCM; however, reasoning may
be difficult, due to questions without a definite an-
swer. For example, the question whether or not a
component is critical could not easily be answered
with either “yes” or “no’. A Dempster-Shafer based
alternative makes the avoidance of crisp “yes’ or “no”
decisions possible and leads to weighted recommen-
dations on which maintenance strategy to choose.

The application of the DST to RCM (denoted as DS
RCM [28]) follows the procedure of the DSETA as
described in Section 0. The RCM decision diagram
corresponds to the event tree, where the decisions are
the counterparts of the events. Consequently, the deci-
sions “yes’ and “no” correspond to the events “fail-
ureé’ and “no failure’. The Expert Assessment Matrix
M, the Combination Matrix C;, and the focal sum s(i)
are defined and applied analogously. Additionally, an
RCM Decision Diagram Matrix D with

ém(A) m(A2) m(Ag)u
1 1 1

Emg(A) mg(A2) mg(Ag)g

D= (63)

M D
NCNC

is defined, which collects the combined basic assign-
ment values (results) of each decision within the RCM
diagram. Finally, the weighted recommendations on
all maintenance strategies are listed by the Recom-
mendation Matrix
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ébel(rn) pl(r)u
M M

goel () pl(re)d

R=

D D
NN

: (64)

which collects the values of the evidence measures
belief and plausibility for every strategy.
The main advantages of the DS RCM as against
the qualitative RCM can be summarised as follows:
Experts feel more comfortable giving degrees of
belief instead of taking “yes’ or “no” decisions. It
might therefore be easier to obtain relevant data for
the RCM analysis.
The DSRCM approach results in a profile of al
possible maintenance strategies. Decision making
based on this profile helps preventing “weak deci-
sons’ and may in any case be more comprehen-
sive than relying on a single strategy.
In some RCM studies it may be desirable to ana-
lyse modules and not separate components. In
these cases DS'RCM is especialy useful, since it
does not force a single strategy.
As shown in the discussion of the example case,
the DS'RCM approach helps to reveal possible de-
sign problems and their causes.
A possible disadvantage of this approach is that some
experts may find the evidential numbers more compli-
cated than a smple “yes’ or “no” decision. A short
discussion about the nature of these numbers should
therefore be given as an introduction to an RCM ses-
sion.

5. Conclusions

The Dempster-Shafter Theory is well-known for its
usefulness to express uncertain judgments of experts.
It is shown in this contribution, how to apply the cal-
culus to safety and reliability modelling. Approaches
to expert judgement; Failure Modes, Effects, and
Criticality Analysis, Event Tree Analysis, Fault Tree
Analysis, and Reliability Centred Maintenance are
discussed.

Geneally, the Dempster-Shafter Theory adds a new
flavour to safety and reliability modelling compared
to probabilistic approaches. The illustration (Section
0) clearly shows the differences between the Probabil-
ity and the Dempster-Shafer Theory, based on their
different mappings W® [0, 1] versus 2" ® [0, 1], see
Section 0. Probability theory would identify a single
hypothesis and DST a combination of two to be re-
sponsible for the serious changes of the system con-
Sidered.
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7. Symbols
A, B set of hypotheses
bel

C

belief measure

Combination Matrix

commonality measure

RCM Decision Diagram Matrix

single hypothesis

index, resp. number of an element

sequence index (ETA) or statement index
(RCM)

Set or statement index

data source index

Expert Assessment Matrix

basic assignments

plausibility measure

Recommendation Matrix

sequence evidence (ETA) or evaluation value of
the maintenance strategies (RCM)

focal sum

combined set of hypotheses
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Abstract

The semi-markov model of the system operation process is proposed and its selected parameters are defined.
There are found reliability and risk characteristics of the multi-state series- “m out of k” system. Next, the joint
model of the semi-markov system operation process and the considered multi-state system reliability and risk is
congtructed. The asymptotic approach to reliability and risk evaluation of this system in its operation process is

proposed as well.

1. Introduction

Many technical systems belong to the class of complex
systems as a result of the large number of components
they are built of and complicated operating processes.
This complexity very often causes evaluation of
systems reliability to become difficult. As a rule these
are series systems composed of large number of
components. Sometimes the series systems have either
components or subsystems reserved and then they
become paralld-series or series-parald reliability
structures. We meet these systems, for instance, in
piping transportation of water, gas, oil and various
chemical substances or in transport using belt
conveyers and elevators.

Taking into account the importance of safety and
operating process effectiveness of such systems it
seems reasonable to expand the two-state approach to
multi-state approach in their rdiability anaysis. The
assumption that the systems are composed of multi-
state components with reliability state degrading in
time without repair gives the possibility for more
precise andysis of their reiability, safety and
operational processes’ effectiveness. This assumption
allows us to distinguish a system reliability critical
state to exceed which is either dangerous for the
environment or does not assure the necessary level of
its operational process effectiveness. Then, an
important system reliability characteristic is thetime to
the moment of exceeding the system rdiability critical
state and its distribution, which is called the system
risk function. This distribution is strictly related to the

system multi-state reiability function that is a basic
characteristic of the multi-state system.

The complexity of the systems’ operation processes
and their influence on changing in time the systems’
structures  and  their  components  reliability
characteristics is often very difficult to fix and to
analyse. A convenient tool for solving this problem is
semi-markov modelling of the systems operation
processes which is proposed in the paper. In this
model, the variability of system components reliability
characteristics is pointed by introducing the
components  conditional  reliability  functions
determined by the system operation states. Therefore,
the common usage of the multi-state system’s limit
reiability functions in their reliability evaluation and
the semi-markov model for system’s operation process
modelling in order to construct the joint general system
reliability model related to its operation process is
proposed. On the basis of that joint model, in the case,
when components have exponential reliability
functions, unconditional multi-state limit reliability
functions of the series- m out k, system are determined.

2. System operation process

We assume that the system during its operation process
has v dijferent operation states. Thus, we can define
Z(t), tl <0,+¥ >, as the process with discrete states

from the set

Z={z,2,,...,2,}.

5 Ly
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In practice a convenient assumption is that Z(t) is a
semi-markov process [1] with its conditional sojourn

times g, a the operation state z, when its next
operation stateis z,, b,1 =12,...,v, b* I. Inthis case
this process may be described by:

- the vector of probabilities of the initia operation
states [ py, (0)] 1, -

- the matrix of the probabilities of its transitions
between the states [ py ]y, »

- the matrix of the conditional distribution functions
[Hy ()], Of thesojourntimesq,, b?*l.

If the sojourn times q,,, b, | =12,...,v, bt I, have
Waeibull distributions with parameters a,, by, , i.e, if
for bl =12,...,v, b1 [,

Hy @) =P(gy<t)=1- e(p['autbblL t>0,

then their mean values are determined by

1

My = E[le]:at;|bur(1+bi)1 (1)
bi

bl=12..v, btl.

The unconditiona distribution functions of the process
Z(t) sojourn times g, at the operation states z,
b=12,...,v, aregiven by

Hy (1) :élpbl[l- exp['autbbl t]],

\

=1- & py e(p['autbbl]’ t>0, )
I=1
b=12,...,v,

and, considering (1), their mean values are
M, =E[q,] = |é—1pb| My,
1

n -
=& pblablbbl F(“‘i) ,b=12..yv, (3)
1= by

and variances are

Dy =D[a, ] = E[(@,)°]- (Mp)?, (4)

where, according to (2),

E[(Gs)?] = 32dH, ()

0
=4 p 23, b, exp[-a,tP ]t o-1dt
|a1 Py Ot @y by expl-a,t™ ]
A g

2

:é pblat_nbiur(l*‘i), b=12,..v.
1= by,

Limit values of the transient probabilities
p,(t) =P(Z(t)=12,), t30, b=12..v,

at the operation states z, are given by
Vv
Pp=limp, () =P, M, /ap,M,;, b=12..v, (5
t® ¥ 1=1

where M, are given by (3) and the probabilities p,
of the vector [p,],,, Satisfy the system of equations

[Pyl =[Py ][Py]

p, =1

1

Qo<

1
[
i
|

3. Multi-state series- “mout of k" system

In the multi-state rdiability analysis to define systems
with degrading components we assume that all
components and a system under consideration have the
rdiability state set {0,1,...2}, z% 1, the reliability
states are ordered, the state O is the worst and the state
z is the best and the component and the system
reliability states degrade with time t without repair.
The above assumptions mean that the states of the
system with degrading components may be changed in
time only from better to worse ones. The way in which
the components and system states change is illustrated
in Figure 1.

transitions

worst state

Figure 1. lllustration of states changing in system with
ageing components
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One of basic multi-state reliability structures with
components degrading in time are series- “m out of

k,” systems.

To define them, we additionally assume that E;, i =
12,0k, = 12000 ko 1y Dol o TN, are
components of a system, Tj(u), i = 1,2,..k, | =
1.2, i, Koy 1y, T2l o T N, are independent random
variables representing the lifetimes of components E;;
in the state subset {u,u+1,..., 7}, while they were in

the state z at the moment t = 0, g;(t) are components E;;
states at the moment t, tl <0,¥), T(u) is a random

variable representing the lifetime of a system in the
reliability state subset {u,u+1,...,zZ} while it wasin the
reliability state z at the moment t = 0 and s(t) is the
system reliability state at the moment t, t1 <0, ¥).

Definition 1. A vector
Ri(t») = [Ri(t.0), Rj(t,1)...., Ri(t.2)], tT <0,¥),
where

Rj(t,u) = P(e(t) * u | &;(0) = 2) = P(Ty(u) > 1)

for t1 <0,¥), u=01,..2i=12..k,j=212..1,is
the probability that the component E; is in the
reliability state subset {u,u+1,...,z} at the moment t,

t1 <0,¥), while it was in the reliability state z at the

moment t = 0, is called the multi-state reliability
function of a component E;;.

Definition 2. A vector
R () =[L R (10), R{Y (t,1),... R (t.2)],
where

R () =P(s(t)® u|s(0)=2) =

P(T(u) > 1)

for t1 <0,¥), u=0,1,...,z is the probability that the
system isin the reliability state subset {u,u+1,...,2} at
the moment t, tT <0,¥), while it wasin the reliability

state z at the moment t = 0, is called the multi-state
reiability function of a system.

It is clear that from Definition 1 and Definition 2, for
u=0, wehaveR;(t,0) = Land R{") (t,0) = 1.

Definition 3. A multi-state system is called series- “m
out of k,” if its lifetime T(u) in the state subset

{u,u+1,..., 7} isgiven by

T(U) =T, gy (W) » U=12,,2,

where Ty _maq (U) ism-th maximal statisticsin the
random variables set

T; (u) :QieQ{Tij w},i=12,..k,u=12,..,2

Definition 4. A multi-state series- “m out of k,”
systemiscaled regular if I;=1,=.. —I =1, I,TN.

Definition 5. A multi-state series- “m out of k,”
system is called homogeneous if its component
lifetimes T; (u) have an identical distribution function,

i.e
F(t, u)=P(Tij (u) £1), t1 <O,¥), u=12...,2,
i=12,..k,, ]=12,..

i.e. if its components E; have the same réliability
function, i.e.

R(t,u)=1- F(tu), tT1 <0,¥),u=12,...,z
From the above definitions it follows that the reliability

function of the homogeneous and regular series- “m
out of k,” systemisgiven by [3]

RO (3 =[1 R (1), R (t,2),..., Ry (t,2)],(6)

where

R (t,u)
@)
=1- & {0 IR w2~ R™ (¢,
for tilzz 0,¥),u=12...z2

or by
—(m) _ra (M) —(m) —(m)
Rkn|n (t1>) _[1' RI<n|n (t11)1 RI<n|n (t12)1 ey RI<n|n (t1 Z)]1 (8)

where

Riai (LU :§ (o)i2- Re@uITRM G (9)
for t1 <0,¥), u=12,..z M=k, - m
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where K, isthe number of series subsystems in the“m
out of k,” systemand |, isthe number of components
of the series subsystems.

Under these definitions, if R{") (tu) = 1 for t £ 0,
u=12..,z,o0 R (tuy=1fort£0, u=12,..,2
then

¥
M(u) = oR{ (t,u)dt, u=12..., 2 (10)
0
or
¥ __
M(u) = oR(D (t,u)dt, u=1.2...., 2 (12)
0

is the mean lifelime of the multi-state non-
homogeneous regular series “mout of k,” system in
the rdiability state subset {u,u+1,..,2z},and the
varianceis given by

D[T (u)] = 2§R<k’:,>n (t,u)dt - E*[T(u)], (12)
or by
D[T(u)] = zf‘jﬁ W (t,uydt - EZ[T(u)]. (13)

The mean lifetime M (u), u=12,...,z of this system
in the particular states can be determined from the
following relationships

M(u)=M(u)- MUu+1), u=12,..,z- 1

M(2) = M (2). (14)
Definition 6. A probability

r(t) =P(s(t) <r |S(0) =2) =P(T(r) £1), tT <0,¥),
that the system is in the subset of states worse than the
critical stater, r T{ 1,...,z2 while it was in the reliability
state z at the moment t = O is called a risk function of
the multi-state homogeneous regular series “m out of
k,” system.

Considering Definition 6 and Definition 2, we have

r) =1 R (tr), tT <0,¥), (15)

and if t is the moment when the system risk function
exceeds a permitted level d, then

t =r *(d), (16)

wherer'l(t), if it exists, is the inverse function of the
risk function r(t).

4. Multi-state series- “mout of k,” sysemin its
oper ation process

We assume that the changes of the process Z(t) states
have an influence on the system components E;

reiability and the system reliability structure as well.
Thus, we denote the conditiona reliability function of
the system component E; while the system is at the

operational state z,, b=12,...,v, by
[REP (A= (1, R €], ... R (1,2]],
wherefor t1 <0,¥),u=12,..,z, b=12..yv,
[ROD(t,u)]® = P(T® (u) >42(t) = z,)

and the conditional reliability function of the system
while the system is at the operational state z,
b=12,...,v, by

[R™ (3P =1, [RD, D], .. [R, (t.2)]

for t1 <0,%¥),u=12,..,2 b=12..n,
where according to (7), we have

[R™ (t,u]® =PT® () >z(t) = 2,)

(i Jrre.un @1

0

o3

1-

oA{1- [[R(t,u)]® 1" ]* Tfor tT < 0,¥),
u=212,..,z, b=12,..n,

or by
[RM )®=[1, [RM ]®, ... [RT) (t,2)]®

for t1<0,%),u=12..2 b=12..n,
where according to (9), we have

(RO wI® =PI ) >4z = 2,)
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D[k b) 11 B
=4 ( n)[1 [[R(t,u)]®7'n M (u) @a p,M,(u) for u=12,...,z (19)
i=0 b=1
[[RE W11 for t1 < 0,¥), where
u=212,...,z b=12..n. y
N My(u) = R 1® (t,u)dt, (20)
The rdiability function [R®V(t,u)]® is the 0
conditional probability that the component E; lifetime or
T” (u) in the reliability state subset {u,u+1,...,2 is
not less than t, while the process Z(t) is at the operation M, (u) = f‘iﬁk(ﬁ) 1®) (t, u)dt, (21)
state  z,. Similarly, the rdiability function o ™"
[RID u]® o [RM (¢,w]® is the conditiona  4q

probability that the system lifetime T® (u) in the
reliability state subset {u,u+1,...,z} isnot lessthant,

while the process Z(t) is at the operation state z,. In

the case when the system operation time q is large
enough, the unconditional rdiability function of the
system

R, (09 = [1, R (LD, .., R (t.2)],
where

R,ﬁ'n‘j),n(t,u) =P(T(u)>t) for u=12,...,z,
or

RM (3 =1 RM (tD),,... R (t.2)],
where

RIM (t,u) =P(T(u)>t) for u=12,..z,

and T(u) isthe unconditional lifetime of the system in

thereliability state subset {u,u+1,..., z}, isgiven by
R, (L) @2 py[R, (Lu)]®, (17
or
R™ (t,u) @a Pel R, W] (18)

for t3 0 and the mean values and variances of the
system lifetimes in the reliability state subset
{u,u+l,...,z} are

[T W)= 28R, (LU Vd- ETO W), (22)
or
OIT® W] =2R(™ (L WIVdt- ETOM]  (23)

for b=12,..,n, t3 0, and p, aregiven by (4).
The mean values of the system lifetimes in the
particular reliability states u, by (14), are

M(u)=M@u)- Mu+1),u=12..,2z-1
M (2) =M (2). (24)

5. Large multi-state series- “m out of k"
system in its operation process
Definition 7. A rdiability function

A () =[1LA (tD,.. A 2] tT (-¥,¥%),

where

A (t,u) =élpbA ® (¢, u),

is called a limit rdiability function of a multi-state
homogeneous regular series- “m out of k,” system in
its operation process with reliability function

R (t ) =1 RMY (tD) ... RN (2],

or
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RM(t, >) =[1, RID(tY),.... RIV(t,2)],

where R (t,u), RIY (t,u), u=12..
by (17) and (18) if there exist normalising constants

., Z, are given

a®” ) >0, b W) (-¥,¥), b=12...v,
u=12,...,z

such that for t1 C. A B ,u=12,...,z, b=12,...,v,

lim[R™ (a” ()t +b” (W), w]® =A © (t,u),

or
I|m[R(m) @ (u)t +b® (u),w)]® = A ®(t,u).

