
 
 
 
 

 
ELECTRONIC JOURNAL   

OF INTERNATIONAL GROUP 
ON RELIABILITY 

 
 
 
 
 
 
 
 

JOURNAL IS REGISTERED  
IN THE LIBRARY  

OF THE U.S. CONGRESS 
 
● 
 

ISSN 1932-2321 
 
● 

 
VOL.2 NO.2 (13) PART 2  

JUNE, 2009 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

San Diego 

Gnedenko Forum Publications 

Special Issue # 2 on 
SSARS 2008 

 
part # 2 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 1932-2321 
 
© "Reliability: Theory & Applications", 2006 
© " Reliability & Risk Analysis: Theory & Applications", 2008 
© I.A.Ushakov, 2009 
© A.V.Bochkov, 2009 
http://www.gnedenko-forum.org/Journal/index.htm   

 
 
 
 
 

All rights are reserved 
 

The reference to the magazine "Reliability & Risk Analysis: Theory & Applications"  
at partial use of materials is obligatory.



 
Journal of International Group on Reliability  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RREELLIIAABBIILLIITTYY  &&  RRIISSKK  AANNAALLYYSSIISS::  
TTHHEEOORRYY  &&  AAPPPPLLIICCAATTIIOONNSS  

 
 

 
Vol.2 No.2 (13) part 2,  

June, 2009 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

San Diego 
2009 

 

Special Issue # 2 on SSARS 2008 
part # 2 



 

4 

 
Journal Council                                                      Send your paper 

 
Editor-in-Chief :  
 

Ushakov, Igor (USA) 
   e-mail: igorushakov@gmail.com  
 

Deputy Editor:  
 

Bochkov, Alexander (Russia) 
   e-mail: a.bochkov@gmail.com  
 

Associated Editors: 
 

Belyaev, Yuri (Sweden)  
   e-mail: Yuri.Belyaev@math.umu.se 
Gertsbakh, Eliahu (Israel) 
   e-mail: elyager@bezeqint.net 
Kovalenko, Igor (Ukraine) 
   e-mail: kovigo@yandex.ru 
Nikulin, Mikhail  
   e-mail: M.S.Nikouline@sm.u-bordeaux2.fr 
Singpurwalla, Nozer (USA) 
   e-mail: nozer@gwu.edu 

 
Editorial Board: 
 

Chakravarthy, Srinivas (USA) 
   e-mail: schakrav@kettering.edu  
Dimitrov, Boyan (USA) 
   e-mail: BDIMITRO@KETTERING.EDU 
Genis, Yakov (USA) 
   e-mail: yashag5@yahoo.com 
Kołowrocki, Krzysztof (Poland) 
   e-mail: katmatkk@am.gdynia.pl 
Krishnamoorthy, Achyutha (India) 
   e-mail: krishna.ak@gmail.com 
Levitin, Gregory (Israel) 
   e-mail: levitin@iec.co.il 
Limnios, Nikolaos (France) 
   e-mail: Nikolaos.Limnios@utc.fr 
Nelson, Wayne (USA) 
   e-mail: WNconsult@aol.com 
Popentiu, Florin (UK) 
   e-mail: Fl.Popentiu@city.ac.uk 
Rykov, Vladimir (Russia) 
   e-mail: rykov@rykov1.ins.ru 
Wilson, Alyson (USA) 
   e-mail: agw@lanl.gov 
Wilson, Simon (Ireland) 
   e-mail: swilson@tcd.ie 
Yastrebenetsky, Mikhail (Ukraine) 
   e-mail: ma_yastreb@mail.ru 
Zio, Enrico (Italy) 
   e-mail: zio@ipmce7.cesnef.polimi.it 

 
Technical assistant 
 

Ushakov, Kristina  
   e-mail: kudesigns@yahoo.com 
 

 

e-Journal Reliability: Theory & Applications 
publishes papers, reviews, memoirs, and bibliographical 
materials on Reliability, Quality Control, Safety, 
Survivability and Maintenance.   

 
Theoretical papers have to contain new problems, 

finger practical applications and should not be 
overloaded with clumsy formal solutions. 

 
Priority is given to descriptions of case studies. 
 
General requirements for presented papers 
 
1. Papers have to be presented in English in 

MSWord format. (Times New Roman, 12 pt ,     1.5 
intervals).  

2. The total volume of the paper (with illustrations) 
can be up to 15 pages. 

3. А presented paper has to be spell-checked. 
4. For those whose language is not English, we 

kindly recommend to use professional  linguistic proofs 
before sending a paper to the journal.  

 
* * * 

The Editor has the right to change the paper title and 
make editorial corrections.   

The authors keep all rights and after the publication 
can use their materials (re-publish it or present at 
conferences). 

Publication in this e-Journal is equal to publication 
in other International scientific journals.  

Papers directed by Members of the Editorial Boards 
are accepted without referring. 

The Editor has the right to change the paper title and 
make editorial corrections.   

 
The authors keep all rights and after the publication 

can use their materials (re-publish it or present at 
conferences). 

Send your papers to 
 

the Editor-in-Chief ,  
Igor Ushakov 

igorushakov@gmail.com 
 

or 
 

the Deputy Editor,  
Alexander Bochkov 

a.bochkov@gmail.com 

 



 

5 

Table of Contents 
 

Part 1 
 
Roger Flage & Terje Aven 
EXPRESSING AND COMMUNICATING UNCERTAINTY IN RELATION TO QUANTITATIVE 
RISK ANALYSIS ............................................................................................................................................................. 9 

  
A quantitative risk analysis (QRA) should provide a broad, informative and balanced picture of risk, in order to 
support decisions. To achieve this, a proper treatment of uncertainty is a prerequisite. Most approaches to 
treatment of uncertainty in QRA seem to be based on the thinking that uncertainty relates to the calculated 
probabilities and expected values. This causes difficulties when it comes to communicating what the analysis 
results mean, and could easily lead to weakened conclusions if large uncertainties are involved. An alternative 
approach is to hold uncertainty, not probability, as a main component of risk, and regard probabilities purely as 
epistemic-based expressions of uncertainty. In the paper the latter view is taken, and we describe what should be 
the main components of a risk description when following this approach. We also indicate how this approach 
relates to decision-making. An important issue addressed is how to communicate the shortcomings and 
limitations of probabilities and expected values.  Sensitivity analysis plays a key role in this regard. Examples 
are included to illustrate ideas and findings. 
 
A. Blokus-Roszkowska, K. Kołowrocki  
MODELLING ENVIRONMENT AND INFRASTRUCTURE OF SHIPYARD 
TRANSPORTATION SYSTEMS AND PROCESSES.................................................................................................... 19 

  
In the paper an analytical model of port transportation systems environment and infrastructure influence on their 
operation processes is constructed and presented in an example of shipyard rope transportation systems in Naval 
Shipyard in Gdynia. A general semi-markov model of a system operation process is proposed and the methods of 
its parameters statistical identification are presented. Further, the shipyard rope transportation system and the 
ship rope elevator operation processes are analyzed and their operation states are defined. A preliminary 
collection of statistical data necessary to the ship transportation systems’ operation processes identification is 
included.  
 
P. Baraldi, E. Zio, M. Compare  
IMPORTANCE MEASURES IN PRESENCE OF UNCERTAINTIES .......................................................................... 30 
 
This paper presents a work on the study of importance measures in presence of uncertainties originating from the 
lack of knowledge and information on the system (epistemic uncertainties). A criterion is proposed for ranking 
the risk contributors in presence of uncertainties described by probability density functions.  
 
 
L. Gucma, M. Schoeneich  
MONTE CARLO METHOD OF SHIP’S UNDERKEEL CLEARANCE EVALUATION FOR 
SAFETY OF FERRY APPROACHING TO YSTAD PORT DETERMINATION ......................................................... 42 

  
The paper is concerned with the analysis of simulation research results of newly design Piast ferry entering to 
modernized Ystad Port. The ship simulation model is described. After execution of real time simulations the 
Monte Carlo method of underkeel clearance evaluation is applied to asses the probability of ferry touching the 
bottom. The results could be used in risk assessment of ships entering to the ports. 
 
L. Gucma 
METHODS OF SHIP-BRIDGE COLLISION SAFETY EVALUATION....................................................................... 50 
 
The paper presents methods and models used nowadays for risk assessment of ship-bridge collisions.  
 
R. Guo,  D. Guo  
DEAR THEORY IN SYSTEM DYNAMIC ANALYSIS ................................................................................................ 64 

  
In this paper, we introduce our newly created DEAR (an abbreviation of Differential Equation Associated 
Regression) theory, which merges differential equation theory, regression theory and random fuzzy variable 
theory into a new rigorous small sample based inferential theoretical foundation. We first explain the underlying 
idea of DEAR modelling, its classification, and then the M-estimation of DEAR model. Furthermore, we explore 
the applicability of DEAR theory in the analysis in system dynamics, for example, repairable system analysis, 
quality dynamics analysis, stock market analysis, and ecosystem analysis, etc.   
 



 

6 

S. Guze 
RELIABILITY ANALYSIS OF TWO-STATE SERIES-CONSECUTIVE “M OUT OF K: F” 
SYSTEMS ........................................................................................................................................................................ 79 
  
A non-stationary approach to reliability analysis of two-state series and consecutive “m out of k: F” systems is 
presented. Further, the series-consecutive “m out of k: F” system is defined and the recurrent formulae for its 
reliability function evaluation are proposed. Moreover, the application of the proposed formulae to reliability 
evaluation of the radar system composed of two-state components is illustrated.  
 
B. Kwiatuszewska-Sarnecka, K. Kołowrocki, J. Soszyńska  
MODELLING OF OPERATIONAL PROCESSES OF  BULK CARGO  TRANSPORTATION 
SYSTEM ........................................................................................................................................................................... 88 
 
A general analytical model of industrial systems infrastructure influence on their operation processes is 
constructed. Next, as its particular case a detailed model of port infrastructure influence on port transportation 
systems operation processes is obtained to apply and test it to selected transportation systems used in Gdynia 
Port.  
 
D. Montoro-Cazorla 
SHOCK MODELS UNDER POLICY N .......................................................................................................................... 98 

  
We present the life distribution of a device subject to shocks governed by phase-type distributions. The probability of failures after 
shocks follows discrete phase-type distribution. Lifetimes between shocks are affected by the number of cumulated shocks and they 
follow continuous phase-type distributions. The device can support a maximum of N shocks. We calculate the distribution of the 
lifetime of the device and illustrate the calculations by means of a numerical application. Computational aspects are introduced. This 
model extends other previously considered in the literature. 
 
 
 
Part 2 
 
Joanna Soszynska 
ASYMPTOTIC APPROACH TO RELIABILITY EVALUATION OF LARGE “M OUT OF L”- 
SERIES SYSTEM IN VARIABLE OPERATION CONDITIONS.................................................................................. 9 
 
The semi-markov model of the system operation process is proposed and its selected parameters are defined. 
There are found reliability and risk characteristics of the multi-state “m out of l”-series system. Next, the joint 
model of the semi-markov system operation process and the considered multi-state system reliability and risk is 
constructed. The asymptotic approach to reliability and risk evaluation of this system in its operation process is 
proposed as well. 
 
C. Tanguy 
ASYMPTOTIC DEPENDENCE OF AVERAGE FAILURE RATE AND MTTF FOR A 
RECURSIVE, MESHED NETWORK ARCHITECTURE .............................................................................................. 44 
 
The paper is concerned with the exact and asymptotic calculations of the availability, average failure rate and 
MTTF (Mean Time To Failure) for a recursive, meshed architecture proposed by Beichelt and Spross. It shows 
that the asymptotic size dependences of average failure rate and MTTF are different, but not inverse of each 
other, as is unfortunately assumed too frequently. Besides, the asymptotic limit is reached for rather small 
networks. 
 
D Valis 
CONTRIBUTION TO FAILURE DESCRIPTION .......................................................................................................... 54 
 
In our lives we meet many events which have very diverse causes, mechanisms of development and 
consequences. We frequently work with the events´ description besides other assessments in safety/risk 
assessment. In pure technical applications these events are related with the failure occurrence of equipment, a 
device, a system or an item. The theory speaks about failure itself, its mechanisms, circumstances of occurrence, 
etc. but at the same time we need appropriate terminology to describe these conditions. Our basic approaches 
into observing, dealing and handling failure may fall into two groups. We either talk about a probabilistic 
approach or about a deterministic (logic) approach. As we need to get some information about a failure we need 
to find it or transfer it from different sources. This contribution can be a complex problem for the term “failure” 
and its related characteristics. In the paper there are mentioned functions of an object and their description, 
classification of failures, main characteristics of failure, possible causes of failure, mechanisms of failure and 
consequences of failure and also other contributions related with failure very closely.  
 



 

7 

D. Valis 
CONTRIBUTION TO AVAILABILITY ASSESSMENT OF COMPLEX SYSTEMS .................................................. 64 
 
As we use complex systems with one shot items in many technical applications we need to know basic 
characteristics of such system. Performance, safety and other are as much important as dependability measures. 
In real applications we have to take into account a related distribution of an observed variable. In terms of 
complex systems with one shot items it is a discrete random variable related to one shot item. The whole system 
and its failures (unexpected and inadvertent events) may have two typical types of distributions and their 
characteristics. We either consider a continuous variable (such as time, mileage, etc.) or a counting variable 
(such as number of cycles, sequences, etc.) regarding to a failure occurrence. As the one shot items is supposed 
to back up the main system function the total reliability of the system should be higher than. The main issue 
regarding the system using one shot items in their construction is to determine the probability of the task 
(mission) success. The paper presents both theoretical approach and practical example of the solution. 
 
Mateusz Zajac, Tymoteusz Budny 
ON DETERMINATION OF SOME CHARACTERISTICS OF SEMI-MARKOV PROCESS FOR 
DIFFERENT DISTRIBUTIONS OF TRANSIENT PROBABILITIES........................................................................... 73 

                                                                    
There is a model of transport system presented in the paper. The possible semi - Markov process definitions are 
included. The system is defined by semi – Markov processes, while functions distributions are assumed. There 
are attempts to assess factors for other than exponential functions distributions. The paper consist discussion on 
Weibull and Gamma distribution in semi – Markov calculations. It appears that some forms of distribution 
functions makes computations extremely difficult. 
 
Xuejing Zhao,  Mitra Fouladirad, Christophe Bérenguer, Laurent Bordes 
MAINTENANCE POLICY FOR DETERIORATING SYSTEM WITH EXPLANATORY 
VARIABLES .................................................................................................................................................................... 84 
 
This paper discusses the problem of the optimization of maintenance threshold and inspection period for a 
continuously deteriorating system with the influence of covariates. The deterioration is modeled by an increasing 
stochastic process. The process of covariates is assumed to be a temporally homogeneous finite-state Markov 
chain. A model similar to the proportional hazards model is used to represent the influence of the covariates. 
Parametric estimators of the unknown parameters are obtained by using Least Square Method. The optimal 
maintenance threshold and the optimal inspection interval are derived to minimize the expected average cost. 
Comparisons of the expected average costs under different conditions of covariates and different maintenance 
policies are given by numerical results of Monte Carlo simulation.  
 
J. Okulewicz, T. Salamonowicz 
PREVENTIVE MAINTENANCE WITH IMPERFECT REPAIRS OF A SYSTEM  
WITH REDUNDANT OBJECTS ..................................................................................................................................... 96 

  
An object ability to realise tasks may be restored by repairing only failed components. This is called imperfect 
repair as the object is not as good as new after such a repair. Preventive replacement is an example of imperfect 
repair as well. The advantage of such maintenance is that it enables controlling a reliability level of a system. 
Sets of objects’ components which should be replaced are derived on a basis of statistical diagnosing with use of 
data about components failures. The acceptable level of a failure risk while executing transportation tasks has 
been taken as a criterion of choosing elements to be replaced. An algorithm of selecting components for 
preventive replacement has been developed. It was shown that a level of a system reliability can be controlled by 
changing an order of a quantile function in coordination and a number of redundant objects. A computer 
simulation model of the system was used to illustrate derived dependencies.  
 
Jakub Nedbalek 
RBF NETWORKS FOR FUNCTION APPROXIMATION IN DYNAMIC MODELLING........................................... 108 
 
The paper demonstrates the comparison of Monte Carlo simulation algorithm with neural network enhancement 
in the reliability case study. With regard to process dynamics, we attempt to evaluate the tank system 
unreliability related to the initiative input parameters setting. The neural network is used in equation coefficients 
calculation, which is executed in each transient state. Due to the neural networks, for some of the initial 
component settings we can achieve the results of computation faster than in classical way of coefficients 
calculating and substituting into the equation.  
 



 

8 

M.F. Milazzo, G. Maschio, G. Uguccioni 
FREQUENCY ASSESSMENT OF LOSS OF CONTAINMENT INCLUDING THE EFFECTS OF 
MEASURES OF RISK PREVENTION............................................................................................................................ 116 
 
This paper presents a method for the quantification of the effects of measures of risk prevention of the frequency 
for rupture of pipework. Some methodologies, given in the literature for this purpose, assume that each plant 
under analysis is characterized by the same combinations of causes of failure and prevention mechanisms but 
this assumption is not always true. The approach suggested here is based on the methodology proposed in 1999 
by Papazoglou for the quantification of the effects of organizational and managerial factors. Taking advantage of 
this methodology the objective of the assessment of the influence of measures of risk prevention in pipework has 
been achieved through the definition of the links between the causes of failure and the measures adopted by the 
company in order to prevent and/or to mitigate them. 
 
Krzysztof Kolowrocki, Joanna Soszynska 
MODELLING ENVIRONMENT AND INFRASTRUCTURE INFLUENCE ON 
RELIABILITYAND OPERATION PROCESSES OF PORT OIL TRANSPORTATION SYSTEM............................. 129 

  
In the paper a probabilistic model of industrial systems environment and infrastructure influence on their 
operation processes is proposed. Semi-markov processes are used to construct a general model of complex 
industrial systems’ operation processes. Main characteristics of this model are determined as well. In particular 
case, for a port oil transportation system, its operation states are defined, the relationships between them are 
fixed and particular model of its operation process is constructed and its main characteristics are determined. 
Further, the joint model of the system operation process and the system reliability is defined sand applied to the 
reliability evaluation of the port oil transportation system. 
 
 



Joanna Soszynska –  ASYMPTOTIC APPROACH TO RELIABILITY EVALUATION OF LARGE “M OUT OF L”‐ SERIES SYSTEM IN 
VARIABLE OPERATION CONDITIONS  

 
R&RATA # 2(13) part 2  

(Vol. 2) 2009, June 
 

 

9 

ASYMPTOTIC APPROACH TO RELIABILITY EVALUATION OF LARGE “M OUT OF 
L”- SERIES SYSTEM IN VARIABLE OPERATION CONDITIONS 

  
Joanna Soszynska 

• 
Gdynia Maritime University, Gdynia, Poland  

 
e-mail: joannas@am.gdynia.pl  

 
 
 

ABSTRACT 
 

The semi-markov model of the system operation process is proposed and its selected parameters are 
defined. There are found reliability and risk characteristics of the multi-state “m out of l ”-series 
system. Next, the joint model of the semi-markov system operation process and the considered 
multi-state system reliability and risk is constructed. The asymptotic approach to reliability and risk 
evaluation of this system in its operation process is proposed  as well. 

 
 
 
1  INTRODUCTION 
 

Many technical systems belong to the class of complex systems as a result of the large 
number of components they are built of and complicated operating processes. This complexity very 
often causes evaluation of systems reliability to become difficult. As a rule these are series systems 
composed of large number of components. Sometimes the series systems have either components or 
subsystems reserved and then they become parallel-series or series-parallel reliability structures. 
We meet these systems, for instance, in piping transportation of water, gas, oil and various chemical 
substances or in transport using belt conveyers and elevators. 
Taking into account the importance of safety and operating process effectiveness of such systems it 
seems reasonable to expand the two-state approach to multi-state approach in their reliability 
analysis (Kolowrocki 2004). The assumption that the systems are composed of multi-state 
components with reliability state degrading in time without repair gives the possibility for more 
precise analysis of their reliability, safety and operational processes’ effectiveness. This assumption 
allows us to distinguish a system reliability critical state to exceed which is either dangerous for the 
environment or does not assure the necessary level of its operational process effectiveness. Then, an 
important system reliability characteristic is the time to the moment of exceeding the system 
reliability critical state and its distribution, which is called the system risk function. This 
distribution is strictly related to the system multi-state reliability function that is a basic 
characteristic of the multi-state system.   
 The complexity of the systems’ operation processes and their influence on changing in time the 
systems’ structures and their components’ reliability characteristics is often very difficult to fix and 
to analyse. A convenient tool for solving this problem is semi-markov modelling (Grabski 2002, 
Kolowrocki & Soszynska 2005, Soszynska 2006 a, b, Soszynska 2007 a, b, c) of the systems 
operation processes which is proposed in the paper. In this model, the variability of system 
components reliability characteristics is pointed by introducing the components’ conditional 
reliability functions determined by the system operation states. Therefore, the common usage of the 
multi-state system’s limit reliability functions in their reliability evaluation and the semi-markov 
model for system’s operation process modelling in order to construct the joint general system 
reliability model related to its operation process is proposed. On the basis of that joint model, in the 
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case, when components have exponential reliability functions, unconditional multi-state limit 
reliability functions of the “m out ln”-series system are determined. 
 
2 SYSTEM OPERATION PROESS 
 

We assume that the system during its operation is operating in ,, Nv ∈ν  different operation 
states. After this assumption we can define the system operation process ),(tZ  ,,0 >+∞∈<t  with 
discrete states from the set of states 
 

}..,..,,{ 21 vzzzZ =  
 
In practice a convenient assumption is that Z(t) is a semi-markov process (Grabski 2002, 
Kolowrocki & Soszynska 2005, Soszynska 2006 a, b, Soszynska 2006 a, b, c) with its conditional 
sojourn times blθ  at the operation state bz  when its next operation state is ,lz  ,,...,2,1, vlb =  .lb ≠  In 
this case this process may be described by:  
- the vector of probabilities of the initial operation states ,)]0([ 1 νxbp  
- the matrix of the probabilities of its transitions between the states ννxblp ][ ,  
- the matrix of the conditional distribution functions ννxbl tH )]([  of the sojourn times ,blθ   .lb ≠                            
If the sojourn times blθ , b, l ,,...,2,1 v=  ,lb ≠  have Weibull distributions with parameters ,blα  blβ , 
i.e., if for ,,...,2,1, vlb =  ,lb ≠   
  

)(tH bl  = P( blθ < t) = ],exp[1 bl
bl t

βα−−  ,0>t  
                                    
then their mean values are determined by  
 

                                                  =blM ),1(1][
1

bl

bl
blbl ΓE

β
αθ β +=

− ,,...,2,1, vlb =  .lb ≠                               (1) 

 
The unconditional distribution functions of the process )(tZ  sojourn times bθ  at the operation 
states ,bz  ,,...,2,1 vb =  are given by  
 

                        )(tHb ∑=
=

v

l
blp

1
[ 1 - exp[- bl

bl t
βα t]], ∑ −−=

=

v

l

bl
blbl tp

1
],exp[1 βα  ,0>t  ,,...,2,1 vb =           (2) 

      
and, considering (1), their mean values are 
 

                                        =bM E[ bθ ] = ∑
=

v

l
blbl Mp

1
)11(

1

1

∑ +=
=

−ν
β

β
α

l bl

bl
blbl Γp , b = 1,2,...,v,                           (3)    

                                
and variances are   
 
 
                                                               =bD D[ bθ ] ,)(])[( 22

bb ME −= θ                                          (4)                    
 
where, according to (2),  
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   )(])[(
0

22 tdHtE bb ∫=
∞

θ dttttp blbl
blblbl

v

l
bl

1

0

2

1
]exp[ −

∞

=
−∫∑= ββαβα ),21(

2

1 bl

bl
bl

v

l
bl Γp

β
α β +∑=

−

=
 b = 1,2,...,v.      

 
Limit values of the transient probabilities  
 
                                                   )(tpb ),)(( bztZP ==  ,0≥t  ,,...,2,1 vb =  
 
at the operation states bz  are given by  
 

                                                   bp = =
∞→

)(lim tpb
t

,/
1

∑
=

v

l
llbb MM ππ  ,,...,2,1 vb =                                    (5)  

                              
where bM  are given  by (3) and the probabilities bπ  of the vector νπ xb 1][  satisfy the system of 
equations  
 

⎪⎩

⎪
⎨
⎧

∑ =

=

=

v

l
l

blbb p

1
.1

]][[][

π

ππ

 
 
3 MULTI STATE “ M OUT OF L”- SERIES SYSTEM 
 

In the multi-state reliability analysis to define systems with degrading components we assume 
that all components and a system under consideration have the reliability state set {0,1,...,z}, ,1≥z  
the reliability states are ordered, the state 0 is the worst and the state z is the best and the component 
and the system reliability states degrade with time t without repair. The above assumptions mean 
that the states of the system with degrading components may be changed in time only from better to 
worse ones. The way in which the components and system states change is illustrated in Figure 1. 
One of multi-state reliability structures with components degrading in time (Kolowrocki 2004, 
Kolowrocki et. al 2005) are “m out of nl ”- series systems. 

                                                                       transitions 
 

 
 
 

 
                     worst state                                          best state   
 
Figure 1. Illustration of states changing in system with ageing components. 
 

To define them, we additionally assume that Eij, i = 1,2,...,kn, j = 1,2,...,li, kn, l1, l2,..., ,
nkl n  ∈ N, are 

components of a system, Tij(u), i = 1,2,...,kn, j = 1,2,...,li, kn, l1, l2,..., ,nkl n  ∈ N, are independent 
random variables  representing the lifetimes of components  Eij  in  the state subset },,...,1,{ zuu +  
while  they  were  in the state z at the moment t = 0, eij(t) are components Eij states at the moment t, 

),,0 ∞∈<t  T(u) is a random variable representing the lifetime of a system in the reliability state 

 
 

 
                .                    . . .    0 1 u-1 z-1 z u . . . 
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subset  {u,u+1,...,z} while it was in the reliability state z at the moment t = 0 and s(t) is the system 
reliability state at the moment t, ).,0 ∞∈<t   
 
Definition 1. A vector    
 

Rij(t ⋅, ) = [Rij(t,0), Rij(t,1),..., Rij(t,z)], ),,0 ∞∈<t  
  
where    
  

Rij(t,u) = P(eij(t) ≥ u | eij(0) = z) = P(Tij(u) > t) 
 
for ),,0 ∞∈<t  u = 0,1,...,z, i = 1,2,...,kn, j = 1,2,...,li, is the probability that the component Eij is in the 
reliability state subset },...,1,{ zuu +  at the moment t, ),,0 ∞∈<t  while it was in the reliability state z 
at the moment t = 0, is called the multi-state reliability function of a component Eij.  
 
Definition 2. A vector     
 

)(
,

m
lk nn

R (t ⋅, ) = [1, )(
,

m
lk nn

R (t,0), )(
,

m
lk nn

R (t,1),..., )(
,

m
lk nn

R (t,z)], 
 
where   
 

)(
,

m
lk nn

R (t,u) = P(s(t) ≥ u | s(0) = z) = P(T(u) > t) 
 
for ),0 ∞∈<t , u = 0,1,...,z, is the probability that the system is in the reliability state subset 

},...,1,{ zuu +  at the moment t, ),,0 ∞∈<t  while it was in the reliability state z at the moment t = 0, is 
called the multi-state reliability function of a system.  
 
It is clear that from Definition 1 and Definition 2, for ,0=u  we have Rij(t,0) = 1 and )(

,
m

lk nn
R (t,0) = 1. 

 
Definition 3. A multi-state system is called “m out of nl ”- series if its lifetime T(u) in the state 
subset },...,1,{ zuu +  is given by    
 

iiimilnki
lmuTuT ≤= +−≤≤

),(min)( )1(1
, , ,,...,2,1 zu =  

  
where )()1( uT imil +−  is mi-th maximal statistics in the random variables set  
 

niilii kiuTuTuT ,...,2,1),(,...),(),( 21 = , .1,2,...,   zu =  
 

Definition 4. A multi-state “m out of nl ”- series system is called regular if  l1 = l2 = . . . = 
nkl = ln 

and m1 = m2 =...=
nkm = m,   ln , m∈ N,   m ≤ ln. 

 
Definition 5. A multi-state “m out of nl ”- series system is called homogeneous if its component 
lifetimes ijT (u) have an identical distribution function, i.e. 
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),)((),( tuTPutF ij ≤= ),,0 ∞∈<t  ,,...,2,1 zu = ,,...,2,1 nki = ,,...,2,1 ilj =  
 
i.e. if its components ijE  have the same reliability function, i.e. 
  

R(t,u) = −1  F(t,u), ),,0 ∞∈<t .,...,2,1 zu =  
 
From the above definitions it follows that the reliability function of the homogeneous and regular 
“m out of nl ”- series system is given by (Kolowrocki 2004, Kolowrocki et al 2005) 
 
                                                    )],(,...),1,(,1[),( )(

,
)(
,

)(
, zttt m

nlnk
m

nlnk
m

nlnk RRR =⋅ ,                                           
(6)                                                                   
                                           
where   
 
                                ( )∑−=

−

=

1

0

)(
, )],([1[),(

m

i

inl
i

m
nlnk utRutR  ,])],(1[ nkinlutR −− t∈<0,∞), ,1,2,...,   zu =               (7)  

   
        
or by 
 

                                                        )],(,...),1,(,1[),(
)(
,

)(
,

)(
, zttt

m
nlnk

m
nlnk

m
nlnk RRR =⋅ ,                                       (8) 

 
where  
 
                                    ( ) nk

mnl

i

inlinl
i

m
nlnk utRutRut ])],([)],(1[[),(

0

)(
, ∑ −=

−

=

−R , t∈<0,∞), ,1,2,...,   zu =                   

(9) 
 
   where nk  is the number of “m out of nl ” subsystems connected series and nl  is the number of 
components of the “m out of nl ” subsystems.  

