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Z. Bluvband & S. Porotsky 
• 
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e-mail: zigmund@ald.co.il,  sergey@ald.co.il 
 
 
 

ABSTRACT 
 

The reliability growth process applied to a complex system undergoing development 
and field test involves surfacing failure modes, analyzing the modes, and, in addition to 
repair, in some cases implementing corrective actions to the surfaced modes. In such a 
manner, the system configuration is matured with respect to reliability. The conventional 
procedure of reliability growth implies evaluation of two principal parameters of the NHPP 
process only for failure rate. Since standard NHPP does not take into account parameters of 
repairs, it is necessary to develop expanded procedure as the basis for the Availability 
Growth. It implies evaluation of both: a) the parameters of failure rate and, b) the parameters 
of repair rate. Authors suggest a model and numerical method to search these parameters. 

 
 
1. INTRODUCTION 

 
Accurate prediction and control of reliability plays an important role in the profitability and 

competitive advantage of a product. Service costs for products within the warranty period or under a 
service contract are a major expense and a significant pricing factor. Proper spare part stocking and 
support personnel hiring and training also depend upon good reliability fallout predictions. On the 
other hand, missing reliability targets may invoke contractual penalties and cost future business.  

Telecommunication networks, oil platforms, chemical plants and airplanes consist of a great 
number of subsystems and components that are all subject to failures. Reliability theory studies the 
failure behavior of such systems in relation to the failure behavior of their components, which often 
isn't easier to analyze. There are multiple failure analysis methods in the design and development 
phase, like FMECA (Failure Mode Effect and Criticality Analysis), FTA (Fault Tree Analysis), 
ETA (Event Tree Analysis), BFA (Bouncing Failure Analysis), Markov chains, etc. The Analysis of 
failures, faults and errors from the field (Manufacturing, Test, Operation and Support) is usually 
performed  by FRACAS (Failure Reporting, Analysis and Corrective Action System) using the 
investigation of the Physical nature of failures and studying the possible causes and roots of the 
Failures. 

Typical task of Reliability Analysis is Reliability Growth Analysis, which deals with failures 
in the repairable systems. A repairable system is one which can be restored to satisfactory operation 
by any action, including parts replacements or changes to adjustable settings. When discussing the 
rate at which failures occur during system operation time (and are then repaired) we will define a 
Rate Of Occurrence Of Failure (ROCF) or "repair rate". 

For systems with repairable failures the standard model is NHPP – Non-Homogeneous 
Random Poison Process. According this model Amount of Failures into small interval  

[T; T + t] is equaled for Rate(T)t. For NHPP Power Law (Crow model, AMSAA model) it is 
assumed, that 

 
( )1)( −Τ= βλβTRate  
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i.e. first failure is according Weibull Distribution, λ and β are Power Law parameters.  
For any NHPP process with intensity function Rate(T), the distribution function (CDF) for the 

inter-arrival time t to the next failure, given a failure just occurred at time T, is given by  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−= ∫

t

dttTRtF
0

exp1)(
 

 
In particular, for the Power Law the waiting time to the next failure, given a failure at time T, 

has probability density function (PDF)  
 

( ) ( )( )( )βββ λλβ TtTtTtf −+−+= − exp)( 1
 

 
This NHPP Power Law model really is same as Duane model, for which is assumed, that  
 

( )αδγ −= tMTBFcumue  
where γ and α are Duane model parameters.  
 
Following expressions are right: 
 

βα
λ

γ −== 1,1
 

 
Below all models are for NHPP Power Law parameters search, parameters of corresponding 

Duane model are recalculated according above expressions. 
 
During analysis systems with repairable failures, two main problems are solved: 
− Definition of NHPP distribution parameters by means of statistics of failures 
− Forecasting of some output criteria (Amount of failures on some period, MTBF, etc.) based 

on obtained parameters. 
 
This classical task of Reliability Growth Analysis physically may be extended for the 

Availability Growth Analysis, which assumes, that repairable failures and its restoration are 
performed due to two factors – failure rate and repair rate [1]. For this task we have to define 
parameters of "mixed" flows – failures and repairs – instead of single ("continuous") flow for 
standard NHPP task. 

 
The rest of the article is organized as follows. Availability Growth model as extension of 

Reliability Growth model is introduced in Chapter 2. First we consider simplest case – single 
system. Various techniques to solve this model are considered in Chapter 3. In Chapter 4 we present 
how the Cross-Entropy method can be applied to search parameters of proposed model. The more 
challenging tasks of Availability Growth are tackled in Chapter 5. In Chapter 6, we show how to get 
some output estimations of Availability Growth.  
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2. DEFINITION OF DISTRIBUTION PARAMETERS FOR SINGLE SYSTEM  
 
First consider case of single system. Input statistics of failures and repairs is following: 

 TF[1], TR[1],…, TF[i], TR[i],…, TF[n], TR[n], where 
− n is amount of failures 
− TF[i] is time of failure number i (failure arrival time – FAT) 
− TR[i] is time of finishing of repair number i, i = 1…n 

 
We assume, that both flow of failure and flow of repairs are NHPP processes. So,  
 

( )

f

fttMTBF
λ

β−

=
1

)(  – for failure flow                           

 
( )

r

rttMTTR
λ

β−

=
1

)(
 – for repair flow 

 
We have to define parameters λf, βf, λr, βr and for this purpose we will use MLE (Maximum 

Likelihood Estimations) approach.  
 
Comment. Generally speaking, we can describe failure and/or repair flows by means of some 

other NHPP Law (e.g. Exponential Law of ROCOF), but usually NHPP Power Law is used. 
 
To define these parameters for flow of failures, we have to consider two different cases: 
 
− Rate of Failures doesn't change during repair.  
In this case the deterioration (or reliability growth) of the system during repair is absent (i.e. 

during repair the failure rate of tire isn't increased, because really it isn't according time, rather 
according miles). For this case the classical exact Crow formulas [2] are applicable: 

 

[ ]( ) [ ]( ) [ ]( )fnZ
n

iZnZn

n
fn

i

f βλβ =
⎟
⎠

⎞
⎜
⎝

⎛
−

=

∑
=

,
loglog

1

                        

 
where Z[i] are "shifted" failure arrivals times and last measurement time (without influence of 

repair time): 
 

Z[1] = TF[1], Z[i + 1] = Z[i] + (TF[i + 1] – TR[i])  
 
− Rate of Failures changes during repair as usually.  
In this case the deterioration of the system during repair is normal (i.e. during repair the 

failure rate of car is increased according time). For this case the classical Crow formulas are not 
applicable. Conditional PDF, that i-th failure will be at moment TF[i] in condition, that (i-1)-th 
repair has finished at moment TR[i-1], is   

 
[ ] [ ]( )( ) [ ] [ ]( )( )fff iTRiTFiTFiP ffff

βββ λβλ 1exp1 −−−= −

 (1) 
 
 
Comment. In this expression for i = 1 we use TR[0] = 0. 
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∑
=

−=
n

i
ff iPLiklihoodLogarifmNegative

1
])[log(

 (2) 
 
Our goal is to search values of λf and βf such, that Negative Logarifm Likelihoodf will be 

minimum. 
 

To define required parameters for flow of repairs, we have to consider only one case – Rate of 
Repairs changes during repair and non-repair without differences. Formulas will be same, as above. 
Conditional PDF., that i-th repair will finish at moment TR[i] in condition, that i-th failure was at 
moment TF[i], is 

 
[ ] [ ]( )( ) [ ] [ ]( )( )rrr iTFiTRiTFiP rrrr

βββ λβλ −−= − exp1               (3) 
 

∑
=

−=
n

i
rr iPLiklihoodLogarifmNegative

1
])[log(

 (4) 
 
Our goal is to search values of λr and βr such, that Negative Logarifm Likelihoodr will be 

minimum. 
 

3. COMPARISON OF DIFFERENT GLOBAL OPTIMIZATION APPROACHES  
 
Global Optimization of non-linear function is a common task of a lot of practical problems 

(supply optimization, text categorization, distribution parameters estimation, etc. and etc.). For 
example, concerning problem of Parameters Estimation, a Linear Regression model can support 
only a few cases. It couldn't be used for interval and multiplied censored data, for 3 parameter 
Weibull estimation, Duane model with multiple systems, Gompertz model, etc. and etc. For this 
numerous cases we have to search distribution parameters by means of non-linear and non-convex, 
global optimization – both for MLE and non-linear regression using.  

 
Our task is to search value of Z, which provides min G(Z)  
 under constraints Lowj <= z[j] <= Highj , j = 1…K, where:                        
 
− Z = {z[1],…,z[j],…z[K]} is a set (vector) of parameters 
− K is amount of parameters 
− Lowj is Low Boundary of Parameter j value (j = 1…K)                            
− Highj is High Boundary of Parameter j value (j = 1…K)                               
− G is some Goal Function (analytical-form or, perhaps, table or even algorithm-calculated-

form), dependent of vector Z.  
 

To solve this task, two different approaches can be used: 
− To write and transform derivatives of Goal Function (e.g., Logarifm-Likelihood for MLE 

method, Sum of Leased Squares for Non-Linear Regression method, etc.) for each single task, to 
solve system of non-linear equations, corresponding these situations, to support Global Minimum 
finding (instead of possible local minimum finding) by means of convex/concave check, etc. 

