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Figure 14. Lower bridge in Elblag 
 
6.3.2. Ships  

 
The calculations of load have been done for maximum allowable inland ship of length 100m and breadth 15. 

Typical inland ships investigated in this researches is inland ship with own propulsion BM500-type of length 57m and 
breadth of 7.5m. 
 
6.3.3. Determination of load on bridge piers 

 
Meier-Dörnberg method [1984] has been applied as typically for inland ships for determination of load of the 

characteristic ships. The most frequent scenarios have been selected as the most important for fenders and piers design: 
1). frontal collision of maximal ship (Fig. 15), and 2). side collision with 20 degrees angle (Fig. 16). 
 

 
 

Figure 15. Collision of maximal ships with fenders 
 
 

 
 

Figure 16. Collision of BM 500 with middle part of fenders with 20 degrees angle 

 
Calculations leads to following conclusions: 

1. maximal load force is 9.5MN during accidental collision of maximal ship with fender system, 
2. the working load of maximal ship during passage is not exceeding 0.08MN, 
3. maximal load of BM 500 in middle of fenders equals 0.92MN. 

Table 2 presents load forces for maximal ships with different angles and velocities. Maximal load assumed for 
speed of 3m/s and 90 degrees angle. 

 
 

Table 2. Load [MN] for maximal ships during impact 
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v [m/s] Angle 
[deg.] 0.5 1 1.5 2 2.5 3 
0 0.00 0.00 0.00 0.00 0.00 0.00 
10 0.08 0.31 0.69 1.23 1.91 2.75 
20 0.30 1.19 2.67 4.71 6.20 6.28 
30 0.70 2.78 6.17 6.29 6.45 6.63 
40 1.26 4.99 6.29 6.51 6.78 7.09 
50 1.94 6.20 6.45 6.77 7.16 7.61 
60 2.66 6.28 6.61 7.03 7.54 8.12 
70 3.35 6.35 6.75 7.28 7.89 8.57 
80 3.92 6.41 6.87 7.47 8.17 8.93 
90 5.03 6.52 7.10 7.84 8.68 9.59 

 

The method applied enables to determine also deformation of ships hull. The deformation in function of speed 
and impact angle is presented in Fig. 17. 
 

 
 

Figure 17. Deformation of maximal ships hull during impact on different angles 
 
 
7. CONCLUSIONS 

 
The possible collision of ships with the bridges on navigable canals could be catastrophic in consequences. It 

enforces the necessity of full range of available methods application to determine the risk and protect the bridges 
against accidents. 
 Presented paper describes whole range of nowadays knowledge about ship-bridge collisions problems 
necessary for practical risk assessment and guidelines of bridge protection. 
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ABSTRACT 
 

In this paper, we introduce our newly created DEAR (an abbreviation of Differential 
Equation Associated Regression) theory, which merges differential equation theory, 
regression theory and random fuzzy variable theory into a new rigorous small sample based 
inferential theoretical foundation. We first explain the underlying idea of DEAR modelling, 
its classification, and then the M-estimation of DEAR model. Furthermore, we explore the 
applicability of DEAR theory in the analysis in system dynamics, for example, repairable 
system analysis, quality dynamics analysis, stock market analysis, and ecosystem analysis, 
etc.   

 
 
 
1 INTRODUCTION 
 

In real world, many phenomena can be abstracted into mathematical dynamic systems. 
Differential equation theory provides many effective models for system dynamics. The focus of a 
system dynamics should be the characteristics intrinsic to the system and its evolving or developing 
patterns. To achieve this goal, the investigation on the system ought to base on the data extracted 
from the system itself. In other words, it is critical to utilize the sample data to test and validate 
hypothesized system model. 

However, it is a well known fact that sampling from a system is usually a difficult task and an 
expensive exercise. Therefore, inference on the system dynamics based on small sample becomes 
an urgent and elementary task. Small sample inference has already obtained attention to many 
researchers, for example, in probability theory, the small sample asymptotics (Field and Ronchetti, 
1990, 1991), the Bayesian inference, in fuzzy set theory proposed by Zadeh (1965, 1978), the 
plausible inference, and particularly, in the grey system theory proposed by Deng (1985), small 
sample inference is its flashing feature. 

In this paper, to address the dilemma of using differential equation for describing continuous 
system dynamics, while only a small discrete data sequence sampled from the system is available, 
we propose Differential Equation Associated Regression, abbreviated as DEAR, model. DEAR 
theory couples differential equation and regression together (Guo et al., 2006) with delicate 
approximation schemes. However, these approximations introduce additional errors, which are 
identified as fuzzy error terms in nature. Thus, the coupled regression in DEAR theory is a random 
fuzzy regression. 
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2 NONLINEAR THINKING OF DEAR 
 

Without loss of generality, a simple linear differential equation: 
dx x
dt

α β= +                                                           (1) 

will be used in this paper for illustrative purpose. Let ( )1€ix  denote an approximation to the primitive 
function ( )x t  at it , and let i ix tD D be an approximation to the derivative function dx dt  at it , 
with 1i i it t t -D = - , and ( ) ( )1i i ix x t x t -D = - .  

Definition 2.1: If a dynamic system governed by Equation 1 is sampled at its derivative level, 
denoted by ( ) ( ) ( ) ( ){ }0 0 0 0

1 2, , , nX x x x= L , the coupled equation system 

( ) ( )0 1

                           

€ ,  1,2, ,i i i

dx x
dt

x x i n

a b

a b e

мпп = +ппнпп = + + =ппо L
                                                          (2) 

is called Type I DEAR model.  
Definition 2.2: If a dynamic system governed by Equation 1 is sampled at its primitive level, 

denoted by ( ) ( ) ( ) ( ){ }1
1 2, , , nX x t x t x t= L , the coupled equation system 

( )

                              

,  1, 2, ,i
i i

i

dx x
dt
x

x t i n
t

a b

a b e

мпп = +пппнDпп = + + =ппDпо
L

                                                          (3) 

is called Type II DEAR model. 
Note that the second equation in the paired equation system like Equation 2 and 3 is called 

coupled regression, while the first one, i.e., the differential equation is called the associated 
differential equation. 

Now, Let us examine Type I DEAR model first. The system dynamics is governed by the 
linear differential equation dx dt xa b= + , or equivalently, nonlinear functional ( ) ( ); ,x t f t a b= . If 
the sample could be very large, it is possible to perform a non-linear statistical modelling in term of 
standard maximum likelihood procedure to estimate system parameter ( ),θ α β= . However, if only 
small sample observations are available, the “best” modelling exercise is to fit a simple regression 
model ( ) 0 1€ €€x t tγ γ= +  , called primitive regression, for approximating the system 
dynamics ( ) ( ); ,x t f t a b= . Figure 1 shows that the blue-dot straight line ( ) 0 1€ €€x t tγ γ= +  will poorly 
approximate nonlinear curve ( ) ( ); ,x t f t a b=  in the ( ),t x  space (or ( ),t x -coordinate system). 
  

 
 

Figure 1. Two approximations to nonlinear curve ( ) ( ); ,x t f t a b=  in ( ),t x  space. 
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Let us consider the case where sampling observations, ( ) ( ) ( ) ( ){ }0 0 0 0
1 2, , , nX x x x= L , are collected at 

derivative level. By a linear transformation, approximations to primitive function level observations 
are obtained, denoted by ( ) ( ) ( ){ }1 2€ €, , , nx t x t x tL , say, by partial sum. In terms of Type I DEAR model 
thinking, we first fit the coupled regression, i.e., the second equation in DEAR equation system in 
Equation 2 in the ( ), 'x x  space (or ( ), 'x x -coordinate system), where 'x denotes the derivative of x  
with respect to t , i.e., 'x dx dt= . 
 

 
 

Figure 2. Type I approximation in ( ), 'x x  space. 
 

From the fitting of the coupled regression, ( ) ( )0 1€i i ix xa b e= + + , the estimator of parameter 
( ),θ α β= , denoted by ( )€ €€,q a b=  is obtained. Now, in the ( ), 'x x  space, we fit straight line €€ €€'x xa b= +  

to approximate the straight line 'x xa b= + .  It is obvious this model goodness-of-fit could be very 
good even with small sample. 

Once the parameter ( ),θ α β=  is obtained, by solving the approximated linear differential 

equation €€dx dt xa b= + , we will obtain an approximated nonlinear curve ( )( )1
0

€€' ; , ,x t xj a b= , 

(yellow-colored curve in Figure 1), which is expected to approximate the primitive curve in 
relatively high accuracy. 