Under these definitions, if )(
,

m
nlnkR (t,u) = 1 for t ≤ 0, ,,...,2,1 zu = or ),(

)(
, ut

m
nlnkR = 1 for t ≤ 0, 

,,...,2,1 zu =  then  
 

                                                        M(u) = ∫
∞

0
,),()(

, dtutm
nlnkR  u = 1,2,..., z,                                       (10) 

 
or 
 

                                                        M(u) = ∫
∞

0
,),(

)(
, dtut

m
nlnkR  u = 1,2,..., z,                                       (11)                    

                                                                                                                                                                       
is the mean lifetime of the multi-state non-homogeneous regular “m out of nl ”- series  system in the 
reliability state subset },,...,1,{ zuu + and the variance is given by 
 

                                                       =)]([ uTD 2 ∫
∞

0
t )],([),( 2)(

, uTEdtutm
nlnk −R                                        (12)  
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or by 
 

                                                       =)]([ uTD 2 ∫
∞

0
t )].([),( 2)(

, uTEdtut
m

nlnk −R                                        (13)                    

 
The mean lifetime ),(uM  ,,...,2,1 zu =  of this system in the particular states can be determined from 
the following relationships  
 
                                        ),1()()( +−= uMuMuM  ,1,...,2,1 −= zu  ).()( zMzM =                            (14) 
 
Definition 6. A probability  
 

r(t) = P(s(t) < r | s(0) = z) = P(T(r) ≤ t), ),,0 ∞∈<t  
 
that the system is in the subset of states worse than the critical state r, r ∈{1,...,z} while it was in the 
reliability state z at the moment t = 0 is called a risk function of the multi-state homogeneous 
regular “m out of nl ”- series  system.   
 
Considering Definition 6 and Definition 2, we have    
  
                                                           r(t) = −1  )(

,
m

lk nn
R (t,r), ),,0 ∞∈<t                                              (15)   

                   
and if τ is the moment when the system risk function exceeds a permitted level δ, then   
 
                                                                        =τ r ),(1 δ−                                                                 (16)                    
                                            
where r )(1 t− , if it exists, is the inverse function of the risk function r(t).  
 
4 MULTI STATE “ M OUT OF L”- SERIES SYSTEM IN ITS OPERATION PROCESS  
 

We assume that the changes of the process Z(t) states have an influence on the system 
components ijE  reliability and the system reliability structure as well. Thus, we denote the 
conditional reliability function of the system component ijE  while the system is at the operational 
state ,bz  ,,...,2,1 vb =  by  
 

)(),( )],([ bji tR ⋅ = [1, ,)]1,([ )(),( bji tR ..., )(),( )],([ bji ztR ], 
 
where for ),,0 ∞∈<t ,,...,2,1 zu = ,,...,2,1 vb =   
 

))()(()],([ )()(),(
b

b
ij

bji ztZtuTPutR =>=  
 
and the conditional reliability function of the system while the system is at the operational state ,bz  

,,...,2,1 vb =  by  
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)()(
, )],([ bm

nlnk t ⋅R = [1, )()(
, )]1,([ bm

nlnk tR ,..., ])],([ )()(
,

bm
nlnk ztR  for ),,0 ∞∈<t ,,...,2,1 zu =  ,,...,2,1 ν=b  

 
where according to (7), we have  
 

)()(
, )],([ bm

nlnk utR  ))()(( )(
b

b ztZtuTP =>= ( )∑−=
−

=

1

0

)( ])],([[1[
m

i

ibnl
i utR  

nn kilbutR ]])],([1[ )( −−  
   

for ),,0 ∞∈<t  ,,...,2,1 zu =  ,,...,2,1 ν=b  
 
or by 
 

)()(
, )],([ bm

nlnk t ⋅R = [1, )()(
, )]1,([ bm

nlnk tR ,..., )()(
, )],([ bm

nlnk ztR  for ),,0 ∞∈<t ,,...,2,1 zu =  ,,...,2,1 ν=b  
 
where according to (9), we have 
 

)()(
, )],([ bm

nlnk utR  ))()(( )(
b

b ztZtuTP =>= ( )∑ −=
−

=

mnl

i

ibnl
i utR

0

)( ])],([1[[ nkinlbutR ]])],([[ )( −

 
 

for ),,0 ∞∈<t  ,,...,2,1 zu =  .,...,2,1 ν=b  
 
The reliability function )(),( )],([ bji utR  is the conditional probability that the component ijE  lifetime 

)()( uT b
ij  in the reliability state subset },...,1,{ zuu +  is not less than t, while the process Z(t) is at the 

operation state bz . Similarly, the reliability function )()(
, )],([ bm

nlnk utR  or )()(
, )],([ bm

nlnk utR  is the 

conditional probability that the system lifetime )()( uT b  in the reliability state subset },...,1,{ zuu +  is 
not less than t, while the process Z(t) is at the operation state .bz  In the case when the system 
operation time is large enough, the unconditional reliability function of the system  
 

),()(
, ⋅tm

nlnkR  = [1, )1,()(
, tm

nlnkR ,..., ),()(
, ztm

nlnkR ], 
 
where  
 

),()(
, utm

nlnkR ))(( tuTP >=  for ,,...,2,1 zu =  
 
or 
 
 

),(
)(
, ⋅t

m
nlnkR  = [1, )1,(

)(
, t

m
nlnkR ,..., ),(

)(
, zt

m
nlnkR ], 

 
where  
 

),(
)(
, ut

m
nlnkR ))(( tuTP >=  for ,,...,2,1 zu =  
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and )(uT  is the unconditional lifetime of the system in the reliability state subset },,...,1,{ zuu +  is 
given by  
 

                                                               ),()(
, utm

nlnkR ∑≅
=

v

b
bp

1
,)],([ )()(

,
bm

nlnk utR                                         

(17)                                                                           
or 
 

                                                              )()(
, )],([ bm

nlnk utR ∑≅
=

v

b
bp

1

)()(
, )],([ bm

nlnk utR                                    (18)    

                                                                                            for 0≥t  and the mean values and variances of the system lifetimes in the reliability state subset 
},...,1,{ zuu +  are  

 

                                                          
∑≅
=

ν

1
)()(

b
bb uMpuM

 
for ,,...,2,1 zu =                   

(19)                                                                  
 
where  
 

                                                               
Mb(u) = ∫

∞

0
,)],([ )()(

, dtut bm
nlnkR                                               (20)                   

 
or 
 

                                                              
)(uM b = ∫

∞

0
,)],([ )()(

, dtut bm
nlnkR                                               (21) 

 
and 
 

                                             =)]([ )( uTD b 2 ∫
∞

0
t )],([)],([ )(2)()(

, uTEdtut bbm
nlnk −R (22) 

 
or 
 

                                             =)]([ )( uTD b 2 ∫
∞

0
t )]([)],([ )(2)()(

, uTEdtut bbm

nlnk −R  (23) 

 
for ,,...,2,1 ν=b  ,0≥t  and bp  are given by (5). 
The mean values of the system lifetimes in the particular reliability states ,u  by (14), are  
 
                                 )1()()( +−= uMuMuM , ,1,...,2,1 −= zu  ).()( zMzM =                                   (24) 
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5 LARGE MULTI STATE “ M OUT OF L”- SERIES SYSTEM IN ITS OPERATION 
PROCESS  

 
Definition 7. A reliability function   
 

),,()],,(),...,1,(,1[),( ∞−∞∈=⋅ tzttt ℜℜℜ  
 
where  
 

,]),([),( )(

1

bv

b
b utput ∑=

=
ℜℜ  

                                                                                                
is called a limit reliability function of a multi-state homogeneous regular “m out of nl ”- series 
system in its operation process with reliability function  
 

),()(
, ⋅tm

nlnkR = [1, )1,()(
, tm

nlnkR ,..., )],,()(
, ztm

nlnkR  

or 
 

),(
)(
, ⋅t

m
nlnkR = [1, )1,(

)(
, t

m
nlnkR ,..., ),(

)(
, zt

m
nlnkR , 

 

where ),,()(
, utm

nlnkR  ),,(
)(
, ut

m
nlnkR  ,,...,2,1 zu =  are given by (17) and (18) if there exist normalising 

constants  
 

,0)()( >ua b
n  ),,()()( ∞−∞∈ub b

n  ,,...,2,1 vb = ,,...,2,1 zu =  
 
such that for )()]([ bu

Ct
ℜ

∈ , ,,...,2,1 zu = ,,...,2,1 vb =  

 
,)],([)]),()(([lim )()()()()(

,
bbb

n
b

n
m

nlnkn
utuubtua ℜ=+

∞→
R  

 
or   
 

.)],([)]),()(([lim )()()()()(
,

bbb
n

b
n

m
nlnkn

utuubtua ℜ=+
∞→

R  

 
Hence, the following approximate formulae are valid  
 

                                            ),()(
, utm

nlnkR ,)],
)(

)(([ )(

1
)(

)(
bv

b
b

n

b
nb u

ua
ubtp∑

−
≅

=
ℜ ,,...,2,1 zu =

                                
(25) 

                                                              
or 
 

                                          ),()(
, utm

nlnkR ,)],
)(

)(
([ )(

1
)(

)(
bv

b
b

n

b
nb u

ua
ubt

p∑
−

≅
=

ℜ .,...,2,1 zu =
             

                (26) 
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The following auxiliary theorem is proved in (Kolowrocki et al 2005).  
 
Lemma 1. If 
(i)   =→ kkn const, nln = ,  0→n

m , m = const, ∞→n as , 

(ii)   ),()( utmℜ = [ ]∑ −−∑
−

==

1

0

)(
)(

1
])],([exp[

!
])],([[1

m

i

kb
ibv

b
b utV

i
utVp  is   

       a non-degenerate reliability function, 
(iii)  )],(,...),1,(,1[),( )(

,
)(
,

)(
, zttt m

nlnk
m

nlnk
m

nlnk RRR =⋅ , t∈(-∞,∞),  is the reliability function of a 
homogeneous regular multi-state  “m out of nl ”- series system, in variable operation conditions,    
where 
 

∑≅
=

v

b
b

m
lk put
nn 1

)(
, ),(R )()(

, )],([ bm
lk ut
nn

R , t ∈ (-∞,∞), 

 
where  
 

            ( )∑−=
−

=

1

0

)()()(
, ])],([[1[)],([

m

i

ibnl
i

bm
nlnk utRutR ,]])],(1[ )( nkinlbutR −−  t ∈ (-∞,∞), ,,...,2,1 zu =  ,,...,2,1 vb = (27)   

                   
 is its reliability function at the operational state bz ,  

          then  
 

)],(...,),1,(,1[),( )()()( zttt mmm ℜℜℜ =⋅ , t ∈ (-∞,∞), 
 
is the multi-state limit reliability function of that system if and only if (Kolowrocki et al 2005) 
 
          ,)],([])]),()(([[lim )()()()( bbb

n
b

nn
utVuubtuaRn =+

∞→
 )()]([ buV

Ct ∈ , ,,...,2,1 zu = .,...,2,1 vb =              (28) 

  
Proposition 1. If components of the multi-state homogeneous, regular “m out of nl ”-series system 
at the operational state bz  
(i)   have exponential reliability functions,   
        1)],([ )( =butR for ,0<t  ])(exp[)],([ )()( tuutR bb λ−=  for ,0≥t ,,...,2,1 zu = ,,...,2,1 vb =               
(29)                      
(ii)  =→ kkn const, nln = ,  0→n

m , m = const, ∞→n as ,  

(iii) )()( ua b
n = 

)(
1
)( ubλ

, )()( ub b
n = n

ub log
)(

1
)(λ

, ,,...,2,1 zu = ,,...,2,1 vb =                                                (30) 

                                 
then   
 
                                       )],(...,),1,(,1[),( )(

3
)(

3
)(

3 zttt mmm ℜℜℜ =⋅ , t ∈ (-∞,∞),                   
(31) 
    
where 
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                          ),()(
3 utmℜ = [ ]km

i

v

b
b t

i
itp ]]exp[exp[

!
]exp[1

1

01
−−∑

−
−∑

−

==
 for ),( ∞−∞∈t ,,...,2,1 zu =        (32)  

               
is the multi-state limit reliability function of that system , i.e. for n large enough we have 
  

                   ),()(
, utm

nlnkR  ≅ [ ∑
+−

−∑
−

==

1

0

)(

1 !
]log)(exp[1

m

i

bv

b
b i

niuitp λ  kb nut ]]]log)(exp[exp[ )( −− λ                (33) 

 
   for t ∈ (-∞,∞), .,...,2,1 zu =  
 
Proof. Since  
 

∞→
+

=+
)(

log)()( )(
)()(

u
ntubtua b

b
n

b
n λ

 as ∞→n for ),,( ∞−∞∈t ,,...,2,1 vb = ,,...,2,1 zu =  

 
then, according to (29) for n large enough, we obtain 
 

)()()( )]),()(([ bb
n

b
n uubtuaR + ))]()()((exp[ )()()( ubtuau b

n
b

n
b +−= λ  

 
]logexp[ nt −−=  for ),,( ∞−∞∈t ,,...,2,1 zu =  .,...,2,1 vb =  

 
Hence, considering (28), it appears that  
 

)()()()( )]),()(([lim)],([ bb
n

b
nn

b uubtuaRnutV +=
∞→

]logexp[lim ntn
n

−−=
∞→

]exp[ t−=  

 
for ),,( ∞−∞∈t  ,,...,2,1 zu = ,,...,2,1 vb =  
 
which means that according to Lemma 1 the limit reliability function of that system is given by 
(31)-(32).   ⁭ 
 
The next auxiliary theorem is proved in (Kolowrocki et al 2005). 
 
Lemma 2. If 
(i)   =→ kkn const, nln = , η→n

m , 10 << η , ∞→n as , 

        (ii)   ),()( utηℜ = [ ]k
butv xv

b
b dxep ∫−∑

−

∞−

−

=

)()],([
2

2

1 2
1
π

 is a non-degenerate reliability function, where    

                 )()],([ butv  is a non-increasing function 

(iii)  )],(,...),1,(,1[),( )(
,

)(
,

)(
, zttt m

nlnk
m

nlnk
m

nlnk RRR =⋅ , t∈(-∞,∞), is the reliability function of a  

        homogeneous regular multi-state  “m out of nl ”- series system, in variable operation    
        conditions, where 
 

∑≅
=

v

b
b

m
lk put
nn 1

)(
, ),(R )()(

, )],([ bm
lk ut
nn

R , t ∈ (-∞,∞), 

 
and 
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   ( )∑−=
−

=

1

0

)()()(
, ])],([[1[)],([

m

i

ibnl
i

bm
nlnk utRutR nkinlbutR ]])],([1[ )( −−   t ∈ (-∞,∞), ,,...,2,1 vb =  ,,...,2,1 zu = (12) 

 
is its reliability function at the operational state bz , 
then  
 

)],(...,),1,(,1[),( )()()( zttt ηηη ℜℜℜ =⋅ , t ∈ (-∞,∞), 
 
is the multi-state limit reliability function of that system if and only if  
 

      

1
)1(

)]),()(()[1(
lim

)()()(

+
+−

−++
∞→

n
mnm

muubtuaRn bb
n

b
n

n
= )()],([ butv  for t∈ )()]([ buv

C , ,,...,2,1 zu =  .,...,2,1 vb =     

(35) 
 
Proposition 2. If components of the multi-state homogeneous, regular “m out of nl ”-series system 
at the operational state bz  
 (i)  have exponential reliability functions,    
      1)],([ )( =butR for ,0<t ])(exp[)],([ )()( tuutR bb λ−=  for ,0≥t  ,,...,2,1 zu = ,,...,2,1 vb =              (36)    
(ii)  =→ kkn const, nln = , η→n

m , 10 << η , ∞→n as , 

(iii) )()( ua b
n  = ,

)1(
1

)(
1
)( mn

mn
ub +

+−
λ

                                                                                                     (37) 

      )()( ub b
n  = ,1log

)(
1
)( m

n
ub

+
λ

  ,,...,2,1 zu = ,,...,2,1 vb =                                                                    (38) 

      
then   
 
                                              )],(...,),1,(,1[),( )(

1
)(

1
)(

1 zttt ηηη ℜℜℜ =⋅ , t ∈ (-∞,∞),                                 (39) 
 
where 
 

                            ),()(
1 utηℜ [ ] k

tv

b
b dxxp ∫ −−∑=

∞−=
]

2
exp[

2
11

2

1 π
 for t ∈ (-∞,∞), ,,...,2,1 zu =                (40) 

 
is the multi-state limit reliability function of that system , i.e. for n large enough we have 
 

    ),()(
, utm

nlnkR [ ] k
ub

na

ub
nbt

v

b
b dxxp ∫ −−∑≅

−

∞−=

)()(
)()(

2

1
]

2
exp[

2
11
π

[ ] k
mn

mn
m

nubt

v

b
b dxxp ∫ −−∑≅

+
+−

+
−

∞−=

)1(
1

1log)()(

2

1
]

2
exp[

2
11

λ

π
       (41) 

 
  for t ∈ (-∞,∞), .,...,2,1 zu =      
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Proof.  For n large enough we have 
 

   
mn

mn
u

tubtua b
b

n
b

n )1(
1

)(
)()( )(

)()(

+
+−

=+
λ

  01log
)(

1
)( >

+
+

m
n

ubλ
 for t ∈ (-∞,∞), ,,...,2,1 zu = .,...,2,1 vb =   

 
Therefore, according to (37)-(38) for n large enough we obtain  
 

)()()( )]),()(([ bb
n

b
n uubtuaR + ))]()()((exp[ )()()( ubtuau b

n
b

n
b +−= λ  

 

]1log
)1(

1exp[
m

n
mn

mnt +
−

+
+−

−=  
1

)]1(
)1(

11[
+

+
+

+−
−=

n
m

n
o

mn
mnt  

 
for ),,( ∞−∞∈t ,,...,2,1 zu = .,...,2,1 vb =  
 
Hence, considering (35), it appears that 
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which means that according to Lemma 2 the limit reliability function of that system is given by 
(39)-(40).   ⁭ 
 
The next auxiliary theorem is proved in (Kolowrocki et al 2005). 
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is its reliability function at the operational state bz ,  

then  



Joanna Soszynska –  ASYMPTOTIC APPROACH TO RELIABILITY EVALUATION OF LARGE “M OUT OF L”‐ SERIES SYSTEM IN 
VARIABLE OPERATION CONDITIONS 

 
R&RATA # 2(13) part 2  

(Vol. 2) 2009, June 
 

 

22 

 
)],(...,),1,(,1[),( )()()( zttt mmm ℜℜℜ =⋅ , t ∈ (-∞,∞), 
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is the multi-state limit reliability function of that system , i.e. for n large enough we have 
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which means that according to Lemma 4 the limit reliability function of that system is given by 
(54)-(56).   ⁭ 
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which means that according to Lemma 4 the limit reliability function of that system is given by 
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which means that according to Lemma 4 the limit reliability function of that system is given by 
(68)-(69).   ⁭ 
Proposition 7. If components of the multi-state homogeneous, regular “m out of nl ”-series system 
at the operational state bz  
(i)  have exponential reliability functions,                  
      1)],([ )( =butR for ,0<t ])(exp[)],([ )()( tuutR bb λ−=  for ,0≥t  ,,...,2,1 zu = ,,...,2,1 vb =  (71)                      
(ii)  kn = n,   ln  - c log n >> s, c > 0, s > 0, m = constant ( 0→
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which means that according to Lemma 4 the limit reliability function of that system is given by 
(74)-(75).   ⁭ 
 
The next auxiliary theorem is proved in (Kolowrocki 2005). 
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Proposition 8. If components of the multi-state homogeneous, regular “m out of nl ”-series system 
at the operational state bz  
(i)   have exponential reliability functions  



Joanna Soszynska –  ASYMPTOTIC APPROACH TO RELIABILITY EVALUATION OF LARGE “M OUT OF L”‐ SERIES SYSTEM IN 
VARIABLE OPERATION CONDITIONS 

 
R&RATA # 2(13) part 2  

(Vol. 2) 2009, June 
 

 

35 

      1)],([ )( =butR for ,0<t ])(exp[)],([ )()( tuutR bb λ−=  for ,0≥t ,,...,2,1 zu = ,,...,2,1 vb =                   
(79)                     
(ii)  kn = n,   c << ln, c log n - ln >> s, c > 0, s > 0, mml n =− )(  = const, ( 1→

nl
m ∞→n  as ), 

(iii) )()( ua b
n = 

)1/(1
1

)( )]()[(
1

+
+

mnl
m

b nuλ
, )()( ub b

n = 0, ,,...,2,1 zu = ,,...,2,1 vb =                                           (80) 

     
   
then   
 
                                                  )],(...,),1,(,1[),( 222 zttt ℜℜℜ =⋅ , t ∈ (-∞,∞),                                    (81)   
                                            
where 
 
                                                                  ⎯ℜ2(t,u) = 1 for t < 0,                                                     (82)                    
 

                                        ⎯ℜ2(t,u) = ∑
=

v

b
bp

1
]exp[ 1+− mt for t ≥ 0, ,,...,2,1 zu =                                     (83) 

 
is the multi-state limit reliability function of that system , i.e. for n large enough we have 
 
                                                             ),()(

, utm
nlnkR = 1 for t < 0,                                                       (84)                    

 

                           ),()(
, utm

nlnkR ]]
1

)([exp[ 1
1/1

)(

1

+
+

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−∑≅ m
m

nbv

b
b m

l
nutp λ    for t ≥ 0, .,...,2,1 zu =              

(85) 
 
Proof. Since 
 

=+ )()( )()( ubtua b
n

b
n 0

)]()[( )1/(1
1

)(
<

+
+

mnl
m

b nu
t

λ
 for 0<t , ,,...,2,1 zu = ,,...,2,1 vb =  

  
and   
 

=+ )()( )()( ubtua b
n

b
n  0

)]()[( )1/(1
1

)(
≥

+
+

mnl
m

b nu
t

λ
 for ,0≥t ,,...,2,1 zu = ,,...,2,1 vb =  

 
then, according to (79), we obtain 
  

1)]),()(([ )()()( =+ bb
n

b
n uubtuaR  for 0<t , ,,...,2,1 zu = ,,...,2,1 vb =  

 
0)]),()(([ )()()( =+ bb

n
b

n uubtuaF  for 0<t , ,,...,2,1 zu = ,,...,2,1 vb =  
 
and  
 

)()()( )]),()(([ bb
n

b
n uubtuaR + ))]()()((exp[ )()()( ubtuau b

n
b

n
b +−= λ  



Joanna Soszynska –  ASYMPTOTIC APPROACH TO RELIABILITY EVALUATION OF LARGE “M OUT OF L”‐ SERIES SYSTEM IN 
VARIABLE OPERATION CONDITIONS 

 
R&RATA # 2(13) part 2  

(Vol. 2) 2009, June 
 

 

36 

 

]
)]([

exp[
)1/(1

1
+

+

−=
mnl

mn
t )

)]([
1(1

)1/(1
1

+
+

−=
mnl

mn
o  for ,0≥t  ,,...,2,1 zu = ,,...,2,1 vb =  

 
)()()( )]),()(([ bb

n
b

n uubtuaF + ))]()()((exp[1 )()()( ubtuau b
n

b
n

b +−−= λ  
 

]
)]([

exp[1
)1/(1

1
+

+

−−=
mnl

mn
t

)1/(1
1 )]([ +

+

=
mnl

mn
t )

)]([
1(

)1/(1
1

+
+

−
mnl

mn
o  for ,0≥t ,,...,2,1 zu = .,...,2,1 vb =  

 
Next, for each nlmmi ,...,2,1 ++=  we have  
 

1])]),()(([[ )()()( =+ −inlbb
n

b
n uubtuaR  for ,0<t ,,...,2,1 zu = ,,...,2,1 vb =  

 
0])]),()(([[ )()()( =+ ibb

n
b

n uubtuaF  for ,0<t  ,,...,2,1 zu = ,,...,2,1 vb =  
 
and  
 

inlbb
n

b
n uubtuaR −+ ])]),()(([[ )()()( 1)]

)]([
1(1[

)1/(1
1

→−= −
+

+

inl
mnl

mn
o   as ∞→n  

for ,0≥t ,,...,2,1 zu = ,,...,2,1 vb =   
 

ibb
n

b
n uubtuaF ])]),()(([[ )()()( +

)1/(1
1 )]([

[
+

+

=
mnl

mn
t i

mnl
mn

o )]
)]([
1(

)1/(1
1

+
+

−  

 

)1/(
1 )]([ +

+

=
minl

m

i

n
t io )]1(1[ −  for ,0≥t  ,,...,2,1 zu = .,...,2,1 vb =  

 
From last equation we obtain  
 

ibb
n

b
n uubtuaF ])]),()(([[ )()()( +  )

)(
1(

1
nl

mn
o

+

=  for ,,...,3,2 nlmmi ++=  ,0≥t ,,...,2,1 zu = ,,...,2,1 vb =  

 
ibb

n
b

n uubtuaF ])]),()(([[ )()()( +
)( 1

1

nl
m

m

n
t

+

+

= )]1(1[ o−  for ,1+= mi ,0≥t  ,,...,2,1 zu = .,...,2,1 vb =  

Since 
 

( )∑ +−
=

m

i

ibb
n

b
n

nl
i uubtuaF

0

)()()( ])]),()(([[1  ]])]),()(([[ )()()( inlbb
n

b
n uubtuaR −+  

 

( )∑ +−=
=

nl

i

ibb
n

b
n

nl
i uubtuaF

0

)()()( ])]),()(([[1  ]])]),()(([[ )()()( inlbb
n

b
n uubtuaR −+  

 

( )∑ ++
+=

nl

mi

ibb
n

b
n

nl
i uubtuaF

1

)()()( ])]),()(([[ ]])]),()(([[ )()()( inlbb
n

b
n uubtuaR −+  

 



Joanna Soszynska –  ASYMPTOTIC APPROACH TO RELIABILITY EVALUATION OF LARGE “M OUT OF L”‐ SERIES SYSTEM IN 
VARIABLE OPERATION CONDITIONS 

 
R&RATA # 2(13) part 2  

(Vol. 2) 2009, June 
 

 

37 

)()()( )]),()(([[1 bb
n

b
n uubtuaF +−= nlbb

n
b

n uubtuaR ])]),()(([ )()()( ++  
 

( )∑ ++
+=

nl

mi

ibb
n

b
n

nl
i uubtuaF

1

)()()( ])]),()(([[  ]])]),()(([[ )()()( inlbb
n

b
n uubtuaR −+  

 

( )∑ +=
+=

nl

mi

ibb
n

b
n

nl
i uubtuaF

1

)()()( ])]),()(([[ ]])]),()(([[ )()()( inlbb
n

b
n uubtuaR −+  

 
,,...,2,1 zu = ,,...,2,1 vb =  

 
then, considering (78), it appears that  
 

)()],([ butV ( )∑ +−=
=∞→

m

i

ib
n

b
n

bnl
inn

uubtuaFk
0

)()()( )]),()(([1[lim  ]])]),()(([[ )()()( inlbb
n

b
n uubtuaR −+  

 

nn
k

∞→
= lim ( )∑ +

+=

nl

mi

ibb
n

b
n

bnl
i uubtuaF

1

)()()()( ])]),()(([[  ]])]),()(([[ )()()( inlbb
n

b
n uubtuaR −+  

 
00lim =⋅=

∞→
n

n
 for 0<t , ,,...,2,1 zu = ,,...,2,1 vb =  

 

and  
 

)()],([ butV ( )∑ +−=
=∞→

m

i

ib
n

b
n

bnl
inn

uubtuaFk
0

)()()( )]),()(([1[lim  ]])]),()(([[ )()()( inlbb
n

b
n uubtuaR −+  

 

nn
k

∞→
= lim ( )∑ +

+=

nl

mi

ibb
n

b
n

nl
i uubtuaF

1

)()()( ])]),()(([[ ]])]),()(([[ )()()( inlbb
n

b
n uubtuaR −+  

 

)(lim 1
nl

mn
n +∞→

=
)( 1

1

nl
m

m

n
t

+

+

)]1(1[ o− 1+= mt  for ,0≥t  ,,...,2,1 zu = .,...,2,1 vb =  

 

which means that according to Lemma 5 the limit reliability function of that system is given by 
(81)-(83).   ⁭ 
 
Proposition. 9 If components of the multi-state homogeneous, regular “m out of nl ”-series system 
at the operational state bz  
(i)   have exponential reliability functions  
      1)],([ )( =butR for ,0<t ])(exp[)],([ )()( tuutR bb λ−=  for ,0≥t ,,...,2,1 zu = ,,...,2,1 vb =                   
(86)                      
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which means that according to Lemma 5 the limit reliability function of that system is given by 
(88)-(90).   ⁭ 
 
Proposition 10. If components of the multi-state homogeneous, regular “m out of nl ”-series system 
at the operational state bz  
(i)   have exponential reliability functions  
      1)],([ )( =butR for ,0<t ])(exp[)],([ )()( tuutR bb λ−=  for ,0≥t ,,...,2,1 zu = ,,...,2,1 vb =                   
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is the multi-state limit reliability function of that system , i.e. for n large enough we have 
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which means that according to Lemma 5 the limit reliability function of that system is given by 
(95)-(97).   ⁭ 
 
 
6 CONCLUSION 

 
The purpose of this paper is to give the method of reliability analysis of multi-state “m out of 

l”- series systems in variable operation conditions. Their exact and limit reliability functions, in 
constant and in varying operation conditions, are determined. The paper proposes an approach to 
the solution of practically very important problem of linking the systems’ reliability and their 
operation processes. To involve the interactions between the systems’ operation processes and their 
varying in time reliability structures a semi-markov model of the systems’ operation processes and 
the multi-state system reliability functions are applied. This approach gives practically important in 
everyday usage tool for reliability evaluation of the large systems with changing their reliability 
structures and components reliability characteristic during their operation processes. The results can 
be applied to the reliability evaluation of real technical systems. 
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ABSTRACT 
 

The paper is concerned with the exact and asymptotic calculations of the availability, 
average failure rate and MTTF (Mean Time To Failure) for a recursive, meshed architecture 
proposed by Beichelt and Spross. It shows that the asymptotic size dependences of average 
failure rate and MTTF are different, but not inverse of each other, as is unfortunately 
assumed too frequently. Besides, the asymptotic limit is reached for rather small networks.  

