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BAYES-FIDUCIAL APPROUCH  
FOR AIRCRAFT SPECIFIED LIFE NOMINATION 

  
Yu. M. Paramonov, Riga  Technical University, 

Rushanu    5-1-14, Riga LV-1057, Latvia,  
e-mail: rauprm@junik.lv 

 
 

 
ABSTRACT 
 

The problem  of nomination of Retirement or Specified Life (SL) of aircraft on the base of 
full-scale fatigue test result processing  is considered. SL can be defined (1) by requirement of 
fatigue failure probability limitation or (2) by economics reasons.  For optimization problem the 
Bayes-fiducial (BF) approach is offered.   BF decision is always a function of sufficient statistics 
and, by contrast with maximum likelihood method, it is based on the use of specific loss function. 
For the problem of failure probability limitation in case when sufficient statistics coincides with the 
sample itself (for example, for Weibull distribution) usually the Monte Carlo method is used but in 
this paper for the distributions with location and scale parameters  an analytical solution is offered. 

 Some numerical examples for lognormal, Weibull distributions are given. 
 
KEYWORDS 

 
Bayes, p-bound, prediction limit, quantile, lognormal, Weibull, optimization 

 
 

G. INTRODUCTION 
 
In this paper we consider only the case when  the operation reliability of aircraft is ensured 

by discarding the aircraft from service, if its service life exceeded the Retirement or Specified Life 
(SL). For discussion of inspection program (IP) development is planned another author paper but 
some short discussion of this problem already take place in  [1,2,3,4]. 

There are at least two approaches to the SL choice on the base of experimental data: (1) it 
can be defined by requirement of fatigue failure probability limitation and (2) it can be defined by 
economics reasons. If the “weight” of loss induced by fatigue failure is estimated by some value b, 
which can be comparable with the “income” per service hour (it will be assumed, that the value of 
“income” per one service hour is equal to unit), then SL can be defined as operation time, 
corresponding to maximum of income expectation value. We’ll consider both approaches. It should 
be mentioned also that SL can be chosen as (1) some number from [0,∞] and as (2) some number 
from set  of two numbers {0, t*SL}. This corresponds to (1) nomination of Specified Life,  tSL, and 
(2) rejection or acceptance of predetermined (required)  Specified Life, t*SL.  
 
2. DEFINITION OF P-SET AND P-BOUND FOR RANDOM VARIABLES 

 
To make possible the common approach for solution of the both problem  SL nomination 

and IP development   we need to remained the p-set function definition [4]. It is a special statistical 
decision function, which, in fact, is generalization of p-bound for random variable, definition of 
which was introduced by author some early  [5,6,7]. 

 P-set function is defined in following way. 
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 Definition 1. Let Z and X are random vectors of m and n dimensions and we suppose that it 
is known the class  { θP  , Ω∈θ }  to which the probability distribution of the random vector 
W=(Z,X) is assumed to belong. Of the parameter θ , which labels the distribution, it is assumed 

known only that it lies in a certain set Ω , the parameter space. Let    )()(
1

, xSxS
r

i
iZZ U

=
= denotes 

some set of disjoint sets of z values  as function of x. If  

∑
=

=∈
r

i
iZ pXSZP

1
, ))((sup

θ
                                              (1) 

then statistical decision function )(xSZ  is p-set function for r.v. Z on the base of a sample 
),...,,( 21 nxxxx = . 

Remark. Later on the value x, observation of the vector X, would be interpreted as result of 
some test (for example, full-scale fatigue test of aircraft ). For the problem SL nomination Z can be 
interpreted as some random variable equal to smallest fatigue life of N aircraft in service 
Z=min( NYYY ,...,,1 ). Then the problem is to find the function )(xτ  for which 

Θ∈θ
sup  Pθ {Z<τ(X)} = p. 

For the problem of inspection planning  Z would be interpreted as some random  vector 
( ), cd TT , where dT , cT are time moments when some fatigue crack become detectable or reaches 
critical size correspondingly. And in this case the problem is to find such sequence 

),...}(),({)( 21 xtxtxt =  that 

pXtTTXtP
r

i
icdi =<<≤∑

=
− ))()((sup

1
1

θ
,  

where ...)()( 21 << xtxt < rt  are time moments of inspections, 0t =0, rt  is time of aircraft 
odelling . The choice of odellin ),...}(),({)( 21 xtxtxt =  will be discussed in next paper but here 

we consider   onle the problem of SL nomination. 
  
For the most important case, when m=1 and Z is a random scalar, there are several useful 

definitions of special types of p-set functions )(xSZ  which for this special case we denote by )(xτ . 
Definition 2. P-set function )(xτ is called a p-bound for r.v. Z  if  

Θ∈θ
sup  Pθ {Z<τ(X)} = p .                                                       (2) 

Definition 3. P-bound )(xτ is called a parameter-free (p.f.) p-bound  for r.v. Z  if  
Pθ {Z<τ(X)} = p  for all  parameters θ ∈ Ω.                                   (3)     

Definition 4. P-bound for r.v. Z is called a right-hand binary (r.h.b. p-bound), if  for each 
possible observation x of  r.v. X, function τ(x) assigns only one of two decisions: 

τ(x) = - ∞   if  x ∈ S; τ(x) = τ*,  if  x ∈ S*,                                   (4) 
where τ* is some number, S* and S are two complementary regions of the sample space . 

 
So we see that the definition of p-bound can be considered as some generalization of  

definition of prediction limit. But it is some statistical decision function which cover both 
prediction limit and, in some may, testing statistical hypotheses.   

 We can say also that p.f. p-bound τ(x)  is a p-quantile estimate of cdf )(xFZ and, as function 
of p, it is  an estimate of inverse cumulative distribution function  )(1 pFZ

− , but very specific 
estimate: expectation value  pXFE Z =)))((( τ .  
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If Z=Y(k)  is kth order statistic of independent observations taken on Y, say Y1, Y2, ... , Ym , 
and strictly increasing c.d.f. of r.v. Y , F

Y
(x, θ), has the same unknown parameter θ as the cdf of  

iX ,  i=1,2,...,n, k = [βm], where 0<β<1, [x]-is a maximum integer less or equal to x, m → ∞ then 
approximately  

P{Y(k)< τ(X) } =  P{ 1−
YF (β) < τ(X) } = P{ YF  (τ(X))> β } = p 

and (- ∞, τ(x))  is β  - content tolerance region at confidence level p. 
The binary p-set function has, evidently, some close connection with testing statistical 

hypotheses: S* and S are two complementary regions of the sample space just as S0 and S1 in the 
problem of hypotheses testing [6]. But there is some difference. Instead of problem to maximize the 
power of a test at a fixed level of significance (probability of first type of error) this time we need to 
get the maximum of probability of decision that reliability requirements are met at the fixed 
limitation of product of the probability of failure and probability of wrong decision (we think that 
reliability requirements are met but they are not met): 

                                                 pSXPZP ≤∈≤ )()(sup **τ
θ

 . 

 
 

3. P-BOUND FOR DISTRIBUTION WITH LOCATION AND SCALE PARAMETERS 
 
 It is easy to get )(xτ for distribution with location and scale parameters. As the main 

application of the problem under question we’ll consider a problem of SL nomination for some 
fatigue-prone airframe structure. We suppose to have observations of fatigue lives of some identical 
units of this structure as a result of full-scale fatigue tests. Usually for fatigue life data processing 
both a lognormal and Weibull distributions are used. If we’ll use logarithm scale (if we’ll use 

)ln(TX = instead of T) then both these distributions become distributions with location and scale 

parameters. So we can say, that r.v. X has following structure: X= 0θ + 1θ
0
X ,  where 0θ , 1θ  are 

unknown parameters, r.v. 
0
X  has either standard normal c.d.f. )()(0 xxF

X
Φ=  or standardized 

smallest extreme value (sev) c.d.f. ))exp(exp(1)(0 xxF
X

−−=  for lognormal or Weibull distributions 

of T correspondingly.  For this case for the specified life nomination problem  following theorem 
can be used ( we give it without proof). 

 
Theorem 1. Let  

),(),(       n,1,...,i),(),(  
1

0

1

0

θ
θθ

θ
θθ −

==
−

=
xFxFxFxF oo

i Z
Z

X
X                    (5) 

where   )(0 ⋅
X

F , )(0 ⋅
Z

F  are known c.d.f. of 
0
X , 

0
Z ,     θ0,θ1 – are unknown location and scale 

parameters. And let the random variables, estimations of θ0,θ1,  as function of 
),...,,( 21 nXXXX = can be described by the similar structural formulas: 

,ˆ   ,ˆ 1110100

oo
θθθθθθθ =+=                                                    (6) 

where 10 ,
oo
θθ   - are random variables, corresponding to the estimates  of θ0,θ1   using a sample of  the 

same size n but  when θ0=0, θ1=1. We refer to this type of estimates as “correct” estimates.  
Then p.f. and r.h.b. p-bounds  are described accordingly by formulae 
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⎪⎩

⎪
⎨
⎧

>

≤∞−
==

∗∗

∗

,ˆ  ,

,ˆ  ,
)(    ,ˆ)(

2

2
211 τττ

ττ
τττ xx                                                 (7) 

 ,2,1  ,ˆˆˆ  where 10 =+= itii θθτ                                                                                                                        

1t  is p -quantile of r.v. 1

0

0

00
/)( θθ−= ZVZ , 2t is the root of equation : )(tξ =p, 

./)(V     ,)(               

),()( sup))(1)(( sup=(t)     

1010

o
c)(c

C

oooo

V
ZtZ

ctt

tFcFcFcF
C

OOO

θθθθτ

ξ
τ

−=+=

=−  

2. If one of the parameters θ1 or θ0  is known, then, as usually, we can transform the initial 
data       (x’i = xi/θ1 or x’i = xi - θ0, i∈1,...,n) in such a way that in previous formulae for τ we can 
put 11̂ =θ  or 0θ̂ =0, and then 

2.1 If it is known that the scale parameter θ1 =1 then VZ, VC should be replaced by  

00    ,
ooo

Z CUZU C θθ −=−= ; 
function ξ(t) should be replaced by the function )()(max)( 01 tFCFt

CU
ZC

=ξ  , 

but for ),...,,min( 21 nXXXX =  by function n

XZC
tFCFt ))(1)((max)(

1
00

1
1 −=ξ . 

 
2.2. If it is known that the location parameter θ0 =0 then VZ, VC should be replaced by 

,/  ,/ 11

ooo

Z CWZW C θθ ==  

function ξ(t) by the function  )()(max)(0 tFcFt
Co W

ZC
=ξ , but if additionally 

),...,,min( 21 nXXXX =  by function n

XZC
tCFcFt o ))/(1)((max)( 0

1
0 −=ξ . 

< <  
 
Let us remind that for the purpose of approximate calculation of c.d.f. for V C ,U C ,W C  the 

Monte Carlo method can be used or normal approximation of distributions of estimations 10  ,
oo
θθ . 

 
 

 
4. APPLICATION OF P-BOUND TO THE PROBLEM OF THE SPECIFIED LIFE 

NOMINATION  
 
 

4.1. OPTIMALITY CRITERION FOR P.F. P-BOUND USED FOR AIRCRAFT SPECIFIED 
LIFE NOMINATION 

 
Now we turn to a discussion of some preference orderings of decision procedures : choice of 

function )(xτ  . In framework of theorem 1 it is really  the choice of estimates  0θ̂ , 1̂θ  and risk 
function. Let ),...,,( 21 nXXXX = , where iX , ni ,...,1= , are fatigue lives of aircraft in (full-scale) 
laboratory test, ),...,,min( 21 mYYYZ = ,where jY , mj ,...,1= , are fatigue lives of aircraft in operation, 
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)()( tFtF
ji YX = , ni ,...,1= , mj ,...,1= ;   p- allowed probability of failure in operation of at least one 

aircraft. 
 In application to the problem of required SL confirmation, when *τ is required SL, we are 

interested in increasing of probability that )(xτ = *τ . It is something similar to increasing of power 
of some test in testing some statistical hypothesis. 

In application to the problem of some SL  nomination we should get the maximum of 
expectation value of )(Xτ  provided that reliability requirements are met, it is if )(Xτ  is a p-bound 
for Z. To study the optimality of )(xτ  we can use the Jensen’s inequality. This inequality say that 
the function of complete sufficient statistic, which is unbiased estimation of its own mathematical 
expectation,  provides the minimal risk if the  correspondent loss-function is convex.  Consider the 
simplest case, when 1θ  is known parameter. Let 10 θθθ tt +=  is some quantile. Random variable   

10
ˆ)(ˆ θθτθ txt +==  is unbiased estimate of its own expectation (which in general case does not 

equal to tθ ). In problem under question the function )(τZF  can be considered as the loss-function. 

Then the expectation ))(()}ˆ({ XZPFE tZX τθ <=  is the risk function. For normal and sev 
distributions of  jY  mj ,...,1= , )(τZF  is convex (and increasing one) if its value is small enough 

and we have minimum of ))(()}ˆ({ XZPFE tZX τθ <= = p   at the fixed expectation value of 

)(ˆ Xt τθ = , if )(xτ  is a function of sufficient statistic. And, on the contrary, if )(xτ  is a function of 
sufficient statistic and pXZP =< ))(( τ  then we have maximum of expectation value of )(Xτ  if p  
is small enough and probability ))(( cXP <τ is high enough for such c, that )(zFZ is convex if 

.cz <  For example, for normal distribution )(zΦ is convex if z<0. The generalization of  the 
Jensen’s inequality for the case of multivariate sufficient statistic can be found in [9]. 

For the case when sufficient statistic coincides with the sample itself (for example,Weibull 
or  smallest odelli value (sev) distribution)  usually for prediction interval  the Monte Carlo (MC) 
method is used [10]. Here we show that for the problem of p.f. p-bound, )(xτ , calculation analytic 
solution  can be found using Bayes-fiducial (BF) approach. 

 
 

4.2. BAYES-FIDUCIAL  APPROACH 
 
This approach was offered in 1973 (see [5,6,7,8]). It was shown that using this approach we 

can get  Pitmen’s estimates of location and scale parameters and most powerful invariant test  for 
testing statistical hypotheses ( )/)(()(: 1000 θθ−= xFxFH  ; )/)(()(: 1011 θθ−= xFxFH ). It can be 
used also for unbiased estimation. BF estimate, )(xτ ,  of some function of parameter )(θτ   is a 
function, which minimizes BF risk 

)())(),((),( ~ θτθτττρ θθθ dFxL XXBF ∫=  , 

where ))(),(( xL Xτθτθ is loss function, )(~ θθF  is fiducial distribution on parameter space [5,6]. 
There two advantages of BF approach: 
1. As in a case of using a maximum likelihood (ML) estimates BF solution is always a 

function of sufficient statistics, but in contrast to ML the BF solution take into account the loss 
function. 

2. We do not need to have a priori distribution of unknown parameters. 
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4.3. USING BF APPROACH FOR P.F. P-BOUND CALCULATION 
 
Let the problem is to estimate p-quantile )(θτ p  for cdf  )/)(( 10 θθ−xFZ  and loss function 

))(),(( xL Xτθτθ = 2
10

2
1010 ))/))(((())/))((()/)((( θθτθθτθθτ −−=−−− xFpxFF XZXZpZ  

when we have sample ),...,,( 21 nxxxx =  from cdf )/)(( 10 θθ−xFX . 
 
 
Let us denote by ),( pxXτ the solution of BF equation , corresponding to the considered loss 

function 
ppxFE XZ =− }~/)~),((({ 10~ θθτθ ,                                           (8) 

where )~,~(~
10 θθθ = , r.v.   0

~θ , 1
~θ  have fiducial distribution. Here ))(( XfEX  is expected value of 

)(Xf  in accordance with cdf of X. 
We can simplify solution of Eq.8.  Instead of vector ),...,( 1 nxxx =  without loss of 

information we can consider vector ),...,,ˆ,ˆ( 2110 −= nwwθθϖ , where 10
ˆ,ˆ θθ  are correct parameter 

estimates (see (6)), 10
ˆ/)ˆ( θθ−= ii xw , ni ,...,1= -2 Then conditional fiducial distribution (at the 

fixed invariant ),...,( 21 −nww ) of random variables 10
~,~ θθ  is defined by equation [5,6] 

 

1
1

1
1

10,...,|~,~
ˆ

),(
110 +

−

= n

n

ww s
hssf

n

θ
θθ 101

1

010
ˆˆ

dsds
s

swfn

i
i∏= ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+θθ  , 

where h  is just normalization factor. (Note: nn ww ,1−  , 10
ˆ/)ˆ( θθ−= ii xw , are functions of vector 

ϖ ).   
If in (8) we use new notations: 

1000
ˆ/)ˆ( θθ sU −= ,   111 /ˆ sU θ= , 10

0 ˆ/)ˆ),((),( θθττ −= pxpx  
then instead of (8) we get equation  

 

nn wwUUWW EE ,...,|,..., 1101
pUUpxF =⎟

⎠
⎞

⎜
⎝
⎛ − )/)),((( 10

0
τ .                                  (9) 

 
where random variables 10 ,UU  has  conditional pdf 

∏=
− +=

n

i i
n

wwwUU uwufuhuuf
n 1 10

2
010,...,|, )(),(

110
,                                 (10) 

where  wh   is just normalization factor which depends only on invariant vector ),...,( 21 −= nwww . 

If ),(
0

pxτ     is solution of the equation  

nwwUUE ,...,| 110
pUUpxF =⎟

⎠
⎞

⎜
⎝
⎛ − )/)),((( 10

0
τ                                      (11) 

then  

),( pxXτ = 1

0

0
ˆ),(ˆ θτθ px+                                                   (12) 

is solution of  Eq. (9) and Eq.8 because  equation (11) takes place for every vector 
),...,( 21 −= nwww , cdf of which does not depend on ),( 10 θθθ = . So if  (11) is true then (8) is true 

also. 
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It is very important that ),(
0

pxτ in (11) does not depend on value of ),( 10 θθθ =  and for 

solution of this equation we can set 00 =θ , 11 =θ .  If 10
ˆ,ˆ θθ  have the structures defined by (6) then  

probability )),(( pXZP τ<  does not depend on ),( 10 θθθ =  and we can find 1p  for which 
)),(( 1pXZP τ< =p. 

So ),( 1pxXτ  is  p-bound for random variable Z.  
 As is easy to see (see p.84 in  [6]) the pdf (8.b) is conditional pdf of 10

ˆ,ˆ θθ  at the fixed 
),...,( 21 −= nwww  for the case when 00 =θ , 11 =θ .  This means that the values of 1p and p coincide. 

It is very important also that result does not depend on the choice of the type of correct 
statistics 10

ˆ,ˆ θθ  (see (14.a) and (14.b)), because vector ),...,( 1 nxxx =  and vector 

),...,,ˆ,ˆ( 2110 −= nwwθθϖ  have one-one mapping at any choice of correct statistics.   
 
 

H. Example 1. P-bound for lognormal distribution   
  
Let r.v. T has a lognormal distribution  and t= ),,( 321 ttt =(45 952, 54 143, 65 440) is the 

sample from the same distribution. Then r.v. )log(TX =  has a normal distribution ),( 2
10 θθN  and 

x= ),,( 321 xxx = (10.735  10.899  11.089) is the sample from this distribution. The problem is to 
calculate the p.f. p-bound for independent  r.v. Z= ),...,min( 1 mYY , where r.v. iY , mi ,...,1= , has the 
normal distribution ),( 2

10 θθN  also. We consider here only the case, when m=1, because for this 
case there is   general analytical solution (see, for example p. 172 in [6])  

2/1
,110 )/11(ˆˆ)( ntx pn ++= −θθτ ,                                             (13)  

where  
x=0̂θ  , 2/12

1 ))1/()((ˆ ∑ −−= nxxiθ  
are estimates of expected value and standard deviation, qkt , is q-quantile from Student’s distribution 
with k degree of freedom. So we can make comparison of this solution with the solution which we 
get, using new approach. 

 For considered data, using equation (13)  for p=0.01 we calculate Stt =exp( )(xτ ) = 13 162, 
which is the value of p-bound for r.v. T on the base of observations ),,( 321 ttt  . 

 
Now let us consider the new approach. For normal distribution the conditional pdf has 

following form 

∏=
− +=

n

i i
n

wwwUU uwuuhuuf
n 1 10

2
010,...,|, )(),(

110
ϕ , 

where 2/12 )2/()2/exp()( πϕ xx −= . After transformation the equation (11) has the following form 

pnDza z =−Γ− )2/)1((/),,(1
0
τ , 

where 

duznDuuuDza z
n

z ∫
∞

− ⎟
⎠
⎞

⎜
⎝
⎛ −+Φ−=

0

0
2/12/)3(

0
)())1(/2()exp(),,( ττ ,   nzz

n

i /
1
∑= ,  

∑
=

−=
n

i
iz nzzD

1

2 /)( ,   )(⋅Γ  is gamma function, ,  )(⋅Φ  is cdf of standard normal distribution. 

Consider two types of statistics 10
ˆ,ˆ θθ , which for considered data has following values: 
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a) x=0̂θ  =10.908, 2/12
1 ))1/()((ˆ ∑ −−= nxxiθ =0.177  ,                                      (14. a) 

        b) nx ,10̂ =θ =10.735, nnn xx ,1,1̂ −=θ =0.354,                                                            (14. b) 
where nix ,  is ith order statistic of vector ),...,( 1 nxxx = . 

In case a) we have 
0
τ =   -7.889, in case b) we have 

0
τ =   - 3.560. 

Corresponding values of p-bound for r.v. T on the base of observations ),,( 321 ttt  are:  
=at  exp( )(xτ ) = 13 523, bt  = exp( )(xτ ) = 13 050. 

It seems that the difference  between at , bt  and Stt =13 162 is produced only by the problem 
to get required calculation accuracy. 
 
 

I. Example 2. P-bound for Weibull distribution   
 
 Let we have the same sample t= ),,( 321 ttt =(45 952, 54 143, 65 440)  or  x= ),,( 321 xxx = 

(10.735  10.899  11.089) but r.v. T has a Weibull distribution and, correspondingly )log(TX = has  
distribution of smallest extreme value with cdf  )/)exp((exp(1)( 10 θθ−−−= xxFX . In this case the 
equation (11) has following form 

pDzbDza zz =− ),(/),,(1
0
τ , 

where 
 

( )duumuzzuuDza n
n

i
i

n

i
i

n
z ))exp()exp(/()exp(),,(

0

0 11

)2(
0

ττ +−= ∫ ∑∑
∞

==

− ,   

( )duuzzuuDzb n
n

i
i

n

i
i

n
z ))exp(/()exp(),(

0 11

)2(∫ ∑∑
∞

==

− −= , 

nzz
n

i /
1
∑= ,  ∑

=

−=
n

i
iz nzzD

1

2 /)( .   

For m=1, p=0.01, using statistics (14. a ) we get 
0
τ = -11.929, using statistics (14. b) we get 

0
τ = -5.424. Corresponding  values of p-bound for r.v. T on the base of observations ),,( 321 ttt  are: 
=at  exp( )(xτ ) = 6 616, bt  = exp( )(xτ ) = 6 752.  

 

For m=500, p=0.2 using statistics (14.a ) we get 
0
τ =   -12.889, using statistics (14.b) we 

have 
0
τ =   - 5.970. Corresponding  values of p-bound for r.v. T on the base of observations ),,( 321 ttt  

are: =at  exp( )(xτ ) = 5 584, bt  = exp( )(xτ ) = 5 568.  
Again, it seems that the difference  between at  and bt  is produced only by the problem to 

get required calculation accuracy. 
Considered data really was considered in several papers and for m=500, p=0.2   Lowless 

(1973) obtaind prediction limit  of 5623, Mee and Kushary (1994) – 5225. The Mann and Saunders  
(1969)  result was only 766. For these calculation the Monte Carlo method was used [10]. 
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5. USING BAYES-FIDUCIAL  METHOD FOR SL NOMINATION WITH ECONOMICS 
OPTIMALITY CRITERION 

 
Let the income of aircraft successful service during time t is equal to t but in case of failure 

the loss is equal to some negative value –b, where b is some large positive value. Then income of 
one aircraft service, r.v. U, is defined by formula  

⎩
⎨
⎧

≤−
>

=
SL

SLSL

tTifbT
tTift

U
   ,

,      ,   , 

where T is random fatigue life, tSL is some SL.  
Expectation value of U 

u(tSL,θ, b ) = ∫
SLt

0

(t-b) d FT(t,θ)+ tSL (1- FT(t,θ))          

where ),( θtFT  is c.d.f. of T . 
In general case maximum of  u(tSL , θ, b ) is reached at t*

SL , which is the root of the equation 
 

bfT (t)/ (1- FT(t,θ)) =1 . 
For normal distribution of X=lnT it can be written in following way 

0θ = t*
SL - 1θ

1−λ ( t*
SL 1θ /b), 

where ))(1/()()( zzz Φ−=ϕλ  is failure rate function for standard normal distribution, 1−λ (.) is  
inverse function. This equation allows very easy to get 0θ  as function of t*

SL  at the fixed 1θ  and 
then to find the inverse function:  

t*
SL  = ),,( 10 bS θθ∗ . 

For b=346 000, 1θ =0.346 and 0θ =9.948   we have: ∗
SLt =7936 (flights) . It is interesting to 

note that this value corresponds to the failure probability equal to 0.0026. This can be interpreted in 
following way. The failure of 2.6 aircraft (in flight) from 1000 aircraft can be considered as 
equivalent to the loss of 346000 hours of service time or loss of 346000/7936 = 43.6 aircraft (on the 
ground) of this types (the value ∗

SLt = 7936 can be considered as the price of one aircraft of this type). 
Or in other words, failure of one aircraft (in flight) is equivalent to loss of 43.6/2.6 (approximately 
16) aircraft of the same type (on the ground). 

But we do not know parameters of c.d.f. of T and should estimate them using fatigue test 
data. Usually maximum likelihood estimate is considered as most appropriate. We show here that 
for considered problem the offered by outhor Bayes-fiducial approach is much more appropriate. 

 In accordance with Bayes approach the parameter 0θ  is r.v.. For the case of airframe it can 
be interpreted in following way. Design stress analysis of an airframe should meet some standard 
requirements (FAR,  ...). These requirements in fact define only some mean value of 0θ  but of 
course, in every case there are some “occasional mistakes” and we have some specific (random) 
value of 0θ  for every aircraft type. And then there is a scatter of r.v. X (specific random fatigue life 
of some specific aircraft) at this random 0θ . The parameter 1θ  is function of technology level, and 
if one is not changed, then the parameter 1θ is not changed also. So we suppose that 1θ  is known 
constant but 0θ  is random variable, 0

~
θ . Let π(θ0) is a priory distribution density for 0

~
θ . Then c.d.f. 

of  r.v. X will be 

∫
∞

∞−

=)(~ xFX FX((x-θ0)/θ1)π(θ0 )dθ0 . 
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It is well known, that if θ1   is constant but r.v. 0
~
θ  has normal distribution with known both 

mean τ0  and standard deviation τ1 then  distribution of  X will be again normal with mean τ0  and 
standard deviation ((τ1 )2+(θ1)2

 )1/2. In this case tSL again will be defined by equation (1), but θ1 
should be replaced by τθ1 =((τ1 )2+(θ1)2

 )1/2.  
In fact we do not know a priori distribution of 0

~
θ . For this case it is offered FB approach. 

Instead of posterior distribution of 0
~
θ  we offer to use already mentioned fiducial distribution [5]. In 

considered case fiducial distribution of 0
~
θ  again is normal with mean x  and standard deviation 

θ1/n1/2. Then for the purpose of calculation tSL we again can use the same equation (1), but 0θ , θ1 

should be replaced by x=0̂θ  and θ1 (1+1/n)1/2 correspondingly. So using sample ),...,( 1 nxxx = , 
result of full-scale fatigue test, in  case of ML approach the nominated SL is equal to ),,( 1 bxS θ∗ , 
but  for BF approach tSL (x)  = ),)/11(,( 2/1

1 bnxS +∗ θ . By the use of Monte Carlo method for 0θ  = 
9.948 , 1θ =0.346,   b=346,000   we have got that the expectation value of r.v. XU  is equal to 2310, 
4122, 5571, 6904 for BF approach but it is equal to 8624− ,  809, 4422, 6935 for ML approach for 
the same sample sizes n = 1, 2, 4, 100 . We see that for small n the  expectation value of r.v. XU  is 
much more for BF than for ML approach.  

 
 
 

SUMMARY 
 
BF approach for the specified life nomination using time test data is considered for both 

cases: probability of failure limitation and for  the maximum of expected value of some specific 
function of preference (minimum of expected value of specific loss function).  

BF approach has following advantages: 
1. As in a case of using a maximum likelihood (ML) estimates BF solution is always a 

function of sufficient statistics, but in contrast to ML the BF solution take into account the loss 
function. 

2. We do not need to have a priori distribution of unknown parameters. 
 It is given approximate analytical solution of the problem to get the maximum of expected 

value of SL.  In case of economics optimality criterion it is shown also that for considered type of 
loss function the BF approach is more preferable than direct use of ML estimates. Numerical 
examples are provided 
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Abstract 
 

The problem of representation and analysis of analog technical devices and systems 
acceptable regions is introduced. This problem occurs during designing and controlling in view of 
parametric dithering. The algorithms of constructing circumscribed parallelepiped, representation of 
acceptable region as a set of non-overlapping parallelepipeds are offered. The algorithm of 
acceptable region centre of mass computation is offered as the example of utilizing the acceptable 
region representation. 

 
J. Introduction 

 
The engineering system parameters are subject to random variations and the variations may 

be considered as non-stationary stochastic processes. The conventional methods for choosing 
parameters (parametric synthesis) generally do not take account of parameters field deviations from 
their design values. As a result the engineering systems designed in such a manner are not optimal 
in the sense of their gradual failure reliability. 

Construction of acceptable region is necessary for solving problems usually arising in 
reliability theory. The following topics are among them: 

• evaluation of the system’s working capacity with account of parameters deviations from 
their design values, 

• evaluation of parameters sensitivity and emphasizing the key input parameters, 
• assigning tolerance values for parameters, 
• choosing the most fit (optimal) nominal values for parameters of system components. 
• reducing calculation time for parametric synthesis problem when the characteristics of 

random processes X(t) of system parameters variations are known [1]. 
The acceptable region construction in the space of input parameters is the one of steps in 

parametric synthesis solution. The task often can be cumbersome due to large dimension of the 
varying parameters space. 

Most of known acceptable region construction methods can be applied on 3D space only. 
Some methods are efficient for a priori convex and simple connected regions. Other methods need 
information about form and orientation of the acceptable region. 

 
2.  Parametric reliability optimization problem  

 
Suppose that we have a system which depends on a set of n input parameters x=(x1,…,  xn). 

We will say that system is acceptable if Y(x) satisfy the conditions (1): 
a ≤ Y ≤ b       (1) 

where Y, a and b are m-vectors of system responses (output parameters) and their 
specifications, e.g. Y1 (x) – average power, Y2(x) –delay, Y3(x) – gain. 

The inequalities (1) define a region Dx in the space of input (system) parameters 
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Dx = {x | a ≤ Y ≤ b}       (2) 
Dx is called the region of acceptability for the system. Figure 1 illustrates such a region. The 

values given for a and b are the specifications for the system. 
 
 

 
 

Fig. 1. Region of acceptability Dx defined by system response functions 
 
The engineering system parameters are subject to random variations (aging, wear, 

temperature) and the variations may be considered as stochastic processes: 
)}(),...,({)( 1 tXtXtX n=  

In general parametric optimization (optimal parametric synthesis) problem can be stated as 
follows [1]. 

Given the characteristics of random processes X(t) of system parameters variations, 
conditions of acceptability (1) and a service time T, find such a deterministic vector of parameter 
ratings (nominal values) xr=(x1r ,…,xnr) that the reliability 

[ ] [ ]{ } max,0,)(),...,(),(),( 21 =∈∀∈= TtDtXtXtXPTP xnrrr x    (3) 
was maximal. 

The practical algorithm of the stochastic criterion calculation is based on the conventional 
Monte Carlo method. 

At the beginning, the random vector of parameters is generated (this vector means random 
manufacturing device realization), and then the internal parameters degradation is simulated using 
degradation model. For example, parameters variations can be approximated as follows 

∑
=

=
m

k
kr tuxtX

0
)()(  

where xk  is a random variable; { }u tk
m

k( ) =0  are continuous deterministic functions of time. 
The Monte Carlo method approximates Pr(xr,T) by the ratio of number of acceptable 

realizations (falling in region Dx)-Na to the total number of trials – N. 

N
NP a

r = , 

Unfortunately, often the region Dx  is unknown. It is given only implicitly through system’s 
equations and the system response functions. If we do not know the region Dx a Monte Carlo 
evaluation of probability Pr(xr,T) at particular nominal value xr requires N system analyses for each 
trial set of parameter xr. Typically, hundreds of trials are required to obtain a reasonable estimation 
for Pr(xr,T). 