 

 
 

Figure 3. Type II approximation in ( ), 'x x  space. 
 

Let us consider the case in which the sampling observations are collected at primitive 
function level, denoted as ( ) ( ) ( ) ( ){ }1

1 2, , , nX x t x t x t= L . Then in terms of DEAR Type II model 
thinking, the derivatives could be approximated, for example, by the divided difference, i.e., 

i ix tD D , or other approaches available. Just as shown in Figure 3, fitting €€ €'x x t xa b= D D = +  for 
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approximating line 'x xa b= + . Similarly, the estimated parameter  ( )€ €€,θ α β=  will lead the 

nonlinear approximation ( )( )1
0

€€' ; , ,x t xj a b=  to the primitive function ( ) ( ); ,x t f t a b=  in ( ),t x  space 

(shown in Figure 1). 
It is necessary to emphasize here that DEAR model is often starting with hypothesized 

differential equation model for a system dynamics and then obtaining the corresponding coupled 
regression. The converse direction is also possible. In other words, after a regression model is 
established based on the small sample data extracted from an unknown system dynamics, an 
appropriate differential equation is selected according to the Coupling Principle stated in Guo et al. 
(2006) and then the DEAR model is built up. For example, a set of system data ( ){ }, 1,2, ,ix t i n= L  
is collected and a fitted regression model takes the form 

( )( ) ( ) ( )0€ mi
i i i

i

xx t x t x t
t

a bD= = +
D

                                                          (4) 

Then, the associated differential equation is a Bernoulli equation of the form: 

( )2( ) mdx p t x q t x
dt

+ =                                                           (5) 

Then a Type II DEAR model is established 

( ) ( )

                   m

mi
i i i

i

dx x x
dt

x x t x t
t

a b

a b e

мпп = +пппнDпп = + +ппDпо

                                                          (6) 

It should be fully aware that the solution to the estimated Bernoulli equation 
€€ mdx x x

dt
a b= +                                                           (7) 

which results in a solution 

( ) ( )( )( ) ( ) ( )1€ 11
1

€€€; , 1 , 0,1
€

m t tmt e c t mabj a b
a

- --= - + №                                                           (8) 

for facilitating the nonlinear approximation to the true system dynamics ( ); , ,x f t a b g= . 
 
3 RANDOM FUZZY VARIABLE FOUNDATION FOR DEAR 
 

In order to achieve the target of nonlinear modeling with small sample, DEAR utilizes various 
approximations. Type I DEAR model utilizes the approximation of an integral (i.e., primitive 

function) by partial sum, ( ) ( )( )1
2

€ '
i

i i i j
j

x t x t t t −
=

= −∑  and Type II DEAR model relies on the 

approximation of a derivative, ( )' ix t , by divided difference, ( ) ( )( ) ( )1 1i i i ix t x t t t− −− − . 
The approximation brings error, which is fuzzy in nature according to nonclassical 

mathematical analysis. The total error term, i i ieε ζ= + , in coupled regression will come from two 
error sources: random sampling error, denoted by e , and the approximation-caused fuzzy error, 
denoted by ζ . Therefore, the coupled regression is a random fuzzy variable regression. Therefore, 
we need to have some knowledge of random fuzzy variable theory.  

Random fuzzy variable is a special case of hybrid variable defined in a chance space proposed 
by Liu (2004), which is a Cartesian product of a probability space and a credibility space for 
describing hybrid events in which randomness and fuzziness coexist.  
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Definition 3.1: (Liu, 2007) Let ( ),2 ,CrQQ  be a credibility measure space and ( ), ,PrAW  a 

probability space. The product ( ) ( ), 2 ,Cr , ,PrAQQ ґ W  is called a chance space. 

Typically, the product ( ) ( ), 2 ,Cr , ,PrAQQ ґ W  may be written as ( ),2 ,Cr PrAQQґ W ґ ґ . The 

Cartesian product space Θ×Ω  is typically defined by  ( ){ }, : ,θ ω θ ωΘ×Ω = ∈Θ ∈Ω  and the 

Cartesian product σ -algebra { }2 : 2 ,A B A BΘ Θ× × ∈ ∈A = A , which is a special σ -algebra 

constituted by events with product form ,  2 ,A B A BΘ× ∈ ∈A . Note here that 2Θ  is the power set of 
space Θ , which is the largest σ -algebra of set Θ , while A  is just a σ -algebra of set Ω . 
Therefore, 2Θ ×A  is a σ -algebra of set Θ×Ω , but a very special one. As to Cr Pr×  which is a 
product measure of the two essential uncertain measures: credibility measure and probability 
measure. Nevertheless, the product measure may take different forms. One of them, which satisfies 
the requirements of uncertainty measure proposed by Liu (2004), is called the chance measure, 
denoted as { }Ch , which is composed of the two essential measures: credibility measure and 
probability measure.  

Definition 3.2: (Liu, 2007) Let ( ) ( ),2 ,Cr , ,PrAQQ ґ W  be a chance space and an (measurable) 
event of form Z X Y= ×  such that { } { }: : 2Z X Yθ θ ω ω Θ= ∈ ⊂ Θ × ∈ ⊂Ω ∈ ×A , then a chance 
measure is defined as: 

{ }
{ } ( ){ }( ) { } ( ){ }( )
{ } ( ){ }( ) { } ( ){ }( )

sup Cr Pr if sup Cr Pr 0.5
Ch

1 sup Cr Pr if sup Cr Pr 0.5c

Z Z
Z

Z Z
θ θ

θ θ

θ θ θ θ

θ θ θ θ
∈Θ ∈Θ

∈Θ ∈Θ

⎧ ∧ ∧ <
⎪= ⎨
− ∧ ∧ ≥⎪

⎩

                                                          (9) 

If the product measure Cr Pr×  is defined by the chance measure defined in Definition 2.9, i.e., 
{} {}Cr Pr Ch× ⋅ = ⋅ , then the chance measure space ( ) ( ),2 ,Cr , ,PrAQQ ґ W  may be written as 

( ), 2 ,ChQQґ W ґ A . 

Definition 3.3: (Liu, 2007) Let ( ),2 ,ChQQґ W ґ A  be a chance space. A hybrid variable 

( ): ,2 ,Chξ ΘΘ×Ω × → RA  is a measurable function from the chance space into a set of real numbers. 

In other words, for any Borel set of real numbers, ( )B∈ RB , event 

( ) ( ){ }, : , 2Bθ ω ξ θ ω Θ∈Θ×Ω ∈ ∈ ×A . 
The typical examples of hybrid variables are fuzzy random variable and random fuzzy 

variable.  Liu (2004, 2007) defines a random fuzzy variable as a measurable mapping from the 
credibility space ( ),2 ,CrQQ  to a set of random variables.  Again, we should be aware that a random 
fuzzy variable here takes real numbers as its values, which behaves very similar to a random 
variable.  

Definition 3.4: Let ( ),2 ,ChQQґ W ґ A  be a chance space and ξ be a hybrid variable. Then the 

chance distribution ( ) [ ]: ,2 ,Ch 0,1Θϒ Θ×Ω × →A  for ξ if and only if: 

( ) ( ) ( ){ } = Ch , : ,x xθ ω ξ θ ωϒ ∈Θ×Ω ≤                                                           (10) 

Theorem 3.5: (Liu, 2007) Let ( ),2 ,ChQQґ W ґ A  be a chance space. A function [ ]: 0,1ϒ →R  
is a chance distribution for a hybrid variable ξ  if and only if: 
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( ) ( )
( ) ( ) ( ) ( )

lim 0.5 lim

lim   =  if lim  0.5 or 0.5 
x x

y x y x

x x

y x y x
→−∞ →+∞

↓ ↓

ϒ ≤ ≤ ϒ

ϒ ϒ ϒ > ϒ ≥
                                                          (11) 

Definition 3.6: (Liu, 2007) Let ( ), 2 ,ChQQґ W ґ A  be a chance space and ( )ϒ ⋅ be the chance 
distribution for a hybrid variableξ , a function [ ): 0,ϕ → +∞R  is called as a chance density if and 
only if: 

( ) ( )

( )

d

d  = 1

x

x y y

y y

ϕ

ϕ

−∞

+∞

−∞

ϒ = ∫

∫
                                                          (12) 

Definition 3.7: Let ( ), 2 ,ChQQґ W ґ A  be a chance space and ( )ϒ ⋅ be the chance distribution 
for a hybrid variableξ . The chance distribution ( )ϒ ⋅ is absolutely continuous if and only if the 
chance density ( )ϕ ⋅ is continuous.  

