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NATURAL DISASTERS AND STRUCTURAL SURVIVABILITY  
                                                 

V. Raizer  

● 
San Diego, CA 

 

1. PROBLEM OF DISASTER’S PREDICTION 
 

           The term “disaster” is known to denote any environmental changes putting human lives 
under treat or materially deteriorating living conditions. A considerable part of disasters comprises 
natural calamities. These disasters can originate inside Earth (earthquakes, volcanic processes), near 
or on its surface (disturbance of slope stability, karsts, considerable changes in soil conditions and 
ground’s settlements). The causes of disasters can as well be associated with a water, either at a 
liquid (flood, tsunami) or at a frozen state (complex or glacier avalanches), and, finally with 
atmospheric conditions. In many cases successions of interdependent disasters are possible, 
including these occurring in different media (earthquake-tsunami, earthquake-landslide, and lands-
flood etc.).          
        The analysis of conditions associated with the onset and the development of the dangerous 
natural processes becomes at present the subject of both the natural research and the engineering 
analysis. New cities, industrial, power and other facilities are mostly erected in areas where natural 
calamities emerge. Environmental changes of natural or man-caused origin lead to disastrous 
effects in areas developed earlier, too.  
         It is always that the mechanisms of the dangerous natural phenomena can be represented by 
the direct cause-and –the effect relations. A prediction of the type, the time and the size of the 
expected disaster, even if practicable, can only be probabilistic. Therefore, for the analysis of the 
structures for the areas where natural calamities can take place the probabilistic approach and the 
use of the reliability theory can prove to be more efficient and necessary than in regular cases.  
             The level of the development of many problems concerning the comprehension of natural 
calamity’s origination and hence, the level of the efficiency in predicting their time, conditions and 
the character of manifestation, as well as the development of measures for their prevention and 
mitigation of losses, leg behind with the practical needs of the national economy. To a certain 
extent, it can be accounted for by absence of common approaches to the constructing models of 
some natural disasters and the methods of their prediction.  
             To predict future events using statistical methods, we should dispose of information for 
rather a long time period. Practically, however, the prediction is based on limited information, due 
to which it is often imprecise and sometimes merely incorrect. 
              Prediction accuracy, however, fluctuates within a certain range, if the prediction is based 
on statistics alone. It implies that different methods should also be employed in prediction. For 
sufficiently substantiated prediction the following methods are generally used [2-6]: malty-
dimensional regression analysis, theory of quantitative analysis, graph theory for error analysis, 
Delphi method (method of expert evaluation), and statistical analysis. 
               The latest research in the field of forecasting disastrous events and preventing the 
maximum risk and losses due to abnormal actions have shown that ever more widespread, together 
with the foregoing five methods, is becoming the approach based on the theory of fuzzy sets [7]. 
This can be accounted for by the fact that any classification, any algorithm, any rule of decision 
making, any model (theoretical or calculated) can be correlated with its fuzzy analogue. For 
example, classification implies the breakdown of a totality of elements into classes or groups of 
similar elements. Rigorous classification refers each element to a single definite class, whereas 
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according to fuzzy classification it can belong to different classes depending to on certain 
conditions. The fuzzy classification is generally more realistic than the rigorous one. The use of the 
theory of fuzzy sets permits to elaborate, basing on fuzzy input data, a certain optimum solution 
setting applicability borders. 
 
 

2. METHODOLOGICAL ASPECTS OF THE ANALYSIS 
 

          An engineering analysis proper is not aimed at evaluating of the probabilistic parameters that 
represent natural processes and, in theory; the engineer should obtain from experts in natural 
sciences properly represented statistical information. The task of the engineer is to assess, using this 
information, a risk associated with a particular structure, and to device measures of disaster 
protection of human life and property, efficient terms of the data available. In practice, however, 
similarly to the case of estimating disastrous wind’s speed or water’s pressure parameters, for 
example, when designing safe structures or estimating a stressed state of undisturbed soil’s mass, 
engineers dealing with the theory of a structural analysis cannot count on obtaining the foregoing 
information “from the outside”. Hence, an independent statistical analysis of available information 
is required, so that the data based on it should correspond to peculiarities involved in the 
engineering analysis. Moreover, sometimes it becomes necessary to describe, in terms of these 
peculiarities, mechanisms of natural phenomena and to reveal their quantitative characteristics 
determining the extent of a structural damage. 
             Another moment that should be born in mind is the comprehension that for not all natural 
disastrous effects structures can and must be designed and it is not always that engineering 
measures aimed to mitigating of the destructive effect of disasters can be designed and 
implemented. Design procedures envisaged in disregarding disastrous effects of an artificial origin. 
Similarly, when, for example, developing the code of design with due regard for the natural 
disasters one should not tackle an unsolvable problem of an analysis for all types or levels of the 
foregoing effects. In fact, there is nothing new about it: the same idea is employed in specifying the 
“assumed” seismicity for which the structures in the area are to be designed, whereas a higher-level 
earthquake motion is considered a “beyond-design” occurrence. Here the expected events can be 
classified as “design” or “beyond-design”, according to the level of motion. Meanwhile, referred to 
“beyond-design” cases are, sometimes, entire types of events hard to predict or even quite 
unpredictable occurrences, as mentioned above. It needs to be said that the formal division of 
seismic effects upon structures and occurrences associated with them into “design” and “beyond-
design” cannot be accepted, unless their consequences will be taken into account.  
            We know that in structural design for regular loads the term “failure” is generally used to 
denote a random event of realization of one of its damage states. The aim of a competent design 
consists in specifying of the structural parameters in a way that would exclude such failures due to 
design loads. In the design for natural disasters, however, the requirement of the inadmissibility of 
the failure in the foregoing sense can hardly be fulfilled and it should therefore be replaced by the 
requirement of the structural non-destructibility. Non-destructibility would imply the preservation 
of the main structure’s member that would permit to retrofit the whole structure (building, for 
example). There are some types of structures or buildings, however, for which the foregoing 
consideration doesn’t seem to be important. As far as structures whose failure presents a global 
threat to the environment are concerned, non-destructibility means, in this case, the prevention from 
the failure of structural members that contain or emit substances containing environment. This, 
however, applies to a design situation. As regards “beyond-design” situation, special engineering 
solutions are seemingly required for the above structures. The solutions should ensure, even in the 
case of the most improvable and unpredictable effects, spontaneous deviation from hazardous 
production processes and self-isolation of units containing detrimental or hazardous components. 
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3. STATITICAL EVALUATION OF NATURAL DISASTERS 
 

The probabilistic approach proper employed in evaluating a possible level of any disastrous   
phenomenon in a particular area can also prove to be efficient and useful when the structure or soil 
are not supposed to be analyzed for the mentioned phenomenon. Therefore, when elaborating a 
probabilistic concept for natural disasters one should primarily consider in a general form the 
feasibility of using the statistical approach for representing the disastrous effects.  
  In principle the aim of the statistical analysis in terms of the problem being considered is the 
probabilistic prediction of the time and the place of a natural disaster or, on the contrary, for the 
given place and the service life of the structure – the probability of occurrence for the given period 
of a certain disaster’s type. 
              Generally speaking, besides probabilistic prediction, direct forecasting based on warning 
signs can be used. Reliable warning signs, however, are often detected just before the disaster and 
cannot be taken into account in long-term prediction influencing engineering solution. 
               To have a prior notion of the frequency and the extent of disasters possible in a particular 
region is the reason, for which statistical methods are to be used. The analysis of observations for 
previous years can give the information of the frequency and parameters of disasters in the past. 
Assuming the probability of such events to be invariable in time, the same frequency that was in the 
past should be predicted for the future. This extrapolation, however, can prove to be rather 
conventional, since data obtained generally refer to a limited time range alone. For this reason the 
processing of the available data should be based on specially developed statistical models whose 
physical correspondence to the phenomena under consideration make the extrapolation trustworthy. 
              Since natural disasters are, this way or other, extreme occurrences (earthquake or/and 
tsunami of high intensity, landslide of a great amount of soil, karsts crater of a large diameter), their 
statistics has the character of “statistics of rare phenomena”. The Poisson’s distribution can be 
proposed in this case, and the time character of the disasters manifestations can be represented by 
the Poisson’s process. 
           The specificity of the probabilistic approach to extreme values of the parameter referred to 
disastrous manifestations of the natural processes the Poisson’s or other distributions that represent 
the statistics of the extremes take place [8]. The necessity in the accounting and description of the 
parameters of three-dimensional variability, as well as in the study of this variability at different 
scale levels is essential in terms of the determining, on the basis of observations, regions, where this 
danger should be allowed in the practical engineering analysis, i.e. solving the task of micro-
zoning. For this purpose, as well as for a more detailed prediction of threatening occurrences, 
methods for optimum prediction of random fields should be employed. 
              Areas where dangerous phenomena can occur at intensity levels not yet realized 
(earthquake exceeding the design level, karsts crater over allowed dimensions), can be determined 
and assessed be the test’s observations of the similar occurrences, however, of lower, pre-ultimate, 
intensity. 
            Meanwhile, to say nothing of the abovementioned incomplete trustworthiness of 
extrapolation, the notion of a somewhat mass scale of occurrences, though less intensive, but in any 
case, similar to “disasters”, is far for being always correct.  
             There are, certainly, other types of dangerous phenomena, too, whose uniform realizations 
in the given area are of rather a mass scale; such are natural landslides or stonewalls on different 
slopes in mountainous areas or rock bursts in mining working; statistical data of these can also be 
obtained. Natural disasters of geotechnical origin, however, can be “unique”; hence, we must not 
rely upon full-scale data selection and processing, i.e. upon the so-called “objective analysis”. 
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                A specific feature of natural disasters (and man-caused disasters, too) is that they are 
practically in avoidable. Natural disasters are characterized by power and uncontrollability. Typical 
of man-cased events is that they result from the speedy development of super-modern technologies 
and a production whose management contains a weak link, that is, a man able to make with tragic 
consequences (Chernobyl, for example). The main task here is to predict possible disasters, 
localizing them and mitigating possible losses. The design of any structure should be preceded by 
the analysis of all possible types of natural or man-caused disasters in terms of the probability of 
occurrence, of the practicability of initiation, of some secondary disasters, of the practicability of 
the localization, of the preventive measures not connected with design methods, and, at last, of the 
damage in the case of occurrence.  
 
 

4. SAFETY CRITERIA OF UNIQUE STRUCTURES 
 

              Before dealing with safety criteria we should clarify the notion of a unique structure and 
natural or other effects that, determining its vulnerability, are detrimental for human health. The 
notion of the structural uniqueness and that of the treat of the natural or other phenomena are 
interconnected. Considering the structural safety in terms of the treat to human life and health, we 
should not connect the uniqueness of the structure with its cost or with the expected material losses 
alone. The uniqueness should as well be linked with the level of the treat for people, irrespective of 
its probability and of factors causing it, such as: the function and the size of the considered 
building, the character of productions, the presence of the radioactive products, etc. Hence, unique 
structures are those whose damage or collapse, no matter how long their probability could be, 
threaten the life and the health of people, either inside or, which is more often, outside the building. 
             The foregoing definition of the structural uniqueness permits to refer to refer to such 
buildings projects of national economy (industry, energy, transport and others) and those of a social 
sphere, whose damage and collapse would entail threat to human life and health. Vulnerability of 
unique buildings exposed to disastrous natural effects and possibility of their damage or collapse 
depend on:  

• The extent to which loads due to disastrous natural phenomena exceed standard loads. 
• The influence of secondary factors (explosions, fires) due to disastrous natural phenomena. 
• The errors involved in the design, analysis and the choice of location of a building and those 

made at the stage of maintenance. 
• Poor workmanship, the discrepancy between the strength characteristics of building 

materials and the standards, strength degradation in the course of the maintenance. 
Analyzing structural vulnerability or safety it is expedient to single out the so-called “critical” 
elements on which structural safety mostly depends. For many structures such are the bearing 
members of the buildings that determine their strength and stability (foundation, columns, floors, 
joints, supports, ets.). For other buildings “critical” elements will be those able to resist explosion or 
fire caused by natural cataclysms, ensuring a reliable operation of safety systems. For a number of 
unique buildings “critical” elements are associated with the radioactivity or with the insurance of 
radiation safety. 
           Differences in the character of the critical elements require performing, when choosing 
safety criteria of unique units, a systematic analysis in order to find these elements and to assess the 
consequences of their failure. The systematic analysis of structural safety should include the 
elaboration of the scenario of a natural effect, taking into account the specificity of the latter, the 
structure of the unique building, the presence and the character of the “critical” elements, the 
consequences of their failure, the nature of unit’s damage or collapse and their influence on the 
safety of people inside or outside the building and on the environment. 
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          Generally speaking, every natural phenomenon and every unique building require a scenario 
permitting to take their specificity into account and to obtain statistical data for generalizing the 
consequences. The elaboration and the analysis of the scenarios require a great professional effort 
of people acquainted with the specificity of the branch and the particular unique building. 
To specify qualitative and quantitative safety criteria of unique buildings exposed to any types of 
natural effects, an integrated approach should be recommended as based on: 

• Systematic deterministic analysis of scenarios of the influence of natural disastrous factors 
on concrete unique buildings revealing particular quality criteria. 