− To use "direct search methods", provided universal search of Global Minimum (without 
analytical definition of derivatives). 
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For first approach using we have to define complex analytical expressions for derivatives for 
each single task. Early usually this approach was used and for each single task it required additional 
resources both for algorithm developing and software implementation. For example, Quasi-Newton 
method minimizes the Negative Logarifm Likelihood Function in order to bring partial derivatives 
to zero. Perhaps, it isn't very hard for simple cases, but for more complex models this approach 
requires essential additional time.  

  
We propose to use second (universal) approach, which will allow us to search optimal 

solution not only for single task, but rather for all same situations (LogNormal, Gamma and other 
distributions, MLE for repairable failures, Non Linear Regression for Gompertz model, etc.), and, 
generally speaking – for all complex non-convex, multi-extremal optimization tasks. In differ of 
"derivative" oriented algorithms, the proposed approach will require only one implementation.  

For second approach there are developed a lot of methods, based on gradient (or, if a goal 
function hasn’t gradient – on pseudo-gradient) calculation and analysis. But for many real tasks the 
Goal Function isn’t convex, it has many Local Minimums. In these cases such approaches require to 
know initial point of search, which has to be not far from optimal solution. In such optimization 
algorithms the initial guesses for the parameters are very crucial. But really we often don't know 
some information to define this initial point. So, it is impossible to use regular methods (gradients-
based). 

 
For Global Optimization Task we propose to use one of the RANDOM SEARCH oriented 

methods – Cross-Entropy Optimization [3]. It is relatively new random-search oriented approach 
(for comparison with Genetic Algorithm, implemented as Toolbox on Matlab, or Simulated 
Annealing Algorithm), but it has provided very good results for several analogous tasks. 

 
4. SHORT DESCRIPTION OF CROSS-ENTROPY ALGORITHM  

 
The method derives its name from the cross-entropy (or Kullback-Leibler) distance - a well 

known measure of "information", which has been successfully employed in diverse fields of 
engineering and science, and in particular in neural computation, for about half a century. Initially 
the Cross-Entropy method was developed for discrete optimization [3], but later was successfully 
extended for continuous optimization [4]. The Cross-Entropy method is an iterative method, which 
involves the following two phases:  

 
− Generation of a sample of random data. Size of this data is 500…5000 random vectors of 

each algorithm steps, amount of steps is 50…100. Generation is performed according to a specified 
random mechanism. 

− Updating the parameters of the random mechanism, on the basis of the data, in order to 
produce a 'better" sample in the next iteration. Choice of these parameters is performed by means of 
maximization of Cross-Entropy function. This optimization is performed on the each algorithm 
step, but in differ on global optimization usually this optimization is performed VERY EASY and 
FAST, because Cross-Entropy function is convex. 

 
On the first phase we generate sample Z1 …ZV …ZN, which has size of N different parameter 

sets. This generation is performed according common Probability Density Function F(Z) for 
parameter vector Z, which was calculated on the previously step of the algorithm. 

For each v from N (v = 1…N) generated parameter vectors the value of Goal Function is 
calculated. Then best NEL (NEL = 10…50) parameter vectors Z from all N generated are selected – it 
is named ELITE part from full sample. This selection is performed according Goal Function values, 
i.e. parameter vector with number 1 will have minimum value of Goal Function, parameter vector 
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with number 2 will have second value of Goal Function, parameter vector with number NEL will 
have NEL ordered value of Goal Function.  

After this the algorithm calculates new values of the Probability Density Function F(Z) – it is 
second phase of each algorithm step.  

 The aim of the new function F(Z) is to maximize Cross-Entropy Function. On the general 
case the Cross-Entropy Function is following: 

( ){ }V

N

v
ZF

EL

∑
=1

ln                                      

which is Kullback-Leibler probability measure of distance between different Probability 
Density Functions. In this formula ZV – value of generated parameter vector on the v-th set of Elite 
part of current sample.  

So, first we have to choice type of PDF to generate random parameter vectors Z. For 
continuous optimization we can use following types of PDF: 

− Beta PDF.  
− Normal PDF.  
− Double-Exponential PDF 
− Etc. 
 
Usage of the Normal PDF F(Z) is advantageous, since in contrast to Beta and Double-

Exponential PDFs the Normal PDF allows analytical solution of above task. Other types of PDF 
involve numerical solution. It is known following analytical solution for Normal PDF parameters 
(with respect to Mean and Covariance Matrix) of function F(Z): 
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We have to prevent the too earliest occurrences of the PDF parameter, because in this case 

optimization is stopped non-correct (PDF will be simply Dirak function!). For this aim instead of 
simple choice by means of independent current step result analysis we will use smoothed updating 
procedure: 

 
− Mean[j](t) = α Meanprel  [j](t) + (1 - α)Mean[j](t-1)  
 
where: 
Meanprel [j](t) – preliminary value of Mean[j], which we had got on current step t, i.e. before 

smoothed updating, 
Mean[j](t) – final value of Mean[j], which we had got on current step t, i.e. after smoothed 

updating, 
Mean[j] (t-1) – final value of Mean[j], which we had got on previously step (t-1), 
α – smoothing parameter for Mean updating, 
t – step number 
 
− Cov[i, j](t) = ζ(t)Covprel [i, j](t) + (1 – ζ(t))Cov[i, j](t - 1),  
− ζ(t) = ζ – ζ( (1 – 1/t)γ, 
 
where: 
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Covprel [i, j](t) – preliminary value of Covariance[i, j], which we had got on current step t, i.e. 
before smoothed updating, 

Cov[i, j](t) – final value of Covariance[i, j], which we had got on current step t, i.e. after 
smoothed updating, 

Cov[i, j](t-1) – final value of Covariance[i, j], which we had got on previously step (t-1), 
 ζ and γ – smoothing parameters for Covariance updating. 
As seen, for PDF parameter Mean we use fixed smoothing parameter α and for PDF 

parameter Covariance we use dynamic (dependent of step number) smoothing parameter ζ(t).  
 

5. SOME EXTENSIONS  
 
5.1 Multiple Systems 

 
In this case the input statistics of failures and repairs will be following: TF[j, 1], TR[j, 1],…, 

TF[j, i], TR[j, i],…, TF[j, n], TR[j, n], where 
 
− k is amount of systems 
− n(j) is amount of failures/repairs on system j 
− TF[j, i] is time of failure number i on system number j 
− TR[j, i] is time of finishing of repair number i on system number j, i = 1…n(j), j = 1…k. 

 
For definition of λf and βf we have to minimize following Goal Function: 
 

∑ ∑
= =

−=
k

j

jn

i
ff ijPLikelihoodLogarifmNegative

1

)(

1

]),[log(             (5) 

 
where Pf [j, i] - Conditional PDF, that i-th failure will be at moment TF[j, i] in condition, that 

(i -1)-th repair has finished at moment TR[j, (i -1)]. For these conditional PDF-s the expression (1) 
is applicable without some modifications, we only have to use TF[j,i] instead of TF[i] and TR[j, i] 
instead of TR[i]. Cross-Entropy Optimization algorithm to search parameters λf and βf also will be 
exactly same, as for case of single system.  

For definition of λr and βr all expressions will be analogous. 
 

5.2 How to take into account End Time and Start Time 
 
Formula (1) assumes, that system starts to operate at time 0, and last measurement 

corresponds for last failure.  
If for some single system j we use non-zero start time TS[j], we have to modify expression for 

Pf [j, i] for i = 1 – to use TR[j, 0] = TS[j] instead of 0 (see comment under formula (1) ). 
If for some single system j we use additional end (censored) time TE[j], we have to use 

additional expression Pf [j, i] for i = n(j) + 1 :                              
 

[ ] [ ] [ ]( )( )ff jnjTRjTEjnjP ff
ββλ )(,exp1)(, −−=+  

 
and for this j to use additional component Pf [j, n(j)+1] on expression (5).                  
  

 5.3 Definition of un-known parameters δf and δr  
 
Sometimes initial moments (initializations) of failure rate and repair rate are not zeros (don't 

confuse with start times of single systems !). Suppose, they are δf for failure rate and δr for repair 
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rate. In this case instead of t we have to use (t – δr) and (t – δf) in all formulas of NHPP process. We 
also have to modify expression (1) – instead of TF[i] and TR[i] to use (TF[i] – δf) and (TR[i] – δf), 
to modify expression (3) – instead of TF[i] and TR[i] to use (TF[i] – δr) and (TR[i] – δr).  

If values of parameters δf and/or δr are unknown, we have to search its by means of 
minimization of Negative_Logarifm_Likelihood – not only for parameters β and λ, but also for 
parameter δ. To search value of parameter δ, we can use Cross-Entropy Optimization algorithm for 
modified expressions (2) and (4) (for single system) or expression (4) (for multiple systems).  

 
We also have to note, that MLE approach gets us solution for three parameter optimization 

only for case β>1 (it is widely known fact for Weibull three parameter search). So, for these 
situations we have to use some other methods, e.g.: 

− To use some non-parametric estimation method (for example, well known MCF approach 
of Nelson [5]) and based of received results to use Least Squares optimization for thee parameters 
(β, λ, δ). Least Squares non-linear optimization will be performed by means of Cross-Entropy 
method. 

− Based on defined value of parameter δ to correct values of β and λ by means of MLE 
optimization using expressions (2) or (4). 
 