The discussions of the chance distribution ( )ϒ ⋅ will be limited in the class of absolutely 
continuous chance distributions. 

Theorem 3.8: Let ( ), 2 ,ChQQґ W ґ A  be a chance space and ( )ϒ ⋅ be the chance distribution for 
a hybrid variableξ , which is absolutely continuous. Then: 

( ) ( )
( ) ( )

0,  1

 if ,  ,x y x y x y

ϒ −∞ = ϒ +∞ =

ϒ < ϒ < ∀ ∈R
                                                          (13) 

Furthermore, the inverse function of {}ϒ ⋅ exists and is denoted as ( )1−ϒ ⋅ .  

Definition 3.9: (Liu, 2004) Let ( ), 2 ,ChQQґ W ґ A  be a chance space and ξ be a hybrid 
variable. Then the expected value of ξ  is defined by: 

[ ] { } { }
0

0

E Ch d Ch dr r r rξ ξ ξ
+∞

ϒ
−∞

= ≥ − ≤∫ ∫                                                           (14) 

Let [ ]Ee ξϒ= , then the variance is defined as [ ] ( )2EV eξ ξϒ ϒ
⎡ ⎤= −⎣ ⎦ .  

Finally, let us discuss the average hance measure concept given by Liu (2007).  

Definition 3.10: Let ( ) ( ), 2 ,Cr , ,PrAQQ ґ W  be a chance space and ξ  be a random fuzzy 
variable, then the average chance distribution is  

( ) { } ( ){ }{ }
1

0

ch Cr :Pr , dx x xξ θ ξ ω θ β βΨ = ≤ = ≤ ≥∫                                                           (15) 

and the average chance density is a positive function :ψ +→R R  such that 

( ) ( )d
x

x u uψ
−∞

Ψ = ∫                                                           (16) 
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If the product measure Cr Pr×  is defined by the average chance measure defined in Equation 
10, i.e., {} {}Cr Pr ch× ⋅ = ⋅ , then the average chance measure space ( ) ( ), 2 ,Cr , ,PrAQQ ґ W  may be 

written as ( ),2 ,chAQQґ W ґ . 
The error structure in the dear modelling theory is assumed to be random fuzzy 

eε τ= +                                                           (17) 
in which e is the fuzzy approximation error to the derivative and τ is the random error term. 
For inference purposes, similar to statistical linear model theory, it is typically assumed that the 
random error is normal variable with zero-mean and constant variance, i.e., ( )20,Nτ σ� . 

However, the fuzzy error e is intrinsically dependent upon point x , the difference on x when 
using divided difference to approximate derivative at point x . Let e be assumed to be a triangular 
fuzzy variable with a membership having parameter ( ), ,x a x x b− + , 0, 0a b> > , 

( )
0        otherw ise

e

u x a x a u x
a

b u xu x u x b
b

μ

− +⎧ − < ≤⎪
⎪

− +⎪= < ≤ +⎨
⎪
⎪
⎪⎩

                                                          (18) 

Accordingly, the credibility distribution function of fuzzy error e at point x is 

( )
( )
0         if 

if 
2

  if 
2
1          if 

e x a
e x a

x a e x
ae

e b x x e x b
b

e x b

≤ −⎧
⎪ − −⎪ − ≤ <
⎪Λ = ⎨

+ −⎪ ≤ < +⎪
⎪ ≥ +⎩

                                                          (19) 

 
Then the average chance distribution of normal random fuzzy error term ε  at point x takes a form 

( ) ( )

( ) ( )

( )

( )

( )
2

2

( )d ( )d
2 2

x a x

x x b

x a x a x
a

x b x bb x x
b

u u u u u u
a b

ε ε
σ σ

ε ε
σ σ

ε ε εε
σ σ

ε εε ε
σ σ σ

σ σφ φ

− − −

− − +

⎛ ⎞− − − −⎛ ⎞ −⎛ ⎞Ψ = Φ −Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞− + − +⎛ ⎞ ⎛ ⎞+ − −⎛ ⎞+ Φ −Φ +Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

− −∫ ∫

                                                          (20) 

and the average chance density is 
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( )

( ) ( )

( )

( ) ( )

( ) ( )

1( )
2

2

1
2

1
2

1 ( )
2

x a x
a

x a x a x
a

x bx
b

x b x bb x x
b

x a x a
a

ε εψ ε
σ σ

ε ε εφ φ
σ σ σ

εε
σ σ

ε εε εφ φ φ
σ σ σ σ σ

ε ε εφ
σ σ

⎛ ⎞− −⎛ ⎞ −⎛ ⎞= Φ −Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞− − − −⎛ ⎞ −⎛ ⎞+ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞− +⎛ ⎞−⎛ ⎞+ Φ −Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞− + − +⎛ ⎞ ⎛ ⎞+ − −⎛ ⎞+ − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

− − − − −
− −

( ) ( )1
2

x x

x b x bx x
b

εφ
σ σ

ε εε εφ φ
σ σ σ σ

⎛ ⎞−⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞− + − +⎛ ⎞− −⎛ ⎞− −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

                                                          (21) 

i.e.,  

( ) ( )

( )

1
2

1
2

x a x
a

x bx
b

ε εψ ε
σ σ

εε
σ σ

⎛ ⎞− −⎛ ⎞ −⎛ ⎞= Φ −Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞− +⎛ ⎞−⎛ ⎞+ Φ −Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

                                                          (22) 

 
where ( )φ ⋅ and ( )Φ ⋅ are the probability density function and cumulative distribution function of 
standard normal random variable respectively.   
 
4 M-ESTIMATOR FOR DEAR PARAMETERS 
 

Assuming that the system is sampled at system primitive function level, ( )x t , the n 
observation is denoted by ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1

1 2, , , nX x t x t x t= L , then a Type II model of dear subfamily 
takes a form 

( )( ) ( ) ( )( )

2
0 1 2

1
12

0 1 2
k

k k k k
k

dx x q q t q t
dt

x t
y q q t q t x t

t

b

b

мпп + = + +ппппнп Dп = = + + + -пп Dппо

                                                          (23) 

According to Liu’s Maximum Uncertainty Principle (Liu, 2007), for independent random fuzzy 
variables, the object function can be formed in the following way,  

( )

( )( )( )( )
0 1 2

2
2

0 1 2
2

, , , ; , ,

0.5
n

h k k k k
k

J q q q a b

y q q t q t x

β σ

β
=

= Ψ − + + + − −∑                                                           (24) 

Denote ( )2
0 1 2k k k k iy q q t q t xε β= − + + −  

( )

( )( ) ( )

( )( ) ( ) ( )

0 1 2 3

2

2

, , , ; , ,

2 0.5

2 0.5 0

i
n

k k
k i

n
k

k k
k i

J a bθ θ θ θ σ
θ

ε ε
θ

ε
ε ψ ε

θ

=

=

∂
∂

∂
= Ψ − Ψ

∂

∂
= Ψ − =

∂

∑

∑

                                                          (25) 

Then M-functional equation system is then 
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( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )
( )

20

21

2

22

2

2 2

2 0.5 0

2 0.5 0

2 0.5 0

2 0.5 0

0.5 ( )d
2 2

k k

k k

n

k k
k

n

k k k
k

n

k k k
k

n

k k k
k

x a

k kk k k k
k

k x

J
q
J t
q
J t
q
J x

x ax xJ u u u
a a a

ε
σ

ε
σ

ε ψ ε

ε ψ ε

ε ψ ε

ε ψ ε
β

εε ε σε φ
σ σ

=

=

=

=

− −

−

∂
= − Ψ − =

∂

∂
= − Ψ − =

∂

∂
= − Ψ − =

∂

∂
= Ψ − =

∂

⎛ ⎞
⎛ ⎞− −⎛ ⎞⎜ ⎟− −∂ ⎛ ⎞= Ψ − Φ −Φ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠⎝ ⎠⎜ ⎟

⎝ ⎠

∑

∑

∑

∑

∫

( )( ) ( )
( )