• Probabilistic risk analysis determining particular and general probabilistic safety criteria that 
include those for limit states representing the extent of the failure, and criteria for the 
personnel and other people in terms of the threat for human life and health (individual risk, 
collective risk, etc.).  

• “Cost-benefit” analysis to define more exactly safety basing on optimization of investments 
for protection against unfavorable effects with due regard for socio-economic factors.  

                         
 
 

5. COMMENTS TO CODIFIED PROCEDURES 
 

        Among the codes on design of unique structures there are no codes of environment protection 
and the boundaries of homeostasis1of a living system as predominant in the process of determining 
the basis and analyzing structural strength, stability, durability. This kind of code should specify a 
limit state in terms of environment protection: in the result of investigation, construction and 
maintenance of structures the interface in the space of environmental parameters separating their 
domain, wherein a living system can exist, from the rest part of the space, should not surpass the 
boundary of the living system’s homeostasis. 
         The transition from homeostatic domain through its boundary means the termination of the 
existence of given organism, i.e. the given living system. To ensure homeostasis it is required: to 
determine its boundaries, to be able to assess the position of the whole living system with respect to 
the specified homeostasis boundary, e.g. to develop a specific informational system: sensors, 
gauges, monitoring, decision making procedures. 
          With codifying boundary protection and homeostatic boundaries of a unique structures living 
system, particular attention should be paid to geo-pathogenic2 areas within the limits of design, 
construction and maintenance.  
         Geo-pathogenous zones result from the heterogeneous3 structure of Earth’s Crust, that 
anomalous information fields, detrimental for the energy of bio-systems or objects of inanimate 
nature. It is not advisable to assembly in the geo-pathogenous zones structures, important in terms 
of economy and ecology. Codes specifying the contents of designs of unique systems should 
contain the section of analysis and evaluation of damage or failure probability of the structure being 
designed. This section should also contain appropriate scenarios for the operation of expert teams 
trained to eliminate damage, localize ecological losses and to rescue people, animals and the whole 
animate system in the region of disaster. 
           As concerns the abovementioned section, national data bank should be complied and 
constantly replenished; the data bank should contain information on the causes and the physical 
meaning of failures, systematic analysis, material and other losses and on methods of damage 
elimination and rescue of the animate system. 

                                                           
1 Relatively stable state of equilibrium. 
2 This term was  coming from the world of Dowsing. 
3 Derved from the Greek, used to describe that has a large amount of variants. 
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          Reliability is determined by the extent of structure’s non-exposure to danger (in case under 
consideration, to elemental natural and elemental man-cause disasters), it being impracticable and 
inexpedient here to guarantee structural survivability as regards all, including almost improbable 
dangerous effects. 
 
 
                                  6. STRUCTURAL SYSTEM’S SURVIVABILITY4 
 

Different situations in beyond-design states of structures can appear as a result of applying 
of natural or man-caused abnormal actions on building, which have not been foreseen in design. 
These states can be classified according to failure form, degree of damage and final state. The 
following forms of failure can be considered for ultimate limit state: 

• Loss of strength in time of plastic, brittle, ductility or fatigue failure of elements. 
• Elastic or inelastic buckling of structures. 
• Loss of the stable equilibrium of the whole building. 

        According to the degree of the intensity it can be: 
• Full progressive failure of the whole building. Such form of a failure is typical for brittle 

structures when a damage of separate elements can arouse dynamic effects in other 
elements of a structure. 

• Little by little growing failure of accidental character as a result of plastic deformations 
accumulation. This situation will stop exploitation and demands restoration. This form of 
failure is typical for structures from elastic-plastic materials when failure of separate 
elements accompanies by growing of large displacements and redistributions of inner 
forces. 

It is useful to denote that failure analysis shows that practically always the process of 
structural failure is avalanche-like, representing a sequence of failures of the members the is 
composed of, in which case “failure” means both, partial damage and complete failure. In the 
overwhelming majority of cases, however, in individual failures do not bad to a total breakdown; in 
a structure, provided it is redundant, stress redistribution takes place and the structure keeps 
performing its functions, though, perhaps, not to the full capacity. 

 This is favorable from the practice point of view; the situation can be accounted for by 
bearing capacity reserves that the structures posses. At present these margins are envisaged in the 
design, as based on experience and intuition. For achievement of an expedient reliability level the 
structure should be designed to bridge over a loss of a supporting member so that the area of 
damage is limited and localized [9]. 

It is but natural to use the word “survivability” applicably of the structural system to preserve 
an ability to carry out the main functions in the period of accidental perturbation and do not permit 
the progressive collapse or the cascade development of failures. Survivability is quite an important 
and, applicably to unique and important structure, indispensable property, since reliable 
performance of structures is only possible if an appropriate level of survivability is ensured. 

There arises at once the question of this property’s quantitative aspect. At present, 
conventional is a probabilistic approach to structural reliability evaluation; hence it is natural to 
employ it when obtaining numerical characteristics of survivability, too. Then, in compliance with 
the general methods, survivability level will be determined by a probability of some events 
characterizing the process of failure. It is logical to consider, how some critical state is attained in 
the process of successive failures of members. This can be the failure of some numbers of members, 
assigned in advance, and the formation of an instantaneous mechanism, or the failure of some 
isolated members, etc. Complying with this approach, a structure can be considered to possess 
                                                           
4 The term integrity can be used too. 
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survivability if the probability of the above event for damaged structure is not so high; as compared 
to its undamaged counterpart (other criteria can as well be used). 

The index of survivability can be expressed in the following way  

                                '
f

f

P
P

=η                                                                           (1) 

Where fP  -probability of failure of the designed system; '
fP  –probability of failure of the 

same system when some members failed. Survivability factors η  are in [0,1] interval. The more is 
its value, the larger is the reserve of survivability in structural system. The steel frame is considered 
in Fig.1.  

 

   
 

                                                                   Fig.1 Two-story frame 
 

In the longitudinal direction frame’s span is 6m, h = 4m. All members of considered frame 
have I-sections with aria moments W = 6.15·10-5m3 (1st floor column); W = 8.28·10-5m3 (2nd floor 
column); W = 1.270·10-4m3 (1st floor girder); W = 1.098·10-4m3 (2nd floor girder). 

Probabilistic analysis was performed taking into account random nature of applied loads and 
yield stress of frame’s material, with given probability distributions. Table 1 contains parameters of 
these distributions. Calculations were made on the base of linear programming method (simplex 
method) with the application of the direct   integration of distribution function [10,11]. Probability 
of failure is Pf =5.51·10-5.  

                                                                                                          Table 1 
 

Random value Distribution Mean value Standard 
deviation s  

Parameters of 
distribution 

Design 
values 

Wind load 
P1, P2 

Gumbel 0144 2. кН м  0 037 2. кН м  u кН м= 0127 2.  
z кН м= 0 029 2.  

0 2576 2. кН м

Snow load 
q3 

Gumbel 11418 2. кН м  0 4681 2. кН м  u кН м= 0 931 2.  
z кН м= 0 365 2.  

16 2. кН м  

Load due to 
use 
q4 

Gauss 0 88 2. кН м  0 21 2. кН м  – 168 2. кН м  

    β = 14 3.   
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Random value Distribution Mean value Standard 
deviation s  

Parameters of 
distribution 

Design 
values 

Yield point 
σy 

Weibul 305 25. МПа  25МПа  α = 316 42. МПа  
x0 0=  

245МПа  

 
More probable is the partial mechanism of failure when plastic hinges appear in cross- 

sections 4, 7 and 9 (Fig.1). The values of the failure probabilities of considered frame are listed in 
Table 2  for different cases of cross-sections weakening. 

                                                                                                                           Table 2 
 

№ 
section

s 

Probability of failure Pf  
Lowering of aria moments W  in different sections 

 5% 10% 25% 50% 75% 95% 
1 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 7.53⋅10-5 8.42⋅10-5 
2 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 7.41⋅10-5 8.94⋅10-5 
3 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 
4 5.83⋅10-5 5.96⋅10-5 0.000101 0.000207 0.000389 0.000570 
5 5.51⋅10-5 5.51⋅10-5 8.42⋅10-5 0.000122 0.000309 0.000547 
6 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 0.000107 0.000755 0.004562 
7 6.19⋅10-5 7.90⋅10-5 0.000303 0.001246 0.006322 0.025580 
8 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 8.34⋅10-5 0.000734 0.004771 
9 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 0.000137 0.000319 0.000593 
10 5.95⋅10-5 6.86⋅10-5 0.000103 0.000207 0.000392 0.000564 
11 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 
12 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 0.000112 0.000265 
13 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 0.000224 0.000873 
14 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 0.000890 0.001063 0.002327 
15 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 0.000229 0.000871 
16 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 0.000112 0.000259 
17 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 7.30⋅10-5 8.27⋅10-5 
18 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 5.51⋅10-5 7.34⋅10-5 8.33⋅10-5 

  
From Table 2 follows that in the case of a failure of any cross-section, probability of failure 

for frame will not exceed the value 02558.0' =fP  (the failure of cross-section 7). The failure of 
cross-section 7 will not lead to the collapse of all structure but essentially decreases its 
survivability. Even the full failure of cross-sections 2 or 11 has no influence on probability of this 
frame. The failure of the cross-section 1, 2, 17 or 18 has also no essential influence at this 
probability. Survivability index of the considered frame with regard to the failure of cross-section 7 
constitutes:  

 

00215.0
02558.0

1051.5 5

=
⋅

=
−

η  

If in the process of structure exploiting some actions will be ensuring, then the probability of 
the failure of the whole frame in case when one cross-section failed, can be decreased to the value 

004771.0' =fP . Survivability index will be: 
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0115.0
004771.0

1051.5 5

=
⋅

=
−

η   
 

At Fig. 2 graphs due to dependences between probability of failure and weakening of cross-
sections 7, 8 and 3 are presented.  

 

 
 

 Fig. 2 Dependence between fP  and W 
 

The process of developing and utilizing structures and structural members comprises 
numerous measures; considered herein, however, are only those ensuring a required reliability 
level. Different reliability levels are ensured through different cost of construction. For structures in 
hazardous areas an expedient reliability level should be specified. It should be determined the 
necessary safety guarantee of the structure and people. The failure criterion assumed in the design 
of buildings for ordinary performance conditions is mainly that of serviceability. 

A reliability level for construction in hazardous areas should be that of failure –free 
performance. This should be an objective criterion determining the totality of codes, control 
services and other measures that would ensure an expedient reliability level. 
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Abstract 

 
The article is devoted to construction and research of dynamic stochastic model of park of 

aircrafts. A stochastic is enclosed in all of natural characteristic exploitations of this set of 
apparatuses: times of flight and landing, possibility of receipt of damage on flight, including the 
past recovery air apparatus; times of repair. The estimations of total possible flights are got for the 
any fixed interval of time. 
 
 
Key Words Flight time, time on the ground, recoverable damage, loss of air apparatus, repair time, 
generating function, renewal equation. 
 
 
1. INTRODUCTION 
 

The important problem of management of the park of air apparatuses (PAA in short) 
maintenance, as stage of their life cycle, is an estimation of ability to provide the necessary amount 
of flights in given time interval of exploitation. The dynamics of exploitation of every apparatus 
consists of alternation of times of flight, times of repair and times of stand-down.  These times are 
determined both external requests on flights and different damages during flight or loss of air 
apparatus (AA in short) on flight. Forecasting of the state of PAA is one of way of control of 
quality of management. This approach may be realized by modeling [1]. Analysis of literature in 
this direction shows that mainly authors develop of the models in a few lines.  The authors of line 
[2-4] simulate of control of technical state of PAA with aim the optimization of preventive 
maintenance with respect to restoration of PAA parameters. The authors of next line [5-7] develop 
either methodological approach of operation adaptive control of technical state of PAA on basis of 
using of potential of corporative resources of unit information space (network-center environment) 
with purpose improving or support on the given level of reliable and durability indexes [5, 6] or 
task of definition of optimal type of PAA taking into account economical indexes. The authors of 
another line [8-10] build their own investigations on expert estimations. In this case, experience 
shows that decisions may be false. Therefore, it is urgency to develop models, which, first, consider 
of change of state of PAA by different manner.  
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Namely, which are grounded on the following probability indexes: probability of return of 
AA from flight without damages, probability of to receive certain damages of AA in flight, 
probability of to lose of AA in flight. Analysis of interaction of these indexes of random events is 
not simple process.  