 
6. OUTPUT ESTIMATIONS 

 
Based on obtained parameters we can get some estimations and perform numerical analysis.  
For instantaneous values of MTBF and MTTR the following formulas are proved: 
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For cumulative values of MTBF and MTTR the following formulas are proved: 
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It is impossible to obtain analytically the exact expression for instantaneous value of 

Availability depending of time, but approximately we can assume, that  
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If δf = δr = δ (for default δf = δr =0) we can simplify last expression: 
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For cumulative (or mean) value of Availability we use formula 
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It is impossible to obtain analytically the exact expression for cumulative value of Availability 

depending of time, but approximately we can assume, that  
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If δf = δr = δ we can simplify last expression: 
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It is evident, that if βf < βr, the Instantaneous and Cumulative values of Availability  increase 

depending on time (i.e. we see Availability Growth), although MTBFi(t) and MTBFc(t) can be 
reduced. Otherwise, if βf > βr, the Instantaneous and Cumulative values of Availability decrease 
depending on time (i.e. we see Availability Aging), although MTBFi(t) and MTBFc(t) can be 
increased. 

 
7. CONCLUSION 

 
It is important to recognize, that the Availability parameter should be integrated into general 

process of a system improvement. But currently the technique of the Reliability Growth doesn't take 
into account the factor of Availability.  

The above described procedure was developed in order to calculate and track the Availability 
(Dependability) measures based on repair rates’, as well as failure rates’, modification.  

The procedure is based on Cross-Entropy Global Optimization algorithm, which is used to 
optimize MLE function.  
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Farhadzadeh E.M., Muradaliyev A.Z., Farzaliyev Y.Z. 

● 
Azerbaijan Scientific-Research and Design-Prospecting Institute  

of Energetic AZ1012, Ave.H.Zardabi-94 
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The problem of the control of the importance of observable laws of change of parameters of 
reliability (PR) at small statistical data of operating experience or experiment in conditions when 
the argument has a serial or nominal scale of measurement, concerns to number of the most difficult 
and insufficiently developed. In particular, at operation of electro installations the important role-
played with data on reliability of units of the same equipment, on the reasons of occurrence and 
character of their damage, law of change PR of the equipment for various classes of a pressure and 
so forth 

Let us agree to name the dependences empirical characteristics (ECh.) changes PR. 
Calculated on statistical data of operation of law of change ECh. caused by functional and statistical 
components. From the practical point of view the opportunity essentially is of interest to lower the 
importance of a statistical component. 

To estimate laws of change of functional characteristics (FCh.) it is important for experts 
since these characteristics allow raise reliability of the equipment with the least expenses, to correct 
maintenance service, to improve the control of a technical condition, to lower expenses for 
scheduled repairs and so forth 

Thus, the problem consists in establishing influence of casual character of estimations PR on 
laws of change ECh.. 

For the decision of this problem we shall enter into consideration following concepts and 
definitions: 
- concept of statistical function of distribution (f.d.) the discrete argument measured in a serial scale 
or in a scale of names also we shall define this function under the formula: 
     ∑ ∑

= =
Σ==+

i i

nnQiF
1 1

** /)1(
ν ν

νν
                              (1) 

1)1(;0)1()1(,1 ** =+=+= rr mFFmi  
where: *

νQ  - estimation of probability of display ν-- version of an attribute (VA); Σn  - number of 
displays of a considered attribute; mr – number VA; 
 Physically )(* iF  designates probability of display located in the certain order of the first i 
VA.  
- concept hypothetical f.d. In particular, if to assume, that the probability of display of each of rm  
VA the same and is equal 1/mr function of uniform distribution can be calculated under the formula: 

rmiiF /)1( =+      (2) 
where 1)1(;0)1();1(),1( =+=+= rr mFFmi  ; 
- concept of statistical function of modeled distribution )(* iFM . Function )(* iFM  It is similar on 
structure of function )(* iF  with that difference, that νn  with rm,1=ν  defined at modeling ECh. on 
distribution )(iF ; 
- the same, but is defined at modeling ECh. on distribution )(* iF . Let's designate this function as 

)(** iFM : 
- alternative assumptions (hypothesis). Here it is necessary to distinguish two strategies. In the first 
it supposed, that observable law of change )(* iF  corresponds valid. We shall designate this 
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assumption through Н1,1. The second assumption consists that )(* iF  casually differs from 
prospective FCh. and, in particular, )(iF  corresponds to the uniform law. We shall designate this 
assumption through Н1,2.  

Let's consider characteristic examples of this strategy. The computer program representing 
to experts of the recommendation on increase of reliability of the equipment, according to algorithm 
of calculation chooses units with number of refusals above average value (initial assumption Н1,1). 
However the manufacturer of works has certain doubts regarding objectivity of recommendations. It 
considers (alternative assumption Н1,2), that the observable divergence is not enough for objective 
conclusions. It is necessary to note, that in many publications constructed ECh. form the basis for 
recommendations on change of reliability.  

In the second strategy it is supposed, that there are no serious bases to consider, that 
reliability of units of object is various. We shall designate this assumption through Н2,1. At the same 
time statistical data of operation testify to some divergence of number of refusals of units of object 
which can be motivated those or other reasons (Let's designate the assumption of not casual 
character of a divergence )(iF  and )(* iF  through Н2,2). It is obvious, that the problem of a choice 
of this or that assumption consists in comparison of casual character of realizations of distributions 

)(iF  (or )(* iF ) and casual character of a divergence of realizations )(iF  (or )(* iF ) from )(* iF  
(or )(iF ). 
- statistics mδ , defining the greatest divergence between f.d. We shall distinguish:  
- empirical value of the greatest divergence between )(IF  and )(* IF . It is calculated under the 
formula: 

{ }
ЭrmЭЭЭm ,

,...;max ,2,1, δδδδ = ,    (3) 
  )()( *

, iFiFэi −=δ ; i =2,(mr+1)   (4) 

- the greatest divergence between )(* iF  and modeled realizations of this distribution )(** iFM . It is 
calculated under the formula: 

)]();...();(max[)( 1,11,1,21,1,11,1, ,
HHHH

rmm ν
δδδδ ννν =   (5) 

)()()( **
,

*
1,1, iFiFH Mi ννδ −=      (6) 

ν=1, N; i=2, (mr+1); N-number of iterations of modeling )(**
, iFM ν . 

- greatest divergence between )(* iF  and modeled on )(iF  realizations )(* iFM . It is calculated under 
the formula: 

)}();...();(max{)( 2,12,1,22,1,12,1, ,
HHHH

rmm ν
δδδδ ννν =   (7) 

)()()( *
,

*
2,1, iFiFH Mi ννδ −=   ν=1, N;    i=2, (mr+1)  (8) 

- greatest divergence between )(iF  and modeled on )(iF  realizations )(*
, iFM ν . It is calculated under 

the formula: 
)}();...();(max{)( 1,21,2,21,2,11,2, ,

HHHH
rmm ν

δδδδ ννν =   (9) 
where:   )()()( *

,1,2, iFiFH Mi ννδ −=   ν=1,N;     i=1,mr;  (10) 

- greatest divergence between )(iF  and modeled on )(* iF  realizations )(**
, iFM ν . It is calculated 

under the formula: 
)}();...();(max{)( 2,22,2,22,2,12,2, ,

HHHH
rmm ν

δδδδ ννν =   (11) 

)()()( **
,2,2, iFiFH Mi ννδ −=  ν=1, N; i=2,(mr+1);   (12) 

- f.d. )( 1,1Hmδ , )( 2,1Hmδ , )( 1,2Hmδ  и )( 2,2Hmδ . The analytical kind of these distributions is 
unknown. We shall define these distributions by a method of statistical modeling. 
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 The graphic illustration of sequence of calculations )]([ 1,1
* HF mδ  also )]([ 2,1

* HF mδ  is 
resulted on fig.1, and on fig.2 the graphic illustration of sequence of calculations )]([ 1,2

* HF mδ  is 
resulted and )]([ 2,2

* HF mδ  
      эm,δ  
 
 
 
                      1 )( 1,11, Нmδ  )( 2,11, Нmδ  1 
 
 
                    2 )( 1,12, Нmδ  )( 2,12, Нmδ    2 
 
 
 
 ν ν 
 
 
 
 N )( 1,1, НNmδ  )( 2,1, НNmδ  N 
   
 
 
Fig.1. The block diagram of sequence of calculation of distributions )]([ 1,1

* HF mδ  and 

)]([ 2,1
* HF mδ  

 
Here by continuous lines the sequence of modeling of distributions )(**

, iFM ν  and )(*
, iFM ν , and 

dotted structure of an estimation of realizations of the greatest deviation of distributions )( 1,1, Hm νδ  
is shown and )( 2,1, Hm νδ . 

According to fig.1. The algorithm of calculation )]([ 1,1
* HF mδ  also )]([ 2,1

* HF mδ  reduced to 
following sequence of calculations: 
1. By program way are modeled Σn  random numbers with uniform distribution in an interval [0,1] 
2. Direct use of these random numbers, especially at small Σn  leads to essential disorder of 
probability of occurrence of discrete values mδ , which kept, and at big enough number of iterations 
N. As it has been shown in [1] effective method of decrease in a dispersion of distribution 

)]([ 1,1
* HF mδ  as well as )]([ 2,1

* HF mδ  application of criterion of Kolmogorov for check of 
distribution of sample { }

Σnξ  to the uniform law is.  
 