2

2 2
2

0

0.5 ( )d 0
2 2

0

k k

k k

n

x
n

k kk k k k
k

k x b

x bx xJ u u u
b b b

J

ε
σ

ε
σ

εε ε σε φ
σ σ

σ

=

−

= − +

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪ =
⎪
⎪
⎪

⎛ ⎞⎪ ⎛ ⎞− +⎛ ⎞⎜ ⎟− −∂ ⎛ ⎞⎪ = Ψ − Φ −Φ + =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎪ ∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟⎪ ⎝ ⎠⎪
∂⎪ =⎪ ∂⎩

∑

∑ ∫

                                          (26) 

where 

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )

2
2

2
2

2
2

0.5
2

0.5
2

0.5

n
k k k k k k

k k k
k

n
k kk k k k

k k k k k
k

n
k k k k

k
k

x a x a xJ x a
a

x bb x x
x x b

b

x b x b

ε ε ε
ε ε φ φ

σ σ σσ

εε ε
ε ε φ ε φ

σ σσ

ε ε
ε φ

σσ

=

=

=

⎛ ⎞⎛ ⎞− − − −⎛ ⎞ −∂ ⎛ ⎞= − Ψ − − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞− +⎛ ⎞+ − −⎛ ⎞− Ψ − − − − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

− + − +⎛ ⎞
− Ψ − ⎜ ⎟

⎝ ⎠

−

∑

∑

∑

( )( ) ( )
( )

( )( ) ( ) ( )

( )( ) ( )
( )

( ) ( )( ) ( )

2 2

2
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1 10.5
2 2
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2 2
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k
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x
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k

x b
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u u du

a a

x bx x bx
u u du

b b

ε
σ

ε
σ

ε
σ

ε
σ

ε ε ε ε
ε φ φ φ

σ σ σ σ σ

εε εε
ε φ φ φ

σ σ σ σ σ

− −

= −

−

− +

⎛ ⎞⎛ ⎞− − − − −⎛ ⎞⎜ ⎟−⎛ ⎞⎜ ⎟Ψ − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞− +− − +⎛ ⎞⎜ ⎟−⎛ ⎞⎜ ⎟− Ψ − − − ⎜ ⎟⎜ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎝ ⎠⎝ ⎠

∑ ∫

∫
2

n

k=
⎟
⎟

∑

                                (27) 

Then, the solution to the M-equation (non-linear) equation system, denoted as 
( )0 1 2

€€€ € € € €, , , , , ,q q q a bβ σ , is called an M-estimator of Subfamily A of dear model. Particularly, 

( )0 1 2
€€ € € €, , ,T q q q βΓ =  is the M-estimator for the coefficients defining the motivated differential equation.   

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

2

2

2

2

2

0.5 0

0.5 0

0.5 0

0.5 0

n

k k
i
n

k k k
i

n

k k k
i
n

k k k
i

t

t

x

ε ψ ε

ε ψ ε

ε ψ ε

ε ψ ε

=

=

=

=

⎧ Ψ − =⎪
⎪
⎪

Ψ − =⎪⎪
⎨
⎪ Ψ − =
⎪
⎪
⎪ Ψ − =⎪⎩

∑

∑

∑

∑

                                                          (28) 

Define  
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( )
( )

( )

( )

( )

( )

( )d ( )d
2 2

2

2

0.5

k k k k

k k k k

x a x

k
x x b

k kk k k

k kk k k

k k

g u u u u u u
a b

x ax a x
a

x bx b x
b

x b

ε ε
σ σ

ε ε
σ σ

σ σε φ φ

ε ε
σ σ

εε
σ σ

ε
σ

− − −

− − +

= +

⎛ ⎞− −⎛ ⎞− −⎛ ⎞+ Φ −Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞− +⎛ ⎞− −⎛ ⎞+ Φ −Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

− +⎛ ⎞
+ −Φ⎜ ⎟

⎝ ⎠

∫ ∫

                                                          (29) 

then  
( ) ( ) ( )0.5k k k kgε ε ψ ε εΨ − = −                                                           (30) 

Further define 
2

0 1 2
€€ € € €k k k ky q q t q t xβ= + + −                                                           (31) 

Denote 
( )

( )

( )

( )
( )

( )

2
2 2 22 2 2

2
3 3 313 3 3

2

0 01
0 01

,  ,  ,  

0 01n n nn n n

y gt t x
y gt t x

y X W g

y gt t x

ψ ε ε
ψ ε ε

ψ ε ε

−

⎡ ⎤ ⎡ ⎤⎡ ⎤−⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ − ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L

L

M M M O M MM M M M

L

                                                 (32) 

Equation 28 can be written as an adjusted weighted normal equation form 
T T TX W X X W y X g− −Γ = +2 1                                                           (33) 

Finally, the coefficient M-estimator €Γ  satisfies the adjusted weighted normal equation, 
Equation 33, which is expected to play critical roles in the variance-covariance estimation for 
the M-estimator €Γ  by noticing that 

( ) ( )€ T T T TX W X X W y X W X X g
− −− − −Γ = +
1 12 1 2                                                           (34) 

Remark 4.1: The M-estimator for coupled differential equation coefficients actually 
specify the dynamics fully. However, we need to be aware that €Γ  itself is a random fuzzy vector 
because the random fuzzy nature of  the “observations” { }ky . 
 
5 APPLICABILITY OF DEAR MODEL 
 

DEAR model in nature revealing the intrinsic changing dynamics of a continuous system. The 
final mathematical structure is an estimated differential equation for approximating the true 
dynamics. Therefore DEAR model may apply to any system governed by differential equation(s). 
 
5.1 Repair effect estimation 
 

Repairable system analysis and maintenance optimization are a problem to reveal the law of 
the system functioning dynamics and the evaluation of repair effects in terms of system 
performance data in statistical sense. It is noticeable that another class of system maintenance 
optimization papers appeared in journals and conferences, however, most of them are seeking 
“system optimum” under mathematical assumptions without justifications in terms of actual system 
performances. It is obvious the later models are in mathematical sense. 

The repairable system dynamics in DEAR platform assumes that a system is governed by 
differential equation (either single one or a set of equations), say ( );T f t q= . Due to various 
internal and external causes, system demonstrates a repeated pattern of functioning, stop, repairing, 
and resuming function again (Guo, 2007). As an illustration, let us assume the system dynamics is 
governed by 
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dT T T
dt

α β γ= + +2                                                           (35) 

Then from system functioning time records, denotes as ( ) ( ) ( ){ }1 2, , , nT t T t T tL . Then the DEAR 
system is 

( ) ( )

                           

i
i i i

i

dT T
dt
T T t T t
t

α β

α β γ ε

⎧ = +⎪⎪
⎨Δ⎪ = + + +
Δ⎪⎩

2

                                                          (36) 

Let ( ) ( )( )diag i
i i

i

T
W T t T t

t
δ α β γ−
⎛ ⎞⎛ ⎞Δ⎜ ⎟= − + +⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠

2

1 2  and 

( ) ( )
( ) ( )

( ) ( )

,  ,   
                 

n n n

T t T t T t
T t T t T t

Y X

T t T t T t

α
β
γ

⎡ ⎤Δ Δ⎡ ⎤
⎡ ⎤ ⎢ ⎥⎢ ⎥Δ Δ ⎢ ⎥ ⎢ ⎥⎢ ⎥= Π = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦Δ Δ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2
1 1 1 1

2
2 2 2 2

2
2

1
1

1

M M M M

                                                          (37) 

Then the M-estimator for Π  is 

( )€ T TX W X X W Y
−− −Π =
11 1                                                           (38) 

Hence the approximate Riccati equation takes the form 
€€ €dT T T

dt
α β γ= + +2                                                           (39) 

Denote the solution to Equation 33 by ( )€ €,T tϕ= Π , which will be used to approximate the true 
system functioning dynamics ( ),T f t= Π . Also denote the “weighted” residual by €w

ie  resulting from 
Equation 36. Define the residual  

( ) ( ) ( )( )€€ €€i i i ie T t T t T tα β γ= − + +                                                           (40) 
The actual function time can be partitioned into three terms: 

( ) ( )€ € €w
i i i iT t T t e r= + +                                                           (41) 

It is obvious that the fitted dynamics ( )€
iT t  and weighted residual €w

ie  are DEAR-explained. 
Notice that the term € € €w

i i ir e e= −  is DEAR-unexplained quantity. Therefore the logical interpretation 
of  €ir  is repair effect (accumulated at time it ). In general, { }€ € €, , , nr r r1 2 L  are random fuzzy quantities so 
that the parameters for the average chance distribution of { }€ € €, , , nr r r1 2 L  can be obtained. 
 