Hence, the following approximate formulae are valid

R (1) @ pA O (2 (b)” ), (25)
u=12,...,z
or
- p®
R (t,u) @a pPA ® (L2 On 20 u), (26)

u=12,...,z
Thefollowing auxiliary theoremis proved in [7].

Lemma 1. If

(i) limk, =¥ , m= constant
n® ¥

(% ® 0and k, ® ¥),
(i) A ™ (t,u)
=1- & p, & exp[-V® (t,U)]—[V(b) fnt’U)]l
b=1 i=0

is a non-degenerate reliability function, .

(i) Remy & 3 =13 R (D), R (¢, 2)],
tl (-¥,¥),
where

RIT, () @4 pylRy (0]

is the reliability function of a homogeneous regular
multi-state series- “mout of K " system, where

R, tu)]®

=1- E( RO @l - [RY @ uy

i=0

th (-¥¥), u=12,..,z,

is its reiability function at the operationa state z,
then

A ™M, y=[1, A ™t)),.A™t,2)],

th (-¥,¥%),

is the multi-state limit rdiability function of that
systemif and only if [7]

lim k,[R® (2 (Ut +b{ (u),u)]"

=V ®(t,u), tT C

V(b)(u)’
u=212,...,.z,b=12,....v

(27)

Proposition 1. If components of the multi-state
homogeneous, regular series- “mout of k,” system at
the operational state z,
(i) have exponential reiability functions,

R® (t,u) =1for t <0,

R® (t,u) = exp[- 1 ® (u)t] for t3 0, (28)
u=12,....z, b=12,...,v,

(i) m=congtant , k, =n,1, >0,

L () _ 1 (b) — 1

(“I) an (U) I (b) (U)In, n I (b) (U)I Ogn1
u=12,...,z,b=12,..,v,

then
AMEy=[L A™tD....A" {2, (29)

tI ( ¥ ¥),

Where

AP @ =1- 4 p, & el ep(-1) *P 2Pl (ao)

for tT (-¥,¥), u=12,..,zis the multi-state limit
reliability function of that system , i.e. for n large
enough we have
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t- b (u)

R(m)
b
ay’ (u)

KnIn

(tu) @- & p, & expl- exp(- )
b=1 i=0

_t- b (u)
IR
i!
@- 4 p, & el ep(-1 Ul - logn)]
_exp[-il @ ()l t-ilogn] 31)

i!
for tT (-¥,%),u=12,...,2

Proof. For n large enough we have

a® Wt +b® (1) =195 ¢ for 1] (-¥,¥)
1 ® !,
u=12,...,.z,b=12,...,v.

Therefore, according to (28) for n large enough, we
obtain

R® (@ (u)t + b (u),u)

=exp[- | © (u)(@” (u)t + b (u))]

=@<p['t'lﬂ] for tT (-¥,¥), u=12,....2,

b=12,..,v.
Hence, considering (27), it appears that

[V (&u]® = lim k,[R® @ Wt + b ()"

L -t-logn, _ )
=lim n@q@[ln—I ] =exp[-t]

n

for tT (-¥,¥),u=12..,2b=12..,v,
which means that according to Lemma 1 the limit
reiability function of that system is given by (29)-(30).

The next auxiliary theorem is proved in [7].

Lemma 2. If

Q) km®h, 0<h <1 for n® ¥,

n

m-h :o(i),

K, /K,
R V(b) (t,u) 2

R 1 vy X

iA®tu=1-—28 o exp[- =]dx,

( ) ( ) \/Eb:lpb v p[ 2]

is a non-degenerate reliability function,

v (t,u) isanon-increasing function

(i) R (¥ =[1 R (tD,...RY (¢, 2)],
tT (-¥,¥%), where

ik (LU) @4 i[RI, T (-¥,%),

where

kn.In

is the reliability function of a homogeneous regular
multi-state series- “mout of K " system, where

[R & w]®

=1- AR @l - [RY @ uy oy

i=0

tT (-¥.¥), u=12...,2z,b=12..\v,

isits reliability function at the operational state z,,
then

A®t,y=[, A ™y, A "¢z,
tT (-¥,¥%)

is the multi-state limit reliability function of that
systemif and only if [7]

lim YK +1R" (& Wt +b (u),u)]® - h]

—,(b) N —
=v™(t,u) fortl Cv(b)(u)’ u=12,...,z2, (32
b=12,..,v.

Proposition 2. If components of the multi-state
homogeneous, regular series- “mout of k,” system at
the operational state z,
(i) have exponential reliability functions,
R® (t,u) =1for t <0,
R® (t,u) = exp[- | ® (u)t] for t3 O, (33)
u=212,..v,b=12...v,

(i) “®h,0<h<lforn® ¥,k =n, | >0,
K

J1-h

G () (e — O () =" logh
(a0 =g e B = e
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u=12,..,z2,b=12,...v,

then
AP y=L AN Y,..A" ), (34)
th (-¥,¥%),
where
2
~(h 1 v t X2
AM(tuy=1- —=—4ap, oe 2dx (35)

T2 o

for tT (-¥,¥),u=12,...,z

is the multi-state limit reliability function of that
system, i.e. for n large enough we have

t- b (u)
- v P X
Rkn In (t U) @- \/—p:l:lp _¥b e 2dx

1
vZp

Jhn( ® wyipt+logn )

v Jih X

X4 py, o) e 2dx (36)
b=1 _¥

for tT (-¥,%¥), u=12...,z

Proof. Since, for sufficiently large n, we have

J1-h
al” (u)t +b® (u) = (b)l ( t- logh) >0
(ul,  4hn

for tT (-¥,¥), u=12,...,z2,b=12,..v,

then according to (33) for sufficiently large n, we
obtain

R® @ (u)t + b (u),u) ,

=exp[- 1 ® (u)(ay?” ()t + by ()]

1 41-h -
T t- logh)] for t1 (-¥,¥),

u=12,...,.z,b=12,...,v.

Hence, considering (32), it appears that

v (t,u)

_lim VK, + AR @ (u)t + bl (u),u)]" - h]

h
Jn+i(expl-1, (lvr" "’Igh)]-h)
=lim n
ne ¥ Jhit-h)

Jn+1(exp[- vi-h t+logh]- h)
=lim \/ﬁ

no¥ h{-h

Jn+ih el Y- 1)
=lim \/ﬁ

no¥ h{-h

Jn+1h(- Ji-h t+o(\/1- h t)- 1))

n® ¥ h 1 h
h(l- h) J1-h
= lim o L Jhn V

ne¥ Jh(t-h)
=-tfortl (-¥,¥),b=12...v,

which means that according Lemma 2 the limit
reiability function of that system is given by (34)-(35).

The next auxiliary theorem is provedin [7].

Lemma 3. If
i)k ® ¥, km® 1, (k, - m® m = congtant

n

for n® ¥,
_ —(b i
(i)A ™ (t,u)= & p,a exp[-V" (t,u)][\/i(+”)]
b=1 =0 H

is a non-degenerate reliability function,
(i RM (¢ ¥=[L RM (tD,..RM (t,2)],
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tT (-¥,¥), where
Rl (t,U) @4 py[Rio, LW]®, th (-¥,¥),
b=1

is the reliability function of a homogeneous regular
multi-state series- “mout of k,” system, where

—(m)
[ Rkan (t)] ®

="8" (% )iL- [R® )1 [R® @) 0,

tl (-_¥,¥), u=12,..,z,b=12,...,v,

isitsreliability function at the operational state z,,
then

A™ty=[1, A™¢D,..A ™t 2],

th (-¥.¥),

is the multi-state limit reliability function of that
systemif and only if [7]

limk, I, F®@® u)t +b® (u),u)
n® ¥

—\/ (b) T
=V ¥ (t,u) fortl C\7(b)(u) (37
u=212,...,z, b=12,...,v

Proposition 3. If components of the multi-state
homogeneous, regular series- “mout of k,” system at
the operational state z,
(i) have exponential rdiability functions,

R® (t,u) =1for t <0,

R® (t,u) = exp[- | ® (u)t] for t3 O, (38)
u=12,..,z, b=12,...,v,
(i) k,® ¥, Li@rgkn- m=m = constant ,
1
(iii) al (u) :m1 b{”(u) =0,
u=212..,z,b=12,..,v,
then
Y=L A (ED),..A M, 2)], (39)
T (-¥,¥),
where
{ 1, t<O,
A (M v
AT p deprat, o @

is the multi-state limit reliability function of that
system, i.e. for n large enough we have

R, (tU)
il t <0,
i
v m t- p® (u)
| 9 _ n
@
it b0
T [ (b) ]
. a
It t30,
| I
1 t<0,

d b=1 (41)
i
I
|

Proof. Since
t
a®Wt+b®P(u)=————— <0 for t<O,
DY ) =
u=12,..,z2,b=12,...v,
and
t
a® Wt +b®Uu)=—————30fort3 0,
n ( ) n ( ) I(b)(u)lnkn
u=12,..,z2,b=12,...v,

therefore, according to (38), we obtain

F‘b)(ar‘]b) (ut +br‘1b)(u),u) =0 for t <O,
u=12,..,z2,b=12,...v,

and

F® (@ ()t +bf (u),u)

=1- exp[- L] fort3 0, u=12,...,2,
Kol
b=12,..,v.
Hence, considering (37), it appears that

v O (t, u)

-194-



J.Soszyniska Systems reliability analysis in variable operation conditions - RTA # 3-4, 2007, December - Special Issue

= Ii®n; annF‘b) (aT‘]b) (u)t +br‘1b) (u),u)=0 for t <0,
n
u=12,..,z2,b=12,...v,

and

VO )= limk,l,FO @ ()t +b® (u),u)

. t
_r|1l®rg knln(l' @(p[' W])

n'n

. t
=limk,l, (1- 1+W' o(W))

=tfort30, u=12..,2 b=12..,yv,

which means that according Lemma 3 the limit
reiability function of that system is given by (39)-(40).

The next auxiliary theorem is provedin [7].

Lemma 4. If
() limk, =k k>0, 0<m£k, liml_ =¥,
n® ¥ n® ¥
(i) A (t,u) = & p,A ®(t,u) isanon-degenerate
b=1
reliability function,
(i) Ry, (& 9 =[1 (Y (tD)....

tT (-¥,¥), where

R("” (1, 2)],

v
Rt (0 @2 po[REY (0]
is the reliability function of a homogeneous regular
multi-state series- “mout of k,” system, where

(R, tu)]®

=1- & (" [R” (w1~ R )1

th (¥¥), u=12,..,2,b=12..\,

isitsreliability function at the operational state z,,

then
A))=[1 A@tD,...A{2]tT (-¥.¥%),

is the multi-state limit reliability function of that
systemif and only if [7]

lim[R® (& (u)t + by (), w]" =A ((,b) tu) (42

fortIC(b) W’ =12,..,z,b=12,.

where A P(t,u), u=12,..,
reiability function and

2, is a non-degenerate

A (t,u)

=1- évpb ag AP u- AP w43
for tT(¥¥),u=12..,z

Proposition 4. If components of the multi-state
homogeneous, regular series- “mout of k,” system at
the operational state z,
(i) have exponential rdiability functions,

R® (t,u) =1for t <0,

R® (t,u) =exp[- |  (u)t] for t3 O, (44)
u=12,...,z, b=12,...v,
(i) k,® k k>0,1,® ¥, m=const,
1
(i) al” (u) = W b® (u) =0,
u=212,..,z2,b=12,...v,
then
APt y=[L A" ED....A{" (2], (45)
t1(-¥.¥%),
where
A" (tu)
il t<O0,
T
v m]ak )
I S 2 _$17i
ot &P Ak deol-ul (46)
T
T
{1 expl- 1", t3 0,

is the multi-state limit reliability function of that
system, i.e. for n large enough we have

A§™(t,u)
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1 t<Q,

) t- brﬂb)(u) i
al (u) l

il t<0,

*Sexpl-t1 © )1, 7'

I b= Cizogl g

a (47)

b1 et @@L, 2o
:
I
)
Proof . Since
t
a® )t +b®u)=———— <0 for t <O,
WD) =
u=12,...,z2,b=12,...v,
and
t
30forts3 O,

al (Ut +bP (u) =———
P )=

u=212,...,z,b=12,....v,

n

therefore, according to (44), we obtain

[R® @® (u)t +b® (u),u)]' =1 for t <0,
u=12,...,z2,b=12...v,

and

[RY (& W)t +b (u), )] = expl- -] for £ 0,
u=212,...,z, b=12,...,v.
Hence, according (42)-(43), it appears that

AP (1) = lim[R® (@ (Wt +b (u),u" =1

fort<0,u=12,...,z, b=12,...,v,

and

Ag ()

= im[R® (& )t + b (W), u]"

= lim{expl- "

=exp[-t] fort3 0,u=212..,2,b=12,...,v

which, by Lemma 4, completes the proof.

6. Conclusion

The purpose of this paper is to give the method of
reliability analysis of selected multi-state systems in
variable operation conditions. As an example a multi-
state series“m out of k” systems are analyzed. Their
exact and limit reliability functions, in constant and in
varying operation conditions, are determined. The
paper proposes an approach to the solution of
practically very important problem of linking the
systems' reliability and their operation processes. To
involve the interactions between the systems' operation
processes and their varying in time rdiability
structures a semi-markov model of the systems
operation processes and the multi-state system
reiability functions are applied. This approach gives
practically important in everyday usage tool for
reliability evaluation of the large systems with
changing their rdiability structures and components
reiability characteristic during their operation
processes. The results can be applied to the reliability
evaluation of real technical systems.
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Abstract

This article deals with modelling and analysis of the reliability of complex systems that use one-shot items during
their operation. It includes an analysis of the impact of the reiability of used one-shot items on the resulting
reliability of the system as a whole. Practical application of theoretical knowledge is demonstrated on an example
of a model of reliability of an aircraft gun that was used for optimization of the gun’s design during its
development and design. The analysed gun uses two types of one-shot items — rounds intended for conducting of
fire and specia pyrotechnic cartridges designed for re-charging a gun after a possible failure of the round.