According to [2], at factor of trust R calculations spent under the formula: 
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n
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 1 1 
 
 
                                                                                     )( 2,22, Нmδ               
 2                                                                                                                               2 
 
 
           ν                                                                      )( 2,2, Нm νδ                                           ν 
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Fig.2. An alternative variant of the block diagram of sequence of calculation of distributions 

)]([ 1,2
* HF mδ  and )]([ 2,2

* HF mδ  
  
3. Frequencies of display of each of jrm ,  VA, by comparison of each of Σn  random numbers to 
intervals of distribution )(* iF  under the formula modeled: 

)1()( ** +≤< iFiF ξ  with i=1,(mr+1)    (14) 

4. Under the formula (1) the first realization ( )iF M
**

1,  pays off; Decrease in a dispersion of 
distributions )]([ 1,1

* HF mδ  and )]([ 2,1
* HF mδ , alongside with application to sample of random 

variables { }
Σnξ  of criterion of Kolmogorov, is reached also by application of a method of the 

general random numbers. Therefore, if sample { }
Σnξ  does not contradict Kolmogorov's criterion, it 

is remembered; 
5. Under formulas (5) and (6) realization )( 1,1Hmδ  pays off   
6. Having repeated 1÷6 (N-1) time, we count N realizations )( 1,1Hmδ , having arranged which in 
ascending order we shall receive statistical function of distribution )]([ 1,1

* HF mδ . 
 Calculation statistical function of distribution )]([ 2,1

* HF mδ  spent as follows. 
7. Random numbers{ }

Σnξ  in each iteration are not modeled, and undertake from a file Σ⋅ nN  of the 
random numbers, generated at modeling distribution )]([ 1,1

* HF mδ . 
8. Repeats п.3 with that difference, that comparison is spent under the formula: 

)1()( +≤< iFiF ξ      (15) 
where 1)1(;0)0();1(,1 =+=+= rr mFFmi ; 
9. Under the formula similar (1) distribution )(* iFM  pays off. 
10. Under formulas (7) and (8) realization )( 2,1Hmδ  pays off; 
11. Having repeated 8÷11 (N-1) time, we count N realizations )( 2,1Hmδ , having arranged which in 
ascending order, we shall receive statistical function of distribution )]([ 2,1

* HF mδ . 

)(* iF   

( )iFМ
**

1,        

)(**
, iF VM  

( )iF NM
**
,   

( )iF M
**

2,   

)(IF   

( )iFМ
*

1,  

)(*
, iF VM  

( )iF NM
*

,   

( )iF M
*
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 The algorithm of calculation )]([ 1,2
* HF mδ  also )([ 2,2

* HF mδ  is practically similar to the 
above-stated with that difference, that in p.3 modeling is spent under the formula (15), and in under 
the formula (14). 
- Concepts initial (G1) and alternative (G2) hypotheses. 
 We shall agree that if between estimations of a population mean of realizations of the 
greatest divergence of distributions the below-mentioned inequality takes place: 

)]([)]([ 2,1
*

1,1
* HMHM mm δδ < , то G1=Н1,1; G2=Н1,2   (16) 

where:    NHHM
N

j
jmm /)()]([

1
1,1,1,1

* ∑
=

= δδ  

  NHHM
N

j
jmm /)()]([

1
2,1,2,1

* ∑
=

= δδ  

 If the inequality looks like 
)]([)]([ 2,1

*
2,1

* HMHM mm δδ > , то G1=Н1,2; G2=Н1,1  (17) 
 - we shall define the distributions reflecting a mistake of the first sort [ ])( 1Gmδα  and the 
second sort [ ])( 2Gmδβ  under formulas: 
 If the parity (12) is fair: 
     [ ] [ ])(1)( 1

*
1

* HFG mm δδα −=                                      (18) 
[ ] [ ])()( 2

*
2

* HFG mm δδβ =  
If the parity (13), is fair 
     [ ] [ ])(1)( 2

*
1

* HFG mm δδα −=                        (19) 
[ ] [ ])()( 1

*
2

* HFG mm δδβ =  
 Distributions )]([ 1

* Gmδα  also )]([ 2
* Gmδβ  are necessary for definition of critical values 

)(*
km αδ  and )( km βδ , where αk and βk – a significance value of mistakes of the first and second sort. 

 However, as distributions )]([ 1
* Gmδα  also )]([ 2

* Gmδβ  are discrete, direct definition 
)(*

km αδ  and )(*
km βδ  appears impossible. The values kα  accepted in an engineering practice and kβ , 

equal 0,1 or 0,05 in the list of discrete values of distributions )]([ 1
* Gmδα  and )]([ 2

* Gmδβ , as a rule, 
are absent. As critical values of statistics 

mδ

 for mistakes of the first and second sort values 
)( km ααδ ≤  and )( km ββδ ≤ , corresponding their nearest smaller values get out. We shall designate 

them through )( ∂
km αδ , )( ∂

km βδ  where the index « ∂ » will mean the valid critical values of mistakes 
of the first and second sort. 
- choice of one of two assumptions (Н1 and Н2) is spent by the control of performance below-
mentioned of some heuristic restrictions [3]: 
- it is considered, that if minimal (optimum from the point of view of a minimum of mistakes of the 
first and second sort) risk of the erroneous decision less than admissible (critical) value γк the 
divergence of assumptions Н1 and Н2 is essential, and the preference is given hypothesis G1 if *

,эmδ  
does not exceed optimum value *

,optmδ  (corresponding γopt). Otherwise, i.e. when *
,

*
, optmэm δδ > , the 

preference is given hypothesis G2; 
- it is considered, that if *

,эmδ  more or it is equaled )( ∂
km αδ , hypothesis G1 should be rejected; 

- it is considered, that if *
,эmδ  less or it is equaled )( ∂

km βδ , hypothesis G2 should be rejected;  
- it is considered, that if )()]([ 1

* ∂> kmm GM βδδ , and )()]([ 2
* ∂< kmm GM αδδ  the preference is given 

hypothesis G1. If )()]([ 1
* ∂≤ kmm GM βδδ , and )()]([ 2

* ∂≥ kmm GM αδδ the preference is given 
hypothesis G2. 
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 If )()]([ 1
* ∂≤ kmm GM βδδ , and )()]([ 2

* ∂< kmm GM αδδ  or )()]([ 1
* ∂> kmm GM βδδ , and 

)()]([ 2
∂≥ kmm GM αδδ , that management transferred by blocks of an estimation of risk of the 

erroneous decision; 
- it is considered, that if the risk of the erroneous decision kγγ > , however risk of the erroneous 
decision of hypothesis G1 does not exceed, the preference is given hypothesis G2. If the risk of the 
erroneous decision of hypothesis G2 does not exceed, the preference given G1; 
- it is considered, that if kγγ >  also risks of erroneous decisions at deviation G1 and G2 are great 
enough, it is required to reconsider classification of data and in particular, to reduce number VA mr. 

Practical use of the developed program model is preceded with a stage of its research. The 
basic purpose thus is the control of adequacy of the decision over possible changes of initial data. 
As adequacy of the decision, we shall understand ability of recognition on ECh. conformity (or 
discrepancies) probabilities of display VA to the uniform law provided that functional component 
ECh. us is known. This quality monitoring is called as a method of the decision of "a return 
problem» and is realized under the special program on the computer. The integrated block diagram 
of algorithm of the control of adequacy we shall result on fig.3. 
 1  6 
                no 
         
 
 
 2 5        yes 
 
 
 
 
 
 3 4 

 
 
 
 

 
Fig. 3. The integrated block diagram of the control of adequacy of the decision. 

 
Analysis ECh. following questions have been considered: 

1. The result of the decision how much will change at modeling distributions of the greatest 
deviation on algorithm of the schemes represented on fig. 1 and 2. 
2. What basic requirements are shown to methodology of calculation )]([ 1

* HF mδ  and )]([ 2
* HF mδ  

with the purpose of their subsequent joint consideration? As distributions )]([ 1
* HF mδ  also 

)]([ 2
* HF mδ  are discrete, the essence of requirements should is reduced to identity of levels of 

digitization. 
3. How the result of the decision will change at arrangement VA in decreasing order (increases) of 
probability of their display for nominal scale VA? In practice the arrangement of these VA is made 
subjectively. Thus any arrangement is supposed. 
4. How the significance value of criterion of Kolmogorov (affects at the control of conformity 
software sold random numbers to the uniform law of distribution) on result of calculation of 
distributions )(iα  and )(iβ ? It is obvious, that the significance value less, the probability of a 
mistake of the second sort is more. In our case, this probability reflects an opportunity of 

Input of initial data and 
entry conditions 

Modeling of realization 
FCh. for Н1 (Н2) 

 

Estimation of the greatest 

deviation 
*
mδ  

Modeling of distributions 
)/(),/( 1

*
1

* HFHF mm δδ  
and decision-making 

The analysis of results 
of modeling 

The number of 
iterations exceeds set 
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conformity of distribution of random numbers to the law distinct from uniform. With reduction of 
number of realizations this probability grows. 
5. How check of assumptions increase in number VA influences result? In particular, how inclusion 
in list VA of a version affects, the number of which cases of display is equal to zero? 
6. What influence renders on results of calculation the account of parities of average values 
статистик )( 1Hmδ  and )( 2Hmδ ? 