5.2 DEAR predictive quality control charts 
 

Carvalho and Machado (2006) pointed, “In a global market, companies must deal with a high 
rate of changes in business environment. … The parameters, variables and restrictions of the 
production system are inherently vagueness.” In other words, the shortening product life cycle and 
diversification have brought the vagueness and randomness together, which is a form of hybrid 
uncertainty, into manufacturing systems. Therefore, the traditionally continuous production and 
large sample based quality control schemes may not be suitable. Therefore establishing small 
sample oriented approximate quality index differential equation in terms of DEAR theory, which 
enjoys highly predictive power will help quality assurance in today’s industries greatly. 

Guo (2006) and Guo and Dunne (2006) have explored the predictive quality control schemes 
in terms of grey differential equation model. The DEAR-predictive control schemes will avoid the 
weakness in earlier work and offer a more rigorous development.  
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5.3 Climate Change Modelling 
 

Climate changes have posed high risk on earth ecosystems. Environmental research 
communities now successfully convince governmental leaders worldwide and let the climate 
change become a hot topic. Biodiversity evolution is also a system dynamics governed by 
complicated differential equation systems. The critical issue is the parameter estimation for the 
differential equation systems. Biodiversity researchers have managed initial success in terms of 
multivariate version of DEAR model – PDEAR, for example, D. Guo et al. (2007, 2008), and R. 
Guo et al. (2008). Predictably, DEAR modeling in ecosystem will get more and more attention in 
the future. 
 
6 CONCLUDING REMARKS AND OPEN QUESTION 
 

In this paper we introduce a new small sample based continuous differential equation 
modeling theory. We use a simple linear equation in Equation 1 for illustrative purposes, however, 
as we pointed out that DEAR contains a collection of rich families. Table 1 offers a collection of 
partial families in Type II DEAR model.  
 

Table 1. The richness of DEAR families 
 

Family Type II DEAR 
 

Family 1 

( )

0 1

0 1

          

k
k k

k

dx x
dt
x

x t
t

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪Δ⎩
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( )

0 1

0 1

            

k

t

tk
k k

k

dx e x
dt
x

e x t
t

δ

δ

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪ Δ⎩

 

 
Family 3 ( )

( ) ( )

0 1

0 1

sin               

sink
k k k

k

dx t x
dt
x

t x t
t

α ω ϖ α

α ω ϖ α ε

⎧ = + +⎪⎪
⎨Δ⎪ = + + +
⎪ Δ⎩

 

 
Family 4 ( )

( ) ( )

0 1

0 1

sin                

sink

t

tk
k k k

k

dx e t x
dt
x

e t x t
t

δ

δ

α ω ϖ α

α ω ϖ α ε

⎧ = + +⎪⎪
⎨Δ⎪ = + + +
⎪Δ⎩

 

 
Family 5 ( )

( ) ( )

0 1

0 1

            q

k
q k k k

k

dx p t x
dt
x

p t x t
t

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪Δ⎩

 

 
Family 6 ( )

( ) ( )

0 1

0 1

             

k

t
q

tk
q k k k

k

dx e p t x
dt
x

e p t x t
t

δ

δ

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪ Δ⎩
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Family 7 ( ) ( )

( ) ( ) ( )

0 1

0 1

sin               

sin

q

k
q k k k k

k

dx p t t x
dt
x

p t t x t
t

α ω ϖ α

α ω ϖ α ε

⎧ = + +⎪⎪
⎨Δ⎪ = + + +
⎪Δ⎩  

 
However, there are many open questions and many challenges in future DEAR developments. 

The first one is model specification (or identification) problem. It is true that DEAR model starts 
with a hypothesized differential equation model. Given real-world dynamic system, it is often there 
is no priori knowledge on the system and thus many possible candidate differential equation models 
may be suitable for the hypothesized model. Which one would be the best? We can not guarantee 
anything, particularly under the small sample availability. The second question is the model 
validation problem, which can be considered from the two aspects: the filtering the existing data (or 
backward prediction) and the extrapolation (or forward prediction). In either case, model accuracy 
criteria are required to be investigated, particularly, we have to admit that the average chance of 
quadratic forms and ratio of them are undeveloped yet. The third open question is given a set of 
data, the DEAR model may just start with a set of subset regression models and then couple with 
corresponding differential equation models. For example, Table 2 lists a set of data from a system. 

 
Table 2. A system state recording data 

 
No. Time kt  Obs ( ) ( )1

kx t  Approx. Der. ( ) ( )0€ kx t  Der. ( ) ( )0
kx t  

1 0.50 7.1788 N/A  
2 0.55 7.1236 -1.104573 -1.0198 
3 0.60 7.0768 -0.935078 -0.8504 
4 0.65 7.0385 -0.765817 -0.6813 
5 0.70 7.0087 -0.596785 -0.5123 
6 0.75 6.9873 -0.427976 -0.3436 
7 0.80 6.9743 -0.259385 -0.1752 

 
For this data set, Table 3 lists 10 sub-regression models with excellent R-square value and 

significant regression coefficients.  
  

Table 3. 10 fitted sub-regression models 
 

No. Sub-Regression Fitted 2R  
1 

( )(0.001122) 0.00165
2.9636 3.380732y t= − +  

0.99999 

2 
( ) ( )3.9293678 0.5585406

37.534371 5.432364y x= −  0.95943 

3 
( ) ( ) ( )

2

0.000129 0.000387 0.000286
2.98385 3.44172 0.01458y t t= − + −  

1.00000 

4 
( ) ( ) ( )0.0011942 0.0000979 0.0001605
2.76468 3.36477 0.02674y t x= − + −  

1.00000 

5 
( ) ( ) ( )

2

0.0002931 0.0000456 0.0000053
2.86031 3.36499 0.00187y t x= − + −  

1.00000 

6 
( ) ( ) ( ) ( )

2

1.0591 08 3.7187 09 2.1831 09 1.2924 09
1.165377 1.984874 0.810084 0.506302

E E E E
y t t x

− − − −
= + + −  

1.00000 

7 
( ) ( ) ( ) ( )

2 2

0.01040532 0.00646298 0.00380509 0.00015769
2.761762 3.303776 0.036038 0.003366y t t x= − + + −  

1.00000 



R. Guo, D. Guo – DEAR THEORY IN SYSTEM DYNAMIC ANALYSIS 

 
R&RATA # 2(13) part 1  

(Vol. 2) 2009, June 
 

 

77 

8 
( ) ( ) ( ) ( )

2 2

0.01330144 0.00001955 0.00373362 0.00026212
7.0753757 1.9749804 1.2682231 0.0050625y t x x= + − +  

1.00000 

9 
( ) ( ) ( ) ( )

2

0.0000347 0.0167259 0.0046466 0.0003216
2.951019 0.626354 1.180800 0.087259y t tx tx= − − + −  

1.00000 

10 
( ) ( ) ( )

2

287.0542 81.4615 5.7791
1255.3080 351.0223 24.5172y x x= − +  

0.99420 

 
As a matter of fact, the true system dynamics is close to sub-regression 6 is 

2
0 11.20 2.0 0.80 - 0.50dx q q t t x

dt
= + +                                                           (42) 

But the data-fitted differential equation is 

( ) ( ) ( ) ( )
2

1.0591 08 3.7187 09 2.1831 09 1.2924 09
1.165377 1.984874 0.810084 0.506302

E E E E

dx t t x
dt − − − −

= + + −   .                                                        (43) 
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ABSTRACT 
 

A non-stationary approach to reliability analysis of two-state series and consecutive “m 
out of k: F” systems is presented. Further, the series-consecutive “m out of k: F” system is 
defined and the recurrent formulae for its reliability function evaluation are proposed. 
Moreover, the application of the proposed formulae to reliability evaluation of the radar 
system composed of two-state components is illustrated.  