 
 
 
1  INTRODUCTION 
 
Network availability and reliability have long been a practical issue in telecommunication 
networks, among others. Quality of Service (QoS) requirements imply high availabilities A, but also 
a good knowledge of the failure frequency ν – and of the average failure rate A/νλ =  – of (for 
instance) point-to-point connections, when the system is repairable. When the system is not 
repairable, an important parameter is the MTTF (Mean Time To Failure). As explained in many 
textbooks (Shooman 1968, Singh & Billinton 1977, Kuo & Zuo 2003), a system whose failure rate 
λ is constant over time has a reliability described by the exponential distribution R(t) = exp(-λ t), so 
that the MTTF, defined by  
 

∫∫
∞∞

=−=〉〈=
00

)1(,)())('(MTTF dttRdttRtt  

is in this case MTTFexp = 1/λ. This may lead to confusions in repairable systems, where it may still 
be legitimate to consider constant failure rates for each element of the system, and yet obtain an 
average failure rate λ . If A is the availability of a system made of m elements – whose failures are 
assumed to be statistically independent – having individual availabilities pi (1 ≤ i ≤ m) and constant 
failure rates λi, then (Buzacott 1967, Singh & Billinton 1974, Schneeweiss 1981, 1983, Shi 1981, 
Hayashi 1991, Druault-Vicard & Tanguy 2006) 
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Most results of the literature are devoted to series-parallel systems, where all components are 
identical, with the same (constant) failure rate λ. For n components in series, A(p) = pn so that the 

aggregate failure rate is equal to λλλ n
p
A

A
p

=
∂
∂

= . The reliability of n components in series is R(t) = 
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[exp(-λ t)]n = exp(- n λ t), which gives MTTF = 1/(n λ). For n components in parallel however, R(t) 
= 1-(1-exp(-λ t))n, which leads to 

 

)3(...
2
1Cln111MTTF

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ +== ∑

= n
n

i

m

i
parallel λλ

 

 
for n large (Shooman 1968, Kuo 2003) and where C = 0.577216... is the Euler constant. Quite 
generally, it is therefore important to estimate the reliability and related parameters of large systems 
in order to get a better understanding of key issues (Kołowrocki 2004). 
In this work, we consider a recursive, meshed – not series-parallel – network configuration first 
considered by Beichelt and Spross (Beichelt & Spross 1989) as well as Prékopa and collaborators 
(Prékopa et al. 1991). For the repairable case we shall use the availability A(p), and in the non-
repairable case the reliability R(p(t)), even though A(p) and R(p) are formally identical for the same 
network made of identical components. We show in detail that when such a system is large, 
knowledge of the generating function of the reliability/availability allows us find the analytic, 
asymptotic expressions for λ and MTTF. These expressions, which both have simple n-
dependences, are not the inverse of each other: while for λ , we find again a linear dependence in n 
(Druault-Vicard & Tanguy 2006), we obtain a n-1/5 dependence for the MTTF. Besides, they are in 
very good agreement with the exact values even when n remains relatively small. 

 
 
2  NETWORK ARCHITECTURE: A CASE STUDY 
 
2.1 Description 
 
The network configuration defined by Beichelt and Spross (Beichelt & Spross 1989) is represented 
in Figure 1. They wanted to estimate the two-terminal reliability between the endpoints of the 
structure (in the original paper, the destination point was S6).  
 

 

 
 

Figure 1. Recursive network architecture (Beichelt and Spross 1989). The source is S0 and the destination is Sn. 
 
 
Following the method developed in (Tanguy 2007), we have been able to show that the two-
terminal reliability between S0 and Sn may be expressed as a product of transfer matrices, in which 
each edge or link probability of functioning is arbitrary. It turns out that this transfer matrix is 
15×15. However, if nodes are perfect and if links have the same reliability/availability p, things are 
much simpler, because a single transfer matrix needs be considered, the successive powers of which 
are to be calculated. Fortunately, these necessarily obey a recursion relation of finite order 
stemming from the characteristic polynomial of the transfer matrix. When dealing with Rel2(S0 → 
Sn) ≡ Rel2

(n), a very useful tool is the generating function formalism (Stanley 1997), since it encodes 
the exact result in a very concise manner. 
 

S0 Sn S1 S2 Sn-1 
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2.2 Generating function of the reliability/availability  
 
The generating function G(z) = Σn Rel2

(n)(p) zn may eventually be written as G(z) = N(z)/D(z) 
(Tanguy 2007), where 
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We deduce for n = 6 
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so that Rel2

(6)(0.9) is equal to 0.9974544308852755355007942390030310588362, which is close to 
the upper bound given by Beichelt and Spross (Beichelt & Spross 1989). A partial fraction 
decomposition of G(z) gives 
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There are six eigenvalues ζi; a few of them may be pairs of complex conjugate values for some 
values of p. When the ζi's are distinct, (7) immediately gives 
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2.3 Asymptotic reliability/availability 
 
In the limit n → ∞, a single eigenvalue will prevail in the sum of (8), that of largest modulus. In the 
following, we shall name it ζ+. It is real for the whole range 0 ≤ p ≤ 1 (see Fig. 2), and necessarily 
goes to 1 when p → 1 because  Rel2

(∞) (p = 1) = 1; all other eigenvalues tend to zero in that limit. 
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0.8

1.0

p

�

 
 

Figure 2. Variation of ζ+ with p; ζ+ (0.9) = 0.9999596999379792. 
 
 
Even though it is not possible to get an analytic expression for ζ+ as a function of p (D(z) is of 
degree 6 in z), we may compute it numerically very effectively, and also derive the expansion of ζ+ 
as a function of  q = 1 - p for small q's. Using symbolic software, we deduce from the constraint 
D(1/ζ+) = 0 
 

)9(1399441 109875 K++++−−→+ qqqqqς  
 
When p is close to zero, we have instead: 
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The prefactor α+ is deduced from p and ζ+ because it is closely related to the residue of G(z) at 
z = 1/ζ+. The general result is in fact 
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where D'z = ∂ D(z)/ ∂z. From the knowledge of p and the numerical value of ζ+(p), we simply obtain 
α+(p), which is plotted in Figure 3. 
 
Here again, we may consider two limits. For p → 1, 
 

)12(710421 6543 K+−+−−→+ qqqqα  
 
while when p → 0, 
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Figure 3. Variation of ζ+ with p; ζ+ (0.9) = 09976956497611774972. 
 
 
The essential result is that, when n is large, 
 

)14(terms)(neglig.)(Rel (n)
2 += ++

np ςα  
 

Basically, it looks as if the recursive network is made of n elements in series, each of which having 
the reliability/availability ζ+. The two asymptotic expressions of λ and MTTF we shall derive as 
functions of n in the following section are a mere consequence of (14). 
 
 
3  AVERAGE FAILURE RATE 
 
3.1 Exact expression 
 
In the case of identical links with constant failure rate λ, (2) gives 
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Knowing An ≡ Rel2

(n)(p) by recursion (using (4)-(5)), the derivative is easily obtained for arbitrary 
values 0 ≤ p ≤ 1. 
 
3.2 Asymptotic expression 
 
Because Rel2

(n) ≈ α+ ζ+
n for n large, we get (Druault-Vicard & Tanguy 2006) 
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Of course, it would be easier to get d ln ζ+/d ln p and d ln α+/d ln p if ζ+ were known analytically. 
Still, as in the formal calculation of α+, D(1/ζ+) = 0 implies that 
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from which we deduce ζ+'(p) and then 
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Their variations for 0 ≤ p ≤ 1 are displayed in Figures 4-5. 
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Figure 4. Variation of d ln ζ+ /d ln p with p. 
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Figure 5. Variation of d ln α+ /d ln p with p. 
 
 
Note that, unsurprisingly, they exhibit singular behaviors in the vicinity of p = 0: 
 

)21(
16

231
4
1

4
2

ln
ln

)20(
8

211
2
21

ln
ln

2/32/1

2/32/1

K

K

+−−→

+++→

+

+

ppp
pd

d

pp
pd

d

α

ς

 



C. Tanguy – Asymptotic dependence of average failure rate and MTTF for a recursive, meshed network architecture 
 

R&RATA # 2(13) part 2  
(Vol. 2) 2009, June 

 

 

51 

 
Exact results as well as the linear approximation (see (16)) are displayed in Figure 6 for p = 0.9. We 
see that the agreement is excellent even for n = 2. 
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Figure 6. Comparison between exact results (purple) and asymptotic approximation 0.06426+0.0018180 n (orange) for 
λλ /  and p = 0.9. 

 
 
 
4 MTTF CALCULATIONS 
 
4.1 Exact expression 
 
We are now considering a non-repairable system, and its reliability Rn(t). Let us recall that 
 

)22(.)(MTTF
0

dttRnn ∫
∞

=  

 
If each element has reliability p(t) = exp (-λ t), we can write t = (- 1/ λ) ln p(t) and then (22) as 
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We can reuse the results obtained in Section II. Clearly, the exact MTTFn is obtained from (23), 
since such an integration is routinely performed by mathematical software. 

 
4.2 Asymptotic expression 
 
The calculation of the asymptotic expansion of MTTFn is based again on Rn

 ≈ α+ ζ+
n when n is 

large: 
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We have plotted ζ+ and ζ+

40 in Figure 7. Because ζ+ vanishes for p → 0, the 1/p factor does not play 
a significant role in the integral. As n increases, the essential contribution to the integral will 
obviously come from the domain "p close to unity". 
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Figure 7. Variation with p of ζ+ and ζ +

40. 
 
 
The best approach is therefore to use q as the variable of integration 
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The gist of the calculation, quite standard in asymptotic expansions, is to extract the prevailing 
contribution of the integrand when q → 0. We can write 
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and derive the expansion of - ln ζ+ in q from (9) 
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so that 
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This manipulation may seem quite formal, but now we can use a rescaled variable τ = 4 n q5, or, 
equivalently, set  q =  τ 1/5/(4 n) 1/5. Equation (28) then gives 
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Equation (25) leads to 
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The upper bound of the integral depends on n. However, because of the e-τ factor, the error made by 
replacing this upper bound by +∞ vanishes exponentially with n (as also do the already discarded 
contributions of the eigenvalues different from ζ+). Consequently, we can merely integrate τ-4/5 e-τ 
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multiplied by an expression admittedly depending on τ and n, but which can be easily expanded in 
the n → ∞ limit, assuming τ remains finite. For instance, the leading term of MTTFn is (see (12)) 
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where Γ(x) is the Euler gamma function. Using (30), going beyond the leading term is not difficult, 
and we find 
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By contrast to the series or parallel cases, the leading term in the asymptotic expansion of the 
MTTF has a behavior in n-1/5, which slowly decreases with n. Each of the following terms of the 
expansion adds another  n-1/5 factor. 
 
4.3 Comparison of exact and asymptotic results 
 
We can now compare (33) with the exact values. The results are displayed in Figure 8. Even for 
n ≈10, the asymptotic expansion gives a very satisfying agreement, despite the limited number of 
used terms (four). 
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Figure 8. Comparison between exact values (purple) and the four-term asymptotic expansion of (33) (orange) of the 
MTTF. 

 
 
5 CONCLUSION AND OUTLOOK 
 
We have calculated the availability of the architecture studied by Beichelt and Spross, and shown 
that for perfect nodes and identical links with constant failure rate, the asymptotic expansions of the 
associated average failure rate and MTTF obey quite different power-law behaviors in n (the 
extension of the network). It could be useful as a reminder that average failure rate and MTTF are 
not necessarily the inverse of each other. 
The present study may be easily generalized to various recursive networks. Actually, it is possible 
to find the asymptotic expansion of the MTTF for different classes of large, arbitrary recursive 
networks, even though the exact generating function is not known (Tanguy 2008). 



C. Tanguy – Asymptotic dependence of average failure rate and MTTF for a recursive, meshed network architecture 
 

R&RATA # 2(13) part 2  
(Vol. 2) 2009, June 

 

 

54 

REFERENCES 

1. Beichelt, F. & Spross, L. 1989. Bounds on the reliability of binary coherent systems. IEEE Trans. Reliability 38, 
425–427. 

2. Buzacott, J. A. 1967. Finding the MTBF of repairable systems by reduction of the reliability block diagram. 
Microelectron. & Reliab. 6, 105–112. 

3. Druault-Vicard, A. & Tanguy, C. 2006. Exact failure frequency calculation for extended systems. Submitted (see 
also arXiv:cs.PF/0612141).  

4. Hayashi, M. 1991. System failure-frequency analysis using a differential operator. IEEE Trans. Reliability 40, 
444–447. 

5. Kołowrocki, K. 2004. Reliability of Large Systems. Amsterdam: Elsevier. 
6. Kuo, W. & Zuo, M. J. 2003. Optimal reliability modeling: principles and applications. Hoboken: Wiley. 
7. Prékopa, A, Boros, E. & Lih, K.-W. 1991. The use of binomial moments for bounding network reliability, in 

Reliability of Computer and Communication Networks (DIMACS 5), F. S. Roberts, F. Hwang, & C. L. Monma 
(Editors), American Mathematical Society, New Brunswick, 197–212. 

8. Schneeweiss, W. G. 1981. Computing failure frequency, MTBF & MTTR via mixed products of availabilities and 
unavailabilities. IEEE Trans. Reliability R-30, 362–363. 

9. Schneeweiss, W. G. 1983. Addendum to: "Computing failure frequency, MTBF & MTTR via mixed products of 
availabilities and unavailabilities." IEEE Trans. Reliability R-32, 461–462. 

10. Shi, D.-H. 1981. General formulas for calculating the steady-state frequency of system failure. IEEE Trans. 
Reliability R-30, 444–447. 

11. Shooman, M. L. 1968. Probabilistic reliability: an engineering approach, New York: McGraw-Hill. 
12. Singh, C. & Billinton, R. 1974. A new method to determine the failure frequency of a complex system. IEEE 

Trans. Reliability R-23, 231–234. 
13. Singh, C. & Billinton, R. 1977. System reliability modelling and evaluation. London: Hutchinson. 
14. Stanley, R. P. 1997. Enumerative combinatorics, volume 1, chapter 4. Cambridge: Cambridge University Press. 
15. Tanguy, C. 2007. What is the probability of connecting two points? J. Phys. A: Math. Theor. 40, 14099–14116. 
16. Tanguy, C. 2008. Asymptotic Mean Time To Failure and Higher Moments for Large, Recursive Networks. 

(submitted). 
 



David Valis – CONTRIBUTION TO FAILURE DESCIPTION 

 
R&RATA # 2(13) part 2  

(Vol. 2) 2009, June 
 

 

55 

CONTRIBUTION TO FAILURE DESCRIPTION 
 

D Valis.  
 
• 

University of Defence, Brno, Czech Republic 
 
 

e-mail: david.valis@unob.cz  
 
 
 

ABSTRACT 
 

In our lives we meet many events which have very diverse causes, mechanisms of 
development and consequences. We frequently work with the events´ description besides 
other assessments in safety/risk assessment. In pure technical applications these events are 
related with the failure occurrence of equipment, a device, a system or an item. The theory 
speaks about failure itself, its mechanisms, circumstances of occurrence, etc. but at the same 
time we need appropriate terminology to describe these conditions. Our basic approaches 
into observing, dealing and handling failure may fall into two groups. We either talk about a 
probabilistic approach or about a deterministic (logic) approach. As we need to get some 
information about a failure we need to find it or transfer it from different sources. This 
contribution can be a complex problem for the term “failure” and its related characteristics. 
In the paper there are mentioned functions of an object and their description, classification 
of failures, main characteristics of failure, possible causes of failure, mechanisms of failure 
and consequences of failure and also other contributions related with failure very closely.  

 
 
 
1  INTRODUCTION 
 

Before we introduce the topic of a failure let us ask a simple question. Why do things actually 
break? Answers can vary. One of the answers might be the following statement which we are going 
to develop more. Usually the reason for this is that the applied load exceeds the 
dimension/robustness of the product. The load can be purely mechanical (force, tension, etc.), 
purely electrical (power, electromagnetic field, etc.), purely chemical (effect of chemical 
substances, etc.), general physical (warmth, radiation, etc.), or of a totally different nature. 
Whenever the applied load exceeds the assumed dimension of the item, unwanted (usually 
irreversible) processes start, and sooner or later a failure occurs. The load can be a one time load or 
it can be applied a number of times. Concerning the first instance, overload failure will occur and in 
the second case fatigue failure will occur. As time passes, the product could become weaker for any 
one of many reasons (unless a failure occurs immediately). One of the basic assumptions dealing 
with a failure is as follows. Before any failure incurred due to inner cause (e.g. operation or using 
an item) occurs, it is essential to have a device in operation. Idleness of an item or a system can end 
in a failure due to natural ageing, but in this case the initial mechanism is not properly understood. 
A relevant failure occurs mostly only during operation. Some factors and characteristics for 
describing failures: 
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Process in time of occurrence and manifestation: 
− failure causes; 
− failure manifestations ; 
− failure consequence; 
 
Failure causes: 
− design failures; 
− manufacturing failures; 
− overstress failures; 
− misuse failures; 
− degradation failures; 
 
Failure manifestations: 
− random failures; 
− gradual; 
− sudden; 
− common caused failures; 
− primary and secondary failures; 
− intrinsic failures; 
− extrinsic failures; 
 
Failure consequences: 
− insignificant; 
− marginal; 
− minor; 
− major; 
− critical; 
− catastrophic; 
 
Failure is a term widely used in technical practice especially concerning dependability theory. 

For the reliability practitioners failure is a basic term in dependability theory, and it is key and 
essential for observing stochastic relations of item behavior. It is an event which is used by 
probability theories on a general level, for they speak about a random event. In dependability theory 
it is necessary to realize the fact of failure as a stochastic term, to understand its meaning, and to 
understand other links. And only because of this, mathematical tools, used in dependability, are not 
only a dead and boring “set” of formulas, relations and graphical expressions.  

While observing a technical item we concentrate basically on possible causes of failures, their 
development over time, their process, mechanism, and of course their impact, effect, or other 
influences which might result from a failure occurrence. It is inevitable to realize that a failure is of 
key importance for operation and function of technical items. Theory and practice in particular 
shows us that failures occur under different situations, various circumstances, different conditions, 
etc. Theoretically, dealing with failures, we can describe their possible causes, nature of occurrence, 
process of development, and we are able to model them at the same time. We can see connections 
between individual groups of failures and their profiles. We can match a range of importance and 
numerical values with the failures, they can fall into groups, sets, etc. However, our biggest, 
continual effort is to eliminate failure occurrence, reduce its number (frequency), limit the number 
of its occurrences over a specified time period or in relation to another observed dependent quantity 
(mileage, cycles, etc.). Our intention is to be able to determine their occurrence so exactly that we 

Failure profile 
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could be prepared to face it as well as possible. Simply our aim is to get a better profile of an 
observed item from the view of its dependability and related properties.  

Furthermore, we would like to describe possible classes of failures, their profiles, courses, 
development, consequences, and other relations which might be important for dependability theory 
and especially for this paper itself. The phenomena involved in this article are definitely not an 
example of a complete and synoptic list of all known and possible events assisting a failure. The 
aim of this article is to introduce the topic which is usually believed to be obvious, familiar and 
clear. However, reality need not match our ideas or the ideas of other people in full. The purpose of 
the paper is also to initiate the reader into the topic of a failure and at the same time to popularize it. 
Without full understanding we would not like the reader to absorb a piece of scripted information 
and not to obtain its complex form. A frequently used term might have a totally different meaning 
then. It would be great while working on it and finding it in a book, using theoretical tools, profiles, 
graphs, models, and other descriptions and contexts, we would be able to imagine there is definitely 
something more to the term (Blischke 2000, Elsayed 1996, Meeker & Luis 1998, Modares & 
Kaminskyi & Krivtsov 1999). 
 
2 CURRENT TERMINOLOGY SITUATION 
 

The following part speaks just briefly about the current terminology situation in the 
standardization field and especially in the branch of dependability and risk. The situation is caused 
by the ISO/IEC representatives and national bodies. Failure according to the present version of the 
IEC 60050-191/1990 is defined as follows: “termination of the ability of an item to perform a 
required function”. 

Note 1. After failure the item has a fault. 
Note 2. Failure is an event, as distinguished from fault, which is a state. 
Note 3. This concept as defined does not apply to items consisting of software only. 
 
Failure according to the newly upgraded version IEC 60050-191 is defined as follows: “loss 

of ability to perform as required” 
Note 1: When the loss of ability is caused by a pre-existing condition, the failure occurs when 

a particular set of circumstances is encountered. 
Note 2: A failure of an item is an event, as distinct from a fault of an item, which is a state. 
Note 3: Qualifiers may be used to classify failures according to the severity of consequences, 

such as catastrophic, critical, major, minor, marginal and insignificant, the definitions depending 
upon the field of application. 

It results from these definitions and further analysis that the term “failure” will be understood 
as an event which leads straight to either a partial or complete loss of ability of an item to fulfil a 
required function. Most terms that are specified in the introduction dealing with the description of 
failure factors and profiles might also be found in a basic source document mentioned before. 

At present it just so happens that because of modification and updating of terminology, an 
existing view of understanding a failure and relating facts can be changed. Just to demonstrate the 
complexity of the present state we introduce the following facts. According to the notes of the term 
failure mentioned above (see IEC 60050-191/1990) an item after failure has a fault. (“An item after 
failure has a fault”.) Owing to continual discussions about this topic it is impossible to ignore the 
idea that a fault does not follow a failure but precedes it. This technical incompatibility together 
with many others has not been solved yet but their form has been very much discussed. A possible 
decision in favour of a new view will influence radically the existing approach, conception and 
observation of the failure.  

While working with the term failure, as well as with relating states, it is necessary to take the 
current terminology mismatch into account and to adapt possible decisions to it. The possibility of a 
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realized change has to be accepted along with all the suffered consequences. Unfortunately, this 
change will violate the understanding of all existing terms/disciplines introduced so far that deal 
with a proper function/failure and dependability. 
 
3 WHAT MIGHT THE FAILURE AFFECT 
 

In this part it is necessary to draw attention to some relating events. We are dealing with a 
failure which prevents the items ability from performing a required function (either the main one, 
the minor one, or some other one as detailed below). It results from all the definitions in the paper 
that the inability of a system or a product to operate in a required way is a key term determining a 
failure. 

Based on many studies and approaches a factual scale of individual functions description in 
complex conception was formed for a system. On the basis of these assumptions it is also essential 
to distinguish the influence of a failure on a function performed by an item. A failure occurrence 
might affect the range of the function. An outline of item functions is provided to make the 
understanding much easier, and failures occurrence is not strictly limited to a kind of an item 
function. 

A required function – specifies an item task. A correct, exact and unequivocal definition is a 
primary, starting point for all dependability definitions as well as for a right failure definition. 
Operation conditions – affect significantly both dependability and especially possible failure 
occurrence, hence why they have to be determined very thoroughly. 

 
1. Main function: - an intended (required) or primary function 
2. Minor function: - need for providing main function 
3. Supporting function: - the aim is to provide protection of people and an environment from 

potential damage regarding main or minor function failure as well as common support 
(brakes, circuit breakers, filters, etc.) 

4. Information function: - it provides conditions, monitoring, measuring, diagnostics, etc. (it 
refers to displays, indicators etc.) 

5. Interface function: - it provides an interface between an assessed item and other items 
(cabling, operating elements, switches, breakers, etc.). 

 
The required function and/or operation conditions might be time dependent. In this case a 

mission profile has to be determined and all dependability viewpoints have to be related to it. A 
representative mission profile and corresponding dependability targets have to be stated in the 
item’s specification. The mission duration is often/usually considered as a parameter t, that is time. 
The dependability function – especially the reliability function is designated as R(t). R(t) is the 
probability that no failure at item level will occur in the interval (0;t〉, often with the assumption 
R(0) = 1 – it means that at the time t = 0 the object was in the state of operation. In order to avoid 
confusion a distinction between predicted and estimated (assessed) dependability should be made 
on the basis of a real evaluation during operation or tests. The predicted dependability is calculated 
on the basis of the item’s dependability structure and the failure rate of its component. The 
estimated dependability is specified on the basis of a statistical evaluation of dependability tests or 
field data by known operating and environmental conditions. 

Failure: - it occurs when an item terminates its ability to perform its required function. 
However simple the definition might look, it is difficult to apply it to complex items/systems. The 
basic operating time is generally a random variable. It is often reasonably long but on the other 
hand it might be very short, caused by systematic failure influence for example. It can also be 
caused by early failure influence resulting from a transient event at turn-on. A general presumption 
in investigating failure-free operating times is that at t = 0 which means that in an instant t = 0 the 
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object is free of defects and systematic failures and therefore it is able to operate one hundred per 
cent. Besides their relative frequency, failures can be categorized according to one of the views 
mentioned before (mode, course, cause, consequences, mechanisms, etc.). 

Failure profiles: 
− critical stage – consequence seriousness 
 
− failure cause - misuse failure; 
   - mishandling failure; 
   - weakness failure; 
   - design failure; 
   - manufacturing failure; 
   - ageing/wearout failure; 
   - others (e.g. software). 
 
− failure mode (velocity) - sudden; 
     - gradual 
 
− according to a range of a consequence - cataleptic; 
       - complete; 
       - partial. 
 
− according to a place of occurrence - during a test; 
      - during operation. 
 
− according to occurrence mechanism - primary; 
      - secondary; 
       - systematic/reproducible; 
 
− according to verification possibility - verified failure; 
      - unverified failure. 

 
These are the very basic failures categories and factors they fall into, and this is the common 

way of how to work and deal with them. Moreover, we can determine some other (supplementary) 
failure categories but their presence here is not possible due to space limits of the paper. The 
authors of the paper may provide more information for those who are interested (Elsayed 1996, 
Meeker & Luis 1998, Modares & Kaminskyi & Krivtsov 1999). 
 
4 FAILURE OCCURRENCE CAUSE 
 

According to the (IEC 60050-191/1990) the circumstances occurring during design, 
manufacture or use which have resulted in a failure are the cause of a failure. To know the cause of 
a failure is useful in case we want to decide how to prevent a failure or its reoccurrence. Failure 
causes can be classified in relation to the life cycle of the system. 

Cause – the cause of a failure can be intrinsic, due to weaknesses in the item and/or wearout, 
or extrinsic, due to errors, misuse or mishandling during the design, production and especially the 
use itself. Extrinsic causes often lead to systematic failures which are deterministic and might be 
considered like defects (dynamic defects in software quality). Defects are present at t=0, even if 
they cannot be discovered at t=0. Failures always seem to appear in time, even if the time to failure 
is very short as it can be with systematic or early failures. 

degradation 

physical, chemical, 
or other processes 
leading to a failure 
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1. Design failure - occurs due to inadequate design. It is basically any failure directly related 

to item design. It means that due to item design a part of the whole degraded or got 
damaged and this resulted in a failure of the whole. 

2. Weakness failure - occurs due to weakness (internal) inherent or induced in the system so 
that the system cannot stand the stress it encounters in its normal environment. 

3. Manufacturing failure - a failure caused by nonconformity during manufacturing and 
processing. It is basically any failure caused by faulty processing, or inadequate 
manufacturing, or an error made while controlling the process during manufacturing, tests 
and repairs. 

4. Ageing failure - a failure caused by the effects of usage and/or age. 
5. Misuse failure - a failure caused by misuse of the system (operating in environments for 

which it was not designed). 
6. Mishandling failure - a failure caused by incorrect handling and/or lack of care and 

maintenance. 
7. Software error failure - a failure caused by a PC programme error. 

 
5 FAILURE MECHANISM 
 

The failure mechanism is a very complex and extensive passage of the failure profile. It can 
be sudden or gradual with its relating manifestations. 

Failure mechanism - physical, chemical, electrical, thermal or other process that results in 
failure. 

Mode (manifestation, course) – the mode of a failure is a symptom (local effect) by which a 
failure is observed. For example – opens, shorts, or drifts (for electronic components). Brittle 
rupture, creep, cracking, seizure, or fatigue (for mechanical components), etc. 

A complete and sudden failure is called a catastrophic failure and a gradual and partial failure 
is designated a gradually degraded failure. 

The connections related to these aspects of a failure are shown in the following description: 
1. Intermitted (incoherent) failure - a failure which lasts only for a short time. A good 

example of this is a fault that occurs only under certain conditions occurring intermittently 
(irregularly). 

2. Extended failure - failures that occur until some corrective action rectifies the failure. They 
can be divided into the following two categories: 

a) Sudden failure - a failure which occurs without warning  
b) Gradual failure - a failure which occurs with signals to warn of the occurrence. Usually it is 
a case of significant behaviour changes (decreasing performance, increasing temperature, 
rising vibrations, etc.) or this style. 
 