Optimization requires evaluation of the probability Pr(xr,T) for many different values of 
parameters nominal values xr. 

The acceptable region constructing problem can be stated as follows. 
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The first step in constructing acceptable region is narrowing the search area in a space of 
internal parameters. A circumscribed parallelepiped is constructed for this purpose. The next step 
consists in approximation of Dx with a set of non-overlapping n-dimensional parallelepipeds within 
circumscribed parallelepiped. 

 
3.  Circumscribed box Construction 

 
3.1. Definition of circumscribed box 
 
Let information about variations of internal parameters is given as limits of their possible 

values, i.e. 
nixxx iii ,1,maxmin =≤≤      (5) 

The region inside of space of internal parameters is a n-dimensional orthogonal 
parallelepiped called tolerance box Bd: 

},1,maxmin|{ niixixixnRdB =≤≤∈= x     (6) 

with the volume  

∏
=

−=
n

i
iid xxV

1
minmax )(       (7) 

The box 0B  circumscribed about acceptability region xD  is the n-dimensional orthogonal 
parallelepiped [2] within the tolerance box Bd. 

},1|{ 00 nibxaRB iii
n

o =∀≤≤∈= x      (8) 
The circumscribed box’s volume is represented as 
 

      ∏
=

−=
n

i
ii abV

1

00
0 )( ,                                 (9) 

where iDi xa
x∈

=
x
min0 , iDi xb

x∈
=

x
max0 . 

 

 
 

Fig. 2: The circumscribed box 
 
The construction of the circumscribed box may narrow the area for construction of the 

acceptable region Dx and decreases computational cost of stochastic estimations. There’s no need to 

Circumscribed Box 

x2 

Acceptability 
Region 

x1 
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perform expensive scheme’s simulations at the points outside the circumscribed box because the 
conditions (1) are not satisfied at those points. 

The construction of circumscribed box and acceptability region’s volume with the method of 
statistical testing is similar to computation of multiple integral with Monte-Carlo method. 

 
The algorithm of circumscribed box construction 
 
Let the tolerance box’s boundaries (5) are known and the conditions of acceptability (1) are 

given. 
The task consists in overlapping of the tolerance region with uniform points and testing 

satisfaction of the condition (1) at the each point. 
The random point coordinates is a set of uniform numbers ),...,( 1 nξξ=ξ  distributed on 

nixx iii ,1,maxmin =≤≤ ξ .  
To find components of the vectors OO ba ,  we set the initial values maxi

O
i xa =  and mini

O
i xb = , 

1,,1 == gNni . gN  is amount of the points where conditions (1) are satisfied. 
An acceptability of the system (satisfaction of the conditions (1)) is checked at the every 

test. Depending on result of the test, the value of the indicator function )(ξg  is set. 

⎩
⎨
⎧

=
satisfiedtarenconditionsif

satisfiedareconditionsif
g

')1(,0
)1(,1

)(ξ . 

If acceptability conditions (1) are satisfied at the point ξ  the following values are set: 
),min( i

O
i

O
i aa ξ= , ),max( i

O
i

O
i bb ξ= , 1,,1 +== gg NNni . 

Having performed N point simulations, we compute acceptability region’s volume 
estimation: 

∑
=

=
N

j

j
Og g

N
VV

1
)(1/ˆ ξ       (10) 

or 

N
N

VV g
Og =ˆ ,       (11) 

where OV  - the circumscribed box’s OB  volume, gN  - amount of points inside of the acceptability 
region. 

This method enables us to solve several problems of practical importance: 
a) Region Dx is multiply connected region.  
b) Region Dx fall outside the limits of the tolerance box Bd. 
c) Region Dx include the tolerance box ( xDB ∈0 , NN g = ). 
d) Region Dx and tolerance box  Bd are mutually disjoint ( 00 =∩ BDx , 0=gN ). 
This method can be easily implemented on parallel computers with MPP architecture. The 

main condition for result accuracy is absence of interprocessor correlations [2, 3]. In the beginning 
of the process, there is an initialization of parallel random-number generator, then each process is 
initialized with the amount of tests to perform. Upon termination of calculations each of the 
processes passes computed ratings to the main processor which forms a final rating.  

Following the given necessary tests amount N and processors amount k, necessary tests 
amount m is assigned to each processor (the sample volume on each processor), thereby Nmk =⋅ . 

The final estimation of the acceptable region is computed with the formula: 
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NNVV
k

j
gjg /ˆ

1
0∑

=

= ,      (12) 

where N – necessary tests amount, NG – the amount of points within the region of acceptability for 
each of the processors. 
The boundaries of the circumscribed box BO are computed with the formulas: 

kjbbni

kjaani
O
ij

O
i

O
ij

O
i

,1),max(,1

,,1),min(,1

===∀

===∀
,     (13) 

where iDx

O
ijiDx

O
ij xbxa

xx ∈∈
== max,min  for each of k processors. 

The communication overheads are not considerable because they are reduced to primary 
initialization of the random numbers generator and obtaining of final estimations. 

 
K. The multidimensional probing method  

 
The region of acceptability within the tolerance box dBD ∈x  can be defined with the 

methods based on multidimensional probing of the tolerance box Bd. 
Let’s consider the algorithm of acceptability region construction. It is based on the concept 

of matrix tests on reliability. 
The circumscribed box BO is divided into a set of non-overlapping elementary boxes. Let’s 

perform separation of circumscribed box BO with the hyperplanes parallel to its bounds into 
),...,( 1 nll=l  slices per each coordinate. 

Then we have non-overlapping elementary boxes with bounds parallel to corresponding 
bounds of BO. The length of elementary box’s rib parallel to i-th coordinate axis is li times smaller 
than the corresponding rib of BO. 

So we have: 

UU U
1

1

2

2

,21
1 1 1

...,...
l

k

l

k

l

k
kkkO

n

n

n
BB

= = =

= .     (14) 

The total amount of elementary boxes is  

∏
=

=
n

i
ilR

1

.       (15) 

The step (i.e. the length of elementary box’s rib) on the each parameter axis is 
nilabh iiii ,1,/)( 00 =−= .      (16) 

Let’s assign the central point of each elementary box as a point-“representative”. The 
coordinates of point-representative for the elementary box 

nkkkB ,..., 21
 are computed as follows: 

nikhax iiO
ii ,1,

2
)1(

=
−

+= .     (17) 

If acceptability conditions (1) are satisfied at the point-representative of the elementary box 
nkkkB ,..., 21

 this elementary box belongs to a set of “good” elementary boxes, otherwise it belongs to a 
set of “bad” elementary boxes. 

Note also that 

Ox BD
g

R
VV

R
M

/lim =
∞→

,      (18) 

where Mg is the amount of “good” elementary boxes, R is the total amount of elementary boxes. 
Ox BD VV /  is the relation of acceptability region volume to the volume of circumscribed box BO. 
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The figure consisting of “good” elementary boxes is defined as o
xD . The figure o

xD  approximates 
the acceptable region Dx. 

The n-dimensional array ],...,,[ 21 nlllC  is corresponded to the circumscribed box BO divided 
into elementary boxes 

nkkkB ,..., 21
. Each element of the array stores the state of corresponding 

elementary box (i.e. “good” or “bad”, accordingly 1 or 0). The total amount of array elements can 
be found using (15). This array also can be called as n-dimensional matrix. In the text below it is 
called matrix. 

Now consider the representation of n-dimensional array using 1-dimensional array by 
placing its elements sequentially in a row. 

In common case the elements of that array A[R] are placed as follows: 

)},,...,,(),...,2,...,,2(),1,,...,1,,1(
),...,1,...,1,,(),...,1,...,1,,2(),1,...,1,,1(

),...,1,...,1,3,(),...,1,...,1,3,2(),1,...,1,3,1(
),1,...,1,2,(),...,1,...,1,2,2(),1,...,1,2,1(

),1,...,1,1,(),...,1,...,1,1,2(),1,...,1,1,1{(

121212

2122

1

1

1

nnn lllllll
llll

l
l

lA

−−

=

.    (19) 

The index p of the array element, corresponding to the elementary box 
nkkkB ,..., 21

 is computed 
as follows:  

1)1(...)1()1(
1

1
321211 −−++−+−+= ∏

−

=
n

n

i
i klkllklkp .     (20) 

In some kinds of tasks it is necessary to compute a set of indexes ),...,,,( 321 nkkkk  having the array 
index p and the amount of quanta ),...,,,( 321 nllll  per each coordinate axis. To compute a set of 
indexes ),...,,,( 321 nkkkk  it is necessary to do the following sequentially: 
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    (21) 

For example in the case of 3D parameter space the (21) looks as follows: 
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The procedure of the array A[R] filling consists in follows. 
Let the bounds OO ba ,  of the circumscribed box and the amount of quanta per each 

coordinate is known. Initially the amount of “good” elementary boxes is 0=gM . 

For the each index nn li ,1= ; 11 ,1 −− = nn li ; …; 11 ,1 li = : 
1. Compute the coordinates of the elementary box’s 

niii ...21
x  representative using the formula 

(17). 
2. Compute the index p of the array A unit using the formula (20). 
3. Compute the output system parameters )( ...21 niiixy . 
4. Check the acceptability conditions (1). 
5. If conditions (1) are satisfied 1,1][ +== gg MMpA . 

6. Else 0][ =pA . 
As the result we have an array A[R] that represents circumscribed box BO divided into 

elementary boxes and the amount Mg of “good” elementary boxes. If  
O

gg

V
V

R
M

≈ , the array A[R] 

represents the circumscribed box BO and the acceptable region Dx. 
Figure 3 illustrates rendered elementary boxes that represent approximation of the 

acceptable region. 

 
 

Fig. 3: Rendered “good” elementary boxes 
 

The procedure of the array A[R] filling can be performed in parallel mode. This algorithm 
can be presented as a distributed process that requires l1 processors for implementation. The 
algorithm of calculating the center of gravity for acceptable region constructed of elementary boxes. 

In fact the distribution laws of system parameters variations and the characteristics of 
random parameters degradation processes X(t) are often unknown. In some cases the center of 
gravity for acceptable region may be the numerical solution of the parametric optimization problem. 

Let’s consider the acceptable region 0
xD   as a system of M  unit-mass material points. 

The center of gravity coordinates ),...,( 1 nCC xxC =  of the body can be found as follows: 

M

jI
x

M

j
i

iC

∑
== 1

)(
, 
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where M is normalized mass of 0
xD  (amount of elementary boxes 0

xD consists of), )( jI i are static 
moments with respect to corresponding axis of each of the elementary boxes. 

Static moment )( ,...,, 21 nkkkBI   of the corresponding elementary box 
nkkkB ,...,, 21
  is calculated in 

the following way: 

0
,...,

0
,...

,...,,
1

1

21 ,0
,

)(
xkk

xkkj
kkkj DBif

DBifk
BI

n

n

n ∉
∈

⎩
⎨
⎧

=  

for nj ,1= . 
Since 0

xD  is represented with “good” elementary boxes inside the circumscribed box B0 its 
center mass coordinates can be found on whole circumscribed box B0 using the formula: 

 

M

BI
x

l

k
kkk

l

k

l

k
i
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n

n

n

∑∑ ∑
= = ==

1

1

21

2

21
,...

1 1

)(...
, 

for  nn lklk ,1,...,,1 11 == . 
When center of gravity is being calculated simultaneously with construction of acceptable 

region using one-dimensional array the procedure of filling the array ],...,,[ 21 nlllC  (A[R]) and 
calculating the center of gravity ),...,( 1 nCC xxC =  is in follows. 

Let the boundaries OO ba ,  of the circumscribed box, the amount of quanta 
),...,,,( 321 nllll=l  on each of the axes and the lengths ),...,( 1 nhh=h  of quanta on each of the axes 

are known. Let also the amount of “good” matrix elements 0=M  and ),...,( 1 nSISI=SI  is the 
array of static moments sum with respect to n coordinate axes. 

L. For nn lk ,1= ; 11 ,1 −− = nn lk ; …; 11 ,1 lk = : 
1.1. the coordinates  knkk ...21x  of point-representative for the current elementary 

box are calculated: 

ni
h

khax i
iiii ,1,

2
0 =−+= . 

1.2. The system response functions )( ...21 knkkxy  are calculated. 
1.3. The acceptability conditions (1) are checked. 
1.4. If conditions (1) are satisfied  

1,1],...,,[ 21 +== MMkkkC n , 

nikSISI iii ,1, =+=  
1.5. otherwise ],...,,[ 21 nkkkC . 

2. The gravity center coordinates for 0
xD  are calculated: 

ni
M
SI

x i
iC ,1, == . 

As the result the array ],...,,[ 21 nlllC  (A[R]) is filled, the amount M of “good” elementary 

boxes and the coordinates of the center of gravity C  for 0
xD  are obtained. 

In the case when the array ],...,,[ 21 nlllC  (A[R]) was filled previously the procedure of 
calculation of the gravity centre for 0

xD  consists in follows. 

1. For  nn lk ,1= ; 11 ,1 −− = nn lk ; …; 11 ,1 lk = : 
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if ( ) 1,...,, 21 =nkkkA , then nikSISI iii ,1, =+= . 
2. The gravity center coordinates for 0

xD  are calculated: 

ni
M
SI

x i
iC ,1, == . 

Hence it is necessary to perform exhaustive search of the array ],...,,[ 21 nlllC  (A[R]) 
elements for calculating of the gravity center of the body. 

Having found the center of gravity for 0
xD  the inverse mapping on acceptable region is 

performed the following way: 

nix
l

ab
x iC

i

ji
Ci ,1,

00

=
−

= .  

Conclusion 
 

The circumscribed box may narrow the area for construction of the acceptable region and 
decreases computational cost of stochastic estimations. Computation of internal parameters ratings 
with lack of distribution density functions for both input and output parameters requires obtaining 
of acceptable region characteristics. On the basis of the proposed methods and the algorithms a 
computer-aided reliability-oriented design system called CARD has been developed. The CARD 
system states mathematical models and calculates ratings of component parameters with the highest 
precision, acceptability (manufacturing yield) or reliability of engineering systems under design. 
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References on variation of reliability on the curves received at analysis of statistical data can 

appear erratic if not to consider a random in character of assessments of indexes of reliability. The 
comparison method of criteria of a discernment of the functional characteristics indexes of 
reliability reduced at ordinal and nominal dials of variation of argument. 

 
 While in service the equipment and systems of plants EES there is a necessity for a 

reliability analysis of their activity. The reliability analysis implies an assessment and matching of 
some indexes of reliability (IR), describing those or other properties. As a result, of analysis the 
certain references on build-down of working costs formed. The greatest propagation was received 
with data on «weak links » plant, about conditions and character of originating of failures, a type of 
failures and so forth. These data in many respects determine volume of plan repair work, measures 
on perfecting system of maintenance, perfecting of methods verification availability index. 

 The solution so important for build-down of working costs of problems, in an essential 
degree is at a loss a small amount of information about availability index of the equipment and 
systems of plants EES. The averaged IR and their empirical characteristics (EC) often do not mirror 
a singularity of particular plant, and individual IR and matching them EC, application of special 
methods and the approaches considering a random in character of assessments of IR require and the 
statistical odelling es orientated on check. Under EC IR we shall agree to fathom empirical 
regularity of IR in function of some varieties of indications (VI). Instances EC are regularity 
variation of IR on calendar years, duration of exploitation, a season and day, depending on the 
class-room of a voltage, the dispatcher numbers of the equipment, systems and electric sets, 
configuration items, etc. Real regularity of variation of IR in function VI we shall agree to name the 
functional characteristics (FC). 

 The urgency of a problem of the account of a random in character assessments of IR causes 
steadfast notice of technicians. Are developed series of criteria for matching assessments of the 
same type IR and their characteristics for continuous random quantities [1]. At a reliability analysis, 
not less characteristics of IR which scale of measurement of argument concerns to the classroom 
ordinal or nominal [2] often are used. For these scales of measurement, the criteria considering a 
random in character of watched regularities require the perfection since insufficiently full mirror as 
modes of an assessment of the fundamental and additional IR, and the discrete character of 
variation of argument. Therefore, there are reasons to believe, that the number will increase them in 
due course. Thus, there is a problem of matching of criteria for the purpose characteristics of their 
reliability (probability of a correct solution).  

It is known, that in theory checks of statistical hypothesizes the preference is returned 
criterion, for which at the fixed value of an error of first kind, an error of second kind the least. As it 
noted in [1], comparison of statistical criterions constitutes rather a challenge of modern 
mathematical statistics. 

 The most simple and illustrative mode is graphical map of characteristics of intercoupling of 
errors first [α(х)] and second [β(х)] stems in the form of function [ ])()( xfx αβ = , or in the form of 
intercoupling of power of criterion )(1)( xxW β−=  and α(х). However, a seeming ease of this 
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mode is deceptive. For a case history of originating difficulties, we shall survey sequence of a 
presence of dependence [ ])()( xfx αβ = . She provides following determinations and evaluations: 

1. Shaping of suppositions (hypotheses) concerning character of variation of examined 
dependence. As agency of a random in character of assessments IR is considered, normally 
surveyed two hypotheses. Considered, that actually a development all VI equiprobable (hypothesis 
Н1). For example, assemblies of the cutout have equal reliability, and the watched divergence of 
assessments VI coupled only to a small amount of information, random. 

 The second (alternative) hypothesis (Н2) also is natural – the watched regularity of variation 
of IR mirrors a real quantitative ratio of significance VI. 

2. Account of distribution functions si HxF )/( 1  and si HxF )/( 2  where xi – statistician of i-
th criterion i=1,s; s – number of compared criteria. If the distribution function of the discrete 
random quantity is known, formulas of account, as a rule, are known )/( 1HxF i  and )/( 2HxF i . 
For example, if the model of experiment matches to a binomial low distribution, formulas of 
account )/( 1HxF i  and )/( 2HxF i  will differ only, accordingly, with usage for account )/( 1HxF i  
hypothetical probability, and for account )/( 2HxF i  - empiric probability. 

 If the distribution function of a random quantity is unknown, that occurs for a greater unit of 
IR, allocations )/( 1HxF i  and )/( 2HxF i  evaluated by a method of simulation modeling. An 
instance of such characteristics are regularity of variation of an average of failures of cutouts of 
various class-rooms of a voltage, variation of an emergency shut-down coefficient depending on 
duration of exploitation and others; 

3. Account of allocations )( ixα  and )( ixβ . The solution of this problem simple enough 
would seem 

)/(1)/( 11 HxFHx ii −=α      (1) 
)/()/( 22 HxFHx ii =β     

 (2) 
 However, such inference is fair, if assessments of expectation of a statistician xi for Н1 and 

Н2 satisfy to a following condition: 
)/()/( 2

*
1

* HxMHxM ii <      (3) 
 Otherwise, i.e. when 

)/()/( 2
*

1
* HxMHxM ii >      (4) 

 following equalities are fair 
)/(1)/( 22 HxFHx ii −=α      (5) 

)/()/( 11 HxFHx ii =β      (6) 
 If neglect a parity of means statistician xi serious errors in an adoption of a decision are 

possible. The account of a parity )/( 1HxM i  и )/( 2HxM i  it is especially important at automatic 
application of criteria in program models. The graphical case history of a short of an erratic solution 
reduced on fig.1. 

As follows from fig.1, not account parities )/( 1
* HxM  and )/( 2

* HxM  leads to sharp 
variation of critical value of quintiles of allocations )/( 2Hxα  and )/( 1Hxβ . If at physically 
correct comprehension of errors the first and second stem, critical value of quintiles at 

1,0== kk βα  are accordingly peer )1(X  and )2(X , that at their erratic comprehension 

( )/()/( 2
*

1
* HxMHxM > ), these quintiles are accordingly peer )1(X  and )2(X , that )1()1(

XX <<  

and )2()2(
XX >> . If 

)2()1(
XX < , that )2()1( XX > ; 
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4. Construction of dependence [ ])()( ii xfx αβ = . To build this dependence it is necessary to 
consider following singularities: 

4.1. Levels of discrete samplings of allocations )/( 1HxF i  and )/( 2HxF i  can completely 
and partially differ. Here there is in view of not the partial overlapping of spacing of possible value 
of argument of allocations and not a complete divergence of these spicing. Difference of discrete 
samplings watched on the interval overlapping of possible value. It is established, that a necessary 
condition of existence of generic points of a discrete sampling is proportionality mx  to value 

Σ= n1ε , where Σn  - total number of failures 
 

 
 

Fig. 1. A graphical case history of aftereffects of disregard a parity )/( 1
* HxM  and 

)/( 2
* HxM  

 
4.2. Between dependences [ ])()( xfx αβ = , builted for conditions (3) and (4), there is a 

divergence. In the first event, we have dependence of probability erratic disallowance hypothesis Н1 
in function of probability erratic disallowance hypothesis Н2, i.e. [ ])/()/( 12 HxfHx αβ = , and in 
the second event [ ])/()/( 21 HxfHx αβ = . In discover the reflecting noted in item.3 serious errors 
in an adoption of a decision. 

 Therefore, it is necessary to compare not with value of error of second kinds at fixed error 
figures of the first stem, and an error at adoption of hypothesis Н2 for the fixed error figure at 
disallowance hypothesis  Н1. 

 Graphical case history of difference of curves [ ])/()/( 12 HxfHx αβ =  and 
[ ])/()/( 21 HxfHx αβ =  it reduced on fig.2. These curves are builted for criterion of matching of 

an assessment of chances of failure *Q  with hypothetical probability Q0, where 

05.060/3/* === ΣnnQ i , and ∑
=

Σ =
rm

i
inn

1
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Fig. 2. A graphical case history of difference curves of intercoupling  

of errors of the first and second stem. 
 
To simplify the subsequent account, to consider (3) and (4), we shall agree probability 

erratic disallowance hypotheses H2 to designate through )( 2HxSh  and probability erratic 
disallowance hypotheses H1 to designate through )( 1HxSh . 

The subsequent treating of singularities of matching of criteria of discernment distribution 
functions of variation of IR at nominal and ordinal dials of argument we shall continue on a 
particular instance. 

5. To have a possibility to evaluate reliability of a solution, EC has been received by a 
method of statistical modeling, by: 

а) software prototyping Σn  random numbers ξ  with an even distribution in the interval 
[0,1]; 

б) compliance test of these ( Σn ) random numbers to the uniform law Kolmogorov’s 
criterion; 

в) arrangement Σn  random numbers in rm  peer spacing by comparison vξ  with the upper 
boundary values rm  spacing by formula 

rvr mimi /)1(/ +≤< ξ       с i=1,( rm +1) 
г) assessments of probability of a development set VI by formula Σ= nnQ ii /* . 
 The first criterion is based on the supposition of correspondence of probability of a 

development of each of i=1, rm  VI to binomial low. Critical value of errors of the first and second 
stem for each spacing were sampled in view of theorem Touke according to which rKiK m/, αα =  
and rKiK m/, ββ =  с i=1, rm . Let’s designate it conditionally through КB.  

 The second criterion based on an assessment of allocation of the greatest divergences of 

simulated implementation of allocations )(iF  и )(* iF , where rmiiF =)( ; ∑
=

Σ=
rm

i
i nniF

1

* )( ; 

∑
=

Σ =
rm

i
inn

1

.. We shall designate it conditionally through δK  

In table 1 value of argument X and conforming discontinuous distributions are reduced 
)/( 11 Hxα , )/( 21 Hxβ , )/( 12 Hxα  and )/( 22 Hxβ , where Σ⋅= nxx m2 . As follows from this table, 

to the same х there match various value )/( 11 Hxα  and )/( 12 Hxα , that brings ambiguity of 
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comparison of criteria and comparison bears that )/( 21 Hxβ  and )/( 22 Hxβ  at fixed )/( 1Hxα  it is 
impossible, and consequently, and it is erratic. 

M. To reduce )/( 11 Hxα  and )/( 12 Hxα  to the same argument, we shall compare 
argument X with quotients of a significance of power of the criteria computed 
by formula: 

[ ] )/()/()/()/(1)( 1212 HxHxWHxHxxA ααβ =−=   (7) 
at    )/()/( 2

*
1

* HxMHxM <  
[ ] )/()/()/(1)/()( 2121 HxHxWHxHxxB ααβ =−=   (8) 

at    )/()/( 2
*

1
* HxMHxM >  

Numerical values of allocations )/( 1Hxα  and )/( 2,2 Hx iβ  
Table 1 

ix  )/( 1,1 Hx iα  )/( 2,2 Hx iβ  )/( 1,2 Hx iα  )/( 2,2 Hx iβ  
2 0,8861 0,0015 0,9810 0,0030 
3 0,7471 0,0063 8322 0,0659 
4 0,5672 0,0202 0,5275 0,3336 
5 0,3899 0,0512 0,2178 0,6613 
6 0,2312 0,1081 0,0579 0,8721 
7 0,1241 0,1958 0,0090 0,9590 
8 0,0596 0,3120 - 0,9860 
9 0,0258 0,4464 - 0,9940 
10 0,0100 0,5834 - 0,9980 
11 0,0036 0,7079 - 0,9990 
12 0,0011 0,8097 - - 
13 0,0003 0,8848 - - 
 
 Outcomes of accounts )( 1xA  and )( 2xA  are reduced in table 2. As follows from table 2, at 

the fixed value of argument X quotient of a significance )( 1xA  for criterion КB it is more, than 
value )( 2xA  for criterion δK .  

 
Outcomes of accounts of empirical value of quotients А(х1) and В(х2) 

Table 2 
ix  )( ,1 ixA  )( ,2 ixA  

2 1,13 1,02 
3 1,13 1,12 
4 1,73 1,26 
5 2,47 1,56 
6 3,86 2,21 
7 6,48 4,56 
8 11,54 - 
9 21,46 - 
10 41,66 - 

  
It is necessary to mark, that comparison of criteria should conducted not for the same 

arguments х, and for critical value [ ]KK HxXx αα <= )/( 1 , i.e. to argument with the greatest value 
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)/( 1Hxα , satisfying to a condition KHx αα <)/( 1 . For example, according to table 1 for criterion 
КB at 05.0=Kα  value 9,1 =Kx , and for criterion δK  - pearly 8. 

7. Comparison of criteria can carried out and a little differently. In a fig 3 curves are reduced 
[ ])/()( 12 HxShfHxSh = . For conforming critical value of probability )( 1HxSh  value are 

determined )( 2HxSh . In the received statement of conditions of comparison of criteria, than 
)( 2HxSh  for matching )( 1HxSh  it is less, that the criterion is more preferable. According to a fig 

3 it is criterion КB. 
8. Despite of a seeming finality the tasks in view separate, multiply the checked out facts 

were not matched with noted in item 6 and 7 outcomes of comparison of criteria. To them 
concerned: 

 
 

Fig. 3. The Graphical case history of matching of criteria 
 
8.1. If )/()/( 21 HxFHxF = , i.e. Н1=Н2, that irrespective of type FC function 

[ ])/()( 12 HxShfHxSh =  looks like )/(1)( 12 HxShHxSh −= . If Н1≠Н2, that 
)/(1)( 12 HxShHxSh −≠ ; 

8.2. The empirical value of the greatest divergence between EC and FC is less, the 
incurvation (bulge) of curves is less [ ])/()( 12 HxShfHxSh =  and the more error figure 

)( 2HxSh ; 
8.3. At small difference EC and EC, including practically insignificant, a solution of 

matching EC and FC will be: «the information has not enough for an adoption of a decision »; 
8.4. With magnifying of number of experiences Σn  and correspondences )(* iF  to even 

distribution, value )( 2HxSh  increases. 
9. These data allow to conclude, that if EC is received by statistical modeling on some 

allocation )(iF  with i=1,mr, that value )( 2HxSh  characterizes probability of an erratic deflection 
of hypothesis Н2 owing to a random in character of assessments of the IR computed for each of mr 
VI. In this case it is easy to explain, why with decrease of a divergence between EC and FC value 

)( 2HxSh  at the fixed number of “experiences” increases (the less divergence, the more than data it 
is necessary for a discernment of this divergence) and why with magnifying of a divergence 
between EC and FC )( 2HxSh  diminished 

10. If to receive, that at equiprobable development VI value )/()( 22 HxShHxSh = , that 
value 



Farhadzadeh E.M., Muradaliyev A.Z., Farzaliyev Y.Z. – MATCHING OF CRITERIA THE DISCERNMENT OF THE FUNCTIONAL CHARACTERISTICS OF 
INDEXES OF RELIABILITY OF PLANTS EES 

 
R&RATA # 3  

(Vol.1) 2008, September 
 

 

- 35 - 

)/()/()/( 222 HxShHxShHxSh S −=Δ    (9) 

it will be proportional to an error in a discernment of difference EC from the uniform law. 
At the fixed value )/( 1HxSh K  the preference is returned criterion with greater value )( 2HxSh , 
and with allowance for item.6 the preference is returned criterion, for which greatest divergence of 
quotients A(x) or B(x) and units of the fixed value )/( 1Hxsh K  the least on matching with other 
criteria. 

 Systematizing the above-stated, the method and algorithm of matching S of criteria is 
represented the following amalgamated sequence of evaluations: 

1. Allocations pay off )/( 1HxF  and )/( 2HxF ; 
2. Subject to the conditions (3) and (4) allocations are formed )/( 1HxSh  and 

)( 2HxSh ; 
3. Real critical value of probability erratic disallowance hypotheses Н1 by formula are 

determined 
{ }Kd HxShHxSh α<= )/(max)/( 11   (10) 

4. It is determined )( 2HxSh , matching )( 2HxShd ; 
5. The probability erratic disallowance hypotheses Н2, caused by algorithm of criterion 

by formula is evaluated 
)/()/(1)/( 212 HxShHxShHxSh d −−=Δ  

6. The preference returned criterion, for which )/( 2HxShΔ  the least. 
 
 

Inference 
 

1. The account of an error of second kind in conditions when aftereffects from erratic 
solutions are indiscernible, so important, as well as an error of first kind. The disregard to physical 
nature of both errors leads in practical accounts to incorrect solutions; 

2. Known references with reference to criteria of a discernment of the functional 
characteristics of indexes of reliability at ordinal and nominal dials of argument are unacceptable 
for matching criteria; 

3. Erratic solutions at usage of these references originate owing to: 
 Insufficient sharpness of the gear of the account of physical nature of errors of the first 

and second stem. Such “gear” the parity of means of argument of allocations can minister 
)/( 1HxF  and )/( 1HxF ; 

 Difference of levels of a discrete sampling of arguments allocations )/( 1Hxα  and 
)/( 2Hxβ . Characteristics ))(()( xfx αβ =  should be under construction for the same value х; 

 Comparisons of error of second kinds of criteria at the fixed value of an error of first 
kind. It is necessary to compare with an error in disallowance hypotheses Н2 at the fixed value 
erratic disallowance hypotheses Н1;  

 Differences erratic disallowance hypothesis Н1 for equal levels of a discrete sampling of 
statistician of compared criteria. Overcoming of this nonconformity is reached by comparison of 
criteria on regularities of variation of a relative significance of power of criteria under formulas (7) 
and (8) 

 Irregular interpreting matching )/( 1HxSh  probabilities )/( 2HxSh , only as probabilities 
erratic to deny hypothesis Н2. Actually )/( 2HxSh  characterizes probability erratic disallowance 
hypotheses Н2 owing to roundedness of statistical data for a discernment of the functional junctions; 
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4. The method, algorithm and programs model of matching of criteria of a discernment of 
the functional characteristics of indexes of reliability of plants EES is developed. Probability of the 
supervision of reliability of a solution were ensured with a solution technique of “inverse problem” 
when empirical the characteristics of indexes of reliability were simulated on the sampled regularity 
of variation VI. 

5. Matching of the criterion based on binomial model of probability of development VI and 
criterion, the greatest deflection of empirical and hypothetical characteristics based on value bears 
to doubtless advantage of the second criterion. 
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ABSTRACT 
 
In this study, various stochastic approaches to biological aging modeling are discussed. We 

assume that an organism acquires a random resource at birth. Death occurs when the accumulated 
damage (wear) exceeds this initial value. Another source of death of an organism is also taken into 
account, when it occurs as a consequence of a shock or of a demand for energy, which is a 
generalization of the Strehler-Mildvan’s model. Biological age, based on the observed degradation, 
is also defined. Finally, aging properties of imperfectly repaired systems are discussed. We show 
that aging slows down with age in this case. This presents another possible explanation for human 
mortality rate plateaus. 

 
Keywords: damage accumulation, redundant systems, degradation of organisms, aging 

distributions, mortality rate, biological age. 
 