1. Introduction

This contribution is supposed to contribute to a
solution of dependability qualities of the complex (in
this case) weapon system as an observed object. |
would like to show one of the ways how to specify a
value of single dependability measures of a set. The
aim of our paper is to verify the suggested solution in
relation to some functional elements which influence
fulfillment of a required function in a very significant
manner. [1], [3]

A weapon set is a complex mechatronics system which
is designed and constructed for military purposes. We
are talking about a barrd shooting gun — a fast
shooting two-barrd cannon. It is going to be
implemented in military air forcein particular.
Generally speaking the set consists of mechanical
parts, dectricc power and manipulation parts,
electronic parts and ammunition. For the purpose of
use in our paper we are going to deal with isolated
functional blocks and ammunition only. Inthis case we
view the ammunition as recommended standardised
rounds and pyrotechnic cartridges.

Single parts of the set can be described with qualitative
and most importantly quantitative indices which
present their quality. In my paper | am dedling
especially with quality in terms of dependability
characteristics. We are working first and foremost with
probability values which characterize single indices,
and which describe functional range and required
functiona abilities of the set. We focus on the part

handling rounds and pyrotechnic cartridges which are
crucial for this case. In order to continue our work it is
necessary to define al terms and specify every
function.

2. Essential terms and definitions

We are aways talking about an object in terms of
reliability analyses. The definition for object is the
same as the used in I[EC 60500 (191/50). Consequently
we need to describe the basic object’s measures [2].
Object’ s function:

The main function: The main function of the object is
putting into effect a fire from a gun using standard
ammunition.

The step function: Manipulation with ammunition, its
charging, initiation, detection and indication of
ammunition failure during initiation, initiation of
backup system used for recharging of a failed
cartridge.

It is expected that the object will be able to work under
different operating conditions especially in different
temperature spectra, under the influence of varied
static, kinetic and dynamic effects, in various zones of
atmospheric and weather conditions.

In this case we will not take into account any of the
operating conditions mentioned above. However, their
influence might be important while considering
successful mission completion.

One of the main terms we are going to develop is:
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Mission: It isan ability to complete aregarded mission
by an object in specified time, under given conditions
and in arequired quality.

In our contribution it is a case of cannon ability to put
into effect afirein arequired amount — in a number of
shot ammunition at atarget in required time, and under
given operating and environmental conditions.

As it follows from the definition of a mission it is a
case of a set of various conditions which have to be
fulfilled al at once in a way to satisfy us completely.
Our object is supposed to be able to shoot a required
amount of ammunition which has to hit the target with
required accuracy (probability). We will not take into
consideration circumstances relating to evaluation of
shooting results, weapon aiming, internal and external
ballistics, weather conditions and others. We will focus
only on an ability of an object to shoot. [4]

As we have stated above we will deal with isolated
function blocks only. We are presuming that these
blocks act according to required and determined
boundary conditions. In order to understand functiona
links fully we introduce our way of dividing an object.
We are talking about the following block:

- manipulation with ammunition, its charging,
initiation, failure detection and indication
during initiation, initiation of a backup system
in order to recharge a failed cartridge, all
mechanical parts, all electric and electronic
parts, interface e ements with a carrying device
- Block A;

- ammunition — Block B;

- pyrotechnic cartridges — Block C.

3. Description of a process

The process as awhol e can be described this way:

From a mathematical and technical point of view it isa
fulfilling of requirements” quee which gradually comes
into the service place of a chamber. The requirements”
quee is a countable rounds” chain where the rounds
wait for their turn and are transported from the line
where they wait in to a service place (fulfilment of a
requirement) of a chamber and there they are initiated.
After the initiation the requirement is fulfilled. An
empty shell (one of the essential parts of a round)
leaves a chamber taking a different way than a
complete round. When the requirement is fulfilled,
another system which isan integral part of a set detects
process of fulfilling the requirement. The process is
detected and indicated on the basis of interconnected
reaction processes. In this case fulfilling the
requirement is understood as a movement of a barre
breech going backwards. Both fulfilling the
requirement and its detection are functionally
connected with transport of another round waiting in a
lineto go into a chamber.

Le’s presumethat rounds are placed in an ammunition
feed belt of an exactly defined length. A maximum

number of rounds which could be placed in a bdt is
limited by the length then. The length is given either
by construction limitations or by tactical and technical
requirements for a weapon set. Let's presume that
despite different lengths of an ammunition belt, this
will be always filled with rounds from the beginning to
the end. Let’s also assume that the rounds are not non-
standard and are designed for the set.

The process of fulfilling the requirement is monitored
al the time by another system which is able to
differentiateif it is fulfilled or not. The fulfilment itsef
means that a round is transported into a chamber, it is
initiated, shot, and finally an empty shell leaves a
chamber according to a required principle. If the
process is completed in a required sequence, the
system detects it asaright one.

Because of unreliability of rounds the whole system is
designed in the way to be able to detect Situations in
which the requirement is not fulfilled in a demanded
sequence and that iswhy it is detected as faulty.
Although a round is transported into a chamber and is
initiated, it is not fired. A function which is essentid
for a round to leave a chamber is not provided ether,
and therefore another round waiting in line cannot be
transported into a chamber. That is the reason why
fulfilling of the requirement is not detected.

The system is designed and constructed in such a way
that it is able to detect an event like this and takes
appropriate countermeasures. A redundant system
which has been partly described above is initiated.
After around isinitiated and the other steps don’t carry
out (non-fire, non-movement of a barre breech
backwards, non-detection of fulfilling the requirement,
non-leaving of a chamber by an empty shell, and non-
transport of another round into a chamber) a system of
pyrotechnic cartridges is initiated. It is functionally
connected with all the system providing mission
completion. A pyrotechnic cartridge is initiated and
owing to this a failed round is supposed to leave a
chamber. A failed functiona link is established and
another round waiting in line is transported into a
chamber.

In order to restore the main function we use a certain
number of backup pyrotechnic cartridges. Our task is
to find out a minimum number which is essential for
completing the mission successfully.

4. Mathematical model

To meet the needs of our requirements we are going to
use a mathematical way which helps us to express
successful completing the mission. We know that the
number of rounds n in an ammunition belt is final. We

aso know that an event-fallure of a round B
(ammunition block — B) can occur with a probability
pn. All the requirements and specifications mentioned
above will be used in further steps.
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Because it is about a stream of rounds of a number n
which wait in line to meet the requirement, and each of
them has a potentia quality p,, a number of failed
rounds has a binomia distribution (Bi) of a an event
occurrence. The distribution is specified by the
parameters n and p,: Bi(n,py). A number of occurrences

X, of an event B follows the distribution in
Bernoulli’'s row n of independent experiments, and

probability of event occurrence P(B) = p,. A number
p. isthesamein every experiment. [5]; [6]

Because there is an occurrence of a number of events
in an observed file we are talking about a counting
distribution of an observed random variable. A random
variable is in this case a number of failed rounds. A
probability function of a binomial distribution can be
put that way:

P(X, =x)=§%pnx(l- 0. )" X1 {0120}, ()

Qualities of binomia distribution like a mean value
E(X,) and dispersion D(X;,) are obtained by calculating
the formula:

E(X)) = n. pn, 2
D(Xa) =n.pn. (1- pn). (©)

A number of failed rounds follows a binomial
distribution with parameters n — a number of rounds
and p, — failure occurrence probability of a round.

In order to specify a mean number of possible failures
in an ammunition bdt of a given length (there is a
certain amount of rounds) we quantify the formula (2)
and replace n by a real number of rounds in an
ammunition belt.

On the basis of construction, technical and technical
requirements we can have ammunition belts of
different length at a given moment, and consequently
we have a different number of rounds. Only a
maximum number of rounds in an ammunition bdt is
considered in another calculation. The ammunition belt
is supposed to be of a maximum length which is able
to fit aloading device

In case a round fails initiation of a backup system for
function restoration occurs according to a mechanism
described above. It is a case of successive initiation of
pyrotechnic cartridges (in a system of pyrotechnic
cartridges) which are supposed to guarantee restoring
of a required broken chain of function. A number of
pyrotechnic cartridges in a backup system is m.
Pyrotechnic cartridges have also a probability pn, of a
failure occurrence which unable ther initiation.
Pyrotechnic cartridges too are placed in line waiting
for meeting the requirement which results from their
function. In case of a failure of the first pyrotechnic

cartridge the next one is initiated up to the moment
when either a function is restored or all pyrotechnic
cartridges are used up.

On the basis of the facts mentioned above it is obvious
that the process of fulfilling the requirements follows
geometrical distribution (Ge). It means that the process
of fulfilling the requirements repeats so often until it
meets them in terms of reversion of all the process to
an operational state. It is a case of an observed discreet
random variable. Pyrotechnic cartridges also have
failure rate pn, (failure probability) and there is a
limited number of them. It means that a failure can
occur up to mtimes. A geometrical distribution Ge(pr,)
generally follows this outline.

We are going to assess the succession of independent
attempts, and probability of an observed event
occurrence equals the same number pr, in each attempt.
The quantity X, is a serial number of the first success
which means that a required event occurs. The event
here means a function of a block C, and a probability

pm Means an event occurrence E. Characteristics of
the process are asfollow. A praobability function:

PXo=X) = P (1-pm); X {1,2,3,...,m}. 4

It is a special case of a geometrical distribution when a
probability of an event occurrence (a pyrotechnic
cartridge failure) does not depend on a number of
previous unsuccessful attempts of a value O.
Characteristics of a geometrical distributions, for
example mean value E(X,) (a mean number of
pyrotechnic cartridges necessary for removing one
failed round) and dispersion D(X,) are obtained by a
calculation of aformula:

¥
E(X,) =Q xPr(X,, = x) = (5)
x=0 = Pm
While completing the mission during either training or
areal deployment a few scenarios can occur, and the
course of them depends on single functional blocks. To
complete the mission M successfully single blocks are
expected to be failure free as stated above. The
function of the blocks mentioned above are designated

as A, B, C, the opposite is K § E. The relation can
be expressed by using events this way:
M = AC(BE C). (6)

Using probability expression we talk about probability
of mission completion M. We can put it that way:

P(M) = P(A) . [P(B) + P(C) - P(B CO)J; (7)
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5. Description of scenarios

Description of the scenarios which can occur during
completing or defaulting the mission relate only to an
ammunition block and to a redundant mechatronics
system with pyrotechnic cartridges.

The mission is completed. In the first case there can be
a dtuation when all the ammunition of a certain
amount which is placed in an ammunition belt is used
up and a round failure occurs or it is used up and a
round failure does not occur. In this case a backup
system of pyrotechnic cartridges is able to reverse a
system into an operational state. Using up can be
single, successive in small bursts with breaks between
different bursts, or it might be mass using one burst.
Shooting is failure free or there is a round failure
occurrence n. In case a round failure occurs, a system
which restores a function of pyrotechnic cartridges is
initiated. There are two scenarios too — a system
restoring a pyrotechnic cartridges function is failure
free, or a pyrotechnic cartridge fails. If a function of
pyrotechnic cartridges is applied, it can remove a
failure m-times. So a number of restorations of the
function is the same as the number of available
pyrotechnic cartridges. In order to complete the
mission successfully we need a highe amount of
pyrotechnic cartridges m, or in the worst case the
number of pyrotechnic cartridges should be equal to a
number of failures. Another alternative is the situation
that a round fails and in this case a pyrotechnic
cartridge fails too. A different pyrotechnic cartridge is
initiated and it restores the function. This must satisfy
the requirements that an amount of all round failures n
is lower or a least equal to a number of operational
(undamaged) pyrotechnic cartridges m. The mission is
completed in al the cases mentioned above and when
following a required level of readiness of a block A.
The mission is not completed. In the second case the
shooting is carried out one at a time, in small bursts or
in one burst, and during the shooting there will be n
round failures. At the time the failure occurs a backup
system for restoring the function will be initiated.
Unlike the previous situation there will be m
pyrotechnic cartridges™ failures and a total number of
pyrotechnic cartridges” failures equals at least a
number of round failures, and is equal to a number of
implemented pyrotechnic cartridges M at the most. It
might happen in this case that restoring of the function
does not take place and the mission is not completed at
the same time because there are not enough
implemented pyrotechnic cartridges.

The relation of transition among the states can be
expressed by the theory of Markov chains.

2. An dternative
of a function
when the mission
isnot completed.

1. An alternative of a function when the mission
is completed.

Figure 1. Description of transitions among the states

Characteristics of the states:

O state: An initial state of an object until a round
failure occurs with a probability function of a
round P(B). It is also a state an object can get with a
pyrotechnic cartridge probability P(C) in case a round
failure occurs

P(B)=1- P(B),

wqé):E%%§ﬂ.

my..mystate: A state an object can get while
completing the mission. Either a round failure occurs
in probability P(E) =1- P(B), or there s a pyrotechnic
cartridge failurein probability P(C)=1- P(C).

1 state: A state an object can get while completing the
mission. It is so called an absorption state. Transition
to the state iss described as probability P(C)=1- P(C)
of a failure of last pyrotechnic cartridge as long as an

object was in a state , k" before this state, or it can be
described as probability of a round failure occurrence

P(B)=1- P(B) as long as an object was in a state 0
before this state and all pyrotechnic cartridges are
eliminated from the possibility to be used.

Transitions among different states as well as absolute
probahility might be put in the following formul ae:

P(0)=P(B)+ P(C,o)+P(Ci o)+ +P(Co) (8

P(m)=1- P(B), €)
P(m,)=(1- P(B))+(1- P(C)), (10)
P(1)=1. (11)
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We suggest the subsequent steps for al the scenarios
mentioned above. Following the mathematical formula
(1) it is possible to find out probability of a number of
round failures” occurrences in an ammunition belt of a
length n. Following the equation (2) we can specify an
expected mean value of a mean number of round
failures in an ammunition belt of a given length.
The mean value result is recommended to be used for a
maximum length of an ammunition belt (a maximum
number of rounds) which could be implemented into a
weapon set concerning construction as well as tactical
and technical views. The result informs us of a
minimum number of pyrotechnic cartridges which are
to be applied for a successful completing the mission.
In this case there is a threat of a pyrotechnic cartridge
failure which could cause a system failure (as far as a
number of round failures is higher than a number of
available pyrotechnic cartridges). In this case we
would not complete the mission.
In order to assess dependability of a shooting function
it is necessary to know a number of pyrotechnic
cartridges and, depending on this, probability of
completing the mission. To fulfil the requirements |
suggest three steps:
1) To deemine a number  of
pyrotechnic cartridges,
2) To quantify generally probabilities of
completing the mission;
3) To quantify exactly probabilities of completing
the mission

required

Following the steps mentioned above we suggest this
method.

Ad 1) To determine a required number of pyrotechnic
cartridges

When we calculate a mean number of failed rounds
E(X,) which is determined from a maximum number of
rounds n in a ammunition belt (see above) and
probability of a round failure occurrence p,, see the
formula (2), we get a minimum recommended number
of pyrotechnic cartridges which are supposed to
guarantee completing the mission in case around fails.
The calculation would be successful in case a
pyrotechnic cartridge failure does not occur. However,
even a system of pyrotechnic cartridges concerning a
failure occurrence depends on counting distribution of
a discreet random variable which is specified in our
case by a geometrical distribution. (Because the system
is activated so long until the observed and required
event occurs — in terms of repairing the failure) We
suggest calculating a mean number of pyrotechnic
cartridges” failures following the formula (5). For the
calculation we will need only pyrotechnic cartridge
failure probability pyn. On the basis of this calculation

we get an average number of pyrotechnic cartridges
required to repair afailure of one round.