We have to distinguish among different failure mechanisms of mechanical, electrical, 

electronic and hydraulic parts. The differentiation is so complex that it can not be easily presented 
in this paper. The example of failure mechanism will be given at the section 9 (Blischke 2000, 
Elsayed 1996, Meeker & Luis 1998, Modares & Kaminskyi & Krivtsov 1999). 
6 FAILURE CONSEQUENCES 
 

Many information sources use the term failure consequence. Also many standards define 
them and work with them differently. The following part should help to clarify the concept of 
failure consequences, as we also know them from many reliability analyses. 

Effect - the effect (consequence) of a failure can be different if considered on the item itself or 
at a higher level. A usual classification of a failure has usually the following qualitative profile and 
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is: non-relevant, partial, complete, …, critical failure. Since a failure can also cause further failures 
in an item or a system, a distinction between primary and secondary failure is important.  

A classification of the severity of a failure mode in accordance with the MIL-STD 882 is 
listed:  

 
1. Catastrophic failure - a failure that can lead to death or can cause total system (item) loss. 
2. Critical failure - a failure which results in many serious injuries or major system damage. 

Sometimes we think of it as a failure, or combination of failures, that prevents an item 
from performing a required mission. 

3. Marginal failure - a failure that leads to minor injury or minor system damage. 
4. Negligible failure - a failure that leads to less than minor injury of system damage.  
 
Another classification can be found in the RCM approach where the following classes are 

used: 
Failures with safety consequences; 
Failures with environmental consequences; 
Failures with operational consequences; 
Failures with non-operational consequences. 
 
A classification of the failure severity into groups (categories) is given in more standards. 

Each of them is specific in a way and corresponds with a presupposed application. The IEC 61 882, 
IEC 60 812, IEC 50 126 and many others are some of the examples. We do not have the ambition to 
make a complete list of failure consequences and their classification. The issue is to take into 
account many different approaches and handle with care with them as well as use them with clear 
intention (Meeker & Luis 1998, Modares & Kaminskyi & Krivtsov 1999). 
 
7 SOURCES FOR FAILURE PROFILE DETERMINATION 
 

We do not want to speak about basic and clear failure measures and characteristics which are 
obviously well known in our community. Our attempt is to present different sources of failure 
data/measures/characteristic obtaining. The main sources are: 

1. Data on elements’ reliability guaranteed by a producer – there is no need to expand on it; 
2. Conclusive test results (observation) of the same (comparable) item reliability. It is based 

on the standardized assessment of reliability tests of technical items. The methods and 
methodologies of how to conduct tests are standardized for different equipment. 

3. Predictions – standardised calculation of item’s reliability based on a reliable source (MIL 
HDBK 217F). This is the American military standard that enables the data on electronic 
elements’ reliability to be estimated. It is commonly used when estimating the elements’ 
failure rate especially in military applications. 

4. Specialized information databases on elements’ reliability (specialized in terms of 
elements’ profile or conditions of usage). Specialized information databases on elements’ 
reliability are usually established and kept to meet the needs of single industrial branches 
or technical areas. The data acquired when observing items in operation or the results of 
specialized dependability tests are collected in the databases. One of the most respectable 
and frequently used databases on reliability in this area is the database established and kept 
by the Reliability analyses centre (RAC) which at present distributes three important 
databases on the commercial basis: (EPRD-97; NPRD-95; FMD-97; SPIDR 2007). 

5. General information database on elements’ reliability. These databases are usually 
published as parts of specialized literature in the dependability area. The information put in 
them is usually very general. 
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6. Expert estimations. Expert estimations of numerical values of reliability measures might be 
used only when appropriate values cannot be specified by a different, more reliable 
method. The authors of the article know from experience that this solution is accepted only 
as an exception because in most cases the numerical values of reliability measures can be 
determined by other methods described in this paper.or this style. 

 
8 TYPICAL MEASURES OF A FAILURE OCCURRENCE 
 

Failure rate 
Failure rate plays a major role in dependability analyses. It is a numeric value of the measure 

that describes failure occurrence depending on the measurement of continuous/discrete quantity. It 
specifies the occurrence of a certain number of events per observed/measured unit. 

 
Factors affecting failure rate: 
− Component type; 
− Component design; 
− Component technology; 
− Operational stress (temperature, voltage, pressure, etc.) 
− Component quality grade (involving production quality control and post-production 

screening including burn-in) 
− Environmental stress (vibration, shock, humidity) 
− Activation and deactivation transients, e.g. voltage spikes, current surges, transient thermal 

stresses 
− Component application; 
 
Failure occurrence probability 
This is another measure describing possible phenomenon-failure occurrence in a numeric 

way. It can be described by a discrete distribution or continuous distribution depending on a kind of 
variable and provided that it follows a certain level of relevancy which is called a confidence 
interval. 

 
Mean-time to failure 
Another frequently used measure of a continuous random variable (usually time), which 

specifies assumed mean-time to failure. 
 
9 EXAMPLE OF FAILURE CHARACTERISTICS 
 

The intention of this example is to present some technical parts which are commonly used and 
to show their typical failure mechanisms, failure modes/causes and the percentage distribution of 
these characteristics for them. Based on (EPRD-97; NPRD-95; FMD-97; SPIDR 2007) the example 
of several mechanical parts is shown. The items chosen for the example are the most common 
mechanical parts which are typically implemented in the systems. This example as well as the 
guidelines presented in the paper is supposed to contribute to the analyst knowledge and help him 
to orient while conducting standard analysis (e.g. PHA, FMECA, FTA, OSHA, JSA, etc.). 

 
Example of several mechanical parts: 
 
Statically loaded 
Demountable: 
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− Screw:  Loose (approx 50%) 
    Worn (approx 25%) 

Induced – vibration/missing (approx 25%) 
 
− Nut:    Bearing failure (approx 50%) 

Loose (approx 50%) 
 
− Key:   Bent/Dented/Warped (approx 100%) 
 
 
Non-rewirable:  
 
− Welded joint: Broken (approx 50%) 

Workmanship (approx 50%) 
 
− Riveted joint: Broken (approx 50%) 

Workmanship (approx 50%) 
 
Dynamically loaded  
 
− Bearing:  Worn (approx 60%) 

Binding/Sticking (approx 20%) 
Loss of lubrication (approx 10%) 
Contaminated (approx 5%) 

    Scored (approx 5%) 
 
− Gear:   Worn (approx 52%) 

Binding/Sticking (approx 19%) 
Stripped (approx 10%) 

    Broken (approx 7%) 
Jammed/Stuck (approx 7%) 
Displaced (approx 3%) 

    Noisy (approx 2%) 
 
This is only small example of the failure characteristic regarding few typical mechanical 

parts. The purpose of the example is to extend current lack of information we normally face. Based 
on the information mentioned in the previous section we frequently do not have such information 
about failures and their characteristics guaranteed by the producer. We do not have plenty of 
information from tests either since the tests are not conducted very frequently and in the wide 
range. Some prediction methods like (MIL HDBK 217F, and others) are not very suitable for every 
parts prediction and they give only one characteristic of the failure.  

Next point which was the purpose of the presentation of the example for was to present also 
the related characteristics of a failure (mode/cause) apart of the measure. Sometimes if the analyst 
does not have clear imagination about modes/causes of failure he/she can hardly imagine if the item 
may fail down or not. 
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10 CONCLUSION 
 

This contribution is supposed to give a general overview in the area of the basic term “a 
failure” as described above. As the understanding of all related matters is very complex it is not 
possible to express complete knowledge and experience here. Some reliability and safety engineers 
might be confused while beginning with specific analysis (e.g. FMECA, PHA, JSA, OSHA, etc.). 
The main benefit of this contribution is supposed to be a general and introductive material for 
understanding a failure its full profile with all related characteristics. The next purpose of the paper 
is to provide a hand (possibly guide lines) to orient the analyst on the appropriate information 
sources which are necessary for the analysis. Due to the limited space within the paper, the 
information provided is not complete, therefore those who are interested we kindly ask to contact 
the authors. 
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ABSTRACT 
 

As we use complex systems with one shot items in many technical applications we need 
to know basic characteristics of such system. Performance, safety and other are as much 
important as dependability measures. In real applications we have to take into account a 
related distribution of an observed variable. In terms of complex systems with one shot 
items it is a discrete random variable related to one shot item. The whole system and its 
failures (unexpected and inadvertent events) may have two typical types of distributions and 
their characteristics. We either consider a continuous variable (such as time, mileage, etc.) 
or a counting variable (such as number of cycles, sequences, etc.) regarding to a failure 
occurrence. As the one shot items is supposed to back up the main system function the total 
reliability of the system should be higher than. The main issue regarding the system using 
one shot items in their construction is to determine the probability of the task (mission) 
success. The paper presents both theoretical approach and practical example of the solution. 

 
 
 
1  INTRODUCTION 
 

This paper is supposed to contribute to a solution of dependability qualities of the complex (in 
this case) weapon system as an observed object. We would like to show one of the ways how to 
specify a value of single dependability measures of a set. The aim of our paper is to verify the 
suggested solution in relation to some functional elements which influence fulfilment of a required 
function in a very significant manner (Koucky & Valis 2007). 

The paper contents deals with a weapon set which is a complex mechatronics system, 
designed and constructed for military purposes. We are talking about a barrel shooting gun – a fast 
shooting two-barrel cannon. It is going to be implemented in military air force in particular. 

Generally speaking the set consists of mechanical parts, electric, power and manipulation 
parts, electronic parts and ammunition. For the purpose of use in our paper we are not going to deal 
with isolated functional blocks and ammunition only. In this case we consider the ammunition as 
the key element in the whole process as recommended standardised rounds and pyrotechnic 
cartridges. 

Single parts of the set can be described with qualitative and most importantly quantitative 
indices which present their quality. In this paper we are dealing especially with quality in terms of 
dependability characteristics. We have been working first and foremost with probability values 
which characterize single indices, and which describe functional range and required functional 
abilities of the set. We do not focus only on the part handling rounds and pyrotechnic cartridges 
which are crucial for this case. In order to continue our work it is necessary to define all terms and 
specify every function. 
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The main type of data which can be found in the area of dependability statistical analysis is as 
follows: simple, censored, cut (reduced) data, or the combination of it. 

Simple data: It is a basic category in which the established information t1, t2,…, tn is the 
random sample of probability distribution of time to failure T. 

Censored data: The data is designated (t1, d1), …, (tn, dn), where ti = min (T, C), T is a 
random value determining time to failure, C is censoring time and di is an indicator defined by the 
formula di = 1, if ti is time to failure and di = 0 in other cases. The basic types include censoring by 
fixed time (C is fixed time) and random time (C is a random variable with given probability 
distribution). This type of dependability data is frequently used in practice and it can be found in 
the situations where the observation is terminated after some time, because the system is put out of 
operation, etc. Concerning laboratory tests these are the so called tests terminated by time. 

Cut (reduced) data: This is the data of the failures registered after some time passes.  In 
practice one can come in contact with this sort of data when the information about failures is not put 
in the early stages. 

Classification of statistical methods used in dependability statistical analysis: 
Parametric methods: These methods proceed from the assumption that the observed data 

represent random sample described by a given probability distribution (e.g. exponential, Weibull´s, 
gama, etc.). The main task then is to determine (estimate) values of unknown parameters based on 
the observed data. 

Non-parametric methods: These methods do not take into account any specific 
classification of data and they are a “universal” alternative to parametric methods (their main 
advantage). The main disadvantage is their smaller power (when compared to parametric methods). 

Semi-parametric methods: These methods which are a sort of compromise between 
parametric and non-parametric methods require only a “partial” specification of the distribution. A 
parametric model is introduced for important variables and a non-parametric one is introduced for 
these of minor importance. 
 
2 ESENTIAL TERMS, DEFINITIONS AND SIGNS 
 

We are always talking about an object in terms of reliability analyses. The definition for 
object is the same as the used in IEC 60500-191/1990. Consequently we need to describe the basic 
object’s measures (Koucky & Valis 2007). 

Object’s function: 
The main function: The main function of the object is putting into effect a fire from a gun 

using standard ammunition. 
The step function: Manipulation with ammunition, its charging, initiation, detection and 

indication of ammunition failure during initiation, initiation of backup system used for re-charging 
of a failed cartridge. 

It is expected that the object will be able to work under different operating conditions 
especially in different temperature spectra, under the influence of varied static, kinetic and dynamic 
effects, in various zones of atmospheric and weather conditions. 

In this case we will not take into account any of the operating conditions mentioned above. 
However, their influence might be important while considering successful mission completion. 

One of the main terms we are going to develop is: 
Mission: It is an ability to complete a regarded mission by an object in specified time, under 

given conditions and in a required quality. 
In our contribution it is a case of cannon ability to put into effect a fire in a required amount – 

in a number of shot ammunition at a target in required time, and under given operating and 
environmental conditions. 
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As it follows from the definition of a mission it is a case of a set of various conditions which 
have to be fulfilled all at once in a way to satisfy us completely. Our object is supposed to be able to 
shoot a required amount of ammunition which has to hit the target with required accuracy 
(probability). We will not take into consideration circumstances relating to evaluation of shooting 
results, weapon aiming, internal and external ballistics, weather conditions and others. We will 
focus only on an ability of the object to shoot (Koucky & Valis 2007). 

As we have stated above we will not deal with isolated function blocks only. We are 
presuming that these blocks act according to required and determined boundary conditions. In order 
to understand functional links fully we introduce our way of dividing the object although we will 
understand the object as a complex system in the paper. 

We speak about the following blocks: 
Manipulation with ammunition, its charging, initiation, failure detection and indication during 

initiation, initiation of a backup system in order to recharge a failed cartridge, all mechanical parts, 
all electric and electronic parts, interface elements with a carrying device - Block A; 

Ammunition – Block B; 
Pyrotechnic cartridges – Block C. 
 
Symbols used in the text: 
 
T random value expressing time to failure, 

nt,,t,t K21  measured times to failure (that is a random selection of T), or data on 
possible censoring, 

( ) ( ) ( )nt,,t,t K21  arranged values nt,,t,t K21  (including data on censoring), 

[ ] [ ] K,t,t 21  arranged random selection of times to failure , that is, without data on 
censoring, 

( ) ( )t,t TT
∗ΛΛ  cumulative failure rate or its point estimation, 

( ) ( )tR,tR TT
∗  probability of reliable operation or its point estimation, 

[ ] [ ]•• ∗E,E  mean value of the variable or its point estimation, 
[ ] [ ]•• ∗var,var  dispersion variance, or its point estimation •. 

 
3 DESCRIPTION OF THE PROCESS 
 

The process as a whole can be described this way: 
From a mathematical and technical point of view it is a fulfilling of requirements´ queue 

which gradually comes into the service place of a chamber. The requirements´ queue is a countable 
rounds´ chain where the rounds wait for their turn and are transported from the line where they wait 
in to a service place (fulfilment of a requirement) of a chamber and there they are initiated. After 
the initiation the requirement is fulfilled. An empty shell (one of the essential parts of a round) 
leaves a chamber taking a different way than a complete round. When the requirement is fulfilled, 
another system which is an integral part of a set detects process of fulfilling the requirement. The 
process is detected and indicated on the basis of interconnected reaction processes. In this case 
fulfilling the requirement is understood as a movement of a barrel breech going backwards. Both 
fulfilling the requirement and its detection are functionally connected with transport of another 
round waiting in a line to go into a chamber. 

Let’s presume that rounds are placed in an ammunition feed belt of an exactly defined length. 
A maximum number of rounds which could be placed in a belt is limited by the length then. The 
length is given either by construction limitations or by tactical and technical requirements for a 
weapon set. Let’s presume that despite different lengths of an ammunition belt, this will be always 
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filled with rounds from the beginning to the end. Let’s also assume that the rounds are not non-
standard and are designed for the set. 

The process of fulfilling the requirement is monitored all the time by another system which is 
able to differentiate if it is fulfilled or not. The fulfilment itself means that a round is transported 
into a chamber, it is initiated, shot, and finally an empty shell leaves a chamber according to a 
required principle. If the process is completed in a required sequence, the system detects it as a right 
one. 

Because of unreliability of rounds the whole system is designed in the way to be able to detect 
situations in which the requirement is not fulfilled in a demanded sequence and that is why it is 
detected as faulty. 

Although a round is transported into a chamber and is initiated, it is not fired. A function 
which is essential for a round to leave a chamber is not provided either, and therefore another round 
waiting in line cannot be transported into a chamber. That is the reason why fulfilling of the 
requirement is not detected. 

The system is designed and constructed in such a way that it is able to detect an event like this 
and takes appropriate countermeasures. A redundant system which has been partly described above 
is initiated. After a round is initiated and the other steps don’t carry out (non-fire, non-movement of 
a barrel breech backwards, non-detection of fulfilling the requirement, non-leaving of a chamber by 
an empty shell, and non-transport of another round into a chamber) a system of pyrotechnic 
cartridges is initiated. It is functionally connected with all the system providing mission completion. 
A pyrotechnic cartridge is initiated and owing to this a failed round is supposed to leave a chamber. 
A failed functional link is established and another round waiting in line is transported into a 
chamber. 

In order to restore the main function we use a certain number of backup pyrotechnic 
cartridges. Our task is to find out a minimum number which is essential for completing the mission 
successfully. Next issue we are supposed to solve is to find out the availability function of the 
system. We would like to know if the system is capable to carry out next mission with its 
technical/mission “history”. If the operational unit left are much enough to complete the task 
successfully from the technical point of view without any impact on terms of repair/replacement, 
etc. As based onto the collected data observed from previous deployment and initial operation 
period of the system we might use standard mathematical tools for their assessment. Due to specific 
system construction and specific process procedure it seems to us that another than common 
methods are to be applied. Following section is the example of our effort (Koucky & Valis 2007). 
 
4 MATHEMATICAL MODEL 
 

Since the data on system operation and process behaviour is available we use two methods 
while analyzing this. The first one is the Nelson – Altsschuler estimation (Akersten 1987, Crowder 
& Kimber 1991, Nelson 1990). It is a case of one of the basic non-parametric methods which are 
used for statistical dependability analysis, especially while estimating instantaneous cumulative 
failure rate ( )tTΛ . It is expressed by the equation: 

( ) ( )∫=Λ
t

TT duut
0

λ      (1) 

 
where ( )tTλ  is failure rate at the time t, thus 
 

( ) ( )
h

TthtTtP
limt

hT
≤+<≤

=
+→0

λ      (2) 
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Let us assume that the obtained dependability data nt,,t,t K21  are the information on time to 
failure or time information about censoring. In this case the Nelson-Altschuler´s (N-A) point 
estimation ( )tT

∗Λ of the cumulative failure rate is expressed by 
 

( ) [ ]

[ ][ ]
[ ]

∑
≤

∗ =Λ

tt
i i

i
T

i

r
m

t       (3) 

 
where [ ]it  is the i-th element of the arranged random selection of times to failure (that is we do 

not include censoring times in the selection), 

[ ]im  is frequency of the value [ ]it , 

[ ]ir  is number of objects in operation to the time [ ]it . 
 
If the failure occurs together with the censoring, we assume that the censoring occurs straight 

after the failure.  In order to estimate the dispersion variance ( )tT
∗Λ  we use the asymptomatic 

formula 
 

( )[ ] [ ]

[ ][ ]
[ ]

∑
≤

∗∗ =Λ

tt
i i

i
T

i

r

m
tvar 2       (4) 

 
through which we determine even relevant interval estimation. For ( )%α−1  dependability 

interval of the value ( )tT
∗Λ  we get 

 
( ) ( )[ ] ( ) ( )[ ]( )tuttut TTTT

∗∗

−

∗∗∗

−

∗ Λ+ΛΛ−Λ var,var
2121 αα     (5) 

 
where αu  is %α  a quantile of standard normal distribution. 
Of course there is large variety of other non-parametric methods which are suitable for 

dependability assessment based on operational data. These are for example non-parametric renewal 
density estimations, renewal functions and non-parametric trend tests.  

Another method used for the system assessment is determining the distribution of time to 
failure and its properties. This is the statistical test TTT (Total Time on Test-plot) which allows us 
to decide whether distribution of time to failure is of increasing (IFR – Increasing Failure Rate), or 
decreasing (DFR – Decreasing Failure Rate) failure rate. If ( ) ( ) ( )nt,,t,t K21  is an arranged selection of 
times to failure, then the test statistic ( )iu  is defined as follows: 

 

( )
n,n

n,i
i T

T
u =       (6) 

 
where ( ) ( ) ( ) ( ) ( )iin,i tintttT 1121 +−++++= −K  

The testing itself is based on putting the values ( )iu  and n
i  in the graph. In case of the IFR 

distribution the graph ( )iu  is convex , concerning the DFR distribution the graph is concave. 



David Valis, Miroslav Koucky – CONTRIBUTION TO AVAILABILITY ASSESSMENT OF COMPLEX SYSTEMS 

 
R&RATA # 2(13) part 2  

(Vol. 2) 2009, June 
 

 

70 

 
5 EXAMPLE OF THE APPLICATION 
 

The assessed failures were as follow: 
− only mechanical, software and process ones; 
− the failures resulting from shortage of redundant cycles (pyrotechnical cartridges) 
The source of the data is operating data – number of cycles (shots) to failure (mechanical, 

software, process cause not at all due to shortage of redundant cycles that is pyrotechnical 
cartridge) regarding sixteen observed systems. 

 
Ad – only mechanical, software and process failures: 
The data used for the analysis are put in Table 1, the data in red (last column) stand for 

censoring by time and not the failure. Complete enumeration consists of a number of shots to failure 
regarding sixteen renewed systems of the same type (cannon). In the paper there is presented only 
one system how to carry out the method. The data is arranged according to its real occurrence and is 
essential for quite a few of non-parametric tests. The values are modified owing to industrial 
protection. The thick blue line (between column 6 and 7) separates the years 2005, 2006. 

 
Table 1.  Data from system operation -------- 

Canon ti – time to failure 
1 201 339 660 512 156 1293 2 798 

 
Table 2 shows the calculation of the Nelson-Altschuler estimation of cumulative failure rate. 

( )tT
∗Λ . 

 
Table 2.  Table of Nelson-Altschuler Estimation calculation  -------- 

Event Nelson-Altschuler Data  
(i) Λ(t[i]) R(t[i]) D_R H_R u(i) 
1-2 0,033 0,968 0,925 1,000 0,003 
3 0,050 0,951 0,899 1,000 0,007 

 
Description of the table: 
 
Event (i) – serial number of an event (failures including possible censoring by time). 
 
Values in the column Λ(t[i]) are calculated according to the formula (3) and they are point 

estimation of cumulative failure rate in the interval [ ] [ ]( ii t,t 1− . 
 
The values  D_R, H_R are relevant lower and upper limits of 95% of the dependability 

interval. 
 
The column u(i) – the values of test statistic for TTT are counted using the equation (6). 

Figure 1 and 2 show the course (typically step-wise) of the estimations ( )tT
∗Λ  and ( )tRT

∗ , including 
relevant 95% of dependability intervals. The course of the estimation of reliable operation 
probability R1(t) and its 95% of the dependability interval (D(t) – the course of the lower limit H(t) 
– the course of the upper limit) is put in Figure 1. 
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Estimator of the reliability R1(t) with 95% confidence limits
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Figure 1. Reliability of the system and its 95% confidence intervals. 
 

Ad – the failures resulting from shortage of redundant cycles (pyrotechnical cartridges: 
This time the data in table 3 contains number of cycles to failure owing to shortage of 

redundant cycles, the data in red (last column) shows the information on censoring by time. By way 
of demonstration there is also one system only which is supposed to demonstrate how to carry out 
the method. The values are again modified due to industrial protection. 

 
Table 3.  Data from system operation censored by lack of cycles   

System Number of main cycles to failure
1 1200 668 2299

 
Even in this case the NA non-parametric estimation of cumulative failure rate ( )t2Λ was used 

in order to estimate reliable operation probability . The example of calculation results is put in table 
4. 

 
Table 4.  Table of Nelson-Altschuler Estimation calculation  -------- 

t[i] Λ2(t[i]) D_Λ2(t[i]) H_Λ2(t[i]) R2(t[i]) D_R2(t[i]) H_R2(t[i]) 
76 0,0385 0,0000 0,1138 0,9623 0,8924 1,0000 
149 0,0785 0,0000 0,1872 0,9245 0,8293 1,0000 
236 0,1201 0,0000 0,2561 0,8868 0,7740 1,0000 

 
The course of the estimation of reliable operation probability R2(t) and its 95% dependability 

interval (D(t) – lower and H(t) – upper limits) is put in Figure 2. 
 

Estimator of the reliability R2(t) with 95% confidence limits
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Figure 2. Reliability of the system and its 95% confidence intervals. 
 

Last but not least, it is necessary to carry out the test which shows us whether the courses of 
R1(t) and R2(t).are identical/similar. From the operational point of view it is important to assess the 
impact of both types of failures (mechanical-software-process, or shortage of redundant cycles) 
they made on the reliability of the analysed system. The courses of both reliability functions R1(t) 
and R2(t) are put in Figure 3. Mathematically this issue is supposed to result in a statistical test. 

 
   ( ) ( ) ( ) ( )tRtR:HtRtR:H 211210 ≠×=  
 
With the respect to the nature of the data the non-parametric Mantel´s test (N. Mantel: 

Evaluation of survival data and two new rank order statistics arising from its consideration. Cancer 
Chemother. Rep., 50, 163-170) was selected. When we apply the test to the data described above, 
we come to the conclusion that the impact of mechanical-software-process failures on system 
reliability is statistically a lot higher than the impact of the failures due to shortage of redundant 
cycles (pyrotechnical cartridges). This is also the case of the modified data. 

 
 

Estimators of the reliability R1(t) and R2(t)
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Figure 3. Reliability comparison of the R1 (t) and R2(t) functions. 
 

The calculated parameters from NA test could be also displayed in the following graphical 
form. We speak about the u(i) value of test statistic for “Total Time on  Test-plot” and the i/n value 
which represent the intensity of the event in number of sequences. The Figure 4 represents this 
dependence. 
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Figure 4. Total Time on Test-plot. 
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From this diagram it is remarkable that due to its form we can not confirm both the “IFR” 

(Increasing Failure Rate) and “DFR” (Decreasing Failure Rate) of the system. 
 
6 CONCLUSION 
 

In the paper we wanted to shed light on evaluating quite specific technical systems which, by 
all means, are present in different processes. The new contribution is in the application itself 
regarding the system assessed. Since they are specific both by their construction and the way they 
work, then the analysis of their properties might not be standard either. So far some ways of finding 
optimum construction arrangements in order to obtain a required level of dependability and 
function have been shown. The method we chose is aimed at verifiable evaluation of the real data 
obtained from operation by using appropriate methods. Both the mathematical model and the 
example of a practical application together with operational data reflect the behaviour of the real 
system. The graphs covering the courses help us to catch the behaviour of the system even more 
precisely. On the basis of this information it is quite easy to get reliability measures as well as 
readiness measures of the system where the parameter is discreet there and it is given by a number 
of cycles the system performs during its function. 
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ABSTRACT 
 

There is a model of transport system presented in the paper. The possible semi - Markov 
process definitions are included. The system is defined by semi –Markov processes, while 
functions distributions are assumed. There are attempts to assess factors for other than 
exponential functions distributions. The paper consist discussion on Weibull and Gamma 
distribution in semi – Markov calculations. It appears that some forms of distribution 
functions makes computations extremely difficult. 

 
 
 
1  INTRODUCTION 
 

The reliability model of intermodal transport was presented during ESREL’06 conference 
(Zajac 2006b). The model is described by semi – Markov processes. During the presentation 
assumed, that, probabilities of transition between states were exponential. Complex technical 
systems are usually assumed, that probabilities of transition between states or sojourn times’ 
probabilities are exponential. Lack of information, too little number of samples or inaccurate 
assessment of data may cause that such assumption is abused. In some cases, when exponential 
distribution is assumed, there is also possibility to assess factors according to different distributions 
(Weibull, Gamma, etc.). Probabilities of transition between states are one of the fundamental 
reliability characteristic. The paper includes example of determination of above mention 
characteristic for one of the phases of combined transportation systems reliability model. 
 
2 TRANSHIPMENT PHASE CHARACTERISTIC 
 

There are three methods to define semi – Markov processes (Grabski 2002, 
Grabski&Jazwinski 2003): 
- by pair (p, Q(t)), 
when: p – vector of initial distribution, Q(t) – matrix of distribution functions of transition times 
between states; 
- by threes (p, P, F(t)), 
where: p – vector of initial distribution, P – matrix of transition probabilities, F(t) – matrix of  
distribution functions of sojourn times in state i-th, when j-th state is next; 
- by threes (p, e(t), G(t)), 
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where: p – vector of initial distribution, e(t) – matrix of probabilities of transition between i-th and 
j-th states, when sojourn time in state i-th is x, G(t) – matrix of sojourn times distribution functions.  
For transshipment phase semi – Markov process is defined by (p, P, F(t)). Phase of transshipment 
includes following states: 

1. standby, 
2. dislocation works, 
3. transshipment, 
4. preventive maintenance, 
5. repair (after failure).  

 
Activities which are involved into each of above states are described in papers (Zajac 2006a, Zajac 
2007). The graph of state is presented in Figure 1.  
 

 
 

Figure 1. Graph of states in transshipment phase 
 

3 CONDITIONS DETERMINATION FOR TRANSSHIPMENT PHASE RELIABILITY 
 

Transshipment phase elements can stay in reliability states from the set S (0,1), where: 
0 – unserviceability state, 
1 – serviceability state.  
Operation states takes values from the set T (1,2,3,4,5). Cartesian product of both states creates 
following pairs: (0,1), (1,1), (0,2), (1,2), (0,3), (1,3), (0,4), (1,4), (0,5), (1,5). The model allows for 
existence of following pairs, only: S1p - (1,1), S2p - (1,2), S3p - (1,3), S4p - (0,4), S5p - (0,5).  
Means of transport are in first operation state (standby) during time described by random variable 
ζp1. The distribution function of random variable is 
 

{ }tPtF pp ≤= 11 )( ζζ , 0≥t . 
 