Results of calculations have allowed establishing: 
1. At the fixed number VA, equal rm , and number of casual events (for example, refusals) Σn : 
- distribution )]([ 1ГF mδ  does not depend on laws of change as )(iF , and )(* iF ; 
- at fixed f.d. )(iF  and )(* iF distribution )]([ 2GF mδ  for )( 2Gmδ , calculated under formulas (7) and 
(8) or under formulas (11) and (12) one and too;  
2. If to assume, that casual character of realizations )(* iFM is rather calculated )(iF  under the 
formula: 

)}();...();(max{)( 11,21,11, ,
HHHH

rmm ν
δδδδ ννν =    (20) 

)()()( *
,1, iFiFH Mi ννδ −= ;     ν=1, N; i=1, (mr+1); 

and rather )(* IF - under the formula: 
)}();...();(max{)( 22,22,12, ,

HHHH
rmm ν

δδδδ ννν =    (21) 

)()()( *
,

*
2, iFiFH Mi ννδ −= ;    ν=1, N; i=1, (mr+1); 

That this way of calculation )]([ 1
* HF mδ  also )]([ 2

* HF mδ  will lead to that the number of identical 
digitization of distributions )]([ 1

* HF mδ  and )]([ 2
* HF mδ  will be equal many cases to zero, i.e. 

joint consideration of these distributions will appear impossible. Really. Under the formula (20)  

Σ

−=
n

Hn
m
iH i

r
i

)(
)( 1,

1,
ν

νδ     (22) 

If to consider, that the size )( 2
*
, Hi νδ  (see the formula 21) is equal 

ΣΣ

+ −=
n

Hn
n

Hn
H ii

i

)()(
)( 2,1)1(,

2
*
,

νν
νδ ,   (23) 

that is easy for noticing, that if rm  and Σn  have no same factors values )( 1
*
, Hi νδ  and )( 2

*
, Hi νδ  with 

N,1=ν  will differ. 
3. If to lead modeling realization ECh. of probability display on )(iF , corresponding the uniform 
law, rm  VA at Σn  "experiences" and to check up the assumption of a casual divergence of 
distributions )(iF  and )(* iF  (hypothesis Н1) the method resulted above and criterion it will appear, 
that at initial casual arrangement VA and at the set significance value, hypothesis Н1, as one would 
expect, proves to be true. If now to place estimations of probability of display rm  VA in ascending 
order (or decrease) application of criterion testifies that observable law of change ECh. is not 
casual. The important practical conclusion from here follows: arrangement VA on experimental 
data at a nominal scale of change should be casual. Casual character of accommodation is provided 
with application of a method of Monte-Carlo; 
4. The disorder of values of distributions )(* iα  and )(* iβ  in points of digitization rmi ,1=  with 
growth of a significance value of criterion of Kolmogorov up to (0,4-0,6) nonlinear decreases. At 
the subsequent decrease in significance value influence of a deviation of random numbers from the 
uniform law on disorder )(* iα  also )(* iβ  becomes invariable small. Some increase in duration of 
calculation at 6,0=kα  is completely compensated decrease in number of iterations; 
5. More detailed display of versions of an analyzed attribute, for example, units of the equipment, 
leads to that data becomes insufficiently for a choice of one of two assumptions. This conclusion is 
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put forward, if VA with 0* =iQ  are distributed on rm  VA casually. If all VA with 0* =iQ  are 
concentrated in one group, the conclusion about not casual divergence of estimations of probability 
of display VA follows. Hence, there is some optimum number VA at which functional characteristic 
shown precisely enough;  
6. If estimations of average value of the maximal deviations )( mδ  of distributions )/( 1

* HF mδ  also 
)/( 2

* HF mδ  are practically equal, result of check of hypotheses Н1 and Н2 is the conclusion that the 
preference should given hypothesis Н1. Practical equality of estimations )( 1

*
, Havmδ  also )(, 2

* Havmδ  
causes necessity of application of criterion. A condition of the consent with casual character of 
change ECh. is the inequality: 

Σ=≤−=Δ nHH avmavmcpm /1)()( 2
*

,1
*

,, εδδδ    (24) 
As a practical example, we shall consider results of check of the assumption of not casual 

character ECh. change of the importance of units of switches 110 кv (hypothesis Н1).  
Experimental data are borrowed from work [2] and resulted in table 2. Here results of 

modeling of number of displays of each of VA for switches with Un=110 кv 9( =rm and )29=Σn  
provided that theoretical probabilities of refusals of each of units are equal are resulted. 
Calculations show, that assumption Н1 cannot be accepted. As follows from table 2, the greatest 
number of refusals equal 8, observable on experimental data is observed at modeling and at other 
units of switches, that indirectly confirms results of check of hypothesis Н1. 

Table 2 
Comparative estimation of experimental and modeled structure of refusals actually  

switches with drive Uн=110 кv 
Data of modeling The damaged element and the 

reason of refusals 
Experim. 

Data 1 2 3 4 5 
Drive 4 3 8 6 6 1 
Arc extinguisher camera 4 4 2 7 2 3 
Separator 2 0 2 1 0 2 
Inputs 1 1 2 0 3 0 
Supporting-pivotal insulation 3 8 1 3 2 5 
Consolidation 3 2 2 2 1 2 
Case of management 8 6 8 5 5 13 
Not classified attributes 2 2 2 2 9 4 
The obscure reasons 3 4 3 4 2 0 

 
Conclusion.  

The method, algorithm and the program for MSDB PARADOX. Is developed, allowing to 
estimate objectivity of observable laws of change parameters of reliability the equipment on 
retrospective data 
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ABSTRACT 
 

The paper presents a new fuzzy reliability model for automated “safety system-protected object” 
complex. It is supposed that parameters of reliability model and reliability indices are fuzzy variables. 
Scheduled periodic inspections of safety system are also taken into account. Asymptotic estimates of mean 
time to accident membership function are proposed. 

 
 
 
1  INTRODUCTION 
 

Many researchers applied the concept of fuzzy reliability on various systems (Cai et al 1991, 
Cai et al. 1993, Cai 1996, Chen & Mon 1993, Onisava & Kacprzyk 1995, Utkin & Gurov 1995, 
Verma et al. 2007). Those researches are based on possibility instead of probability assumption or 
fuzzy state instead of binary state assumption. This paper presents a slightly different concept of 
fuzzy reliability. It is supposed that parameters of the reliability model are fuzzy variables. 
According to the random fuzzy variables theory presented by Liu (Liu 2002) reliability indices in 
this case are also fuzzy variables. In order to develop a complete practical methodology of the fuzzy 
reliability assessment we also consider some aspects of the fuzzy parameter estimation and 
numerical methods of the fuzzy arithmetic. 

In the present study we set out to analyze the reliability of the automated “safety system-
protected object” complex. Systems of such kind are quite common in the nuclear power 
engineering. We follow Pereguda (Pereguda 2001) in assuming that the operation of the complex 
can be described using a superposition of alternating renewal processes. We also utilize the concept 
of a random fuzzy renewal process (Shen et al. 2008, Zhao et al. 2006). Our objective is to provide 
an asymptotic estimation for the mean time to accident membership function. 
 
2  MODEL DESCRIPTION 
 

Let us consider an automated complex of safety system and protected object. The safety 
system and the protected object are repairable. They are restored to an as-good-as-new state. It is 
assumed that failures of the safety system can be detected only during periodic inspections of the 
safety system. All failures are supposed to be independent. 

Let { }Θ∈θθχ )),(;( λtF  be a family of probability distributions on the probability space 
(Ω, Α, Ρ) with a common fuzzy parameters vector λ on the credibility space (Θ, Π, Cr) which 
induces a joint membership function, μλ(x), then χ is a random fuzzy variable (Guo et al. 2007). For 
example, χ is an exponentially distributed random fuzzy variable, χ~EXP(λ) if 

⎩
⎨
⎧ ≥−

=
−

.,0
0,1

))(;(
)(

otherwise
tife

tF
tθλ

χ θλ  
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If χ is a random fuzzy variable defined on the credibility space (Θ, Π, Cr) than the probability 
)Pr( A∈χ  is a fuzzy variable for any Borel set RA ⊆  and the expected value E[χ] is a fuzzy 

variable provided that E[χ(θ)] is finite for each Θ∈θ  (Liu 2002). 
By χi, i = 1,2,… denote the time to the i-th protected object failure. Let χi, i = 1,2,… be 

independent and identically distributed (i.i.d) random fuzzy variables (Li & Liu 2006) with CDF 
Fχ(t; λχ(θ)). By γi, i = 1,2,… denote the time to the protected object repair after it’s i-th failure. Let 
γi, i = 1,2,… be i.i.d. random fuzzy variables with CDF Fγ(t; λγ(θ)). Suppose that moments of the 
protected object repair are renewal points of the operation process of the complex. By ξi, i = 1,2,… 
denote the time to the i-th failure of the safety system. Let ξi, i = 1,2,… be i.i.d. random fuzzy 
variables with CDF Fξ(t; λξ(θ)). By ηi, i = 1,2,… denote the time to the safety system repair after it’s 
i-th failure. Let ηi, i = 1,2,… be i.i.d. random fuzzy variables with CDF  Fη(t; λη(θ)). Suppose that 
moments of the safety system repair are renewal points of the operation process of the safety 
system. By T denote the period of scheduled inspections of the safety system. By δ denote the 
duration of scheduled inspections of the safety system. The safety system is inactive during the 
inspection. By ν denote the number of renewal intervals before the accident. Let ν be an integer 
random fuzzy variable. By ω denote the time to accident. An accident takes place when the 
protected object fails during the period of the safety system inactivity. Our aim is to estimate the 
membership function μMω(y) of the mean time to accident. 
 
2  MAIN RESULTS 
 

Since the operation process of the complex is a superposition of alternating renewal 
processes, it follows that 

ν

ν

χγχω ++= ∑
−

=

1

1
)(

i
ii . 