 

1. INTRODUCTION 
 
There is extensive published literature on numerous biological theories of aging. Various 

stochastic mortality models are reviewed, for instance, in Yashin et al. (2000). Most authors agree 
that the nature of aging is associated with “biological wearing” or “wear and tear”. Reliability 
theory possesses the well-developed tools for odelling wear in technical systems; therefore it is 
natural to apply this technique to biological aging (Finkelstein, 2005). Because even the simplest 
organisms are much more complex than the technical systems that are usually considered in 
reliability analysis, these analogies should not be interpreted too literally. Therefore, the 
implications of the corresponding stochastic odelling should be considered carefully.  

    Populations of biological organisms – unlike populations of technical devices – evolve in 
accordance with evolutionary theory. Various maintenance and repair problems (including those 
with limited resources) have been intensively studied by reliability theory. However, the notion of 
reproduction, which is crucial for bio-demography, has not been considered – although stochastic 
birth and death processes can certainly be useful for the corresponding odelling. On the other 
hand, popular evolutionary theories (e.g., Kirkwood’s “disposable soma” concept (Kirkwood, 1977, 
1997)) try to link mortality, fertility, maintenance and repair, but do not yet possess the sufficient 
biological knowledge and mathematical tools for considering appropriate stochastic models of 
repair and maintenance in a proper evolutionary context. This means that existing and future 
reliability models could enrich biological aging theory and vise versa: for example, a disposable 
soma concept can be helpful for the optimal allocation of spare parts in some “structurally 
homogeneous” engineering systems.  
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    It is worth noting that evolutionary theories tend towards a rather controversial view in 
that all damage, in principle, is repairable and that natural selection can shape the lifetime trajectory 
of damage and repair, constrained only by physical limitations of available resources (Steinsaltz and 
Goldwasser, 2006). However, not all damage in organisms can be reversed: for example, damage to 
the central nervous system and heart tissue is usually irreversible. In any case, the importance of 
different repair mechanisms for the survival of organisms is evident, which brings into play 
stochastic odelling of all types of repairable systems: perfectly, minimally and imperfectly 
repairable ones. This topic has been partially studied in reliability theory, but there are still many 
problems. 

     The future general theory of aging will probably be built on the basis of future unified 
biological theories that will use stochastic reliability approaches as an important analytical tool. 
Some interesting discussion on general “quality management” of organisms and the pros and cons 
of exploiting the existing reliability approaches for biological aging are presented in Steinsaltz and 
Goldwasser (2006).  

     Vaupel’s (2003) conjecture that “after reproduction ceases, the remaining trajectory of 
life is determined by forces of wear, tear, and repair acting on the momentum produced by the 
Darwinian forces operating earlier in life” resulted in the reliability odelling of  Finkelstein and 
Vaupel (2006). These authors state: “As the force of natural selection diminishes with age, 
structural reliability concepts can be profitably used in mortality analysis. It means that the design 
of the structure is more or less fixed at this stage and reliability laws govern its evolution in time. 
However, it does not mean that these concepts cannot be used for mortality odelling at earlier 
ages, but in this case they should be combined with the laws of natural selection”.    

     In accordance with a conventional definition, reliability of a technical object is the 
probability of performing a designed function under given conditions and in a given interval of time 
(Hoyland and Rausand, 1993). This definition can be applied for a probabilistic description of a 
lifespan of organisms T , where its designed function is just to be alive. For example, the main 
demographic model for the lifetime of humans is the Gompertz (1825) law of mortality, defined by 
the exponentially increasing mortality rate )(tμ : 

⎭
⎬
⎫

⎩
⎨
⎧

−−−=≤= ]1}[exp{exp1)Pr()( ttTtF β
β
α ,                              (1) 

}exp{)( tt βαμ = ,  0,0 >> βα . 
 

This is a direct descriptive way to model the lifespan random variable T . It is well known 
that human mortality data, at least for adults, perfectly comply with this model.  

     In accordance with reliability terminology, the Gompertz law belongs to a family of 
increasing failure rate (IFR) distributions. This is the simplest and most commonly used in 
reliability theory aging family of distributions. It is widely used for description of various 
degradation processes in engineering systems (Barlow and Proschan, 1975). There were a number 
of attempts in the past to justify the exponential form of the human mortality rate by some 
mechanism or model, but most of these exploited additional assumptions, either explicitly or 
implicitly equivalent to the desired exponentiality. (Strehler and Mildvan, 1960; Witten, 1985; 
Koltover,1997; Gavrilov and Gavrilova, 2001). 

     In what follows, we consider several important applications of reliability-based 
stochastic reasoning, unified by concepts of aging and degradation. This is partially a review paper 
of relevant approaches that are mostly developed or generalized by the author in the field of 
engineering reliability, but modified and adjusted to the description of biological aging.  

     In Section 2, the resource-based models are considered – an organism at birth acquires 
some random resource (vitality) and the death occurs when this resource is ‘consumed’. For the first 
time, we use here the unified approach to deal both with the cases of continuous and discrete 
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resources. Specifically, we show that the reliability theory of aging (Gavrilov and Gavrilova, 2001) 
is a simple particular case of our more general model and, moreover, does not necessarily result in 
the Gompertz law. 

     Section 3 is devoted to the definition of the virtual age of a degrading object. We 
consider this topic as being one of the most important for the future research, as it creates the 
possibility of comparing life spans of organisms in different environments.  

     In Section 4, we suggest a new generalization of the Strehler and Mildvan (1960) vitality 
model with shocks, and show that the necessary condition that is omitted in original and subsequent 
publications is the assumption of the Poisson property of the shock process.   

     Finally, Section 5 deals with aging in repairable systems (imperfect repair). The results 
of this section are based on our recent mathematical findings (Finkelstein, 2007). An important 
interpretation for biological aging is that under certain assumptions, aging can slow down for 
individuals of advanced ages, which is already observed for human populations (mortality plateau).  

     We are convinced that mathematical, reliability-based modeling of aging is an important 
part of biological aging research. We show how straightforward stochastic approaches can work, in 
principle, for some settings.  These approaches are probably oversimplified and should be 
developed in the future to more closely match the real biological situation. 

 
 

N. UNOBSERVED OVERALL RESOURCE 
 
Following Finkelstein (2003), we assume that an organism at birth ( 0=t ) acquires an 

overall unobserved random resource R  with a distribution function )(0 rF : )()(0 rRPrF ≤= . We 
also assume that the process of an organism’s aging is described by an increasing, deterministic for 
simplicity cumulative damage function )(tW ( 0)0( =W ) (to be called “wear”).  The wear increment 
in ),[ dttt +  is defined as )()( dtotw + . Additionally, let ∞→)(tW  as ∞→t . Under these 
assumptions, we arrive at the well-known in reliability theory the accelerated life model (ALM):  

))(())(()()( 0 tWRPtWFtFtTP ≤≡=≡≤ ,                                (2) 

).,0[;0)(;)()(
0

∞∈>= ∫ ttwduuwtW
t

 

Death occurs when the wear )(tW  reaches R . 
     Substituting the deterministic wear )(tW  in (2) by the increasing stochastic process 
0, ≥tWt  leads to the following relationship (Finkelstein, 2003):  

)]([)()()( 0 tt WFEWRPtTPtF =≤=≤= ,                                   (3) 
where the expectation is defined with respect to 0, ≥tWt . As the mortality rate is a 

conditional characteristic, it cannot be obtained from (3) as a simple expectation: 
)]([)( 0 tt WwEt μμ =  and the proper conditioning should be performed (Yashin and Manton (1997)):  

]|)([)( 0 tTWwEt tt >= μμ ,                                              (4) 
where tw  denotes the stochastic rate of diffusion: dtwdW tt ≡ , and the baseline mortality 

rate )(0 tμ  is defined by the distribution )(0 tF .  
     A good candidate for 0, ≥tWt  is the gamma process, which, according to definition, has 

stationary independent increments and st WW −  ( st > ) has the gamma density with scale 1 and 
shape )( st − . The Wiener process can also sometimes be used for odelling wear, but it does not 
possess the monotonicity property, which is natural for the processes of wear.  
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Example 1. As a specific case of the unobserved reserve model, consider now a discrete 
resource NR =  with a distribution: )()(0 nNPnF ≤≡ . The following simple reliability 
interpretation is meaningful: Let N  be a random number of initially (at 0=t ) operable 
independent and identically distributed (i.i.d.) components with constant failure rates λ .  Assume 
that these components form a parallel system, which, according to Gavrilov and Gavrilova (2001), 
can model the lifetime of an organism (the generalization to the series-parallel structure is 
straightforward). In each realization, 1, ≥= nnN , our degradation process 0, ≥tWt  for this setting 
is just a counting process for the corresponding process of pure death: when the number of events 
(failures of components) reaches n , the death of an organism occurs. The transitions rates of the 
corresponding Markov chain are: ,...)2(,)1(, λλλ −− nnn  Denote by )(tnμ  the mortality rate, which 
describes nT  - the time to death random variable for the fixed ,...2,1, == nnN . ( 0=n  is excluded, 
as there should be operable components at 0=t ). Similar to (4), the mortality rate is given as the 
following conditional expectation with respect to N : 

]|)([)( tTtEt N >= μμ .                                              (5) 
Note that for small t : 

)()]([)(
1

tPtEt n
n

nN μμμ ∑
∞

=

=≈ ,                                       (6) 

where )( nNPPn =≡ , but the limiting transition, as 0→t , should be performed carefully 
in this case. It is clear that as ∞→t : 

λμ →)(t .                                                      (7) 
This is because the conditional probability (on condition that the system is operable) that 

only one component is operable, tends to 1.  
Assume that N  is Poisson-distributed with parameterη . Taking into account that the 

system should be operable at 0=t :  

,...2,1;
})exp{1(!

}exp{
=

−−
−

= n
n

P
n

n η
ηη . 

It can be shown that (Steinsaltz and Evans, 2004): 

.
}exp{1

}}exp{exp{1)()(
η

λη
−−

−−−
=≤=

ttTPtF                                       (8) 

The corresponding mortality rate is:  

1}}exp{exp{
}exp{

)(1
)()(

−−
−

=
−
′

=
t
t

tF
tFt

λη
ληλμ .                                       (9) 

It can be seen that the mortality plateau (7) exists for the mortality rate (9) as well.  This 
function is far from the exponentially increasing Gompertz law. In fact, the Gompertz law can 
erroneously result, if approximation (6) is used formally, as in Gavrilov and Gavrilova (2001). 

 
 

O. DEGRADATION AND VIRTUAL (BIOLOGICAL) AGE 
 
The previous section is helpful for discussing an important and challenging notion of virtual 

(biological) age. Assume for simplicity, as previously, that deterioration of an organism can be 
modeled by a single, predictable, increasing stochastic process with independent increments 

0, ≥tWt . Observing its state at time t  can give, under certain assumptions, an indication of a ‘true’ 
age, which is defined by the level of the observed deterioration. We shall call this characteristic an 
information-based virtual (biological) age of a system or of an organism. If, for example, someone 
of 50 years old looks like and has vital characteristics (blood pressure, level of cholesterol, etc) that 
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are of an ‘ordinary’ 35- year-old individual, we could say that this observation indicates that his 
virtual (biological) age can be estimated as 35 years. This is, of course, a rather vague statement, 
which could be made more precise for some simple, specific model settings and under certain 
assumptions.  

 
Example 2. Consider a system of 1+n  components (one initial component and n  cold 

standby identical ones) with constant failure (mortality) rates λ , which starts operating at 0=t . 
Note that in the previous example we had described a system with a hot (loaded) redundancy. The 
failure occurs when the last component fails. Thus 0, ≥tWt  in this case is just a counting process 
(number of failed components) for the stopped Poisson process with rate λ . A possible biological 
interpretation: the limited number of repairs (Vaupel and Yashin, 1987) or cell replications. The 
mortality rate of the described system is an increasing function of the form (Hoyland and Rausand, 
1993): 

{ }

∑−

−
=

n i

n

i
tt

nttt

0 !
)(}exp{

!)(exp)(
λλ

λλλμ .                                                 (10) 

Consider the following conditional expectation: 

∑

∑

−

−
=≤≡

n i
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where )(tN  is the number of events in the interval ],0[ t  for the Poisson process with the 
rate λ . As we observe an operable system, relationship (11) defines the expected value of the 
number of its failures (measure of degradation) on condition of survival in ],0[ t . The function )(tD  
is monotonically increasing, 0)0( =D  and nt =∞→lim . This function defines an average 
degradation curve for the defined system. Assume that at time t  we observe k  failed components. 
This is the measure of observed degradation in our system. Denote the corresponding (information-
based) virtual age by )(tV . Our definition of )(tV  for this specific model is: 

)()( 1 kDtV −= ,                                                       (12) 
where )(1 tD −  is an inverse function to )(tD , which is obviously also increasing. If 
)(tDk = , then: ttDDtV == − ))(()( 1 .  
When the observed degradation k  at time t  is less than the expected )(tD , then the 

corresponding virtual age is less than a calendar age t  and vise versa.  
     If n  is sufficiently large, then ttD λ=)(  and in accordance with (12): 

λ
ktV =)( . 

Equivalently, as the function )(tD  is linear in this specific case, the virtual age )(tV  is equal 
to the expected age at which the number of observed failures is k .  

      
     A general case of degrading objects can be considered in the same way. Let tD  be an 

increasing, smoothly varying (predictable) stochastic process of degradation with a mean )(tD . 
Assume for simplicity that this is a process with independent increments, and therefore it possesses 
the Markov property. Similar to (12), observation, td  at time t  defines the virtual age. Formally: 
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Definition. Let tD  be an increasing, predictable, with independent increments stochastic 
process of degradation with a mean )(tD , and let td  be an observation at time t . 

     Then the virtual age is defined as: 
)()( 1

tdDtV −= . 
Alternatively, the virtual age can be defined as the mean age for the process to reach the 

level td . Usually, obtaining )(tD  is easier then obtaining the mean time to reach the threshold td  
and, therefore, the foregoing definition is more convenient.  

      Thus, considering degradation in a simple reliability structure resulted in a general 
definition and in a helpful for studying of aging notion of virtual age. Note that, the approach of this 
section is heuristic and further mathematical justification will be published elsewhere. 

 
 

P. SHOCK MODELS AND DEGRADATION 
 
Technical systems and organisms are usually subject to shocks, which are harmful events 

that occur randomly in time and magnitude, and that can cause a failure or death, respectively. We 
assume for simplicity that durations of shocks are negligible. In mechanical and electronic systems, 
for example, shocks occur when the applied load exceeds the strength. Diseases, viruses, heart 
attacks or, more generally, demands for energy (as in the Strehler-Mildvan model to be discussed in 
this section), can be interpreted as shocks for organisms. The stochastic theory of shocks was 
extensively studied in reliability literature, although there are still a lot of open questions from 
theoretical and practical points of view. Traditionally, two basic cases – the cumulative shock 
model and the extreme shock model – were considered. The former means that the system fails 
when the cumulative shock magnitude enters some critical region (Sumita and Shantikumar, 1985). 
The latter means that the system breaks down as soon as the magnitude of an individual shock goes 
into some given critical region (Shantikumar and Sumita, 1983). In what follows in this section, we 
will revisit the Strehler-Mildvan model in more general assumptions and justify this approach from 
the probabilistic point of view, proving that it is valid only under the additional assumption that the 
shocks (demands for energy) occur in accordance with the Poisson process. 

     Consider a univariate first-passage-type model with shocks. Let, as previously, 0, ≥tWt  
denote an increasing stochastic process of damage accumulation (e.g. the gamma process) and )(tR  
be a function that defines a corresponding boundary. In Section 2, it was a random constant: 

RtR ≡)( . Assume for simplicity that )(tR  is deterministic. 
      Let 0, ≥tPt  be a point process of shocks with rate )(tλ  and independent from 0, ≥tWt . 

Assume that each shock, independently from the previous ones, results in death with probability 
)(tθ  and is “survived” with the complementary probability )(1 tθ− . This can be interpreted in the 

following way: each shock has a random magnitude ,...2,1, == iYYi  with a distribution function 
)(yΨ . The death at age t  occurs when this magnitude exceeds the margin: )()( twtR − , where )(tw  

denotes the increasing sample path of the process of degradation. Therefore: 
))()((1))()(Pr()( twtRtwtRYt −Ψ−=−>=θ . 

     In the original Strehler-Mildvan model (Strehler and Mildvan, 1960), which was widely 
applied to human mortality data, our )()( twtR −  has a meaning of vitality of organisms. It was also 
supposed that this function linearly decreases with age and that the distribution function )(yΨ  is 
exponential (Yashin et al, 2000). We do not need these stringent assumptions for the forthcoming 
considerations. 
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     It is worth noting that the rate )(tλ  does not define an arbitrary point process. However, 
it can be defined via its complete intensity function (Cox and Isham, 1980): 

t
HtttN

Ht t

tt Δ
=Δ+

=
→Δ

}|1),(Pr{
lim);(

0
λ , 

where tH  specifies the point process up to time t  (history). Thus dtHt t );(λ  can be 
interpreted as the probability of a shock occurrence in ),[ dttt + , given the process history up to t . 
Therefore, the conditional mortality rate in our model is: 

 
dtHtttHTHdtttTdtHt ttttc ),()(})(,|),[Pr{),( λθμ =≥+∈= ,             (13)      

where condition tHT t ≥)(  means that all shocks in ),0[ t  were survived. It is clear from the 
definition of the Poisson process  that only for this specific case equation (13) did reduce to the 
usual, non-history-dependent mortality rate )(tμ  (unfortunately, the Strehler-Mildvan model did 
not consider this crucial assumption):  

 
)()()(),( tttHt tc μλθμ == .                                              (14) 

Therefore, the conventional exponential representation for the corresponding survival 
function ( )(1)( tFtF −≡ ) is  

⎭
⎬
⎫

⎩
⎨
⎧
−= ∫

t

duuutF
0

)()(exp)( λθ                                              (15) 

and this completes the proof for the specific case of the Poisson process of shocks for the 
case when shocks are the only source of death. The technical proof of this fact can be found, for 
example, in Brown and Proschan (1983). Another meaningful interpretation of this result is via the 
thinning of the initial Poisson process with the rate )(tλ , which results in the Poisson process with 
the rate )()( tt λθ . Therefore, the survival function up to the first event in this process (death) is 
given by equation (15). 

     We have derived equations (14) and (15) for the sample paths )(tw  and deterministic 
)(tR . A general case of the processes 0, ≥tWt  and 0, ≥tRt  can be also considered under 

reasonable assumptions. The probability )(tθ  turns to a stochastic process 0, ≥ttθ , whereas the 
mortality rate )(tμ  also starts to be stochastic, and conditioning similar to those in equations (4) 
and (6) should be used.  

     Equation (14) states that the resulting mortality rate is just a simple product of the rate of 
the Poisson process and of the probability )(tθ . Therefore, its shape can be easily analyzed. When 

)()( twtR −  is decreasing, the probability of death )(tθ  is increasing with age, which is consistent 
with the conventional accumulation of degradation reasoning. If, additionally, the rate of shocks 

)(tλ  is not decreasing, or decreasing not faster than )(tθ  is increasing, the resulting mortality rate 
)(tμ  is also increasing. In conventional settings, )(tR  is usually assumed to be a constant: 

therefore, )(twR −  is decreasing automatically. On the other hand, it can be easily seen that, in 
principle, certain reasonable combinations of shapes of functions )(tθ and )(tλ  can result in 
decreasing or ultimately decreasing mortality rates (negative senescence). For example, )(tR  can 
increase faster than )(tw - an organism is ‘earning or obtaining’ additional vitality in the course of 
life. This approach, in fact, deals with two dependent sources of death: degradation and shocks.  

 
Example 3. Following our previous examples, assume that the degradation process is given 

by the counting measure of the Poisson process with rate λ  and that there are no deaths due to 
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direct degradation. On the other hand, let the traumatic mortality rate be constant for the 
degradation level n  (number of events in the Poisson process): ,...2,1,0, =nnμ . It is reasonable to 
assume that mortality rates are increasing with degradation: ....210 <<< μμμ  The stochastic 
mortality rate (the mortality rate process) can be compactly written via the corresponding indicator 
function as:  

0);( 1
0

≥<≤= +

∞

=
∑ tStSI nn
n

nt μμ , 

where nS  is the time of the n th event arrival, 00 =S . The observed (marginal) mortality 
rate )(tμ  can be, in principle, obtained from this equation by direct integration on condition that 
there were no deaths in ),0[ t , but the resulting formula is cumbersome. 

 
Q. AGING OF REPAIRABLE SYSTEMS 

 
Although it is widely admitted by the evolutionary and non-evolutionary theories of aging 

that repair and repair mechanisms on all levels play a crucial role in senescence, little had been 
done in terms of stochastic repair odelling in organisms. On the one hand, it is clear that different 
theories require different “machinery”, on the other, there are certain general principles and 
approaches developed (or to be developed) by reliability theory and the theory of stochastic 
processes that can be applied to various biological setting. 

     Consider some hypothetical repairable object – to be called for convenience a component 
– which starts functioning at 0=t . Assume, as usual, that repair is perfect (after the repair a 
component is as good as new. The sequence of independent, identically distributed inter-arrival 
times 1}{ ≥iiT  with a common distribution function )(tF  forms a standard renewal process. The 
repair times in this case are given by the sequence ,...,, 321211 TTTTTT +++  Assume that the 
generic ∈)(tF IFR, which means that the corresponding failure rate )(tλ  is not decreasing. 
Therefore )(tF  is an aging distribution. What can be said about the aging properties of the renewal 
process? It is reasonable to conclude that as the repair is perfect, there is no aging in this process, as 
after each perfect repair the age of a component is 0 . Thus, the perfect repair clearly does not lead 
to accumulation of damage in the described sense. But this is not so when the repair is not perfect, 
which is definitely the case in nature and in most technical systems. Note that even the complete 
overhaul of a system, which is usually considered as a perfect repair, is not such, as even switched 
off standby items also age.   

     Let us call a period between two successive repairs a ‘cycle’. We have two major 
possibilities. The first is when the imperfect repair reduces wear of the last cycle only. It is clear 
that, in this case, the overall wear increases and under some reasonable assumptions this operation 
only decreases the rate of accumulation of wear for the process. This ant-aging mechanism is 
described in Finkelstein (2003). The situation starts to be much more interesting, at least from the 
modeling point of view, when the current repair reduces the overall accumulated wear. We shall 
model this setting in the following way: Assume now that the repair at 1tt =  (realization of 1T ) 
decreases the age of a system not to 0  as in the case of a perfect repair, but to 10,11 <<= qqtv , 
and the system starts the second cycle with this initial age in accordance with the distribution of the 
remaining lifetime )(/)(1 11 vFtvF +− . The constant q  defines the quality of repair. The 
forthcoming results can be generalized to the cases of random quality of repair (the time-dependent 

)(tq  can be also considered).  
     Thus, the reduction of wear is modeled by the corresponding reduction in age after the 

repair. Note that, as the failure rate of a component )(tλ  is increasing, the described operation also 
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decreases its value and the failure rate at the beginning of the new cycle is smaller, than it was at 
the end of the previous one.  The forthcoming cycles are defined in a similar way to form a process 
of general repair (Kijima, 1989; Finkelstein, 2007). The sequence of ages after the i th repair 0}{ ≥iiV  
in this model is defined as: 

),....(),....,(;;0 1212110 iii TVqVTVqVqTVV +=+=== −                  (16) 
and distributions of the corresponding inter-arrival times for realizations iv  are given by:  

1,
)(

)(
)(

1

1 ≥
+

=
−

− i
vF

tvF
tF

i

i
i . 

    Denote the distribution of age at the start of the ( 1+i )th cycle by )(1 vAS
i+ , ,....2,1=i    

( 0=v  at the start of the first cycle) and by ,...2,1),( =ivAE
i  the corresponding age distribution at 

the end of the previous i th cycle. It is clear that, in accordance with our model: 
,...2,1)),/()(1 ==+ iqAvA E

i
S
i ν  

This can be easily seen, as  
)/Pr()Pr()Pr()( 11 qVvqVvVvA E

i
E

i
S

i
S
i ν≤=≤=≤= ++ , 

where S
iV 1+  is a random age at the start of )1( +i th cycle, whereas E

iV -is a random age at the 
end of the previous one.  The following results (Finkelstein, 2007) state that the age processes 
under consideration are stochastically increasing and are tending to a limiting distribution. 

 
a. Random ages at the end (start) of each cycle in the general repair model (16) form the 

stochastically increasing sequences:  
,...2,1,0;0)),()((),()( 121 =>>>> +++ ivtvAvAvAvA S

i
S

i
E

i
E

i .                (17) 
b. There exist limiting distributions for ages at the start and at the end of cycles: 

))()((lim),()(lim vAvAvAvA S
L

S
ii

E
L

E
ii == ∞→∞→ .                            (18) 

The corresponding interpretation is simple and meaningful. Indeed, as the ages at the start 
(end) of the cycles are random, they should be compared stochastically. The simplest and the most 
natural ordering is the ordering of the corresponding distribution functions at every point of 
support. This is usually called stochastic ordering or stochastic dominance. It follows from (17) that 
the sequences of the corresponding mean ages at the start (end) of each cycle are also increasing. 
Thus, the process as a whole is aging, because the ages at the start (end) of the cycles are 
stochastically increasing with i  and the failure rates of inter-arrival times are also increasing 
functions. The process can be described as “stochastic sliding’ to the right along the generic failure 
rate )(tλ , which can definitely be qualified as aging. On the other hand, it follows from (18) that 
the sequences of ages have a finite limit, which means that aging of the process slows down and 
asymptotically vanishes!  

     If the repair process in parts of organisms decreases the accumulated wear and not only 
the wear of the last cycle, then the mortality rate (as a function of degradation) of these parts and of 
an organism as a whole, slows down at advanced ages and can even tend to a constant t  (mortality 
plateau). Therefore, our model can explain the deceleration of human mortality at advanced ages 
(see, for example, Thatcher (1999)) and even approaching the mortality plateau. It is worth noting 
that another possible explanation of the mortality deceleration phenomenon is via the concept of 
population heterogeneity (see Vaupel et al (1979) for basic facts and Finkelstein and Esaulova 
(2006) for mathematical details in a general frailty model). 

     It can be shown under reasonable assumptions that in the case of a minimal repair, which 
does not reduce wear, or when repair reduces the damage only of the last cycle, the corresponding 
point process can be described by inter-arrival times of a non-homogeneous Poisson process with 
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increasing rate. The ages at the start (end) of the cycles in this process tend to infinity as ∞→i . 
Thus, this model shows a different asymptotic behavior than the one considered previously. 

Example 4.  The reduction of accumulated damage was modeled via the reduction of age 
(or the decrease in the failure rate). This is a reasonable approach, as under some assumptions, the 
process of damage accumulation can be “translated” into the corresponding IFR model. In order to 
illustrate the limiting behavior of our model in a time-free, direct damage-based reasoning, consider 
the following simplified setting. Assume that each event from the orderly (without multiple 
occurrences) point process results in a unit damage, which is immediately reduced by the repair 
mechanism to 10, << qq .  Therefore, accumulation of damage in this model is given by the 
following series: after the first repair it is q ; after the second repair it is 2)1( qqqq +=+ ; after the 
third repair it is 32)1)1(( qqqqqq ++=++ ,….Therefore, the accumulated damage increases with 
each cycle and tends to the limiting, stable value: 

q
qDl −

=
1

, 

which defines the accumulated damage plateau. 
 

 
R. CONCLUSIONS 

 
Under a conventional assumption that the process of biological aging is a process of “wear 

and tear” we consider several approaches that are useful for odelling and odelling the lifetimes 
of organisms. All these approaches are united by the accumulation of damage concept, which 
allows the incorporation and generalization of engineering-reliability thinking to a wider class of 
objects. Aging is an extremely complex biological process, but it does not mean that it cannot be 

odellin by some relatively simple stochastic tools.  
     Repairable and non-repairable systems are considered. We prove that, even in the case of 

imperfect repair, the resulting process of aging under reasonable assumptions slows down with time 
and asymptotically fades out. This gives another possible explanation of the human mortality rate 
plateau. 

     Using the obtained results, we plan to combine them in future work with optimization 
under constraints tools, developed in reliability theory, in a suitable evolutionary-theory-based 
manner. 
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“SAFETY” AS A CHARACTERISTIC OF ONE OF 
THE SINGLE RELIABILITY PROPERTIES 

 
G. F. Kovalev 

 
 

Abstract 
 

The paper deals with the problems of interrelation between two most important properties of 
technical (production) systems: safety and reliability that were considered historically separately. 
However, recently both properties have proven to be increasingly more interrelated, which makes 
their joint study topical. And the safety may be treated as the most important reliability property, 
determining to a great extent all the remaining single reliability properties. The relation between the 
notions of “technical safety” and “energy safety” is also studied. 

 
Keywords. Object, single properties, safety, reliability, technical perfection, interrelation, 

costs, failures, effects. 
 
 In 1980 the terminology in [1], possibly for the first time in the world practice, included 

such properties as stabilability, survivability, controllability and also safety as the object’s principal 
properties forming a complex reliability property of energy systems in addition to those indicated in 
the then State Standard 13337-75 [2] (or in the current State Standard 27.002-89). 

 We will consider expediency of applying the notion of safety in reliability on the example of 
power plants, though in our opinion all the information given below is true for other technical 
(production) objects. 

 As concerns safety that is defined as an object’s property to prevent people and environment 
from dangerous situations, the terminology in [1] explains: “the necessity to consider “safety” 
property in the context of “reliability” can be shown on the following example. Reliability …of a 
system can be low  … because of high probability for people and environment to be injured at any 
failure of operation … This is a low safety and hence a low reliability”.  

 However, so far some doubts are cast upon the need for the notion “safety” within the 
framework of “reliability”. In our opinion it is caused by the following factors. 

 Over the course of the whole history of electric power industry development the safety 
problem has been given great attention thanks to physicotechnical features of electromagnetism. 
Electromagnetic fields, high currents, discharges and charges, high voltages as well as high 
temperatures, pressures, etc. in the electric power industry are known to be hazardous for people 
and environment. For safety reasons concentration in relatively small volumes of considerable 
amounts of substances dangerous for man and also substances with considerable own energy 
reserve is also important.   

 A great number of problems in safe control of power plants stipulated, from the outset, 
independent consideration of safety as an energy object’s property without its relations with other 
properties and particularly with the reliability property. And the safety problems were solved so 
successfully that the safety level of an object seemingly had no effect on its reliability. 

 Hence, it was believed that safety and reliability are two different object’s properties that are 
not connected to one another. Therefore, even nowadays some specialists suppose that safety and 
reliability are properties to be studied in parallel, independently of each other. 

 On the other hand, however, danger is always realized as an industrial accident, as a result 
of a certain type of random events (failure flows): 

• failures of production equipment elements; 
• natural phenomena; 
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• erroneous actions of personnel;  
• random external effects of man-induced or social nature, i.e. failures that can be 

simultaneously failures in a sense of safety and other single reliability properties. 
The events of the recent two-three decades have confirmed validity of the statement about 

existing interrelation and urgency of considering this interrelation between safety and reliability. 
Accidents at nuclear power plants, for example, involve not only dangerous consequences, but 
long-term failures of their operation and serviceability, long restoration works.  Attempts to 
decrease safe distances between conductors at different potentials; utilization of toxic SF6 gas 
insulation  and as a result complete change of geometrical forms, sizes, designs and methods of safe 
maintenance of power units and also their reliability indices; increased environmental pollution; 
introduction of advanced technologies (“warm” and cryogenic superconductivities) and many other 
achievements of the technological progress – these combined factors revealed in practice the safety 
impact on the complex property of object reliability. In [1], therefore, it was proposed that safety 
should be considered as a single reliability property along with its other properties.  

Safety is surely a specific single property of reliability, since it reflects the level of 
performing only the functions induced solely by the fact of object creation rather than its purpose, 
as distinct from other properties specified by both the purpose and the fact of object creation. The 
safety, however, should be considered in terms of reliability as the rest of single properties because 
the hazard for people and environment arises, as was mentioned, as a result of failures in the 
process of object operation. 

Besides, the link of safety with other reliability properties is presented in [1] because of the 
fact that some notions applied to determine such properties as longevity, survivability also take into 
account safety problems.  So, in reliability “the limiting state” is defined as an object state, at which 
it must not operate further due to unavoidable violation of safety requirements or unavoidable 
decrease in operability level or inadmissible decrease in operation efficiency”. “The contingency 
armor is a minimum power supply level, at which   industrial or some other consumers stop 
operating without damage of facilities, product, half-finished material, raw material and at 
preservation of minimum required sanitation, fireproof conditions and safety support”.  