The time of the second state (dislocation) is described by ζp2. The distribution function of random 
variable takes form 
 

{ }tPtF pp ≤= 22 )( ζζ , 0≥t  
 
The time of third state (transshipment) is described by ζp3, where distribution function of random 
variable is given by formula: 
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{ }tPtF pp ≤= 33 )( ζζ , 0≥t  
 
If the time of realization of preventive maintenance is known (and lasts γp), than the distribution 
function of sojourn time in the fourth state (preventive maintenance) is 
 

{ }tPtF pp
≤= γγ )( , 0≥t . 

 
Some of activities can be interrupted by failures. It was assumed, that time of work without failure 
in states 2-nd and 3-rd is described by ηpi, i = 2,3. The distribution function is given by formula: 
 

{ }tPtF pipi ≤= ηη )( , 0≥t , i = 2,3. 
 
If there is known time, when the system is broken down, and that time is given by χp, then the 
distribution function of state 5-th (repair) is 
 

{ }tPtF pp
≤= χχ )( , 0≥t . 

 
States 4-th and 5-th are states of unserviceability, however only state 5-th requires repair after 
failure. We assume that random variables ζpi, ηpi and χp are independent. 
 
3.1 Kernel determination and the definition of semi – Markov process in transshipment 

phase  
 

The phase of transshipment can be described by semi – Markov process {X(t): t ≥ 0} with the 
finite set of states Sp = {1, 2, 3, 4, 5}. The kernel of the process is described by matrix 
  

                                               Qp(t)= 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000

000
000

00

51

41

3531

2521

141312

p

p

pp

pp

ppp

Q
Q

QQ
QQ

QQQ

.                                        (1) 

 
Transshipments from 1-st state to 2-nd, 3-rd and 4-th can be described by 
 

),()(
11212 tFptQ

pp ζ=  

 
),()(

11313 tFptQ
pp ζ=  

 
)()(

11414 tFptQ
pp ζ= . 

 
Transshipments from 2-nd state to 1-st and 5-th: 
 

),()(
22121 tFptQ

pp ζ=  
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).()(
22525 tFptQ

pp ζ=  

 
Transshipments from 3-rd state to 1-st and 5-th: 
 

),()(
33131 tFptQ

pp ζ=  

 
).()(

33535 tFptQ
pp ζ=  

 
Transshipment from 4-th state to 1-st: 
 

)()()(41 tFtPtQ
ppp γγ =<= . 

 
Transshipment from 5-th state to 1-st: 
 

)()()(51 tFtPtQ
ppp χχ =<= . 

 
The vector p = [p1, p2, p3, p4, p5] is initial distribution of the process. In this case vector takes values 
p = [1, 0, 0, 0, 0]. 
The matrix of transient probabilities is given by 
 

                                                     P =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000
0000

000
000

00

51

41

3531

2521

141312

p
p

pp
pp

ppp

.                                                (2)

  
3.2 The transient probabilities 
 

Transient probabilities are one of the most important characteristics of semi – Markov 
processes. They are defined as conditional probabilities 
                                                         
                                                  { } SjiiXjtXPtPij ∈=== ,,)0(|)()(                                             (3) 
 
Above probabilities obey Feller’s equations (Grabski 2002, Grabski&Jazwinski 2003) 
                              

                                              ∑ −∫+−=
∈Sk

ikkj

t

iijij xdQxtPtGtP )()()](1[)(
0

δ                                      (4) 

 

Solution of that set of equations can be found by applying the Laplace – Stieltjes transformation. 
After that transformation the set takes form 
                             
                                           .,,)(~)(~)](~1[)(~ Sjispsqsgsp

Sk
kjikiijij ∈∑+−=

∈
δ                                    (5) 

 
In matrix notation this set of equation has form 
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                                                         )(~)(~)](~[)(~ sssIs pqgp +−= ,                                                    (6) 
 
hence 
                                                          
                                                         )](~[)](~[)(~ 1 sIsIs gqp −−= − .                                                   (7) 
 
Determination of transient probabilities requires finding of the reverse Laplace – Stieltjes 
transformation of the elements of matrix p(s). 
 
4 DATA AND ASSUMPTIONS FOR CALCULATIONS  

 
Data were collected in 2006 in one of the Polish containers terminals. The data includes 

information about numbers of transient between states during 50 succeeded days. Selected data are 
presented in Table 1. 
 

Table 1. Selected data about time of states [h] 
 

 

state 1 
stand by

state 2 
dis- 

location

state 3 
trans- 

shipment

state 4 
preventive 

maintenance

state 5
repair 

average 3.610 3.766 3.805 0.538 0.28 
variance 0.387 0.022 0.020 0.046 0.287 

min. value 1.862 3.482 3.482 0.3 0 
max. value 4.411 4.042 4.020 1.1 2 
dispersion 2.548 0.560 0.538 0.8 2 

 
Collected data didn’t allow for verifying probabilities distribution. The information gave possibility 
to estimate necessary parameters to assess factors for exponential, Weibull and Gamma distribution 
functions. Factors are presented in Table 2. 

 
Table 2. Distribution parameters for different distribution function 

 

 state 1 state 2 state 3 state 4 state 5 
Parameter of exponential distribution 

λ 0.28 0.27 0.26 1.86 0.86 
Parameters of gamma distribution 

α 9.260 152.059 181.992 13.968 4.120 
λ 33.208 531.455 665.314 9.129 4.878 

Parameters of Weibull distribution 
α 1.020 1.01 1.014 0.985 1.021 
λ 0.269 0.26 0.266 1.538 0.833 

 
At first calculation has been done with assumption, that transient probabilities are exponential. The 
distribution function of sojourn times and their Laplace – Stieltjes transformation respectively, take 
form 
 

t
w etF 28,0

1 1)( −−=  , 
28,0

28,0)(*1 +
=

s
tf w , 
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t
w etF 27,0

2 1)( −−= , 
27,0

27,0)(*2 +
=

s
tf w , 

 
t

w etF 26,0
3 1)( −−= , 

26,0
26,0)(*3 +

=
s

tf w , 

 
t

w etF 86,1
4 1)( −−= , 

86,1
86,1)(*4 +

=
s

tf w , 

 
t

w etF 86,0
5 1)( −−= , 

86,0
86,0)(*5 +

=
s

tf w . 

 
Then, kernel of the process is given by matrix 
   

 Qp(t) = 

⎥
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  (8) 

 
Matrices q(s) and g(s) have been determined according to equations (5) – (7). In considered 
example we obtain 
 

        

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

++

++

+++

=

1000
86,0

86,0

0100
86,1

86,1
26,0

26,001,0010
26,0

26,099,0

27,0
27,002,0001

27,0
27,098,0

0
28,0

28,004,0
28,0

28,016,0
28,0

28,080,01

)(~

s

s

ss

ss

sss

sq              (9) 

 
and 
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                                =(s)~g
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                                    (10) 

 
According to (7), matrix p(s) is a result of multiplying of two matrices. Elements from first column 
of obtained matrix p(s) are shown on Figure 2. 
 

 
 

Figure 2. First column of matrix p(s)  
 
Determination of transient probabilities requires finding of reverse Laplace – Stieltjes 
transformation of each element of the p(s) matrix. For elements of the first column of matrix p(s) 
reverse transformations are as follow:  
 
              tttt eeeeP 873,1539,0262,0856,0

11 0086,05033,00002,00087,04966,0 −−−− ⋅+⋅+⋅+⋅−=            (11) 
 

              tttt eeeeP 8734,15390,0262,0856,0
21 0014,05221,0006,00209,04966,0 −−−− ⋅−⋅−⋅+⋅−=            (12) 

 

              tttt eeeeP 873,1539,0262,0856,0
31 0014,04769,00301,00118,04966,0 −−−− ⋅−⋅−⋅−⋅−=           (13) 

 

             tttt eeeeP 873,1539,0262,0856,0
41 1894,17087,00002,00162,04966,0 −−−− ⋅−⋅+⋅+⋅−=              (14) 
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            tttt eeeeP 873,1539,0262,0856,0
51 0073,03486,10003,01838,14966,0 −−−− ⋅+⋅+⋅+⋅−=                (15) 

 
All other transient probabilities (for columns 2 – 5) have been calculated similar way. On the basis 
of above results, characteristics of transient probabilities from state 1-st (standby) to other, both 
serviceability and unserviceability, states were calculated. The values of those probabilities 
stabilize after few days of work of the system. The transient probabilities functions to serviceability 
states are shown on Figure 3, to unserviceability states on Figure 4.  
 

0

0,1

0,2

0,3

0,4

0,5

0,6

0 5 10 15 20
time [days]

p12 p13 p12+p13

 
 

Figure 3. Graph of transient probabilities to serviceability states 
 
For assumed conditions of phase of the system and distribution parameters, transient probability to 
serviceability states is: p12 + p13 = 0.498. Transient probabilities to unserviceability states achieve 
stable value for t = 4 days and don’t change until t = 300. The calculation hasn’t been done for 
greater values of t. 
 

 
 

Figure 4. Graph of transient probabilities to unserviceability states 
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5  METHODS OF DETERMINING OF TRANSIENT PROBABILITIES FOR OTHER 

DISTRIBUTION FUNCTIONS  
 

Gamma distribution is appropriate for describing age – hardening processes of technical 
object. There exists an assumption that sum of n independent random variables (with exponential 
distributions), with parameter λ, has two parameters gamma distribution (where α is shape 
parameter, and λ is scale parameter) (Jazwinski&Fiok 1990). Weibull distribution very often is 
used to object’s durability modeling. 
According to Table 2, collected data can be described by Weibull or gamma distributions. In the 
paper, for those distributions, only Laplace - Stieltjes transformation are presented. Sojourn times 
for Weibull distribution functions take form 
 

02,1269,0
1 1)( t

b exF −−= , 
 

01,126,0
2 1)( t

b exF −−= , 
 

014,166,2
3 1)( t

b exF −−= , 
 

985,0538,1
4 1)( t

b exF −−= , 
 

021,1833,0
5 1)( t

b exF −−= . 
 
Derivative of Weibull distribution function (i.e. density function) is presented by 
 
                                                              1)( −− ⋅⋅=′ ααλλα tetF t                                                        
(16) 
 
Laplace – Stieltjes transformations of Weibull distribution function can be obtained by using 
formula 
 

                   ∫ −−−=∫ −∫ =⋅=
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∞

−−
∞
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Hence 
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∞ ∞
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00 00
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Using Maclaurin series for element “exp(-λtα)” we obtain Laplace – Stieltjes transformation of the 
Weibull distribution function 
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Γ⋅

+
Γ⋅

−
Γ⋅

= ...)3(3
!3

)2(2
!2

)()(* 3

3

2

2

ααα

ααλααλααλ
sss

tf ∑
Γ⋅∞

=1

)(
!n

n

n

S
nn

n α

ααλ                     

(19) 
 



Zajac, Budny – ON DETERMINATION OF SOME CHARACTERISTICS OF SEMI‐MARKOV PROCESS FOR DIFFERENT DISTRIBUTIONS OF 
TRANSIENT PROBABILITIES  

 
R&RATA # 2(13) part 2  

(Vol. 2) 2009, June 
 

 

83 

For considered example, Weibull distribution Laplace – Stieltjes transformations take form, 
respectively  

 

...0059,00210,00774,02713,0)(* 08,406,304,202,11 +−+−=
ssss

tfb  

 

...0049,00183,00689,02611,0)(* 04,403,302,201,12 +−+−=
ssss

tfb  

 

...489,54845,192619,76760,2)(* 056,4042,3028,2014,13 +−+−=
ssss

tfb  

 

...1139,54391,33013,25284,1)(* 94,396,297,1985,04 +−+−=
ssss

tfb  

 

...5468,06260,07216,08405,0)(* 084,4063,3042,2021,15 +−+−=
ssss

tfb  

 
According to equation (7), after determining of reverse Laplace - Stieltjes transformation of 
elements of the matrix p(s), transient probabilities can be calculated. 
Gamma distribution is given by formula 
 

                                                                  
)(
)(

)(
α
αλ

Γ
Γ

= ttF .                                                               (20)

  
Density function of gamma distribution has form 
 

                                                              tettF λα
α

α
λ −−

Γ
= 1

)(
)(' .                                                         

(21)  
Laplace – Stieltjes transformation can be obtain by using formula 
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Taking into account equation 
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=
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Laplace – Stieltjes transformation takes form 
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In this case sojourn times distribution functions and respective Laplace – Stieltjes transformations 
are as follows 
 

)26,9(
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Using of equation (7) and calculating reverse Laplace - Stieltjes transformations transient 
probabilities can be obtained. In the case of gamma distribution, there are numerical problems with 
calculating of incomplete gamma functions values. Moreover, even values of gamma function for 
arguments larger than 50 cannot be easy obtained. Used software tools (SciLab 4.1.1 and Derive 
6.1) don’t allow for calculating such great values. 
 
6 CONCLUSIONS 
 
1. Semi - Markov processes allow for estimate basic reliability characteristics like availability or 

transient probabilities for systems, where distributions functions are discretional.  
2. Usages of distribution functions other than exponential in case of semi Markov processes causes 

that further calculations are very complicated.   
3. There is no easy available software which allow for calculations connected with semi – Markov 

processes. Because of that, profits from usage of semi – Markov processes are limited.  
4. Lack of information about type of distribution and routine assessment of exponential distribution 

can bring not accurate assumptions and consequently false results.  
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ABSTRACT 
 

This paper discusses the problem of the optimization of maintenance threshold and 
inspection period for a continuously deteriorating system with the influence of covariates. 
The deterioration is modeled by an increasing stochastic process. The process of covariates 
is assumed to be a temporally homogeneous finite-state Markov chain. A model similar to 
the proportional hazards model is used to represent the influence of the covariates. 
Parametric estimators of the unknown parameters are obtained by using Least Square 
Method. The optimal maintenance threshold and the optimal inspection interval are derived 
to minimize the expected average cost. Comparisons of the expected average costs under 
different conditions of covariates and different maintenance policies are given by numerical 
results of Monte Carlo simulation.  

 
 
 
1 INTRODUCTION 

 
Optimal replacement problems for deteriorating systems have been intensively studied in the past 
decades by a number of researchers (for instance, Aven & Jensen (1999), Wang (2002) and Wang 
& Pham (2006), van Noortwijk (2009)). As far as continuously deteriorating systems are 
considered, most of the attention has been focused on static environment and on monotonic 
increasing deterioration systems, with periodic or non-periodic inspection. Various stochastic 
processes have been proposed to represent the degradation or wear process (e.g. Grall et al. (2002),  
Bérenguer et al. (2003) and van Noortwijk (2009)). Recently more interest and attention has been 
given to two approaches. One approach is to deal with degradation models including explanatory 
variables (covariates). These variables describe the dynamic environment; in the experiments of life 
science and engineering, they are often expressed by the proportional hazards model (Newby 
(1994), Singpurwalla (1995), Meeker & Escobar (1998) and Lawless & Crowder (2004)). 
Bagdonavičius & Nikulin (2000) propose a method to model an increasing degradation by a gamma 
process which includes time-dependent covariates. Makis & Jardine (1992) consider an optimal 
replacement problem for a system with stochastic deterioration which depends on its age and also 
on the value of covariates.  Kharoufeh & Cox (2005) deal with a degradation-based procedure to 
estimate lifetime distribution, where the single-unit system is exposed to a stochastically evolving 
environment characterized by a stationary continuous-time Markov chain. Meeker et al. (1998) 
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describe a degradation reliability model, where the dynamical temperature is represented by an 
accelerated model. The other approach is to consider a non-monotonic deteriorating system with 
increasing tendency (Newby & Dagg (2002), Newby & Dagg (2003), Newby & Barker (2006), 
Barker & Newby (2009)). Barker and Newby (2009) study the problem of optimal inspection and 
maintenance policy for a non-monotonic system. They use the last exiting time from a critical set 
instead of the first hitting time to determine the optimal policy. 

In this paper we focus on the optimal policy of periodic inspection/replacement for a 
monotonic deteriorating system with explanatory variables (covariates), in which the covariate 
process is supposed to be a temporally homogeneous Markov chain. The influence of the covariates 
on degradation is considered by a multiplicative exponential function. The system is supposed to be 
failed when the system state crosses a fixed threshold known as failure threshold. The purpose is to 
propose an optimal maintenance policy for the considered system in order to minimize the global 
long-run expected average maintenance cost per time unit.  

The other particularity of this paper is that we compare the maintenance cost under following 
cases: (1) the optimization when the covariates are defined as a Markov chain; (2) the optimization 
when the covariates iZn = ( 3,2,1=i ) are fixed; (3) the weighted mean of the optimal costs for each 

iZn = )3,2,1( =i weighted by the steady-state probabilities. All results are illustrated by a Monte 
Carlo study. 

The structure of the paper is as follows. In Section 2 we model the degradation process by a 
stochastic process, where the influence of the covariates is modeled by a multiplicative exponential 
function. In Section 3 we study the maintenance optimization problem. Finally, we compare the 
expected average maintenance costs per unit time for the different cases mentioned above. 

 
2. STOCHASTIC DETERIORATION PROCESS 

 
In this section, we consider a single-unit replaceable system in which an item is replaced with a new 
one, either at failure or at preventive replacement.  

 
2.1. Deterioration model without covariates 

 
The degradation of the system is represented by a continuous-state stochastic process )(tD  

with initial degradation level 0)0( =D . We also suppose that the increment of the system can be 
modeled by a continuous nonnegative-valued process )(tX  with exponential distribution, that is, 
the random increment )()( tDsD −  subjects to an exponential distribution with mean )( ts −λ .   

Suppose that the deterioration can be observed at each time unit kt  ( L,2,1=k  ), the discrete 
observed stochastic processes are defined as follows: )( kk tDD =  and )( kk tXX = .   
The process nD  is defined as: 

nnn XDD += −1  ,                                                              (1) 
 

where nX  are random  variables of exponential distribution with mean nμ , denoted by nX ∼ 
)/1( nμε . 

Denote 
i

i μ
λ 1

= , it can be proved (see Appendix) that if ∑=
=

n

i
iXX

1
where iX ∼ )( iλε  are 

independent, then: 
(1) If λλ =i  are the same parameters, then X  will be an Erlang distributed variable with 

parameters ),( λn  (Soong (2004));  
(2) If ji λλ ≠  for ji ≠ , when 0>y , the density probability function will be:  
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Since the degradation is calculated as ∑
=

=
n

i
in XD

1
 with independent exponentially distributed 

increment iX , then we can obtain the distribution function, the density function of the deteriorating 
process nD  by the above results. 
 
2.2. Modeling the influence of covariates on degradation 

 
The covariate process }0),({ ≥= ttZZ  is assumed to be a temporally homogeneous discrete 

Markov process with finite states },,,2,1{ KS L=  here S  describes the states of the dynamic 
environment. Suppose that covariates are available only at each time unit kt ),2,1( L=k , and the 
covariates at time kt  are defined by )( kk tZZ =   

 Let  )|()( 1 iZjZPkP kkij === +  be the transition probabilities of process { }.,2,1, L=kZk  The 
filtration }:{ tsZst ≤=ℑ σ  denotes the history of the covariates. Since the process Z  is a finite 
temporally homogeneous Markov process, so ijij PkP =)(  does not depend on k  for all ., Sji ∈  We 
denote by )( ijPP = the transition matrix. 

We assume that the increment of the degradation at time  nt  depends only on the covariates at 
that time. We shall denote by nD  the observed process at time nt , defined as:  

 
)(1 nnnn ZXDD += − ,                                                                           (2) 

 
where )( nn ZX  are exponential distributed with mean parameters )( nn Zμ . So { }nn ZD ,  is a non-
homogeneous   Markov process in the sense that the transition probabilities satisfy the following 
equality: 
 

),,,;0,,,|,( 112211221 zZzZiZDxDxDjZyDP nnnnnnnn =======≤ −−−−−− LL      
      ),|,( 11 iZxDjZyDP nnnn ===≤= −− . 
 
 To describe precisely the influence of the covariates nn zZ =  on nX , similar to the 

proportional hazards model proposed by Cox (1972), we suppose that the parameters )( nn Zμ  
depend on nZ  as follows: 

 
   )exp()11exp()( 0}{}1{10 nZKnZknZnn Z βμββμμ =++= == L ,                                           (3) 

 
where ),,( 1 Kβββ L= is a regression parameter. Considering the symmetrical property of β , without 
loss of generality, in what follows, we assume that Kββ ≤≤L1 . 
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                                  (a)                                                                        (b) 
Fig.1 An example of the non-maintained degradation process (a) and the corresponding 

covariates process (b)  
 
The distribution function and the density function of the increment under the condition of 

nn zZ =  are calculated in the same way as before. Then the distribution nF  of ∑
=

=
n

i
iin ZXD

1
)(  can be 

derived using the method of convolution and the total probability formula.  
 

Example 1 An example of degradation for 100 days is given in Figure 1, where nZ  is a 3-state 

Markov chain with transition matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

95.005.000.0
03.095.002.0
005.095.0

P  (corresponds to a steady-state 

distribution (0.3, 0.5, 0.2)), initial state 10 =Z , )1,5.0,2.0(=β , the baseline mean parameters 
2.00 =μ . 

 
 
For the covariates with initial state 10 =Z , denoted by ),,,( 21

n
K

nnn ππππ L=  the distribution of the 

covariates nZ with )1|( 0 === ZiZP n
n
iπ  the conditional distribution of nZ under the condition of 

.10 =Z  We have 
nn

K
nn P)0,,0,1(),,,( 21 LL =πππ , 

and  ,lim i
n
i

n
ππ =

+∞→
 where iπ  is the steady-state distribution of the Markov  chain.    

In this case, the distribution nF  of ∑
=

=
n

i
iin ZXD

1
)(    will be: 

 

.)()( 12111
1

1

1
1

1
1

1
niniiii

K

ni

n

k
kk

K

i
n PPPxiXPxF −

=

+

=
−

=
+ ∑ ∑∑ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
≤= LL  

 
     When the covariates form a steady-state Markov chain, each replacement makes the system 
restart from its new state 00 =D and the covariates nZ  follow their trajectory.  Let us denote nT  the 
instant of replacement (preventive or corrective), then the variables ( )tt ZD ,  and ( )nTtnTt ZD ++ ,  have 
the same distribution, therefore the trajectory of the degradation does not depend on the history 
before the replacement. Henceforth, the deterioration process is a renewal process. 
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2.3 Parametric estimation using least square method 

 
In this section, we use the least square method to estimate the unknown parameters. The data 

sample is all the degradation data observed before failure, i.e., before the beyond of the critical 
threshold L . 

Since in general case, the mean degradation at time kt  is equal to  
 

          ∑∑∑∑∑
= == ==

=Δ===Δ=Δ=
n

i

K

j

i
jii

n

i

K

j
iii

n

i
in jZDEjZPjZDEDEDE

1 11 11
)()()()()( π  

          
Because of the difficulty of calculating the distribution i

jπ  of Z at time it , and the case that 
i
jπ  can be approximated by jπ  when i  is large enough, we can approximate the degradation mean 

as follows:  

         ∑∑∑∑∑∑
=== == =

Δ⎟
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K
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jiin mmjZDEDE

111 11 1
)exp()exp()()( πβπβπ  

                   
                  
Therefore the Least Square Estimator ),,(€

3,210 βββμθ = is defined by 
 

 )(minarg€ θθ
θ

nQ= ,                                                                         (4) 

where ∑
=

−=
n

i
iin DED

n
Q

1

2))((1)(θ . 

 
3. CONDITION-BASED PERIODIC MAINTENANCE MODEL 

 
In this section, we study the optimal periodic maintenance policy for the deteriorating system 

described in Section 2. 
Suppose that the system is a monotonically deteriorating stochastic system with initial 

state 00 =D , and the state can exclusively be monitored by inspections at the periodic times ,τkTk =  
where ℵ∈τ  is the inspection interval. We now give some assumptions under which the model is 
studied. 

(1) Inspections are perfect in the sense that they reveal the true state of the system and the 
explanatory variables. 

(2) The system state is only known at inspection times and all the maintenance actions take 
place only at inspection times and they are instantaneous.  

(3) Two maintenance operations are available only at the inspection time: preventive 
replacement and corrective replacement. 

(4) The maintenance actions have no influence on the covariate process.    
 
3.1 Maintenance decision 
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                                      (a)                                                                       (b) 
Fig.2 An example of maintained deterioration system (a) and the corresponding covariate 

process (b) 
 
 
Suppose that the system starts with 00 =D , and is perfectly inspected at periodic times  

{ },,2, Lττ=Π  ( ℵ∈τ ), the states are only known at inspection times, and maintenance actions are 
instantaneous. We define a failure threshold L and a preventive maintenance threshold pL  
( LLp ≤ ). 

If at inspection time τkTk =  we have pk LD <τ , then three exclusive events may occur at 
time 1+kT : 

 
 E1: LD k ≥+ τ)1( :  which means that the system fails at time  ]( ττ )1(, +∈ kkt  and it will be 
correctively replaced at time τ)1( +k . Costs of corrective replacement FC  as well as a cumulative 
cost dCd ×  corresponding to the ‘inactivity’ time have to be considered, where tkd −+= τ)1( is the 
cumulated ‘inactivity’ time. 
 E2: ),[)1( LLD pk ∈+ τ : means that there is no failure in interval [ ]ττ )1(, +∈ kkt , however the 
degradation level is greater than  the preventive threshold pL at time τ)1( +k . So a preventive 
replacement action takes place at τ)1( +k  which induces a preventive maintenance cost. 
E3: pk LD <+ τ)1( : means that the degradation level is always lower than pL , so there is no 
replacement action at τ)1( +k  , we only have to take into account an inspection cost and the 
decision time is postponed to τ)1( +k .  

An example of a maintained system is given in Figure 2, where the preventive threshold 
,30=pL the corrective threshold ,35=L  and ,5=τ  other parameters are the same as in Example 1. 

 
3.2 Calculation of the maintenance cost 

 
Each action of inspection and replacement results in a unit cost. Let iC , pC , FC  denote 

respectively the unit cost of inspection, preventive replacement and corrective replacement. We also 
consider the cost for ‘inactivity’ with per unit time cost dC .   

Then the cumulative maintenance cost in  ],0( t  is: 
)()()()()( tdCtNCtNCtNCtC dFFppii +++= ,                                                 (5) 
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where )(tNi  (respectively )(),( tNtN Fp ) is the number of inspections (respectively number of 
preventive replacements, number of corrective replacements) from 0 to t . 

The expected average cost is calculated as follows:  
   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +++
==

∞→∞→
∞ t

tDECtNECtNECtNEC
t

tECEC dFFppii

tt

))(())(())(())((
lim)(lim .                       (6) 

 
When the stochastic process ),( ZD is a regenerative process as we stated above, we can calculate 
the expected cost per time unit as follows: 

))((
)))((()(

ZLE
ZLVEZEC =∞  ,                                                                         (7) 

where ))((( ZVE  and ))((( ZLE  are respectively the expected cost and expected length of a renewal 
cycle. 

Considering the three above exclusive events E1, E2, E3, denote by kV  (respectively kL ) the 
total cost (respectively length) from time kT   to the time when the system is replaced. 

Since the total cost kV  (respectively the total length kL ) is a combination of the cost 
(respectively the length) in time interval [ )1, +kk TT   and the cost (respectively the length) 
after ,1+kT we calculate the total maintenance cost )(ZVV = and the length of a renewal cycle 

)(ZLL =  by following iterate method: 
 

}3{1}2{}1{ 1)(1)(1))(( EkiEpiEdFik VCCCtdCCCV +++++++= ,                        (8) 

 

                        }{1}{}{ 321
1)(11 EkEEk LL ++++= τττ ,                                                                   (9)  

 
and the expectation will be 

 
),1()()()()1)(()()()( }3{132}1{1 EkipiEdFikk VEEPCEPCCtdECEPCCVEv +++++++==         (10) 

 
)1())()()( }3{1321 Ekk LEEPEPEPl ++++=  ( τ .                                                                         (11)                   

 
  The optimization problem is to find the value of *τ  and *

pL minimizing the expected long-
run average maintenance cost: 

 
)(minarg*),(

),(

* ZECL
pL

p ∞=
τ

τ .                                                                      (12) 

 
3.3 Description of the optimization procedurec 
 
We now give a formal description of the optimization procedure. 
For a given pL andτ , we estimate the expected maintenance cost as follows. 
Step 0: Initialization. 
 
At time 00 ≡t , let  .1,0 00 ≡≡ ZD  
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Step 1: Generation of the trajectory of the degradation process 
 
 Table1. Estimation of the parameters: mean and standard deviation (within parentheses) 
 

Sample 
size n  

 

 
0€μ  

 
1
€β  

 
2

€β  
 
3

€β  

100 0.180 (0.046) 0.186 (0.031) 0.480 (0.048) 0.985 (0.058) 
200 0.182 (0.039) 0.189 (0.022)  0.485 (0.040) 0.989 (0.039) 
500 0.183 (0.030) 0.190 (0.011) 0.488 (0.038) 0.993 (0.040) 

1000 0.184 (0.031) 0.196 (0.012) 0.492 (0.043) 0.996 (0.042) 
 

  
(1) Simulate a trajectory of the covariate process { }nZ with the initial state 10 ≡Z  and transition 

matrix P . 
(2) Generate a trajectory of the degradation process conditional upon the trajectory{ }nZ . 
 