In order to complete the mission a number of available
(operational) pyrotechnic cartridges should be at least
the same as a number of faled rounds. When we
multiply the mean values we obtain a total number of
pyrotechnic cartridges M which will guarantee
completing the mission (even in the situation when
besides failed rounds there are failed pyrotechnic
cartridges too)

M = E(X,) . E(Xn)= % (12)

Logically a number of pyrotechnic cartridges which
are essential for completing the mission successfully is
continually proportioned to a number of rounds n and
to probability of their failure p, and inversely
proportioned to probability of pyrotechnic cartridge
“success’ 1-pm. The Figure 2 shows a typical course of
dependability M (p,; pm), it means a invariant M which
depends on variables p, a pm. This way might be the
first of the alternatives how to solve the problem. It
suggests a total number of pyrotechnic cartridges
which are essential for completing the mission but it
does not show the way how to quantify probability of
mission completion.

While recording distribution parameters we are going
to use an equivalent m standing for avalue M.

Figure 2. Course of dependability of a number of
pyrotechnic cartridges M on variables p, and pm,

Ad 2) To quantify generally probability of completing
the mission

In this case we follow the solution which has been
stated in the part Ad 1. We take into account that there
is a number of pyrotechnic cartridges required for
completing the mission. So, we determine an a fractile
which provides an upper limit of a number of rounds
which fail in probability a. After we specify b fractile
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which provides an upper limit
cartridges which fail in probability b.
While working with fractiles we follow the general
information. 100% fractile of a random variable X is a
number X,, and a probability p where O<p<1 is denoted

by

of pyrotechnic

PXEX) 3 p (13)
and
!@imr P(X) £ p. (14

The fractile of an observed random variable we are
working with is expressed by

p.=a P(X, =n). (15)

We put it into words this way — occurrence probability
n of a number of events is specified by a sum of
probabilities for the occurrence of all events from O to
n.

In our case we take into account that round failures’
distribution is binomial B=(n;p,) and a fractile
determining an upper limit of a number of rounds
which might fail in probability a will be designated as
Xa. We put it that way

P(X,£x )=a. (16)

We suppose that a general distribution of a pyrotechnic
cartridge follows a binomial distribution too Bi(m;py).
A fractile providing an upper limit of a number of
pyrotechnic cartridges which fail in probability b is
denoted by Yy, . Thus

P(Y, £y,)=b. (17)
The equation can be put in a different way as
Pr(m-Ym3 m- yb):b. (18)

The following interpretation of a fractile y, is useful
for other stegps — at least m- y, of pyrotechnic

cartridges will be available with probability b.

Asit was stated before we are supposed to know a total
number of pyrotechnic cartridges M which are
essential for completing the mission. The requirement
is shown in the following equation:

M- y,)3 % (19)

The eguation shows that a number of available
pyrotechnic cartridges (we obtain it when we subtract
failed pyrotechnic cartridges from a total amount of all
applied pyrotechnic cartridges) will be at least the
same (it would be better to have a higher number) as a
number of failed rounds. If this assumption is fulfilled,
we can expect that the mission will be completed in
probability pmis. Probability of completing the mission
can be put that way

Pms=a.b. (20)

The formula can be described like this — probability of
completing the mission equals a multiplication of
probabilitiesa;b T (0;1) which provide us an upper
limit of failed rounds and an upper limit of failed
pyrotechnic cartridges for required levels of fractiles.

If the level of mission completion probability is known
in advance, eg. it is gpecified by technica
requirements for a set, we can put it in the formula
which is based on an assumption that the mission will
be completed in case a number of available
pyrotechnic cartridges is at least the same as rounds
which are supposed to fail

X, Em-y, . (21)

If it goes this way, the mission will be completed in
probability expressed in the formula (20).

If we have the values a, n, b, pris, We may find a value
m (M) using quantitative methods. At the end of my
contribution thereis an example of this solution.

Ad 3) To quantify exactly probabilities of completing
the mission

In the last step we are going to examine how to
guantify an exact value of mission completion
probability pms. On the basis of the assumption
described above we know that probability of
completing the mission depends on reliability of two
key blocks. It is an ammunition block (B) and a
pyrotechnic cartridges” block (C). Following the last
two aternatives we might specify both a required total
number of pyrotechnic cartridges which is essential to
complete the mission (in case all conditions are met),
and a general value of mission completion probability
in case general conditions are followed. This solution
might satisfy us under certain circumstances but it is
not always like that. Therefore we suggest the last way
how to quantify probability of completing the mission
based on more exact method.

It is necessary to define indices and quantities which
effect directly probability of completing the mission
Prmis- These are a number of rounds n, probability of a
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round failure occurrence p,, a number of pyrotechnic
cartridges m, and probability of a pyrotechnic cartridge
failure occurrence pn. A general function of mission
completion probability and its variables is put that

way:
Pris(N,Pr,M, Pry) - (22)

Further steps follow well known assumptions. The
function of a rounds” failure takes form of a binomial
distribution with parameters n and p, — Bi(n,p,), and
the rounds which may fail can be marked with k where
k1 {0;1;2;.....;n}. Moreover, we introduce functions
of a pyrotechnic cartridges” failure Y, where ki

{0;1;2;....;m}. They show us posshility of a
pyrotechnic cartridge failure while shooting as soon as
it is necessary to remove a failed round. Let us assume
that a sum of functions of a pyrotechnic cartridges’
failure will be lower than a number of available
pyrotechnic cartridges used for removing a failed
round. We put it in the following formula

Y Em» Y, +Y, +....Y, £m. (23)

Qos

=
I}

0

Following the assumption mentioned above we
consider the case that the first available pyrotechnic
cartridge follows geometrical distribution of a function
of its activity Ge(pn) during the failure of the k-th
round Y. The function p, means probability of
pyrotechnic cartridge failure occurrence. It can be
described as

Yi~ Ge(p). (24)

The equation showing probability of completing the
mission is put that way

P(n, p,,m, p,y)

N 25
= 8 P(X =k)P(Y, +Y, +...+Y, £m) (29)
k=0

where in case k=0 (it reflects a situation where there is
no round falure) a function would be specified
additionally provided that P(Y:+....Yx £ m)=1. And in
order to solve a probability value of completing the
mission we would use so called completing the
formula taking advantage of forming functions. From a
mathematical point of view this is much more
demanding but it offers a very exact value expressing
probability of completing the mission pyis while using
avariation of function factors. On its basisit is easy to
prove a dependability of a total number of used
pyrotechnic cartridges on a level of mission
completion probability Pris.

An example of a possible solution:

Given:

P, = 0,000 1 - round failure probability;

n = 200 - maximum rounds’ number during one
process,

pm = 0,01 - pyrotechnic cartridge failure probahility;
Pris = 0,99 - probability of mission success.

Solution according to “Ad 1)": We are looking for a
sufficient number of pyrotechnic cartridges used for
removing a possible failure

na _ 200.0,0001
1-b 1- 0,01

M = @0,02.

The formula shows us that having at least one
pyrotechnic cartridge is enough to complete the
mission successfully. However, we cannot quantify
probability for completing the mission.

Solution according to “Ad 2)": We are looking for a
level of mission completion probability pnis as well as
a required number of pyrotechnic cartridges. We
follow the values described above. The solution is put
in the table.

Table 1. Results of example

o X3 b= Pris m
a
0991 | 1 0,998991 | 2
0,992 | 1 0,997984 | 2
0,993 | 1 0,996979 | 2
0994 | 1 0,995976 | 2
0,99 | 1 0,994975 | 2
0,99 | 1 0,993976 | 2
0,997 | 1 0,992979 | 2
0,998 | 1 0,991984 | 2
0,999 | 1 0,990991 | 2

If we take into account this solution and starting
marginal conditions, two pyrotechnic cartridges will be
enough to complete the mission successfully in 0,99
probability.

6. Conclusion

This contribution is supposed to serve as one of the
alternatives solving the problems connected with
providing a function of an object whose function is
redundant (backed up) because its failure is important
to complete the mission. In order to solve the problem
we chose the methods which are supposed to be the
most suitable for it. Other ways are also likely to be
used in order to reach the aim but it is not the intention
of this contribution.
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Abstract

Malfunctions in equipment and components are often sources of reduced productivity and increased maintenance
costs in various industrial applications. For this reason, machine condition monitoring is being pursued to
recognize incipient faults in the strive towards optimising maintenance and productivity. In this respect, the
following lecture notes provide the basic concepts underlying some methodologies of soft computing, namely
neural networks, fuzzy logic systems and genetic algorithms, which offer great potentia for application to
condition monitoring and fault diagnosis for maintenance optimisation. The exposition is purposaly kept on a
somewhat intuitive basis. the interested reader can refer to the copious literature for further technical details.

1. Introduction

Managing an industrial plant entails evaluating and
trading off the conflicting objectives of economic
sarvice and safe operation. The first scientific
approaches to this management problem date back to
the 1950's and 1960’ s and can be found in the review
paper by McCall [1] and in the book from Barlow and
Proschan [3]. As a result, various so-called periodic
mai ntenance optimisation models were introduced in
which both costs and benefits of periodic maintenance
were quantified and an optimum compromise between
the two was sought. Well-known models originating
from this period are the so-called age and block
replacement models.

From the practical point of view, a that time,
preventive maintenance was strongly advocated as a
means to reduce failures, for safety reasons, and
unplanned downtime, for economic reasons. In many
companies, large time-based preventive maintenance
programs were set up.

Nowadays, modern production plants are expected to
run continuously for extended hours. In this situation,
unexpected downtime due to components and
equipment failures has become more costly than ever
before. The faults can degrade the quality of a product
line or even cause the entire plant to function
incorrectly, possibly resulting in downtime of the
production system with consequent economic |oss.

On the other hand, proper monitoring of the
conditions of the components and systems can be
highly cost effective in minimizing maintenance
downtime by providing advanced warning and lead
time to prepare the appropriate corrective actions
upon an adequate fault diagnosis.

For this reason, condition monitoring has become a
popular approach for predicting component failures
using physical information on the actual state of the
equipment. The possibility of monitoring the system
state, continuously for operating systems or by tests
and inspections for stand-by safety systems, alows a
more dynamic preventive maintenance practice, called
condition-based maintenance (CBM), in which the
decision of maintaining the system is taken on the
basis of the observed condition of the system. This, in
principle, allows saving resources by preventively
maintaining the system only when necessary. In many
practical instances, this approach has proved more
effective than the previous large preventive
mai ntenance programs.

Analytical results for single-component deteriorating
systems have been established under simplifying
assumptions. Markov and semi-Markov models have
been the preferred approach in modelling CBM [4],
[12], [16]- [17], [21], [27] but other approaches, like
counting processes [1], have also been proposed. The
majority of the models appeared in the literature
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assume that the system’s degradation level can only
be known through periodic inspection as typical in
safety systems such as those employed in nuclear
plants [2]-[3], [26]-[27]; Kopnov [16] considers the
case in which the system is continuously monitored
and Lam [17] considers both cases. Another common
assumption is to consider that repairs/replacements
aways restore the sysem to a ‘good-as-new’
condition, which, in practice, may not be very
realistic; Kopnov [16] has alowed also for partial
recovery.

The dynamic CBM policies for single-component
systems whose condition can only be known through
inspection, developed in [10], [12] and [19], are all
based on control-limit rules which define when to
repair/replace a component and when to schedule the
next inspection.

For the continuously inspected systems investigated
by Kopnov [16], the two-level policies from the
Inventory Theory have been adapted to the CBM
problem of degrading systems. Semi-Markov
processes are also considered; a death process is
proposed for a unit subject to corrosion and a Markov
chain is used for modelling fatigue crack growth.

A common feature of the models discussed is that the
state of the system is described as a state of a Markov
process and then the analysis proceeds to finding
analytically the probabilities of the various states.
However, if the system is made of several multi-state
components the anaysis becomes excessively
complicated. Simulation tools are hence needed when
treating more complex systems. Bérenguer et a. [[4]
have extended the work of Grall et a. [10] by
investigating two-component deteriorating systems
using simulation. Their maintenance model takes into
consideration  economic  dependence  between
components and again the state of the system is only
known through periodic inspections. Barata et al. [2]
developed a stochastic degradation model for
repairable multi-component systems and embedded its
simulation within a maintenance optimisation scheme.
The condition of each component is known
continuously. The novelty of the model stems from
the fact that the component’s failures can occur not
only because of excessive degradation which leads to
a critical state of the system, but also because of
random shocks which suddenly fail the system and
whose occurrence probability is degradation-
dependent. While in some cases the system
degradation level depends on the combination of
many mechanisms and can only be known through
inspection [4], [12], [12], [19], [26] there are other
mechanisms such as fatigue and corrosion of
structures in which deterministic laws are known and
the uncertainty is on the value of the parameters that
govern those laws.

Regarding the deterioration models themselves,
Hontelez et al. [12] give several examples, all of
deterministic nature, from the civil engineering field.
Grall et a. [10] use a mode in which the degradation
level increases randomly according to an exponential
distribution. Degradation models describing fatigue
and corrosion of metal structures are described by
Guedes Soares and Garbatov in [23], [24].

The success of condition monitoring and condition-
based maintenance strongly relies on the capability of
modelling the degradation processes and the
corresponding plant dynamic responses under
different configurations and conditions. However, the
complexity and non-linearities of the involved
processes are such that analytical modelling becomes
burdensome, if at all feasible without resorting to
unrealistic smplifying assumptions. For this reason,
empirical modelling is becoming very popular since it
does not require a detailed physical understanding of
the processes nor knowledge of the material
properties, geometry and other characteristics of the
plant and its components and it does not resort to
simplifying assumptions. the underlying dynamic
model is identified by fitting plant operational data,
with a procedure often referred to as ‘learning’ or
‘training’.

Among the various techniques of empirical modelling,
the so-called soft computing methods offer powerful
algorithms for constructing non-linear models from
operational data. As a fact, they are being used with
increasing frequency as an alternative to traditional
models in a variety of engineering applications
including monitoring, prediction, diagnostics, control
and safety.

The main soft computing methodologies are Neural
Networks (NNs), Fuzzy Logic Systems (FLSs) and
Genetic Algorithms (GAs). These methodologies are
inspired by biology and natural behaviour and provide
potentially powerful tools for effectively tackling
difficult multivariate, non-linear problems, which
often cannot be solved with ease by means of
traditional analytical or numerical methods.

In the present lecture notes, we shall try to give a brief
description of the concepts underlying the different
methodologies and point out their main advantages
and limitations. With this objective in mind, we shall
refer our discussion to a multidimensional non-linear
input/output mapping, for NNs and FL Ss, or searching
space, for GAs optimisation.

NNs and FL Ss are capable of establishing the existing
non-linear input/output relationships, which map the
inputs of a system to its outputs. They reconstruct the
complex non-linear relations by combining multiple
simple functions. More precisely, through an analogy
with the functioning of the human brain, NNs form
the shape of the mapping of interest by appropriatey
combining a large number of sigmoid, radial or other
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simple parameterised functions, which are adjusted
(enlarged, shrunk, shifted, etc.) by means of
appropriate parameters and synaptic weights [20],
[21]. The great power of this technique lies in the fact
that the adjustments can be made ‘automaticaly’
through a training phase based on availlable
input/output data: this training phase allows to adjust
the NN-model parameters so as to obtain the best
interpolation of the multivariate, non-linear functional
relation between input and output.