Nonetheless some specialists continue expressing doubt about validity to refer safety to a 
single reliability property. Their main arguments are the following: 

• a small number of studies treating safety as a reliability property and numerous studies 
continuing to consider safety separately. In other words, there is no need for the safety property in 
the reliability aspect;  

• the emerging notion “energy safety (security)” makes it expedient to concentrate on it. 
As was already mentioned, the first argument seems to be explained by the specific feature 

of safety as an object’s property. 
The second argument concerns to a great extent the fact that no matter how “mighty” this or 

that language is, there are always situations, when we have not enough words for defining different 
objective factors. The way out, as usual, is to apply adjectives to the basic notion. The same we 
have in this case: different types of safety are denoted as purely technical (including firefighting, 
chemical, radiation, nuclear, etc.) safety, industrial (production) safety, technological safety, 
environmental safety, (electric) energy safety and so on. Reliability is related to technical and 
environmental safety, however in no way to energy safety (more “energy security” named) that is a 
component of the economic security and correspondingly the national safety (national security). 
The technical safety differs from the energy security in the depth of damaging factors. The area of 
study on the energy security applies to global (and possibly catastrophic) consequences for a 
country on vast territories and for a long time. Besides, the energy security is based on the 
reasonable reliability of energy systems.  
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As a single reliability property the paper discusses exactly the technical safety including 
environmental safety. In this case all the arguments concerning safety apply primarily to energy 
objects (equipment, installations, devices) and to a lesser extent to electric power systems. 

As distinct from other single reliability properties the technical safety is considerably 
regulated and characterized in such documents (in Russia) as “The rules of power plant 
installation”, “The rules of  safe operation”, “The safety regulations”, Constructions norms and 
regulations, etc.  

A latest document regulating safety is the Federal Law “On technical regulation” [3]. The 
Law is entirely devoted to all types of safety only, without reliability. Item 2 of clause 6 of the Law 
contains the statement: “Approval of technical regulations for other purposes is inadmissible”. In 
our opinion, as a result the role of the Law considerably decreases, and the sphere of applicability is 
unreasonably reduced.  It is obvious that not only safety, but reliability as a complex property of 
objects, and quality of all types of products, etc. should be certified at all levels. In this aspect the 
Law “On technical regulation” needs adjustments. 

 Both safety and other single reliability properties, primarily failure-free operation, 
maintainability, depend on the accepted sizes of switchgears, height of wire suspension, width of 
service corridors, height of fencing, applied protection devices, etc. Surely, the accepted sizes of 
installations can be substantially decreased, making thus the corresponding objects cheaper. 
However, in this case the safety margins and correspondingly the object safety and reliability will 
decrease, since the number of overlaps between phases and to the ground increases because of 
different reasons. 

 Reliable operation of power units is ensured only, provided the strength of insulation used 
exceeds possible maximum voltage levels of insulation during continuous operating conditions and 
at short-term overvoltages. The insulation strength increase, however, leads to the pronounced 
increase of power unit cost and proves to be economically inexpedient. An excessive decrease of 
electric strength of insulation can cause heavy emergencies (equipment failures).  

 Grounding devices to protect from overvoltages, provide normal operating conditions and 
also create safe conditions for operation of power units are also an important element of power units 
along with insulation strength.  

 Recently the number of different aspects of safety to be considered has increased. One of the 
problem aspects concerns a direct impact of power system objects on the safety of people and 
environment. This aspect in turn is divided into safety at normal operation of power system objects 
and the safety of objects during their emergencies (faults). This statement can be illustrated by an 
example of the known views that a coal-fired power plant at its normal operation is more dangerous 
for people and environment due to large-scale emissions of harmful substances than a nuclear 
power plant. However, in the case of a failure of nuclear reactors at NPP its danger becomes much 
higher than the danger of failure at TPP. 

 The second aspect applies to the safety hazard because of interruption in power supply to 
consumers. Violation in power supply of consumers can lead to runaway of their dangerous 
production processes which can become uncontrollable and entail negative consequences for people 
and environment not only within the corresponding production, but in neighboring and remote 
areas. 

Finally, another aspect of safety problem to be considered and which is related to reliability 
is the problem of protecting both a human being from technical (industrial) facilities  and  facilities 
from dangerous actions of the human being that are  performed either unconsciously or unskillfully, 
by mistake, because of poor discipline, as a result of subversive act or terrorist  act, etc. A typical 
example in this respect is the Chernobyl disaster. Nobody disputes that the personnel of the plant 
was to blame (they treated carelessly the nuclear reactor). 

The above said confirms once again the role of safety within the complex property of 
reliability.  Such events have started to occur increasingly often lately and lead not only to the 
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dangerous consequences but to long-term failures of operation and operability of the facilities. 
Obviously there are common reasons for decrease in safety and reliability. 

Speaking of the single reliability properties an emphasis should be placed on the fact that 
they have different degrees of importance. Therefore while studying and ensuring them it is 
important to follow a certain sequence. 

The sequence in consideration of the single properties is not so important for the facilities to 
be studied in terms of reliability in the course of operation. Each property can be estimated when 
necessary separately from one another depending on the situation. However, for designing the 
sequence of ensuring the single properties is very important. For example it is senseless to ensure 
high survivability prior to ensuring a necessary level of safety, longevity, failure-free operation, 
maintainability and stabilability (that has to be ensured previously by the appropriate means). 

It is known that: 
- single properties are interdependent and interrelated; 
- the same means are applicable to ensure different single properties; 
- a relative cost of ensuring the required level of different single properties varies;  
- in a correctly ranged sequence it is cheaper to ensure each subsequent single property if 

all the previous properties are ensured. 
Taking into account the above facts the rational sequence of single properties of reliability 

should be as follows: 
1. Safety 
2. Longevity 
3. Failure-free operation 
4. Maintainability 
5. Stabilability 
6. Survivability 
7. Controllability 
8. Resource supply 
9. Storability 
In this list “safety” takes the first place though it should be noted that in [1] “safety”, 

without any ground, closed the list of single properties. The priority of safety as a single property of 
reliability can be substantiated by the following reasons. 

Ensuring safety of an object is a very costly measure. In fact it is a considerable share of the 
whole object cost, which is particularly well seen in the electric power plant whose cost is 
determined, as was already mentioned, by the distances between the plant’s elements, which are 
approved in terms of safety. This also affects the other properties of the object. It has been noted in 
the technical literature lately that the cost of ensuring safety grows because of the need to take into 
account all aspects of safety that were considered above. 

The next factor characterizing safety as a single property of reliability is a high degree of its 
standardization level. In fact ensuring the appropriate level of safety implies meeting the required 
safety standards. The requirements for meeting the safety standards are “strict”, up to the point: if 
safety standards of a constructed object are not met the construction of the object is considered to 
be inadmissible and it is naturally not necessary to consider the other reliability properties of the 
object. 

It should be noted that the safety level to be ensured depends on the level of “wealth” of the 
country where the objects are constructed. More developed countries can afford a higher level of 
safety for their technical and industrial objects. These countries have higher living standards, longer 
life interval and higher cost of life. At the same time the reliability standards are also high. As an 
example we can mention such a normative index of reliability as a probability of shortage-free 
power supply. Whereas in the USSR it was taken equal to 0.996 in the Western countries this index 
was 0.9996. 
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The second property in the list is longevity. Longevity is also so important because of 
considerable costs and a large impact it has on the subsequent single properties. Considerable costs 
are related to the fact that to increase longevity (technological life span, service life) it is necessary 
to apply expensive advanced materials and technologies that possess the properties of thermal 
stability, chemical stability, higher durability etc. 

The analysis of other properties from the above list can be continued, however we do not do 
it because the paper is devoted to the property of safety. It is important to pay attention to another 
point: the properties indicated in the list relative to the resulting effect of the object operation 
(element, system) can be subdivided into internal and external in terms of their manifestation. The 
external properties include only one property of failure-free operation which characterizes the 
resulting effect of the object operation, i.e. power supply to consumers. All the remaining properties 
characterize behavior of the object itself in terms of reliability and manifest themselves externally 
by influencing failure-free operation (continuity and duration of interruptions in power supply). 
Schematically these interrelations between the properties are presented in Fig.1. The figure shows 
role and place of safety in the complex property of reliability. 

In conclusion it is sensible to emphasize the following. 
Technical (production, industrial) safety is a very important component of the complex 

property of the object reliability. The absence of the need to consider it as a property of reliability in 
the past for energy systems is explained by the great attention paid exclusively to the safety 
problem itself which, in turn, predetermined a high level of safety within reliability. Currently the 
situation is changing essentially due to complication of the safety problem and a great impact on the 
remaining single properties of reliability.  

As to the need and absence of the need to study one property or another in terms of 
reliability we can show two characteristic examples. Nowadays there is a single property which is 
very much in demand. This is supply of different resources – financial, labor, material and 
particularly primary energy resources (different fuels). In the USSR with centralized vertically-
integrated management of the economy this property (supply of resources) was less urgent since 
there was the guideline of first-priority fuel supply to power plants. Therefore there were practically 
no power supply limitations due to interrupted fuel supply to power plants in those times, which can 
hardly be said about the current situation. 

The second example is related to the energy security as it is currently considered in Russia. 
During soviet times we did not pay so much attention to the energy security problem for the reason 
of no need for it because the country was considered to have surplus energy resources and the 
Unified Energy System was the most efficient in the world. Replacement of vertical integration by 
horizontal, privatization of energy sectors and quasi market relations in the economy made the 
problem of energy security in Russia extremely urgent and not only at the national level but at the 
regional level as well despite the fact that the country still has surplus energy resources. It may 
sound ironic but it is a fact that the national energy security was first completely ruined and now the 
heroic efforts are made to restore it under new conditions. 

For the same reasons and for the reasons considered in this paper it becomes urgent to 
consider safety within the complex property of reliability. Generalizing we can say that the demand 
for safety is determined by the urgency and extent to which the property is ensured.  

The question of what method to choose for studying safety remains open. In our opinion 
there can be two options. Safety can be studied within reliability as one of its single properties and 
it can be studied separately since the danger for people and the environment, as was mentioned 
above, may arise under normal operation of object, i.e. in the absence of failures. This can be 
related to the low technical perfection of an object. Technical perfection is the property of higher 
rank. It includes the properties of safety, reliability and some others. On the other hand it is obvious 
that people in danger do not care about the reasons for low safety: unreliability or technical 
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imperfection. In any case safety should be ensured. Besides it is also obvious that safety in terms of 
perfection and safety in terms of reliability are interrelated. 

A suggestion, though disputable, has been put forward lately to consider technical safety 
within the framework of energy security. However, in any case, it is indisputable that solutions to 
the problems of safety and practices of ensuring safety affect reliability of an object and safety 
should be taken into account in the study of reliability. 

 
 

Conclusion 
 

In our opinion it is more justified and correct to consider technical safety in terms of all 
aspects of its manifestation as one of the most important single properties of reliability of a 
technical object. 
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Abstract 
 
The concept of “probabilistic logic” known in artificial intelligence needs a more thorough 

substantiation. A new approach to constructing probabilistic logic based on the N-tuple algebra 
developed by the author is proposed. A brief introduction is given to the N-tuple algebra and its 
properties that provide efficient paralleling of algorithms for solving problems of logical analysis of 
systems in computer implementation are generalized. Methods for solving direct and inverse 
problems of probabilistic simulation of logical systems are considered. 

 
 

INTRODUCTION  
 
The N-tuple algebra based on the known properties of Cartesian products [1] was developed 

for solving certain problems in artificial intelligence, in particular, for simulating logical systems 
and in order to reduce the complexity of algorithms of logical inference [2, 3]. The foundations of 
the N-tuple algebra and potentialities of its application in probabilistic simulation were presented in 
[4–6]. Further investigations of this system have shown that the class of problems solved on its 
ground can be extended substantially. In addition, the structures of the N-tuple algebra can be 
programmed relatively easily and have a natural parallelism; therefore, their application in 
software–hardware support of logical and logical–probabilistic analysis of systems allows one to 
reduce the cost of development of programs and the required computational resources.  

In this paper, we give a brief introduction to N-tuple algebra taking into account the 
correction of certain terminology introduced earlier and its capabilities in solving the inverse 
problem of logical–probabilistic analysis are also considered, i.e., the restoration of probability 
distributions of simple events based on data on the probabilities of complex events. Such problems 
were posed within the framework of probabilistic logic [7–9].  

 
 

1. BASIC CONCEPTS AND STRUCTURES OF THE N-TUPLE ALGEBRA 
 
The N-tuple algebra contains a number of definitions and more than 30 theorems, which are 

used in order to obtain the following results:  
(1) It is substantiated that it is isomorphic to the system such as the theories of multiplace 

relations, of propositional calculus, and of predicate calculus.  
(2) This system is embedded in the probability space.  
(3) The algorithmic foundation for solving various problem of logical analysis of systems 

(logical inference, search for correct hypotheses and “hidden axioms”, probabilistic analysis, etc.) is 
developed.  

In order to avoid the consideration of original works [2–6], we present here in short the 
basic concepts and relationships of N-tuple algebra necessary for understanding probabilistic 
relations. Moreover, in the author’s opinion, this section is useful because of the appropriate 
correction in the previous notation.  
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The N-tuple algebra is based on the concept of a flexible universe of discourse. Let a totality 
of different sets called sorts be given. We assign a certain set of attributes to every sort (in the 
previous publications, the term “coordinate”, which does not seem to be completely adequate, was 
used). The domain of each attribute is the set that is equal to the corresponding sort. In 
mathematical logic, the domains of definition of variables correspond to attribute domains. A 
flexible universe consists of a totality of partial universes, Cartesian products of domains for a 
given sequence of attributes. The sequence of attributes that determines a given partial universe is 
called a relation diagram.  

The N-tuple algebra contains five structures (N-tuple algebra objects) such as an elementary 
n-tuple, C-n-tuple, C-system, D-n-tuple, and D-system. Objects of the N-tuple algebra formed in the 
same partial universe are called similar.  

Suppose that a partial universe in the form of a Cartesian product of arbitrary sets is given 
S = X1 × X2 × … × Xn. Clearly, S can be represented as a space of features with attributes X. The 
domains of these attributes correspond to feature scales. Then, we can form in the space S the 
following substructures:  

(1) Projections, which are subspaces in which only certain attributes from the set of 
attributes generating S are used.  

(2) The Cartesian products in the given relation diagram; certain subsets of the sets X 
represented in the given relation diagram are components of these Cartesian products.  

Consider examples of these substructures. Let S = X ×Y×Z, where X = {a, b, c, d}, Y = { f, g, 
h}, and Z = {a, b, c}. The Cartesian products X×Y, X×Z, etc. or particular sets, e.g. X, may be 
projections of this space. For simplicity, we assume that in this system a unique attribute 
corresponds to each sort.  

Within the limits of the space S or some its projection, we can give the corresponding 
substructures in the form of Cartesian products. For example, the Cartesian product  

R[XYZ] = {b, d}×{f, h}×{a, b}  
is an example of such a substructure. Here, the expression [XYZ] is a relation diagram. It can 

be easily tested that R⊆S (a property of Cartesian products). Similarly, a certain subset of 
elementary n-tuples of the projection Y×Z can be represented as the Cartesian product Q[YZ] = {f, 
g}×{a, c}. Cartesian products represent the sets of elementary n-tuples. If necessary, these sets can 
be listed, although it is not necessary in performing operations with the structures of N-tuple 
algebra.  

An elementary n-tuple is an element of a Cartesian product or its projection; i.e., a sequence 
of elements, each of which belongs to the domain of the corresponding attribute. For example, the 
Cartesian product Q[YZ] = {f, g}×{a, c} contains the following set of elementary n-tuples: {(f, a), 
(f, c), (g, a), (g, c)}.  

A C-n-tuple is an n-tuple given in the complete space or in some its projection with 
components generated by subsets of the corresponding domains of attributes. A C-n-tuple is 
interpreted as the Cartesian product of these components; i.e., as a certain subset of elementary 
n-tuples. Square brackets are employed for denoting C-n-tuples. For example, the relations R and Q 
presented above can be represented as C-n-tuples  

R[XYZ] = [{b, d} {f, h} {a, b}]; Q[YZ] = [{f, g} {a, c}].  
A C-n-tuple that has at least one empty component is empty. In the N-tuple algebra, if we 

deal with models of propositional or predicate calculus, this proposition is taken as an axiom, which 
has an interpretation based on the properties of Cartesian products.  

To generalize operations that are applied frequently to structures with various relation 
diagrams, we introduce dummy components. These components have two types. One of these 
components is used in C-n-tuples and is designated “∗”. Another dummy component (∅) involved 
in D-n-tuples is considered in what follows.  
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Dummy components “∗” designate the sets equal to the domains of the corresponding 
attributes; they can be inserted in the corresponding C-n-tuple instead of missing attributes and thus 
introduce new attributes in it. For example, the C-n-tuple Q[YZ] = [{f, g} {a, c}] can be represented 
in the relation diagram [XYZ] in the form of the C-n-tuple [∗ {f, g} {a, c}] using a dummy 
component. Since the dummy component in Q corresponds to the attribute X, we have the equality  

[∗ {f, g} {a, c}] = [{a, b, c, d} {f, g} {a, c}].  
The intersection of similar C-n-tuples is performed componentwise. The result of 

intersection is the C-n-tuple that contains the intersection of the components of the source C-n-
tuples related to the same attribute, e.g.,  

[{b, d} {f, h} {a, b}] ∩ [∗ {f, g} {a, c}] = [{b, d} {f} {a}].  
The result of intersection of C-n-tuples may be an empty set (empty C-n-tuple)  
[{b, d} {f, h} {a, b}] ∩ [∗ {g} {a, c}] = ∅, 
since the intersection of the second components of these C-n-tuples is an empty set.  
Many relations given as subsets of a Cartesian product cannot always be represented by a 

single C-n-tuple. Therefore, it is reasonable to introduce a universal structure that is the union of 
similar C-n-tuples.  

A C-system is a structure that is the union of an arbitrary number of similar C-n-tuples. As 
C-n-tuples, C-systems are confined by square brackets. For example, for the space S given above, 
we can define a certain relation P as a C-system  

R[XYZ] = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

}{}{},{
},{},{},{
},{*},{

bgcb
cahfdb
cbda

. 

The fact that a C-n-tuple (Cm) is included in another C-n-tuple (Cn) is tested componentwise, 
Cm ⊆ Cn if and only if all components Cm are included in the corresponding components of Cn. 
Based on the properties of Cartesian products, we are able to find conditions for which the union of 
two C-n-tuples Cm and Cn can be transformed into a single C-n-tuple. There are two such conditions  

(1) if Cm ⊆ Cn, then Cm ∪ Cn = Cn;  
(2) if Cm and Cn differ only in the ith component, then Cm ∪ Cn can be represented as a 

single C-n-tuple that have all component the same except for the ith component, which becomes 
equal to the union of the corresponding components from Cm and Cn.  

If we know how to obtain the intersection of C-n-tuples, we can formulate the algorithm for 
finding the intersection of a C-n-tuple with a C-system and a C-system with a C-system. For this 
purpose, we should represent C-n-tuples as conventional sets whose elements are similar 
elementary n-tuples. Then, the C-system that contains the C-n-tuples A, B, …, L is the union of 
these sets. On this ground, using the law of algebra of sets, in particular, the distributive law, we 
can easily obtain the corresponding algorithms for calculating the intersection of the corresponding 
structures.  

Algorithm 1. The calculation of the intersection of a C-n-tuple P with a C-system Q:  
(1) calculate the intersection of the C-n-tuple P with each C-n-tuple from Q;  
(2) eliminate empty C-n-tuples from the obtained results;  
(3) form a C-system from the remaining n-tuples;  
(4) terminate the algorithm.  
Algorithm 2. Calculation of the intersection of a C-system P with a C-system Q:  
(1) calculate the intersection of the C-n-tuple from P with each C-n-tuple from Q;  
(2) eliminate empty C-n-tuples from the obtained results;  
(3) form a C-system from the remaining n-tuples;  
(4) terminate the algorithm.  
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As an example, we calculate the intersection of two C-systems given on the space S defined 
above (this means that the symbol “∗” in the second position of C-n-tuples corresponds to the set 
X2 = {f, g, h})  

P[XYZ] = ⎥
⎦

⎤
⎢
⎣

⎡
},{*},{

}{},{},,{
cacb

bhfdba
,  Q[XYZ] = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

}{}{},{
},{},{},{
},{*},{

bgcb
cahfdb
cbda

. 

(1) We calculate the intersection of all pairs of C-n-tuples belonging to different 
C-systems  

[{a, b, d} {f, h} {b}] ∩ [{a, d} ∗ {b, c}] = [{a, d} {f, h} {b}]; 
[{a, b, d} {f, h} {b}] ∩ [{b, d} {f, h} {a, c}] = ∅; 
[{a, b, d} {f, h} {b}] ∩ [{b, c} {g} {b}] = ∅; 
[{b, c} ∗  {a, c}] ∩ [{a, d} ∗ {b, c}] = ∅; 
[{b, c} ∗  {a, c}] ∩ [{b, d} {f, h} {a, c}] = [{b} {f, h} {a, c}]; 
[{b, c} ∗  {a, c}] ∩ [{b, c} {g} {b}] = ∅. 

(2) From the remaining nonempty C-n-tuples, we form the C-system  

P∩Q = ⎥
⎦

⎤
⎢
⎣

⎡
},{},{}{

}{},{},{
cahfb

bhfda
. 

Even this relatively simple example shows certain opportunities to reduce the complexity of 
the algorithms using the N-tuple algebra. The same result can be obtained if we convert 
preliminarily the source C-systems to the set of elementary n-tuples. However, this increases the 
complexity of computations since the C-system P, C-system Q, and the C-system P∩Q contain 24, 
20, and 8 elementary n-tuples, respectively.  

The union of C-n-tuples and C-systems is computed much simpler. For this purpose, we 
need to form a new C-system from the united structures that contains all C-n-tuples of these 
structures. Then, we may unite certain C-n-tuples in particular cases. It is necessary to remember 
that the implemented algorithms of union and intersection, as well as testing the inclusion of the 
structures of the N-tuple algebra, make sense only when these structures are similar or are 
transformed into similar structures with the help of addition of dummy attributes.  

If it is required to compute the complement of a C-n-tuple, then, using conventional methods 
from the theory of multiplace functions, we should perform the following operations:  

(1) to split into elementary n-tuples the C-n-tuple R and the partial universe S corresponding 
to it;  

(2) eliminate elementwise all elementary n-tuples belonging to R.  
It is clear that this operation is laborious in general. However, it is simplified essentially if 

we employ the following relations. Let us first define the notion of complement to the component of 
a C-n-tuple. If a multiplace relation is defined in the space such that each its attribute is represented 
by a certain set, then it is obvious that the universe for the component of the C-n-tuple is the domain 
of the attribute that corresponds to it (partial universe), and the set that contains all elements of this 
partial universe that do not belong to this component is the complement of the component. For 
example, assume that, in the space S = X×Y×Z, a C-n-tuple R = [R1 R2 R3] is given. Then, 
correspondingly, we have 1R  = X\R1; 2R  = Y\R2; and 3R  = Z/R3.  

The following theorem can be proved based on the properties of the Cartesian product [1].  
Theorem 1. The complement of the C-n-tuple T = [R1 R2 … Rn] is the C-system  
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C = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗∗

∗∗
∗∗

nR

R
R

...
............

...

...

2

1

 of dimension n×n, in which each diagonal component is the 

complement of the corresponding component of  C-n-tuple T, and the other components are 
dummy.  

Consider an example. Assume that in the space S = X×Y×Z mentioned above a C-n-tuple 
T = [{b, d} {f, h} {a, b}] is given. By Theorem 1, its complement is the C-system  

T = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∗∗
∗∗
∗∗

},{\
},{\

},{\

baZ
hfY

dbX
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∗∗
∗∗
∗∗

}{
}{

},{

c
g

ca
.  

By Theorem 1, the C-systems that represent the complement of a C-n-tuple can be 
represented as a single n-tuple of sets using for designation inverted square brackets. Then, we 
obtain the equality  

T = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∗∗
∗∗
∗∗

}{
}{

},{

c
g

ca
 = ]{a, c}  {g}  {c}[. 

This brief representation of the diagonal C-system generates a new structure of the N-tuple 
algebra, which is called a D-n-tuple. It turns out that this structure not only allows one to represent 
briefly diagonal C-systems, but is also used independently in certain operations and retrieval 
requests. The terms “C-n-tuple” and “D-n-tuple” are not chosen randomly. In the simplest case, 
C-n-tuple and D-n-tuple correspond to conjunction and disjunction of one-place predicates with 
different variables. Using D-n-tuples, we can formulate one more (the fifth) structure of the N-tuple 
algebra, a D-system.  

A D-system is a structure similar to a matrix whose rows contain similar D-n-tuples, which 
is interpreted as the intersection of the sets of elementary n-tuples belonging to these D-n-tuples.  

The representation of a D-system is similar to the representation of a C-system, but, instead 
of square brackets, we use inverted ones. For example, the complement to the C-system  

F[XYZ] = ⎥
⎦

⎤
⎢
⎣

⎡
},{*},{

}{},{},,{
cacb

bhfdba
,  

given in the space S can be represented as the D-system  

F = ⎢
⎣

⎡
⎥
⎦

⎤
∗ },{\\},{\

}{\},{\},,{\
caZYcbX

bZhfYdbaX
 = ⎢

⎣

⎡
⎥
⎦

⎤
∅ }{},{

},{}{}{
bda
cagc

.  

Thus, the D-system is dual (according to the de Morgan laws) to the C-system and is the 
intersection of two C-n-tuples. The algorithms for converting D-n-tuples and D-systems into 
C-systems equal to them have been developed.  

The complete analogy between the structures of the N-tuple algebra and formulas of 
predicate calculus can easily be established. Consider the main ideas. In the predicate calculus, 
conjunction of one-place predicate with different variables corresponds to the C-n-tuples in the 
trivial case (when particular attributes are not related to multiplace relations). For example, the C-n-
tuple P[XYZ] = [P1 P2 P3], where P1 ⊆ X; P2 ⊆ Y; and P3 ⊆ Z , corresponds to the logical formula 
H = P1(x)∧P2(y) ∧P3(z). The negation of the formula H (disjunction of one-place predicates) 
¬H = ¬P1(x)∨ ¬P2(y) ∨¬P3(z) corresponds to the D-n-tuple P  = ] 1P  2P  3P [. An empty object of 
the N-tuple algebra corresponds to an identically false formula.  
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An object of the N-tuple algebra corresponds to a satisfiable formula. An elementary n-tuple 
that is involved in the composition of a nonempty object of the N-tuple algebra corresponds to a 
satisfying substitution of the logical formula.  

If a dummy attribute is introduced in a C-n-tuple or in a C-system, then this procedure 
corresponds to the inference rule known in the predicate calculus which is called the generalization 

rule. For example, if the object of the N-tuple algebra G[XZ] = ⎥
⎦

⎤
⎢
⎣

⎡ ∗
},{},,{

},{
cbdca

ca
 corresponds to a 

formula F(x, z) in the predicate calculus, then, appending to this object a dummy attribute Y, we 

obtain the object of the N-tuple algebra G1[XYZ] = ⎥
⎦

⎤
⎢
⎣

⎡
∗

∗∗
},{},,{

},{
cbdca

ca
, which corresponds to the 

formula ∀yF(x, z) obtained from F(x, z) by the generalization formula.  
Together with operations of the algebra of sets on objects of the N-tuple algebra, the 

following three additional operations on attributes are introduced:  
(1) the transposition of attributes and the their corresponding columns of the matrix of the 

object of the N-tuple algebra;  
(2) addition of a new dummy attribute; and  
(3) attribute elimination.  
We also use two quantifier operations ∃x(P) and ∀x(P), which not only recognize identical 

falsity or satisfiability of the corresponding structure, but also, in the case of satisfiability, allows 
one to obtain the object of the N-tuple algebra corresponding to this expression. Certain 
combinations of operations with attributes and operations of the algebra of sets give the opportunity 
to perform negation, composition, and join of relations, and logical inference and operations with 
quantifiers. In detail, see this in [4–6].  

 
 

S. RESOURSE SAVING IN COMPUTER IMPLEMENTATION OF 
STRUCTURES OF THE N-TUPLE ALGEBRA 

 
Computational complexity of operations of the algebra of sets and testing inclusion depends 

on the class of structures the employed objects of the N-tuple algebra belong to. For example, an 
inclusion of a C-n-tuple into a C-system is tested in general with the help of an algorithm of 
exponential computational complexity, while the algorithm for testing of an inclusion of a C-n-tuple 
and even C-system into a D-system has a polynomial complexity. To fulfill certain operations and 
tests, it is required to transform an object of the N-tuple algebra into an object of the alternative 
class that is equivalent to it (for example, a C-system into D-system and vice versa), which is 
achieved for the C-system or the D-system by algorithms of exponential complexity. The operation 
of complement of an object of the N-tuple algebra in all cases is fulfilled by an algorithm of 
polynomial computational complexity, but, in this case, the system is transformed into the 
alternative class. The operations of intersection and union of objects of the N-tuple algebra that 
belong to the same class are fulfilled by algorithms of polynomial complexity, but if they belong to 
different classes, then, to fulfill these operations, it is necessary to transform one of them into 
another class.  

In problems that are known in logic as problems of deductive inference, frequently, it is 
required to test that one object of the N-tuple algebra is included into another, as well as to fulfill 
quantifier operations. Table 1 presents various combinations of objects of the N-tuple algebra and 
the sign “+” label the combinations for which the execution algorithms of the corresponding 
operations are polynomial under the condition that all domains of attributes are simple sets (i.e., not 
multiplace relations). Note that, in all cases, to test whether a given elementary n-tuple belongs to 
any structure, we need an algorithm of polynomial complexity.  
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Table 1 
Action C-n-tuple C-system D-n-tuple D-system 

Testing of  inclusion of a C-
n-tuple into 

+  + + 

Testing of  inclusion of a C-
system into 

+  + + 

Testing of  inclusion of a D-
n-tuple into 

+  + + 

Testing of  inclusion of a D-
system into 

    

Quantifier operation ∀x +  + + 
Quantifier operation ∃x + + +  

 
However, within the framework of the N-tuple algebra, methods for reducing complexity of 

computationally exponential algorithms, as well as methods for recognizing particular cases of 
structures were developed that allow one to fulfill the corresponding operations, transformations, 
and testing for polynomial time. Even in the cases when it is not possible to use an algorithm of 
polynomial computational complexity, the required computational resources can be reduced by 
using natural parallelism inherent in objects of the N-tuple algebra.  

In contrast to conventional data structures applied in the computer implementation of logical 
and logical-probabilistic analysis, the structures of the N-tuple algebra are matrixwise, which, using 
the corresponding software–hardware implementation, makes it possible to reduce relatively easily 
the computational resources by paralleling the operations.  

The computer implementation of objects of the N-tuple algebra employs parallelism at the 
levels of (1) of components; (2) rows; and (3) matrices. At the level of components, we can 
represent domains and their subsets in the form of a totality of logical vectors. To implement 
operations of the algebra of sets and of tests of inclusion, we can apply logical operations with 
integer vectors. At the level of rows, we are able to fulfill simultaneously operations or tests of 
inclusion with all pairs of components of C-n-tuples and D-n-tuples. At the level of matrices, we can 
fulfill simultaneously operations of the algebra of sets and the test of inclusion for a set of pairs 
elements of which are rows (C-n-tuples and D-n-tuples from different objects of N-tuple algebra. 
For example, in the computation of the intersection of two C-systems (see algorithm 2), all 
operations of intersection of C-n-tuples employed in this algorithm can be executed in parallel.  

 
 

T. LOGIC AND PROBABILITY  
 
The term “probabilistic logic” has been widely applicable in AI since the publication of 

work [7] by Nilsson. His idea was extended and developed by other researchers [8, 9]. In these and 
other publications on probabilistic logic, the following problem was posed: given estimates of the 
probabilities of a certain set of event represented by formulas of propositional calculus, it is 
necessary to find a probabilistic estimate of the event represented by a logical formula different 
from the initial ones. Another aspect of the combination of probability and logic, e.g., the aspect 
that was implemented in logical-probabilistic methods (LPM) [10], where the probability of 
formulas is calculated based on the probabilistic values of logical variables have not been 
considered in those works. Moreover, the analysis of papers [7–9] has shown that the combination 
of classical concepts of “probability” and “logic” results in certain nonclassical logics. However, in 
this paper, we consider the concept of probabilistic logic within the framework of the N-tuple 
algebra.  
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The combination of concepts of “logic” and “probability” is rather difficult. At the first 
glance, it is completely simple if we take as a ground the system of axioms proposed by A.N. 
Kolmogorov [11], in which the algebra of events embedded into a probabilistic measure 
corresponds to the algebra of sets. For example, for events represented by sets A and B, the 
probabilistic measure of their union can be calculated as  

p(A∪B) = p(A) + p(B) – p(A∩B). 
Thus, together with the probabilities p(A) and p(B), to compute the probabilities of the event 

A∪B, it is necessary to know the probability p(A∩B), which, within the limits of certain constraints, 
in particular p(A∩B)≤min(p(A), p(B)), does not depend on p(A) and p(B). If in addition, we have 
A∩B = ∅, then the events A and B are dependent. However, if we assume that A and B are different 
logical variables rather than sets, then the probability of disjunction of these events can be 
calculated by the formula  

p(A∨B) = p(A) + p(B) – p(A)pB). 
To calculate this formula, it is sufficient to set only the probability of the events A and B.  
The question is why, for logical relations, another methodology takes place for computing 

probability, although it seems reasonable that the algebra of sets and the Boolean algebra are 
isomorphic. The answer to this question is a key point in the combination of the concepts of “logic” 
and “probability”. It is the matter of fact that, in classical logic, elementary events corresponding to 
different logical variables are inconsistent; therefore, any logical formula of n free variables is 
isomorphic to a certain n-place relation, and the events that correspond to the discriminate variables 
belong to different attributes. In other words, logical variables may be dependent but not initially 
and only by the fact that they are involved into a certain logical formula, which determines the 
dependence between them.  