Step 2: Estimation of the maintenance cost conditional upon covariates above  

  
      Estimate the total maintenance cost and the total length based on N  renewal cycles ( N  large 
enough). In each renewal cycle, the maintenance decision is taken according to the three exclusive 
events (E1)-(E3) mentioned above, the maintenance cost and the maintenance length are calculated 
as (8) and (9). 

 
Step 3: Estimation of the expected average cost for a stationary Markov chain. 

 
Repeat Step 0-Step 2 to derive the total maintenance cost and the total length for a stationary 

Markov chain, then calculate the expected average maintenance cost as (6) or (7) indicated. The 
repetition does not be stoped until the convergence of the expected average maintenance cost. 

After the calculation of the expected average maintenance cost by the procedure above for 
each pL andτ , we obtain a maintenance cost matrix with respect to pL andτ , then the optimal 

decision ( )** ,τpL   can be derived based on the criteria (12) 
 

4. NUMERICAL RESULTS 
 

4.1 Numerical results for parametric estimators  
 
We apply the least square estimator for a degradation sample described in Section 2. The 

estimator is defined by (4).  
We simulate 1000=N  samples with various sample size n . For each sample we give the 

estimator of the unknown parameter ),,,( 3210 βββμθ =  for ).1,5.0,2.0,2.0(0 =θ In Table 1 we 
summarized the results for Least Square Estimation. For each estimator we give the empirical mean 
and the empirical standard deviation based on the N  estimators we obtained. 

The results in Table 1 show that the least square method has a good behavior to estimate the 
unknown parameters. 
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4.2 Numerical results for optimal periodic maintenance  
 
In this section we give numerical results of our maintenance optimization problem. The 

deteriorating system is the system defined in Example 1. We consider four different cases of unit 
maintenance cost: 
Table 2. The optimal preventive threshold, the optimal inspection period and the expected average 
maintenance cost with periodical inspection 
 

 
Covariates 

*)*,,( * CLp τ
 

( Case 1) 

*)*,,( * CLp τ
 

( Case 2) 

*)*,,( * CLp τ
 

( Case 3) 

*)*,,( * CLp τ
 

( Case 4) 
Z general (12,   60,  1.0607) (12,   54, 1.1238) (19,  63,  1. 5923) (11,  80,  2. 6891) 
Z=1 (21, 120,  0.5158) (21, 114,  0. 5263) (23,  123,  0. 9292) (21,  120,  1. 3016) 
Z=2 (20,  87,  0.7183) (18,   81,  0.7901) (19,  90,   1. 2955) (19,  90,   1.7511) 
Z=3 (18, 51,  1.2509) (16,  48,  1.3437) (17,  51,  2.2431) (19,  54,   2. 9740) 
Mean cost 0.8376 0.90344 1.50657 2.028111 

 

 
Fig.3 The iso-level curves of ∞EC  for 10=iC , 50=pC , 100=FC  and  50=dC  for 

                         a deteriorating system. 
 
 
Case 1 (Inexpensive unavailability): ,10=iC  50=pC , 100=FC  and  50=dC ; 
Case 2 (Expensive unavailability): ,10=iC  ,50=pC 100=FC  and  150=dC ; 
Case 3 (Expensive PR): ,10=iC  ,100=pC     100=FC  and 50=dC ; 
Case 4 (Expensive inspection): 100=iC , 50=pC ,   100=FC  and 50=dC . 

 
For each case of maintenance cost, we compare the following three values. 
(1) Optimal maintenance cost when nZ  come from a general Markov chain; 
(2) Optimal maintenance cost when nZ is fixed to iZn = )3,2,1( =i ; 
(3) Weighted mean of the optimum cost for iZn =  )3,2,1( =i  with weight given by the steady-state 

probability:  

∑
=

∞∞ ==
3

1

* )(
k

kkZECCE π  
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       Results in Table 2 summarize the results of optimization for a deteriorating system with 
different maintenance costs. The iso-level curves of expected long-run average cost ∞EC  
with 10=iC , ,50=pC  100=FC  and  50=dC   for such a deteriorating system is depicted in Figure 3,  

 
Fig.4   The curve of )(* β∞EC  for ,10=iC  ,50=pC 100=FC  and  50=dC for a 
         deteriorating system. 

 
 
where the optimal parameter values are ,12* =pL  .60* =τ  These optimal values lead to the optimal 
expected average cost .0607.1* =EC  

In all cases of the different unit maintenance cost (expensive or inexpensive), the optimal 
expected average cost under the condition of 1=Z  ( )1ββ =  are the smallest one. Indeed, for ,1=Z  
the degradation increments are smaller in comparison with other cases. The cost for 2=Z  ( )2ββ =  
is higher than that of ,1=Z  and cost obtained for 3=Z )( 3ββ = is the highest one. As a 
consequence, the parameter  β  can be used to express the influence of the dynamic environment on 
the deteriorating system. 

In order to reveal the way that maintenance cost is influenced by the system parameters ,β  
using the symmetrical property, the optimal expected average cost is computed for various value of 

3β  with fixed 1β and 2β . The result appears in Fig 4. We see that the optimal expected average 
maintenance cost is an increasing function of the system parameter .3β  In fact, since the regression 
parameter β  expresses the influence of the dynamic environment, the expected average 
maintenance cost under the worst environment has higher cost than that of better environment. 

The expected average maintenance cost for system with a Markov chain is always greater 
than the weighted mean of the optimal costs for the three static environments, since we have less 
information for the deteriorating system under a Markov chain than under static environment. The 
weighted mean of the optimal costs gives the lower bound for the cost of a deteriorating system. 

 
 

5. Conclusion 
 
This paper deals with the periodic inspection/replacement policy for a monotonic 

deteriorating system with covariates, where the covariates form temporally homogenous finite 
states Markov chain. We use a method similar to the proportional hazards model to induce the 
influence of dynamic covariates on the degradation of the system. Expected average cost is 
estimated and optimum periodic inspection/replacement policies are derived for different 
maintenance cost per unit. The numerical results show that the optimal average cost is an increasing 
function of the regression parameters .β  Therefore the parameters β  can be used to express the 
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effect of the environment. The relationship between the optimal cost in the case of a covariates 
Markov chain and a combination of fixed covariates (with stead-state distribution) shows that the 
first is greater than the later. It will be interesting to apply the methods exposed in this paper on 
non-monotonic systems.  

 
 

Appendix:  The distribution of the increments of increasing degradation system  
 
 
We prove the conclusion by mathematical induction.  For 2=n , we have 
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ABSTRACT 
 

An object ability to realise tasks may be restored by repairing only failed components. 
This is called imperfect repair as the object is not as good as new after such a repair. 
Preventive replacement is an example of imperfect repair as well. The advantage of such 
maintenance is that it enables controlling a reliability level of a system. Sets of objects’ 
components which should be replaced are derived on a basis of statistical diagnosing with 
use of data about components failures. The acceptable level of a failure risk while executing 
transportation tasks has been taken as a criterion of choosing elements to be replaced. An 
algorithm of selecting components for preventive replacement has been developed. It was 
shown that a level of a system reliability can be controlled by changing an order of a 
quantile function in coordination and a number of redundant objects. A computer simulation 
model of the system was used to illustrate derived dependencies.  

 
 
 

1 INTRODUCTION 

Preventive replacements of objects’ components are used to maintain demanded reliability of 
system of objects. This way of avoiding failures of individual components in a system was 
presented in some surveys (McCall 1965, Pierskalla et al. 1976, Valdez-Flores et al. 1989). There 
are some policies of applying preventive replacements as age replacement, block replacement, 
imperfect maintenance, corrective maintenance. The latter can be made as perfect repair, minimal 
repair, imperfect repair or general repair. A component of an object maintained under an age 
replacement policy is replaced after failure or at a specified operational age. The time required to 
replace the failed component is often considered negligible and, after replacement, the component 
is assumed to be "as good as new". Moreover, if repair and replacement times are considered non-
negligible, it is possible to construct models to determine the optimal replacement age in order to 
maximize the component availability (Cassady et al. 1998). 

Another case is when a component or system that is maintained under a block replacement 
policy is replaced at regular time intervals, regardless of age (Shaked et al. 1992). The block 
replacement policy is easier to administer than the age replacement policy because only the elapsed 
time, rather than the operational time, since the last replacement must be monitored,. However, 
a component that was just replaced after failure may be replaced again as a part of the planned 
block replacement. It can be shown that the age replacement policy is preferable to the block 
replacement policy.  

Corrective maintenance actions are those actions that are necessary to restore objects to an 
operational state after failure, and can be categorized as follows: perfect repair, minimal repair, 
imperfect repair and general repair. In the above categories, repair may be used interchangeably 
with replacement. The issue is not whether a repair or replacement takes place. Rather, the issue is 
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the relative age of the component after repair or replacement. For example, if a failed component is 
replaced with a new one, it is considered the same as if the component was repaired to an “as good 
as new” condition. Perfect repair models assume that after a corrective maintenance action the 
component is rendered “as good as new”. The perfect repair assumption is reasonable if failed 
components are replaced with new and identical ones or if the repair procedure is thorough enough 
to negate nearly all of the aging effects. There is an optimal balance between preventive 
maintenance actions and corrective maintenance actions. In the relevant literature, the term 
imperfect repair has taken a broad meaning from minimal repair to some mixture of minimal repair 
and perfect repair (Brown et al. 1983). More recently, general repair models have been discussed as 
the most generally applicable corrective maintenance model that includes perfect repair and 
minimal repair as special cases (Pham et al. 1996). Very rare imperfect repair models have 
attempted to use component availability as a performance measure instead of cost.  

Commonly, the effects of applied maintenance actions are modeled through changes in the 
failure rate of the component. If replacements are made according to a block replacement policy 
and repair actions bring the state of the component to a value somewhere between that applicable to 
completely new state and that just prior to failure, this can be interpreted as changes in the 
chronological age of the object, creating the so called virtual age (Kijima 1989).  

Independently of applied preventive policy, the need for high reliability of such a system 
being used can result in great number of components replaced during preventive actions. As it 
cannot be considered full restoration of object reliability after maintenance, only components of the 
object should be replaced. This is a case of imperfect repair of the object. 

High reliability is achieved in practice by replacing specific components with new ones. If 
they are negligible, a criterion of selecting components may depend on level of reliability that is 
expected.  

It is obvious that a range of prophylactic activities depends not only on a reliability level of 
a system but also on its reliability structure. If there are some redundant objects, they can replace 
failed objects enabling execution of the planned tasks. A number of redundant objects also depend 
on the acceptable probability of failure during the task implementation period.  

Instead of a method of replacing object at a given rate known from the literature (Wang 
2002), the method of block replacement of sets of chosen components is proposed. This enables 
achieving demanded level of the set reliability. The method uses statistical characteristics of the 
objects instead of applying measurable parameters of their components. 
 
2. A SYSTEM WITH REDUNDANT OBJECTS  

Let us assume that n objects are essentially required for carrying out the planed tasks. If the 
entire set consists of n objects, then an assumption can be made that reliability structure of the 
system is in series. This imposes high requirements on reliability of each object, which is often not 
achievable. Then, in order to keep reliability of the set at its required level, redundant objects can be 
introduced. Adding k redundant objects allows for considering the system reliability structure as 
a threshold structure, in this case “n out of  n+k”.  

The model of system reliability depends on the way the redundant objects are operating in it. 
They may play a role of the “cold reserve” (standby system), that is, they passively wait for one of 
the objects to fail, or the “hot reserve” (parallel system), thus increasing the whole system capacity 
until one of the objects has failed. 

In case of the system “n out of n+1” with the cold reserve, the reliability function Rn+1(t) will 
be a sum of probabilities for occurrence of the following situations: 

1) until moment t no object will fail out of n objects in a series system, 
2) at any moment τ < t one out of n objects shall fail and will be replaced with a reserve 

object that will not fail along with the remaining objects at an interval (τ, t). 
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Probabilities for occurrence of the above situations are as follows, respectively: 
 

P1 = R
n
(t), 
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Substituting (2) and (3) for (1) yields 
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where Rn+1(t) = reliability function of “n out of n+1” system, R(t) = reliability function of an object, 
Rn(τ, t) = probability of a non-failure in the interval (τ, t) of the set consisting of (n-1) objects aged 
τ and one new object, f(t) = probability density function of an object’s failure, and fn(τ) = 
probability density function of a failure of one out of n identical objects in a series system. 

Probability density function of a failure of the system “n out of n+1” with the cold reserve is 
expressed by the following relation and no recurrence formulas are known:  
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In case of the system “n out of n+2”, the analytical description becomes more complex, as 

there is the second reserve object. This means that in the set, established at the moment τ and 
consisting of (n-1) objects aged τ and one new object, one of the objects may fail and be replaced 
with  the second reserve object before the moment t.  

In case of the system “n out of n+k” of identical objects with the hot reserve, we may use the 
following relation: 
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and the recurrence formula:  
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 ( ) ( ) ( ) ( )1knn,1kn1,nknn, RR1RRR −+−+−+ ⋅−+⋅= ,                                       (5) 
 
where R = reliability of a single object. 

Complexity of the analytical description, regardless of simplifying assumptions that have 
been made (i.e. identical objects, omission of the reliability structure of objects alone), indicates 
that there is a need for using a computer simulation for issues being considered here. 
 
3. PREVENTIVE REPLACEMENTS WITH STATISTICAL DIAGNOSIS 

A method that is known from literature and used for defining a scope and deadlines of 
preventive replacements is to include the costs of attentive replacements and the costs generated by 
the occurring failures (Barlow et al. 1965, Smalko 1991). As a result of application of this method, 
minimum average costs per unit of time related to maintained objects in a proper reliability status 
are achievable. However, in order to benefit from that effect there is a need to replace individual 
components at various time intervals, usually uncoordinated with the objects’ operations, which 
may wipe out advantages resulting from the implemented optimisation. Therefore, a possibility 
should be considered to make preventive replacements of selected components of objects at the 
assumed time intervals. Its scope can be defined on the basis of assessment of reliability of the 
components and the assumed reliability level of the entire set (Okulewicz et al. 2006). The system 
maintained in such a way preserves its ability to carry out the planned tasks with a given 
probability. 

A series system in case of complex objects can be considered. Thus, a failure appears 
whenever any component has failed. A repair usually involves a replacement of the component with 
a brand new one.  

However, the replacement of the damaged component with the new one does not result in 
recovery of such a reliability level as that before occurrence of the failure. This is because the value 
of the reliability function of the damaged component before the failure was less than 1, and 
following the replacement it was equal to 1. In effect, the condition of the object after the repair is – 
and must be – slightly better than that before the failure. So, practically there are no possibilities to 
recover such a status of the object following the repair, as the one right before the failure.  

Both the objects and their components are considered when developing the preventive 
replacements policy. Properties of the components are more predicable than those of objects which 
they are part of. Dynamic determination of a scope of preventive replacements could be based on 
a statistical assessment of present status of objects’ components.  

The term is widely used to describe a situation when decision about the system state is taken 
on the basis of a statistical analysis of data. In this case the statistical analysis gives distribution 
function of lifetime of the object. On this basis a mean time to failure is calculated. In order to do 
that, data are required about a distribution of time to failure and its parameters as well as about its 
operational use so far (since being new or from the moment of its replacement). 

The problem is in determining a moment when working object should be replaced to prevent 
its failure. This decision should be made according to a particular object on the basis of statistical 
data concerning the whole population of objects. So data from the past – i.e. gathered in 
a computerized system – should be used to calculate parameters of a distribution function of 
lifetime of the objects. They concern failures, repairs and replacements of object components. 
Alternative way is relying upon experts' opinions at the start. Next, the probability distribution 
function of time to failure for each of these components is determined. Then a procedure of 
selecting objects to preventive replacement is used. Thus, it could be called as preventive 
maintenance on the basis of statistical data. 
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The statistical diagnosis is a maintenance methodology in the area of maintaining objects with 
non-exponential distributions. It identifies preventive maintenance actions to realise the inherent 
reliability of equipment at a minimum expenditure of resources. Because of statistical parameters of 
objects it can be performed at any moment. It could be done either in a constant period of time or 
during planned service or during running repair. Also the distribution parameters are modified when 
either repair or replacement of the component has been done.  

This way the actual technical condition of the object is not taken into consideration as that 
would require for the object to be excluded from its operational use. Having data, reliability 
characteristics of components, updated working time of individual components, and a period for 
execution of the task, it is possible to define components that require preventive replacement in 
order for the project implementation probability not to decline below its assumed value. The 
procedure statistically predicts failures at part level by calculating the mean residual lifetime to 
failure (MRL).  

Parameters of distribution for all chosen components are kept in the computer system. When 
time comes for diagnosing the MRL for each of all chosen components is calculated according to 
the formula: 

 

 
∫
∞

=
t

R(x)dx
R(t)

1r(t)
 

 
where r(t) = mean residual lifetime function, R(x) = reliability function, and t = time from previous 
replacement. 

However, the MRL compared to required work period results in that about half of objects 
would undergo services before failure and the rest would fail without any treatment. Thus, instead 
of the MRL, it would be better to apply a quantile function of residual lifetime to enlarge the 
probability of preventive maintenance. This measure directly relates to predicted work period and 
the reliability of the system. For any moment t the following conditions have to be met: 
 
 d(t)qp ≥ ,                                                                    (6) 
 
where d = tasks implementation period, and qp(t) = quantile of residual lifetime function, order p. 
 

Function qp(t) shall be defined as in (Joe et al. 1983): 
 
 ( ) }{ p(x)F:xinfpF(t)q t

1
tp ≥== − , 

 
where Ft(x) = cumulative distribution function of the residual lifetime, Rt(x) = conditional 
reliability function, and 
 

 0tx,,
R(t)

x)R(t(x)R(x)F1 tt ≥
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It is also true that: 

 
 R(t + qp(t)) = (1 - p) R(t). 
 

The statistical diagnosing can be applied both to components and to complex objects. In 
a case of complex object, its reliability structure as well as special procedure of choosing 
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components to replace would be considered, which enables achieving demanded probability of 
proper work of the object (Salamonowicz 2005, Okulewicz et al. 2006). Probability of a failure 
during a task period can be determined in both cases, that is, when the replacements either have or 
have not been made. Additionally, the assessment may refer to the entire set of objects that have 
been assigned for execution of the tasks. 

If k objects work as the hot reserve, it is the system “n out of n+k” and the order p represents 
demanded level of reliability. However, in the case of k redundant objects as the cold reserve, 
n objects present a series system. On the basis of the formula (5) it is possible to calculate a new 
value for the lower level of demanded reliability, with the formula:  
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where αk = probability of failure of one of n objects (α0 = p), p = acceptable probability of system 
failure, R = reliability of a single object, n is a number of objects needed for the tasks execution, 
and k = number of redundant objects.  

Procedural way of pointing out the new order αk is presented in Figure 1. First, a quantile for 
the system “n out of n+k” is calculated for the order p. Then the reliability R of a single object for 
the same quantile is calculated for the system “1 out of 1”. With use of these values the order αk can 
be calculated, which is the order for the structure “n out of n”. 
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Figure 1. Graphical interpretation of orders calculation on the basis of structures “n out of n+k”, “n out of n” 
and “1 out of 1”: a) “n out of n+1”, b) “n out of n+2”. 

 
 
4. IMPERFECT REPAIR 

Majority of theoretical conclusions concerning maintenance are derived from assumption of perfect 
object restoring. However, such processes with use of models of full renewal are adequate only 
when an object is replaced with a new one or in a case of a general repair. In the case of corrective 
repairs made after failing of any object component, a model of minimal repair is often used (Barlow 
et al. 1996). This means that the object is to be restored to the condition just before failure. 
However, it is practically not possible, as object reliability status after repair of its component is 
better than that before failure. Those are reasons that theoretical models of either perfect or minimal 
repairs have limited applicability. Real repair restores object reliability to an intermediate value, and 
it is called an imperfect repair. However, a degree of object restoration by replacing one or more its 
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components can be estimated only after repair. Modelling of the exploitation process with use of the 
imperfect repairs means defining characteristics of random variable Xk concerning time of proper 
work after (k-1)th repair. Object’s reliability function after the first repair at moment t is given by 
the following formula (Salamonowicz 2005):  

 ( ) ( )[ ] ( )
( )
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12 tR
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where R1(x), R2(x) = reliability functions of the object before and after the repair, respectively, 
α = degree of the object restoration, and t = moment of the repair. 

The formula for the failure rate function relation before and after the repair is as follows:  
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where λ1(x), λ2(x) = failure rate functions before and after the repair, respectively. 

The preventive replacements of components of complex objects are made if the value of 
function (6) – calculated for the objects – is lower than the duration of the scheduled task planned. 
The appropriate algorithm is presented in Figure 2. 
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Figure 2. Algorithm for selecting components for preventive replacement. 
 
 

In order to select such a subset of components to be replaced at a given moment, an updated 
value of the reliability function is calculated, including operational time of each and every one of 
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them. Then a quantile of a given order is calculated for a distribution of the residual lifetime of each 
component.  

The components are put in order according to the growing quantile value. Then subsequent 
components are assigned for replacement, starting from a component of the lowest quantile value 
until the quantile of the entire set of objects – calculated by having included the replacement of 
assigned components with brand new ones – is not lower than the duration of the scheduled task. 
The replacement of components that have been assigned in that way ensures the assumed 
probability that the object will not fail during implementation of the task.  
 
5. SIMULATION EXPERIMENTS 

The above consideration was confirmed with use of a computer simulation. A system 
“n out of n+k”, for k=0, 1, 2 was considered as an example. In this model, objects were applied, that 
were partially replaced at steady intervals of time, according to results of statistical diagnosis. The 
planned process of replacements was combined with random process of failures and repairs.  

The set of n objects was used for execution of tasks in the model. Each object is composed of 
three groups of different components. The time to failure of a single group was Weibull distribution 
with a reliability function R(x) = exp[-(x/b)a]. 

Parameters of the model were as follows: n = 50, p = 0.1, d = 2.5, a1 = 2.5, b1 = 65, a2 = 2.5, 
b2 = 80, a3 = 2.5, b3 = 100. The acceptable probability of the set unavailability was p. The required 
reliability was maintained by preventive replacements of objects components. Statistical diagnosing 
was done at intervals of length d. A graph of the model states is presented in Figure 3. 

The initial state of all objects in the model is “work”. After predefined interval d the statistical 
diagnosis is done. This means that for the set of objects there are chosen these elements of objects 
which after replacement will cause increasing of the probability of this set of objects to the 
demanded level. This is done according the algorithm in Figure 2.  

Then all of these elements are replaced with new ones and objects after such an imperfect 
repair come back to the initial state. Objects that have not elements to be replaced are going back to 
the initial state immediately after the statistical diagnosis. For some of elements the real residual 
time to failure can be less than the interval d. Such an element causes a failure of the object to 
which it belongs. 
 

work

statistical
diagnosis

repair

d

preventive 
replacement

 
 

Figure 3. Graph of model states (work – working of a system, statistical diagnosis – selecting a set of components, 
preventive replacement – replacement of selected components with new ones, repair – replacement of a failed 

component with a new one). 
 
 

Depending on the reliability structure of the system it may cause the failure of this system or 
not. In the case of k redundant objects, the k+1 failure will result in the failure of the whole system. 
After this it undergoes the repair. This means replacing all failed elements with new ones. Such 
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replacements restore the system to a little better state than that before the failure, as some of its 
elements are new and the rest remain unchanged.  

The range of simulation was T = 1000, and experiments were repeated 10 times. As a result of 
simulation, numbers of replacements, failures of objects and unavailability of the whole set were 
estimated.  

First of all, the number of failures was estimated for two cases: in the system “n out of n” 
without any prophylaxis and for the system with statistical diagnosing with p = 0.1 and d = 2.5. The 
mean number of object failures (and the same of the system unavailability) without preventive 
replacements and with perfect object repair was 1102. Then this number was increased to 2065 after 
applying the preventive replacements together with imperfect object repairs. After applying 
preventive replacements, the mean number of system unavailability was decreased to 42, according 
to low probability of failure allowed for that system. But 33568 components have to be preventively 
replaced in order to sustain the appropriate reliability of objects. Such a great number of 
replacements in this case were a result of rather low reliability of object components. 

The empirical reliability of a single object was estimated by the following formula: 
 

 ( )knT
dN1R u

+⋅
⋅

−=                                                                (8) 

 
where Nu = number of object failures, d is a interval of statistical diagnosing, T = time of 
simulation, n = number of objects, and k = number of redundant objects. 

Using this formula, the reliability of the system was R50 = R50 = 0.99850 = 0.900, so the 
probability of failure did not exceed the demanded p = 0.1. Such results show that it is possible to 
achieve the demanded reliability with significant decrease in the number of random brakes in 
system work but with a very big number of preventive replacements of components.  

Imperfect repairs result in a greater number of system unavailability states than compared to 
perfect object repairs. This is obvious because repairing only components the object resources are 
not fully restored, and the object after the repair is not as good as new. Only for exponential 
distribution numbers of system unavailability with and without perfect repairs are equal to each 
other. 

The aim of preventive replacements is to decrease number of random object failures by 
avoiding them with assumed probability, as they break system operation and bring many 
unpredictable consequences. Adding redundancy to the system also results in enlarging its 
reliability. According to formula (7) the result of this is analogical to appropriate increasing of the 
quantile order of the system “n out of n”. The modified orders of quantile calculated using formula 
(7) for systems with n+1 and n+2 objects are as follows: α1 = 0.410, α2 = 0.660, and interpreted in 
Figure 4. 

Such a result is only valid for a perfect repair after every statistical diagnosing, i.e. each 
object is replaced with the new one. For complex objects, i.e. composed of some components this 
condition could be fulfilled when the interval of statistical testing is long enough. However, 
imperfect repairs – done by replacing selected components of maintained objects – are useful only 
when the interval between statistical diagnosing is shorter than the initial quantile at t = 0. After 
a number of such replacements of objects’ components, the system does not consist of new objects. 
So the probability of tasks fulfilling by a single object cannot be calculated based on reliability 
function of a new object. Instead of this there should be used systems “n out of n+1” and 
“n out of n+2” separately on the basis of appropriate experiments from Table 1. Then in both cases 
the modified order for system “n out of n” should be calculated with use of formula (7). They are, of 
course, less than those in the previous case. 
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Figure 4. Graphical interpretation of calculating new quantile orders. 
 
 

Simulation results in Table1 showed that the numbers of replaced components in systems 
“n out of n+1” with p = 0.1 and “n out of n” with p = α1 are similar, as well as in systems 
“n out of n+2” with p = 0.1 and “n out of n” with p = α2 

 
Table 1.  Simulation experiments results (for d = 2,5). 

 
p = 0.10 n out of n+k; 

k 1 0 2 0 
α - 0.346 - 0.482 

Number of:     
– preventive components replacements 14405 14638 10886 9807 

• group 1 7434 10213 5340 6582 
• group 2 4516 2982 3435 2175 
• group 3 2455 1443 2112 1050 

– system unavailability 23 174 16 256 
– object failures  154 174 238 256 
Reliability of a single object 0.992 0.991 0.989 0.987 

 
The results of simulations also confirmed a natural supposition, that components of the lowest 

reliability constitute a dominating group of replaced components. The share of such components in 
the total number is greater than without statistical diagnosing. These components were recognized 
and such a shifting was done by the algorithm assuring the demanded level of the system reliability.  

The reliability of a single object according to formula (8) for the system “50 out of 51” was 
R = 0.992. So the reliability of  the system “50 out of 51” – according to formula (4) – was R50,51 = 
0.943. The reliability of the system “50 out of 50” estimated with use of these data was R50,50 = 
0.647 and it was appropriate to demanded probability of failure α1 = 0,346.  

As is shown in Table 1, the mean numbers of replaced objects in systems “n out of n” with 
p = α1 and “n out of n+1” with p = 0.1 are similar, as well as in systems “n out of n” with p = α2 
and “n out of n+2” with the same p = 0.1.  
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6. CONCLUSIONS 

The imperfect repairs are a natural way of maintaining objects ability to perform given tasks. 
They better fit with real situations, since the perfect repair policy is quite unrealistic in case of 
objects. Preventive replacement of object’s components is a kind of imperfect repair as it restores 
the object capacity partially. This way a considerable reduction in a number of incidental failures of 
objects, compared to a use without any prophylaxis, is achievable through application of the 
statistical control. However, maintaining a high reliability of a set of objects is accompanied by 
a great number of preventive replacements of objects’ components. This means that there are many 
more preventive replacements than random failures of objects because of relatively low reliability 
of a single object.  

Thus in such a situation, it would be easier to achieve the required availability of the system 
by adding redundant objects that replace the damaged ones than to maintain a high reliability of that 
system without redundancy.  

Required level of system reliability could be achieved by adding surplus objects and properly 
matching them with the quantile order applied to the main part of the set of objects. So, by adding 
redundant objects, more failures of objects can be accepted as well as a number of preventive 
replacements is reduced. It would be useful to combine redundancy and preventive replacements 
based on statistical diagnosing.  
By those two measures, random failures of the system are significantly reduced in number of 
replaced components being much lower than those without redundancy. 

The hereto presented method for setting a scope of preventive replacements, based on 
reliability properties of individual objects being used, allows for matching the parameters of 
replacements for applied reliability parameters of the objects. 

Reliability analysis with respect to preventive replacements can also be performed with 
reference to objects’ components being of critical importance to tasks that are executed. This 
analysis can be carried out for any system of complex objects that will jointly be used for execution 
of the tasks.  
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ABSTRACT 

 
The paper demonstrates the comparison of  Monte Carlo simulation algorithm with 

neural network enhancement in the reliability case study. With regard to process dynamics, 
we attempt to evaluate the tank system unreliability related to the initiative input parameters 
setting. The neural network is used in equation coefficients calculation, which is executed in 
each transient state. Due to the neural networks, for some of the initial component settings 
we can achieve the results of computation faster than in classical way of coefficients 
calculating and substituting into the equation.  