FLSs, on the contrary, partition the input/output
spaces into several typically overlapping areas, whose
shapes are established by assigned membership
functions and whose mapping relationships are
governed by distinct, simple IF-THEN rules [28],
[13]. The great advantage of this method lies in the
inherent capability of handling imprecise data and in
the physical transparency and interpretability offered
by this particular way of representing the underlying
model relations.

Finaly, if the input/output multidimensional space is
seen as a searching space in which the inputs are the
decision variables and the outputs are the performance
indicators of the search problem, the GAs offer a
powerful method for evaluating a best input solution
with respect to the optimisation (minimization or
maximization) of the performance indicators of
interest [9], [11]. The main advantages of the method
are that the search is performed by manipulation of a
population of points, contrary to classical methods
which proceed from a single solution point to another,
and that the search is solely based on the evaluation of
the performance indicators, with no need of other
information, e.g. of derivative nature.

2. Artificial Neural Networks

Artificial neural networks (ANNSs) are information
processing systems composed of simple processing
elements (nodes) linked by weighted connections.
Their functioning is inspired by the biological neural
networks.

A biological neuron consists of dendrites, a cell body
and axons (Figure 1a). The connections between a
dendrite and the axons of other neurons are called
synapses. In correspondence of each synapse, electric
pulses from other neurons are transformed into
chemical information which is input to the cell body:
if the sum of the inputs received by the neuron
through all its synapses exceeds a given threshold,
then it fires an dectric pulse which activates the
neuron function. The network of all these neurons
makes up the most essential part of the human brain
and its operation enables the incredible variety of
human activities. In synthesis, the function of a
biological neuron is ‘simply’ to output pulses, with
the characteristics of a quasi-step switching function,
according to a weighed combination of the multiple

signals received from the other connected neurons. A
second important function of the neuron is to
appropriatdy modify the rate of transition through the
different synapses to optimise the whole network.

from other neurons

Figure 1. A biological neuron (a) and an artificial
neuron model (b) [25]

An artificial neuron (node) ams at simulating the
operation of a biological neuron: thus, it accepts

multiple inputs X, X,,..., X,,, it weighs them by means
of adaptive synaptic weights, Wy, W,,...,w,,, and it

s
simulates the switching function characteristic of the
input/output relation to provide the output (Figure
1b). Connecting several artificial neurons together one
obtains an artificial neural network which, by
construction, congtitutes an information processing
system composed of simple processing elements
(nodes) linked by weighted synaptic connections [21].
The adaptation of the synaptic weights is realized
through a training phase during which properly
devised learning algorithms are used to change the
synaptic weights of the network in an effort to
optimise its mapping performance [20].

Here, we limit ourselvesto briefly describing the most
commonly used multi-layered feed-forward neural
network which, in its simplest form, consists of three
layers of processing elements: the input, the hidden
and the output layers, with n, n, and n, nodes,
respectively (Figure 2). The signa is processed
forward from the input to the output layer. Each node
collects the output values, weighted by the connection
weights, from all the nodes of the preceding layer,
processes this information through a sigmoid function

f(0=(1+e)"

and then delivers the result towards all the nodes of
the successive layer. Typically, both input and hidden
layers are provided with an additional bias node,
which serves as a threshold in the argument of the
activation function and whose output always equals
unity.

As for the determination of the connection weights,
i.e. the model parameters, the learning technique most
commonly employed is the so-called error back-
propagation agorithm, which follows from the
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general gradient-descent method [20]. In short,
starting from random values of the synaptic weights
the back-propagation algorithm performs the steepest
descent in the weight space on a surface whose height
at any point is equal to the error function; in practice,
it consists of an iterative gradient algorithm designed
to minimize the mean sgquare error between the actual

network output and the true value. A number n, of

sets (patterns) of input and associated outputs are
repeatedly presented to the network and the values of
the connection weights are modified so as to minimize
the average squared output deviation error function, or
Energy function, defined as:

1 P 2
E= aa -
2n,n, n=u :1(ﬁql Yo)

D

where y, and ¥, arethe true output value of the n-
th pattern and the corresponding network-computed
output value at the I-th node, | =1,2,...,n,. Through

this training procedure, the network is ableto build an
internal representation of the input/output mapping of
the problem under investigation. The success of the
training strongly depends on the normalization of the
data and on the choice of the training parameters.
Typicaly, each signal is transformed by an affined
mapping in an interval such as (0.2, 0.8) or similar
and the connection weights are initialised randomly
within aninterval such as (-0.3, 0.3) or similar.

After the training is completed, the final connection
weights are kept fixed. New input patterns are
presented to the network, which is capable of recalling
the information stored in the connection weights
during training to produce the corresponding output,
coherent with the internal representation of the
input/output mapping. Notice that the non-linearity of
the sigmoid function of the processing elements
allows the neural network to learn arbitrary non-linear
mappings [6], [15]. Moreover, each node acts
independently of all the others and its functioning
relies only on the local information provided through
the adjoining connections. In other words, the
functioning of one node does not depend on the states
of those other nodes to which it is not connected. This
allows for efficient distributed representation and
paralld processing, and for an intrinsic fault-tolerance
and generalization capability.

These attributes render the artificial neural networks a
powerful tool for signal processing, non-linear
mappings and near-optimal solution to combinatorial
optimisation problems.

input data

n. input layer

iy hidden layer

n, output layer

output values

Figure 2. Scheme of a three-layered, feedforward
neural network

2.1. Feedforward artificial neural networks for
regression

In order to understand further the way of functioning
of neural networks, let us consider an artificia
feedforward neural network to be trained for
performing the task of non-linear regression, i.e
estimating the underlying non-linear relationship
existing between a multi-dimensional vector of input
variables x and an output target y, assumed mono-
dimensional for smplicity of illustration (n, =1, in
esg. (1)), based on a finite set of input/output data
examples (the above mentioned patterns),

Do {(xn,yn), n:l2,...,np}.

It is assumed that the target y is related to the input
vector x by an unknown deterministic function m,(x)

corrupted by awhite noise e, viz.

y=m(x)+e(x);e(x) N(0,s 2(x)) @)

The objective of the regression task is to estimate
m,(X) by means of a regression function f(x;\§),

dependent on a set of parameters & to be properly
determined on the basis of an available set of
input/output patterns D.

A feedforward neural network provides a non-linear
form of the function f (X;) for the regression task.

As above explained, the parameters & are called
network weights and are usually determined by a
training procedure which aims at minimizing the
guadratic error function

_ 1 2
—Z—all(ﬁn Yn) ©

npn

where for smplicity of notation the output node
subscript | has been dropped since the case considered
concerns a single output.
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The network output corresponding to input X is a

function of the weight values, ¥ = f(Xx;\) . If the
network architecture and training parameters are
suitably chosen and the minimization done to
determine the weights values is successful, the
obtained function f(X;W) gives a good estimate of

the unknown, true regression function m, (x) . Indeed,

it is possible to show that in the ideal case of an
infinite training data set and perfect minimization
algorithm, a neural network trained to minimize the
error function in (3) provides a function f which
performs a mapping from the input x into the expected
value of the target y conditioned on x, i.e. the true
deterministic function E[y|X] =m,(x) [5]. In other
words, the network averages over the noise on the
data and discovers the underlying deterministic
generator. Unfortunately, all thetraining sets arefinite
and there is no guarantee that the sdlected
minimization algorithm can achieve the global
minimum.

The quadratic error function in (3) can be motivated
from the principle of maximum likelihood applied to
the se¢ of avalable traning  patterns

°{(%,¥,), n=12,...,n.} . Thelikelihood of the
observed data set D is defined as

L&)

n n (4
= éjlp(xn,yn\\@ = (ip(yn\xm\@ p(x,|\®)

where it is assumed that each pattern (X.,V,) is
drawn independently from the same distribution
P(x,,¥,) . The unknown weights & of the neural

model f(X; W) are determined by maximization of

the likelihood L (V€|D) of observing the training set

D [5]. Instead of maximizing the likelihood, it is
computationally more convenient to minimize its
negative logarithm,

L (%|D)=- InL(®|D) =

& gp (5)
=-a np(y,[%,®)- a Inp(x, @

n=1

n

The distribution of the input values X, i.e. the second
term in the rhs of (5), is independent of the parameters
W& of the neural model f (X; ) ; thus, the parameters

W can be found by minimization of the first term
only, i.e. thefollowing error function

Np
E =~ &Inp(yy|x,, @ ®)

Different forms of the conditiona distribution
p(y|x,\ﬁ') lead to different error functions. In

particular, the assumption of a Gaussian distribution
for the target as in (2) leads to a quadratic error
function of the kind in (3) [20].

Indeed, from eg. (2) we have

e() = y- m() ~N(0,s2(»)

and using the regression function §= f(x;®) to
estimate m,(x) , we get

1 Se(x) 7

PO = V2ps. (9 K
and the error function in (6) becomes
_ P g Z(Zr;(inizg

E_-illngx/%s - )e Q 8

When the noise variance is independent of the input x,
e sZ(x)=s?

1% 2
E= -
; 78 (V.- %)

e

(9)

np
+n, Ins +7In2p,

and the error function reduces to the form (3) since the
other terms do not depend on the weights & of the
neural model.

Obvioudly, the quadratic error function in (3) can be
used also for regression on targets, which are not
Gaussian-distributed: in this case, the resulting
regression function f(x;¥) cannot distinguish
between the true distribution and any other with same
mean and variance.

Finally, notice that the value of the error function (3)
at the minimum gives a measure of the variance of the
target data, averaged over the input.

2.2. Neural network uncertainty

In practical regression problems, there are two types
of prediction that one may want to obtain in
correspondence of a given input x: an estimate
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f(x;¥®) of the underlying deterministic function
m,(X) and an estimate of the target value y itsdf, as

given by eg.(2), with their corresponding measures of
confidence. This requires that the various sources of
uncertainty affecting the determination of the weights
W& be properly accounted for [7].

For what concerns the estimate f (x; ) of m,(X), it
must be considered that, from a probabilistic point of
view, the data set D°{(x,y,), n=12..,n.}

used for training the network is only one of an infinite
number of possible data sets. This variability in the
training data set is due to the variability in the

sampling of the input vectors X.,N=1,2,..., n, and in
the random fluctuation of the corresponding target
output y,. Each possible training set D can give rise
to a dffeeent st of network weights .
Correspondingly, there is a distribution of regression
functions f (Xx; &) with variance (with respect to the

training set D):

et (<% - E[f (x @]’} (10)

Since in practice a neural network structure is not a
pefect algorithm, it systematically under/over
estimates the correct result, i.e the expected value

E[f(x®)] is not equa to the true underlying

determinigtic function, m,(X), their difference being

the so-cdlled bias. Of course, the bias would be zero
in the case of a perfect neural network.
To quantify the confidence in the estimate f (X; %) of

the true deterministic function m,(X), it is customary
to refer to the confidence intervals of the error
f (x,¥€) - m,(x) whose variance with respect to all
possibletraining data setsiis:

E{[f(x,®) - m(x)]°}

4 (x,9) - E[f(xﬁ)]+u
y
+E[f(x9)]- my(x)gp
[f 0@ - Elf (x @]
+[E[f (¢ ®)] - my(x)]zl
+2[ () - E[f(x@]]'
Jelt @] m 0] |

i
T
T
i
_1
=1
T
T
T
1
|

={t(x9- €[t (x @]}
+HE[f (@) - m (0 (10)

where the first term is the variance of the distribution
of regression function values f (Xx; W) and measures
the extent to which the network regression function
f(x;®) differs from the ensemble average over

different training data sets, whereas the second term is
the square of the bias which measures the extent to
which the average (over al possible training data sets)
of the network regression function f(x;¥) differs

from the true underlying deterministic function,

m,(x) .

2.3. Sources of uncertainty

A first source of uncertainty comes from a wrong
choice of the network architecture. Indeed, in case of
a network with too few nodes, i.e. too few parameters,
a large bias occurs since the regression function
f (x; ) has insufficient flexibility to model the data

adequately, which results in poor generalization
properties of the network. On the other side,
excessively increasing the flexibility of the model by
introducing too many parameters increases the
variance term because the network regression function
tends to over-fit the training data. Thus, in both cases,
the network performs poorly when fed with new input
pattern in the generalization phase. A trade-off is,
then, necessary. This trade-off is typically achieved by
controlling the model complexity (i.e., the number of
parameters) and the training procedure (by adding a
regularization term in the error function or by early
stopping of thetraining [5]) so as to achieve a good fit
of the training data but with a reasonably smooth
regression function which is not over-fit to the data.
An additional source of uncertainty in the network
performance, due to uncertainty in the weights &,
arises from the minimization algorithm itself, which
may get stuck in a local minimum of the error
function. Furthermore, the training may be stopped
prematurely, before reaching the minimum.

Besides the above uncertainties in the regression
function f(Xx;W) due to uncertainty in the weights
W, in practice there is also uncertainty in the input
values x due to noise and uncertainty in the model
structure f (3 itself.

For what concerns the prediction of the target value, vy,
it is clear that even in the ideal case of a regression
function f(x;W) equa to the true deterministic

function, m,(X), the target y could not be predicted
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with certainty due to the presence of the noise term
e(x) in (eg. 2) which accounts for the intrinsic

random fluctuations. To quantify the accuracy of the
estimate of v, it is customary to refer to the prediction
intervals of the deviation

y- (@) =|m, (x)- f(x®|+e.

The variance of such deviationis:
et (@ - v
=e{f (x® - m}}+E{e]?} (12)

={f (x®) - m P }+s?

Note that the first term is the variance of the
distribution of the error f (X, ) - m,(x) (eq. 11), so

that the prediction intervas include the confidence
intervals.

From the above said, it appears that artificial neural
networks are unstable predictors: small changes in the
training data may produce very different regression
models and consequently different generalization
performances on new, unseen data. For this reason,
the generalization performance of a single artificial
neural network, particularly if trained on small data
sets, should be tested by means of a k-fold cross

validation, where the available set of n, input/output

patterns is divided into k subsets of (approximately)
equal size and the network is trained k times on a
training set in which each time one of the k subsets is
left out and used to verify the network generalization
performance. If k equals the sample size, the
procedure is caled leave-one-out cross-validation
[14].

3. Fuzzy logic system

Fuzzy logic systems are founded on the theory of
fuzzy sets, which, in general, deals with vague
information, where vagueness is defined as the
uncertainty associated with linguistic or intuitive
information. For example, the quality of an image
may be judged as bad, medium or good. From this
example, it appears that vagueness is related to
immeasurable issues and involves situations in which
the transitions among linguistic statements occur
across boundaries, which are not sharp.

A few words on the concepts underlying fuzzy set
theory seem then in order [28]. Let us consider a
variable x, for example a measured output of a plant.
Mutating from classica logic, the se¢ U which
contains all the possible values of x is usually called

the universe of discourse (UOD) of x or the universal
set. Suppose that the UOD U has been subdivided in a

sequence of subsets X, 1 U . In classical set theory,

the X,’sare mutually exclusives so that a given value

of x may belong to only one of them. These sets are
called crisp and the membership of a crisp value of x

to a set X, is specified by the (rectangular)
characteristic function C, , which is equal to unity or

zero according to whether the value of x belongs or
notto X, .