Taking into account the fact that E[ω(θ)], E[χi(θ)], E[γi(θ)], E[ξi(θ)], E[ηi(θ)] and E[ν(θ)] are crisp 
variables for each fixed Θ∈θ  we obtain 

( )[ ] ( ) ( )( )
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⎤
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for each fixed Θ∈θ . Since all random fuzzy variables of interest are independent it follows that 
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Since all random fuzzy variables of interest are i.i.d. it follows that 

( )[ ] ( )( ) ( ) ( ) ( )[ ] ( ) ( ) ( )( ) ( )[ ].11Pr
1

θγθνθχθνθγθχθνθω −+=−+== ∑
∞

=

EkkEkE
k

 

Therefore 
[ ] ( )[ ]γννχω 1−+= EE . 

Taking into account the fact that all random fuzzy variables of interest are independent we obtain 
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( )[ ] ( ) ( )[ ] ( )
( ) ( )[ ]
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for each fixed Θ∈θ , where q(θ) is the probability of the accident during a renewal interval. 
Let Q+(θ) be the set of intervals where the safety system is active and let Q−(θ) be the set of 

intervals where safety system is inactive. We obviously have 

( )( ) ( )( )∫
∞

−∈=
0

;Pr)( θθθ χχ λtdFQtq  

for each fixed Θ∈θ . Note that 
( )( ) ( )( ) ( )θθθ ;Pr1Pr1Pr tQtQt ++− −=∈−=∈ . 

Applying the law of total probability we obtain 

( ) ( ) ( ) ( )( ) ( )( ) ( )( )∫ ∫
∞ ∞

++ ==∈=
0 0

;;,|Pr;Pr θθθηθξθθ ξξηη λλ xdFydFyxQtt . 

Since the operation process of the safety system is an alternating renewal process, it follows that 
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where ( ) ηδ
δ

ξηξτ ++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
= T

TSS 1),(  is the length of the renewal interval of the safety system 
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where JA is an indicator function of the event A. It now follows that 
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The application of Laplace-Stieltjes transform and tauberian theorems yields 
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Taking into account the definition of a function of fuzzy variables and Zadeh Extension 
Principle we obtain 
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Therefore it is now possible to estimate the fuzzy mean time to accident. In order to perform 
defuzzyfication we use expected value operator suggested by Liu (Liu & Liu 2003): 
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It is clearly evident that the most difficult part in the proposed methodology is the evaluation 
of μMω(y) according to Zadeh Extension Principle. To overcome these difficulties one should use a 
suitable numerical method. We suggest to use General Transformation Method (Hanss 2005) for 
this task. This method consists of a decomposition of input fuzzy variables, a transformation of the 
input intervals, an evaluation of the model and a retransformation of the output array. Another 
important issue is the fuzzy parameter estimation. We suggest to use fuzzy estimators developed by 
Buckley (Buckley 2006). These estimators are based on confidence intervals and allow the 
estimation of the membership function of the distribution parameter from the sample data. 

Consider now the following example. Suppose χ~EXP(λχ), γ~EXP(λγ), ξ~EXP(λξ), η~EXP(λη). 
Therefore 
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Figure 1. Membership function of the mean time to accident. 

 
 

Let all fuzzy parameters be triangular fuzzy variables: ( )161616 102,105.1,101)( −−−−−− ×××Δ= hhhx
χλμ , 

( )111 2,5.1,1)( −−−Δ= hhhx
γλμ , ( )141414 102,105.1,101)( −−−−−− ×××Δ= hhhx

χλμ , ( )111 2,5.1,1)( −−−Δ= hhhx
ηλμ , 

T = 500h, δ = 0.1h. Membership function of the mean time to accident is shown on Figure 1. 
 
3 CONCLUSIONS 
 

The proposed model permits to assess the reliability of one specific class of technological 
systems with fuzzy parameters. In particular the suggested approach allows to evaluate the 
membership function of the mean time to accident for the “safety system-protected object” 
complex. The proposed approach allows to take into account the uncertainty of reliability model 
parameters and reliability indices. The solution obtained is useful for reliability assessment of 
nuclear power plants and similar dangerous technological objects. 
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ABSTRACT 
 

The paper presents a new reliability model for an automated “safety system-protected object” complex 
with time redundancy. It is supposed that the time redundancy is caused by a protected object inertia. 
Scheduled periodic inspections of the safety system are also taken into account. Two-sided estimates of the 
mean time to accident are proposed. 

 
 
 
1  INTRODUCTION 
 

Redundancy is a widely used and widely referenced concept. Time redundancy means that 
some excess time is available after the system fault. It is possible to prevent an accident during this 
period. Such kind of redundancy may arise by design or as a natural byproduct of design. There are 
some methods available for the estimation of reliability indices of systems with time redundancy 
(Gnedenko & Ushakov 1995). But there is a lack of reliability models for automated “safety 
system-protected object” complex with the time redundancy caused by a protected object inertia. 
Systems of such kind are quite common in the nuclear power engineering due to an inertia of 
physical processes in the reactor core. This natural redundancy is seldom acknowledged and 
exploited. In the present study we set out to analyze the reliability of such system. We follow 
Pereguda (Pereguda 2001) in assuming that the operation of the complex can be described using a 
superposition of alternating renewal processes. Our objective is to provide an asymptotic estimation 
for the mean time to accident. 
 
2  MODEL DESCRIPTION 
 

Let us consider an automated complex of a safety system and a protected object. The safety 
system and the protected object are repairable. They are restored to an as-good-as-new state. It is 
assumed that safety system failures can be detected only during periodic inspections of the safety 
system. All failures are supposed to be independent. Safety system consists of two subsystems: the 
temperature subsystem and the power subsystem. If the power subsystem fails then the temperature 
subsystem is still able to prevent an accident. By χi, i = 1,2,… denote the time to the i-th protected 
object failure due to the increased power level. Let χi, i = 1,2,… be independent and identically 
distributed (i.i.d) random variables with CDF Fχ(t). By γi, i = 1,2,… denote the time to the protected 
object repair after it’s i-th failure due to the increased power level. Let γi, i = 1,2,… be i.i.d. random 
variables with CDF Fγ(t). Suppose that moments of the protected object repair after it’s failure due 
to the increased power level are renewal points of the operation process of the complex. By δi 
denote the time between i-th protected object failure due to the increased power level and the 
subsequent failure due to the increased temperature. Let δi, i = 1,2,… be i.i.d. random variables with 
CDF Fδ(t). Thus the power safety subsystem may prevent an accident during the [χi, χi + δi) interval. 
Alternatively the temperature safety subsystem may prevent an accident at χi + δi. By αi, i = 1,2,… 
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denote the time to the protected object repair after such an event. Let αi, i = 1,2,… be i.i.d. random 
variables with CDF Fα(t). Suppose that moments of the protected object repair after it’s failure due 
to the increased power level and subsequent increased temperature are renewal points of the 
operation process of the complex. By φi, i = 1,2,… denote the time to the i-th protected object 
failure due to the increased temperature. Let φi, i = 1,2,… be independent and identically distributed 
(i.i.d) random variables with CDF Fφ(t). By ψi, i = 1,2,… denote the time to the protected object 
repair after it’s i-th failure due to the increased power level. Let ψi, i = 1,2,… be i.i.d. random 
variables with CDF Fψ(t). Suppose that moments of the protected object repair after it’s failure due 
to the increased temperature are renewal points of the operation process of the complex. By p

iξ , i = 
1,2,… denote the time to the i-th failure of the power safety subsystem. Let p

iξ , i = 1,2,… be i.i.d. 
random variables with CDF )(tF pξ

. By p
iη , i = 1,2,… denote the time to the power safety 

subsystem repair after it’s i-th failure. Let p
iη , i = 1,2,… be i.i.d. random variables with CDF 

)(tF pη
. Suppose that moments of the power safety subsystem repair after it’s failure are renewal 

points of the operation process of the power safety subsystem. By Tp denote the period of scheduled 
inspections of the power safety subsystem. By θp denote the duration of scheduled inspections of 
the power safety subsystem. By t

iξ , i = 1,2,… denote the time to the i-th failure of the temperature 
safety subsystem. Let t

iξ , i = 1,2,… be i.i.d. random variables with CDF )(tF tξ
. By t

iη , i = 1,2,… 
denote the time to the temperature safety subsystem repair after it’s i-th failure. Let t

iη , i = 1,2,… be 
i.i.d. random variables with CDF )(tF tη

. Suppose that moments of the temperature safety subsystem 
repair after it’s failure are renewal points of the operation process of the temperature safety 
subsystem. By Tt denote the period of scheduled inspections of the power safety subsystem. By θt 
denote the duration of scheduled inspections of the power safety subsystem. The safety system is 
inactive during the inspection. By ω denote the time to accident. Our aim is to estimate the mean 
time to accident E[ω]. 
 
2  MAIN RESULTS 
 

Since the operation process of the complex is a superposition of alternating renewal 
processes, it follows that 

ν

ν

σσω ′+= ∑
−

=

1

1i
i  

where 
( ) ( )( )

iiiiii
JJJJ iBiiBiiiii χϕϕχ ψαδγβϕχσ <≤ +++++= ),min(  

and 
ii

Jiiii ϕχδϕχσ ≤+=′ ),min( . 

By βi we denote the interval between the protected object failure due to the increased power level 
and the activation of the power safety subsystem. Note that ii δβ <≤0 . By Bi we denote the event 
that the power safety subsystem was activated in the [χi, χi + δi) interval. By iB  we denote the event 
that the power safety subsystem was not activated in the  [χi, χi + δi) interval. JB is an indicator 
function of the event B. 