And so, it is actually, secondly, a development of such models that are based on analytical 
dependence with more complex mathematical filling.  
In the article approaches are offered to the solution of the following task. We will designate through 

in  the amount of AA able to fly up in some i -th moment of time. It is required to estimate of 
possibility to do given amount of flights Q   in times of  k   successive time starts:  j  - th , 1+j -th ,   
L   , j -th  starts. In other words, we must estimate possibility of implementation of relation 

kjjj nnnQ ++ +++≤ L1  at any fixed integer j  and k . 
 

2. It is assumed that N  units of AA, which are exploited from some initial moment of time.  
For definiteness we suppose that all (able to fly) AA fly up and land   at the simultaneously. 

Let us adopt the following notation. 
We will denote by kτ  the flight time after k -th takeoff and by kξ  the time on the ground 

after k -th landing. Thus moments of takeoffs { }ls  are defined recurrently: 

,01 =s    .)(,,112 ∑
=

+=+=
l

ok

kklss ξτξτ K  

The moments of landing { }lt   are defined analogy: 
 

,11 τ=t .)(,,
1

2112 ∑
−

=

++=++=
l

ok

kklltt ξτττξτ K  

 
Further, we will consider the following probabilities as result of flight of every AA. 
Let us denote by 2,1, =ipi  the probabilities to obtain (in flight) eliminated damages; 
by  3p  the probability of  loss of  AA in flight; by  4p  the probability to be safe and sound. 
It is assume that .14321 =+++ pppp  
We will use symbols lβ  and lα  to denote  the amount of  AA at  the −l  th takeoff  ( −l  

th flight) and  at  the −l  th  landing respectively. 
The time of repair at the −i  th eliminated damage of the  thk −   AA  in the thl −   flight is 

equal to a random variables ),( lk
id ,  1;1;2,1 ≥≤≤= lki lβ   with the  distribution functions 

 
( ) ( ).)(,)( ),(

22
),(

11 xdPxFxdPxF lklk <=<=  
 

We will introduce sequences of independent events ),( lk
iA  .1;1;4,3,2,1 lkli β≤≤≥=   

These events are connected with aircraft events in flight so that the following equalities take 
place   ( ) ( ) i

lk
i

lk
i pAEIAP == ),(),(  , here )(⋅I  denotes the indicator of events. 

In what follows, we shall be assuming that random variables form ensemble  
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( ){ }1,,,,,,,: ),(),(
2

),(
1 ≥=Π lkiAIdd lk

i
lklk

ii ξτ           
  

are independent in common. 
Put 

  ∑
=

+=
l

k

kk
ls

2
2 )( ξτ   ,  ( ) ( )∑

=

∈=
2

1

1
)1,()1,(

1 ),0[
i

k
i

k
i dIAIEr ξ  

( ) ( )∑
=

− ++∈=
2

1
21

1
21

),(),( ),[
i

lllk
i

lk
il ssdIAIEr ξξ ,   .2≥l  

 
here   and in the sequel, we assume that 02 =ls , if  2<l . 
 

By hypothesis on independence      

( )1
)1,1(

2

1

1 ξ<=∑
=

i
i

i dPpr  ; ∑
=

=
2

1i

liil rpr  ,  2≥l , 

 
where   ( )1

)1,1(
1 ξ<= ii dPr  ,   ( )),[ 21

1
21

)1,1( ll
ili ssdPr ++∈= − ξξ , .2≥l  

 
We introduce the generating functions 

 

∑
∞

=

=

1

)(
m

m
m bssB , where   mm Eb β= .  ∑

∞

=

=

1

)(
m

m
m rssR ,   ]1,0[∈s . 

 
 
Theorem 1.  The following formulas take place 
 

)(1
)(

4 sRsps
NssB
−−

= .                                                         (1) 

 
 

Proof.  We shall establish the stochastic relations for sequences mβ , mα   1≥m . The designation 

ζω
w
=  means that random variables ω  and ζ  have the same distribution function.  

We will denote by A  the complement of a set A . 
 

,1 N=β      ∑
=

⎟
⎠
⎞⎜

⎝
⎛=

N

k

kw
AI

1

)1,(
31α . 
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where         ( ) ( )∑∑∑
−

=

−

= =

−∨−∈=
1

1

1
),(

1

2

1

),( ),0[
m

l

lmlm
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i
k i
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i

w
m tstsdIAI

lβ
γ  . 

 
The random value mγ  is equal to amount of AA, which finished the repairs in the interval of 

time between  thm −−1  and thm −  takeoffs. 
By the construction of mβ , we have the following relations 

 

,1 Nb =    ∑
−

=

−− +=
1

1

14

m

l

lmlmm rbbpb ,   2≥m .                                        (2) 

 
We introduce the functions 

 

∑
∞

=

=

1

)(
m

m
m bssB ,      ∑

∞

=

=

1

)(
m

m
m rssR ,   ]1,0[∈s . 

 
  From the (1) we obtain   

∑
−

=

−− +=
1

1

14

m

l

lml
m

m
m

m
m rbsbpsbs   , 2≥m .                                     (3) 

Summarizing left and right parts of (3) yields 
 

)()()()( 4 sRsBssBpssNsB +=− . 
 

From the latter one we get  
 

)(1
)(

4 sRsps
NssB
−−

= .  

Proof is completed. 
 
Corollary .  Assume that the sequences from Π  satisfy the conditions 
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,1)(lim
2
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⎛
++< ∑

=
∞→

n

k

kkin
dP ξτξ  2,1=i . Then the following equality is valid  

3
1

p
Nb

m
m =∑

≥

                                                                    (4). 

 
Proof .  Since, random variables from Π  are independent, we have that 
 

( )n
i

i

i

n

l

ln sdPprR 21
)1,1(

2

11

: +<== ∑∑
==

ξ .                                        (5) 

 
Combining (1), (5) and condition from the Сorollary, we get  

 

n
n

RR
∞→

= lim)1(  = ∑
=

2

1i
ip ,   

32141
)1(

p
N

ppp
NB =

−−−
= . 

The proof is completed. 
 
 
2. 

We shall formulate the problems of estimations of mb in terms of theory of renewal 
processes. 

Let us denote by { }1,},2,1{ ≥∈ ii Kκ  the sequence of independent discrete random values with 
common distribution law  ( ) 1411 1 rpP +=== κδ ,   ( ) ll rlP === 1κδ ,  .2≥l   

 It is well known that   if  ∑
=

=
k

i

ikS
1

κ   and }:min{)( mSkm k ≥=η , then )(mEη , 1≥m  is  

unique  solution of the  renewal equation  ∑
−

=

−=
1

1

)()(
m

l

l lmEmE ηδη . 

Comparing latter one and (2), we conclude that )(mEbm η= .  

Let )()( 1 mPmG ≤= κ  and    ∑
+

=

=
Mm

mi
ibMmh ),(  .  

Now, we obtain the following upper estimation 
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0 10 11 0
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Since ( )m
i

i
i sdPppmG 21

)1,1(
2

1
4)( +<+= ∑

=

ξ , 1≥m ,  the estimation (6) is well calculated. 

 
3.  

Now we will consider the construction of  )(sB  more detail for special case. We make the 
following additional assumptions:  
 

− kτ , 1≥k  have the same distribution function with Laplace 
transformation }exp{)( 1τψ sEs −= , .0>s  
 

− kξ , 1≥k  have the same distribution function with Laplace 
transformation }exp{)( 1ξϕ sEs −= , .0>s  
 

− )exp(1)( xxF ii λ−−= ,  .2,1=i  
 

For convenience we put )()()( sssf ϕψ= . 
Now we shall obtain more exact expression for ).(sR  
 
By induction, we shall calculate the  lir  for K,2,1=l . 
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∞ ∞
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M  
))(1)(()( 2

ii
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ili ffr λλλϕ −= − ,      .4≥l  
 

After routine calculations we get 
 



Gasanenko V.A., Chelobitenko O.O. – DYNAMIC MODEL OF AIR APPARATUS PARK 

 
R&RATA # 3  

(Vol.2) 2009, September 
 

 

- 23 - 

∑∑∑
=

∞

==
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−

+−==
2

1

2

1

2

1
)(1

))(1)((
))(1()(

i
i

ii
ii

m
mi

m

i
i fs

fs
sprspsR

λ
λλϕ

λϕ . 

 
Thus, we have the following expression for this case 
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 where for convenience, we introduced notation    ),(: ii ff λ=   )(: ii λϕϕ = ,   
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Thus, in this case the term  mb  poses no problem because expression (7) can be expanded 
into the convergent power series about s . 

Further, it is easy to check that under such special assumptions the function )(mG  from 
Section 2 has the following form 

)()()( 1
2

1

214 i
m

i
i

m
ippppmG λψλϕ −

=
∑−++=  . 

 
Remark. It is clear, that restriction on number of different types of eliminated damages (only 

two) is not essentially. The proved formulas are transformed for more number of types easy.   
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Introduction 
 
In this paper a problem of a construction of accuracy and asymptotic formulas for a reliability 

of internet type networks is solved. Analogously to [1] such network is defined as a tree where each 
node is connected directly with a circle scheme on a lower level with n>0 nodes. A construction of 
accuracy and asymptotic formulas for probabilities of an existence of working ways between each 
pair of nodes of the internet type network is based on a recursive definition of these networks and 
on asymptotic formulas for a reliability of a random port. This asymptotic formula represents the 
port reliability as a sum of probabilities of a work for all ways between initial and final nodes of 
this port. An estimate of a relative error and a complexity of these asymptotic calculations for a 
radial-circle scheme are shown. 

 
 
1. An asymptotic formula for a reliability calculation of a port and its accuracy 

 
An asymptotic formula for a reliability of the general type port with low reliable arcs. 

Consider the no oriented graph Γwith the final nodes set U, the arcs set W, the fixed initial and 
final nodes u, v and the set of the acyclic ways },...,{ 1 nRR between u, v. Suppose that the probability 

wp  of the arc Ww∈  work depends on the parameter h > 0: )(hpp ww =  and ,0)( →hpw  .0→h  
Denote )( pUP  - the probability of the event pU  that all arcs p

m
p

p
ww ,...1  of the way pR  work. Then 

the reliability of the port Γ  is ,
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

=
Γ U

n

p
pUPP  denote *

1
( ).

n

p
p

P P UΓ
=

=∑  

Remark that for qp ≠  the arcs sets },{ pRw∈  }{ qRw∈  can not satisfy the inclusion 
}.{}{ qp RwRw ∈⊆∈  In an opposite case there is the node *u  in which the ways ,pR qR  diverge by 

the arcs ),,( * puu  ).,( * quu  But as the arc }{),( * qp Rwuu ∈∈  so there is a circle in the way .qR  This 
statement contradicts with a suggestion that the way .qR  is acyclic. As the inclusion 

}{}{ qp RwRw ∈⊆∈  is not true for qp ≠  so the way pR  contains the arc qRw∉  and consequently 
)),(()( pqp UPoUUP =  ,0→h .qp ≠  An induction by n gives the inequality 

 
.)( *

1

*
ΓΓ

≤<≤
Γ ≤≤− ∑ PPUUPP

nqp
qp                            (1) 

But 
*

1

)(max)( Γ
∈

≤<≤

≤∑ PhpnUUP wWwnqp
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and consequently from the formula (1) we obtain 
 

.~ *
ΓΓ PP                                (2) 

 
Denote by A = |1/| * −ΓΓ PP  the relative error of the asymptotic formula (2). It is obvious that 

 
.0,0)()(max)( →→=≤

∈
hhФhpnhA wWw

                                      (3) 

 
Assume that ,0)( →hϕ 0→h  then for the replacement of h by )(hϕ   the upper bound )(hФ  of 

the relative error is to be replaced by )).(())(( hФohФ =ϕ  
Radial-circle scheme. Consider the radial-circle scheme represented on the fig. 1. This 

scheme has the center 0 connected with the nodes 1,…,n  arranged on the circle. 
 