In fuzzy set theory, the situation is quite different: the
subsets X, of the universe of discourse U of a

linguistic variable x are not necessarily exclusive, so
that a given crisp vaue of xI U, may
simultaneously belong to more than one of them with
different degrees of membership. This feature clearly
distinguishes fuzzy set theory from probability theory,
which operates on crisp events. In fuzzy set theory,
then, the subsets are not identified by sharp
boundaries but by linguistic labels (words). For
example we may consider the linguistic variable
temperature defined in the universe of discourse
U =(0°40°) subdivided in the subsas
X,=(0°20°, X,=(10°30°), X,=(20°40°,
labelled by the words cold, warm and hot,
respectively. Clearly a given temperature value may
belong to more than one set, e.g. 15° belongs to X,
and X,.

Fuzzy set theory aims at quantifying the meanings of
the words attached by the analyst to the subsets X,

(such as cold, warm or hot in the above example)
within the framework of set theory. To this aim, to

each set X, the analyst associates, for al values of
x] U, the membership function my (x), which
represents the degree to which he postulates that x
belongs to X,. As opposed to the characteristic

functions of classical set theory, which are rectangular
in shape and digoint, the membership functions
associated to fuzzy sets have subjective shapes and
may overlap to describe a continuous transition from
one set to another, thus providing for the paossibility
that a given value of x1 U simultaneously belongs
to several sets with different degrees of membership.
In summary, in the fuzzy context we deal with
linguistic variables (eg. temperature) whaose
arguments are words, aso called fuzzy vaues (eg.
negative, approximately zero, low, positive, high).
Each of these words refers to a subset of the universe
of discourse and the degree of membership of the
crisp values within the subset is analytically specified
by the associated membership function.
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Fuzzy logic systems build on the theory of fuzzy sets
to realize a complex non-linear input/output relation
as a gynthesis of multiple simple input/output
reations. This idea is similar to that of NNs. The
difference is that in FLSs each simple input/output
relation is embedded in a different IF-THEN rule with
‘fuzzy’, and not sharp, boundaries so that going from
one rule to the other the system output gradually
changes[29].

In general, the generic j-th fuzzy rule is made up of a
number of antecedent and consequent linguistic
statements, suitably related by fuzzy connections:

IF (xis X,;) AND (...) AND (X,is X,;)
THEN (y,is Y,;) AND (...) AND (y, is Y, )

The linguistic variables xp,p=:L2,...,m, are the
antecedents, represented in terms of the fuzzy sets

X, of the universe of discourse (range) X, with

membership functions  m,_ (X,). The linguistic
variables yq,q=:LZ,...,k, are the consequents,
represented by the fuzzy sets Y; of the universe of

discourse Y, , with membership functions m, (Yq) -

The connective operator AND links two fuzzy
concepts and it is generally implemented by means of
a t-norm, typically the minimum operator U or the
algebraic product. Since one of the key features of
FLS lies in allowing the overlapping of the rules, a
given input vector (FACT) will typicaly activate
more than onerule.

Another feature of FLSs isthe ability to separate logic
and fuzziness [25]. Conventional binary logic systems
are unable to do so and thus their governing rules have
to be modified when either the system logic or the
variables fuzziness needs to be changed. On the
contrary, FLSs modify their rules when the logic
needs to be changed whereas they modify the
supporting membership functions when fuzziness
should be changed. To clarify this, consider the
performance of an inverted pendulum controller [25].
Defineas W and W' the angle that the pole forms on
the right side with the vertical line and the associated
angular velocity, respectively. Let two correct logic
rules for the control of the pendulum be:

1) IF w ispositivebig AND W' is big, THEN move
the car to theright quickly

2) IF W is negative small AND w' is small, THEN
move the car to the left Sowly

If the performance of the controller is unsatisfactory,
one needs not change the fuzzy rules themselves,

which are logically correct, but rather must only
modify appropriately the definition of fuzziness in the
linguistic terms big, small, quickly, slowly.

On the other hand, binary logic rules such as

3)IF 40° <w < 60° AND 50°s ' <w <80°s™,
THEN movethecar at 0.5m/s

4)IF -20°<w<-10° AND 10°s*<w <20°s*,
THEN movethecar at -0.1m/s

must be modified whenever the logic of the system or
the quantitative definitions of angle, angular velocity
and car speed are changed.

To understand FLSs, we address on an intuitive basis
the problem of controlling a plant [25]. The
mathematical-based approach of classical and modern
control theory stems on the observation of the system,
the construction of its mathematical model and the
design of a model-based controller. The focus is
placed on the behaviour of thetarget system and on its
mathematical representation.

On the contrary, fuzzy-logic control does not utilize
the target system for modelling but it is based, in
principle, on the linguistic control rules used by
experienced and skilled operators. Although most
skilled operators do not know the mathematical
behaviour of the systems they are required to contral,
they can ill perform successfully. For example, a
skilled driver most likely ignores the mathematical
equations underlying the physical behaviour of the car
when turning to the right while driving up an unpaved
hill and, yet, he or she can ill handle the car safely
and successfully. In this view, a fuzzy logic controller
aims at reproducing the knowledge and experience
supporting the control actions of skilled human
operators using IF-THEN fuzzy rules.

Clearly the set of IF-THEN fuzzy rules constitutes the
heart of the input/output mapping model provided by
the FLS. When the experience of the skilled human
operators is unavailable or insufficient, because of the
complexity of the system, input/output data can be
used to generate a set of fuzzy rules representative of
the mapping from the input space into the output one.
This phase of rule construction during which both the
system input and output are known is often referred to
with the term ‘training’, in analogy to the procedure
for determining the weights of a neural network model
illustrated in Section 2.

3.1. Egtablishing the antecedent part of arule

The IF part of aruleis called antecedent. Establishing
the antecedent parts of the rules of the FLSsis related
to the partitioning of the multivariate input space. For
simplicity, let us consider a two-dimensional input

space (X, X,) and a one-dimensional output space'y.
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Most of thetimes it is possible to assumethat all input
variables are independent and, thus, partition
separately the input space in each direction (Figure 3).
This assumption makes it easy not only to partition
the input space but also to interpret the partitioned
aress in linguistic terms. For example, the rule IF

temperatureis A  AND humidity is A,, THEN ..., is

easy to understand because the variables of
temperature and humidity are separated. The
difference between ‘crisp’ and ‘fuzzy’ rule-based
systems lies in the way the input space is partitioned
(Figure 3). The idea behind FLSs is that in the real
analog world, changes are not sudden and sharp but
gradual in nature so that overlapping of rules domains
should be alowed. The degree of overlapping is
defined in terms of membership functions and the
intrinsic gradual property allows for smooth contral.

%
rule % rule 4

/////f///%

input } input 1

(a) (b

input 2
input 2

N\

rie §

NN

wed ! mled4 | rle5

gt

rule 1 rule 2 suie 1

Figure 3. Rule partition of an input space (a) partition
for crisp rules and (b) partition for fuzzy rules [25]

3.2. Egtablishing the consequent part of arule

The THEN part of arule is called consequent. In the
control case, establishing the consequent parts of the
rules of the FL Ss must eventually lead to defining the
control action value corresponding to each rule. Inthis
respect, fuzzy models are classified into three types
according to the form used for the consequent y:

Model Conseqqent Characteristic
type expression
Mamdani YisY Yisafuzzy set
Takag a 'sareconstant
Sugeno '
Kgn y = CotSiax and the. X 'sare
. SKg the input
(TSK) variables
S %pzlged y=c¢ C is constant

In the Mamdani type FLSs the consequent is a fuzzy
variable defined by a membership function. These
systems are more difficult to compute than those
whose consequents are numerically defined but they
better describe the qualitative knowledge related to
the consequent.

The consequents of the TSK models are expressed as
aweighed linear combination of the input variables. It

is also possible to use non-linear combination for
better performance, but at the expense of the
transparency of therules.

The simplified fuzzy modd has fuzzy rules whose
consequents are constant values. Thus, it is a special
case of both Mamdani and TSK types. Even if the
output of each rule is a constant, the overall FLS
output is non-linear because it contains the
characteristics of the underlying model membership
functions.

3.3. Inferring the output corresponding to a
given input: fuzzy reasoning and aggregation
Now that the IF and THEN parts of the rules have
been designed, the next step is to infer the output of
the FLS resulting from a given m-dimensional crisp
input vector X, also called FACT. This is done in
two steps: 1) determination of the rules strengths; 2)
aggregation of each rule output into the final FLS
numerical output.

As mentioned, the connective operator AND links two
fuzzy concepts in a rule and it is generaly
implemented by means of a t-norm applied to the
membership functions of the rul€s antecedents
evaluated in correspondence of the crisp input vectors
x®) constituting the FACT. Typically, the minimum
operator U or the algebraic product is employed. This
gives the strength of the rule for the given FACT: a
measure of how active that ruleis for the given FACT
or, in other words, how much the FACT is described
by the antecedents of the rule. Considering a generic
rulel, the strength s (X)) is given, in the case of the
algebraic product, by the product of its antecedent
membership values in correspondence of the crisp
inputs:

Q
s(x)=0m, (X)) (13)
p=1

where X, denotes the fuzzy set characterizing the p-

th antecedent of thel-th rule.
In the case of the min operator:

5(x?) =min(m (x))) (14)

Obviously, if thel-th ruleis not activated by X" then
its strength is zero. This occurs if at least one of the

elements of the crisp input vector, say x,*, does not
belongto X, , the corresponding fuzzy set in therule.

Let us now consider the aggregation step and denote
by R, the number of rules, which are activated (fired)
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by the input X and by y' the consequent in the I-th
activated rule, 1 =1,2,...,R; . The output y can be
determined as a normalized weighed sum of the
consequents ' of the R; active rules, the weights
being the strengths of the rules,

Rf
a5 (x")y
y= ':Flef—r (15)
as (x%)
1=1

Figure 4 shows an example of a simple TSK-type
FLS with four fuzzy rules [25]. The first rule for
example could be:

IF X issmall AND X, issmall,
THEN y=3x +2X,- 4

Corresponding to the input vector (X, X,) = (10,0.5),

the membership functions of the fuzzy sets
constituting the antecedents of thefirst rule are readily
evaluated as 0.8 and 0.3.

If the algebra product is used as the t-norm operator
for the AND connection, then the rule strength is

5,(10,0.5) =0.8>0.3=0.24. Similarly, the strengths
of the second, third and fourth rules are
S,(10,0.5) =0.8,s,(10,0.5) =1.0, 5,(20,0.5) = 0.3,
respectively. The output of each rule corresponding to
the given input vector is y' =27, y*=235,
y®=-9, y*=-205, respectively. Then, the final
system output is

_0.24>27+0.8>23.5+1>(-9) + 0.3>(- 20.5)
y 0.24+0.8+1.0+0.3

»4.33 (16)

In the Mamdani type model, with fuzzy consequents,
the output of the fuzzy inference engine consists of a

fuzzy set Y¢ Y with compact support (h,,h,),
whose membership function is m,(y). However,
eventually we are interested in finding a crisp number
y' that represents the information encoded in the

output fuzzy set Y. This conversion, called
defuzzification, may be done in several ways, the most
commonly used being the Centre of Area (COA)
method:

\h2
. Q Y My)dy
Y =Yeon = 1\h2 17)
Q m (y)dy
1 Y¢e

The crisp number y* thereby obtained can be taken as
the output resulting from the given input vector
(FACT) x©.

input x; = 10 input %, =05 °

F '!los and ltloz THEN y=3x, +2x,- 4
: X o-Xg

=27

IE ":08 and ‘:‘ THEN y=2x,-3x,+5
PN Xy L Xp

=235

E T ! a THEN y=-x,-4x,+3
A_.~X[ __Xz

=9

IF Vam and ! 03 THEN y=-2x; +5%,- 3
'4 N N,

=-20.5

Figure 4. Example aggregation of TSK model [25]

3.4. Interpretation of fuzzy rules

The major difference between fuzzy systems and
other non-linear approximates, such as neura
networks, is the possibility of interpretation of the
rules underlying the fuzzy model. This, however, does
not automatically follow from the existence of a rule
structure. Therefore, it is relevant to discuss the
circumstances under which a fuzzy system is redly
interpretable and this depends on the application. Yet,
some genera guidelines can be given. The following
factors may influence the interpretability of a fuzzy

logic system [25]:

- Number of rules. If the number of rules is too
large, the fuzzy system can be hardly interpreted.
Especially for systems with many inputs, the
number of rules often becomes overwhelmingly
largeif all antecedent combinations are realized.
Number of antecedents in the rule premise. Rules
with premises that have many, say more than
three or four, antecedents are hard to interpret. In
the human language, most rules include only very
few antecedents even if the total number of inputs
relevant for the problemislarge.

Dimension of input fuzzy sets. One-way to avoid,
or at least, reduce the difficulties with high-
dimensional input spaces and to decrease the
number of rules is to resort to multi-dimensional
input fuzzy sets. However, multidimensional input
fuzzy sets with more than three inputs are
certainly beyond human imagination and it is
precisdy the conjunction of one-dimensional
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input fuzzy sets that make a fuzzy logic model
interpretable.

Arrangement of fuzzy sets. Fuzzy sets should be
arranged in proper order over the universe of
discourse so that, for example, very small is
followed by small, followed by medium, large and
so on. If the fuzzy model is developed on the basis
of expert knowledge such ordering comes natural.
However, if rule construction by training on
input/output data is used to optimise the FLS, the
ordering of the fuzzy sets might be lost if no
precautions are taken. This typically leads to
congtraint optimisations in which for example the
ordering of the input membership functions is
congtrained. This not only leads to an easer
interpretation of the fuzzy system but, often, also
provides an improved performance.

4. Genetic algorithms

Search or optimisation agorithms inspired on the
biological laws of genetics are called evolutionary
computing algorithms [8]. The main features of these
algorithms are that the search is conducted i) using a
population of multiple solution points or candidates,
ii) using operations inspired by the evolution of
species, such as breeding and genetic mutation, iii)
based on probabilistic operations, iv) using only
information on the objective or search function and
not on its derivatives. Typical paradigms belonging to
the class of evolutionary computing are genetic
algorithms (GAs), evolution dtrategies (ESS),
evolutionary  programming (EP) and genetic
programming (GP). In the following we shall focus on
the more popular GAs.

As a first definition, it may be said that genetic
algorithms are numerical search tools aiming at
finding the global maximum (or minimum) of a given
real abjective function of one or more real variables,
possibly subject to various linear or non linear
constraints [11]. Genetic algorithms have proven to be
very powerful search and optimisation tools especially
when only little about the underlying structure in the
data is known. They employ operations similar to
those of natural genetics to guide their path through
the search space. Essentially, they embed a survival of
the fittest optimisation strategy within a structured, yet
randomised, information exchange[9].

Since the GAs owe their name to the fact that their
functioning is inspired by the rules of the natural
selection, the adopted language contains many terms
borrowed from biology, which need to be suitably
redefined to fit the algorithmic context. Thus, when
we say that the GA operates on a set of (artificial)
chromosomes, these must be understood as strings of
numbers, generally sequences of binary digits0 and 1.
If the objective function has many arguments, each

string is partitioned in as many substrings of assigned
lengths, one for each argument and, correspondingly,
we say that each chromosome is analogously
partitioned in (artificial) genes. The genes congtitute
the so-called genotype of the chromosome and the
substrings, when decoded in real numbers called
control factors, constitute its phenotype. When the
objective function is evauated in correspondence of
the values of the control factors of a chromosome, its
value is called the fitness of that chromosome. Thus
each chromosome gives rise to a tria solution to the
problem.