Absurdity (from the point of view of mathematical logic) of another approach can be seen 
from the following example, which is presented sometimes in papers on probabilistic logic: for 
logical variables (but not for formulas!) X and Y, the probabilities p(X), p(Y), and p(X∧Y) are given, 
and the last probability is not necessarily equal to the product of the preceding ones.  

This clearly implies that in the embedding of logical systems into the probabilistic space, it 
is necessary to take into account that we deal with the system that is isomorphic to the algebra of 
sets according to the Kolmogorov system of axioms, but, in structure, the sets themselves are sets of 
n-tuples involved in multiplace relations.  

It is this circumstance, which is taken into account in the N-tuple algebra explicitly or 
implicitly, is not taken into account in different versions of “probabilistic logic.” The assumptions 
that events that correspond to different logical variables can be dependent in themselves, i.e., 
without taking into account the logical formula that relates them, means that the laws of 
mathematical logic are violated. It is not the same when we deal with the formulas, in which the 
dependence between different variables is established or with different logical formulas, which can 
be dependent only under the assumption that they contain at least one free variable that is common 
for them.  

 
 
4. N-TUPLE ALGEBRA-BASED PROBABILISTIC ANALYSIS OF SYSTEMS  
 
Consider methods of probabilistic simulation that use the N-tuple algebra in greater detail. 

The basic cross-linking concept of the N-tuple algebra is the concept of C-n-tuple. If we know the 
probabilistic measures of components of the C-n-tuple, then the measure of the C-n-tuple can be 
calculated as the product of the measures of its components. For example, when the C-n-tuple 
R = [A B C] is given in measurable attributes and the measures of its components are equal to μ(A), 
μ(B), and μ(C), respectively, then we have 
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 μI = μ(A) • μ(B) • μ(C). 
If we deal with the embedding of logical formulas in the probabilistic space, then all 

attributes of the space in which the totality of objects of the N-tuple algebra is given have measure 
one, and all objects of the N-tuple algebra have measures that do not exceed one. This corresponds 
to the probabilistic measure not only in numerical relations, but also by the fact that the system of 
events simulated by the N-tuple algebra is isomorphic to the algebra of sets.  

To compute the measures of objects from the N-tuple algebra that are different from 
C-n-tuples, it is necessary to orthogonalize them, i.e., to transform into an equivalent C-system in 
which the intersection of any pair of C-n-tuples is an empty set. The methods of orthogonalization 
of arbitrary objects of the N-tuple algebra have been developed; the results in detail can be found in 
[2–6]. Note that the measure of an orthogonal C-system is equal exactly to the sum of the measures 
of C-n-tuples that belong to it. In addition, the following regularity has been established: the 
orthogonalization not only allows one to prepare an object of the N-tuple algebra for calculating its 
probability, but also, in many cases, reduces the computational cost substantially in solving other 
problems (e.g., in solving the satisfiability problem).  

If an object of the N-tuple algebra is a representation of formulas of propositional calculus, 
then it is given in the universe {0, 1}n, where n is the number of logical variables of the formula. 
Each column of a C-n-tuple or a C-system is related to a certain logical variable. The variable xk 
corresponds to the kth column, the state 1 in the object of the N-tuple algebra corresponds to the 
literal xk, and the state 0 corresponds to the literal xk. Any row (C-n-tuple) in a C-system 
corresponds to the conjunction of the formula expressed as the disjunctive normal form (DNF). If 
some clause misses the variables that are involved in the composition of formula, then, instead of 
them, the corresponding dummy variable “∗” is inserted in the C-n-tuple.  

Example 1. Assume that the formula of propositional calculus  
FQ = (x1 ∧¬x3)∨(¬x2 ∧ x3)∨(¬x1 ∧ x2).    (4.1) 

is given. Since there are three logical variables here, this formula can be represented as an 
object of the N-tuple algebra Q in the universe {0, 1}3  

Q =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∗
∗

∗

}1{}0{
}1{}0{
}0{}1{

. 

This formula and the object of the N-tuple algebra that corresponds to it are orthogonal; 
therefore Q can be expressed directly in terms of the probabilistic measure. Assume that, in the 
object Q of the N-tuple algebra, the probabilities of events are given as follows: pi is the probability 
of the event 1 in the ith attribute, and 1–pi is the probability of the event 0 in the ith attribute. 
Taking into account that the measure of a C-n-tuple is equal to the product of the measures of its 
components, and the measure of an orthogonal C-system is the sum of the measures of C-n-tuples 
belonging to it, we obtain the formula  

p(Q) =  p1(1–p3)+(1–p2)p3+(1–p1)p2.                         (4.2) 
In the LPM, formula (4.2) is called the probabilistic function (PF) of formula (4.1). This 

function can also be derived from the orthogonal C-system using the change of elements of 
components by the probabilities corresponding to them and by the transformation of the system into 
a polynomial. At the first glance, it seems that the structures of the N-tuple algebra provide only a 
different way for expressing logical formulas. However, when the models get complicated (in 
particular, in the transition to many-state systems), using the N-tuple algebra, it turns out to be 
possible to simplify essentially the algorithms for solving a number of problems considered in 
LPM. In addition, in the embedding into the probabilistic space, the concept of “regression 
equation” is introduced in the N-tuple algebra, which allows one to pose and solve the problem of 
probabilistic logic in accordance with the Nilsson statement. If in the probabilistic functions of type 
(4.2), we suppose that pi are variables rather than fixed numbers, then these formulas are an exact 
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regression equation of the corresponding logical formula. The proof of this proposition can be 
found in [5]. Consider an example of many-state system.  

Example 2. Let R = ⎥
⎦

⎤
⎢
⎣

⎡
},{}{
},{},{

213

3121

bba
bbaa

 be an orthogonal C-system with three states given 

in the space {a1, a2, a3}×{b1, b2, b3} with probabilities p(ai) and p(bi), and p(a3) = 1– p(a1) – p(a2) 
and p(b3) = 1– p(b1) – p(b2). Then, the probability of the event expressed by the object R of the 
N-tuple algebra if the required probabilities are substituted is  

pI = (p(a1) + p(a2))(1– p(b2)) + (1– p(a1) – p(a2))( p(b1)+ p(b2)). 
The presented approach corresponds to the direct problem of logical–probabilistic analysis 

when, for given probabilities of elementary events, the probability of a complex event is calculated. 
In the inverse problem, the statement is different. The problem is, based on the data on the 
probabilities of certain complex events, we should calculate the probabilities of elementary events. 
After this, we can calculate the probabilities of other complex events. Problems solved in 
probabilistic logic are of this type. Consider the example presented in the paper by Nilsson [7].  

Example 3. Given a totality of events specified by formulas A and A ⊃ B of propositional 
calculus, and p(A) = p1 and p(A ⊃ B) = p2. It is necessary to estimate the probability p(B) of the 
event B.  

We solve this problem by the methods of the N-tuple algebra. There are only two logical 
variables A and B that are also elementary events in this case. Assume that the probabilities of these 
events are p(A) and p(B), respectively. The conditions of the problem imply that p(A) = p1. Let us 
express the given formulas in the structures of the N-tuple algebra using the universe {0, 1}2:  

A = [{1} ∗];  B = [∗ {1}];   A ⊃ B = A∨ B = ]{0} {1}[ = ⎥
⎦

⎤
⎢
⎣

⎡ ∗
}1{}1{

}0{
 

(here the D-n-tuple corresponding to formula A ⊃ B is transformed into an orthogonal C-
system).  

On this ground, we write the probabilistic formulas for the events A and A⊃B  
P(A) =  p1;      P(A ⊃ B) = (1 – p(A)) + p(A)p(B) = p2. 
We obtain the system of two equations  

p(A)  = p1; 
   (1 – p(A)) + p(A) p(B) = p2. 
This easily implies that  

 p(B) = 
1

21 1
p
pp −+ .  

In this problem, we obtain an exact solution, while in [7] the solution is obtained as the 
inequality p2 + p1 – 1 ≤ p(B) ≤ p2.  

In general, the algorithm for solving problems of probabilistic logic is as follows. Assume 
that we have initial logical formulas Fi with given probabilities p(Fi) and a formula G whose 
probability p(G) has to be calculated. Then, it is necessary to fulfill the following sequence of 
operations:  

(1) formulas Fi and G are transformed into orthogonal C-systems;  
(2) for each of these systems, the regression equations E(Fi) and E(G) are derived;  
(3) the system of equations { E(Fi)} is formed and solved;  
(4) if the system of equations { E(Fi)} has a unique solution, then the obtained values of 

variables are substituted into the formula E(G) and an exact solution is found.  
In the Nilsson problem, an exact solution was obtained by the methods of the N-tuple 

algebra. However, this situation is not possible in all cases. Consider an example.  
Example 4. Given probabilities of the events described by the logical formulas  
p(A ∨ B) = a;   p(A ∧ B) = b.  
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Find estimates of p(A) and p(B). Let us express the given events in the system as orthogonal 
C-systems  

A ∨ B ⇔ ]{1}  {1}[ = ⎥
⎦

⎤
⎢
⎣

⎡ ∗
}1{}0{

}1{
; 

A ∧ B ⇔ [{1}  {1}]. 
We derive the system of equations  
p(A) + (1 – p(A)) p(B) = a; 
p(A) p(B) = b. 
Solving this system, we obtain  

p(A) = 
2

4)( 2 bbaba −+±+
;  p(B) = 

2
4)( 2 bbaba −++ m

.  

It is clear that the obtained solutions do not give a unique solution in the cases when the 
radicand is not equal to 0 (this is possible for p(A) ≠ p(B)). If we take into account that both initial 
formulas are symmetric, then this uncertainty was caused by the conditions of the problem.  

For the presented examples, we can test the calculation numerically, if the probabilistic 
models corresponding to them are constructed. For example, for example 4, the probabilistic model 
is as follows: assume that two coins are tossed, note that the probability that at least once heads 
have occurred (the formula A .B corresponds to this event), and the probability that heads have 
occurred in two tosses (formula A ∨ B) are known. If we know the probability of the event that 
heads have occurred (for correct coins, it is equal to 0.5), by the laws of probability theory, we can 
calculate the probability of these complex events p(A ∨ B) = 0.75 and p(A ∧ B) = 0.25. The 
substitution of these values into the formulas for p(A) and p(B) presented above gives a correct 
answer. A similar test can be performed for incorrect coins, when the probability that heads occur 
differs from 0.5.  

The probabilistic relations obtained based on the ntuple algebra allow one not only to 
estimate the probability of complex events for given distribution functions of events in each 
attribute, but also to solve the inverse problem of probabilistic analysis, i.e., to estimate the types 
and parameters of marginal distributions (distributions in attributes and certain projections).  

First, we consider the following statement of the problem: a system is represented either in 
structures of the N-tuple algebra or in the form of a system of logical functions, and, for any 
variable, the probability distribution is known. In a multidimensional space, a distribution in either 
attributes or in certain projections of this space is called marginal distribution. It is necessary to 
calculate the probability distribution of the system and to estimate the stability of this distribution. 
The problems of this type arise in evaluating the reliability and safety of systems with complex 
structure and logical–probabilistic risk management in business and industry [12]. Using the 
relations derived above, logical systems in which these problems are solved can be conversed into 
measurable systems in the N-tuple algebra.  

Assume that every attribute of a certain set of objects of the N-tuple algebra is represented 
by a finite system of events. The following two variants of specifying a system of events in the 
attribute Xi:  

(1) in the form of an elementary system (i.e., a system of pairwise inconsistent events);  
(2) on a continuous probability distribution p(xi) in the form of a finite set of intervals (ai, bi) 

nonoverlapping in general, where ai and bi are the values of the parameter xi and ai < bi.  
For the first variant, it is sufficient to assign to each event its probability. The second variant 

can be reduced to the first one by the following procedure:  
(1) in the system {(ai, bi) of intervals of the parameter xi, the system of events is split into 

the set of pairwise nonoverlapping intervals–quanta;  
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(2) the initial system of events is transformed into a discrete one assigning to each initial 
event a certain set of quanta such that their union is equal to this event;  

(3) for each quantifier er, compute the value of the probability pr using as the lower and 
upper integration limits for p(xi) the endpoints of this quantum equal to the values of the parameter 
xi.  

If this procedure has been performed for each attribute of the object of the N-tuple algebra, 
then its probability is computed in the following order:  

(1) the object of the N-tuple algebra is orthogonalized;  
(2) the object of the N-tuple algebra is transformed into a polynomial in which we assign to 

each quantum the corresponding value of the probability.  
Example 5. The system is given in the space X×Y, where the attributes are represented in the 

form of intervals, and X= [0, 7] and Y= [0, 5]. The densities of probability distributions f1(x, d1, e1) 
and f2(y, d2, e2) on attributes are also known, where d1, e1, d2, and e2 are the parameters of the 
distributions. In this system a certain event is given in the form of an object of the N-tuple algebra 

R[XY] = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

}{}{
}{},{
}{}{

33

242

11

ba
baa
ba

,where ai and bj are intervals given in Table 2. It is necessary to determine 

the order of calculations for computing the probability of the event R.  
It is sufficient to use only open intervals in order to solve this problem. To simplify the 

system, we construct increasing series of endpoints of intervals in the attributes, for X, 0; 1.7; 2.8; 
3.4; 4.3; 5.5; 6.4; and 7; for Y, 0; 1.4; 2.3; 3.2; and 5. Then, we obtain the following sets of 
elementary intervals for the attributes X (Table 3) and Y (Table 4).  

         Table 2 
a1 a2 a3 a4 b1 b2 b3 

[0, 2.8] [1.7, 3.4] [3.4, 5.5] [4.3, 6.4] [0, 2.3] [1.4, 3.2] [2.3, 5.0] 
         Table 3  

r1 r2 r3 r4 r5 r6 r7 
(0, 1.7) (1.7, 2.8) (2.8, 3.4) (3.4, 4.3) (4.3, 5.5) (5.5, 6.4) (6.4, 7) 

         Table 4  
q1 q2 q3 q4 

(0, 1.4) (1.4, 2.3) (2.3, 3.2) (3.2, 5) 
When we replace the intervals with the corresponding sets of quanta, we obtain  

a1={r1, r2};  a2={ r2, r3}; a3={ r4, r5}; a4={r5, r6};   
b1= {q1, q2}; b2= {q2, q3}; b3= {q3, q4}. 

After the substitution into the initial C-system, we obtain  

R = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

},{},{
},{},,,{
},{},{

4354

326532

2121

qqrr
qqrrrr
qqrr

. 

For each quantum ri or qj, we calculate the corresponding probability. For example,  

 p(r3) = ∫
4,3

8,2
111 ),,( dxedxf . 

Now, we can orthogonalize the corresponding complex events. For the event R, we compute 
R , and after the transformation of R  into an orthogonal C-system, we find pI = 1 – p( R ). Then, we 
obtain (the intermediate calculations are eliminated)  
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R = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

}{},,,,{
}{},{
}{},{
}{},,,,{

476321

371

274

176543

qrrrrr
qrr
qrr
qrrrrr

. 

Next, substituting the probabilities of quanta and using the theorems of the N-tuple algebra, 
we arrive at the expression  

pI = 1 – p( R ) = 1 – ((p(r3)+p(r4)+p(r5)+p(r6)+p(r7))p(q1)+(p(r4)+p(r7))p(q2)+ 
+(p(r1)+p(r7))p(q3) +(p(r1)+p(r2)+p(r3)+p(r6)+p(r7))p(q4)). 
When solving the inverse problem for systems with many states, it is not always possible to 

solve the system of equations exactly since the number of variables in the regression equations is 
comparable with the number of all quanta and may exceed the number of equations. For example, 
in example 5, the number of quanta in the attribute X is seven; therefore, the number of unknown 
parameters of just this attribute is smaller by one, i.e., six. However, the problem can be solved 
approximately, if it is represented as an approximation problem. Assume that the attribute X is split 
into ki quanta (ki > 2). Then, we take as unknowns the types and parameters of continuous 
distributions for each attribute, rather than the magnitudes of quanta. Usually, the number of 
parameters of distributions does not exceed two — they will be unknown quantities. To estimate 
them, we can use optimization methods, in which the control actions are the types and parameters 
of marginal distributions, and the goal function is a generalized parameter, e.g., the mean value of 
the absolute deviations of the calculated values of the probabilities of the investigated complex 
events from the actual ones.  

 
 

CONCLUSIONS  
 
The application of the N-tuple algebra allows one to solve the direct and inverse problems of 

probabilistic analysis of logical systems in a multidimensional space not restricting ourselves to a 
particular class of distributions. As marginal distributions in solving the direct and inverse 
problems, we can use not only a normal distribution, but also any other distribution.  
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ABSTRACT 
 
In this paper, the problem of finding sampling distributions for truncated laws is considered. 

This problem concerns the very important area of information processing in Industrial Engineering. 
It remains today perhaps the most difficult and important of all the problems of mathematical 
statistics that require considerable efforts and great skill for investigation. The technique discussed 
here is based on use of the unbiasedness equivalence principle, the idea of which belongs to the 
authors, and often provides a neat method for finding sampling distributions. It avoids explicit 
integration over the sample space and the attendant Jacobian but at the expense of verifying 
completeness of the recognized family of densities. Fortunately, general results on completeness 
obviate the need for this verification in many problems involving exponential families. The 
proposed technique allows one to obtain results for truncated laws via the results obtained for non-
truncated laws. It is much simpler than the known techniques. The examples are given to illustrate 
that in many situations this technique allows one to find the results for truncated laws and to 
estimate system reliability in a simple way. 

 
KEYWORDS 

 
Truncated law, Sampling distribution, Unbiasedness equivalence principle, Reliability 

estimation  
 

1. INTRODUCTION 
 
The truncated distributions have found many applications. Several examples have been 

given employing the truncated distributions in fitting rainfall data and animal population studies 
where observations usually begin after migration has commenced or concluded before it has 
stopped [1-2]. Similar situations arise with regard to aiming errors (range, deflection, etc.) in 
gunnery and other bombing accuracy studies. For example, in gun camera missions, the view angle 
of the camera defines a known truncation point for an exponentially distributed random variable, 
observable as some function of the radial error or the distance from the aiming point to the point of 
impact [3]. A situation for the truncated Poisson distribution would occur when one wishes to fit a 
distribution to Poisson-like data consisting of numbers of individuals in certain groups which 
posses a given attribute, but in which a group cannot be sampled unless at least a specified number 
of its members have the attribute. For example, the group may be a household of people, and the 
attribute measles; the specified number would then be one. Other examples arise in life testing and 
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reliability problems, where if failure is caused by a wear-out mechanism or is a consequence of 
accumulated wear, then the length-of-life of a system can be expected to be of finite dimension. The 
object of the present paper is to obtain a sampling distribution for truncated law with a known 
truncation point and a minimum variance unbiased estimator of the reliability function for this 
model using the results obtained for non-truncated law. It is known that a sampling distribution for 
truncated law may be derived using, namely, the method based on characteristic functions [4], the 
method based on generating functions [5], or the combinatorial method [6]. In this paper, a much 
simpler technique than the above ones is proposed. It allows one to obtain the results for truncated 
laws more easily. 

 
U. UNBIASEDNESS EQUIVALENCE PRINCIPLE 

 
Suppose an experiment yields data sample Xn = (X1, … , Xn) relevant to the value of a 

parameter θ (in general, vector). Let LX(xn;θ) denote the probability or probability density of Xn 
when the parameter assumes the value θ. Considered as a function of θ for given Xn=xn, LX(xn;θ) is 
the likelihood function. If the data sample Xn can be summarized by a sufficient statistic S, one can 
write LS(s;θ) ∝ LX(xn;θ). Further, for any non-negative function ω(s), ω(s)LS(s;θ) is also a 
likelihood function equivalent to LX(xn;θ). Suppose we recognize a function ω(s) such that 
ω(s)LS(s;θ), regarded as a function of s for a given θ, is a density function. It can be shown that this 
is the sampling density of S if the family of recognized densities is complete.  

 The unbiasedness equivalence principle consists in the following. If  
 

 LX(xn;θ,ϑ)=[w(θ,ϑ,)]nLX(xn;θ), (1) 
 
represents the likelihood function for the truncated law, where w(θ,ϑ) is some function of a 

parameter (θ,ϑ) associated with truncation, ϑ is a known truncation point (in general, vector), then 
a sampling density for the truncated law is determined by 

 
 [ ] ,     ),;()()();(  

ϑϑ ϑ S∈= ssss θθ,θ gwwg n)    (2) 
where 
 

   [ ] );()()(  θθ ss gww nϑ,) = ϕ(s)LS(s;θ,ϑ) ∝ LX(xn;θ,ϑ), (3) 
 

g(s;θ) is a sampling density of a sufficient statistic s(Xn) (for a family of densities {f(x;θ)}) 
determined  on the basis of LX(Xn;θ), )(Sw) is an unbiased estimator of 1/[w(θ,ϑ)]n with respect to 
g(s;θ), s∈S  (a sample space of a non-truncated sufficient statistic S), ϕ(S) is a function of S for a 
given θ, which is equivalent to unbiased estimator )(Sw)  of 1/[w(θ,ϑ)]n, i.e.,  

 
 ϕ(S) ∝ )(Sw)  (4) 

 
or 

ϕ(S) = [ ] ),;(/);(),()(  ϑϑ θθθ SSS SLgww n) ,   (5) 
 

gϑ (s;θ) is the sampling density of a sufficient statistic S (for a family of densities {fϑ (x;θ)})  
when the truncation parameter ϑ is known, Sϑ  is a sample space of a truncated sufficient statistic S.  
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V. EXAMPLES OF APPLICATIONS OF THE UNBIASEDNESS 
EQUIVALENCE   

    PRINCIPLE TO FINDING SAMPLING DISTRIBUTIONS FOR TRUNCATED LAWS 
 

Example 3.1 (Sampling distribution for the left-truncated Poisson law). Let the Poisson 
probability function be denoted by 

.  ... 2, 1, 0,     ,
!

);( == − xe
x

xf
x

θθθ    (6) 

 
The probability function of the restricted random variable, which is truncated away from 

some ϑ≥0, is then 
 

   ,  ... 2, 1,     ),;(),();( ++== ϑϑθϑθθϑ xxfwxf  (7) 
 

where 
 

.
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e
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   (8) 

 
 
Consider a sample of n independent observations X1, X2, …, Xn, each with probability 

function fϑ(x;θ), where the likelihood function is defined as 
 

∏
=
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i

n
X xfxL
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i
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θϑθ θ  (9) 

and let 
 

  .  ... ,1)1( ),1(     ,
1
∑
=

+++==
n

i
i nnsXS ϑϑ  (10) 

 
 
It is well known that 
 

 ... 1, 0,     ,
1

==∑
=

sXS
n

i
i .  (11) 

 
is a complete sufficient statistic for the family {f(x;θ)}. A result of [7] states that sufficiency 

is preserved under truncation away from any Borel set in the range of X. Hence, in the case at hand 
S is sufficient for {fϑ (x;θ)}. It can be verified that S is also complete. 
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 For the sake of simplicity but without loss of generality, consider the case ϑ=0. This is at the 
same time the most important case for applications and the easiest with which to deal. It follows 
from (2) that 

 

[ ] );(),()();(  θϑθθϑ sgwswsg n)= ,  ... 1, ,     ,
! )1(
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n
sC  denotes the Stirling number of the second kind [8] defined by 
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This is the same result that of Tate and Goen [9]. Their proof was based on characteristic 

functions. 
 Example 3.2 (Sampling distribution for the right-truncated exponential law). Let the 

probability density function of the right-truncated exponential distribution be denoted by 
 

,0     ),;(),();( ϑθϑθθϑ ≤≤= xxfwxf   (18) 
 
where 
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Consider a sample of n independent observations X1, X2, …, Xn, each with density fϑ (x;θ), 
where the likelihood function is determined as 
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It is well known that 
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is a complete sufficient statistic for the family {f(x;θ)}. It follows from (2) that 
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where a+=max(0,a), 
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This is the same result that of Bain and Weeks [4]. Their proof was based on characteristic 

functions. 
 Example 3.3 (Sampling distribution for the doubly truncated exponential law). Consider an 

exponential distribution (20) that is doubly truncated at a lower truncation point (ϑ1) and an upper 
truncation point (ϑ2). The probability density function of the doubly truncated exponential 
distribution is defined as 
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where ϑ=(ϑ1,ϑ2), 
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Consider a sample of n independent observations X1, X2, …, Xn, each with density fϑ (x;θ), 

where the likelihood function is determined as 
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It is well known that 
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is a complete sufficient statistic for the family {f(x;θ)}. It follows from (2) that 
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where a+=max(0,a), g(s,θ) is given by (24), 
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4. VALIDITY OF THE UNBIASEDNESS EQUIVALENCE PRINCIPLE 
 
The theoretical results of this investigation into the validity of the proposed unbiasedness 

equivalence principle (UEP) for finding sampling distributions for truncated laws are largely 
contained in the theorem given below. We introduce the following notation and assumptions. Let Xn 
be a random variable taking on values xn in a space Xϑ, let A  be a σ −field of subsets of Xϑ, and let 
(θ,ϑ) be a parameter associated with truncation, where ϑ is a known truncation point. For all values 
of the parameter θ in some parameter space Θ, let Pϑ be a probability measure on A; i.e., for any set 
A in A, Pϑ (A;θ) is the probability that Xn will belong to A when the parameter has the value θ. Let 
S=s(Xn) be a statistic on the measurable space (Xϑ,A ) taking on values in a measurable space (Sϑ, 
B). For each θ∈Θ, let Gϑ be the probability distribution of S when Xn has the distribution Pϑ; i.e., 
for any B∈B, Gϑ(B;θ) = Pϑ( ),);(1 θB−s  where s-1(B) is the set of points xn in Xϑ  for which s(xn)∈B.  

W. Assume the family P = {Pϑ: θ∈Θ} of probability distributions of Xn is 
dominated by a totally σ −finite measure μ over (Xϑ,A), i.e., there exists, for 
all θ∈Θ, a non-negative A – measurable function pϑ (xn;θ) such that 

 
 ∫

A

nn xdxpAP )();(= );(  μϑϑ θθ  (36) 

 
for all A∈A. (The integrand pϑ(xn;θ) is called the density of Pϑ w.r.t. (with respect to) μ). 
 (ii) Assume that s(Xn) is sufficient for P. From the Halmos-Savage factorization theorem 

[10], s(Xn) is sufficient if and only if for each θ∈Θ there exists a non-negative B-measurable 
function LS(s(xn);θ,ϑ) on Sϑ and a non-negative A – measurable function v on Xϑ such that 

   ).(     )(),);(( = );( μϑϑ
nnn xvxLxp θθ sS  (37) 

 
(The symbol (μ) following a statement means that the statement holds except on a set of μ-

measure zero). In (37), we will assume that LS and v are finite (μ). 
 (iii) Assume we recognize some likelihood function LS(s;θ,ϑ) equivalent to likelihood 

function LX(xn;θ,ϑ). Define a σ −finite measure ρ over (Xϑ,A) by 
 

 ∫ ∈
A

nn AxdxvA A. all      ,)()( = )( μρ  (38) 

 
Then, from (36), (37), and (8), 
 

∫ ∈
A

nn AxdxLAP A. all      ,)(),);(( = );( ρϑϑ θθ sS  (39) 

 
 (iv) Assume we recognize a totally σ -finite measure η over (Sϑ, B) such that the measure ρ 

s-1 over (Sϑ, B) is absolutely continuous w.r.t. η; i.e., η(B)=0 implis that ρ s-1(B)=0, where ρ s-1(B) 
denotes the ρ − measure of the inverse image of B. 

 (v) Assume we recognize a positive B-measurable function ϕ on Sϑ such that 
 

 ∫ ≡
ϑ

ηϕϑ
S

1)()(),;( sssS dL θ  (40) 

 



N. Nechval, K. Nechval – TECHNIQUE FOR FINDING SAMPLING DISTRIBUTIONS FOR TRUNCATED LAWS WITH SOME APPLICATIONS TO 
RELIABILITY ESTIMATION 

 
R&RATA # 3  

(Vol.1) 2008, September 
 

 

- 75 - 

for all θ∈Θ. Assume further that for any measurable set B of positive η − measure, there 
exists a θ∈Θ and a measurable subset B1 of B of positive η − measure over which LS(s;θ,ϑ)ϕ(s) is 
positive.  

 From (40), {LS(s;θ,ϑ)ϕ(s):θ∈Θ} is a family of densities w.r.t. η. For B∈B, let 
 

∫=
B

dLBG ).()(),;();( sssS ηϕϑθϑ θ  (41) 

 
Thus, (v) provides us with a family of densities, but at this stage we do not know if this 

recognized family is the family of sampling densities of S. 
 (vi) Assume we recognize that the family {LS(s;θ,ϑ)ϕ(s):θ∈Θ} is complete, i.e., 
 

∫ ∈≡
ϑ

ηϕϑφ
S

Θθθ  allfor      0)()(),;()( ssss S dL    (42) 

implies  
0  )( ≡sφ   (43) 

 
except on a set D with 0);( =θDGϑ  for all θ∈Θ. 
 Theorem 1 (Sampling distribution for truncated law). Under assumptions (i) through (vi), 

Gϑ has a density with respect to η and LS(s;θ,ϑ)ϕ(s) is a version of it, i.e.,  
 

 LS(s;θ,ϑ)ϕ (s) = [ ] );(),()(  θθ ss gww nϑ)  (44) 
 
is the sampling density, gϑ (s;θ), of the sufficient statistic s(Xn).  
 Proof. We show first that (43) and the second part of (v) imply that φ (s)≡0 (η). For suppose 

there exists a measurable В with η(B)>0 and φ(s)≠0 over B. Then B⊂D, so Gϑ(B;θ)=0 for all θ∈Θ. 
But, from (v), there exists a B1⊂B for which Gϑ (B1;θ)>0 for some θ, contradicting Gϑ (B;θ)=0 for 
all θ∈Θ. Now, by a theorem in [10], there exists a non-negative measurable function ψ on Sϑ such 
that 

 

∫∫ = )()();()());(( ssss ηψρ ϑϑ dQxdxQ nn θθ    (45) 

 
for every measurable function Qϑ, in the sense that if either integral exists, then so does the 

other and the two are equal. In (45), let Qϑ (s,θ) =χBLS(s;θ,ϑ), where χB is the characteristic 
function of B (B∈B). Then there exists a ψ (s) such that 

 

∫∫ =
− BB

nn dLxdxL )()(),;()(),);((
)(1

ssss S

s

S ηψϑρϑ θθ  (46) 

 
for all B∈B. Note that the left side of (45) is Gϑ(B;θ).   
 In (42), let φ (s) = 1−[ψ(s)/ϕ (s)]. From (40) and (46), 
 

∫ =⎥
⎦

⎤
⎢
⎣

⎡
−

ϑ

ηϕϑ
ϕ
ψ

S

0)()(),;(
)(
)(1 sss

s
s

S dL θ  (47) 

 
for all θ∈Θ. Thus, from (43), ψ(s)=ϕ(s) almost everywhere (η), and, from (47),  
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LS(s;θ,ϑ)ϕ(s) = [ ] );(),()(  θθ ss gww nϑ)  (48) 

 
is a version of the density of Gϑ with respect to η.   � 
  

 
X. FINDING RELIABILITY ESTIMATORS FOR TRUNCATED LAWS 

VIA THE UNBIASEDNESS EQUIVALENCE PRINCIPLE 
 
Consider a system that is required to operate for a given ‘mission time’, t. The reliability of 

this system for the right-truncated distribution of time-to-failure with the probability density 
function fϑ (x;θ) may be defined as 

 

  ∫=≥=
ϑ

ϑ
t

dxxftxtR .);()Pr()( θ  (49) 

 
Due to the Rao-Blackwell and Lehmann-Scheffé theorem [11] a minimum variance 

unbiased (MVU) estimator for R may be obtained as 
  

∫=
ϑ

ϑ
t

dxxftR ,);()( s
)

 (50) 

 
where X may be any one of the observations (X1, …, Xn) from fϑ (x;θ), S is a complete 

sufficient statistic for {fϑ  (x;θ)}, and fϑ (x;s) is the conditional distribution of X given S=s;  fϑ  (x;s) 
is obtained  

as 
 

  ,
)(

),,(
);(
);,();(

ss
ss

w
xw

g
xfxf f

)

) ϑ

ϑ

ϑ
ϑ

θ
θ
θ

==  (51) 

where 
 

 );()],()[,,();,( θθθθ ss gwxwxf n
f ϑϑϑ
)=   (52) 

 
is the joint probability density of X and S, ),,( ϑθxwf

)  is an unbiased estimator of 
 

 nf w
xfxw  )],([

);(),,(
ϑ

ϑ ϑ

θ
θ

θ = .  (53) 

with respect to g(s;θ). 
 It should be noted that (50) can be obtained by different method as 
 

,
)(

),,()(
sw

twtR R
)

)) ϑθ
=  (54) 

 
where ),,( ϑθtwR

)  is an unbiased estimator of 
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 nR w
tRtw  )],([
)(),,(
ϑ

ϑ
θ

θ =  (55) 

 
with respect to g(s;θ). 
 Example 5.1 (MVU estimator of reliability for the right truncated exponential distribution). 