 
 
 
1  INTRODUCTION 
 
The basic analysis and diagnosis of systems reliability are often performed under the assumption 
that they are composed of two-state components. It allows us to consider two states of the system 
reliability. If the system works its reliability state is equal to 1 and if it is failed its reliability state is 
equal to 0. Reliability analysis of two-state consecutive “k out of n: F” systems can be done for 
stationary and non-stationary case. In the first case the system reliability is the independent of time 
probability that the system is in the reliability state 1. For this case the main results on the reliability 
evaluation and the algorithms for numerical approach to consecutive “k out of n: F” systems are 
given for instance in Antonopoulou & Papstavridis (1987), Barlow & Proschan (1975), Hwang (1982), 
Malinowski & Preuss (1995), Malinowski (2005). Transmitting stationary results to non-stationary time 
dependent case and the algorithms for numerical approach to evaluation of this reliability are 
presented in Guze (2007a), Guze (2007b). Other more complex two-state systems are discussed in 
Kołowrocki (2004). The paper is devoted to the combining the results on reliability of the two-state 
series and consecutive “m out of n: F” systems into the formulae for the reliability function of the 
series-consecutive “m out of k: F” systems with dependent of time reliability functions of system 
components Guze (2007a), Guze (2007b), Guze (2007c). 
 
2 RELIABILITY OF A SERIES AND CONSECUTIVE “M OUT OF N: F” SYSTEMS 
 
In the case of two-state reliability analysis of series systems and consecutive “m out of n: F” 
systems we assume that (Guze 2007c):  
− n is the number of  system components, 
− ,iE ,,...,2,1 ni =  are components of a system,  
− iT  are independent random variables representing the lifetimes of components ,iE  ,,...,2,1 ni =  
− ),,0 ),()( ∞∈<>= ttTPtR ii  is a reliability function of a component ,iE  ,,...,2,1 ni =  
− ),,0 ),()(1)( ∞∈<≤=−= ttTPtRtF iii  is the distribution function of the component iE  lifetime 

iT , ,,...,2,1 ni =  also called an unreliability function of a component ,iE  .,...,2,1 ni =  

In further analysis we will use one of the simplest system structure, namely a series system. 
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Definition  A two-state system is called series if its lifetime T is given by    
 

   T = }.{min
1 ini

T
≤≤

 

 
The scheme of a series system is given in Figure 1. 

 

 
Figure 1. The scheme of a series system 

 
The above definition means that the series system is not failed if and only if all its components are 
not failed or equivalently the system is failed if at least one of its components is failed. It is easy to 
motivate that the series system reliability function ),()( tTPtn >=R  ),,0 ∞∈<t  is given by    

   )(tnR  = ∏
=

n

i
i tR

1

)( , ).,0 ∞∈<t                                    (1) 

 
Definition 2. A two-state series system is called homogeneous if its component lifetimes Ti have an 
identical distribution function    

 
   F(t) = P(Ti  ≤ t), ),,0 ∞∈<t  i = 1,2,...,n, 
 
i.e. if its components Ei have the same reliability function    
 
   ),(1)( tFtR −=  ).,0 ∞∈<t  
 
The above definition results in the following simplified formula     

   )(tnR  = [R(t)]n, ),,0 ∞∈<t                                          (2) 
for the reliability function of the homogeneous two-state series system. 
 
Definition 3. A two-state system is called a two-state consecutive “m out of n: F” system if it is 
failed if and only if at least its m neighbouring components out of n  its components arranged in a 
sequence of E1, E2, …, En, are failed. 
 
After assumption that: 
− T  is a random variable representing the lifetime of the consecutive “m out of n: F” system,  
− ),,0 ),()()( ∞∈<>= ttTPtm

nCR  is the reliability function of a non-homogeneous consecutive “m 
out of n: F” system, 

− ),,0 ),()(1)( )()( ∞∈<≤=−= ttTPtt m
n

m
n CRCF  is the distribution function of a consecutive “m 

out of n: F” system lifetime T , 
we can formulate the following auxiliary theorem (Guze 2007c). 
 
Lemma 1. The reliability function of the two-state consecutive “m out of n: F” system is given by 
the following recurrent formula 

E1 E2 En .    .    . 
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Definition 4. The consecutive “m out of n: F“ system is called homogeneous if its components 
lifetimes Ti have an identical distribution function 
 
   F(t) = P(Ti  ≤ t), i =1,2,… , n, ),,0 ∞∈<t  
 
i.e. if its components Ei have the same reliability function 
 
   R(t) = 1 - F(t), ).,0 ∞∈<t  
 
Lemma 1 simplified form for homogeneous systems takes the following form. 
 
Lemma 2. The reliability function of the homogeneous two-state consecutive “m out of n: F” system 
is given by the following recurrent formula 
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3 RELIABILITY OF TWO-STATE SERIES-CONSECUTIVE “M OUT OF K: F” 
SYSTEM 

 
To define a two-state series-consecutive “m out of k: F” systems, we assume that  
 
   Eij, i = 1,2,...,k, j = 1,2,...,li,  
 
are two-state components of the system having reliability functions    

 
   Rij(t) = P(Tij  > t), ),,0 ∞∈<t   
 
where  
 
   Tij, i = 1,2,...,k, j = 1,2,...,li,  
 
are independent random variables representing the lifetimes of components Eij with distribution 
functions   
 
   Fij(t) = P(Tij  ≤ t), ).,0 ∞∈<t   
 
Moreover, we assume that components ,1iE  ,2iE …, ,

iilE  i = 1, 2, …, k, create a series subsystem 
,iS  i = 1, 2, …, k, and that these subsystems are arranged in a sequence ,1S ,2S …, .kS  

 
Definition 5. A two-state system is called a series-consecutive “m out of k: F” system if it is failed if 
and only if at least its m neighbouring series subsystems out of k its series subsystems  arranged in a 
sequence of ,1S ,2S …, kS , are failed. 
 
According to the above definition and formula (1) the reliability function of the subsystem iS  is 
given by 

   ∏
=

=
i

iil

l

j
ij tRt

1

)()(R                        (5) 

and its lifetime distribution function is given by 

   ∏
=

−=−=
i

ii

l

j
ijilil tRtt

1

),(1)(1)( RF              (6) 

for i = 1,2,... , k, ).,0 ∞∈<t   
 
Hence and by Lemma 1 denoting by )(

21
t(m)

,...,l,lk,l k
CR  ),( tTP >=  ),,0 ∞∈<t  the reliability function of the 

series-consecutive “m out of k: F” system, we get the next result. 
Lemma 3. The reliability function of the two-state series-consecutive “m out of k: F” system is 
given by the following recurrent formula 
 
 

=)(
21

t(m)
,...,l,lk,l k

CR  
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).,0for ∞∈<t  
 
Motivation. Assuming in (3) that )()( ttR

iili R=  and ),(1)()( tttF
ii ilili RF −==  we get formula (7) 

and next considering (5) and (6) we get (8). 
 
Definition 6. The series-consecutive “m out of k: F” systems is called regular if 
  
   llll k ==== K21 , .Nl∈  
 
Definition 7. The series-consecutive “m out of k: F“ system is called homogeneous if its 
components lifetimes Tij have an identical distribution function 
 
   F(t) = P(Tij  ≤ t), i = 1,2,… , k, j = 1,2,…, li  ),,0 ∞∈<t  
 
i.e. if its components Eij have the same reliability function 
 
   R(t) = 1 – F(t), i = 1,2,… , k, j = 1,2,…, li, ).,0 ∞∈<t  
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Under Definition 6 and Definition 7, denoting by )(tl

(m)
k,CR ),( tTP >=  ),,0 ∞∈<t the reliability function  

of a homogeneous and regular series-consecutive “m out of k: F” system, from Lemma 3, we get 
following result. 
 