 
 
 
We obviously have 
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Applying the Laplace-Stieltjes transform to Fω(t), we obtain 
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Variable β has an unknown distribution. Therefore variable σ also has an unknown 
distribution. Using stochastic ordering (Stoyan, 1983), we get the following estimation 
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By Un denote the moment of the n-th failure of the power safety subsystem. By Vn denote the 
moment of the n-th repair of the power safety subsystem. Then the corresponding accident takes 
place when 

Un ≤ χ < Vn − δ, 
δ ≤ Vn − Un 

or when 
Vn−1 + Tp ≤ χ < Vn−1 + (Tp + θp) − δ; 

Vn−1 + (Tp + θp) + Tp ≤ χ < Vn−1 + 2(Tp + θp) − δ; 
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where <x> is an integer part of x. 

Since the operation process of the safety system is an alternating renewal process, it follows 
that 
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where {x} is a fractional part of x. Taking into account the condition of accident, we obtain: 
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The Monte-Carlo method can be used to estimate ∫
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Note that 
)Pr(1)Pr( BB −= . 

We obviously have 
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where qpt is the probability of failure of both safety subsystems and qt is the probability of failure of 
the temperature safety subsystem. Furthermore 
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Using the same technique as earlier we obtain the following estimation of qt  
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Therefore we managed to estimate all variables necessary to evaluate mean time to accident. 
Though some of them should be evaluated numerically the required techniques are pretty much 
straightforward. 
3 CONCLUSIONS 
 

The proposed model permits to assess the reliability of one specific class of technological 
systems with time redundancy. In particular the suggested approach allows to evaluate the mean 
time to accident for the “safety system-protected object” complex. The proposed approach allows to 
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not underestimate the reliability of the complex with time redundancy. The solution obtained is 
useful for the reliability assessment of nuclear power plants and similar dangerous technological 
objects. 
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ABSTRACT 

The paper is devoted to reliability and capability investigation of technological systems, inclusive of 
development of dynamic reliability model for two-phase product line with buffer storages and multiphase line 
decomposition 

 
Key words: Reliability analysis, markov process, multiphase systems, multi-flow structure decomposition 
 
 

1 INTRODUCTION 

Multiphase systems are the systems where technological process and supporting equipment 
are divided into sections referred as phases. One of the approaches to improving reliability and 
capability is to include into multiphase system time redundancy using buffer storages. When failure 
of input section equipment occurs buffer storage ensures uninterrupted technological process in 
output sections.  Valid choice of placement location and capacity of buffer storages is impossible 
without reliability modeling and analysis of system projects alternatives. Common prediction 
models of multiphase systems describe only single-flow structures and suppose absolute reliability 
of buffer storage (Cherkesov 1974). In this paper we suggest analytical method for calculation 
reliability and capability of multiphase systems based on two-parameter markov process. The 
prediction model takes into account different ratio of input and output devices capability and 
unreliable buffers. The model decomposition technique is developed. This makes it possible to 
analyze multi-flow systems with tree-type structures.  Procedure of construction state space and 
transition graph of the two-parameter markov process is created. The procedure is founded on 
selection of state subsets, corresponding to intermediate and marginal (maximum or minimum) 
level of resource (inventory) in buffer, and generation of boundary and limiting transition. Process 
of generation of difference equation and boundary condition are described. 
 
2 TWO-PHASE SYSTEM DESCRIPTION 
 

Schema of single-flow two-phase system with input (1) and output (2) processing devices and 
transient buffer (3) is shown in Figure 1. 
 

 
 

Figure 1. Single-flow two-phase system with buffer storage. 

 
Each processing devices is characterized by capability qi, failure rate λi, recovery rate μi; 

buffer is characterized by capacity z (0 ≤ z ≤ zM), failure rate λн, recovery rate μн . Let us denote the 
state of markov graph for two-phase system by three-digit binary code. The first two digits indicate 
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the states of the devices and the third digit indicates the buffer state. Digit 1 indicates that the state 
of device (buffer) is good, 0 – is failed. 

Reliability behavior of the system depends on inventory level in the buffer: 
− zero level (z = 0); we will designate zero level subset of markov reliability model state set as 

G 
− maximum level (z = zM); we will designate maximum level subset of markov reliability 

model state set as V 
− intermediate level (0 < z < zM); we will designate intermediate level subset of markov 

reliability model state set as W 
 
3 METHODOLOGY OF TWO-PARAMETER MARKOV MODEL CONSTRUCTION 
 

Let us define the markov model construction sequence: 
1. Definition of all possible states for subsets G, V, W 
2. Analysis of the states in compliance with characteristics of performance and failures, 

removing the states which can not stand in given subset and which have not transition from 
another states 

3. Determination of the states which have marginal (limiting) transitions from another states 
(these are transitions from subset W into V and G, assignable with buffer inventory level 
maximization (minimization). Marginal transitions are indicated as dotted line.  

4. Determination of boundary transitions from subsets V and G into subset W. These 
transitions exist for the states in subsets V and G, for which failure or recovery of the system 
devices result in buffer marginal inventory level decrease (increase). Boundary transitions 
are also indicated as dotted arc, waited with appropriate failure (recovery) rate.  

After markov graph construction we can define mathematical model of the system. Let us 
denote state probability for subset W as P(z,t) and for subsets V and G as F(zM,t) and F(0,t) 
respectively. Now we can set up difference equation for characteristic states of the system. 
Characteristic states are the following: 

1. The states which have input and output transitions in the range of one subset 
2. The states which have input limiting transitions 
3. The states which have output boundary transitions (equations for these states determine 

boundary conditions) 
Figure 2 shows graphs with characteristic state αi and input (output) transition. Graph I 

shows transitions in the range of one subset. Graph II shows boundary transition. 
Difference equation for case I (transitions in the range of one subset) is of the form 
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Under (3) we can formulate the following rule for setting up differential equation for any 

state with transitions in the range of one subset. 

 
Figure 2. Graphs for case I (transitions in area of one state subset) and case II (limiting transition). 

 

Rule 1. Derivative of state probability with respect to buffer inventory level (z) multiplied by 
rate of level change (qαi) is equal to product of state probability by sum of output transition rates, 
signed with minus, plus sum of product of input transition rate by probability of state from which 
transition is done. 

Similarly we get differential equation for the case II. Here state αi in the range of one subset 
has input transitions with rate ϕi, output transitions with rate ψI and limiting transition from subset 
W (z=0 or z=zm).  
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For stationary area (t→∞) we have algebraic equation 
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Then it is possible to formulate the rule for states with input limiting transition. 
Rule 2. Probability of considering state multiplied by sum of output transition rate is equal to 

sum of transition probabilities from other states to given state and probability of limiting transition. 
Probability of limiting transition is probability of state from which transition is done multiplied by 
absolute value of rate of level change. 

Boundary condition occurs when transition exists from states of subsets V and G into states 
of subset W: 

iii

imimi

q)t,0(P)t,0(F

q)t,z(P)t,z(F

ααα

ααα

⋅=⋅ϕ

⋅=⋅ψ
                                                       (6) 

Stationary boundary condition is: 
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4 MARKOV RELIABILITY MODEL FOR TWO-PHASE SYSTEM 

Proceeding from rules and equations of previous section one can construct reliability models 
for two-phase single-flow system. Models were constructed for three alternatives of relationship of 
processing devices capability (q1=q2=q; q1 > q2; q1 < q2). 
 
4.1 Model for equality of input and output capability 

Markov graph for equality of capability of input and output processing devices (q1=q2=q) is 
shown on Figure 3.  

System of partial differential equation is: 
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Boundary condition: 

(8) 
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                                                              (9) 

 
 

Figure 3. Markov graph for two-phase system (q1=q2=q). 

 

At stationary area (t → ∞) system (8) turns into the system of differential-algebraic equation: 
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We use the following boundary and normalizing condition when solving system (10): 
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4.2 Model for unequal input and output capability (q1 > q2) 

Markov graph for unequal capability of input and output processing devices (q1 > q2) is 
shown on Figure 4.  
 

 
Figure 4. Markov graph for two-phase system (q1 > q2). 

 
Let us directly consider stationary area (t → ∞) and system of differential-algebraic equation: 
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Boundary and normalizing  condition: 
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4.3 Model for unequal input and output capability (q1 < q2) 

Markov graph for unequal capability of input and output processing devices (q1 < q2) is 
shown on Figure 5.  
 

 
Figure 5. Markov graph for two-phase system (q1 < q2) 

System of differential-algebraic equation  (t → ∞): 
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Boundary and normalizing  condition: 
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Computer-oriented procedure was developed for analytical solving systems (10), (12), (14). In 
accordance with this procedure at first one have to obtain probability density function P101(z): 

z
q
a

101101 e)0(P)z(P ⋅= ,                                                               (16) 

where 
н2

нн

21

211
2н21

)(b)(a
μ+μ

λμ
+

μ+μ
λ+λμ

+λ+λ+μ+λ−=  

Further probability F101(z) is defined via density function 

11

z
q
a

101

z

0
101101 HC1e)0(P

a
qdz)z(P)z(F

mm

⋅=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⋅== ∫ .                               (17) 

Then each ith unknown Fijk(z) is represented as product of invariable and variable actors C1⋅Hi, 
where Hi  recursively calculated from Hi-1 , and С1 is calculated from normalizing condition 
(11,13,15). 

Stationary availability Kг(z) and mathematical expectation of capability С(z) of two-phase 
system are 
 

Kг(z)=F111(z)+F011(z)+F111(0)+F111(zm);   С(z)=Кг(z)⋅q.                   