The GA search is peformed by constructing a
sequence of populations of chromosomes, the
individuals of each population being the children of
those of the previous population and the parents of
those of the successive population. The initial
population is generated by randomly sampling the bits
of al the strings. At each step, the new population is
then obtained by manipulating the strings of the old
population in order to arrive at a new population
hopefully characterized by an increased mean fitness.
This sequence continues until a termination criterion
is reached. As for the natural selection, the string
manipulation consists in selecting and mating pairs of
chromosomes in order to groom chromosomes of the
next population. This is done by repeatedly
peforming on the strings the four fundamental
operations of reproduction, crossover, replacement
and mutation, all based on random sampling. These
operations will be detailed below [18].

Finally, it is by now acknowledged that GAs take a
more global view of the search space than many other
optimisation methods. The main advantages arei) fast
convergence to near global optimum, ii) superior
global searching capability in complicated search
spaces, iii) applicability even when gradient
information is not readily achievable. The first two
advantages are related to the population-based
searching property (Figure 5). Indeed, while the
gradient method determines the next searching point
using the gradient information at the current searching
point, the GA determines the next set of multiple
search points using the evaluation of the objective
function at the current multiple searching points.
When only gradient information is used, the next
searching point is strongly influenced by the loca
geometric information of the current searching point
so that the search may remain trapped in a local
minimum. On the contrary, the GA determines the
next multiple searching points using the fitness values
of the current searching points, which are spread
throughout the searching space, and it can also resort
to the additiona mutation to escape from local
minima.

The key disadvantage of a GA isthat its convergence

speed becomes slow near the global optimum.
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Figure 5. GA search and gradient-based search [25]

4.1. Definitions

It is important to be acquainted with the technical
terms of GAs.

Individuals and Population: An individual is a
chromosome, constituted by n31 genes and a

population is a collection of individuals. To
code/decode the i-th gene in a control factor, that isin
an argument of the objective function, the user:

defines the range (a,b) of the corresponding

argument in the objective function;
assigns the resolution of that independent variable

by dividing the range (a,b) in 2" intervals. A

number n; of bitsis then assigned to the substring
representative of the gene and the relation

between a real value x1 (a,b) and its binary
counterpart b is

x=a+p 23 (18)

The values g, b, n are caled the phenotyping

parameters of the gene.
Figure 6 shows the constituents of a chromosome
made up of three genes and the relation between the

genotype and the external environment, i.e. the
phenotype, constituted by three control factors,

X, %,, X, one for each gene. The passage from the

genotype to the phenotype and vice versa is ruled by
the phenotyping parameters of all genes, which
perform the coding/decoding actions. Each individual
is characterized by fitness, defined as the value of the
objective function calculated in correspondence of the
control factors pertaining to that individual. Thus a
population is a collection of points in the solution
space, i.e. in the space of f.

]
Chromosome | Gene # 1 :Gene it 2: Cene # 3 : Bit-string
! ! ! !
r " ﬁ Bit-strings
Gaanatyps @IIMI 101 1 10 1 (ﬂ (of assigned lengths)

Phenotyping
parameters

coding /
decoding

Phenotype X, X, X, Factors
(one for each gene)

l___,._l» | |

Fitness fix X, Xy ) objective function

Figure 6. Components of an individua (a
chromosome) and its fitness

An important feature of a population is its genetic
diversity: if the population istoo small, the scarcity of
genetic diversity may result in a population dominated
by amost equal chromosomes and then, after
decoding the genes and evaluating the objective
function, in the quick convergence towards an
optimum which may well be a local one. At the other
extreme, in too large populations, the overabundance
of genetic diversity can lead to clustering of
individuals around different local optima: then the
mating of individuals belonging to different clusters
can produce children (newborn strings) lacking the
good genetic part of either of the parents. In addition,
the manipulation of large populations may be
excessively expensive in terms of computer time.

In most computer codes the population size is kept
fixed at a value set by the user so as to suit the
requirements of the moddl at hand. The individuals
are left unordered, but an index is sorted according to
their fitnesses. During the search, the fitnesses of the
newborn individuals are computed and the fithess
index is continuously updated.

4.2. Creation of theinitial population

As said above, the initia population is generated by
random sampling the bits of all the strings. This
procedure corresponds to uniformly sampling each
control factor within its range. The chromosome
creation, while quite simple in principle, presents
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some subtleties worth to mention: indeed it may
happen that the admissible hypervolume of the control
factors is only a small portion of that resulting from
the Cartesian product of the ranges of the single
variables, so that one must try to reduce the search
space by resorting to some additional condition in
terms of suitable physical criteriato be satisfied. This
remark also applies to the chromosome replacement,
below described.

4.3. The traditional breeding algorithm

The breeding algorithm is the way in which the
(n+D-th population is generated from the n-th

previous one.

The first step of the breeding procedure is the
generation of a temporary new population. Assume
that the user has chosen a population of size N
(generally an even number). The population
reproduction is performed by resorting to the Standard
Roulette Selection rule: to find the new population,
the cumulative sum of the fitnesses of the individuas
in the old population is computed and normalized to
sum to unity. The new population is generated by
random sampling individuals, one at a time with
replacement, from this cumulative sum, which then
plays the role of a cumulative distribution function
(cdf) of a discrete random variable (the position of an
individual in the population). By so doing, on the
average, the individuals in the new population are
present in proportion to their relative fitness in the old
population. Since individuals with rdatively larger
fitness have more chance to be sampled, most
probably the mean fitness of the new population is
larger.

The second step of the breeding procedure, i.e. the
crossover, is performed as indicated in Figure 7: after
having generated the new (temporary) population as
above said, N/2 pairs of individuas, the parents, are
sampled a random without replacement and
irrespectively of their fitness, which has already been
taken into account in the first step. In each pair, the
corresponding genes are divided into two portions by
inserting at random a separator in the same position in
both genes (one-site crossover): finally, the first
portions of the genes are exchanged. The two
chromosomes so produced, the children, are thus a
combination of the genetic features of their parents. A
variation of this procedure consists in performing the

crossover with an assigned probability p. (generally
rather high, say p, 3 0.6): a random number R is
uniformly sampled in (0,1] and the crossover is
performed only if R< p,. Viceversa, if R3® p,, the
two children are copies of the parents.

splice  splice  splice

Ll
ol

Parent # 2 [1[1[1j1oJdo1]1fdofofi[1[1]

I Crossover

Parent # 1

Child # 1 1{1/00}1j0joj1jojojojojof1/0]
child # 2 [o[1[[tjo]t]o[x[t[x[ola[1]x
Figure 7. Crossover in a population with

chromosomes constituted by three genes

The third step of the breeding procedure, performed
after each generation of a pair of children, concerns
the replacement in the new population of two among
the four involved individuals. The smplest recipe,
again inspired by natural selection, just consists in the
children replacing the parents: children live, parents
die. Inthis case, each individual breeds only once.

The fourth and last step of the breeding procedure
eventually givesriseto thefinal (n+21)-th population

by applying the mutation procedure to the (up to this
time temporary) population obtained in the course of
the preceding steps. The procedure concerns the
mutation of some bits in the population, i.e the
change of some bits from their actual values to the
opposite one (0 ® 1) and vice versa. The mutation is
performed on the basis of an assigned mutation
probability for a single bit (generally quite small, say

10°®). The product of this probability by the total
number of bits in the population gives the mean
number m of mutations. If m<1 a single bhit is

mutated with probability m. Thaose bits to be actually

mutated are then located by randomly sampling their
positions within the entire bit population.

The sequence of successive population generations is
usually stopped according to one of the following
criteria

1. when the mean fitness of the individuals in the
population increases above an assigned
convergence value,

2. when the median fitness of the individuals in the
population increases above an assigned
convergence value,

3. when the fitness of the best individual in the
population increases above an assigned
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convergence value. This criterion guarantees that
at least one individual is good enough;

4. when the fitness of the weakest individual in the
population drops below an assigned convergence
value. This criterion guarantees that the whole
population is good enough;

5. when the assigned number of population
generations is reached.
More sophisticated techniques of reproduction,

crossover and replacement can be employed for a
more effective search.

Furthermore, in general, the initial population sampled
contains a majority of second-rate individual s together
with few chromosomes, which, by chance have
moderately good fitnesses. Then, the selection rules
are such that, in a few generations, aimost al the
moderately good chromosomes, which are actually
mediocre individuals, are selected as parents and
generate children of similar fitnesses; thus, ailmost all
the second-rate individuals disappear, and most of the
population gathers in a small region of the search
space around one of the mediocre individuas. In this
case, the genetic diversity is drastically reduced and
the algorithm may achieve a premature convergence
of the population fitness to a local maximum. In the
course of the successive generations, the crossover
procedure generates mediocre individuas, which are
subgtituted in place of other mediocre individuals, so
that the genetic selection may be seen as a random
walk among mediocres. To obviate to this unpleasant
premature convergence to mediocrity, a pre-treatment
of the fitness function is often welcome. This is
typically done by means of an affined transform of the
fitnesses. Instead of applying the selection rules to the
fitness f(X) one works with its affined transform

f'(x), viz,
f'(x)=af(x)+b (19)

where a and b are chosen so as to favour, at the
beginning, the less fit individuals, thus maintaining
genetic diversity and avoiding premature convergence
[18].

5. Conclusion

These lecture notes have briefly sketched some of the
concepts underlying the modern computational
paradigms of neural networks, fuzzy logic systems
and genetic algorithms, which are becoming of
significant interest for application to condition
monitoring and fault diagnostics for maintenance. Due
to the limitation in the number of pages, only an
intuitive and non-exhaustive treatment has been
provided. Whereas some examples of practical

application will be illustrated during the lecture, the
interested reader is invited to refer to the specialized
literature for further, in-depth details on the different
techniques.
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Abstract

In this paper a single-objective Genetic Algorithm is exploited to optimise a Fuzzy Decision Tree for fault
classification. The optimisation procedure is presented with respect to an ancillary classification problem built
with artificial data. Work is in progress for the application of the proposed approach to areal fault classification

problem.

1. Introduction

In recent years, many efforts have been devoted to the
development of automatic diagnostic techniques based
on datistical or geometric methods, neural networks,
expert systems, fuzzy and neuro-fuzzy approaches
[22], [11], [15], [5], [7]- These techniques have proven
to be very effective but often remain “black boxes” as
to the interpretation of the physical relationships
underpinning the fault classification.

In an effort to overcome this limitation, a systematic
approach to fault classification has been introduced by
the authors leading to a Fuzzy Decision Tree (FDT)
[25], [26]. The main advantages of the proposed
approach from the operator point of view are the
transparency of the resulting classification model and
its visualization in the form of a DT [14], [20].

The construction of the Decision Tree (DT) is pursued
starting from the fuzzy rules of a Fuzzy Rule Base
(FRB) derived from a clustering algorithm tailored to
fault classification [25]. To do this, every Fuzzy Set
(FS) representing a deviation of the monitored signals
in the respective ranges of variability (Universes of
Discourse, UODs, in Fuzzy Logic terminology) is
associated to a symptom of a fault class and the FRB
of the model is trandated into a Symptom Table in
which the rdationships between fault classes and
symptoms are explicitly laid out.

In practice, however, it is often difficult to attribute the
detected symptoms to a given fault class, given that
one fault may cause several symptoms and dually a
symptom may describe more than one possible fault.
To solve this problem, the relationships between fault
classes and symptoms contained in the Symptoms
Table are systematically represented in a DT, which is
then quantified by applying the rules of Fuzzy Logic.
The design of the DT entails the successive
consideration of the symptoms. These can be
considered in different orders, leading to different
structures of the DT and thus different classification
performances. Hence, a combinatorial optimisation
problem arises with regards to the DT design.

In this paper, a single-objective genetic algorithm
search is devised to find the sequence of symptoms
leading to the optimal configuration of the DT, i.e. that
which  achieves the maximum classification
performance.

The paper is organized as follows. Section 2 illustrates
the procedure adopted for the construction of the DT
and its fuzzy quantification. In Section 3, the results
reated to its application to an artificial case study
regarding the classification of data randomly extracted
from six different Gaussian distributions are reported.
Section 4 presents the optimisation of the FDT by a
single-objective genetic agorithm maximizing the
percentage of correct classifications. A synthetic
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discussion of the findings of the work is provided in
the last Section.

2. From a Fuzzy Classfication Modd to a
Fuzzy decision Tree

Let us consider an industrial system or plant whose
“state of health” is monitored by a set of sensors,
which collect the relevant parameters data at a given
frequency. These data (also called “signals’) provide a
picture of the health state of the plant. A particular
picture corresponds to the plant functioning in nominal
conditions, with all the signals within their design
envelope. Deviations from the nominal states are due
to faults of different types (classes), which may occur
to the components of the plant, leading to different
“pictures’ of the monitored signals.

When a generic fault of class q ] =1,...,c, occursin

the plant, corresponding representative symptoms are
observed by the monitoring system, in terms of
variations in the signal values. A symptom associated

to the fault of class q is a deviation of a monitored

signal from its reference value, outside of the allowed
design envelope. The objective of fault identification is
to build a system capable of recognizing the fault as of

class G on the basis of the measured symptoms, i.e.

the monitored signals.

In this work, we assume that the classification of the
fault is performed by applying a previoudy built FRB
(for example, a possible method for building an FRB
from available pre-classified data is presented in [25]).
Such FRB has one fuzzy rule for each fault class: the
generic rule | associates the symptoms of the

monitored signals (input data) to the fault class G . In

the fuzzy rules, each one of the FSs of the antecedents
describes a deviation of a monitored signal, i.e. a
symptom, except those FSs representing the still
nominal conditions of those monitored signals which
are unaffected by the particular fault. Correspondingly,

the generic FS X ; associated to the p -th antecedent
p=L1..,n, j=1...C, represents a
symptom for the class of faults GJ. .

Notice that the relations between fault classes and
symptoms (signals deviations) are not univocal: the
faults of a given class may initiate several symptoms
and in turn one symptom may be a legitimate
representative of several possible fault classes.

On the other hand, an adequately designed monitoring
system should be capable of associating to each fault
class a unique set of symptoms (signa deviations).
This leads to a Symptom Table such as the one

reported in Table 1, where S, r =1,..., S, denotes the
generic symptom.

in rule |,

The binary vector s | =[1,},1,,...,1 ] represents the
reference symptoms vector for fault class Gj,

] =1,...,c. Each element IJ.r is a binary value that
corresponds to the presence or absence of symptom r
when a fault of class q has occurred, r =1,...,S,

] =1....c.

Table 1. Symptom Table: Reference relations between
fault classes and symptoms [13]

Symptom Type
Fault

Class SIS |~|s|-]|sS

During operation, the monitored signals could then be
trandated into an observation vector

s =(l,1,,-.,1,), which carries the information on

the presence or absence of the symptoms. As explained
earlier, a symptom is present in the system if its
representative measured signa has deviated from its
nominal value beyond the design envelope. For
example, a patient has the symptom “fever” if his or
her monitored temperature rises to a “high” value, i.e.
above 37°C.

However, in practice often the presence or absence of a
symptom remains uncertain and ambiguous due to the
complexity of the non-linear signal behaviours
associated to the various faults, to the measurement
errors of the monitoring sensors and to the imprecise
and ambiguous definition of the signal deviation
ranges and the associated linguistic labels [25]. To
reflect this uncertainty, a fuzzy observation vector

s, =(m,m,..,m) is associated to a pattern of
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deviations of the monitored signas measured in
correspondence of a given fault, where m , r=1..5s,
is the value of the membership of the FS corresponding
to the symptom S and gives the degree with which it

is present in the monitored situation being examined.
The fault identification problem is then to identify
which fault class is occurring in the plant on the basis

of the fuzzy observation vector s . To tackle this

problem a systematic procedure for constructing a DT
is presented below [26].