Let Xn=(X1, …, Xn) be a random sample of size n from a population with density (18). Then it 
follows from (50) (or (54)) that the MVU estimator of R(t) is obtained as 
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 (56) 

 
As a particular case, if ϑ → ∞ that is the variable X is assumed unrestricted, the 

corresponding MVU estimator of reliability reduces to 
 

     .])/1[()( 1 −
+−= nSttR

)
    (57) 

 
For instance, suppose that the following failure times, in hours, are available from a given 

system: 4.2, 9.8, 16, 20 and that the truncation point ϑ=25 hours and the mission time t=5 hours. 
Clearly s=50 hours. Substituting these values in (56), the estimate of reliability is obtained as 

.824.0)( =tR
)

 Had we assumed, however, that the observations are coming from the complete 
population, the estimate of reliability would have been, from (57), .729.0)( =tR

)
  

 Example 5.2 (MVU estimator of 
reliability for the right-truncated gamma distribution). Let Xn=(X1, …, Xn) be a random sample of 
size n from a population with density 

 

,
)(

1),();( /1 σδδ
ϑ σ

δ
ϑ xexwxf −−−

Γ
= θθ    0 < x ≤ ϑ,   σ > 0,   δ > 0,  (58) 

 
where ϑ is point of truncation, θ=(σ,δ), and w(θ,ϑ) is such that 

  ∫ =
Γ

−−−
ϑ

σδδσ
δ

ϑ
0

/1 .1
)(

1),( dxexw xθ  (59) 

 
This distribution has found applications in a number of diverse fields, for instance, in fitting 

of length-of-life data under fatigue. Note that for δ=1, the right-truncated gamma distribution 
reduces to the right-truncated exponential distribution with parameter σ. Although, this distribution 
is a special case of gamma distribution and gives a good fit to length-of-life data in many situations, 
it is not suitable since its use carries the implication that at any time future life-length is 
independent of past history. 

 To find MVU estimator of R(t) we apply the above technique. If the shape parameter δ in 
(58) is assumed to be known, then it is well known that 

 

∑
=

=
n

i
iXS

1

  (60) 
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is a complete sufficient statistic for σ. The probability density function of the sampling 
distribution of S is given by 

 

[ ] );(),()();(  θθθ sgwswsg nϑϑ
)= σ

δ δσ
δϑ /
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The joint distribution of X and S is given by 
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Thus the conditional distribution of X given S is 
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Hence the MVU estimator of R(t) at time t is given by 
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It may be remarked that the result (66) though at the first look appears quite unwieldy is not 

so in practical applications, particularly when the sample size is small. 
 As a particular case, if ϑ → ∞ that is the random variable X is assumed unrestricted, the 

distribution of the sufficient statistics from equation (61) reduces to 
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and the corresponding MVU estimator of reliability at time t is given by 
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which corresponds to Basu’s [12] equation (9). 
 

 
Y. CONCLUSIONS 

 
The authors hope that this work will stimulate further investigation using the approach on 

specific applications to see whether obtained results with it are feasible for realistic applications.  
  
 It will be noted that the similar approach also can be used to find the sampling distribution 

for truncated law when some or all of its truncation parameters are left unspecified. 
 For instance, consider Example 3.3, where it is assumed that the truncation parameter 

ϑ=(ϑ1,ϑ2) is unknown. It is known that the statistic (X(1), X(n), S), where 
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is a complete sufficient statistic for a set of parameters (ϑ1,ϑ2,θ). In this case, the likelihood 
function of a sample is determined as 

 

∏
−

=
− −=

1

2
)()1(12)()1( );();();()1(),;,...,,,(

n

i
innnX xfxfxfnnxxxxL θθθθ ϑϑϑϑ  

 
 

[ ] [ ] ,1),,();();(),,();,(
/

2
2 

)()1()()1(

1

2

2 
)()1()()1(

1

2
θ

θ
θθθθθ

∑
−

=
−

−
−

−

=

− ∏ ==

n

i
ix

n
n

nn

n

i
i

n
nn exxwxxhxfxxwxxh ϑϑ  

(72) 
 
where 
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x(1) < x(n),     x(1), x(n)∈[ϑ1,ϑ2],  (73) 
 
is the joint probability density function of the order statistics x(1) and x(n)), Fϑ(⋅) is the 

probability distribution function. It is well known that 
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is a complete sufficient statistic for the family {f(x;θ)}. It follows from (2) and (72) that 
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 s∈[(n-2)x(1),(n-2)x(n)],     n ≥ 3,  (75) 
 
where 

, )[0,   ,
)2(

);( /
2-n

3

∞∈
−Γ

= −
−

se
n

ssg s
n

θ

θ
θ     (76) 

 
 



N. Nechval, K. Nechval – TECHNIQUE FOR FINDING SAMPLING DISTRIBUTIONS FOR TRUNCATED LAWS WITH SOME APPLICATIONS TO 
RELIABILITY ESTIMATION 

 
R&RATA # 3  

(Vol.1) 2008, September 
 

 

- 81 - 

[ ] ,
][

1),,( 
2//

2 
)()1( )2()1( −−−

−

−
=

nxx
n

n ee
xxw θθθ   (77) 

 

,])))(2()2([()1(
21(s)

2

0

3 
)1()2()1(

2
3 ∑

−

=

−
+

−−
− −−−−−−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

n

j

njn
n xxjnxns

j
n

s
w)  (78) 

 

 { } dssgswswE );()()(
0

θ∫
∞

= )) .][ 2// )2()1( −−− −= nxx ee θθ  (79) 

 
Thus, the sampling distribution of the sufficient statistic (X(1), X(n), S) for (ϑ1,ϑ2,θ) is given 

by 
 

  ).;();,();,,( )()1()()1( θθθ sgxxhsxxg nn ϑϑϑ =  (80) 
 

In other words, we have the following results. 
 In a singly truncated case, when a truncation point on the left, ϑ1, is unknown, a sampling 

distribution of the sufficient statistic (X(1), S) for (ϑ1,θ) is given by 
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is the probability density function of the order statistic X(1), 
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s≡s(X2, …, Xn). 
 In a singly truncated case, when a truncation point on the right, ϑ2, is unknown, a sampling 

distribution of the sufficient statistic (X(n), S) for (ϑ2,θ) is given by 
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is the probability density function of the order statistic X(n), 
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s≡s(X1, …, Xn-1). 
 In a doubly truncated case, when a lower truncation point, ϑ1, and an upper truncation point, 

ϑ2,  are unknown, a sampling distribution of the sufficient statistic (X(1), X(n), S) for (ϑ1,ϑ2,θ) is 
given by 

 
  ).;();,();,,( )()1()()1( θθθ sgxxhsxxg nn ϑϑϑ =  (89) 
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is the joint probability density function of the order statistic X(1) and X(n), 
 

   [ ] ),;(),,()();( 2 
)()1( θθθ sgxxwswsg n

n
−= )

ϑ  (92) 
 
 

s≡s(X2, …, Xn-1). 
 If, say, we deal with a left-truncated exponential distribution, 
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and a truncation point on the left, ϑ1, is unknown, then it follows immediately from (81) that 

the sampling distribution of the sufficient statistic (X(1), S), ,
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(95) 
which corresponds to the well-known result [11]. 
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ABSTRACT: The bootstrap method is an extensive computational approach, based on 

Monte Carlo simulation, useful for understanding random samples and time series. It is a powerful 
tool, especially when only a small data set is used to predict the behaviour of systems or processes. 
This paper presents the results of an investigation on using bootstrap resampling (different types: 
uniform, importance based, block structured etc.) for time series appearing during software life 
cycle (mainly the software testing phase, and debugging), economics, and environment (air 
pollution generated by cement plants) in order to help the activity of staff working on risk 
management for software projects, risk management in finance, and those working on environment 
risk management. 

 
Z. INTRODUCTION 

 
Risk in the sense of the possibility of losses is an important chapter for many organizations, 

not only financial markets, but also for industry. One important principle belonging to the general 
scientific knowledge in the area of risk claims that “it is impossible to manage the risk without 
quantitative measurement and analysis of risk”, according to (Solojentsev, 2005).  

There are various aspects concerning risk management, depending on the field under 
consideration. As a consequence, different methodologies (models) were developed (Aven 2003, 
Solojentsev 2005, Kontio 1997, Higuera & Haimes 1996, Entrop et al.2007, Todinov 2006 etc.) 

 This paper addresses the usage of the bootstrap approach for analysing time series appearing 
when modelling some measurements during the evolution of processes. Bootstrap proved to be a 
valuable approach for a large class of applications according to (Efron & Tibshirani 1993, Albeanu 
et al. 2007), and the references mentioned related to time series. 

 The remainder of the paper is organized as follows. A short introduction to general 
bootstrap approach is given in the second section. Algorithmic aspects concerning bootstrapping 
time series and challenging problems related to the model selections are presented in the third 
section. The fourth section discusses on three case studies covering different fields of economical 
activities: cement plants pollution, inflation rate and software risk management. 

 The concluding section establishes the most important challenges to deal with when using 
bootstrapping time series. 

 
2. PROBLEM DEFINITION AND BACKGROUND INFORMATION 

 
2.1. Bootstrap methodology 

 
Bootstrap is a simple but powerful Monte-Carlo method to assess statistical accuracy or to 

estimate a distribution from sample’s statistics. The methods are suitable for any level of odellin 
being useful for fully parametric, semi-parametric, and completely nonparametric analysis. These 
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approaches are not only in use by statisticians, but also are applied anywhere statistics can be used: 
life sciences, business, social sciences, econometrics, reliability etc. For the aim of this paper we 
outline the basic bootstrap principle (see Efron 1979, Efron & Tibshirani 1986), and the application 
of bootstrap sampling for time series in order to help the activity of staff working on risk 
management. 

Let X be a random variable and F the cumulative distribution function of the variable X. The 
Bootstrap method, introduced by Efron (1979), is useful, at least, for the estimation of: a) the 
distribution function of a random variable R(X, F); b) a functional relation V(F), or c) the accuracy 
of a statistics s obtained from a sample (X1, X2, …, Xn) of size n from X (the accuracy describing the 
variability of s when independent estimations s(1), s(2), …, of the statistics s, are obtained by 
resampling). 

The bootstrap technique uses the sample (X1, X2, …, Xn) to obtain the sampling cumulative 
distribution function Fn(x) in order to replace the true cumulative distribution function F: Fn(x) = 
(1/n) cardinal {xi � x; 1 � i � n}. To repeatedly simulate bootstrap samples X* := (X1*, X2*, …, 
Xn*) from Fn , random number generators should be used according to the Monte-Carlo approaches. 
Then, for each bootstrap sample, it is recalculated: a) the distribution function of the random 
variable R(X*, Fn) ; b) the functional relation V(Fn) or V(Fn*) and c) the statistics s*( ). The 
accuracy of the statistics s can be derived under an appropriate statistical inference study on the 
sequence s*(). 

The bootstrap resampling can be realised in various ways. Uniform resampling and the 
importance resampling are the mostly used. As a common example of the usage of the uniform 
resampling, we refer to the bootstrap algorithm for estimating standard errors. However, when some 
observations are more important than others, the importance resampling can provide close to real 
conclusions. If resampling is based on importance resampling weights, then the bootstrap estimates 
are re-weighted as if uniform resampling is done. 

 
 

2.2.  Bootstrapping time series 
 
Time series play an important role in modelling, analysing and forecasting the behaviour of 

systems (Cochrane 2005, Hamilton 1994, Burtschy 1997, Madsen 2007). There are numerous 
aspects concerning time series. In the following will be described only those models and algorithms 
required by our case studies. 

Let {xt; t = 1, 2, …, T} be a time series and L be the lag operator: Lxt = xt-1; t > 1. The 
ARMA model having order (p, q) is given by: 

ϕ(L) xt = θ(L) ut, (1) 
where ϕ(L)xt  = (a0L0 + a1L1 + … + apLp)xt = a0xt + a1xt-1 + … + apxt-p, p ≥ 0, ap ≠ 0, θ(L)ut 

 = (b0L0 + b1L1 + … + bqLq)ut = b0ut + b1ut-1 + … + bput-q, q ≥ 0, bq ≠ 0, and {ut} is an 
uncorrelated process with zero mean and finite variance. 

 The ARMA bootstrap algorithm proceeds as follows: 
1 Determine the order of the ARMA(p,q) process. 
2 Estimate the parameters: )(ˆ Lϕ , )(ˆ Lθ . 
3 Resample from tt xLLu )(ˆ)(ˆˆ 1 ϕθ −= (after re-centring the tû  around zero). 
4 Choose a large positive integer τ, set *

tx = 0 for t < -τ, and generate iid draws for *
tu , 

with t = -τ, …, T. 
5 Generate pseudo-data: *1* )(ˆ)(ˆ tt uLLx θϕ −=  for t = -τ, …, T and retain the last T values 

of *
tx . 
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6 Calculate the bootstrap parameter estimates: )(*ˆ Lϕ ,  )(*ˆ Lθ . 
7 Repeat steps 3-6 many times and built up the empirical distribution to obtain the 

functional relation or analyse the required statistics. 
 
The ARMA parameters can be estimated using different methods including maximum 

likelihood (ML) algorithms, as presented by Boaz (1994) and others. 
As Berkowitz & Kilian (2000) mentioned, the bootstrap can perform well when the 

parametric model provides a good approximation to the true model. In practice, for a sample of 
size T, the model and the order (p, q) are unknown. Different scenarios have to be considered 
and a selection procedure will be applied. The most used procedures are, according to (Alonso et 
al. 2004): the final prediction error, the Akaike information criterion, the Bayesian information 
criterion and the Akaike’s Information Corrected Criterion (AICC). For the investigation 
presented in this paper, the AICC method was used: 

2)(
)1(2)ˆ,ˆ,ˆ(ln2 2

−+−
++

+Λ−=
qpT
qpTbaAICC σ  ,(2) 

where 
â is the estimated AR parameters; b̂ is the estimated MA parameters; 2σ̂  is the 

variance of the white noise, and ),,( ⋅⋅⋅Λ is the likelihood of the data under the Gaussian ARMA 
model. 

The block bootstrap is the best-known method for implementing the bootstrap time series, as 
(Härdle et al. 2003) mentioned. The method “consists of dividing the data into blocks of 
observations and sampling the blocks randomly with replacement.” For the time series considered 
above, with non-overlapping blocks of length l, the first block is composed by observations {xj; j = 
1, 2, …, l}, the second block contains observations {xl+j; j = 1, 2, …, l}, and so forth. When using 
the overlapping (moving) blocks of length l, the first block is composed by observations {xj; j = 1, 
2, …, l}, the second block consists of observations {xj+1; j = 1, …, l}, and so forth. The method of 
resampling is based on the replacement approach. The block bootstrap with random block length is 
a stationary bootstrap because a stationary data series is obtained. 

Seasonal time series are a special class of time series, appearing in environmental risk 
management or the multi-version software testing. These time series are typically modelled by 
equation 

ttt ux += μ , and dtt −= μμ , t > d, (3) 
where d is the period (day, week, month etc.) of some deterministic (but unknown) function 

μt, and {ut, t>0} is a stationary process with mean zero. In general, if μt is not a constant, the 
seasonal model is not stationary, that is a “seasonal block bootstrap” method (denoted, in the 
following, by SBB) is necessary. In the following let us remember the Politis (2001) approach that 
proved a good behaviour for time series obtained when monitoring the pollution of cement plants.  

The SBB algorithm considers that there exists an integer n such as T = nd, b ( < n) a given 
positive integer, k = nb, and works along the following steps: 

1 Let i0, i1, …, ik-1 be drawn independent identically distributed uniform on the set {1, 2, 
…, n-b+1}; 

2 Build the bootstrap pseudo-series X1*, X2*, …, Xl*, where l = kbd, and 
1

* : −++ = jdijmbd m
XX  (4) 

 for m = 0, 1, …, k-1, and j = 1, 2, …, bd.  
The estimation of seasonal component μi, i = 1, 2, …, d, and the overall mean 

∑=
−=

d

i id
1

1 μμ are realised by means of averages of the “sampled” series:  
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∑
−

=
+

−=
1

0

1ˆ
n

j
jdii Xnμ , and ∑

=

−=
d

i
id

1

1ˆ μμ . (5) 

The usefulness of the SBB method consists of interval estimates obtaining for μi and μ by 
means of successfully approximating the distribution of iμ̂ and μ̂ by their bootstrap versions 
computed based on the bootstrap pseudo-series X1*, X2*, …, Xl*, by 

∑
−

=
+

−=
1

0

*1* )(
kb

j
jdii Xkbμ , and ∑

=

−=
d

i
id

1

*1* ˆˆ μμ . (6) 

This model is used in the place of “residual” block bootstrap obtainable by resampling of the 
residuals ttt XY μ̂:ˆ −= . The pseudo-series **

2
*

1
ˆ,,ˆ,ˆ
lYYY L is used to generate the bootstrap series 

** ˆˆ: ttt YX += μ , t = 1, 2, …, l. 
It was proved (see Politis, 2001) that overlapping plays an important role in bootstrap 

efficiency: “the maximum overlap leads to maximum efficiency”. A data based adapted procedure 
for choosing the block size l, in finite samples, based on the (Berkowitz & Kilian, 2000) method, in 
order to maximize the average accuracy. 

Given the stationary series {xt; t = 1, 2, …, T}, the bootstrap approach can be used to select 
the block size suitable for a maximum accuracy in estimating some statistic of interest, according to 
the following steps: 

1 Approximate the given time series by a parametric ARMA(p, q), or AR(p) model, with 
order selected by AICC approach. 

2 Generate B (≥ 512) Monte Carlo trials of length T from the model fitted above. 
3 For each Monte Carlo trial generate overlapping blocks bootstrap data {Xt*} for 

different block sizes k. 
4 Compute the statistics of interest {Xt*(k)}.  
5 Select the block size k* which, on average, produces the most accurate test statistics, 

point estimate, or confidence interval across Monte Carlo trials. 
6 Use the block size k* to apply the Block bootstrap or SBB method for the original data 

{xt; t = 1, 2, …, T}. 
 
There are available other methods for bootstrapping time series: (Berkowitz & Kilian 2000, 

Härdel et al. 2003) and Politis (2003) to mention only some references. The above selected 
approaches proved to be suitable (computing effort, accuracy) for the investigation on using time 
series for risk management in finance, environment and software reliability. 

 
2.3.  Risk management 

 
There are many definitions of the term “risk”, all of them including two important 

characteristics, namely uncertainty (an event may or not may occur) and loss (an event has 
undesired effects): risk being the possibility of suffering losses caused by an event that will 
probably occurs. 

Generally speaking, risk management is a systematic process for identifying, analysing and 
controlling risks.  

Multi-criteria decision aided, soft computing, and statistical analysis are some important 
approaches when speak about “Decide with minimum risk”. Recently, time-series risk models 
were proposed, mainly for insurance business (Wan et al. 2005, Zhang et al. 2007). Also, other 
researchers proved that time-series analysis and forecasting play an important role in risk 
management. These progresses can be accompanied by bootstrap methodology in order to apply 
a risk preventive approach. 
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3. CASE STUDIES 
 

3.1.  Bootstrapping time series applied for software risk management 
 
According to Kontio (1997), “software development is often plagued with unanticipated 

problems which cause projects to miss deadlines, exceed budgets, or deliver less than satisfactory 
products”. Even if these problems cannot be eliminated completely some of them can be well 
controlled well by taking appropriate preventive action.  

Practically, the software development organizations are exposed to a large plethora of 
risk factors. Some of them are: human resources quality, unrealistic schedule and budget, the 
mismatching of requirements and developed item, continuous alteration of requirements, 
outsourcing generated problems, overestimation of infrastructure capability etc. Software 
organizations may be able to avoid a large number of such problems if they use systematic risk 
management procedures and techniques early in projects. Any methodology has to monitor such 
resources and multivariate time series are obtained using a measurement methodology as 
provided by Fenton & Pfleeger (1996).  

One approach to analysis time series for software reliability is based on soft computing 
techniques as shown by Albeanu & Popentiu-Vladicescu (2005). However, during this 
investigation we found that classical time series analysis methods when combined with bootstrap 
resampling provide valuable information even if the size of the sample is not large, when used 
for Software Risk Management (SRM). 

When speak about software metrics for risk management, some metrics can be considered 
as critical, called SRM-critically, and will be analysed with time series methodologies. Other 
metrics will be analysed by graph methods, like in Risk. It methodology (Kontio & Basili 1996, 
Kontio 1997).  

The SRM-critically metrics are: a) the difference between actual expenses and the 
initially declared project cost; b) the difference between actual expenses and the predicted values 
obtained using the COCOMO approach; c) the ratio between real project progress and the 
planned project progress (explained by the Gantt chart, see Figure 1); Faults received per week 
(critically per month), and the successful debug actions per week. 

 

 
 

Figure 1. Waterfall model and the time series of critical bugs per month 
 
Other metrics like internal complexity, code readability, or the portability are not as critical 

metrics, if these are not stated by requirements agreement. 
For software project developed based on waterfall model having modular structures, but 

every module, except the first one, is dependent at least on previous model we experience a 
seasonal time series of critical bugs.  
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Applying the SBB approach we obtain the trend curve shown in Figure 2. This analyse 
was done before any moment of time indicated by Milestone (1 to 4, for the project under 
discussion).  

Seasonal Block Bootstrap time series
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Figure 2. Seasonal Block Bootstrap (the last three time series, and the trend curve obtained by 

ARMA model for the last generated series). 
 
Using this type of analysis important information was obtained not only for the staff 

involved in preventive risk management, but also for project manager, having opportunity to 
improve the structure of working teams (three main partners) and for rescheduling the financial 
resources before any milestone point.   

 
 

3.2. Bootstrapping time series for inflation forecasting 
 
Time series analysis started to be widely used in economics and finance since the 

discovering of the fact that “univariate ARIMA models often have far better forecasting and 
explanatory power than extremely complicated multivariate macroeconomic models” as Golub & 
Tilman (2000) mentioned. Also, these models proved a good behaviour in software reliability 
prediction (Popentiu-Vladicescu 2001). 

The Bootstrap proved to be an important approach for analysing interest rates in financial 
risk management, as shown by Dette & Weissbach (2006). 

In our study, the Consumer Price Index (CPI), which measures inflation, was studied by 
bootstrapping corresponding time series in order to forecast the rate of inflation. The standard 
bootstrap approach was used for the series rate of inflation (computed based on CPI) from 1992 to 
2007. The initial time series is shown in Figure 3. The last five bootstrap time series from a set of 
200 Monte Carlo trials and the trend curve modelled according to ARMA(0,2) is shown in Figure 4. 
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Figure 3. Inflation rate 1992-2007 (according to the Romanian Institute of Statistics: 
https://statistici.insse.ro/ipc/?lang=en) 
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Figure 4. The trend curves estimated by the initial time series and the bootstrap  
time series of inflation rate 

 

 
 

Figure 5. Pollution monitoring for increasing the health state in a cement plant region 
 
When considered the CPI databases containing records at month level, some seasonal 

behaviour was identified. At global level, a moving average model was more suited. 
The analyses checked the models parameters using the AICC formula given by (2). Other 

time series were used to investigate the bootstrap behaviour in order to provide confidence bands 
for dynamic financial analysis as in (Albeanu et al. 2007). 
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Other considerations on the accuracy of time series, interest rate and Survey forecast of 
inflation can be found on (Hafer & Hein 1984). 

 
 

3.3. Bootstrapping pollution time series  
 
Analysis of air pollution is important not only for meteorological point of view, but mainly 

for health (Gouveia & Fletcher 2000). This is the main reason that industrial pollution has to be 
monitored to keep the level of pollution in some limits according to the international regulations. 

Environmental regulations for cement plants are becoming tougher and tougher, and cement 
manufacturers have to constantly review their anti-pollution measures. As presented in (Madsen et 
al. 2004) the best way to fight against pollution is to use computer-aided decision software being 
able to capture not only measurements for analysis, but also intelligent behaviour to provide 
information about the optimal configuration of the cement plant modules in order to keep some 
level of production under pollution regulations’ constraints, which is similar to the Columbus 
approach of Solojentsev (2005).  

For the time series analysed, using classical methods (Figure 5), we use, now, the bootstrap 
methodology to obtain information about accuracy estimation (Figure 6).  

 

 
 

Figure 6. Bootstrapping time-series of air pollution by dust at 2400 m 
 
We found that using AICC method is better than use the final prediction error approach as 

used in the initial software implementation.   
 
 

4. CONCLUSIONS 
 
Starting from idea that time-series represents an important approach in the prediction of the 

behaviour of some processes considered under risk management, this paper shows that bootstrap 
methodology is useful enough, but the researcher/manager has to choose the appropriate type of 
resampling. 

 The paper emphasizes on the utility of bootstrap resampling for different fields of practice 
considering three particular applications: software risk management, financial risk management and 
environment risk management. 
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Introduction 
 
In this paper financial management model of forward contracts insurance suggested in [1,2] 

is considered by means of risk theory and heavy tailed technique. This model is based on a 
compensation principle. It attracted large interest and called active discussion among economists. 
So its mathematical analysis is initiated as economists so mathematicians. 

Suppose that there are two insurance companies insuring both participants of some forward 
contract and working in discrete time with the net payouts ,ξ η ξ η+ −  during one step. Here ξ  

with 0E aξ = <  is common random summand for net payouts of these two companies. Then η  
with 0Eη =  is individual random claim of the first participant of the contract and η− is individual 
claim of the second participant. The claim η  (the claim η− ) may be considered as a premium for 

0η <  (for 0η > ). Suppose that distribution functions (d.f.`s) ( ) ( )P x H xξ ≤ = , ( ) ( )P x S xη ≤ = , 

( ) ( )P x L xη− ≤ =  and  

                                   ( ) ( )( )H x o S x= , ( ) ( )( ) ,H x o L x x= →∞                                    (1) 

with ( ) ( )1F x F x= − . Assume that ξ ,η  are independent random variables (r.v.`s) and ξ , 
η , η−  are subexponential r.v.`s. 

Denote the one-step ruin probabilities of the companies with the initial capital x  insuring 
the first and the second participants of the contract by 

( ) ( )1a x P xξ η= + > , ( ) ( )2a x P xξ η= − >  
and the one-step ruin probabilities of both companies and one of them by  

( ) ( ) ( )a x P x xξ η ξ η⎡ ⎤= + > − >⎣ ⎦I . 

Here ( ) ( )1 2,a x a x  characterize individual risks of the insurance companies and ( )a x  

characterizes their group risk. Introduce ( ) ( ) ( )c x P x x H xξ η ξ η= + + − > + =  one step ruin 

probability of these two companies aggregation. Here ( )c x  characterizes as individual so group 

risks. The aggregation of these two companies allows to decrease individual risks ( ) ( )1 2,a x a x  to 

small ( )H x  and to conserve the group risk ( )a x  at small level ( )H x : 

                               ( ) ( )1 ~a x S x , ( ) ( )2 ~a x L x , ( ) ( )~ ,a x c x x →∞ .                          (2) 
Main purpose of this paper is to obtain asymptotical comparisons analogous to (2) for 

individual and group risks in separate and aggregated insurance models. We speak about infinite 
horizon discrete time risk models without interest force with constant interest force and with 
stochastic interest force.  
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1. Preliminaries 
 
Classes of distributions. Throughout, for a given r.v. X  concentrated on ( ),−∞ ∞  with a 

d.f. F  then its right tail ( ) ( )F x P X x= > . For two d.f.'s 1F and 2F  concentrated on ( ),−∞ ∞  we 

write by ( )1 2F F x∗  the convolution of 1F and 2F  and write by *2
1 1 1F F F= ∗  

the convolution of 1F  with itself. All limiting relationships, unless otherwise stated, are for 
x →∞ . Let ( ) 0a x ≥  and ( ) 0b x >  be two infinitesimals, satisfying  

( )
( )

( )
( )

liminf limsup
x x

a x a x
l l

b x b x
− +

→∞ →∞
≤ ≤ ≤ . 

We write ( ) ( )( )a x O b x=  if l+ < ∞ , ( ) ( )( )a x o b x=  if 0l+ = , and ( ) ( )a x b x<
%

 if 1l+ = , 

( ) ( )a x b x>
%

 if 1l− = , and ( ) ( )~a x b x if both. 

Introduce the following classes of d.f.`s concentrated on [ )0,∞ : 

( ) ( )
( )

*2

: lim 2
x

F x
F x

F x→∞

⎧ ⎫⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭

S ,  ( ) ( )
( )

: lim 1
x

F x t
F x t

F x→∞

⎧ ⎫−⎪ ⎪= ∀ =⎨ ⎬
⎪ ⎪⎩ ⎭

L , 

( ) ( )
( )

: 0 lim
x

F x
F x

F x
α

α

θ
θ θ −

→∞

⎧ ⎫⎪ ⎪= ∀ > =⎨ ⎬
⎪ ⎪⎩ ⎭

-R ,  0 α< < ∞ ,  
0

α
α< <∞
U -R = R , 

( ) ( )
( )

: 1 lim 0
x

F x
F x

F x
θ

θ∞ →∞

⎧ ⎫⎪ ⎪= ∀ > =⎨ ⎬
⎪ ⎪⎩ ⎭

-R , 

( ) ( ) ( ) ( ) ( )
0 0

: ~ 2 , ,
x

F x F x y F y dy m F x x m F x dx
∞

∗ + +

⎧ ⎫⎪ ⎪= − →∞ =⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫S . 

S  is called the class of subexponential d.f.`s. L  is called the class of long tailed d.f.`s. R  
(or α-R )  is called the class of regular varying d.f.`s (with index α ). ∞-R  is called the class of 
rapidly varying tailed d.f.`s.  

Proposition 1. The classes R , S , L  satisfy the formula [3] ⊂ ⊂R S L . 

Proposition 2. If F ∗∈S  then [4] F , ( )11 IF x
m+

− ∈S  with ( ) ( )I
x

F x F y dy
∞

= ∫ . 

More generally, d.f. F  concentrated on ( ),−∞ ∞  is also said to belong to these classes if its 

right-hand distribution ( ) ( )F x F x=% ( )0x > does. 

Proposition 3. Let 1F  and 2F  be two d.f.`s concentrated on ( ),−∞ ∞ . If 1F ∈S , 2F ∈L  and 

( ) ( )( )2 1F x O F x= , then [5,Lemma 3.2] 1 2F F∗ ∈S  and ( ) ( ) ( )1 2 1 2~F F x F x F x∗ + . 

Proposition 4. Suppose that ,X Y  are independent random variables with the d.f.`s 1 2,F F  

concentrated on ( ),−∞ ∞  and ( )1 2, 1F F∈ ∞ =L  then [6] ( ) ( )1~P X Y t F t− > . 
Discrete time risk model under stochastic interest force. Consider a risk model with 

discrete time 1,2,...n = and denote nX  the insurer`s net loss - the total claim amount minus the total 
incoming premium within period n  and nY  the discount factor from time n  to time 1n − . Here nX  
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is called insurance risk and nY is called financial risk. These random variables are independent with 
d.f.`s ( ) ( ),F t G t  relatively. 

Let { }, 1, 2,...nX n =  be a sequence of independent and identically distributed (i.i.d.) r.v`s 

with generic random variable X , let { }, 1, 2,...nY n =  be another sequence of i.i.d. positive r.v.`s 
with generic random variable Y , and let the two sequences be mutually independent. Denote 

( )
1 1 1

sup
ki

k j
i k j

x P X Y x
≤ <∞ = =

⎛ ⎞
Ψ = >⎜ ⎟

⎝ ⎠
∑ ∏ . 

Then ( )xΨ  is infinite-time ruin probability of the risk model under stochastic interest force 
with initial capital x . 