 
 
 
1  INTRODUCTION 

 
Let us have the model of a dynamic system, in which the temperature is evolving according to 

the time and initial component settings. The target is to specify the probability of a system failure, 
which is defined as exceeding the temperature bounds. We are also interested in the time necessary 
for computing the result. It is proposed to enhance the simulation algorithm with neural network 
tools which will be used in calculating the differential equation coefficients a and b (chap. 3. 
relation (4)) being changed according to ki component states (on/off). After each ki switching, 
which is invoked by either passing the temperature transition state or failure of ki component, we 
must calculate new values of parameters a and b in equation (4) according to (2). 
As a solution, it is appropriate to apply neural networks for the approximation of parameters (2) 
dependent on the k1, k2  and k3 component settings. 
Optimal tool for constructing the simulation algorithm is the Monte Carlo (MC) method. This paper 
is derived from (Nedbálek 2007, Pasquet et al. 1998).  
 

2 THE BENCHMARK PROCESS DESCRIPTION  

 
We dispose of the tank with warmed water, which temperature is kept in the specific maximal 

or minimal bounds – in this range, we consider system as stable and reliable. The system also 
contains two electric components, responsible for water heating, and security valve, which 
decreases the temperature. In the bottom of the tank, there is a faucet for water supplying. We 
suppose, the volume of water in the tank is constant during our experiment.  

Let us define variables: 
T(t) – temperature of water at the time t; 
Tempmax – maximal temperature of water in the tank; 
Tempmax = 368,15K 
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Tempmin – minimal temperature of water, for T< Tempmin failure occurs 
Tempmin = 338,15K 
Tempbas – security level for the minimal temperature 
Tempbas = 343,13K 
Temphau – security level for the maximal temperature  
Temphau = 363,15K 
Secu – reserve for the maximum temperature, for T> (Tempmax + Secu) failure occurs, Secu 

= 2 K 
M – water weight, M = 500kg 
Te – external temperature, Te = 293K 
A – tank surface, A = 6m2 

h – thermal exchange coefficient, h = 6 WK-1m-2 
cp – measure heat capacity, cp = 4184 Jkg-1K-1 
W1 = W2 – heating power, W = 5000W 
tm – process duration, tm = 720 h 
hazard rate – transition to on-state 
λW1on = λ W2on=6.10-4 h-1 

hazard rate – transition to off-state 
λW1off = λ W2off =4.10-4 h-1

 
hazard rate – transition to on or off-state 
λVson = λ Vsoff =1.10-3 h-1 

 
3 THE EQUATION SOLUTION 

 
To evaluate the probability failure, we need to write the differential equation, describing our 

system evolution. The equation obviously reflects the following points: 
1. Decreasing the initial temperature due to heat penetration through the tank wall. 
2. Increasing the water temperature caused by two heating components, if activated. 
3. The water temperature decrease invoked by the security valve activation. 

Our equation comes from (Pasquet et al. 1998) but it is altered for the behaviour of the system 
 

baT
dt
dT

+=       (1) 

 
where 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅

⋅⋅
+

⋅
⋅

−=
p

ps

p cM
kcQ

cM
hAa 3  ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅+⋅+⋅⋅⋅+⋅⋅⋅

⋅
= 22113

1 kWkWkTcQThA
cM

b epse
p   

(2) 

 
and 
 

p

e
s c

hA
TTemp

WW

Q
⋅−

−
+

=
max

21

      (3)  

 
The solution of (1) follows the equation 
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a
b

a
bTT ta −⎟

⎠
⎞

⎜
⎝
⎛ += ⋅exp0     (4) 

 
where T0 is the starting simulation temperature. 

The k1, k2 and k3 coefficients equals 1 or 0 (the specific component is either on or off). For k1 
= k2 = 1 the heating components are active and temperature of water in the tank is increasing, for k3 
= 1 the vent is unclosed and the temperature is decreasing, etc. We watch the process along the 
period of tm = 720 h. The initial temperature is set between Tempmin and Tempmax, that is – T0 = 
353.15 K. 
 
4 CREATING AN ALGORITHM 

 
To construct the correct algorithm for our test case simulation, we take into account following 

points: 
 

1. As mentioned before, for T< Tempmin and also for T> (Tempmax + Secu) failure occurs  
2. The temperature passes by 5 stages generally – see the diagram: 

 
 

 
 
Figure 1. Dynamic rules of the system 
 
 

For each of the temperature stages, the change (switch) of the specific component to the 
opposite state, that causes the required temperature turnover (see (1)) and stabilization in tolerable 
bounds. In case of random failure of the ki component, we keep on monitoring evolution of the 
temperature, until it exceeds limits – we consider the system as disfunctional. (In the terms of the ki 
failure definition, the whole system does not have to be failed yet. The temperature of water in the 
tank could be still between bounds.) 
  

3. There are following rules for components changes at temperature borders crossing: 
 
State 1: If T(t-1)>= Temphau and T(t) <= Temphau, then k3 = 0 (vent will be closed) 

2: If T(t-1) <= Temphau and T(t) >= Temphau, then k1 = 0 (heating component num. 1 will be 
cut off) 

3: If T(t-1) <= Tempmax and T(t) >= Tempmax, then k3 = 1 (vent will be opened) 
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4:If T(t-1) >= Tempbas and T(t) <= Tempbas, then k1 = 1 & k2 = 1 (both heating components 
are active) 

5: If T(t-1) <= Tempbas and T(t) >= Tempbas, then k2 = 0 (heating component num. 2 will be 
cut off) 

  
4. Time step option-considering fact, that we present the evolution of (4) at time t during the 

period of tm, it is necessary to select an appropriate time to explore all detail changes of the 
temperature bahaviour and also to reduce the inadequate number of cycles of numerical simulation. 
The optimal solution seems to be the one minute pattern, which reflects suitably all changes at 
temperature borders crossing. Longer patterns do not suit our solution due to inaccuracies – a 
“jump-over” of some of the states mentioned in 3. occurs sometimes. 
  

5. Switching the component to the opposite state could happen at any time in the simulation 
due to random failure. 
  

6. Period of the process is set for 720 hours. 
 

5 APPLICATION OF THE RBF 

 
Our simulation algorithm contains cycle, running over the process duration, in which (4) 

evolves according to time. This equation has coefficients a and b, that depend on ki component 
states (on/off) – see (2). In the simulation, the ki state is influenced by either passing the 
temperature transition state (see Fig. 1) or failure of component itself. It means, that we must 
recalculate the a and b whenever the temperature transition or failure of the ki occurs. Simply, we 
are able to write lines of code to enumerate new values of the a and b right in the body of process 
duration cycle, whenever it is necessary to do so. The second possibility is to apply the Radial Basis 
Function (RBF) neural network to approximate the function of a and b coefficients depending on ki 
component states. 

It is acceptable to use other types of neural network, nevertheless the RBF is obviously the 
best to solve the problem. This is the result of two main facts, firstly, we are not urged to design the 
network architecture (RBF has two layers standardly) and secondly, the RBF can not be trapped in 
a local minimum during training phase (Chen et al. 1991). RBF complies our requirements on the 
function approximation (Yee & Haykin, 2001). Applying other types of neural network to unriddle 
this case study and to compare them with the used RBF network is the matter of a future research.  

At the beginning, we need to find out the convenient training set. This is obtained by simple 
computation of (2) for all combinations of the ki states (see Tab. 3). Then, before the process 
duration cycle, we are ready to create and train the standard RBF architecture – there are several 
implementations and function support of the RBF in programming languages – for example, the 
Matlab software provides large neural network toolbox. 

Consequently, the a and b parameters in (4) everywhere in the cycle are replaced with the 
callback function of the RBF network. 

We can generally summarize, that the main modification consist in using the RBF as an 
auxiliary tool for working with equation (4) during the time of a simulation cycle. In any case, the 
MC construction of the algorithm remains the same for both cases. 
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6 THE RESULTS PRESENTATION 

 
Table 1. contains the distribution function of failure probability value averages for each initial 

components settings. The results were obtained for 105 Monte Carlo simulations (1- the comp. 
active, 0 – comp. inactive at the beginning). The fifth column shows the computational time. All 
results are obtained in the state of tm = 720 h. The simulation was implemented in the Matlab 
software. 
 

Table 1. The results for 105 cycles of Monte Carlo  
k1 

 
k2 

 
k3 

 
)(tmF  

 
t [s] 

 
0 0 0 0.3517 2315.0 
0 0 1 0.5303 2174.0 
0 1 0 0.5567 1928.6 
0 1 1 0.5312 2170.7 
1 0 0 0.3518 2332.1 
1 0 1 0.5306 2194.0 
1 1 0 0.5580 1920.4 
1 1 1 0.5602 1915.6 

Average   0.4963 2118.8 
Sigma   0.0901 174.1 

 
Table 2. The results for the same Monte Carlo algorithm with  

RBF neural network enhancement  
k1 

 
k2 

 
k3 

 
)(tmF  

 
t [s] 

 
0 0 0 0.3510 2383.1 
0 0 1 0.5305 2037.1 
0 1 0 0.5574 2002.9 
0 1 1 0.5325 2042.2 
1 0 0 0.3506 2390.6 
1 0 1 0.5305 2040,5 
1 1 0 0.5578 1975.2 
1 1 1 0.5593 1968.9 

Average   0.4962 2105.1 
Sigma   0.0906 176.2 

 
From comparison of Table 1. with Table 2., we can see the results of simulation at the time of 

720 hours are very close – the RBF neural network is able to approximate with good accuracy (that 
was tested in the simulation code itself). 

The results of computing time look more interesting – the average time necessary to simulate 
720 hours long process is shorter by roughly 10 sec. This value seems to be neglectable, 
nevertheless the differences in results between the MC and the modification with RBF are larger 
when we look at the specific initial component settings. 

Generally, we can express the presumption, that if the vent is opened and maximally one 
heating spiral is activated, it is more useful to enhance the MC algorithm with RBF network (the 
result is reached by 2 – 2.5 min faster). In other cases, the Monte Carlo itself is faster (1 min. 
advance). 
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In this place, we should stress out the information, that the comparison test on the MC and 
RBF network enhancement was executed on the computer, which had all applications, including 
hidden ones, and non-operation system processes not pertaining to simulation itself, halted. This 
measure is needed in order to provide the simulation the similar computing system capacity along 
the whole processing time and avert the distortion in result time values (operating system 
sometimes allocates the memory to other running applications, as consequently leads to Matlab 
processing slow down). 

With respect to the length of algorithm, the MC enhanced with the RBF is larger in creation 
and training of the network. In the simulation itself, the length of code remains the same. 

In Table 2., we also considered time necessary to train the RBF network. 
The results from Table 1. and 2. are presented in the figures. The x-axis denotes possible 

component states according to binary code, as it is shown in Table 3. 
 

Table3. The ki component states combination  
(1 -on, 0 -off)  

x axis 
 

k1 
 

k2 
 

k3 
 

0 0 0 0 
1 0 0 1 
2 0 1 0 
3 0 1 1 
4 1 0 0 

… etc.    
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Figure 2. Failure probability comparison of the MC and the RBF neural network enhancement at time tm 
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Figure 3. Computing time comparison of the MC and  the RBF neural network enhancement  
 
 
7 CONCLUSION 

 
For 105 cycles, the failure probability at time t = 720hrs equals to the value F (720)= 

0.4963 ± 0.0901 (MC) or 0.4962 ± 0.0906 (RBF enhancement). The algorithm in chapter 4 is 
implemented in the Matlab software. 

Out of the comparison of the Figure 1. and 2. follows, that the failure probability values are 
similar for both methods.  

The whole computing time needed to obtain results for each initial component settings is 
shorter by approx. 10 sec. when we use enhancement with RBF network. The greater differences in 
time consumption are evident for specific settings – we can state, that if the security vent is opened 
and maximally one heating spiral is activated than it is preferable to add the RBF in algorithm (the 
result is known by 2 – 2.5 min faster), in all other cases, the plain Monte Carlo method is more 
suitable (faster by about 1 min). This piece of knowledge was verified on the 498 MHz and 256MB 
RAM computer. The computation on the stronger machine – 3.1 GHz and 1GB RAM – took less 
time and the RBF enhancement method was still faster than the plain MC. 

Application of the RBF neural network can sometimes lead to obtain results faster. This 
information is likely to be applicable in other, not only dynamic simulation, test cases. Participating 
of the RBF neural network in some computation problems is the matter of future research.  
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ABSTRACT 
 

This paper presents a method for the quantification of the effects of measures of risk 
prevention of the frequency for rupture of pipework. Some methodologies, given in the 
literature for this purpose, assume that each plant under analysis is characterized by the 
same combinations of causes of failure and prevention mechanisms but this assumption is 
not always true. The approach suggested here is based on the methodology proposed in 
1999 by Papazoglou for the quantification of the effects of organizational and managerial 
factors. Taking advantage of this methodology the objective of the assessment of the 
influence of measures of risk prevention in pipework has been achieved through the 
definition of the links between the causes of failure and the measures adopted by the 
company in order to prevent and/or to mitigate them. 

 
 
 
1 INTRODUCTION 
 

Accidental analyses in chemical plants have shown that the main causes of incidents are often 
due to deficiencies in the corporate structure, which can influence the safety of these installations. 
The use of appropriate risk analysis techniques permits the identification of the cause and evolution 
of accidents and the calculation of the frequencies of top events associated with process anomalies 
and loss of containment. 

The likelihood of an accident is a function of various parameters such as components failure 
rates, probabilities of human error, etc. The availability of general values for these parameters from 
literature data simplifies risk analysis, unfortunately, it is also obvious that the use of such 
information provides standardized results which do not permit taking into consideration plant 
specific managerial and organizational factors. If managerial and organizational factors are 
neglected, the risk analysis for two identical establishments, characterized by totally different 
management systems, gives the same results and this appears unacceptable especially when risk 
analysis is used as a tool for risk-based decisions. 

In the nuclear field, several quantitative studies (Izquiedo-Rocha & Sanchez-Perea, 1994; 
Montmayeul et al., 1994), have been performed to approach management-related safety problems. 
In recent years, also in the chemical industry, great attention has been paid to the study of the 
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relationship between the managerial system and the safety level of chemical plants (Papazoglou & 
Aneziris, 1999; Thomas, 1980). 

The main object of this work is to study the influence of measures of risk prevention on the 
frequency of loss of containment in pipework. In order to achieve this aim it has been necessary to 
define the relationship between the measures of prevention of the risk adopted by a company and 
the causes of failure in piping. Once the relationship between the individual causes of failure and 
the measures of risk prevention have been established and after the estimation of the weight 
coefficients for the causes of failure, it has been possible to modify the frequencies taking account 
managerial and organizational factors. 

In the first part of the paper, some methodologies for the quantification of measures of risk 
prevention, currently available in the literature, will be discussed. Finally in the second part the 
proposed approach and its application will be described. 
 
2 ACCIDENT FREQUENCIES IN THE CHEMICAL INDUSTRY 
 

Frequency calculation for incidents in the chemical industry and consequence quantification 
of the associated accidental scenarios are fundamental steps for quantitative risk analysis. 

The general procedure for frequency evaluation comprises the definition of the top events, 
risk identification, and then the application of appropriate techniques and equations derived from 
probability theory. 

Risk identification is the most critical step in the overall analysis, in this phase it is important 
to consider all the initial causes of incidents. The available techniques for risk identification are 
historical-statistical methods, based on examination of incidents happened in the chemical industry 
and recorded in databases, and/or analytical methods, such as PHA (Preliminary Hazard Analysis), 
HAZOP (Hazard and Operability Analysis), FMEA (Failure Modes and Effects Analysis). 

Analytical methods, mentioned above, are applied only for the identification of top events 
associated with process deviations or failures of components. The assessment of loss of 
containment requires a specific approach. 

Events related to loss of containment, sometimes called random ruptures, are caused by 
accidental phenomena such as uncontrolled wearing, anomalous corrosion, pipe defects, etc. These 
events are not associated with process anomalies, but, as already mentioned, are often due to 
deficiencies in the corporate structure. 

In this study attention has been paid to the random rupture of pipework because incident 
analysis, reported in Lees (1996), shows that loss of containment in the chemical industry, 
frequently, does not occur from vessels but from pipework and associated fittings. 
 
3 LOSS OF CONTAINMENT EVENTS 
 

The pipework-fittings system includes the piping itself, flanges and joints, and fittings, such 
as the many types of valves, bellows, etc, together with the pipe supports. As already mentioned, a 
large proportion of failures of containment in process plants occurs in the pipework. For this reason 
suggestions for reducing piping failures have been given in the past. 

Kletz (1994) has given information on some 50 major pipe failures and associated fittings in 
process plants and some suggestions for preventing each failure. He also made proposals for the 
reduction of pipework failures by improved design and inspection of the pipework. 

In order to decrease the number of loss of containment events, a proper design of even small 
bore pipework is recommended. Thus the pipework should be designed for ease of maintenance 
and, in the case of rupture, there should be easy access to the point where the failure has occurred. 

Safety in piping systems has been the object of a study by the Institution of Chemical 
Engineers (IChemE), reported in Lees (1996), where the main features considered were: layout, 
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quality control, construction, pipe supports, and vibration. The study has also concluded that the 
main causes of failure are vibration, external corrosion, inadequate temporary supports, blocked-in 
liquids, water hammer, steam hammer, cavitation and pressure surge. 

There is a considerable amount of data available on pipework failures (Lees, 1996), but the 
range of values quoted is wide and tends to be confusing. There are several important distinctions to 
be made concerning the type of failure and the pipe size. Based on these considerations, complete 
pipe breaks, or guillotine fractures, constitute only a small proportion of failures and the breakdown 
rate tends to be higher for small than for large diameter pipes. 

A survey of pipework failures in plant in the nuclear, chemical and other industries had been 
described by Blything and Parry (1986) quoted in Lees (1996). The data were analysed as causes of 
failure and root causes. Essentially, causes of failure are the mechanical causes, such as corrosion, 
fatigue and water hammer, and root causes are activities such as error in design, operation and 
maintenance. Results are given as cause of failure vs. root cause and have been identified for 
chemical plants, refineries and for nuclear and steam power plants. Data for chemical plants are 
summarized in Table 1, where the percentage of incidents is separated for direct causes and main 
activities (Lees, 1996). Table 2 gives the direct causes of failure obtained from two different 
sources (Lees, 1996; Thomas, 1980). 

Finally, incidents can also be classified under three headings: direct cause, origin of failure or 
underlying cause and recovery from failure or preventive mechanism. Table 3 shows the underlying 
causes vs. the recovery from failure, this distribution is the result of a study of pipework failures in 
process plants made by Bellamy and co-workers (Lees, 1996). This study reviewed 921 incidents 
from incident databases such as HSE MARCODE, MHIDAS and FACTS. 

 
Table 1.  Causes of failure in chemical plants and refineries: – cause of failure vs. root cause(Lees, 

1996)   

 Design Installation Design 
/Installation Operation Maintenance Manufacture Unknown Unspecified Total 

Corrosion 
 - external 
 - internal 
 - stress 

 
18 
56 
15 

 
8 
1 
- 

 
- 
2 
1 

 
2 
1 
- 

 
4 
1 
- 

 
- 
1 
- 

 
- 
- 
- 

 
1 
3 
-

 
33 
65 
16

Erosion 2 1 - - 1 - - - 4
Restrain 1 2 4 - - - - - 7
Vibration 9 1 3 1 - - - 1 15
Mechanical 28 10 5 11 12 18 2 21 107
Material 5 7 10 - 4 2 - 21 49
Freezing 13 1 - 2 - - - 1 17
Thermal 
fatigue 2 1 - 2 - 1 - 1 7

Water 
hammer 2 1 1 4 - - - - 8

Work 
system 6 4 36 47 49 - - 2 144

Unknown - - - - - - 29 1 30
Unspecified 1 1 13 3 3 - - 33 54
Total 158 38 75 73 74 22 31 85 556
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Table 2.  Causes of failures in pipework: direct causes   

Percentage of incidents Failure causes 
P.F.Lees (1989) H.Thomas (1980) 

Manufacture & fabrication: 
  - base materials (defects) 
  - welding 

31.9  
9.6 

11.8
Material selection -- 28.8
Corrosion 
Erosion 

9.3 
0.8 

24.6

External load 3.0 --
Impact 4.8 --
Thermal shock 
Mechanical shock 

3.8 
12.1 

1.3

Fatigue 
  - low cycle 
  - vibration 

1.5  
7.8 
4.3

Expansion & Flexibility -- 2.7
Wrong or incorrectly located in-line equipment 4.0 --
Operator error 18.2 7.0
Unknown 1.5 --
Other 9.1 7.0
Total 100.0 100.0

 
 

Table 3.  Causes of failures in pipework: underlying causes vs. recovery failure (Lees, 1996)   
Recovery failure 

Underlying 
cause Not 

recoverable Hazard study
Human 
factors 
review 

Task 
checking 

Routine 
checking 

Unknown 
recovery Total 

Natural causes 1.8 - - 0.2 - - 2.0

Design - 24.5 2.0 - 0.2 - 26.7

Manufacture - - - 2.4 - - 2.4

Construction 0.1 0.2 1.9 7.5 0.2 0.4 10.3

Operation - 0.1 11.0 1.6 0.2 0.8 13.7

Maintenance - 0.4 14.5 12.7 10.3 0.8 38.7

Sabotage 1.2 - - - - - 1.2

Domino 4.5 0.2 - - 0.3 - 5.0

Total 7.6 25.4 29.5 24.4 11.1 2.0 100.0

 
4 FREQUENCY OF LOSS OF CONTAINMENT 

 
The analysis of loss of containment events permits a complete description of all the potential 

incidental events, which are the initial causes for the release of hazardous substances. 
Their identification consists of the following steps: 



Author (s) Name – THE PAPER NAME 

 
R&RATA # 2(13) part 2  

(Vol. 2) 2009, June 
 

 

122 

 
− identification of the process and stored dangerous substances inside the establishment; 
− characterization of the pipework and equipment and definition of the operating conditions; 
− identification of the units of the plant, which have the same operating conditions; 
− definition of representative causes of leakage for each unit. 
 
The calculation of accidental frequencies can be made using the Fault Tree method for events 

deriving from process deviations, while the analysis of the loss of containment events requires a 
specific approach. A commonly adopted method for calculating the frequency of occurrence of 
these events is the API 581 Methodology, other similar methods are available based on the use of 
statistical leak frequency data specific to “random ruptures”. 

The estimation of the frequency of loss of containment events must include the quantification 
of the influence of measures of risk prevention. Some methodologies are given in the literature (API 
581; Papazoglou & Aneziris, 1999; Thomas, 1980) for this purpose, these assume that each part of 
the plant under analysis is characterized by the same percentage of causes of failure. This 
consideration is not acceptable. 
 
4.1 The API 581 methodology 
 

The method proposed in the standard API 581 Risk Based Inspection Guideline, , supplies a 
generic value of frequency of release from pipes and other main process equipment, this is a 
statistical average value. The standard provides a way to correct this value, depending on the 
specific characteristics of the system under examination and using appropriate correction factors 
based on the complexity of the system (number of flanges, valves, etc.). 

The generic frequency is calculated using literature or incidental data for similar systems. In 
the API 581 standard frequencies of release are given for four diameters of hole: 1/4", 1", 4" and 
full bore (hole dimension equal to the pipe diameter). These are calculated assuming a log-normal 
distribution of the data, generic frequencies of release are the mean values. 

The API 581 methodology defines a modification factor for the frequencies for each type of 
equipment, equipment modification factor, based on its complexity and its location. In order to take 
into account differences in the safety management system of an establishment, the method also 
defines an adjustment factor, management systems evaluation factor. 
 
4.2. Quantification of the influence of management and organizational factors 
 

The most common methodologies for the quantification of the influence of organizational and 
managerial factors on the frequency of release from pipework and vessels are the methods of 
Thomas (1980), developed in 1980, and the approach of Papazoglou & Aneziris, proposed in 1999. 
Both methods are based on the analysis of incidental data in the chemical industry. 

The approach of Thomas to the estimation of frequency of leakage and rupture for piping and 
vessels is based on a statistical analysis of failures. The total frequency is initially identified 
through a global estimation based simply on the size, shape, welds and the age of the equipment. 
Subsequently, the results can be modified using specific factors for the type of equipment and the 
influence of the curves of learning for technology and design. Unfortunately these graphical 
correlations are based on obsolete data, new technologies are currently available, the factors 
evaluation requires valid data. 

The method of Papazoglou permits the quantification of the effects of organizational and 
managerial factors on the frequency of leakage from vessels and pipes defining a link between an 
audit of the safety management system (SMS) and a quantitative risk analysis (QRA). 
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Another approach for the quantification of the influence of management and organizational 
factors has been proposed by Maschio et al. (2006), which is based on the methodology proposed 
by Papazoglou. First of all the method permits the exclusion of the causes of failure that can be 
prevented through the adoption of appropriate prevention measures. Thus it is possible to apply the 
method of Papazoglou using realistic values of the percentage of the causes of failure. 

As mentioned in the previous section, in order to take into account the influence of 
managerial and organizational factors, also the API 581 methodology for the evaluation of the 
accidental frequencies uses the management systems evaluation factor. This adjustment factor is 
estimated on the base of the percentage of failure causes. 
 
4.3 The method of Papazoglou 
 

The Papazoglou method aims to quantify the organizational and managerial factors based on 
an audit of the safety management system (SMS). A Safety Management Audit, SMA, allows to 
verify the compliance of the safety management system with an ideal scheme. This can be made by 
analysing a number of combinations of causes of failure and mechanisms for the prevention of 
accidents. A number of important areas of concern are identified and each area is assessed from the 
SMS point of view through the audit as being GOOD, AVERAGE or POOR. 

As mentioned above, the method proposed by Papazoglou is able to link the results of a 
management audit with the QRA model. This is possible by defining a factor modifying the average 
frequencies, which is calculated on the basis of the relative importance of each area of audit and the 
corresponding assessment. A QRA gives quantitative indexes which define the risk level of a plant 
taking into account its specific structure and its potential modes of failure, etc. The results of a 
QRA can help in the identification of optimum risk reduction actions by reducing the incidental 
frequencies and/or mitigating the consequences of the undesired events. For this reason the QRA 
represents a basic support for risk based decision making. 

By means of the combination of generic causes of failure categories (underlying causes 
categories) and prevention mechanism (recovery mechanism), 54 audit areas of the SMS are 
defined but only 8 of them, indicated as main audit areas (MAAs), are meaningful from the point of 
view of the numbers of incidents. 

The underlying cause of failure categories are: design (DES), maintenance activities 
(MAINT), operations during normal activities (OP), construction/installation (CON), 
manufacture/assembly (MANU), natural causes (NAT), domino (DOM), sabotage (SAB) and 
unknown origin (UO). 

The recovery or preventive mechanisms are the mechanisms that theoretically could have 
recovered or prevented the failure. The categories of mechanism are appropriate hazard study of 
design as-built, e.g. HAZOP (HAZ), human factors review (HF), task-driven recovery activities 
(CHEC), routine, regular, recovery activities (ROUT), not recoverable (NR) and unknown recovery 
(UR). 

The Papazoglou methodology consists of the following phases: 
 
− in the first step of this approach the results of the audit are grouped through a subjective 

expert judgement into eight qualitative factors, one for each MAA. This is done by 
translating the results of the audit into an assessment of the elements of each MAA, then 
each area is assessed as GOOD, AVERAGE or POOR. 

− the second step consists of grouping the eight assessments into a single number. 
 
The method is based on an analysis of the frequencies of incidents that have occurred in the 

chemical industry, in particular Papazoglou found that the analysis of the loss of containment data, 
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reported in the RIDDOR database, indicates that the frequencies of release for various plants spans 
two orders of magnitude and shows a certain symmetry around their mean values. 

According to this observation the following equation was proposed, which can be used for the 
modification of the frequency of release: 

 
∑ ⋅+=

i iimd xaff 100/loglog mod     (1) 
 

where fmod = modified frequency; fmd = mean frequency of failure based on world-wide experience; 
ai = weight coefficient for audit area i; and xi = parameter indicating the judgement of the MAA i of 
the SMS following the audit. 

Concerning xi, it can assume the following values: 
 
− -1 if the plant is judged GOOD 
−  0 if the plant is judged AVERAGE 
− +1 if the plant is judged POOR 
 
The analysis of observed incidents in the chemical industry has assessed the relative 

frequency of occurrence for the eight MAAs, the normalization of these frequencies has provided 
the ai values indicating the importance of each SMS area in terms of the likelihood of accidents in 
pipework, connections and vessels (Papazoglou & Aneziris, 1999). 
 
5 THE PROPOSED METHOD FOR THE ESTIMATION OF THE FREQUENCY OF 

LOSS CONTAINMENT EVENTS 
 

The methodology proposed by Papazoglou permits the evaluation of each part of the SMS, for 
this reason this is an excellent way to evaluate the organization and managerial factors. This method 
implies that each installation under analysis is characterized by the same combinations of origins of 
failure and mechanisms to prevent and/or mitigate them and thus by the same percentage of failure 
causes. It is known that different plants are characterized by differences in construction, operation 
and maintenance procedures and practices, thus they differ from the point of view of the percentage 
of causes of failure. In order to take into account these differences, in this work, a modified 
approach for the Papazoglou method for frequencies evaluation is proposed. 