 
Fig.1 Radial-circle scheme 

 
Each acyclic way from the node i, ,1 ni ≤≤  on the circle (the circle node) to the center 0 of 

this scheme consists of a peace along the circle and a transition to the center 0. A way from the 
circle node i  to the circle node j, ,1 nji ≤≠≤  has a peace from the node i along the circle, a 
transition to the center 0, a transition to the circle and a peace along the circle to the node j. 

Define the connection matrix P n
jiijP 0,|||| ==  of the radial-circle scheme in which ijP  is the 

probability that there is a working way between the nodes i, j of this scheme. Represent the results 
of the matrix P calculation with n=6 and 

 
0471595.001 =p  0469944.002 =p  
0287418.003 =p  0499121.004 =p  
0135117.005 =p  00822811.006 =p  
0490761.012 =p  0340865.023 =p  
0442866.034 =p  0004677.045 =p  
00818179.056 =p  0173955.016 =p  

 
Here the matrix P is calculated by the Monte-Carlo method with 1000000 realizations during 

14 hours. Denote by P* n
jiijP 0,

* |||| ==   the connection matrix with elements calculated by the 
asymptotic formula (2). The matrix P* have been calculated during one minute that is 
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approximately 1000 times faster. As jiij PP = and 1Pii =  we show only the elements *, ijij PP  with 
.1 nji ≤<≤  

 
 – 0.0496627  0.050371 0.0326335 0.0512658 0.0136101 0.00920024 
 – – 0.0523323 0.00549431 0.00262581 0.000817883  0.0178084 
 – – – 0.0378183  0.00408933 0.000753723  0.00131303 
P*= – – – – 0.0458115  0.000532299  0.00112028 

 – – – – – 0.00123165 0.00129662 
 – – – – – – 0.00912706 
 – – – – – – – 

 
 – 0,049758  0,049859 0,03268 0,051263 0,013703 0,009279 
 – – 0,052157  0,005359  0,002637  0,000844 0,017839 
 – – – 0,037725  0,004073  0,000743  0,001327 
P= – – – – 0,045997  0,000555  0,001108 

 – – – – – 0,001253,  0,001301 
 – – – – – – 0,009229 
 – – – – – – – 

 
The matrix of the relative errors A 60|||| ≤<≤= jiijA  satisfies the equality: 

 
 – 0.00191948  0.0101643  0.00142467  0.0000537835  0.00682727  0.00856111 
 – – 0.00335063 0.0246274 0.0042632 0.0319321 0.00171756 
 – – – 0.00246654 0.00399357 0.0142263 0.0106371 
A= – – – – 0.00404871 0.0426474 0.0109635 

 – – – – – 0.0173307 0.00337921 
 – – – – – – 0.0111695 
 – – – – – – – 

 
Remark. Analogously it is possible to obtain asymptotic formulas for a general type network 

or a radial circle scheme with high reliable arcs. But in this case it is necessary to replace a work 
probability by a failure probability and a way by a cross section. 
 

2. Recursively defined networks 
 
A calculation of the connection matrix in recursively defined networks. Suppose that *D  

is the set of networks Γ  with no intersected sets of arcs. Define recursively the networks class 
DDD ⊂*,  by the condition 

 
Ш,,},{,},{ 21*222111 =∩∈=Γ∈=Γ WWDWUDWU                                (4) 
.node) single a is (z,}{ 2121 DzUU ∈Γ∪Γ→=∩  

 
Analogously to [2] in this paper we calculate },,,,{ vuUvuP ≠∈Γ  not its single element. 

These calculations are based on the recursive formulas: if },{,, * zUUDD =′′∩′∈Γ ′′∈Γ′  then 

⎪
⎩

⎪
⎨

⎧

′′∈′∈

′′∈

′∈
=

Γ ′′Γ′

Γ ′′

Γ′

Γ ′′∪Γ′

.,,
,,,
,,,

UvUuPP
UvuP
UvuP

P                                               (5) 
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In the last equality the quantity ,Γ′P  characterizes the connection between the nodes u, z and 

the quantity Γ ′′P  – the connection between the nodes z, v. The number of arithmetical operations 
)( ΓPn  necessary to calculate },,,,{ vuUvuP ≠∈Γ  by the recursive formulas (5) is characterized by 

the following statement. 
 

Theorem. Suppose that lΓΓ ,...,1  is the sequence of networks with the no intersected sets of arcs. If 
*D  consists of sequences of independent probability copies of ,,...,1 lΓΓ  then for each D∈Γ  the 

inequalities 
 

, , 1 , ,

( )( ( ) 1) ( )( ( ) 1)( ) ( )
2 2 i

i

l

u v U u v i u v U u v

l l l ln P n PΓ Γ
∈ ≠ = ∈ ≠

Γ Γ − Γ Γ −
≤ ≤ +∑ ∑ ∑              (6) 

 
are  true with l )(Γ  the number of nodes in the graph .Γ  

 
From the inequalities (6) obtain that 
 

.1
)1)()((

)(2
lim ,,

)(
=

−ΓΓ

∑
≠∈

Γ

∞→Γ ll

Pn
vuUvu

l
 

 
So asymptotically when ∞→Γ)(l  to calculate a connection probability for a single pair of 

nodes it is necessary a single arithmetical operation. 
Proof. Suppose that the inequality (6) is true for Γ′  then from the recursive formulas (5) and 

the equality 1)()()( −Γ′′+Γ′=Γ ′′∪Γ′ lll  we have 
 

+
−ΓΓ

+
−ΓΓ

+≤∑ ∑∑
= ≠∈

Γ
≠′′∪′∈

Γ ′′∪Γ′ 2
)1)()((

2
)1)()(()()( 2211

1 ,,,,

llllPnPn
l

i vuUvuvuUUvu i

i
 

.
2

)1)()(()()1)()(1)(( 2121

1 ,,
21

−Γ∪ΓΓ∪Γ
+=−Γ−Γ+ ∑ ∑

= ≠∈
Γ

llPnll
l

i vuUvu i

i
 

 
A calculation of the transition matrices in the internet type networks. Analogously to [1] 

define the class of the internet type networks as the recursively defined class of networks D  with 
the set of originating schemes *D  which consists of radial-circle schemes and in the formula (4) the 
node z is the center of the radial-circle scheme .2Γ  
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Fig.2. The internet type network 

 
 

So if we have the transition matrix for the radial-circle schemes it is possible to calculate the 
transition matrix of the internet type network by the formula (5). This algorithm is significantly 
faster than general type algorithm from [1]. It contains fast algorithm to calculate the transition 
matrix in the radial-circle scheme and practically optimal algorithm to calculate the transition 
matrix for the internet type networks.  
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Abstract:   

 
The overall objective of the maintenance process is to increase the profitability of the 

operation and optimize the availability. However, the availability of a system is described according 
to lifetime and downtime. It is often assumed that these durations follow the exponential 
distribution. The work presented in this paper deals with the problem of availability modeling when 
the failure and repair rates are variable. The lifetime and downtime were both governed by models 
of Weibull (the exponential model is a particular case). The differential equation of the availability 
was formulated and solved to determine the availability function. An analytical model of the 
asymptotic availability was established as a theorem and proved. As results deduced from this 
study, a new approach of modeling of the asymptotic availability was presented. The developed 
model allowed an easy evaluation of the asymptotic availability. The existence of three states of 
availability for a system has been confirmed by this evaluation. Finally, these states can be 
estimated by comparing the shape parameters of the Weibull model for the failure and repair rates. 
 
Keywords: Availability function, asymptotic availability, failure rate, repair rate, Weibull 
distribution 
 
1. Introduction 
 

The last two decades witnessed major progress in the development of new maintenance 
strategies [1]. The primary objectives of these strategies are to reduce equipment downtime, also 
increase reliability and availability of the equipment which at the same time optimizes the life-cycle 
costs [2]. The need for high reliability and availability is not just restricted to safety-critical systems 
[3]. In general, current technology has ensured that the equipments for industrial application, for 
example, telephone switches, airline reservation systems, process and production control, stock 
trading system, computerized banking etc. all require very high availability [2]. Reliability is 
generally described in terms of the failure rate or mean time between failures (MTBF), while 
availability is normally associated with total downtime [2]. There is some research on increasing 
system availability [4]. Goel and Soenjoto proposed a generalized model [4]. Markov models are 
also implemented to analyze the system availability, which combines both software and hardware 
failures and maintenance processes [4]. Khan and Haddara [1] proposed a methodology for risk-
based maintenance to increase availability of a heating, ventilation and air-conditioning (HVAC) 
system. Garg S. et al. [3] developed a model for a transactions based software system which 
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employs preventive maintenance to maximize availability, minimize probability of loss, minimize 
response time or optimize a combined measure. The steady state availability can be modelled using 
standard formulae from Markov regenerative process (MRGP) theory. The Service rate and failure 
rate are assumed to be functions of real time (Weibull distribution) [3]. The failure and repair rates 
are supposed constant (λ and μ respectively), so that system availability can be modeled using a 
Markov chain in Refs. [5,7]. But, Khan and Haddara [1] considered that the Weibull model is more 
robust than the other models. Dai et al [4] studied the availability of the centralized heterogeneous 
distributed system (CHDS) and developed a general model for the analysis. The repair time was 
exponentially distributed. For the failure intensity function (failure rate), the G.O model presented 
by Goel and Okumoto was used [4]. Some other research considered that the availability depends 
on both reliability and maintainability and is defined as the ratio of requested service time to 
practical service time [6, 7] 

 
Nomenclature   
A(t) Availability function   
A∞ Asymptotic availability    
λ(t) Failure rate    
μ(t) Repair rate    
β Shape parameter of Weibull distribution for Failure rate  
η Scale parameter of Weibull distribution for Failure rate  
α Shape parameter of Weibull distribution for repair rate  
θ Scale parameter of Weibull distribution for repair rate  

 
Review of the literature indicates that there is a new trend to use availability and reliability 

modeling as a criterion to plan maintenance tasks. However, most of the previous studies assumed 
the failure and/or repair rates are constant. It seems that there is a need for a more generalized 
methodology that can be applied for variable rates. The present study adopts a new fundamental 
approach for the asymptotic availability modeling where the failure and repair rates were governed 
by the Weibull distribution. 
This paper is organized as follows. In Section 2, the differential equation of the availability is 
established. Section 3 is dedicated to the resolution of the differential equation to determine the 
instantaneous availability. The model of the asymptotic availability is developed in Section 4. 
Finally, in Section 5, the conclusions along with future research directions are presented. 
 
 
2. The mathematical formulation of the availability differential equation   

 
According to the standard “Association Française de Normalisation - AFNOR X 06-503” [8, 

9] , in order to have a system available at time t+dt, there are two possibilities: 
 
• the first is that the system is available at time t and does not have breakdown between t 

and t+dt  
• the second is the system is unavailable at time t but it is repaired between t and t+d. 
These expressions are transformed by the following probabilities: 
¾ A(t+dt): The probability that the system is available at time (t+dt), 
¾ A(t): the probability that the system is available at time t, 
¾ 1-�(t)dt : The probability that the system does not have breakdown between t and t+dt, 

knowing that it had already functioned until the time t, 
¾ 1-A(t):  The probability that the system is unavailable at time t  
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¾ �(t)dt: The probability that the system is repaired between t and (t+dt), knowing that it 
was already failing until the time t.  

With: 
- �(t) : Instantaneous failure rate 
- �(t) : Instantaneous repair rate 

 
Fig. 1 shows the state diagram of the system. 

1 0

λ(t)

μ(t)
 

 
Fig. 1.  State transition diagram 

 
A(t+dt)= probabilities (that the system is up at t and is no break down between t and 

(t+dt))+ probabilities (the system to be down at time t and it is repaired between t and (t+dt)) [8, 
9]. 

 
                                (1) 
                                 (2) 

                       (3)                           
Then: 

                                                                                                (4)
 
 

 
This expression represents the differential equation of first order of the availability. [4,8, 9]. 
 
 

3. The availability function  
 

For t > 0, the failure and repair rates, which are modeled using a Weibull distribution, are 
given by : 

-                                                               (5) 

-                                                                (6) 
- Eq. (4)  can be solved by “Mathematica software”, by taking account of the initial 

conditions A(0)=0 if the system is in the failure state and A(0)=1 if the system is in the 
functioning state and can be obtained the following solutions:    

• If A(0) = 0 then,  

                                       (7) 

• If A(0) = 1 then   
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                                      (8)  

It can be deduced that:  

                                                                                                   (9)                            
There are four parameters in the availability functions (7), (8), β, η, α, and θ. The sensitivity 

of different parameters is described in Figures 2, 3, and 4. 
 