Proposition 5. Suppose that F ∗∈S  and 0EX m= <  and ( )1 1P Y = =  then [7] 

( ) ( )1~ Ix F x
m

Ψ . 

Proposition 6. If F α−∈R , 0 α< < ∞ , and { }max , 1E Y Yα δ α δ− + <  for some 0 δ α< <  then 
[8] 

( ) ( )~
1

EYx F x
EY

α

αΨ
−

. 

Proposition 7. Suppose that ( )1 1P Y r= + =  for some 0 r< < ∞ .  If F α−∈R  for some 
0 α< < ∞  then [9] 

( ) ( )
( )

~
1 1

F x
x

r αΨ
+ −

. 

If F −∞∈ IS R  then ( ) ( )( )~ 1x F r xΨ + . 
 
 
 
2. Asymptotic comparison of individual and group risks for forward  
    contracts  insurance 
 
Suppose that at the step k  the net payouts of both participants of the step k  forward 

contract are k kξ η+ , k kξ η− . Here random sequences { }0 1, ,...ξ ξ ξ= and { }0 1, ,...η η η=  are 
independent. Each of these two random sequences consists of i.i.d.r.v`s with their own common 
d.f.`s ( ) ( )P t H tξ ≤ = , ( ) ( )P t S tη ≤ =  correspondingly and ( )H t , ( )S t , ( )L t ∈S  with 

( ) ( )L t P xη= − ≤ . 
Define individual risks of the companies with initial capitals x  insuring net payouts 

{ }1 1 2 2, ,...ξ η ξ η+ + , { }1 1 2 2, ,...ξ η ξ η− −  separately by 

( ) ( )1
1 1 1

sup
ki

k k j
i k j

A x P Y xξ η
≤ <∞ = =

⎛ ⎞
= + >⎜ ⎟

⎝ ⎠
∑ ∏ , ( ) ( )2

1 1 1

sup
ki

k k j
i k j

A x P Y xξ η
≤ <∞ = =

⎛ ⎞
= − >⎜ ⎟

⎝ ⎠
∑ ∏ . 

Analogously define group risk of separately working insurance companies by 

( ) ( ) ( )
1 11 11 1

sup sup
k ki i

k k j k k j
i ik kj j

A x P Y x Y xξ η ξ η
≤ <∞ ≤ <∞= == =

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + > − >⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑∏ ∏I  
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and common individual and group risk of aggregated company by  

( ) ( )
1 11 11 1

sup 2 sup
k ki i

k k k k j k j
i ik kj j

C x P Y x P Y xξ η ξ η ξ
≤ <∞ ≤ <∞= == =

⎛ ⎞ ⎛ ⎞
= + + − > = >⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑∏ ∏ . 

Lemma 1. Suppose that the condition (1) is true then   
( ) ( )~P x S xξ η+ > , ( ) ( )~P x L xξ η− > . 

Proof. This statement arises from the proposition 3. 
Lemma 2. The formula ( ) ( )~P x H xξ η− >  is true. 
Proof. This statement arises from the propositions 1, 4. 
Lemma 3. The following inequality takes place 

( ) ( )A x R x≥ , ( ) ( )
1 1 1

sup
ki

k k j
i k j

R x P Y xξ η
≤ <∞ = =

⎛ ⎞
= − >⎜ ⎟

⎝ ⎠
∑ ∏ . 

Proof. This statement arises from the inequalities a a≥ − , a a− ≥ − , which are true for all 
real a . 

Theorem 1. Suppose that the condition (1) is true and ( )H t , ( )S t , ( )L t ∗∈S , ( )1 1P Y = =  
then 

( ) ( )
1 ~ IS x

A x
a

, ( ) ( )
2 ~ IL x

A x
a

, ( ) ( )~ IH x
C x

a
, ( ) ( )~ IH x

R x
a E η−

. 

Proof. This statement arises from the propositions 5 and from the lemmas 1, 2. 
Theorem 2. Suppose that the condition (1) is true and for some 1 2 3, ,α α α , 1 2 30 ,α α α< < , 

d.f.`s ( )
1

S x α−∈R , ( )
2

L x α−∈R , ( )
3

H x α−∈R , ( ) ( ){ }max , 1i i i iE Y Yα δ α α δ α− + <  for 

some ( )0 i iδ α α< < , 1 3i≤ ≤ , then 

( ) ( )
1

11 ~
1

EYA x S x
EY

α

α−
, ( ) ( )

2

22 ~
1

EYA x L x
EY

α

α−
, ( ) ( ) ( )

3

3
~ ~

1
EYC x R x H x

EY

α

α−
. 

Proof. This statement arises from the propositions 6 and from the lemmas 1, 2. 
Theorem 3. Suppose that the condition (1) is true and ( )1 1P Y r= + =  for some 0 r< < ∞  

If for some 1 2 3, ,α α α , 1 2 30 ,α α α< < , d.f.`s ( )
1

S x α−∈R , ( )
2

L x α−∈R , ( )
3

H x α−∈R then 

( ) ( )
( ) 11 ~
1 1

S x
A x

r α
+ −

, ( ) ( )
( ) 22 ~
1 1

L x
A x

r α
+ −

, ( ) ( ) ( )
( ) 3

~ ~
1 1

H x
C x R x

r α
+ −

. 

 
If d.f.`s ( )S x , ( ) ( ),L x H x −∞∈ IS R then 

( ) ( )( )1 ~ 1A x S r x+ , ( ) ( )( )2 ~ 1A x L r x+ , ( ) ( ) ( )( )~ ~ 1C x R x H r x+ . 
Proof. This statement arises from the propositions 7 and from the lemmas 1, 2. 
Theorem 4. If the conditions of the theorem 1 (the theorem 2 or the theorem 3) are true then 

for some 0 k< < ∞  
( ) ( )A x kC x>

%
, ( ) ( )( )1C x o A x= , ( ) ( )( )2C x o A x= . 

Proof. This statement arises from the lemma 3 and from the theorems 1-3. 
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Introduction 
 
This paper is devoted to algorithms of a calculation of ports reliabilities. A port is a no 

oriented graph with fixed initial and final nodes. As accuracy so asymptotic formulas are 
considered. Suggested algorithms have minimal numbers of arithmetical operations.  

Using the article [1] results, in this paper algorithms of a calculation of asymptotic constants 
for ports reliabilities are constructed. These algorithms allow to estimate an influence of some arc 
reliability on a port reliability and to obtain an invariance condition when this influence is absent. 

 In solid state physics, surface physics and in nanotechnologies recursively defined ports are 
of large interest. An example of such a structure is in the monograph [2, fig. 7.7]: where each arc of 
a bridge scheme Γ  is replaced by Γ . In this paper linear upper bounds of arithmetical operations 
numbers necessary to calculate as a reliability so its asymptotic constants are obtained. For a 
comparison it is worthy to say that a number of arithmetical operations necessary to calculate a 
reliability of a port increases as a geometrical progression of port arcs number. 

 
 
1. Preliminaries 
 
Consider a port Γ  with a final number U  of nodes, a set ( ){ }, , ,W w u v u v U= = ∈ of arcs and 

fixed initial 0u  and final 0u nodes. Denote R a set of all ways R  in the port Γ , which connect the 
nodes 0u  and 0u . Suppose that ≠ ∅R . Consider the sets  

{ }0
0, ,A U u A u A= ⊂ ∈ ∉A , ( ) ( ){ }, : ,L L A u u u A u A′ ′= = ∈ ∉  

and ( ){ },L A A= ∈L A  - the set of all sections in Γ . Correspond for each arc w W∈ a logic 
variable ( )w Iα = (the arc w  works), where ( )I B  is an indicator function of an event B . Denote a 
quantity which characterizes a connectivity between the nodes 0

0 ,u u  in Γ  by 
                                                               ( )

R w R
wβ α∨ ∧

∈ ∈
=

R
.                                                     (1) 

Suppose that ( ) ,w w Wα ∈ , are independent random variables,  
( )( ) ( )1 wP w p hα = = , ( ) ( )1w wq h p h= − , 

where h  is some small parameter : 0h → . In [1] the following statements are proved. 
Theorem 1. Suppose that ( ) ( )( )~ exp , 0d w

wp h h h−− → , wherе ( ) 0,d w w W> ∈ . Then 

( )ln 1 ~ DP hβ −− =  and ( ) ( )min max
R w

D D d wΓ
∈ ∈

= =
R R

. 

Theorem 2. Suppose that ( ) ( )( )1~ exp , 0d w
wq h h h−− → , wherе ( )1 0,d w w W> ∈ . Then 

( ) 1ln 0 ~ DP hβ −− = and ( ) ( )1 1 1max min
wL

D D d wΓ
∈∈

= =
LL

. 
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Theorem 3. Suppose that ( ) ( )~ , 0g w
wp h h h → , wherе ( ) 0,g w w W> ∈ . Then 

( )ln 1 ~ lnP G hβ =  and ( ) ( )min
R w

G G g wΓ
∈ ∈

= = ∑
R R

. 

Theorem 4. Suppose  that ( ) ( )1~ , 0g w
wq h h h → , wherе ( )1 0,g w w W> ∈ , then 

( ) 1ln 0 ~ lnP G hβ =  and ( ) ( )1 1 1min
L w

G G g wΓ
∈ ∈

= = ∑
L L

. 

The constants 1,G G  [3] may be interpreted as a length of a shortest way or a minimal ability 
to handle of cross-sections in the port Γ  correspondingly. In a definition of the constants 1,D D  a 
summation is replaced by a maximization. So the constants 1,D D may be interpreted as a pseudo-
length of the shortest way or a minimal pseudo-ability to handle in the port Γ . 

Remark 1. Suppose that ( )wτ  are independent random variables which characterize life 
times of the arcs w W∈ . Denote ( )( ) ( )wP w t p hτ > =  and put the graph Γ  life time equal to 
( ) ( )min max

R w R
wτ τΓ

∈ ∈
=

R
. If ( )h h t=  is monotonically decreasing and continuous function and 

0h → , t →∞ , then the theorems 1, 3 remain true if ( )1P β =  is replaced by ( )( )P tτ Γ > . If 
( )h h t=  is monotonically increasing and continuous function and 0h → , 0t → , then the 

theorems 2, 4 remain true if ( )0P β =  is replaced by ( )( )P tτ Γ ≤ . So it is possible to consider 
widely used in the reliability theory the exponential and the Weibull distributions of arcs life times. 

         Denote Γ  a port with the nodes set { }0 1 2 3, , ,U u u u u=  and with the arcs set (fig.1) 

( ) ( ) ( ) ( ) ( ){ }1 0 1 2 0 2 3 1 3 4 2 3 5 1 2, , , , , , , , ,W w u u w u u w u u w u u w u u= = = = = = ,. 

The node 0u  is initial and the node 3u  is final. The scheme Γ  [4] is called the bridge scheme 
and the arc 5w  – the bridge element in this scheme 

 
Fig. 1. Bridge scheme Γ . 

 
The scheme Γ  reliability ( )1 5,...,P P p p=  in a suggestion that the arcs 1 5,...,w w  work 

independently with the probabilities 1 5,...,p p  is calculated by the formula 
( )( ) ( )( ) ( ) ( )( )5 1 2 3 4 5 1 3 2 41 1 1 1 1 1 1 1 1 1P p p p p p p p p p p⎡ ⎤ ⎡ ⎤= ⎡ − − − ⎤ − − − + − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦                   (2) 

To make these calculations it is necessary ( ) 14n Γ =  arithmetical operations. 
 
2. Element wise analysis 
 
Remark that in an accordance with the formula (1) the logical function ( )( ),w w Wβ β α= ∈  

has all properties of the monotone structure [2, гл.7]: 
a) ( )( )1, 1w w Wβ α = ∈ = , b) ( )( )0, 0w w Wβ α = ∈ = , 

c) ( )( ) ( )( )1 2, ,w w W w w Wβ α β α∈ ≤ ∈ , if ( ) ( )1 2 ,w w w Wα α≤ ∈ . 

 
   3u  

   
0u

2u  

1w  

4w  

3w
 

2w  

1u  
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Fix an arc v W∈  and using the complete probability formula [2, §7.4] obtain the following 
formulas: 

                                              ( ) ( )( ) ( )( )1 01 1 0v vP P v F P v Fβ α α= = = + = ,                              (3) 

( ) ( )( )( ), , ; 1 , 0,1vF P w w W w v vδ β α α δ δ= ∈ ∉ = = = , 
and 

0 1
v vF F≤ .                                                              (4) 

Define the graph 0
vΓ  by an exclusion of the arc ( ),v u u′=  from the graph Γ  and the graph 

1
vΓ  by a gluing of the nodes ,u u′  in the graph 0

vΓ . Using the previous section results and the 
formulas (3), (4) obtain the following statements. 

Theorem 5. Suppose  that ( ) ( )( )~ exp , 0d w
wp h h h−− → , where ( ) 0,d w w W> ∈ . Then 

( )ln 1 ~ DP hβ −− =  where ( ) ( )( ) ( )1 0min max , ,v vD d v D DΓ Γ⎡ ⎤= ⎢ ⎥⎣ ⎦
, ( ) ( )1 0

v vD DΓ ≤ Γ . 

Theorem 6. Suppose that ( ) ( )( )1~ exp , 0,d w
wq h h h−− →  where ( )1 0,d w w W> ∈ . Then 

( ) 1ln 0 ~ DP hβ −− =  where ( ) ( )( ) ( )1 0
1 1 1min max , ,v vD d v D DΓ Γ⎡ ⎤= ⎢ ⎥⎣ ⎦

, ( ) ( )1 0
1 1v vD DΓ ≤ Γ . 

Theorem 7. If ( ) ( )~ , 0g w
wp h h h → , where ( ) 0,g w w W> ∈ .Then ( )ln 1 ~ lnP G hβ =  and 

( ) ( ) ( )1 0min ,v vG g v G GΓ Γ⎡ ⎤= +⎣ ⎦ , ( ) ( )1 0
v vG GΓ ≤ Γ . 

Theorem 8. If ( ) ( )1~ , 0g w
wq h h h → ,where ( )1 0,g w w W> ∈ . Then ( ) 1ln 0 ~ lnP G hβ =  and 

( ) ( ) ( )1 0
1 1 1 1min ,v vG g v G GΓ Γ⎡ ⎤= +⎣ ⎦ , ( ) ( )1 0

1 1v vG GΓ ≤ Γ . 

Remark 2. The constants 1 1, , ,D D G G do not depend on ( ) ( ) ( ) ( )1 1, , ,d v d v g v g v  

correspondingly if and only if ( ) ( )1 0
v vD DΓ = Γ , ( ) ( )1 0

1 1v vD DΓ = Γ , ( ) ( )1 0
v vG GΓ = Γ , ( ) ( )1 0

1 1v vG GΓ = Γ . 

The fig. 2, 3 show how the parameters ( ) ( ),d v g v  influence on the constants ( ) ( ),D GΓ Γ . 
 

      
Fig. 2.                                                                          Fig. 3. 

 
Example. Consider the port Γ  (fig. 1) with independently working arcs 1 5,...,w w  and show 

how the element 5w  reliability influences on the port reliability on an example of the constants 

( ) ( ),D GΓ Γ  from the theorems 5, 7. Define the port 5

0
wΓ  by an exclusion of the arc 5w  from the 

graph Γ  аnd the port 5

1
wΓ by a gluing of the nodes 1 2,u u  in the graph 5

0
wΓ . 

( )G Γ

0 
( )g v

( )1
vG Γ  

( )0
vG Γ  

( )D Γ  

0 
( )1

vD Γ

 

( )0
vD Γ

 ( )d v
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                 Fig. 4. Port 5

0
wΓ                                                Fig.5. Port 5

1
wΓ  

 
If ( ) ( )~ exp , 0i

i

d
wp h h h−− → , with ( ) 0i id d w= > , then it is easy to obtain the formulas 

( ) ( ) ( )( )5

0
1 3 2 4min max , ,max ,wD d d d dΓ = , ( ) ( ) ( )( )5

1
1 2 3 4max min , ,min ,wD d d d dΓ = , 

( ) ( )( ) ( )5 5

1 0
5min max , ,w wD d D DΓ Γ Γ⎡ ⎤= ⎢ ⎥⎣ ⎦

. 

Here the equality ( ) ( )5 5

0 1
w wD DΓ Γ=  is true in one of the following eight conditions: 

1) 3 1 2d d d≥ > , 2) 3 1 2d d d≥ = , 3) 4 1 2d d d≥ = , 4) 4 2 1d d d≥ > , 
5) 1 3 4d d d≥ > , 6) 1 3 4d d d≥ = , 7) 2 3 4d d d≥ = , 8) 2 4 3d d d≥ > . 

If ( ) ~ , 0i
i

g
wp h h h → , with ( ) 0, 1,...,5i ig g w i= > = , then it is easy to obtain the formulas 

( ) ( ) ( )( )5

0
1 3 2 4min ,wG g g g gΓ = + + , ( ) ( ) ( )

5

1
1 2 3 4min , min ,wG g g g gΓ = + , 

( ) ( ) ( )5 5

1 0
5min ,w wG g G G⎡ ⎤Γ = + Γ Γ⎣ ⎦ . 

Here the equality ( ) ( )5 5

0 1
w wG GΓ = Γ  is true in one of the following two conditions: 

1) 4 3 2 1,g g g g≥ ≥ , 2) 3 4 1 2,g g g g≥ ≥ . 
Remark 3. If the graph ′Γ  is constructed by an addition of the arc 6 0 3( , )w u u=  to the port Γ  

then 6 6( ) min( , ( )), ( ) min( , ( ))D d D G g G′ ′Γ = Γ Γ = Γ where 6 6,d g  are appropriate parameters of the arc 

6w . As the graph ′Γ is complete (each two its nodes is connected by some arc) so these formulas 
may be spread to a case when we take interest to a connectivity of each two nodes of the graph ′Γ  
(this scheme is an analog of a transformer electrical scheme). For this purpose it is necessary to 
renumber the graph ′Γ  nodes. 

 
 
3. Ports superposition 
 
Define recursively a class of bridge schemes B : 
1) the arcs 1 2, ,...,w w  working independently with the probabilities 1 2, ,...,p p  belong to B , 
2) if the ports  1 5,...,Γ Γ ∈B  consist of nonintersecting sets of arcs then their superposition 

1 5( ,..., )′Γ = Γ Γ Γ  belongs to B . 
A number of arcs in the superposition ′Γ  is ( ) ( ) ( )1 5...m m m′Γ = Γ + + Γ  where ( )im Γ  is a 

number of arcs in the port iΓ . The reliability of the superposition ′Γ  equals to ( )1 5,...,P P P  and is 
calculated by the formula (2) and needs  

( ) ( ) ( ) ( )1 5...p p p pn n n n′Γ = Γ + Γ + + Γ  

3u  

1w
 

4w  

3w  

2w  

0u
 
   3u  0u  

2u  

1w  

4w  

3w
 

2w  

1u  
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arithmetical operations where ( )in Γ  is a number of arithmetical operations necessary to 
calculate the 

reliability iP .  
If ( ) ( ) ( )( )1 , 1 5p i p in n m iΓ ≤ Γ Γ − ≤ ≤ , then 

                                                               ( ) ( ) ( )( )1p pn n m′ ′Γ ≤ Γ Γ − .                                       (5) 

So a number of arithmetical operations necessary to calculate the reliability of the port 
′Γ ∈B  has a bound which is linear increasing by a number of the port ′Γ  arcs. 

For the superposition ( )1 5,...′Γ = Γ Γ Γ  of the ports 1 5,...Γ Γ ∈B  it is easy to obtain the 
recurrent formulas  

                                  ( ) ( )
:

min max
i

iR i w R
D D

∈ ∈
′Γ = Γ

R
, ( ) ( )1 1:

max min
i

ii w LL
D D

∈∈
′Γ = Γ

L
                                (6) 

                                  ( ) ( )
:

min
i

iR i w R
G G

∈ ∈
′Γ = Γ∑

R
, ( ) ( )1 1

:
max

i
iL i w L

G G
∈ ∈

′Γ = Γ∑
L

                                (7) 

Here R, ,  L  are the sets of ways and cross sections in the graph Γ . The constants        
                                       ( ) ( ) ( ) ( )1 1, , , , 1,...,5,i i i iD D G G iΓ Γ Γ Γ =   

are calculated by the theorems 1-4 formulas. The formulas (6), (7) allow analogously to (5) to 
construct linear by ( )m ′Γ  upper bounds for numbers of arithmetical operations 

( ) ( ) ( ) ( )
1 1

, , ,D D G Gn n n n′ ′ ′ ′Γ Γ Γ Γ  which are necessary to calculate the constants 

( ) ( )1, ,D D′ ′Γ Γ ( ) ( )1,G G′ ′Γ Γ : 

( ) ( ) ( )( )1D Dn n m′ ′Γ ≤ Γ Γ − , ( ) ( ) ( )( )1 1
1D Dn n m′ ′Γ ≤ Γ Γ − , 

( ) ( ) ( )( )1G Gn n m′ ′Γ ≤ Γ Γ − , ( ) ( ) ( )( )1 1
1G Gn n m′ ′Γ ≤ Γ Γ − . 

For a comparison remark that a number of arithmetical operations necessary to define the 
shortest way length or the minimal cross sections ability to handle in general type graphs [5] is 
significantly larger. 

Remark 4. The constructed algorithm of a recursive definition of a port reliability for the 
class B  with the generating scheme Γ  and the upper bound (5) may be spread to a case of a finite 
set { }= ΓG  of generating schemes with a replacement ( )n Γ  in the formula (5) by ( )max n

Γ∈
Γ

G
. For 

example it is possible to construct G  by the graphs with two arcs which are connected parallel and 
sequentially. 
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OBJECT ORIENTED COMMONALITIES IN UNIVERSAL GENERATING 
FUNCTION FOR RELIABILITY AND IN C++. 

 
Igor Ushakov1, 

Sumantra Chakravarty2 
 
 

Abstract. The main idea of Universal Generating Function is exposed in reliability 
applications. Some commonalities in this approach and the C++ language are discussed. 

 
Keywords: Universal Generating function (UGF), C++, reliability. 
 
Introduction. 
 
 Usually, binary  systems are considered in the reliability theory.  However, this approach 

does not describe systems with several levels of performance sufficiently.  Analysis of multi-state 
systems forms now a special branch of the reliability theory. 

 For analysis of such systems consisting of multi-state subsystems/elements, one can use the 
method of Universal Generating Functions (UGF), which is described below. 

 
1. Generating function.   
 
One frequently uses an effective tool in probabilistic combinatorial analysis: the method of 

generating functions.  For a distribution function of a discrete random variable ξ  such that 
{ } kpk ==ξPr  for any natural k, the generating function has the form 

∑=
k

k
k xpx)(ϕ  

Advantages of using a generating function are well established in this field, and we list a 
few of those: 

(1) For many discrete distributions (e.g., binomial, geometrical, Poisson), there 
are compact forms of generating functions, which allows one to get analytical solutions 
quickly and easily.  

(2) Moments of statistical distributions can be written in convenient forms. For 
example, the mathematical expectation of random variable ξ  can be found as 

{ }
1

)(
=∂

∂
=

x

x
x

E ϕξ . 

(3) If there are n independent random variables 1ξ , 2ξ , ..., nξ  with the respective 
generating functions )(1 xϕ , )(2 xϕ ,..., )(xnϕ  , then the following generation function 
can be written for the convolution of these distributions: 

∏
=

=
n

j
j xx

1

)()( ϕϕ . 

where ∑=
k

k
jkj xpx)(ϕ , and pjk is the probability that j-th random variable takes value 

k. 

                                                           
1 iushakov@mail.com 
2 sumontro@hotmail.com 
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2. Computer alorithm for calculation product of GF’s. 
 
 Let us present a generating function as a set of objects. Each object corresponds to a 

term in the generating function polynomial.  It means that object is a pair of two values: the first 
is the coefficient, i.e. probability, p, and the second is the power of the argument, a, i.e. the 
corresponding random variable.  

Consider a computational algorithm for calculation of the convolution of two 
distributions. One makes the following formal operations. 

♦ Take two sets of objects: set { ),( 1111 ap , ),( 1212 ap ,...,  
),( 11 kk ap } for generating function )(1 xϕ , and set  

{ ),( 2121 ap , ),( 2222 ap ,..., ),( 22 mm ap } for generating function  
)(2 xϕ . 

♦ Find all cross “interactions” of objects of the first set with all objects of the second set, 
using the following rule: 

 
[Interacting objects: ),( 11 kk ap  and ),( 22 mm ap ] Æ 
[Resulting object: );( 2121 mkmk aapp + ]. 
 
♦ For all resulting objects with different 

11ka  for object-1 and 
22ma  for object-2, but 

such that 
11ka +

22ma =a, one forms a new final resulting object: );(
21 21 app mk∑ .  The total 

set of such final resulting objects gives us the needed solution: from here we can get 
probabilities for any a. 
 
 
3. Universal generating function. 
 
 We have described a formalized procedure on sets of objects interaction coresponding to 

product of polynomials.  But in practice, we meet a number of situations when this operation is not 
enough. Consider the following simple examples. 

 
Example 1.  Assume that there is a series connection of two (statistically independent) 

capacitors (Fig. 1). 
 

 
Fig. 1. Series connection of two capacitors. 

 
 Assume that c1 and c2 are random with discrete distributions: p1k=Pr{c1=k} and 

p2j=Pr{c2=j}.  One is interested in distribution of total capacity.  It is impossible to find the solution 
with the help of a common generating function.  However, there is a possibility to use formal 
algorithm, described above with the use of corresponding operations over the elements of the 
objects.  The following procedure can be suggested:  

♦Take two sets of objects, S1 and S2:  
S1 ={ ),( 1111 cp , ),( 1212 cp ,..., ),( 11 kk cp }  
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     and 
     S2 ={ ),( 1121 cp , ),( 2222 cp ,..., ),( 22 mm cp }, 

            where k is the number of discrete values of 
     the first capacitor, and m is the same for the second  
     one. Here the first element of the object is the  
     probability and the second element is the respective  
     capacity. 
♦Find all cross “interactions”, Ω, of objects of set S1 with all objects of set S2, using the 

following rule: 
Ω { ),( 11 ii cp , ),( 22 jj cp } = );( **

ijij cp . 

Here *
ijp  is the resulting probability calculated in accordance with the multiplication 

rule (under assumption of independence) as 
jijipij ppppp 2121)(

* },{ =Ω= , 
where )( pΩ  is the rule of interaction of parameters p, which in this particular case is 

multiplication. 
 Value of *

ijc  is the resulting capacity calculated in accordance with the harmonic 
sum rule for capacities: 

( ) 11
2

1
121)(

* },{ −−− +=Ω= jijicij ccccc , 
where )(cΩ  is the rule of interaction of parameters c. 
♦ Assume that in result we obtain all R=km possible resulting objects of kind 
);( ** cp . Let us order all these resulting pairs in increase of value of c*: );( *

1
*
1 cp , ..., 

);( **
RR cp .  For some resulting pairs with numbers, say, i, i+1,… , i+j values of c* can be the 

same and equal some C. We converge such objects into a single aggregated object with 
parameters: );( * Cp

jisi
s∑

+≤≤

.  The total set of such final resulting objects gives us the needed 

solution. 
 

 The procedure can be easily expanded on a series connection of several independent 
capacitors.  

 
nrjinrji

SER
p pppppp ⋅⋅⋅=Ω ...}...,,,{ 2121)( ,  

 
аnd 

[ ] ....}...,,,{ 111
2

1
121)(

−−−− +++=Ω nrjinrji
SER
c cccccc   

 
 
Example 2. Pipeline consists of n series sections (pipes).  Section j is characterized by 

random capacity, for which each value v  is realized with some probability p . In this case,  

nrjinrji
PAR
p pppppp ⋅⋅⋅=Ω ...}...,,,{ 2121)( ,  

аnd 
 

{ }nrjinrji
SER
c vvvvvv ...,,,min},...,,{ 2121)( =Ω ,  
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Example 3. One measures a sum of values, each summand of which is random. With 
probability jsp value j is measured with standard deviation (STD) equal to jsσ . In this case, using 
notation similar to above, one has: 

 
nrjinrji

PAR
p pppppp ⋅⋅⋅=Ω ...}...,,,{ 2121)( ,  

аnd 
22

2
2
121)( ...}...,,,{ nrjinkjic n

σσσσσσ +++=Ω . 
 
 Examples can be continued and not necessarily with probabilistic parameters.  
 
 
4.  Formal description of the Method of Universal Generating Functions.  
 
 After these simple examples, let us begin with formal description of the Method of 

Universal Generating Function (UGF3). For a more vivid presentation, let us use special 
terminology to distinguish the UGF from the common generation function.  This will relieve us 
from using traditional terms in a new sense, which may lead to some confusion. Moreover, we hope 
that this new terminology can help us, in a mnemonic sense, to remember and perhaps even to 
explain some operations.  

 In the ancient Roman army, a cohort (C) was the main combat unit. Each cohort 
consisted of maniples (M), which were independent and sometimes specialized combat units with 
several soldiers of different profiles. Several cohorts composed a legion (L). The use of this 
essentially military terminology appears to be convenient in this essentially peaceful mathematical 
application. A legion is close by its sense to a generating function, a cohort is close to a term of the 
generating function written in the form of expanded polynomial, and a maniple is close to a 
parameter of each term.   

 Starting with polynomial multiplication, in our approach, we will consider less 
restrictive operations (not only multiplication of terms) and more general parameters.  For instance, 
multiplication of polynomials assumes getting products of coefficients and summation of powers.  
In our case, we will expand on such restrictive limits on operations. 

 
 Let’s denote legion j by Lj.  This legion includes vj different cohorts, Cjk: ( )

jjvjjj CCCL ...,,, 21= . 
 The number of cohorts within different legions might be different. However, in our 

approach, maniples, which consist of a cohort, must be similar by its structure. 
 Each cohort jkC  is composed of some maniples, M , each of which represents different 

parameters, special characteristics, and auxiliary attributes.  Each cohort consists of the same set of 
maniples: 

 
( ))()2()1( ...,,, s

jkjkjkjk MMMC = . 
 
 To make description of the method more transparent, let us start with the examples of two 

legions, L1 and L2: each of which consists of the following cohorts, L1=(C12,C12,C13) and 
L2=(C21,C22), and each cohort Cjk includes two maniples )1(

jkM  and )2(
jkM ,i.e. Cjk=( )1(

jkM , )2(
jkM ). 

                                                           
3 UGF might be also read as Ushakov’s Generating Function ☺. 
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Denote the operation of legion interaction by LΩ .  This operator is used to obtain the resulting 
legion LRES.  In this simple case, one can write: 

{ }21 , LLL LRES Ω= .                   (1) 

 This interaction of legions produces six pairs of interactions between different cohorts, 
which generate the following resulting cohorts: 

{ }21111 ,CCC CRES Ω=− , { }22112 ,CCC CRES Ω=− , 

{ }21123 ,CCC CRES Ω=− , { }22124 ,CCC CRES Ω=− , 

{ }21135 ,CCC CRES Ω=− , { }22136 ,CCC CRES Ω=− .  

Here  { }•ΩC  denotes the interaction of cohorts. 

 Interaction of cohorts consists of interaction between its costituent maniples.  All cohorts 
contain maniples of the same types though with individual values of parameters. Let us take, for 
instance, resulting cohort CRES-5, which is obtained as interaction of cohorts C13 and C21. In turn, 
interaction of these particular cohorts consists in interaction of their corresponding maniples: 

{ })1(
21

)1(
13

)1(
5 ,)1( MMM

MRES Ω=−  

{ })2(
21

)2(
13

)2(
5 ,)2( MMM

MRES Ω=−  

 The rules of interaction between maniples of different types, i.e.  { })1(
2

)1(
1 ,)1(

ji MM
MΩ  and 

{ })2(
2

)2(
1 ,)2(

ji MM
MΩ  are (or might be) different. 

 Interaction of n legions can be written as: 
  

),...,, 21( nLLLLL Ω= . 

 Operator LΩ  denotes a kind of “n-dimensional Cartesian product” of legions and special 
final “reformatting” of the resulting cohorts (like converging polynomial terms with the equal 
power for a common generating function).  Since each legion j consists of vj cohort, the total 
number of resulting cohorts in the final legion (after all legion interaction) is equal to 

∏
≤≤

=
nj

jvv
1

. 

 Number v corresponds to the total number of cohorts’ interactions.   
 