The modified method is based on an examination of the whole plant and permits to define 
how the measures of risk prevention adopted inside the establishment can influence the frequencies 
of rupture of pipework. In order to make this a detailed analysis for each unit of the plant is 
necessary and, from this, it will be possible to identify the causes of failure which can occur in each 
unit and the measures which can prevent them. 

The proposed method is innovative since through its application it is possible to identify and 
exclude from the analysis all those causes of failure that are not present in the establishment 
because of the adoption of appropriate measures to prevent them. The adjustment of the percentages 
of causes of failure allows the use of realistic coefficients, this is fundamental for the application of 
the method. 

The analysis of the overall plant allows a complete identification and quantification of the 
relationships between measures of risk prevention and causes of failure in piping. These permit the 
incorporation in the final results of a great number of plant-specific characteristics concerning the 
design, operational and maintenance aspects of the installation. 

The proposed method modifies the frequency of release using equation 1, whose application 
depends on the definition of the weight coefficients ai. The approach aims at the estimation of the 
influence on fmd of prevention measures, which have been judged a priori "GOOD", thus the 
problem is to determine which causes of failure can be prevented by a certain measure adopted by 
the Company. 

In order to identify which measure can prevent or mitigate a failure and its effectiveness, also 
in this case an audit is necessary. After the definition of the relationship between the causes of 
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failure and the measures of prevention, the weight coefficients for the causes of failure are 
estimated and, then, it is possible to modify the frequencies taking into account the prevention 
measures. 

It is obvious that the a priori exclusion of some causes of failure requires modification of the 
mean frequency of failure obtained from the literature, fmd. This value will be reduced by a 
percentage equal to the excluded causes of failure. The methodology proposed by Papazoglou will 
then be applied to the a priori modified frequency. 
 
5.1 Weight coefficients for the causes of failure 
 

Many data regarding the main causes of release from piping is available in the literature, this 
information is summarized in Table 2 (direct causes). The evaluation of the weight coefficients can 
be made using the failure data of Lees, because these percentages are relatively more recent and 
specific for piping in the chemical industry. Nevertheless it is necessary to verify the consistency 
between the data reported by Lees and the causes of failure evidenced inside the examined 
establishment. 

In some cases the values of the weight coefficients need to be corrected taking into account 
that modern design and manufacture and the use of new materials might reduce the number of 
failures due to certain causes. The correction of the data of Table 2 can be made using specific 
correction factors defined in agreement with the plant management. 
 
5.2 Weight coefficients for corrosion phenomena 
 

Concerning pipework (Lees, 1996), phenomena such as corrosion and mechanical causes of 
failures have been analysed in detail, thus the analysis of incidental data allows the distribution of 
these failure modes as shown in Table 4. General causes of failure, which are emphasized in Table 
4, are general corrosion, stress corrosion cracking and fatigue. The number of failures caused by 
brittle fracture is small. 

Using the data of Table 4, it is possible to detail the causes of failure for corrosion and 
mechanical failures, thus the single values of table 2 can be split into the contributions associated 
with each type of corrosion and/or mechanical failure. In order to divide the data of Table 2, a 
detailed analysis of the fluid flowing in the pipework and the process conditions is necessary. The 
analysis allows the definition of which types of corrosion can occur in the equipment. 
 
5.3 Weight coefficients for human error 
 

In order to improve the quantification of the influence of the measures of risk prevention on 
the frequency of rupture of pipework, a more detailed analysis of human errors has been carried out. 

The literature on human error in process plants shows that a large proportion of serious 
incidents is attributable to errors in maintenance work, while the most frequent human error in 
pipework failures concerns the installation. A study of human error as cause of piping failures has 
been made by Bellamy and co-workers (Lees, 1996). Incidents have been classified as direct 
causes, origin of failures and recovery mechanisms. This data showed that operator error 
contributed 18 % to the direct causes of pipework failure, whilst defective pipe or equipment 
contributed 32 % and unknown causes 9 %. 

Table 5 gives the distribution of human errors in underlying causes, it is possible to see that 
the predominant errors are in maintenance. As shown operator error usually can be disguised as 
other causes of failure (eg. impact, corrosion, etc). Therefore, using this table, human error can be 
split into the failure modes of Table 2 and then included in the other types of failure. The 
distribution of operator error in the other causes of failure provides the correct values for the weight 
coefficients ai. 
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Table 4.  Causes of corrosion and mechanical failure (Lees, 1996)   

Corrosion % Mechanical failure % 

Cavitation 0.3 Abrasion, erosion or wear 5.4 
Cold wall 0.4 Blister, plating 0.1 
Cracking, corrosion fatigue 1.5 Brinelling 0.1 
Cracking, stress corrosion 13.1 Brittle fracture 1.2 
Crevice 0.9 Cracking, heat treatment 1.9 
Demetallification 0.6 Cracking, liquid metal pen 0.1 
End grain 0.4 Cracking, plating 0.6 
Erosion-corrosion 3.8 Cracking, thermal 3.1 
Fretting 0.3 Cracking, weld 0.6 
Galvanic 0.4 Creep or stress rupture 1.9 
General 15.2 Defective material 1.6 
Graphitizzation 0.1 Embrittlement, sigma 0.3 
High temperature 1.3 Embrittlement, strain age 0.4 
Hot wall 0.1 Fatigue 14. 
Hydrogen blistering 0.1 Galling 0.1 
Hydrogen embrittlement 0.4 Impact 0.1 
Hydrogen grooving 0.3 Leaking through defects 0.4 
Intergranular 5.6 Overheating 1.9 
Pitting 7.9 Overload 5.4 
Weld corrosion 2.5 Poor welds 4.4 
 Warpage 0.4 
Subtotal 55.2 Subtotal 44.8 

 
 

Table 5.  Human error distribution in underlying causes, (Lees, 1996)   
Underlying causes % 

Design 8 
Manufacture 2 
Construction 8 
Operation 22 
Maintenance 59 
Sabotage 1 
Total 100 

 
The distribution of the human error in the causes of failure of Table 2 is possible defining the 

links between failure causes and underlying causes categories through a subjective expert 
judgement. 

The links failure causes/underlying causes are given in Table 6. 
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Table 6.  Links between cause of failure/underlying cause   
Cause of failure Underlying cause 

Manufacture/fabrication Manufacture/Construction 
Corrosion & Erosion Maintenance 
External load Maintenance 
Impact -- 
Thermal shock Design/Operation 
Mechanical shock Design/Operation 
Fatigue (vibration) Design/Operation 
Fatigue (low cycles) Design/Operation 
Wrong or incorrectly located in-line 
equipment 

-- 

Operator error -- 
Creep Maintenance 
Other and unknown Sabotage 

 
 
6 APPLICATION TO A CASE-STUDY 
 

The methodology described by Maschio et al. (2006) for the quantification of the influence of 
the measures of prevention of risk on the frequencies of release from vessels and pipework has been 
tested by its application to a real industrial plant. This approach has been used for the calculation of 
the frequencies of the random events which can potentially occur in pipework. The case study 
presented here is for a petrochemical plant (confidential). 

In this case the initial frequencies of failure have been collected from the Safety Report of the 
establishment, then the influence of the measures of risk prevention on the causes of failure have 
been discussed and defined in agreement with the plant management. In order to define which 
causes of failure can be prevented by a certain measure adopted by the Company, an audit has been 
made. 

An example is described. The rupture of a pipe coming from a vessel containing a flammable 
and toxic liquid has been hypothesized. Two dimensions of leakage have been assumed, 5% and 
20% of the pipe diameter, and then the modification of the frequencies of release has been made 
using both the proposed methodology and the method of the direct reduction of the percentage of 
the failure causes. 

Using the data of Table 2 and 4, the percentages of causes of failure have been corrected as 
discussed. The corrected values have been normalized. Before the application of the modified 
procedure, the initial value of frequency has been reduced by the percentage of excluded causes of 
failure. 
 
6.1 The modified procedure for the quantification of frequency 
 

Application of the modified method can be made using the following steps: 
 
− Definition of the weight-coefficients ai, which comprise a detailed analysis both for human 

error and corrosion phenomena; 
− Formulation of judgements on the inspection methods; 
− Calculation of the frequencies using equation 1. 
 
In order to estimate the effect on fmd of measures of risk prevention through equation 1, it is 

necessary to formulate a judgement xi for each preventive measure. The attribution of the 
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judgements has been made by analysing each pipe-line and defining which causes of Table 2 and 
sub-causes of Table 4 can be detected by each measure. 
 
6.2 The method of the direct reduction of the percentage of the failure causes 
 

Using the data of Table 2, it is also possible to modify the frequency of rupture reducing its 
value by the percentage of the failure causes (Pi) prevented using this measure. Also in this case the 
a priori exclusion of some causes of failure modifies the value of the initial frequency that will be 
reduced by the percentage of excluded causes of failure. 

A more complete quantification of the influence of the routine inspections must take into 
account also their effectiveness. The effectiveness represents the percentage of failures identified 
during these inspections. 

In order to apply this method it has been necessary to identify which causes of Table 2 and 
sub-causes of Table 4 can be detected using a certain inspection technique, then the value of Pi will 
be equal to the corrected value of ai multiplied by the effectiveness of the measure. In this case the 
use of the effectiveness classes defined in API 581 Risk-Based Inspection Base Resource Document 
and shown in Table 7 has been adopted. 

 
Table 7.  Qualitative Inspection Effectiveness Category   

Highly Effective: Inspection methods that correctly identify the 
anticipated in-service damage in nearly every case. (90%) 

Usually Effective: The inspection methods will correctly identify the 
actual damage state most of the time. (70%) 

Fairly Effective: The inspection methods will correctly identify the 
true damage state about half of the time. (50%) 

Poorly Effective: The inspection methods will provide little 
information to correctly identify the true damage state. (40%) 

Ineffective: The inspection methods will provide no or almost no 
information that will correctly identify the true damage state. (33%) 

 
6.3 Results 
 

Table 8 shows the frequencies of loss of containment modified by the application of the 
method described. A number of applications of the method shows that generally the frequency of 
the random event decreases by about an order of magnitude or more in some cases. 

The method of the direct reduction of the percentage of the failure causes, has been applied in 
order to compare the methodologies and to verify the consistency of the proposed procedure with a 
conservative method. Comparison of the results demonstrates the validity of the proposed 
methodology. 

The entity of the risk reduction can be visualized using risk matrixes (Figs. 1-2). 
 

Table 8.  Results   
Modified frequencies Leak dimension Frequency 

Proposed method Direct reduction method 

5% 1.93E-03 1.13E-04 4.47E-04 

20% 1.25E-04 7.35E-06 2.90E-05 
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Figure 1. Risk matrix: results of modified frequencies (proposed method). 
 
 

 
 

Figure 1. Risk matrix: results of modified frequencies (direct reduction). 
 
 
The matrix provides a useful tool in order to define the acceptability of the risk associated 

with an industrial activity, for this reason the identification of three levels of risk, acceptable, 
ALARP and unacceptable, is necessary in particular for the risk-based decisions. Using the matrices 
it has been possible to verify if the adoption of certain preventive measures of the risk can move an 
event from a critical zone to the acceptability zone. 
 
7. CONCLUSIONS 
 

The objective of this work has been the definition of an approach for the calculation of loss of 
containment frequencies taking into account managerial and organizational factors. This necessity 
is due to the observation that the main cause of accidents are events that are often due to 
deficiencies in the corporate structure. 

Furthermore the use of common risk analysis techniques does not allow taking account 
management and organizational factors which are of primary importance in defining the real risk 
level of a chemical plant and therefore for planning the resources and procedures for emergencies. 
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The approach suggested in this paper for the quantification of the effects of organizational 
and managerial factors, has been based on the methodology proposed by Papazoglou (1999). 
Taking advantage of this method the object of assessing the frequency correction factors has been 
achieved through the definition of the relationship between the causes of failure and the measures 
adopted by the company in order to prevent and/or mitigate them. 

Regarding the application of the method it has been possible the validation of the procedure 
using a comparison with the method of the direct reduction of the percentages of causes of failure. 

The proposed method appears to be innovative because of the a priori exclusion of all the 
causes of failure that are not present in the establishment because of the adoption of appropriate 
measures to prevent them. The correction of the percentages of breakdown allows the use the real 
weight-coefficients. 

The approach proposed in this work is suitable to the various high risk industrial activities. It 
requires for each case the modification of the weights coefficients associated with the single causes 
of failure and to formulate judgment on the measures of prevention of the risk adopted by the 
company, in this way it is possible to reproduce the plant-specific characteristics concerning the 
design, operation and maintenance of the installation. 
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ABSTRACT 
 

In the paper a probabilistic model of industrial systems environment and infrastructure 
influence on their operation processes is proposed. Semi-markov processes are used to 
construct a general model of complex industrial systems’ operation processes. Main 
characteristics of this model are determined as well. In particular case, for a port oil 
transportation system, its operation states are defined, the relationships between them are 
fixed and particular model of its operation process is constructed and its main characteristics 
are determined. Further, the joint model of the system operation process and the system 
reliability is defined sand applied to the reliability evaluation of the port oil transportation 
system. 

 
 
 
1  INTRODUCTION 
 

Most real transportation systems are very complex and it is difficult to analyse their reliability 
and availability. Large numbers of components and subsystems and their operating complexity 
cause that the evaluation and optimisation of their reliability and availability is complicated. The 
complexity of the systems’ operation processes and their influence on changing in time the systems’ 
structures and their components’ reliability characteristics is often very difficult to fix and to 
analyse. A convenient tool for solving this problem is semi-markov modelling of the systems 
operation processes proposed in the paper. Therefore, the common usage of the system’s reliability 
evaluation methods and semi-markov modelling the system’s exploitation process in order to 
construct a general system reliability model related to its operation process is proposed in the paper. 
Statistical methods of the general model unknown parameters estimation are proposed. Main 
characteristics of this model are determined. Computer programme for determining these all values 
is shortly described. The way of its application to reliability evaluation of a port grain transportation 
system is illustrated.    
 
2 MODELLING OF SYSTEM OPERATION PROCESS 
 

Usually the system environment and infrastructure have either an explicit or implicit strong 
influence on the system operation process. As a rule some of the initiating environment events and 
infrastructure conditions define a set of different operation states of the industrial system. Thus, we 
assume that the system during its operation is operating in ,, Nv ∈ν  different operation states. After 
this assumptions, we can define the system operation process )(tZ , ,,0 >+∞∈<t  with discrete states 
from the set of states }..,..,,{ 21 νzzzZ =  If the system operation process Z(t) is semi-markov 
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(Grabski 2002), (Soszynska 2006a,b, Soszynska 2007) with the conditional sojourn times blθ  at the 
operation states bz  when its next operation state is ,lz  ,,...,2,1, vlb =  ,lb ≠  then it may be 
described by:   
- the vector of probabilities of the system operation process initial states  
 

)]0(),...,0(),0([)]0([ 211 νν ppppb =x , 
 
where  

))0(()0( bb zZPp ==  for ,,...,2,1 vb =  
 

- the matrix of probabilities of the system operation process transitions between the operation states  
 

⎥
⎥
⎥
⎥
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where 0=bbp  for ,,...,2,1 vb =  
- the matrix of the system operation process conditional sojourn times blθ  distribution functions  
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where  

 
)()( tPtH blbl <= θ  for ,,...,2,1, vlb =  ,lb ≠  

 
and  
 

0)( =tH bb  for .,...,2,1 vb =  
 

Under these assumptions, the mean values of the system operation process conditional sojourn 
times blθ  are given by  
 

                                  ][ blbl EM θ= ∫=
∞

0
),(ttdH bl  ,,...,2,1, vlb =  .lb ≠                                              (1) 

 
By the formula for total probability the unconditional distribution functions of the sojourn times bθ  
of the system operation process )(tZ  at the operation states ,bz  ,,...,2,1 vb =  are given by  
 

                                                   )(tHb  = ∑
=

v

l
blbl tHp

1
),(  .,...,2,1 vb =                                                  (2) 
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Hence, the mean values E[ bθ ] of the system operation process unconditional sojourn times bθ  in 
the particular operation states are given by   
 

                                                   ][ bb EM θ=  = ∑
=

v

l
blbl Mp

1
, ,,...,2,1 vb =                                           (3) 

 
where blM  are defined by (1). 
Moreover, it is well known (Grabski 2002) that the limit values of the system operation process 
transient probabilities at the particular operation states  
 

)(tpb = P(Z(t) = bz ) , ),,0 +∞∈<t ,,...,2,1 vb =  
 
are given by   
 

                                                  bp  = )(lim tpb
t ∞→

= ,

1
∑
=

v

l
ll

bb

M

M

π

π
 ,,...,2,1 vb =                                          

(4) 
 
where ,bM ,,...,2,1 vb =  are defined by (3), whereas the probabilities bπ  of the vector νπ xb 1][  
satisfy the system of equations   
 

                                                                
⎪⎩

⎪
⎨
⎧

∑ =

=

=

v

l
l

blbb p

1
.1

]][[][

π

ππ
                                                               

(5) 
 
Other interesting characteristics of the operation process )(tZ  possible to obtain are its total sojourn 
times bθ€  in the particular operation states ,bz  .,...,2,1 vb =  It is well known (Grabski 2002) that the 

system operation process total sojourn times bθ€  in the particular operation states ,bz  for sufficiently 
large operation time ,θ  have approximately normal distribution with the expected value given by  

 

                                                                 ,]€[ θθ bb pE = ,,...,2,1 vb =                                                   (6) 

 

where bp  are given by (4). 
 
3 STATISTICAL IDENTYFICATION OF SYSTEMOPERATION PROCESS MODEL 
 

In order to estimate parameters of the operation process model the following step should be 
done:   
- to fix the number of states ν of the system operation process )(tZ  and to define the operation 
states ,1z ,2z  …, νz  of the set ,Z   
- to fix the vector of realisations  
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)],0(),...,0(),0([)]0([ 21 νnnnnb =  

 
of the numbers )0(bn , ,,...,2,1 ν=b  of the system operation process )(tZ  transients in the particular 
states bz  at the initial moment t = 0 
- to fix the matrix of realisations  
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of the numbers bln , ,,...,2,1, ν=lb  of the system operation process )(tZ  transitions from the state 

bz  into the state lz  during the experiment time ,Θ  
- to fix the vector of realisations  
 

)]0(.,..),0(),0([)]0([ 21 νpppp = , 
 
of the initial probabilities )0(bp , ,,...,2,1 ν=b  of the system operation process )(tZ  transients in 
the particular states bz  at the moment t = 0, according to the formula  
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is the total number of the system operation process )(tZ  realisations at t = 0,   
- to fix the matrix of realisations  
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of the transition probabilities blp , ,,...,2,1, ν=lb  of the system operation process )(tZ  from the 
operation state bz  into the operation state lz  during the experiment time ,Θ  according to the 
formula   
 

b

bl
bl n

n
p =  for ,,...,2,1, ν=lb  b ≠ l, 
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bbp  = 0   for ,,...,2,1 ν=b  
where  
 

∑=
≠

ν

lb
blb nn , ,,...,2,1 ν=b  

 
is the realisation of the total number of the system operation process )(tZ  transitions from the 
operation state bz  during the experiment time ,Θ  
- to formulate and to verify the hypotheses about the conditional distribution functions )(tH bl  of 
the system operation process )(tZ  sojourn times blθ , ,,...,2,1, ν=lb  b ≠ l, in the state bz  while the 
next transition is the state lz   on the base of their realisations  k

blθ , blnk ,...,2,1=  during the 
experiment time .Θ  
 
4 APPLICATION  
 

As an example we will analyse the reliability of the port oil transportation system in its 
operation process (Kolowrocki & Soszynska 2006, - Kolowrocki & Soszynska 2007, Soszynska 
2006). The considered system is composed of three terminal parts A, B and C, linked by the piping 
transportation systems. 
 

 
 

Figure 1. The scheme of port oil transport system. 
 
The Oil Terminal in Dębogórze is designated for the reception from ships, the storage and sending 
by carriages or cars the oil products. It is also designated for receiving from carriages or cars, the 
storage and loading the tankers with oil products such like petrol and oil. 
The unloading of tankers is performed at the piers placed in the Port of Gdynia. The piers is 
connected with terminal part A through the transportation subsystem S1 built of two piping lines 
composed of steel pipe segments with diameter of 600 mm. In the part A there is a supporting 
station fortifying tankers pumps and making possible further transport of oil by the subsystem S2 to 
the terminal part B. The subsystem S2 is built of two piping lines composed of steel pipe segments 
of the diameter 600 mm. The terminal part B is connected with the terminal part C by the subsystem 
S3. The subsystem S3 is built of one piping line composed of steel pipe segments of the diameter 
500 mm and two piping lines composed of steel pipe segments of diameter 350 mm. The terminal 
part C is designated for the loading the rail cisterns with oil products and for the wagon sending to 
the railway station of the Port of Gdynia and further to the interior of the country.  
The Port Oil Transportation system consists of three subsystems 1S , 2S , 3S .  
Subsystem S1 consist of  kn = 2 two identical pipelines, each composed of  ln = 178 elements. In 
each pipeline there are: 
- 176 pipe segments,  
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- 2 valves.  
Subsystem S2 consist of  kn = 2 two identical pipelines, each composed of  ln = 719 elements. In 
each pipeline there are: 
- 717 pipe segments,  
- 2 valves. 
Subsystem S3 consist of  two pipelines of the first type and one second type, each composed of  ln = 
362 elements. In each pipeline of the first type there are: 
-  360 pipe segments (Ø=350mm),  
- 2 valves. 
In pipeline of the second type there are:  
-  360 pipe segments (Ø=500mm),  
- 2 valves. 
Taking into account the operation process of the considered transportation system we distinguish 
the following as its five operation states:  
• an operation state 1z  – transport of two different kinds of medium from the terminal part B to part 
C using two out of three  pipelines in part S3, with the structure given in Figure 2,  

  

 

 
 
 
 

Figure 2. The scheme of port oil transport system at the operation state z1 
 

• an operation state 2z  – transport of one kind of medium from the terminal part C (from carriages) 
to part B using one out of three pipelines in part S3, with the structure given in Figure 3, 
 
 
 
 
 
 
 

Figure 3. The scheme of port oil transport system at the operation state z2 
 

• an operation state 3z  – transport of one kind of medium from the terminal part B through part A to 
the piers using one out of two pipelines in part S2 and one out of two pipelines in part S1, with the 
structure given in Figure 4,  
 
 
 
 
 
 
 

Figure 4. The scheme of port oil transport system at the operation state z3 
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• an operation state 4z  – transport of two kinds of medium from the piers through parts A and B to 
part C using both pipelines in part S1, both in part S2 and two out of three pipelines in part S3, with 
the structure given in Figure 5, 
 
 
 
 
 
 
 
 

Figure 5. The scheme of port oil transport system at the operation state z4 
 

• an operation state 5z  – transport of one kind of medium from the piers through part A and B to 
part C using one out of two pipelines in parts S1 and S2 and one out of three pipelines in part S3, 
with the structure given in Figure 6 . 
 
 
 
 
 
 
 
 

Figure 6. The scheme of port oil transport system at the operation state z5 
 

Moreover, we almost arbitrarily, i.e. slightly using an expert opinion, assume the following matrix 
of the conditional distribution functions  
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of the oil terminal operation process sojourn times ,blθ  ,5,4,3,2,1, =lb  in the distinguished 
operation states ,1z  ,2z  ,3z  ,4z  ,5z  and the matrix of the probabilities of transitions between the 
operation states   
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Further, according to (2), the unconditional distribution functions of the oil terminal operation 
process )(tZ  sojourn times bθ  in the states ,bz  ,5,4,3,2,1=b  are given by  
 

],4.37117exp[1)( 2
1 ttH −−=  

 
],9.19174exp[1)( 2

2 ttH −−=  
 

],1.107737exp[89.0]5.148469exp[11.01)( 22
3 tttH −⋅−−⋅−=  

 
]1.969634exp[5.01)( 2

4 ttH −⋅−= ],1.969634exp[5.0 2t−⋅−  
 

],1.29exp[1)( 2
5 ttH −−=  

 
and their mean values, from (3), are   
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Since from the system of equations  
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we get  
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then the limit values of the transient probabilities )(tpb  at the operational states bz , according to 
(4), are  
 

,018.01 =p  ,228.02 =p  ,095.03 =p  ,007.04 =p  .652.05 =p  
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And, by (6), the expected values of the total sojourn times ,€
bθ  ,5,4,3,2,1=b  in particular operation 

states for the oil terminal system operation time 1=θ  year 365= days are given by  

6.6365018.0]€[ `1 ≅⋅=θE days, 
 

2.83365228.0]€[ 2 ≅⋅=θE days, 
 

7.34365095.0]€[ 3 ≅⋅=θE days, 
 

6.2365007.0]€[ 4 ≅⋅=θE days, 
 

0.238365652.0]€[ 5 ≅⋅=θE days. 
 
5 RELIABILITY OF SYSTEMS IN VARIABLE OPERATION PROCESS 
 

 We assume that the changes of the system operation process Z(t) states have an influence on 
the system components ,iE  ,,...,2,1 ni =  reliability and the system reliability structure as well. 
Thus, we denote the conditional reliability function of the system component iE  while the system is 
at the operational state ,bz  ,,...,2,1 vb =  by   

 
))(()( )()(

b
b

i
b

i ztZtTPtR =>= for ),,0 ∞∈<t ,,...,2,1 ni = ,,...,2,1 ν=b  
 
and the conditional reliability function of the system while the system is at the operational state 

,bz ,,...,2,1 ν=b  by   
 

)()( tb
nR ))(( )(

b
b ztZtTP =>=  for ),,0 ∞∈<t ,,...,2,1 ν=b  ,Nn ∈  

 
 where  
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2
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1
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n

bbb TTTTT =  for ),,0 ∞∈<t ,,...,2,1 ν=b  ,Nn ∈  
 
and  
 

)()( tb
nR ))(),...,(),(( )()(

2
)(

1 tRtRtR b
n

bb
nR=  for ),,0 ∞∈<t ,,...,2,1 ν=b  .Nn ∈  

 
The reliability function )()( tR b

i  is the conditional probability that the component iE  lifetime )(b
iT  is 

greater than t, while the process Z(t) is at the operation state .bz  Similarly, the reliability function 
)()( tb

nR  is the conditional probability that the system lifetime )(bT  is greater than t, while the 

process Z(t) is at the operation state .bz  In the case when the system operation time θ is large 
enough, the unconditional reliability function of the system  
 

)(tnR )( tTP >=  for ),,0 ∞∈<t  
 
where T  is the unconditional lifetime of the system is given by  
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                                                        )(tnR ∑≅
=

v

b
bp

1
)()( tb

nR for 0≥t                                                    (8) 

 
and the mean value of the system lifetime is   
 

                                                                      
,

1
∑≅
=

ν
μμ

b
bbp                                                                 (9) 

 
where  
 

∫=
∞

0

)( ,)( dttb
nb Rμ  

 
and bp  are given by (4), and the variance of the system lifetime is 
 

                                                               ∫=
∞

0

2 2 tσ .][)( 2μ−dttnR
                                                  

(10)  

 
6 RELIABILITY OF PORT OIL TRANSPORTATION SYSTEM IN VARIABLE 

OPERATION PROCESS 
 

Using the model considering in section 6, the results of section 5 and the results given in 
[Kolowrocki & Soszynska 2006, Soszynska 2006, Soszynska 2007) by (7) and (8), we have  
 

                 )(tnR ≅ )(228.0)(018.0 (2)(1) tt nn RR ⋅+⋅ )(095.0 (3) tnR⋅+ )(007.0 (4) tnR⋅+ )(652.0 (5) tnR⋅+                (11) 
 
where )()1( tnR , )()2( tnR , )()3( tnR , )()4( tnR , )()5( tnR    are the system reliability functions in particular 
operation states determined by (24), (28), (32), (36) and (40) given in (Soszynska 2007).  
Since according to the results given in (Soszynska 2007), the mean values of the conditional system 
lifetimes in years are    
 

∫ ==
∞

0

)1(
1 364.0)( dttnRμ year, 

 

∫ ==
∞

0

)2(
2 807.0)( dttnRμ  year, 

 

∫ ==
∞

0

)3(
3 307.0)( dttnRμ  year, 

 

∫ ==
∞

0

)4(
4 080.0)( dttnRμ  year, 

 

∫ ==
∞

0

)5(
5 275.0)( dttnRμ  year. 
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then applying (11), (9) and (10), we get the mean value and the standard deviation of the system 
unconditional lifetime given by    
 

year40.0275.0652.0080.0007.0307.0095.0807.0228.0364.0018.0 ≅⋅+⋅+⋅+⋅+⋅≅μ  
 

37.0≅σ  year. 
 
7 CONCLUSIONS 
 

The paper proposes an approach to the solution of practically very important problem of 
linking the systems’ reliability and their operation processes. To involve the interactions between 
the systems’ operation processes and their varying in time reliability structures and components’ 
reliability characteristics a semi-markov model of the systems’ operation processes and system 
conditional reliability functions are used. This approach gives practically important in everyday 
usage tool for reliability evaluation of the systems with changing reliability structures and 
components’ reliability characteristics during their operation processes. Application of the proposed 
method is illustrated in the reliability evaluation of the port oil transportation system. The reliability 
input data concerned with the operation process and reliability functions of the components of the 
port oil transportation system are not precise. They are coming from experts and are concerned with 
the mean lifetimes of the system components and with the conditional sojourn times of the system 
in the operation states under arbitrary assumption that their distributions are Weibull. Thus, the 
final results obtained in the system reliability characteristics evaluation are not precise as well and 
should be treated as an example of the proposed model possible application. In further developing 
of the proposed methods it seem to be possible to obtain the results useful in the complex technical 
systems related to their operation processes reliability evaluation, improvement and optimisation.  
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