 
 

Fig. 2. The availability A(t) for β =0.5, α=1.5 (β < α) 
 

 
 

Fig. 3. The availability A(t) for β = α=1.5 
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Fig 4. The availability A(t) for β =1.5, α= 0.5 (β > α) 
 

4. The Asymptotic availability   
4.1.  Theorem  

                                                                                         (10)  

Demonstration   
It can be assumed that:   

                                                                                                        (11) 

Where:   
, if A(t)=A0(t)                     (12) 

And  
, if A(t)=A1(t)                               (13)  

It may be necessary to prove that:  
                           (14) 

There are four intermediate results can be used to explain this. 
¾ 1st result: 
                                              (15) 

Proof :  
From Eq. (12), this can be obtained by substituting A1(t) by Eq.(9)   

                (16) 

An analogy with Eq. (9) can be deduced: 

 
                                                      (17)               

Therefore, from Eq. (17), it is necessary, to verify the 1st result, to prove.  

                                                    (18) 

                     (19) 
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Referring to Eqs. (5)  and (6) :  

                                                          (20)                         

Then, Eq. (19) will become:    

                                (21) 

 The limit study of Eq. 18 gives:   

Figure 1:                                                                   
(22)   
And 

                                (23)   

So,  and the 1st result is verified. 
¾ 2nd result : 

                            (24)   

Proof:  
From Eqs. 16 and 17, the  function is written as: 

                                                                                                 (25) 

According to Eqs. (7)  and (20), The Eq. (25) will become as follow: 

                                    (26) 

A change of variables is applied in Eq. (26):            

                              (27) 

                             (28)           

Therefore,  and the 2nd Result is 

verified.       
 ¾ 3rd result : 

According to the shape parameters β and α, the r0(t) function should satisfy the two following 
inequalities: 
a) If  β≤ α, then  

                                           (29) 

 Or   
b) If β≥ α then 

                                           (30) 

Proof: 
a) For β≤ α   

                           (31) 
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And                                                                        (32) 

By referring to the second result (24) and the two above mentioned inequalities (31) and (32), so, 
the function can be put under the form of the following inequality:  

              (33) 
The calculations of exponential integral allow to express the inequality (33) as follow: 

               (34) 

                         (35) 

So,   , the first inequality (29) is 

satisfied. 
b) For β≥ α   

A similar development and demonstration is used for this case also 

                                    (36)                           

And   

                                                                             (37)                            

According to the second result (24) and the two above mentioned inequalities (36) and (37), so, the 
r0(t) function can be put under the form of the following inequality:  

       (38)   
The calculations of exponential integral allow to express the inequality (38) as follow: 

                      (39)  

                      (40) 

              (41) 
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So, , the second inequality (30) is 

satisfied. 
¾ 4th result : 

                                                                                          (42) 
 Proof:  
a) β≤ α   
By referring to the third result "inequality (29)", to prove the fourth result, it can be sufficient to 
show that the limits: 

                    (43) 

And  

                      (44) 

Then 

 (45) 

                  (46) And  

                                                            (47) 

So,  if β≤ α   
b) β ≥  α 
In the same way as explained in the previous case, according to inequality (30), to prove the fourth 
result, it can be sufficient to show that the limits: 

                       (48) 

And 

                      (49) 

Then 

                     (50) 

And  

       (51) 

                                                       (52) 
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 So,  and the 4th result (42) is proven also for α≤ β   
Finally, the theorem (10) ensues therefore of results 1 and 4   
The availability A(t) is plotted together with The  function in figure 5 for β<α, figure 6 for 

β=α and figure 7 for β>α.   
The three figures show that the availability A(t) " with its two solution A0(t) and A1(t) " and the 

 function have tendency to converge towards the same limit when the time t is more 

important. 
 

 
 

Fig.5. The availability A(t) and 
( )

( ) ( )
μ t

μ t +λ t
 for β =0.5, α=1.5 (β < α) 

 

 

Fig.6. The availability A(t) and 
( )

( ) ( )
μ t

μ t +λ t
 for A(t) for β = α=1.5 
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Fig.7. The availability A(t) and 
( )

( ) ( )
μ t

μ t +λ t
 for A(t) for β =1.5, α=0.5 (β > α) 

 
4.2.  Asymptotic availability evaluation   
 
According to (10), the asymptotic availability is defined by: 

                                                                 (53) 

                                        (54) 

The study of the limit of the function will be done according to three following cases:   
1st case: β<α 

                                                                                       (55) 

Then,                                                                                                                                                                           
                                            (56) 

The converge of the  function, when the time t is more important, to the A∞= 1 with the 

sensitivity of the scale parameters (η<θ, η=θ or η>θ) is shown in Fig.8.  

 

Fig.8. The  
( )

( ) ( )
μ t

μ t +λ t
  function limit studies for β=0.5, α=1.5 (β < α). 

2nd case: β=α 
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                                                                                       (57) 

In this case, the asymptotic availability is defined to be equal to  
                                                                                         (58) 

Particular cases: 
β=α=1: the exponential models 

�                                                                                                        (59) 

With    and     

if η=θ, then             
�                                                         (60) 

Fig. 9 shows the asymptotic availability plotted with �=� with the sensitivity of the scale 
parameters (η<θ, η=θ or η>θ). 
 

 

Fig.9. The function  
( )

( ) ( )
μ t

μ t +λ t
  if β= α=1 

 
3rd case: β>α 

                                                                                       (61) 

                                                                                                   (62) 

The converge of the function, when the time t is more important, to the A∞= 0 with the 

sensitivity of the scale parameters (η<θ, η=θ or η>θ) is shown in Fig.10.  
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Fig.10. The 
( )

( ) ( )
μ t

μ t +λ t
 function limit studies for β=1.5, α=0.5 (β>α). 

 
5. Conclusion 
 

In this paper, the presented work extended the classic availability model to a new asymptotic 
availability model when the failure and repair rates are distributed according to the Weibull model. 
The analysis of asymptotic behavior of the system according to the developed model allowed to 
extract the following result:   

 
The asymptotic availability depends only on the shape parameters of the Weibull models β 

and α. The scale parameters η and θ do not have an influence in the limit of the availability. 
 

- If b a<  then, the system is fully available   
- If b a>  the system resides in the down state, then, it is unavailable   
- If b a= , in this case, the asymptotic behavior of the system is analogous to a system 
governed by the exponential model. 

 
Thus, the future plan includes the research on a novel approach, which will be the 

combination of two different models (Weibull, Gamma,) or (Weibull, lognormal).  
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OBJECT ORIENTED COMMONALITIES IN UNIVERSAL GENERATING 
FUNCTION FOR RELIABILITY AND IN C++ 

 
Igor Ushakov5, 

Sumantra Chakravarty6 
 

 
 
Abstract 
 

The main idea of Universal Generating Function is exposed in reliability applications. Some 
commonalities in this approach and the C++ language are discussed. 
 
Keywords: Universal Generating function (UGF), C++, reliability. 
 
 
INTRODUCTION 
 

Usually, binary  systems are considered in the reliability theory.  However, this approach does 
not describe systems with several levels of performance sufficiently.  Analysis of multi-state 
systems forms now a special branch of the reliability theory. 

For analysis of such systems consisting of multi-state subsystems/elements, one can use the 
method of Universal Generating Functions (UGF), which is described below. 
 
 
1. GENERATING FUNCTION 
 

One frequently uses an effective tool in probabilistic combinatorial analysis: the method of 
generating functions.  For a distribution function of a discrete random variable ξ  such that 
{ } kpk ==ξPr  for any natural k, the generating function has the form 

∑=
k

k
k xpx)(ϕ  

Advantages of using a generating function are well established in this field, and we list a 
few of those: 

(1) For many discrete distributions (e.g., binomial, geometrical, Poisson), there are compact 
forms of generating functions, which allows one to get analytical solutions quickly and 
easily.  

(2) Moments of statistical distributions can be written in convenient forms. For example, the 
mathematical expectation of random variable ξ  can be found as 

{ }
1

)(
=∂

∂
=

x

x
x

E ϕξ . 

(3) If there are n independent random variables 1ξ , 2ξ , ..., nξ  with the respective generating 
functions )(1 xϕ , )(2 xϕ ,..., )(xnϕ  , then the following generation function can be written 
for the convolution of these distributions: 

                                                           
5 igorushakov@gmail.com 
6 sumontro@hotmail.com 
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∏
=

=
n

j
j xx

1

)()( ϕϕ . 

where ∑=
k

k
jkj xpx)(ϕ , and pjk is the probability that j-th random variable takes value k. 

  
 

2. COMPUTER ALORITHM FOR CALCULATION PRODUCT OF GF’S 
 

 Let us present a generating function as a set of objects. Each object corresponds to a term in 
the generating function polynomial.  It means that object is a pair of two values: the first is the 
coefficient, i.e. probability, p, and the second is the power of the argument, a, i.e. the corresponding 
random variable.  

Consider a computational algorithm for calculation of the convolution of two distributions. 
One makes the following formal operations. 

♦ Take two sets of objects: set { ),( 1111 ap , ),( 1212 ap ,...,  
),( 11 kk ap } for generating function )(1 xϕ , and set  

{ ),( 2121 ap , ),( 2222 ap ,..., ),( 22 mm ap } for generating function  
)(2 xϕ . 

♦ Find all cross “interactions” of objects of the first set with all objects of the second set, 
using the following rule: 

 
[Interacting objects: ),( 11 kk ap  and ),( 22 mm ap ] Æ 
[Resulting object: );( 2121 mkmk aapp + ]. 
 
♦ For all resulting objects with different 

11ka  for object-1 and 
22ma  for object-2, but such 

that 
11ka +

22ma =a, one forms a new final resulting object: );(
21 21 app mk∑ .  The total set of 

such final resulting objects gives us the needed solution: from here we can get probabilities 
for any a. 

 
 
3. UNIVERSAL GENERATING FUNCTION 
 

We have described a formalized procedure on sets of objects interaction coresponding to 
product of polynomials.  But in practice, we meet a number of situations when this operation is not 
enough. Consider the following simple examples. 

 
Example 1.  Assume that there is a series connection of two (statistically independent) 

capacitors (Fig. 1). 
 

 
Fig. 1. Series connection of two capacitors. 
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Assume that c1 and c2 are random with discrete distributions: p1k=Pr{c1=k} and p2j=Pr{c2=j}.  
One is interested in distribution of total capacity.  It is impossible to find the solution with the help 
of a common generating function.  However, there is a possibility to use formal algorithm, 
described above with the use of corresponding operations over the elements of the objects.  The 
following procedure can be suggested:  

♦Take two sets of objects, S1 and S2:  
S1 ={ ),( 1111 cp , ),( 1212 cp ,..., ),( 11 kk cp }  

     and 
     S2 ={ ),( 1121 cp , ),( 2222 cp ,..., ),( 22 mm cp }, 

where k is the number of discrete values of the first capacitor, and m is the same for the second  
one. Here the first element of the object is the probability and the second element is the respective 
capacity. 

♦Find all cross “interactions”, Ω, of objects of set S1 with all objects of set S2, using the 
following rule: 

Ω { ),( 11 ii cp , ),( 22 jj cp } = );( **
ijij cp . 

Here *
ijp  is the resulting probability calculated in accordance with the multiplication rule 

(under assumption of independence) as 
jijipij ppppp 2121)(

* },{ =Ω= , 
where )( pΩ  is the rule of interaction of parameters p, which in this particular case is 
multiplication. 
 Value of *

ijc  is the resulting capacity calculated in accordance with the harmonic sum 
rule for capacities: 

( ) 11
2

1
121)(

* },{ −−− +=Ω= jijicij ccccc , 
where )(cΩ  is the rule of interaction of parameters c. 

♦ Assume that in result we obtain all R=km possible resulting objects of kind );( ** cp . Let 

us order all these resulting pairs in increase of value of c*: );( *
1

*
1 cp , ..., );( **

RR cp .  For some 
resulting pairs with numbers, say, i, i+1,… , i+j values of c* can be the same and equal some 
C. We converge such objects into a single aggregated object with parameters: );( * Cp

jisi
s∑

+≤≤

.  