Lemma 4. The reliability function of the homogeneous and regular two-state series-consecutive “m 
out of k: F” system is given by 
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).,0 ∞∈<t  

 
4 APPLICATION 

 

Example 1. Let us consider the radar system. The system is composed of k = 5 radar towers. We 
assume that every radar tower is the series subsystem with components: a radar, an antenna, an 
emitter and a set. We assume that radar system is failed, if its two consecutive of five towers are 
failed. It means that we consider a regular two-state series-consecutive “2 out of 5: F” system. 
Considering formula (8) and after assuming that m = 2, k = 5 and l1 = l2 = l3 = l4 = l5= l = 4, we get 
the following reliability function for radar system: 
 
- for m = 2, k =1: 
 

   ,12
,,,,1 54321

=(t))(
llll,lCR  ).,0for  ∞∈<t                                 (10) 

 
- for m = 2, k = 2: 
 

∏ ∏
= =

−−=
2

1

4

1

2
,,,,2 )](1[1

54321
i j

ij
)(

llll,l tR(t)CR  )()()()( 14131211 tRtRtRtR= )()()()( 24232221 tRtRtRtR+  

 
            ),()()()()()()()( 2423222114131211 tRtRtRtRtRtRtRtR−  ).,0for ∞∈<t                    (11) 

 
- for m = 2, k = 3: 
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(t)tRtRtRtR )(
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,,,,124232221 54321

)]()()()([ CR+   
 

)],()()()(1[ 34333231 tRtRtRtR−⋅  ).,0for ∞∈<t                                  (12) 
 

      - for m = 2 and k = 4 we get 
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- for m = 2 and k =  5: 
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In particular case when we assume arbitrarily that the lifetimes Tij of the components Eij, i = 1, 2, 3, 
4, 5, j = 1, 2, 3, 4, of the radar towers Si, i = 1, 2, 3, 4, 5, have an exponential distributions of the 
form  
 

   )()()()()( 5141312111 tFtFtFtFtF ==== )(1 tF= },exp{1 1tλ−−= ),,0for ∞∈<t ,01 >λ               (15) 
 

   )()()()()( 5242322212 tFtFtFtFtF ==== )(2 tF= },exp{1 2tλ−−= ),,0for ∞∈<t ,02 >λ              (16) 
 

    )()()()()( 5343332313 tFtFtFtFtF ==== )(3 tF= },exp{1 3tλ−−= ),,0for ∞∈<t ,03 >λ               (17) 
 

   )()()()()( 5444342414 tFtFtFtFtF ==== )(4 tF= },exp{1 4tλ−−= ),,0for ∞∈<t ,04 >λ               (18) 
 
i.e. if the ralibility functions of the components Eij, i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4, of the radar towers 
Si, i = 1, 2, 3, 4, 5, are given by 
 

   )()()()()( 5141312111 tRtRtRtRtR ==== )(1 tR= },exp{ 1tλ−= ),,0for ∞∈<t ,01 >λ               (19) 
 

   )()()()()( 5242322212 tRtRtRtRtR ==== )(2 tR= },exp{ 2tλ−= ),,0for ∞∈<t ,02 >λ               (20) 
 

   )()()()()( 5343332313 tRtRtRtRtR ==== )(3 tR= },exp{ 3tλ−= ),,0for ∞∈<t ,03 >λ               (21) 
 

   )()()()()( 5444342414 tRtRtRtRtR ==== )(4 tR= },exp{ 4tλ−= ),,0for ∞∈<t ,04 >λ               (22) 
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considering  (10)-(14) and (15)-(22) we get the following recurrent formula for the reliability 

)2
,,,,5 54321

(t)(
llll,lCR  of a regular and non-homogeneous radar system 
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llll,l λ+λ+λ+λ−=CR },)3(4exp{ 4321 tλ+λ+λ+λ−−  ).,0for ∞∈<t  

 
   })(5exp{ 4321
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,,,,5 54321

t(t))(
llll,l λ+λ+λ+λ−=CR })(4exp{4 4321 tλ+λ+λ+λ−−   

 
                       })(3exp{3 4321 tλ+λ+λ+λ−+ },)(2exp{ 4321 tλ+λ+λ+λ−+  ).,0for ∞∈<t  
 
5 CONCLUSIONS 

 
The paper is devoted to a non-stationary approach to reliability analysis of two-state series and 
consecutive “m out of k: F” systems. Two recurrent formulae for two-state reliability functions, a 
general one for non-homogeneous and its simplified form for regular and homogeneous two-state 
series-consecutive “m out of k: F” systems have been proposed. The formulae for a regular and non-
homogeneous two-state series-consecutive “m out of k: F” has been applied to reliability evaluation 
for radar system. The considered radar system was a regular and non-homogeneous two-state 
series-consecutive “2 out of 5: F” system. 
The input and structural reliability data of considered radar system have been assumed arbitrarily 
and therefore the obtained its reliability function evaluation should be treated as an illustration of 
the possibilities of the proposed methods and solutions only. 
The proposed methods and solutions may be applied to any two-state series-consecutive “m out of 
k: F” systems. 
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ABSTRACT 
 

A general analytical model of industrial systems infrastructure influence on their operation 
processes is constructed. Next, as its particular case a detailed model of port infrastructure 
influence on port transportation systems operation processes is obtained to apply and test it 
to selected transportation systems used in Gdynia Port.  

 
 
 
1  INTRODUCTION 
 

In the paper semi-markov processes are used to construct a general model of complex 
industrial systems’ operation processes. Main characteristics of this model are determined as well. 
In particular cases, for selected port transportation systems, their operation states are defined, the 
relationships between them are fixed and particular models of their operation processes are 
constructed and their main characteristics are determined. Finally, on the basis of theoretical results, 
a computer software is proposed and its accuracy is practically tested. The paper aims mainly to 
propose the basis for new and to develop existing methods, tools and software capable of 
supporting intelligent modelling and decision support systems, in controlling and optimising the 
safety and reliability of complex real industrial systems related to their operation processes, with 
their primarily applications in the coastal transportation sector. 
 
2 MODELLING SYSTEM OPERATION PROCESS 
 

Usually the system environment and infrastructure have either an explicit or implicit strong 
influence on the system operation process. As a rule some of the initiating environment events and 
infrastructure conditions define a set of different operation states of the industrial system. Thus, we 
may assume that the system during its operation is operating in ,, Nv ∈ν  different operation states. 
After this assumptions, we can define the system operation process )(tZ , ,,0 >+∞∈<t  with 
discrete states from the set of states }..,..,,{ 21 νzzzZ =  If the system operation process Z(t) is 
semi-markov (Grabski [1], Soszynska [5]-[6]) with the conditional sojourn times blθ  at the 
operation states bz  when its next operation state is ,lz  ,,...,2,1, vlb =  ,lb ≠  then it may be 
described by:   
- the vector of probabilities of the system operation process initial states  
 

)]0(),...,0(),0([)]0([ 211 νν ppppb =x , 
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where  
 

))0(()0( bb zZPp ==  for ,,...,2,1 vb =  
 
- the matrix of probabilities of the system operation process transitions between the operation states  
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where  
 

0=bbp  for ,,...,2,1 vb =  
 
- the matrix of the system operation process conditional sojourn times blθ  distribution functions  
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where  

 
)()( tPtH blbl <= θ  for ,,...,2,1, vlb =  ,lb ≠  

 
and  
 

0)( =tH bb  for .,...,2,1 vb =  
 
Under these assumptions, the mean values of the system operation process conditional sojourn 
times blθ  are given by  
 

                                               ][ blbl EM θ= ∫=
∞

0
),(ttdH bl  ,,...,2,1, vlb =  .lb ≠                                 (1) 

 
By the formula for total probability the unconditional distribution functions of the sojourn times bθ  
of the system operation process )(tZ  at the operation states ,bz  ,,...,2,1 vb =  are given by  
 

                                                    )(tHb  = ∑
=

v

l
blbl tHp

1
),(  .,...,2,1 vb =                                                 (2) 

 
Hence, the mean values E[ bθ ] of the system operation process unconditional sojourn times bθ  in 
the particular operation states are given by   
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                                                   ][ bb EM θ=  = ∑
=

v

l
blbl Mp

1
, ,,...,2,1 vb =                                            (3) 

 
where blM  are defined by (1). 
Moreover, it is well known [1] that the limit values of the system operation process transient 
probabilities at the particular operation states  
 

)(tpb = P(Z(t) = bz ) , ),,0 +∞∈<t  ,,...,2,1 vb =  
 
are given by   
 

                                               bp  = )(lim tpb
t ∞→

= ,

1
∑
=

v

l
ll

bb

M

M

π

π  ,,...,2,1 vb =                                             

(4) 
 
where ,bM ,,...,2,1 vb =  are defined by (3), whereas the probabilities bπ  of the vector νπ xb 1][  
satisfy the system of equations   
 

                                                             
⎪⎩

⎪
⎨
⎧

∑ =

=

=

v

l
l

blbb p

1
.1

]][[][

π

ππ
                                                      

(5) 
 
Other interesting characteristics of the operation process )(tZ  possible to obtain are its total sojourn 
times bθ€  in the particular operation states ,bz  .,...,2,1 vb =  It is well known [1] that the system 

operation process total sojourn times bθ€  in the particular operation states ,bz  for sufficiently large 
operation time ,θ  have approximately normal distribution with the expected value given by  
 
                                                        ,]€[ θθ bb pE =  ,,...,2,1 vb =                                                          (6) 
 
where bp  are given by (4). 
 