2.1. Decision Tree

Based on the Symptom Table 1, a complete DT can be
diagrammed by examining all S symptoms one by one
[7]. Taking into consideration al possible

combinations of symptoms, the DT will have 2°
branches given that each of the S symptoms can be
either present or absent. On the other hand, only one
combination of symptoms corresponds to a given fault:

thus, only c of the 2° tree branches correspond to a

class while the remaining 2°- ¢ combinations of
symptoms cannot be associated to a class.

For building a smaller, more transparent and easier to
interpret DT, two main hypotheses are assumed [26],
[13]:

- if a symptom is indicated as present in the measured
observation vector S, it is certainly present in the
system;

- the presence of a single symptom characteristic of a
fault suffices to conclude that the measured pattern of
signals belongs to that fault class.

In this context, defining an “unwanted” symptom as a
symptom that, although not present in the system,
somehow is present by mistake in the observation
vector and a “missing” symptom as a symptom that is
not observed athough it is present in the system [13],
the first hypothesis can be called of “impossibility of
unwanted symptoms’ and the second of “possibility of
missing symptoms”.

The procedure for building the DT proceeds as
follows

1 A root node is placed at the top of the tree.
This node refers to all possible fault classes identified
for the system under analysis.

2. A symptom from the Symptom Table is
associated to this node.

3. The root node is split into two branches: the
left corresponding to the presence of the symptom, the
right to the absence of the symptom.

4, The fault classes for which the symptom is
present are associated to a node under the left branch.

If only one fault class is found to contain the symptom,
then the associated node is a terminal leaf of the branch
and its identification is guaranteed by the fact that it
has been assumed that a symptom that is absent in the
system cannot be indicated as present (impossibility of
unwanted symptoms hypothesis). The fault class
associated to the identified leaf may be also associated
to other leaves, at the end of other branches in the tree.
This accounts for the possibility that a symptom is not
indicated as present by the monitoring system although
it actually is (possibility of missing symptoms
hypothesis). If more than one fault class are associated
to the node characterized by the identified symptom, a
new symptom is searched in the Symptom Table and
associated to the node in order to differentiate between
the identified fault classes. To select the new
differentiating symptom, the previous procedure is
applied, starting from step 2.

5. The right branch from the root node is further
developed by first adding a node associated to all
possible fault classes. This node is then treated as a
local root node to which the branching procedure is
applied starting from step 2.

6. The tree development terminates when all
symptoms have been considered and their associated
branches developed down to the distinguishing leaves
of the individual fault classes.

A path through the branches of the tree, from the root

node to a leaf, identifies a crisp observation vector S '
of symptoms representative of the fault class
associated to the corresponding leaf. As pointed out
above, different paths may lead to different leaves
associated to the same fault class, due to the possibility
of missing symptoms.

In operation, the DT gives the correct diagnosis when
the measured symptom vector matches completely
with the reference symptom vector of a fault class; on
the contrary, the diagnosis is conservative in case of a
missing symptom, i.e. it is not necessary to have all the
symptoms to diagnose the fault.

Finally, in case of unwanted symptoms, the
classification is driven by the structure of the tree and
the classification will be wrong if the first symptom
considered is an unwanted symptom.

From the above it appears that an issue of adequate DT
design arises with respect to the order with which the
successive symptoms are considered for optimal
classification performance.

2.2. Classfication by the FDT

In the redlistic case of ambiguity in the actual presence
or absence of a symptom, in correspondence of a given
pattern of signal deviations the degree of activation of
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Hg All Fault Classes

All Fault Classes \( = #5)-(1= 44, )

8,?

Figure 1. Propagation of fuzzy information through the DT

each symptom S, r =1,...,s, is computed from the

MF of the corresponding FS. The DT then becomes a
FDT and the possibility classfication of a given
pattern of measured signal deviations is performed by
proceeding through al the branches of the tree and
computing the MFs to each fault class, at the tree
leaves.

The symptoms degrees of activation are then
propagated through the DT according to the rules of FS
theory. In particular, the logic operator of negation of a

symptom S is implemented by (1- r’rg) in the right
branch corresponding to the absence of the symptom
whereas its complement M, is propagated along the

left branch associated to its presence (Figure 1). The
connection between two nodes of the tree represent a
logic operator of intersection (and), implemented as
the algebraic product of the membership values in this
work.

Finally, since more than one terminal leaf can indicate
the same class, the final membership to agiven classis
computed through the logic operation of union (or) of
al the leaves associated to that class. The logic
operator or is here implemented as the MFs sum
limited to 1, accordingly to the rules of FS arithmetic.
As mentioned at the end of Section 2.1, different
sequences of symptoms lead to different DTs and,
implicitly, to different classification performances. For
realistic problems, the number of possible sequences of
symptoms for building the DT is combinatorial, so that
a trial and error process for finding the optimal
structure of the tree, i.e. that which allows obtaining
the maximum classification performance, would not be
practical. For example, the number of possible
sequences of a group of 15 symptoms, would be

approximately 10" and to each sequence corresponds

a different DT whose classification performance must
be evaluated.

3. Application of the FDT to an artificial case
study

The classification approach has been applied to the
artificial  four-dimensional, six-classes data set of
Figure 2. The data have been obtained by random
sampling from 6 different Gaussian distributions and
can be assumed to represent the system response
signals resulting from 6 different types of system
faults.

The previoudly illustrated procedure for classifying the
data into the six classes (Section 2) consists of two
main steps: the first one is the building of the FRB, i.e.
a set of transparent and accurate fuzzy rules and the
second one is the construction and quantification of the
corresponding FDT.

A fuzzy clustering — based method has been used for
obtaining the FRB from available pre-classified data
[25]. The resulting FRB is composed of ¢ =6 rules,
onefor each class (Table 2).

To build the associated DT, first each antecedent of the
rules in the FRB is associated to a symptom, resulting

in 15 possible symptoms, indicated as S,
i =12,...,15, in Table 2. This alows the translation
of the FRB in the Symptom Table 3.

Then, by applying the steps 1.— 6. of the procedure for
building the DT (Section 2.1) on the sequence of

symptoms S; =[S;;S,; ...;S;], one obtains the DT

reported in Figure 3.

The possibility quantification of the degree of
membership to different classes can be performed as
described in Section 2.2, i.e. propagating through the
branches of the tree the degree of activation of each
symptom according to the rules of Fuzzy Logic. The
final assignment of an incoming pattern of signals to a
classis conservatively realized as follows:
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Figure 2. Four-dimensional data set comprised of six classes

2

Z X, X, X, X,

1 Low § Low S, Low S, Medium S,
2 High S, | Medium S; | Medium S High S,
3 | IF | High S, High S, Medium S, High S,
4 High S, Low S, Medium S, Low §,
5 High S, | Higher S, | Medium S | Medium S,
6 Higher S, | Highest § High S, Higher S

THEN

G| G |G |G| G |G
Yes| No | No | No | No | No
No | Yes| No | No| No | No
No | No | Yes| No| No | No
No | No | No |Yes| No | No
No | No | No | No| Yes| No
No | No | No | No| No | Yes
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Table 3. Symptom Table
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- the pattern is declared assigned to a class (in
possibility terms), if the membership grade to the
respective class is larger than a confidence
threshold g (here chosen equal to 0.6);

- the pattern is declared ‘atypical’, if none of the
membership gradesislarger than g ;

- the pattern is declared *ambiguous’, if more than
one membership gradeislarger than g .

A test on a set of 600 data has resulted in only 40.67%
correct classifications to the six fault classes, while

10.5% of the data are considered as atypical, 2.33% as
ambiguous and 46.5% are assigned to the wrong class.

The obtained performance is obviously unacceptable
and moativates the search for an optimal or near-optimal
sequence of symptoms upon which to build the DT.
The objective of the optimisation algorithm is to find
the sequence of symptoms that leads to the DT with the
best classification performance in terms of percentage
of correct classifications. The number of possible

sequences of symptoms is 15! (~10"), in Section 4,
this combinatorial optimisation problem is tackled by a
single-objective genetic algorithm.
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Figure 3. DT for classification, built with the ordered sequence of symptoms S,

4. Genetic algorithm optimisation of the
decision tree design

, & procedure based on a single-objective genetic In
this Section algorithm (Appendix A) is carried out for
determining the sequence of symptoms to which
corresponds the FDT with the maximum classification
performance. The genetic algorithm can be seen as
peforming a wrapper search [12] around the
classification algorithm (Figure 4): the symptoms
sequence selected during the search is evaluated using
as criterion (fitness) the percentage of correct classified
data achieved by the FDT itself.

The data and rules of the genetic algorithm search are
given in Table 4. These parameters have been
established through a systematic procedure of
experimentation. The objective (fithess) function to be

Grenetic algorithm
search

b S

-

Selected
™ symptoms
seUEnCE

Fuzzy Decizion Tree
clasgification algorithm

Search

correct
parameters

Percentage of

classification

maximized is the percentage of correct data
classifications; the decision variable is the symptoms
sequence.

Table 4. GA run parameters

Number of chromosomesin the 100
population

Number of generations (termination 50
criterion)

. Standard
Selection Roulette
Reolacement Children -

€ Parents
Mutation probability 0.01
Crossover probability (one-site) 1

Optimal symptoms Fuzzy Decision Tree

clagsification model

sequence

/

Figure 4. Single-obj ective genetic algorithm “wrapper” search

Each chromosome is made up by 15 genes, one gene
for each symptom. The single gene can assume any

integer value in [0,15] that encodes the “swap”
position of the symptom along the sequence. An
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example of a chromosome coding a particular
sequence is given in Figure 5. To decode the
chromosome in its corresponding symptom sequence, a
15 — steps procedure is performed, one for each gene.

At the generic step 1=12,..,15, the ordered
sequence S,_; and the value k contained in the i-th
gene are considered: the symptom in the i -th position
of S_, is swapped with the symptom in the k-th

position of the sequence. For example in the first step
of Figure 5, the value 7 in gene 1 means that the

symptom § is placed in position 7 of the sequence
and simultaneously the symptom that occupied
position 7 is swapped to position 1. This operation is
carried out until the 15" gene of the chromosome is
worked out, leading to the final sequence:

Gene 1 Gene 2

S5 =[5550 S92 % S0 S S80S0 St S5 S S5 S
Note that this original chromosome random design
leads to a coherent symptom sequence, i.e. without
repetition of symptoms, thus avoiding computationally
burdensome chromosome coherence checking a
posterior.

The optimal sequence found at convergence of the
genetic algorithmiis:

SEIEHESETE TR P FHEEHE S HEVHE TR HE Y

The FDT built following this sequence ends into 46
leaves and achieves a classification performance of
91.34%, while 5.33% of the data are considered as
atypical, 0.33% as ambiguous and only 3% are
assigned to the wrong class.

Gene 15

7141111213715

61101 2| 8 |14]11]15

o =10]50558558,5 0855 051055 859058050115 9755 O35 145975 ]

Stepl 2 Gene 1 =7

10>~11>~12> 13> ~14>

2 =500, 088 S s S s gs Og 5 1 505 3 33 455 ]

Step 2 2 Gene 2=4

102™~112~122~132> 14>

2y =18735,5:553.5,5055863.51 353 53 105011391 5 133 9145955 |

10>™~11>

23 =[555 8115055 5155565 055 0750,5501 5515 5,4 559391450135 0p5 ]

Step 14 - Gene 14=11

10> 14> ~132>

Zyq = 195551158530153 85586587395 3.5) 551055135505 514554355 ]

12=

Step 15 > Gene 15=15

13 = 14>

Zus = 1055013055 0055 06538507305 343 501538135100 5914304 3515 |

13= 142

Figure 5. Example of a chromosome and the corresponding sequence
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5. Conclusion

In realistic applications, fault classification is usually
based on ambiguous information, which can be
effectively handled within a fuzzy logic framework. A
Fuzzy Decision Tree can then be built to logically
structure the uncertain information available. To each
fault class corresponds a classification rule, with
mono-dimensional Fuzzy Sets representing the
characteristic symptoms for the corresponding fault
class.

The classification performance by the resulting FDT is
dependent on the order in which the symptoms are
considered in the building procedure of the DT. This
leads to an optimisation problem with respect to the
congtruction of the tree. In this work, this problem has
been tackled by means of a single-objective genetic
algorithm in which the different sequences of
symptoms are coded into the chromosomes of the
genetic population by an original procedure, which
guarantees coherence, i.e. no repetition of symptomsin
the sequence.

The genetic algorithm-based optimisation procedure
developed has been successfully applied to a test case
regarding the development of Fuzzy Decision Trees for
the classification of artificial data. Undergoing
research concerns the application of the developed
classification procedure to areal diagnostic problem.

Appendix A: A brief recall of Genetic
Algorithms

In the following, only a concise snapshot is provided
on the basics of genetic algorithms optimisation. For
an extensive and detailed presentation of this
computational paradigm, the interested reader is
invited to consult the available copious literature [18],
[171, [3], [€], [9], [4], [2].

Genetic Algorithms (GAs) are optimisation methods
aiming at finding the global optimum of a set of real

objective functions, F°{f(>)}, of one or more decision
variables, U ° {u}, possibly subject to various linear
or non linear constraints. Their main properties are that
the search is conducted i) using a population of
multiple solution points or candidates, ii) using
operations inspired by the evolution of species, such as
breeding and genetic mutation, iii) using probabilistic
operations, iv) using only information on the objective
or search function and not on its derivatives[16].

GAs owe their name to their operational similarities
with the biological and behavioural phenomena of
living beings. After the pioneering theoretical work by
John Holland [10Q], in the last decade a flourishing
literature has been devoted to their application to redl
problems. The basics of the method may be found in

Goldberg [8]; some applications in various contexts are
included in Chambers[1].

The terminology adopted in GAs contains many terms
borrowed from biology, suitably redefined to fit the
algorithmic context. Thus, GAs operate on a set of
(artificial) chromaosomes, which are strings of numbers,
generally sequences of binary digits O and 1. If the
objective function of the optimisation has many
arguments (typically called control factors or decision
variables), each string is partitioned in as many
substrings of assigned lengths, one for each argument
and, correspondingly, we say that each chromosome is
partitioned in (artificial) genes. The genes constitute
the so-called genotype of the chromosome and the
substrings, when decoded in real numbers, congtitute
its phenotype. When the objective functions are
evaluated in correspondence of a set of values of the
control factors of a chromosome, its values are called
the fithess of that chromosome. Thus, each
chromosome gives rise to a tria solution to the
problem at hand in terms of a set of values of its
control factors.

The GA search is peformed by constructing a
sequence of populations of chromosomes, the
individuals of each population being the children of
those of the previous population and the parents of
those of the successive population. The initial
population is generated by randomly sampling the bits
of all the strings. At each step, the new population is
then obtained by manipulating the strings of the old
population in order to arrive at a new population
hopefully characterized by increased mean fitness.
This sequence continues until a termination criterion is
reached. As for the natural selection, the string
manipulation consists in selecting and mating pairs of
chromosomes in order to groom chromosomes of the
next population. Thisis done by repeatedly performing
on the strings the four fundamental operations of
reproduction, crossover, replacement and mutation, all
based on random sampling: the parents sdlection step
determines the individuals which participate in the
reproduction phase; reproduction itsdf allows the
exchange of already existing genes whereas mutation
introduces new genetic material; the substitution
defines the individuals for the next population. This
way of proceeding enables to efficiently arrive at
optimal or near-optimal solutions.

With regards to their performance, it is acknowledged
that GAs takes a more global view of the search space
than many other optimisation methods. The main
advantages are i) fast convergence to near global
optimum, ii) superior globa searching capability in
complicated search spaces, iii) applicability even when
gradient information is not readily achievable.
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