The total set of such final resulting objects gives us the needed solution. 
 

The procedure can be easily expanded on a series connection of several independent 
capacitors.  
 

nrjinrji
SER

p pppppp ⋅⋅⋅=Ω ...}...,,,{ 2121)( ,  
 
аnd 

[ ] ....}...,,,{ 111
2

1
121)(

−−−− +++=Ω nrjinrji
SER
c cccccc   

 
 

Example 2. Pipeline consists of n series sections (pipes).  Section j is characterized by random 
capacity, for which each value v  is realized with some probability p . In this case,  

nrjinrji
PAR
p pppppp ⋅⋅⋅=Ω ...}...,,,{ 2121)( , 

аnd 
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{ }nrjinrji

SER
c vvvvvv ...,,,min},...,,{ 2121)( =Ω , 

 
Example 3. One measures a sum of values, each summand of which is random. With 

probability jsp value j is measured with standard deviation (STD) equal to jsσ . In this case, using 
notation similar to above, one has: 

 
nrjinrji

PAR
p pppppp ⋅⋅⋅=Ω ...}...,,,{ 2121)( , 

аnd 
22

2
2
121)( ...}...,,,{ nrjinkjic n

σσσσσσ +++=Ω . 
 

Examples can be continued and not necessarily with probabilistic parameters.  
 
 
4. FORMAL DESCRIPTION OF THE METHOD OF UNIVERSAL GENERATING 

FUNCTIONS 
 

After these simple examples, let us begin with formal description of the Method of Universal 
Generating Function (UGF7). For a more vivid presentation, let us use special terminology to 
distinguish the UGF from the common generation function.  This will relieve us from using 
traditional terms in a new sense, which may lead to some confusion. Moreover, we hope that this 
new terminology can help us, in a mnemonic sense, to remember and perhaps even to explain some 
operations.  

In the ancient Roman army, a cohort (C) was the main combat unit. Each cohort consisted of 
maniples (M), which were independent and sometimes specialized combat units with several 
soldiers of different profiles. Several cohorts composed a legion (L). The use of this essentially 
military terminology appears to be convenient in this essentially peaceful mathematical application. 
A legion is close by its sense to a generating function, a cohort is close to a term of the generating 
function written in the form of expanded polynomial, and a maniple is close to a parameter of each 
term.   

Starting with polynomial multiplication, in our approach, we will consider less restrictive 
operations (not only multiplication of terms) and more general parameters.  For instance, 
multiplication of polynomials assumes getting products of coefficients and summation of powers.  
In our case, we will expand on such restrictive limits on operations. 

Let’s denote legion j by Lj.  This legion includes vj different cohorts, Cjk: 
 

( )
jjvjjj CCCL ...,,, 21= . 

 
The number of cohorts within different legions might be different. However, in our approach, 

maniples, which consist of a cohort, must be similar by its structure. 
Each cohort jkC  is composed of some maniples, M , each of which represents different 

parameters, special characteristics, and auxiliary attributes.  Each cohort consists of the same set of 
maniples: 
 

( ))()2()1( ...,,, s
jkjkjkjk MMMC = . 

                                                           
7 UGF might be also read as Ushakov’s Generating Function ☺. 
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To make description of the method more transparent, let us start with the examples of two 

legions, L1 and L2: each of which consists of the following cohorts, L1=(C12,C12,C13) and 
L2=(C21,C22), and each cohort Cjk includes two maniples )1(

jkM  and )2(
jkM ,i.e. Cjk=( )1(

jkM , )2(
jkM ). 

Denote the operation of legion interaction by LΩ .  This operator is used to obtain the resulting 
legion LRES.  In this simple case, one can write: 

 
{ }21 , LLL LRES Ω= .                                                           (1) 

This interaction of legions produces six pairs of interactions between different cohorts, which 
generate the following resulting cohorts: 

 
{ }21111 ,CCC CRES Ω=− , { }22112 ,CCC CRES Ω=− , 

{ }21123 ,CCC CRES Ω=− , { }22124 ,CCC CRES Ω=− , 

{ }21135 ,CCC CRES Ω=− , { }22136 ,CCC CRES Ω=− .  

Here  { }•ΩC  denotes the interaction of cohorts. 

Interaction of cohorts consists of interaction between its costituent maniples.  All cohorts 
contain maniples of the same types though with individual values of parameters. Let us take, for 
instance, resulting cohort CRES-5, which is obtained as interaction of cohorts C13 and C21. In turn, 
interaction of these particular cohorts consists in interaction of their corresponding maniples: 

 
{ })1(

21
)1(

13
)1(

5 ,)1( MMM
MRES Ω=−  

{ })2(
21

)2(
13

)2(
5 ,)2( MMM

MRES Ω=−  

The rules of interaction between maniples of different types, i.e.  { })1(
2

)1(
1 ,)1(

ji MM
MΩ  and 

{ })2(
2

)2(
1 ,)2(

ji MM
MΩ  are (or might be) different. 

Interaction of n legions can be written as: 
  

),...,, 21( nLLLLL Ω= . 

Operator LΩ  denotes a kind of “n-dimensional Cartesian product” of legions and special final 
“reformatting” of the resulting cohorts (like converging polynomial terms with the equal power for 
a common generating function).  Since each legion j consists of vj cohort, the total number of 
resulting cohorts in the final legion (after all legion interaction) is equal to 

∏
≤≤

=
nj

jvv
1

. 

 Number v corresponds to the total number of cohorts’ interactions.   
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5.  IMPLEMENTING UGF PHILOSOPHY IN COMPUTER LANGUAGE C++ 
 

We would like use the UGF (Universal Generating Function) philosophy in an analysis tool 
and perform reliability calculations for real-world systems. Because we are talking about an 
(reliability) engineering discipline, all philosophies present the need to be converted into numerical 
results and predictions. Thus, the UGF philosophy begs an implementation! The implementation 
task is to identify objects (maniple, cohort, legion) and program all interactions between them. 
Unfortunately, we run into a combinatoric explosion of possible interactions for a sysem consisting 
of a large number of (atomic) units. Even moderm computers are not able to enumerate 
astronomically large (21000) number of interaction states in system consisting of 1000 binary atomic 
units. Fortunately, for a class of frequently occuring practical systems, the situation is not as 
hopeless as it may first appear. For a system to be useful in engineering, it may only fail very 
infrequently. In a highly reliable system, the failure probability of all atomic units much smaller 
that the system failure probability. This fact makes most of the interactions exceedingly rare and 
they can be systematically ignored in an approximation scheme that retains only the dominant 
contributions.  

Let us proceed to find an approximate implementation of the UGF philosophy for highly 
relaible systems in a system simulator. It should be reasonably easy to identify an atomic unit in 
reliability theory as a maniple. Independence of the maniples corresponds to statistical 
independence of the atomic units. A cohort is defined to be a collection of maniples. The same 
definition holds in the context of reliability theory, where the collection is defined by a failure 
criterion. In a series system, each atomic unit is assumed to provide distinct and critical 
functionality. This maps on to the notion of specialized combat units. In a parallel system, all 
atomic units are statistically identical. This improves survival probability during operation, either in 
the military or in system reliability! Thus, we may identify a subsystem in reliability engineering as 
a cohort in UGF formalism. 

Interactions between the objects are identified in the simulator by their natural reliability 
names. k-out-of-n combinations are of primary interest. But this class includes the two most 
frequently appearing reliability structures: series (n-out-of-n) and parallel (1-out-of-n). In fact, 
probability of failure of a parallel system is negligible (higher order in numerical smallness) with an 
additional assumption of high availability of the atomic units. Obviously a series system can be 
made up of distinct units providing separate functionality to the system.  

As an illustration let us consider a system S of two subsystems A and B in series. Let A be 
atomic and B be composed of two atomic units X and Y in parallel. One possible C++ coding for 
this (simple) system is 
 

B=Parallel(X,Y); S = Series(A,B); 
 

Properties (MTBF, MTTR etc.) of all atomic units are specified at the start of analysis. 
Operations like Series and Parallel are C++ member functions for the instances of class “unit”. We 
will not specify unit composition rules in this work. Most of these rules can be found in standard 
textbooks on reliability engineering. Interested readers may find the remaining ones (involving 
switching time and PEI) in Chakravarty and Ushakov (2000, 2002). 

It remains to identify the “legion”. The preceding paragraphs almost suggest that a legion be 
identified with the entire system in reliability theory, where the system is further assumed to be 
represented by its generating function. We would like to note that that this analogy cannot be taken 
literally sometimes. It is common for a real world reliability system to have deeper hierarchies (e.g., 
system, equipment shelves, equipment racks, electornic cards) like modern day militaries. In such 
an elaborate system, we still identify the atomic units as maniples. At the other end, we identify the 
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entire system as a “legion”! All intermediate stages in the hierarchy are considered generalized 
“cohorts”. 

In Chakravarty and Ushakov (2000) implementation, any subsystem can be composed from 
other subsystems at the next lower level of hierarchy (or atomic units which are always at the 
lowest level). A newly formed subsystem provides an effective reliability description of all units 
that compose this subsystem. This composition can be continued indefinitely to obtain an 
effectiveness measure for the entire system. They have shown that this can be recast as an 
approximation from a system generating function when all atomic units satisfy binary failure 
criteria (on/off) they are statistically independent, the system itself is highly reliable and reliability 
design of the system consists of hierarchical blocks. 
 
 
6.  RELIABILITY ANALYSIS OF GLOBALSTARTM GATEWAYS 
 

Globalstar is a low-earth-orbit (LEO) based telephony system with global coverage. The 
gateways make its ground segment that connect to the orbiting satellites. The gateways are cpmlex 
systems with more than a thousand components (e.g., electronic cards). Ushakov (1998), 
Chakravarty and Ushakov (2002) used the UGF approach for the reliability (performance) analysis 
of GlobalstarTM gateways (fixed ground segment of a low earth orbit satellite communications 
system). Given the prominence of object oriented abstractions and operations in Globalstar design, 
it should not be surprising that the reliability analysis naturally fits into the UGF philosophy. 
Further, these ideas can be naturally implemented in the computer using an object oriented 
language.  

Because of the object oriented nature of system reliability design in Globalstar (interaction 
between objects like system, racks, shelves, cards are triggered by failure, switching of failed units 
and changing user demand), Ushakov (1998) proposed that a system reliability simulator should be 
coded in an object oriented computer language like C++. Later, Chakravarty and Ushakov (2002) 
implemented a simulator for the GlobalstarTM Gateway in C++.  

In Chakravarty and Ushakov implementation for Globalstar, C++ objects are in one-to-one 
correspondence with reliability objects. An object is specified by mean time between failures 
(MTBF), mean time to repair/replace (MTTR) and an effectiveness weight (partial effectiveness 
index: PEI). By definition, PEI=1 for binary atomic units. All failure distributions are implicitly 
assumed to be Exponential. If failed units were to be automatically swapped, a switching time was 
also assigned by Chakravarty and Ushakov (2000). Even small switching time is important because 
it changes a parallel system “on paper” to a series system with small MTTR. This may have 
dramatic effect overall on system reliability. 
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Abstract  
In this paper we construct effective single sampling plans for reliability inspection, when the 

distribution of failure times of underlying objects obey a Weibull law. To this purpose we use the 
index average lifetime (E (T)/testing time (T) for two values of E(T) - acceptable and non 
acceptable ones - and known shape parameter (K) of the Weibull cdf. We derive also a relationship 
between this index and reliability function R(t) of the assumed statistical law. A numerical 
illustrations is provided in the case of Rayleigh cdf - that is for a Weibull shape k = 2. 
 

Key words: cdf - cumulative distribution function, two-parameter Weibull law, sampling 
plan, average lifetime, testing time, Rayleigh case. 
 