3 APPLICATION – OPERATION PROCESS OF BULK CARGO TRANSPORTATION 

SYSTEM  
 

As an example will be analysed the reliability of the bulk conveyor system in its operation 
process (Kołowrocki [2], Kołowrocki & Kwiatuszewska-Sarnecka [3]). The bulk conveyor system 
is the part of the Baltic Bulk Terminal of the Port of Gdynia assigned to load ships with bulk cargo 
from Terminal Storage. Three self-acting loading machines, the transportation system composed of 
belt conveyors and the coastal loading system carry out the loading of the ships.  
In the conveyor reloading system we distinguish the following transportation subsystems: 
S1, S2, S3 – the belt conveyors. 
In the conveyor loading system we distinguish the following transportation subsystems:  
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S4 – the dosage conveyor, S5 – the horizontal conveyor, S6 – the horizontal conveyor,  S7 – the 
sloping conveyors,  S8 – the dosage conveyor with buffer,  S9 – the loading system, S7 – the dosage 
conveyor with buffer, S8 – the sloping conveyor, S9 –  the loading system.  
The whole bulk cargo transportation system consists of:  
- the subsystem 1S  composed of 1 rubber belt, 2 drums, set of 121 bow rollers, set of 23 belt 
supporting rollers,  
- the subsystem 2S  composed of 1 rubber belt, 2 drums, set of 44 bow rollers, set of 14 belt 
supporting rollers,  
- the subsystem 3S  composed of 1 rubber belt, 2 drums, set of 185 bow rollers, set of 60 belt 
supporting rollers,  
- the subsystem 4S  composed of three identical belt conveyors, each composed of 1 rubber belt, 2 
drums, set of 12 bow rollers, set of 3 belt supporting rollers,  
- the subsystem 5S  composed of 1 rubber belt, 2 drums, set of 125 bow rollers, set of 45 belt 
supporting rollers,  
- the subsystem 6S  composed of 1 rubber belt, 2 drums, set of 65 bow rollers, set of 20 belt 
supporting rollers,  
- the subsystem 7S  composed of 1 rubber belt, 2 drums, set of 12 bow rollers, set of 3 belt 
supporting rollers,  
- the subsystem 8S  composed of 1 rubber belt, 2 drums, set of 162 bow rollers, set of 53 belt 
supporting rollers,  
- the subsystem 9S  composed of 3 rubber belts, 6 drums, set of 64 bow rollers, set of 20 belt 
supporting rollers.  
 
The transporting subsystems have steel covers and they are provided with drives in the form of 
electrical engines with gears. In their reliability analysis we omit their drives, as they are 
mechanisms of different types. We also omit their covers as they have a high reliability and, 
practically, do not fail.  
 
The structure of the bulk cargo loading transportation system is given in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. General scheme of bulk cargo transportation system  
 
 
 

S4 

S5

S6 

S7 S8 
S9 
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Figure 2. Detailed scheme of bulk cargo transportation system  

 
Taking into account the operation process of the considered transportation system we distinguish 
the following as its four operation states:  

- an operation state z1 – the discharging rail wagons to storage tanks or hall when subsystems 
S1, S2, S3, are used, with the structure given in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. The scheme of the bulk cargo transportation system at the operation state z1 
 

- an operation state z2 – the loading of fertilizers from storage tanks or hall on board the ship 
is done by using S4, S5, S6, S7, S8  , S9, subsystems, with the structure given in Figure 4. 
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Figure 4. The scheme of the bulk cargo transportation system at the operation state z2 
 

-    an operation state z3 – the loading of fertilizers from rail wagons on board the ship is done by 
using S1, S2, S3, S6, S7, S8  , S9 subsystems, with the structure given in Figure 5. 

 
 
 
 
 
 
 

 

 

 

 

 

Figure 5. The scheme of the bulk cargo transportation system at the operation state z3 
 
Moreover, we arbitrarily, slightly using an expert opinion, assume the following matrix of the 
conditional distribution functions of the system sojourn times ,blθ  ,3,2,1, =lb   
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
=

−

−

−−

001
001

110
)]([

2

2

22

03697.0

08190.0

00882.001935.0

t

t

tt

bl

e
e

ee
tH

 
 
and the matrix of the probabilities of transitions between the states     
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Further, according to (2), the unconditional distribution functions of the process )(tZ  sojourn times 

bθ  in the states ,bz  ,3,2,1=b  are given by  
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and their mean values, from (3), are   
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Since from the system of equations  
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we get  
 

,5.01 =π  ,185.02 =π  ,315.03 =π  
 
then the limit values of the transient probabilities )(tpb  at the operational states bz , according to 
(4), are given by  
     

                                                ,6694.01=p  ,0937.02 =p  .2367.03 =p                                           (7) 
 
And, by (6),  the expected values of the total lifetimes ,€

bθ  ,3,2,1=b  in particular operation states 
for the system operation time  
 

1=θ  year 365=  days 
 
are given by  
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2443656694.0]€[ `1 ≅⋅=θE  days, 
 

353650937.0]€[ 2 ≅⋅=θE  days, 
 

863652367.0]€[ 3 ≅⋅=θE  days. 
            
4 RELIABILITY OF SYSTEMS IN VARIABLE OPERATION PROCESS 
 

We assume that the changes of the process Z(t) states have an influence on the system 
components ,iE  ,,...,2,1 ni =  reliability and the system reliability structure as well. Thus, we denote 
the conditional reliability function of the system component iE  while the system is at the 
operational state ,bz  ,,...,2,1 vb =  by   

 
))(()( )()(

b
b

i
b

i ztZtTPtR =>= for ),,0 ∞∈<t ,,...,2,1 ni = ,,...,2,1 ν=b  
 
and the conditional reliability function of the system while the system is at the operational state 

,bz ,,...,2,1 ν=b  by   
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The reliability function )()( tR b

i  is the conditional probability that the component iE  lifetime 
)(b

iT  is greater than t, while the process Z(t) is at the operation state .bz  Similarly, the reliability 
function )()( tb

nR  is the conditional probability that the system lifetime )(bT  is greater than t, while 

the process Z(t) is at the operation state .bz  In the case when the system operation time θ  is large 
enough, the unconditional reliability function of the system  
 

)(tnR )( tTP >=  for ),,0 ∞∈<t  
 
where T  is the unconditional lifetime of the system is given by  
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1
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=
 for 0≥t                                                      (8) 

 
and the mean value of the system lifetime is   
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where  
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and bp  are given by (4), and the variance of the system lifetime is 
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5 RELIABILITY OF BULK CARGO TRANSPORTATION SYSTEM IN VARIABLE 

OPERATION PROCESS 
 

Using the model considering in section 3, the results of section 4 and the results given in 
Kołowrocki & Kwiatuszewska [3], by (7) and (8), we have  
 
                           )(2367.0)(0937.0)(6696.0)( )3()2()1( tttt nnnn RRR R ⋅+⋅+⋅≅                                 (11) 
                                                     
where )()1( tnR , )()2( tnR , )()3( tnR  are determined and given in [3].  
Since according to the results given in [3]   
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then applying (11), (9) and (10), we get the mean value and the standard deviation of the system 
unconditional lifetime given by    
 

0132.02367.00193.00937.00253.06696.0 ⋅+⋅+⋅≅μ  0219.0≅  year, 
 

0224.00005037.0 ≅≅σ  
 

     
 

6 CONCLUSIONS 
 

The paper proposes an approach to the solution of practically very important problem of 
linking the systems’ reliability and their operation processes. To involve the interactions between 
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the systems’ operation processes and their varying in time reliability structures and components’ 
reliability characteristics a semi-markov model of the systems’ operation processes and system 
conditional reliability functions are used. This approach gives practically important in everyday 
usage tool for reliability evaluation of the systems with changing reliability structures and 
components’ reliability characteristics during their operation processes. Application of the proposed 
method is illustrated in the reliability and risk evaluation of the bulk cargo transportation system. 
The reliability input data concerned with the operation process and reliability functions of the 
components of the port bulk cargo transportation system are not precise. They are coming from 
experts and are concerned with the mean lifetimes of the system components and with the 
conditional sojourn times of the system in the operation states under arbitrary assumption that their 
distributions are exponential. Thus, the final results obtained in the system reliability characteristics 
evaluation are not precise as well and should be treated as an example of the proposed model 
possible application. In further developing of the proposed methods it seem to be possible to obtain 
the results useful in the complex technical systems related to their operation processes reliability 
and availability evaluation, improvement and maintenance optimization. 
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