 
 
 
5.  Implementing UGF philosophy in computer language C++.  
 
 We would like use the UGF (Universal Generating Function) philosophy in an analysis tool 

and perform reliability calculations for real-world systems. Because we are talking about an 
(reliability) engineering discipline, all philosophies present the need to be converted into numerical 
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results and predictions. Thus, the UGF philosophy begs an implementation! The implementation 
task is to identify objects (maniple, cohort, legion) and program all interactions between them. 
Unfortunately, we run into a combinatoric explosion of possible interactions for a sysem consisting 
of a large number of (atomic) units. Even moderm computers are not able to enumerate 
astronomically large (21000) number of interaction states in system consisting of 1000 binary atomic 
units. Fortunately, for a class of frequently occuring practical systems, the situation is not as 
hopeless as it may first appear. For a system to be useful in engineering, it may only fail very 
infrequently. In a highly reliable system, the failure probability of all atomic units much smaller 
that the system failure probability. This fact makes most of the interactions exceedingly rare and 
they can be systematically ignored in an approximation scheme that retains only the dominant 
contributions.  

 Let us proceed to find an approximate implementation of the UGF philosophy for highly 
relaible systems in a system simulator. It should be reasonably easy to identify an atomic unit in 
reliability theory as a maniple. Independence of the maniples corresponds to statistical 
independence of the atomic units. A cohort is defined to be a collection of maniples. The same 
definition holds in the context of reliability theory, where the collection is defined by a failure 
criterion. In a series system, each atomic unit is assumed to provide distinct and critical 
functionality. This maps on to the notion of specialized combat units. In a parallel system, all 
atomic units are statistically identical. This improves survival probability during operation, either in 
the military or in system reliability! Thus, we may identify a subsystem in reliability engineering as 
a cohort in UGF formalism. 

  Interactions between the objects are identified in the simulator by their natural 
reliability names. k-out-of-n combinations are of primary interest. But this class includes the two 
most frequently appearing reliability structures: series (n-out-of-n) and parallel (1-out-of-n). In fact, 
probability of failure of a parallel system is negligible (higher order in numerical smallness) with an 
additional assumption of high availability of the atomic units. Obviously a series system can be 
made up of distinct units providing separate functionality to the system.  

 As an illustration let us consider a system S of two subsystems A and B in series. Let A 
be atomic and B be composed of two atomic units X and Y in parallel. One possible C++ coding for 
this (simple) system is 

 
B=Parallel(X,Y); S = Series(A,B); 
 
 Properties (MTBF, MTTR etc.) of all atomic units are specified at the start of analysis. 

Operations like Series and Parallel are C++ member functions for the instances of class “unit”. We 
will not specify unit composition rules in this work. Most of these rules can be found in standard 
textbooks on reliability engineering. Interested readers may find the remaining ones (involving 
switching time and PEI) in Chakravarty and Ushakov (2000, 2002). 

   
 It remains to identify the “legion”. The preceding paragraphs almost suggest that a 

legion be identified with the entire system in reliability theory, where the system is further assumed 
to be represented by its generating function. We would like to note that that this analogy cannot be 
taken literally sometimes. It is common for a real world reliability system to have deeper 
hierarchies (e.g., system, equipment shelves, equipment racks, electornic cards) like modern day 
militaries. In such an elaborate system, we still identify the atomic units as maniples. At the other 
end, we identify the entire system as a “legion”! All intermediate stages in the hierarchy are 
considered generalized “cohorts”. 

 In Chakravarty and Ushakov (2000) implementation, any subsystem can be composed 
from other subsystems at the next lower level of hierarchy (or atomic units which are always at the 
lowest level). A newly formed subsystem provides an effective reliability description of all units 
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that compose this subsystem. This composition can be continued indefinitely to obtain an 
effectiveness measure for the entire system. They have shown that this can be recast as an 
approximation from a system generating function when all atomic units satisfy binary failure 
criteria (on/off) they are statistically independent, the system itself is highly reliable and reliability 
design of the system consists of hierarchical blocks. 

 
6.  Reliability analysis of GlobalstarTM Gateways.  
 
 Globalstar is a low-earth-orbit (LEO) based telephony system with global coverage. The 

gateways make its ground segment that connect to the orbiting satellites. The gateways are cpmlex 
systems with more than a thousand components (e.g., electronic cards). Ushakov (1998), 
Chakravarty and Ushakov (2002) used the UGF approach for the reliability (performance) analysis 
of GlobalstarTM gateways (fixed ground segment of a low earth orbit satellite communications 
system). Given the prominence of object oriented abstractions and operations in Globalstar design, 
it should not be surprising that the reliability analysis naturally fits into the UGF philosophy. 
Further, these ideas can be naturally implemented in the computer using an object oriented 
language.  

 Because of the object oriented nature of system reliability design in Globalstar 
(interaction between objects like system, racks, shelves, cards are triggered by failure, switching of 
failed units and changing user demand), Ushakov (1998) proposed that a system reliability 
simulator should be coded in an object oriented computer language like C++. Later, Chakravarty 
and Ushakov (2002) implemented a simulator for the GlobalstarTM Gateway in C++.  

 In Chakravarty and Ushakov implementation for Globalstar, C++ objects are in one-to-
one correspondence with reliability objects. An object is specified by mean time between failures 
(MTBF), mean time to repair/replace (MTTR) and an effectiveness weight (partial effectiveness 
index: PEI). By definition, PEI=1 for binary atomic units. All failure distributions are implicitly 
assumed to be Exponential. If failed units were to be automatically swapped, a switching time was 
also assigned by Chakravarty and Ushakov (2000). Even small switching time is important because 
it changes a parallel system “on paper” to a series system with small MTTR. This may have 
dramatic effect overall on system reliability. 
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METHOD OF OPTIMAL SPARE ALLOCATION  
FOR MOBILE REPAIR STATION  

 
Igor Ushakov 4 

 
 
 
Summary. 
 
Method of finding optimal spare stock for Mobile Repair Station is suggested. Numerical 

calculations are performed with use of real field data.  It showed significant improvement:  
probability of first fix for suggested variant  is 0.967 in comparison with  0.534 for existing variant. 

 
 
1. Introduction  
 
There is a Service Base (SB)  that serves clients’ equipment within some zone.  A client 

sends a request for repair to the SB when his equipment has failed. Immediately after a request an 
available Mobile Repair Station  (MRS) is directed to the client.  One  of he most important index 
of quality of service is the so-called “fast fix” (FF) that takes just several minutes.  FF is possible if 
there a needed   Field Replacement Units (FRU) at the MRS spare stock is available. Otherwise, a 
special request is sent by MRS to its SB and the needed FRU is delivered to the client only in 
several hours. (In addition, it involves extra spending of money for restoration client’s equipment.) 

Equipment of clients can differ by configuration though consists of the same set of 
components, number of which exceeds several hundreds. Due to natural restrictions, the stock room 
is nor enough for keeping FRU of all possible types.  Thus, the problem of optimal list of spares at 
MRS stock arises that provides maximum probability of FF under given restriction on the available 
room for spares.   

 
 
2.  Formulation of the problem.  
 
Denote available space of MRS stock V*. Let client j , Mj ,1= , has equipment with j

kn  
components of type k (let’s call it component-k). s.  Denote failure rate of a component of type k by 
λk, Nk ,1= . Then the flow of requests formed by components- k , Λk, arriving at the SB can  be 
written as 

 
∑
≤≤

=Λ
Mj

j
kkk n

1
λ      (1) 

 
The total flow of requests, Λ, is equal to  

∑
≤≤

Λ=Λ
Nj

k
1

                                                              (2) 

 
It is clear that a current failure occurs due to a failure of component-k occurs with the 

probability 

                                                           
4 Igor Ushakov’s email address: igorushakov@gmail.com 
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Λ
Λ

= k
kp                                                           (3) 

Denote available space of MRS stock by V and physical volume of component-k by vk.  If 
one assumes that there are no multiple instantaneous failures and the probability that the second 
failure of the same equipment during FRS travel time is negligibly small, than the solution of the 
problem is very simple: one calculates values  

k

k
k v

p
w =                                                        (4) 

and then takes first S components that satisfy the following condition: 
∑∑
≤≤≤≤

<≤
111 SЬk

k
Sk

k vVv     .                                     (5) 

In practice, FRU of different types are approximately of the same volume, i.e. vk=v.  It 
means that instead of ordering values wk , it is enough to order values pk . 

 
 

 
 

Figure 1. Explanation of the solution. 
 
 

3. Case study 
 
The following solution has been performed by contract with Hughes Network Systems 

(Germantown, Maryland, USA) for a maintenance service for ground clients of a global 
telecommunication system.  

In this particular case, the volumes of FRU are approximately the same, so the limitation 
is for the total number of FRUs that is equal to 51. 

Values of Λk for various components are given in Table 1.  In this table, column “O”  (for 
“old”)  contains the number of spares in the initial list and column “N” (for “new”) contains the 
number of spares in the final list obtained by suggested method. For the sake of shortness, we 
omitted those types of equipment components, for which both spare lists (initial and suggested) 
have zero spare units at the MRS stock.  
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Table 1. 
 

# 
Part 
No. 

Rate 
(per 
day) 

 
O 

 
N 

x 
x 
x 

 
# 

Part 
No 

Rate 
(per day) 

 
O 

 
N 

x 
x 
x 

  
# 

Part 
No 

Rate 
(per day) 

 
O 

 
N 

1 30514-2 0.0149 0 1 x 25 30290-1 0.0038 0 1 x  49 20079-1 4.9 Е-4 1 1 
2 15338-1 0.0118 1 1 x 26 14364-1 0.0035 1 1 x  50 3043-1 3.9 Е-4 1 1 
3 14364-9 0.0114 0 1 x 27 30812-1 0.0032 0 1 x  51 3511-1 3.6 Е-4 1 1 
4 17668-1 0.0107 1 1 x 28 15901-1 0.0031 0 1 x  52 15233-1 2.9 Е-4 2 0 
5 3066-1 0.0103 2 1 x 29 12171-2 0.0025 1 1 x  53 15187-2 2.9 Е-4 1 0 
6 19847-1 0.0096 1 1 x 30 11836-4 0.0023 1 1 x  54 30491-1 2.9 Е-4 1 0 
7 11836-1 0.0095 1 1 x 31 19552-2 0.0023 0 1 x  55 12256-1 2.4 Е-4 1 0 
8 13847-2 0.0093 0 1 x 32 17668-2 0.0023 0 1 x  56 17114-1 2.3 Е-4 1 0 
9 3514-5 0.0088 1 1 x 33 10111-1 0.0022 0 1 x  57 30510-1 2.2 Е-4 1 0 

10 12076-1 0.0086 0 1 x 34 92132-4 0.0022 1 1 x  58 93634-8 2.2 Е-4 1 0 
11 17512-1 0.0077 1 1 x 35 70275-1 0.0021 0 1 x  59 10306-1 1.9 Е-4 1 0 
12 30038-2 0.0071 1 1 x 36 124364-6 0.0020 1 1 x  60 17132-1 1.9 Е-4 1 0 
13 16174-1 0.0069 1 1 x 37 110228-1 0.0018 1 1 x  61 30470-1 1.9 Е-4 1 0 
14 11836-9 0.0057 0 1 x 38 124871-1 0.0018 1 1 x  62 30066-2 1.4 Е-4 2 0 
15 30290-2 0.0056 1 1 x 39 113061-1 0.0017 0 1 x  63 30206-1 1.4 Е-4 1 0 
16 17960-9 0.0053 0 1 x 40 110119-1 0.0016 1 1 x  64 30626-1 1.2 Е-4 1 0 
17 92486-2 0.0053 0 1 x 41 200260-4 0.0015 1 1 x  65 92513-1 1.2 Е-4 1 0 
18 13847-1 0.0052 0 1 x 42 30330-1 0.0015 1 1 x  66 11667-1 8.6E-5 1 0 
19 17960-1 0.0050 0 1 x 43 30467-1 0.0014 1 1 x  67 20228-3 6.7E-5 1 0 
20 19847-2 0.0045 1 1 X 44 92428-2 0.0012 1 1 x  68 11485-1 4.2E-5 1 0 
21 3727-2 0.0042 0 1 X 45 90096-2 8.6Е-4 1 1 x  69 3512-4 1.8E-5 1 0 
22 15901-2 0.0041 0 1 x 46 30279-1 8.4 Е-4 1 1 x  70 11836-5 1.2E-5 1 0 
23 1836-2 0.0041 1 1 x 47 30140-1 6.8 Е-4 1 1 x  69     
24 1939-1 0.0039 1 1 x 48 111998-1 5.9 Е-4 1 1 x  70     

 
From the complete list of equipment components (it is not presented), one can find that the 

total failure rate in the chosen service zone is equal to Λ=0.254  [1/day], i.e. approximately 1 failure 
in every 4 days. Failures covered by the initial set of spares form a failure flow with rate Λk = 0.136, 
and for suggested set of spares the analogous value equal to opt

kΛ  = 0.229. 

It means that the probability of FF has been increased from  535.0
254.0
136.0

≈=
Λ
Λ

= k
kp  to 

902.0
254.0
229.0

≈=
Λ
Λ

=
opt
kopt

kp . 

 
 Approximate evaluation of expected gain is the following. The entire service system 

spreading over the USA gets on the average about 44,000 calls a year. MRSs with initial spare 
stocks made about  44,000×(1-0.535)≈20,500 extra deliveries due to lack of needed spares.  The 
suggested spare stock leads only to 44,000×(1-0.902)≈4,300 extra deliveries, i.e. about 16,500 
extra deliveries less.  Each visit takes on the average about 4 hrs (round trip) and about 0.5 hr for 
equipment inspection at the client site.  Each visit costs at least $150, so the total gain is about 24.7 
million a year.  
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AND RISK MANAGEMENT ACCORDING STANDARD REQUIREMENTS  
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1-st Miasnikovskaja Ul., Vl. 3, Moscow, Russia,107564, tel. +7(495) 795-8524,  

e-mail: akostogr@gmail.com 
 
 

Abstract 
 
The offered mathematical models and supporting them  software  tools complexes 

(M&STC) are purposed for a systems analysts from customers, designers, developers, users, experts 
of testing laboratories and certification bodies, as well as a staff of quality maintenance for any 
complex system etc. M&STC are focused on providing system standard requirements on the base of 
modeling random processes that exist for the life cycle of any complex system. Models implement 
original author’s mathematical methodology based on probability theory, theory for regenerating 
processes and methods for system analysis.  M&STC may be also used in training and education for 
specializations “System engineering”, “Software engineering”, “System safety and security”,  
“Information systems”. 

 
  
 
1. Introduction 
 
According  to standard ISO/IEC 15288 system is defined as a combination of interacting 

elements organized to achieve one or more stated purposes. An application of offered methodology 
uses to evaluate probabilities of “success”, cost,  time and quality risks and  related profitability and 
expenses. This helps to solve on the scientific basis the next practical problems in system life cycle: 
analysis of quality management systems for enterprises, substantiation of quantitative system 
requirements to hardware, software, users, staff, technologies; requirements analysis, the evaluation 
of  project engineering decisions; investigation of problems concerning potential threats to system 
operation including information security and protection against terrorists; evaluation of system 
operation quality, substantiation of recommendations for rational system use and optimization etc.   

 
2. Focusing on rational management 
 
All complexes are offered for providing rational management. Management is a purposeful 

changing of an object state, a process or a system. Management is based on choosing one among a 
set of alternatives. Rational management is a management leading to the objective achievement 
according to the criterion of a chosen parameter extreme (minimum or maximum) under the set 
limitations. Classical examples of rational management are usually either maximization of a profit 
(an income, a degree of quality or security, etc.) under limitations on expenses or expenses 
minimization under limitations on an admissible quality and/or security level. It is clear that 
criterion and limitations  may vary throughout the system life.  

For rational management of processes it is necessary to know and plan their behaviour at 
various influences. For this purpose we offer for using about 100 the mathematical models [1,2]. As 
criterion parameters there are used the quantity measures (objective functions) characterizing a 
possibility of object achievement at different stages of a system life cycle. For example, an 
investor’s criterion is the maximum income from the project implementation under limitations on 
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the production process and product quality. For the enterprise it is important to organize a quality 
management system properly – so that in the form of criterion it can choose the probability of 
qualified work performance, i.e. in time and without defects  or the maximum probability of success  
for quality management policy concerning work complexes. A security service must provide safety 
of an object, a process or a system up to the mark. In this case there may be used the criterion of 
expenses minimum under limitations on the admissible level of dangerous influence risk taking 
countermeasures into account or minimum of a dangerous influence risk at limitations on expenses. 
The customer and the developer are interested in the final result – in this case as an integrated 
parameter there may be used such criterion as the maximum part of functional operations carried 
out with the admissible quality or the relative degree of customer satisfaction with the limitations 
on quality or expenses.  

The first from the offered models is Complex for Evaluation of  Information Systems 
Operation Quality (CEISOQ) [1-2,5-6]. The development of CEISOQ was based on the general 
purpose for all information systems (see Fig. 1 and 2).  

 

Interacted
systems

Subordinate
systems

SYSTEM

The general purpose of
operation:

to meet requirements for
providing reliable and  timely
producing of  complete, valid
and  confidential information

for its following use

Information system

Users

Purposes

Requirements to
information

system

Use
conditions

Operated
objects

Higher
systems

Resources

Sources

Fig.1 The purpose of information system 
in a SYSTEM 

 

Fig. 2 The main CEISOQ window for 
choosing the model 

The problems connected with usual computation of parameters are called direct operation 
research problems or analysis problems. The problems directed on a choice of variants maximizing 
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or minimizing values of objective functions under limitations are called inverse operation research 
problems or synthesis problems. The offered models and supporting software tools allow to solve 
both direct and inverse operation research problems. 

 
 
3. Abstract formalization 
 
This formalization is used to building a probabilistic space (Ω, B, P), where: 
 
Ω - is a limited space of elementary events; 
B – a class of all subspace of Ω-space, satisfied to the properties of σ-algebra [3]; 
P – a probability measure on a space of elementary events Ω. 
 
Because, Ω={ωk} is limited, there is enough to establish a reflection ωk→pk =P(ωk) like that 

pk≥0  and 1=∑
k

kp . Such space (Ω, B, P) is built by the limited theorems for regenerative processes 

[3-4] and also by using principal propositions of probability theory and well famous results for 
single and multi-units queuing systems. This probabilistic space (Ω, B, P) is the essence of 
mathematical models to support an assessment of standard system processes. 

 
 
4. Example of created mathematical model 
 
Nowadays at system development and utilization an essential part of funds is spent on 

providing system protection from various dangerous influences able to violate system integrity. 
Under system integrity it means such system state when system purposes are achieved with the 
required quality under specified conditions of use.  Such examples of dangerous influences are 
terrorists attacks, viruses or ‘violators’ influences, software defects events etc. As this problem 
wasn’t studied carefully dangerous influences often reach their aims.  

There are examined three typical technologies of providing protection from dangerous 
influences. In this paper it is illustrated only technology 1 that is based on preventive diagnostics of 
system integrity. Diagnostics is carried out periodically. It is assumed that except diagnostics means 
there are also included means of necessary integrity recovery after revealing of danger sources 
penetration into a system or consequences of negative influences. Integrity violations detecting is 
possible only as a result of diagnostics, after which system recovery is started. Dangerous 
influences on a system are acted step-by step: at first a danger source penetrates into a system and 
then after its activation begins to influence. System integrity is considered to be violated only after 
a danger source has influenced on a system. If to compare a system with a man technology 1 
reminds a periodical diagnostics of a man’s health state. If diagnostics results have revealed 
symptoms of health worsening a man is cured (and integrity is considered as recovered). Between 
diagnostics an infection penetrated into a man’s body brings a man into an unhealthy state (a 
dangerous influence is realized and integrity is violated)–see Fig. 3.  
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 - time between the neighboring diagnostics; 
 

- a required period Treq of permanent secure operation; 
 
- as minimum, there is two diagnostics during a required period Treq 

 (the illustration of  Treq middle); 
 
- a required period Treq has ended after the last diagnostic; 
 
- a dander source has penetrated before the next diagnostic; 
 
- a dander source has not penetrated into system; 
 
- a penetrated dander source has activated before the next diagnostic; 
 
- a penetrated dander source has not activated before the next diagnostic 

 
 

t

Cases:         1                2               3                     4                              5              

… … 

 
Fig. 3 The illustration of system resources protection against dangerous influences by technology 1 

 
The availability of means of danger sources total-lot detecting and existence of ways of 

violated system integrity total-lot recovery is obligatory requirement. The offered models are 
supported by software tools CEISOQ.  

Te system protection from dangerous influences may be evaluated if the next characteristics 
are known: frequency of influences for penetrating a danger source into a system (σ) ;  mean 
activation time of a penetrated danger source (β); time between the end of diagnostic and the 
beginning of the next one (Tbetw.); diagnostic time including the time of system integrity recovery 
(T diag.); a required period of system operation (T req.) for investigation. There are possible the next 
variants: 

variant 1 – the assigned period Treq is less than established period between neighboring 
diagnostics (Treq < Tbetw.+Tdiag); 

variant 2 – the assigned period Treq is more than or equals to established period between 
neighboring diagnostics (Treq ≥ Tbetw.+Tdiag). 

Statement 1. Under the condition of independence of considered characteristics the 
probability of dangerous influence absence for variant 1 is equal to 

Pinfl.(1)(Treq) = 1 - Bpenetr∗ Bactiv(Treq),                                            (1)                   
where ∗ -  is convolution sign,  Bpenetr(t) is the probability distribution function (PDF) of 

time between neighboring influences for penetrating a danger source, Bactiv(t) is the PDF of 
activation time of a penetrated danger source, for modeling Bpenetr.(t)=1-e-σt, Bactiv(t)=1-e-t/β. 

Note. This formula (1) is used also for the evaluation of security for system operation 
without diagnostics. There is supposed that before the beginning of period Treq system integrity is 
provided. 

Statement 2. Under the condition of independence for considered characteristics the 
probability of dangerous influence absence for variant 2 is equal to     

     Pinfl.(2)=Pmdl+Pend                                                                                         (2), 
where Pmdl – is the probability of dangerous influence absence within the period Treq since 

beginning to the last diagnostic, Pend – is the probability of dangerous influence absence within the 
period Treq after the last diagnostic, i.e. in the last remainder Trmn=Treq -N(Tbetw+ Tdiag), N is the 
number of periods between diagnostics placed wholly within assigned period Treq,  

N = [Treq/( Tbetw + Tdiag)] – is integer part;  
Pwholly(1) =Pinfl.(1)(Tbetw +Tdiag.), is calculated by formula (1), 
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The mathematical proof  is in [1,2]. This is one from more than 100 mathematical models 
offered to support an assessment of standard system processes.  

 
 
5. Software tools to support an assessment of standard system processes 
 
35 created software  tools complexes implementing original mathematical models [1-2,5-6] 

consist complexes created in 2001-2005: for  the Evaluation of Information Systems Operations 
Quality (CEISOQ, CEISOQ+); for Evaluation of  System Vulnerability including Conditions of 
Terrorist Threats (”VULNERABILITY”); for complex analysis of system security (“ANALYSIS 
OF SYSTEM SECURITY”), for Modeling of  System Life Cycle Processes “MODELING OF  
PROCESSES”. The last complex  “MODELING OF  PROCESSES” includes multi-functional 
complexes for evaluation of Agreement (models and software tools “ACQUISITION”,  
“SUPPLY”), Enterprise (models and software tools “ENVIRONMENT MANAGEMENT”,  
“INVESTMENT MANAGEMENT”, “LIFE CYCLE MANAGEMENT”, “RESOURCE 
MANAGEMENT”,   “QUALITY MANAGEMENT”) and Project (models and software tools 
“PROJECT PLANNING”,  “PROJECT ASSESSMENT”, “PROJECT CONTROL”, “DECISION-
MAKING”, “RISK MANAGEMENT”,  “CONFIGURATION MANAGEMENT”, 
“INFORMATION MANAGEMENT”) Processes Modeling and also for Technical Processes 
Modeling (models and software tools “REQUIREMENTS DEFINITION”,   “REQUIREMENTS 
ANALYSIS”, “ARCHITECTURAL DESIGN”, “HUMAN FACTOR”,  “IMPLEMENTATION”, 
“INTEGRATION”, “VERIFICATION”, “TRANSITION”,   “VALIDATION”,  “OPERATION”, 
“MAINTENANCE”,  “DISPOSAL”). 

The models created have undergone extensive testing in an operational environment and the 
results have been compared with the results of other independent models (if such exist). This 
comparison has provided documented evidence that the models implemented in these tool suites are 
realistic, including the reality of the calculations and the time&probabilistic characteristics. Created 
software tools are an original Russian creation patented by Rospatent, certified, have been 
presented at seminars, working groups, symposiums, conferences and forums since 2000 in Russia, 
Australia , the USA, Canada, France, Germany, Kuwait. In 2001 the CEISOQ [1-2,5-6] was 
awarded be the Golden Medal of the International Innovation and Investment Salon, in 2004-2005 
the software tools “RISK MANAGEMENT”, “HUMAN FACTOR”  and  “ARCHITECTURAL 
DESIGN” also were awarded by the Golden Medal of the International Exhibition “Intellectual 
Robots” and acknowledged as the software products of the year. 

How these models adequacy may be conformed? Though any answer to these questions 
won’t be irrefragable for a certain system we shall try to formulate our arguments. 

Argument 1. The M&STC uses mathematical models formalizing standard processes on 
time line. Majority of dependencies gives upper and lower estimations. The fact is that while 
shaping models all mathematical results are initially drawn in the integral form. As input data are 
somehow connected with time after choosing distribution functions characterizing these data there 
were selected the gamma – distribution and the Erlang’s distribution. Mathematicians know that 
these distributions approximate sums of positively distributed random variables well. Every 
temporary data are as a matter of fact such a sum of compound time expenses. Studies of 
regularities have shown that extremes are achieved on bounds of these distributions, i.e. of 
exponential and deterministic (discrete) distributions. Thus, real values will be somewhere between 
lower and upper estimations calculated by the software tools.  

Argument 2. As a basis of models there is  used the probability theory and the theory of 
regenerative processes. Proofs of basic theoretical results are cited in [1-2]. If to return in the 70-s 
of the last century we may remember the boom of mathematical modeling, defining calls flow 
reliable and time-probabilistic characteristics. The boom passed and appeared the reliability theory, 
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the queuing theory and a variety of models, which proved themselves to be effective. There are 
created standards and other normative documents regulating system methodical evaluations on the 
basis of these models. Nowadays these models are widely used and trusted because they produce 
reliable results confirmed in the course of time. It is worth to remind that these created theories and 
models are based on the probability theory and the theory of regenerative processes. The several 
offered models “The model of functions performance by a system in conditions of unreliability of 
its components”, “The models complex of calls processing”, “The model of entering into system 
data current concerning new objects of application domain” are the classical adapted models of the 
80-s improved  to meet the requirements of the present time. The other models are created on the 
basis of the limit theorem for regenerative processes developed in the 70-80-s in Moscow State 
University on the faculty of computing mathematics and cybernetics by professor Klimov’s school 
[4]. Three-year testing of M&STC including beta-testing by fifty different companies raise 
confidence in models algorithmic correctness. 

Argument 3. Skilled analysts know that if a probabilistic analytical model is incorrect then if 
input data are changed in the range from -∞ to +∞ there are always errors appearing either in 
infraction the probability theory laws or in illogic of  dependencies behavior (most probably on the 
bounds of possible values) or in impossibility of obtained effects physical explanation. Bounds of 
input data in the M&STC are assigned in the range from -∞ to +∞ or to be more exact from 10-8 
milliseconds to 108 years. 

Argument 4. As far as possible any designer tends to use several models of different authors. 
If results of different models use are not divergent a designer begins to trust not only to results but 
also to the models. Comparison of results of the M&STC use with results of other models use 
proved its high adequacy (concerning computations of reliability and time-probabilistic 
characteristics, the other models don’t have analogues).  

 
 
6. Examples of software tools application 
 
The offered M&STC have been and are applied for solving the problems of: 
information security and reliability for banks, transport systems, protected and military 

objects etc.; 
rational protection for oil and gas systems in conditions of terrorist threats; 
quality and reliability for cosmic robot systems and heat supply etc.; 
risk analysis for dangerous coal mine and manufactures; 
system certification;  
education in the field of system analysis. 
Below there are demonstrated some capabilities of the software tools “RISK 

MANAGEMENT”. 
 
Example 1 for demonstration the capabilities of subsystem “Evaluation of  counteraction 

measures effectiveness”. Let 10 barriers be installed in order to protect valuable resources of a 
system from unauthorized access. In table there are shown prospective characteristics of barriers 
(as сounteraction measures) and the mean time of their possible overcoming by a specially 
prepared violator (as the time of keeping measure effectiveness). Real values of similar 
characteristics may be received as a result of natural experiments or application of  other special 
models. 

It is required to evaluate the risk of dangerous influence on a system in spite of 
counteraction measures during a week. The minimal admissible risk shouldn’t be more than 0.0001. 
The initial data for calculations are shown in the Table.  

Table  
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Characteristics of the  threat scenario and the protection system 

Barrier 

Change frequency of 
the barrier parameter 
value as time to the 

next strenthening of the 
measure 

Mean time of 
barrier overco-

ming by a 
violator 

Possible way of barrier 
overcoming 

1. External guards Change of guards every 
24 hours   

10 hours Latent penetration  

2. System of passes to the 
system with a change of 
security services 

Change of guards every 
24 hours   

10 minutes Documents falsification, 
conspiracy, fraud 

3.The electronic key to get to 
the  control unit 

5 years (time between 
changes) 

1 week Theft, forcible key withdrawal, 
conspiracy 

4. The password to enter the 
automated system  

1 month 10 days Spying, compulsory 
questioning, conspiracy, 
selection of a password  

5. The password to get access 
to software devices  

1 month 10 days  
—ІІ— 

6. The password to get access 
to the required information  

1 month. 10 days  
—ІІ— 

7. The registered external 
information carrier with write 
access 

1 year 24 hours Theft, forced registration, 
conspiracy 

8. Confirmation of a user 
identity, during a session of 
work with the computer 

1 month. 24 hours Spying, compulsory 
questioning, conspiracy 

9. Telemonitoring  Time between changes 
of software devices – 5 
years 

1 month Simulation of a failure, false 
films, dressing up as employees, 
conspiracy 

10. Encoding of the most 
important information   

Change of keys every 
month 

1 year Decoding, conspiracy  

 
Solution. The analysis of the withdrawn calculated dependences has shown the following (see 

Fig. 4). 
The first 3 barriers as сounteraction measures are overcome with the probability about 0.34. 

Use of alternating passwords once a month for the 4th, 5th and 6th barriers allows to decrease the risk  
from 0.34 to 0.14. However, the general system protection after the introduction of the first six barriers 
remains rather weak. The 7th and 8th сounteraction measures are practically useless. Use of 
telemonitoring means allows to decrease risk of dangerous influence on a system in spite of 
counteraction measures to 0.002 what  also doesn’t meet the stated requirements. The use of all 10 
counteraction measures provides the required system protection. 
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Fig. 4 Results of computation for 
example 1 

 
The use of subsystem “Evaluation of expenses for risk retention” allows to define expenses 

against risks (see calculation results on Fig. 5). It is the capability to optimizing by criterion “risk-
expenses”. 

 

 
Fig. 5 Results of computation by the subsystem 

“Evaluation of expenses for risk retention” 
 
The use of subsystem “Substantiation of counteraction strategy against risks” allows to 

evaluate different damages and expenses against risks for the given scenario.  
The last complex “ANALYSIS OF SYSTEM SECURITY” allows to evaluate the integral 

security for the system consisting of any number of components. The condition is the components 
are united in parallel and/or consecutive  order. The structure may be any degree of complexity. The 
strength of every measure (component) is approximated  by exponential low. 

Example 2 for demonstration the capabilities of subsystem “Analysis of integral security”. 
Let the system contains 3 level of interacted subsystems: higher subsystem, interim subsystem and 
subordinate subsystem (see Fig.1). It may be territorially distributed enterprise or bank with the 
branches etc.   Every subsystem have the valuable resources protected by the сounteraction 
measures from the table (see example 1). The system structure, constructed by software tools for 
modeling,  is on Fig.6. The frequency of threats source appearance is 10 times in a year by 
qualified violator, the mean time for system recovery is 1 hour.   
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Fig. 6 System structure for modeling 
 
It is required to evaluate the probability of providing system security  in a year for the given 

scenario of threats.  
Solution. The integral analysis of the withdrawn calculated dependences has shown the 

following (see Fig. 7). The probability of providing system security without control and monitoring 
is about 0.19, with periodic  control (without permanent monitoring for the 9-th and 10-th barriers) 
- 0.39.  The use of all 10 counteraction measures (including permanent monitoring for the 9-th and 
10-th barriers) provides system security with the probability more than 0.95 against general 
expenses 104000 conditional  units . 

 

 
Fig. 7 Results of computation by the subsystem 

“Analysis of integral security” 
 
7. Conclusion 
 
Expected pragmatic effect from application is the next. It is possible to provide essential 

system quality and security rise and/or  avoid wasted expenses in system life cycle on the base of 
processes  modeling by the offered mathematical models and software tools complexes.  
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