 
 1. Introduction 
 
 From the SQC (Statistical Quality Control) perspective, reliability is considered a dynamical 
quality characteristic since the performances of a given technical entity are put into light if the 
underlying element, component or system is in a functional / operational state, performing a 
prescribed mission for a specified period of time. 
 Static quality characteristics (such as hardness, length, pressure, volume a.s.o.) are observed 
and measured directly in units independent of time. 
 Metaphorically speaking, reliability is viewed as one of the special features of the general 
concept of quality. Vasiliu (1980, [7, page 26]) defines reliability as „the dimension in time of 
quality”. Two decades later, Yang and Kapur (1997, [9, page 340]) state that „reliability is quality 
over time”. 
 Anyway, no matter how good is a design, how performing is the production process, how 
careful is handled and exploited a technical system there is no way to stop its final decay. After a 
certain period of time - which may be short or quite long - every human made object sooner or later 
will fail. This event (failure) is due to natural causes (wear-out phenomenon) or to some „artificial” 



Alexandru Isaic‐Maniu, Viorel Gh. Voda  – SOME INFERENCES ON THE RATIO AVERAGE LIFETIME/TESTING TIME IN ACCEPTANCE SAMPLING PLANS 
FOR RELIABILITY INSPECTION 

 
R&RATA # 3  

(Vol.2) 2009, September 
 

 

- 52 - 

ones as for instance the use of the item in inappropriate conditions (aggressive environment, 
intensive operational tasks, lack of adequate maintenance actions, mishandling etc.). 
 A failure occurs in a random manner and usually after a certain period of time when the 
system was operating supposedly, satisfactorily. 
 Since we do not know the exact moment when a specified object will fail, we are forced to 
judge in terms of probabilities and averages involving the time elements as one of the main 
parameters. The failure behavior of that specific object has to be modeled and hence we are facing 
to the problem of choosing the most suitable class of life distributions describing this time-to-failure 
phenomenon. 
 Nevertheless, we may speak about the so-called „static reliability” where the time element is 
not instantly (or explicitly) involved (see Blischke and Murthy, 2000 [2, page 173 - 177]). 
 We refer here to the so-called „stress-strength models” where reliability is regarded as the 
capacity of item’s strength (x) to resist to the action of stress (y). Actually a measure of reliability in 
this model is R = Prob {x > y} where usually, both x and y are random variables. If this probability 
is greater than 50% we could expect a desirable reliability of the underlying entity. 
 In batch inspection procedures if the characteristic of interest is reliability (or durability) of 
underlying items we must take into account their failure behavior (where time element is the main 
parameter) in order to construct suitable sampling acceptance plans from economical point of view. 
 In this paper, we shall present some new results on the index average lifetime 
(durability)/testing time in the construction of acceptance sampling plans for reliability inspection, 
when time-to-failure distribution is a two parameter Weibull one. 
 
 
 2. Various approaches of reliability inspection 
 
 It is well-known that a very general approach for batch inspection - no matter the nature of 
quality characteristic investigated - is that called attributive one. All practical procedures have 
been already standardized - see the document MILSTD105 E „Sampling procedures and tables for 
inspection by attributes” (see Kirkpatrick, 1970 [5, page 354 - 415] where the variant D is entirely 
reproduced). The simplicity of attributive method lies in the fact that products are classified into 
categories: conforming and defective (nonconforming) ones regarding some specified criteria. In 
the case of reliability/durability inspection, this attributive approach ignores the very nature of 
failure behavior of inspected objects and this could lead to a larger sample (or samples) to be tested: 
if the items are quite expensive and since the specific test in this case is destructive, the procedure 
appears to be non-economic. 
 It is important to notice that the attributive approach ignores in the case of 
reliability/durability inspection, the following elements: a) what kind of samples we use for 
inspection: complete ones or censored ones; b) distributional assumption for time-to-failure; c) 
sampling is with replacement or non replacement; d) testing conditions are normal or accelerated 
ones; e) items are reparable  or non-reparable (if they are non restoring, then E(T) is just the mean 
durability and T  (sample mean) is computed with ( ) ni1it ≤≤  values where ti is the time to first - and 
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last! - failure of the ith item submitted to the test; it is senseless to speak in this case about MTBF - 
Mean Time Between Failures); f) what is the relationship between testing time (T0) and the actual 
operating life of those items. 
 More useful are in such special case methods based on average operating time or on hazard 
rate associated to the failure time model specific for each peculiar instance. 
 The document MILSTD 781 Reliability test: exponential distribution (U.S. Dept. of 
Defense, Washington D. C., 1984) use the ratio E (T) / T0 where E (T) is the average lifetime 
(durability) of underlying objects and T0 is the testing time. In the exponential case 
( ) ( ) 0,θ0,t,t/θexp1θt;F >≥−−=  F being the cdf (cumulative distribution function) of the 

representative variable (T), the mean-value of T is ( ) θTE = and therefore the inference is done 
straight forwardly on the distributional parameter (details are given in Cătuneanu-Mihalache, 1989 
[3], Vodă-Isaic Maniu [8]). 
 We shall examine now this ratio E (T) / T0 in the case of a Weibull distribution. 
 
 
 3. The ratio E (T) / T0 in the case of a Weibull distribution 
 
 Let Tw be a two-parameter Weibull distribution with the following cdf  

 ( ) ( ) 0kθ,0,t,/θtexp1kθ,t;F:T k
w >≥−−=          (1) 

 The corresponding reliability function is ( )/θtexpR k
t −=  and the theoretical mean-value is 

 ( ) ( )1/k1ΓθTE 1/k +⋅=  where ( ) duu
0

u1∫
∞

−−=Γ ex x    (2) 

is the well-known Gamma function (see Isaic-Maniu, 1983 [6, page 21]). We have hence 

 ( )
( )

k

1/k1Γ
TEθ ⎥

⎦

⎤
⎢
⎣

⎡
+

=        (3) 

and consequently we get 

 ( ) ( )
( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ +⋅
−=

k

TE
1/k1ΓtexptR      (4) 

 By taking natural logarithms, we have 

 ( ) ( )
( )

k

TE
1/k1ΓttRln ⎥

⎦

⎤
⎢
⎣

⎡ +⋅
−=       (5) 

and finally 

 ( ) ( )[ ] ( )1/k1ΓtRln
t
TE 1/k +⋅−= −      (6) 

 Therefore, the ratio E(T)/t depends on the shape parameter (k) of Weibull’s cdf and on its 
reliability function. If we fix t = T0 and considering k to be known, we have either to estimate R 
(T0) or to fix lower acceptable bound for it. 
 From (5) we can deduce 
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 ( ) ( )[ ] ( ) 00 Tln1/k1ΓlnTRlnln
k
1TEln +++−⋅−=    (7) 

and taking into account a formula given in Abramowitz-Stegun (1979, [1, page 82]), namely 

 ( ) ( )
k

C11/k1ln1/k1Γln −
++−≈+      (8) 

where C is the Euler-Mascheroni’s constant ( )57721.0≈ . 
 If we approximate now ln (1+1/k) as 1/k (let us recall the inequalities 
( ) ( ) )10,1ln1 1 <≤≤+≤+ − xxxxx  then, if k > 1 the relationship (7) becomes a very simple 

estimation equation for the shape parameter if it is not known. 
 
 
 4. Construction of acceptance sampling plans 
 
 We shall start with the following assumptions: 
 (1) the items subjected to inspection are non-reparable;   
 (2) the failure time distribution is a two-parameter Weibull one with known shape 
parameter; 
 (3) we use only one sample with no replacement, its size has to be determined; 
 (4) there is fixed an acceptable average lifetime [E(T)]1 corresponding to a given risk 
α (usually 05.0=α  or 5%), that is we wish to accept a lot with such average value with 

95.01 =−α  probability; 
 (5) there is fixed a non-acceptable average lifetime [E(T)]2 corresponding to a given risk 
β  (usually 10.0=β  or 10%), that is we with to reject a lot with such average value with 

90.01 =− β  probability; 
 (6) there is fixed a testing time T0 smaller than the actual operating life of the underling 
items. 
 Therefore, the sampling plan will be the system of objects {(n, A) | T0} where n and A are 
respectively the sample size and acceptance number which has to be determined and T0 is the 
previously fixed testing time. 
 The decision on the lot is taken as follows: submit to the specific reliability/durability test a 
sample of size n drawn randomly from a lot of size N (n < N), during a period of units of T0 
(usually, T0 is given in hours); record then the number (d) of failed elements in the interval [0, T0]; 
if  Ad ≤ , then the lot is accepted - otherwise, that is if 1ARd +=≥ , the lot is rejected (here, R = 
A + 1 is the so-called „rejection number”). 
 The elements n and A are determined via the OC - function (Operative Characteristic) of the 
plan which has the expression 

 ( ) ( )∑
=

−=
A

0d

npd enp
d!
1pL        (9) 

where A21d! ⋅⋅⋅= K and p is the defective fraction of the lot given by 

 ( ) 0kθ,0,t,/θtexp1p k >≥−−=      (10) 
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and d is the number of failed elements during the testing period T0 (see for other details US-MIL-
HDBK-781 „Reliability Test Methods, Plans and Environments for Engineering Development. 
Qualification and Production” and Grant and Leavenworth, 1988 [4]). 
 Choosing two values for p (p1 and p2) for which ( ) 0.95α1pL 1 =−=  and 
( ) 0.101pL 2 =−= β  and using the ratios [E(T)]1/T0 and [E(T)]2/T0 we obtain a system which 

provides the elements of the plan, n and A. 
 In table 1 we present some values for n and A in the Rayleigh case, that is if k = 2, the input 
data being (in order to ease the computations) the following quantities: 100T0/[E(T)]1 for which 
( ) 0.95pL 1 =  and 100T0/[E(T)]2 for which ( ) 0.10pL 2 =  (the first figure is given in parentheses). 

 We do notice that in this approach it is avoided the knowledge of R (T0) since the input 
elements are only T0 and [E(T)]1,2 which are fixed previously taking into account the specific case 
at hand. 

Table 1 
 

Elements of the single sampling plan {(n, A) | given T0} for the input ratios 100T0 / [E(T)]1,2 
 

n 

Values of 100T0/[E (T)]2 for which L(p2) = 0.10 A 

100 50 25 15 

0 
3 

(15) 

12 

(7.5) 

46 

(3.8) 

130 

(2.2) 

1 
6 

(30) 

21 

(15) 

80 

(7.5) 

224 

(4.5) 

2 
8 

(40) 

30 

(19) 

110 

(9.9) 

305 

(5.9) 

3 
11 

(42) 

35 

(22) 

139 

(11) 

383 

(6.8) 

 
 Example: Assume that we have an acceptable durability [E(T)]1 = 5000 hours and a non-
acceptable one as [E(T)]2 = 1000 hours. Testing time was fixed at the value T0 = 500 hours (the 
usual risks are 0.10).βand0.05α ==  
 Therefore, to find the plan, we evaluate 

( )[ ] 50
1000

500100
TE

T100

2

0 =
⋅

=  and ( )[ ] 10
5000

500100
TE
T100

1

0 =
⋅

=  
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 In table 1, the nearest value of 100T0 / [E(T)]1 for 100T0 / [E(T)]2 = 50 is 15 and hence for 
the couple 50 (15) we read n = 21 (sample units) and A = 1 (the acceptance number). The plan is 
hence {(21, 1) | 500} and as a consequence we shall test n = 21 items on a period of 500 hours and 
record d - the number of failed elements. If d = 0 or 1, we shall accept the lot - otherwise (that 
is 2d ≥ ) we shall reject it. 
 The flow of operations is presented below. 
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REJECTION 
1ARd +=≥  

Table 1 



Alexandru Isaic‐Maniu, Viorel Gh. Voda  – SOME INFERENCES ON THE RATIO AVERAGE LIFETIME/TESTING TIME IN ACCEPTANCE SAMPLING PLANS 
FOR RELIABILITY INSPECTION 

 
R&RATA # 3  

(Vol.2) 2009, September 
 

 

- 57 - 

7. Vasiliu. Fl. (1980): Metode de Analiză a Calităţii Produselor (Methods for Product Quality 
Analysis - in Romanian). 

8. Vodă, V., Gh., Isaic-Maniu, Al. (1994): The power distribution as a time-to-failure model, 
Economic Computation and Economic Cybernetics Studies and Research, 28, No.1 - 4, page 
41 - 51. 

9. Yang, K. and Kapur, K., C. (1997): Consumer driven reliability: integration of QFI and 
robust design, Proceedings of the Annual Reliability and Maintainability Symposium, 330 - 
345. 

 
 



Tsitsiashvili G., Losev A.  –AN ACCURACY OF ASYMPTOTIC FORMULAS IN CALCULATIONS OF A RANDOM NETWORK RELIABILATY 

 
R&RATA # 3  

(Vol.2) 2009, September 
 

 

- 58 - 

AN ACCURACY OF ASYMPTOTIC FORMULAS IN CALCULATIONS  
OF A RANDOM NETWORK RELIABILATY 

 
Tsitsiashvili G.Sh., Losev A.S. 

● 
Institute for Applied Mathematics, Far Eastern Branch of RAS 

690041, Vladivostok, Radio str. 7, 
guram@iam.dvo.ru, alexax@bk.ru  

 
 
 
INTRODUCTION 

 
In this paper a problem of asymptotic and numerical estimates of relative errors for different 

asymptotic formulas in the reliability theory are considered. These asymptotic formulas for random 
networks are similar to calculations of Feynman integrals. 

A special interest has analytic and numerical comparison of asymptotic formulas for the most 
spread Weibull and Gompertz distributions in life time models. In the last case it is shown that an 
accuracy of asymptotic formulas is much higher. 

 
 

1. AN ASYMPTOTIC ESTIMATE OF A RELATIVE ERROR IN A DEFINITION OF A 
RELIABILITY LOGARITHM 
 

Consider the nonoriented graph Γ  with fixed initial and final nodes and with the arcs set W . 
Define { }1,..., nR RR =  as the set of all acyclic ways between the initial and final nodes of the graph 
Γ . Designate RP  the probability of the way R  work. Then in the condition 

( )~ exp wd
w wp c h−− , 0h → , w W∈ , 

we have: 
( ) ( ) ( )( )( )~ exp 1 1R RD D

RP C R h C R h o′− −′− − + , 
where ( )

( ): w
w

w d D R
C R c

=
= ∑  and R RD D′ <  is a next by a quantity after maxR ww R

D d
∈

=  element in the set 

{ },wd w R∈ , ( )
( ): w

w
w d D R

C R c
′=

′ = ∑ . If in the way R  this element is absent we put then RD′ = −∞ , 

( ) 0C R′ = . 
Denote min RR

D DΓ
∈

=
R

 and designate { }1 : RR D DΓ= =R , 2 1=R R \R , then the probability PΓ  of 

the graph Γ  work  satisfies the formulas 
1 2~P P PΓ Γ Γ+ , ( ) ( ) ( )( )( )~ exp 1 1R R

i i

D Di
R

R R
P P C R h C R h o′− −
Γ

∈ ∈
′= − − +∑ ∑

R R
, 1,2i = . 

By the definition 
( ) ( ) ( )( )( )

1

1 ~ exp 1 1 ~RD D

R
P C R h C R h oΓ ′− −
Γ

∈
′− − +∑

R
 

( ) ( ) ( )( )( )
1

~ exp exp 1 1RD D

R
C h C R h oΓ ′− −
Γ

∈
′− − +∑

R
, 

where min RR
C CΓ

∈
=

1R
 and RD DΓ′ < , 1R∈R , so 

( ) ( )( )( )1 ~ exp exp 1 1D DP C h C h oΓ Γ′− −
Γ Γ Γ′− − + , 

where 
( ):

min RR C R C
D D D

Γ
Γ Γ

∈ =
′ ′= <

1R
, 

( )
( )

: ,
min

RR C R C D D
C C R

Γ Γ
Γ ′ ′∈ = =
′ ′=

1R
. 
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And consequently RD DΓ< , R∈ 2R , ( )2 1 :P o PΓ Γ=  

 
( ) ( ) ( )( )( ) ( ) ( )( )( )

2 2

2 ~ exp 1 1 ~ exp 1 1R R RD D D

R R
P C R h C R h o C R h o′− − −
Γ

∈ ∈
′− − + − + =∑ ∑

R R
 

( ) ( ) ( )( )( )
2

exp exp 1 1 ~RD D D

R
C h C h C R h oΓ Γ− − −
Γ Γ

∈
= − − − +∑

R
 

( ) ( ) ( )( )( )
2

~ exp exp 1 1 ~RD D

R
C h C R h oΓ− −
Γ

∈
− − +∑

R
 

( ) ( )( )( )~ exp exp 1 1D DC h C h oΓ Γ′′− −
Γ Γ′′− − + , 

where 

2

min RR
D D DΓ Γ

∈
′′ = >

R
,   ( )

2

min
R

C C RΓ
∈

′′ =
R

. 

So we have: 
 

( ) ( )( )( ) ( )( )( )( )~ exp exp 1 1 exp 1 1 ~D D DP C h C h o C h oΓ Γ Γ′ ′′− − −
Γ Γ Γ Γ′ ′′− − + + − +  

( ) ( )( )( )~ exp exp 1 1D DC h C h oΓ Γ′− −
Γ Γ′− − + . 

 
As a result obtain that 
 

( )( )( )ln ~ 1 1 1DP C h Ah oΓ Γ− Δ
Γ Γ− + + , 0D DΓ Γ Γ′Δ = − > , /A C CΓ Γ′= . 

 
And consequently 

( )
ln 1 ~D

P Ah
C h

Γ

Γ

ΔΓ
− −

− Γ
.                                                       (1) 

 
 
2. AN ASYMPTOTIC ESTIMATE OF A RELATIVE ERROR IN A DEFINITION OF A 
RELIABILITY 
 
 

Assume that ( )pP U  is the probability of the event pU  that all arcs 1 ,...,
p

p p
mw w  of the way pR  

work. Then we have 

1

n

p
p

P P UΓ
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
U .                                                            (2) 

 
Suppose that the probability of the arc w W∈  work equals ( )exp wd

wc h−− , 0h > , where ,w wc d  
are some positive numbers and for arcs w w′ ′′≠  the constants w wd d′ ′′≠ . So we have 

 

( )
1

exp
p pw j

p
j

m d

p wj
P U c h

−

=

⎛ ⎞
= − ∑⎜ ⎟

⎝ ⎠
. 

 
Assume that the enumeration of the arcs in the way pR  satisfies the inequalities 

1 2
...p p p

mp
w w wd d d> > > . 
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Denote 
1

,...,p p
mp

p
w wD d d⎛ ⎞= ⎜ ⎟

⎝ ⎠
 and introduce on the vectors set { }, 1pD p n≤ ≤  the following 

order relation. Say that p qD Df , if for some ( )min ,p qk m m≤  the first 1k −  components of these 

vectors coincide and the k  component in the vector pD  is larger than in the vector qD . If there is 
not such k  and in the vectors pD , qD  all first ( )min ,p qm m  components coincide then p qD Df  for 

p qm m< . 
Remark that for some p q≠  the arcs sets { }pw R∈ ,{ }qw R∈  can not satisfy the inclusion 

{ } { }p qw R w R∈ ⊆ ∈ . In the opposite case there is the node *u  in which the ways pR qR  diverge by 
the arcs ( )*, pu u ( )*, qu u . But as the arc ( ) { }*, p qu u w R∈ ∈  then the way qR  has a cycle. This 
conclusion contradicts with the assumption that the way qR  is acyclic. 

So as the quantities wd  are different then p qD D≠ , p q≠ . As a result we obtain the order 
relation on the vectors set { }1,..., nD D , and if p qD Df , 0h → , so ( ) ( )( )q pP U o P U= . It is not 
difficult to check that this relation is transitive. Consequently the order relation on the set 
{ }1,..., nD D  is linear. Assume that the enumeration of the vectors pD  satisfies the formula 

1 ... nD Df f . From the formula (2) we have 
 

( )* *

1
p q

p q m
P P U U P PΓ Γ Γ

≤ < ≤
− ≤ ≤∑  , ( )*

1

m
p

p
P P UΓ

=
= ∑ .                                  (3) 

 
As the inclusion { } { }p qw R w R∈ ⊆ ∈  is not true for p q≠  so in the way pR  there is an arc 

which does not belong to the way qR . Consequently we have 
 

( ) ( )( )q pP U o P U= , 1 p q m≤ < ≤ , ( ) ( )( )2
1

p q
i j m

P U U o P U
≤ < ≤

=∑                    (4) 

 
The formulas (3), (4) give us the following asymptotic expansion for PΓ  with the first and the 

second members of the smallness: 
( )*

1~ ~P P P UΓ Γ , ( ) ( )1 2~P P U P UΓ − , ( ) ( )( )2 1P U o P U= , 0h → .                (5) 
 
 
3. AN APPLICATION TO LIFE TIME MODELS 
 

Suppose tha wτ  are independent random variables and characterize life times of the arcs 
w W∈ . Denote Denote ( ) ( )w wp h P tτ= >  and designate the life time of the graph Γ  by  

 
min max wR w R

τ τΓ
∈ ∈

=
R

. 

 
If 1/h t=  then we have with t →∞  the Weibull distributions of the arcs life times and the 

formula  
( )
( )

( ) ( )ln 1 ~D
P t g t At G t
C t

τ
Γ

Γ

−ΔΓ > − = =
− Γ

                                             (6) 

If ( )exph t= −  , t →∞ , then we have the Gompertz distributions of the arcs life times and the 
formula (1) transforms into 
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( )
( ) ( )

( ) ( ) ( )( )1 1
ln 1 ~ exp

exp
P t g t G t G t

C D t
τΓ

Γ

> − = =
− Γ

,                                  (7) 

so ( ) ( )( )1G t o G t= .  
 

Consequently for the Gompertz distributions the convergence rate in the asymptotic (7) is 
much faster than for the Weibull distributions in (6). 

If 1/h t= , t →∞ ,  then for the Weibull distributions of the arcs life times the formula (5) 
transforms into 

( )
11

1
1

~ exp w j

j

dm

w
j

P t c tτΓ
=

⎛ ⎞> −∑⎜ ⎟
⎝ ⎠

,                                                   (8) 

( ) ( ) ( ) ( )
1

1
11

1 ~ 1
exp w j

j

dm
j w

P t f t F t o
c t

τΓ

=

> − = =
⎛ ⎞−∑⎜ ⎟
⎝ ⎠

, ( )
2 1

2 1
2 11 1exp w wj j

j j

d dm m
j jw wF t c t c t= =

⎛ ⎞= − +∑ ∑⎜ ⎟
⎝ ⎠

. 

 
If ( )exph t= − , t →∞ , then for the Gompertz distributions of the arcs life times the formula 

(5) transforms into 
 

( ) ( )1

1 1
1

~ exp exp
j j

m

w w
j

P t c d tτΓ
=

⎛ ⎞> − ∑⎜ ⎟
⎝ ⎠

, ( )

( )
( ) ( ) ( )( )

1

1 1

1 1

1

1 ~ exp
exp exp

j j

m

w w
j

P t f t F t F t
c d t

τΓ

=

> − = =
⎛ ⎞− ∑⎜ ⎟
⎝ ⎠

,   (9) 

so ( ) ( )( )1F t o F t= . 
 

Consequently for the Gompertz distributions the convergence rate in the asymptotic (9) is 
much faster than for the Weibull distributions in (8). 

For 1/h t=  denote ( )* /P P P A tΓ Γ Γ− = , and for ( )exph t= −  designate ( )*
1/P P P A tΓ Γ Γ− = . It is 

clear that ( ) ( )( )1 expA t A t=  tends to zero for t →∞  much faster than ( )A t . 
From this section we see that the Gompertz distributions of the arcs life times (these 

distributions are preferable in life time models of alive [1] and of complex information [2] systems), 
give much more accuracy asymptotic formulas than the Weibull distributions. These both 
distributions are limit for a scheme of a minimum of independent and identically distributed random 
variables. 
 
 
4. RESULTS OF NUMERICAL EXPERIMENTS FOR BRIDGE SCHEMES 
 

 
Fig.1 The bridge scheme. 
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Consider the bridge scheme Γ  represented on the Fig. 1 with the parameters 1 0.02d = , 
2 0.09d = , 3 0.5d = , 4 0.72d = , 5 0.2d =  . Calculate the functions ( ) ( ) ( ) ( ) ( ) ( )1 1 1, , , , ,f t f t A t A t g t g t . 

 

                
 

Fig.2 The relative errors ( )f t and ( )1f t  in the reliability PΓ  calculations 
 
 

             
 

Fig.3 The relative errors ( )A t and ( )1A t  in the reliability PΓ  calculations 
 
 
 

          
 

Fig.4 The relative errors ( )g t and ( )1g t  in ln PΓ  calculations. 
 

The results of the numerical experiments represented above show that a transition from the 
Weibull to the Gompertz distribution decreases significantly relative errors in calculations of the 



Tsitsiashvili G., Losev A.  –AN ACCURACY OF ASYMPTOTIC FORMULAS IN CALCULATIONS OF A RANDOM NETWORK RELIABILATY 

 
R&RATA # 3  

(Vol.2) 2009, September 
 

 

- 63 - 

reliability and its logarithm. The asymptotic estimate *PΓ  of the reliability PΓ is better than ( )1P U . 
The relative error of the ln PΓ calculation is larger than the relative error of the PΓ calculation. But a 
complexity of the ln PΓ  calculation is smaller. 
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