(18) 

 

5 RELIABILITY AND CAPABILITY ANALYSIS OF MULTIPHASE SYSTEM 
 

Multiphase systems are aggregate of two-phase systems. Examples of multiphase multiflow 
systems, specified in graphical editor of software implemented described above models, are shown 
in Figure 6.  
The procedure of calculation estimate of availability of multiphase system includes the following 
steps: 

1. Pick out the triplet (buffer, input device, output device) with minimum buffer capacity 
2. Calculate availability and average capability indexes (18) for evolved triplet via appropriate 

models (10, 12, 14) 
3. Replace the triplet by one processing device with equivalent availability and capability 

calculated on previous step  
4. Repeat steps 1-3 until all multiphase structure will be represented by one equivalent device 

It was shown in (Victorova 2009) that above procedure ensures derivation of availability low 

estimate.  
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Figure.6. Screen shot of software for reliability and capability analysis of multiphase 
systems. 

 
6 CONCLUSION 
 

For adequate reliability and capability modeling of technological systems it is necessary to 
take into account unreliability of buffer storages. Statistical analysis of failure data of buffer 
storages shows failure rate growth with increasing capacity. On assumption of absolute buffer 
reliability one can make pitfall about continuous capability growth with increasing capacity (see 
upper curves on Figure 7). Analysis based on the models suggested in this paper shows that 
inflection point exist on the curve of capability as function of capacity. After this point one can 
observe decrease of reliability and capability of multiphase systems as it is shown on lower curves 
of Figure 7. 
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Figure 7. Multiphase system capability dependence on buffer storage capacity.  
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ABSTRACT 

 
Efficient and fast algorithms of parameters calculation in Burtin-Pittel asymptotic formula for networks with 

identical and high reliable edges are constructed. These algorithms are applied to a procedure of a comparison of 
networks obtained from a radial-circle network by a cancelling of some edges or their collapsing into nodes or by a 
separate reservation of these edges. 
 
1   INTRODUCTION 
 

A problem of a calculation of connection probabilities between nodes of a random graph is 
important and complicated problem in the probability theory. In general case it demands a number 
of arithmetical operations which increases as a geometric progression dependently on a number of 
the graph edges (Barlow et al. 1962), (Ushakov et al. 1985). So a construction of special methods of 
its complexity decreasing is actual in the reliability theory. 

For random graphs with identical and high reliable edges there is the Burtin-Pittel asymptotic 
formula (see for example (Getsbakh, 2000)) which expresses a probability of a disconnection 
between initial and final edges via a minimal number d of edges in the graph cuts and a number c of 
cuts with d edges. Apparently one of the most convenient methods of a reliability calculation for 
graphs with identical edges is based on topological invariants (private communication of I. 
Gertsbakh). This method allows to calculate a network reliability directly as a polynomial of an 
edge reliability using the Monte-Carlo method. It allows to calculate integer coefficients ,c d also. 
But the Monte-Carlo method is approximate and may give with a small probability a unit mistake in 
the coefficients definition. Such mistake may influence significantly on an accuracy of the Burtin-
Pittel asymptotic formula.  

This circumstance makes necessary to return to accuracy algorithms of Ford and Fulkerson 
(Ford et al. 1965) to calculate main asymptotic parameter .d  In some cases these algorithms may be 
significantly simplified by a construction of some sufficient conditions in the Ford-Fulkerson 
problem. These conditions allow to define an influence of different connections – horizontal and 
vertical on a network reliability. As a result it is possible to find significant changes of the network 
reliability by its structural transformations like a cancelling of edges or their collapsing into nodes 
or their separate reservation. These considerations are made on an example of a radial-circle 
network with a few concentric circles. 

Suppose that { },U WΓ =  is no oriented graph with the finite set U  of nodes and the finite- set 
( ){ }, , ,W w u v u v U= = ∈ . Assume that each edge w W∈ fails with the probability 1 wwp p= − , 

0 1wp< < , independently on all other edges. Denote PΓ  the disconnection (or failure probability) of 
the graph Γ . 
Theorem 1. If ( )wp h h= , w W∈ , then the Burtin-Pittel formula is true: 

                         ~ dP chΓ , 0h → .                                                       (1) 
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2   NECESSARY VOLUME OF SEPARATE RESERVE 
 

Suppose now that ( )wp h q const≡ = , 0 1q< < , w W∈ , and each graph edge has k -fold 
reserve. Such scheme of a separate reservation is analyzed detailed in [1]. Denote the graph Γ  
with k -fold reserve of each edge by kΓ  and put ( ) ( )min : kN n Pε εΓ= < , 0 1ε< < . 
Theorem 2. The following asymptotic formula takes place: 

                                 ( ) ln~
ln

N
d q

εε , 0ε → .                                                 (2) 

Proof: In the theorem 2 conditions the asymptotic formula (1) has the form 
                                  ~k

kdP cqΓ , k → ∞ .                                                 (3) 
Consequently for any 0δ >  there is ( )1 1N N δ=  so that for ( )1k N δ>  the following inequality is 
true:  

                              ( ) ( )1 1k
kd kdcq P cqδ δΓ− ≤ ≤ + .                                      (4) 

Fix δ  and suppose that ( )1NP δε Γ< then from the formula (4) obtain the inequalities 
( ) ( ) ( )( ) ( )11 1N d N dcq cqε εδ ε δ−− ≤ ≤ +  

and so 
( ) ( ) ( )( ) ( )ln ln ln 1 ln ln 1 ln ln 1 .c N d q c N d qε δ ε ε δ+ + − ≤ ≤ + − + +  

Consequently obtain 
( ) ( ) ( ) ( )ln ln 1 ln ln ln 1 ln ln1

ln ln ln ln
c N d q c d q N d qδ ε δ ε

ε ε ε ε
+ − + + −

+ ≥ ≥ +  

and as a result the formula (2) takes place. 
Remark that the asymptotic formula (1) for the failure probability PΓ  includes the constants 

,c d  whereas the asymptotic formula (2) for the necessary volume of the separate reserve ( )N ε  
includes only the single constant d . To define the constant d  it is sufficient to use the Ford-
Falkerson algorithm (Ford et al. 1965) with a complexity proportional a cube of the edges number 
(Kormen et al. 2004). An accuracy calculation of the constant c  is much heavier and reduces to 
NP - complete problem. 
Theorem 3. The following inequality is true: 

( ) ( )ln / 1
ln

nN
q

εε ≤ + .                                                             (5) 

Proof. Indeed the probability 
k

PΓ  satisfies the inequality 

( )1 1
k

nk kP q nqΓ ≥ − ≥ −  
which leads to the formula (5). 

Denote by kΓ the parallel connection of k  independent copies of the graph Γ  in initial and in 
final nodes and designate ( ) ( )inf : 1kM k Pε εΓ= ≥ −  the necessary volume of Γ  block reserve. If the 

graph Γ  contains r  acyclic ways from the initial to the final node and the minimal number of edges 
in these ways is l  then ( ) 1

lM
rp

εε −
≥ . Suppose that the graph Γ  is a sequential connection of n 

edges then it is easy to obtain that 
                              ( ) 1

nM
p

εε −
≥ .                                                                (6) 

In the formula (6) a low bound of ( )M ε  is an increasing by n geometric progression. 
Analogous low bound may be obtained for a port Γ  in which initial node u  is connected with m 
nodes on the first floor, each node of the first floor is connected with s  among m nodes of the 
second floor, and so on. All nodes on the l -th floor are connected with final node v , all edges are 
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directed from u to .v  Such graph is called channel graph and is analyzed detailed in (Harms et al. 
1995). The formulas (5), (6) allow to establish a strong asymptotic difference between the separate 
reserve and the block reserve. Comparison theorems of reliabilities of ports with these reserves have 
been established in (Barlow et al, 1962). 

 
3   RADIAL-CIRCLE SCHEME 
 

Consider a radial-circle graph Γ  with m concentric circles, l  radiuses and with independent 
edges which have failure probability wp h= . 
 
3.1  Influence of structural changes on asymptotic of failure probability 
 

Consider a probability PΓ  of a disconnection between the center u  and the node v  on internal 
circle of Γ . Say that circle edges provide horizontal connections and radial edges provide vertical 
connections in the graph Γ . Our problem is to analyze an influence of horizontal connections on the 
probability PΓ  if edges are high reliable and their failure probability 0h → . 

For a simplicity suppose that 3l >  then it is easy to find 3d = , 1c =  and the single cut with 
3d =  edges consists of edges which end in the node v . As a result obtain that 3~P hΓ , 0h → . 

Suppose now that all circle edges have single reliability and so these edges may be collapsed 
into nodes. Then the graph Γ  transforms in to a sequential connection of m parallel connections of 
l  edges. Simple calculations show that then d l= , c m=  and consequently ~ lP mhΓ , 0h → . 

Suppose that all circle edges have zero reliability and so may be cancelled. The there is a 
single way between the nodes ,u v  which contains l  edges. Consequently 1d = , c m= and so 

~P mhΓ , 0h → . 
Suppose that two circle edges connected with the node u  have r -fold reserve, 2 1r l+ < . Then 

we obtain 2 1d r= + , 1c = , 2 1~ rP h +
Γ , 0h → . 

Consequently manipulations with a replacement of circle edges (which characterize horizontal 
connections) by absolutely reliable or absolutely unreliable or by r -fold reserves may influence 
significantly on the probability PΓ . 

 
3.2  Accelerated algorithm of the constant d calculation 
 

The constant d  calculation in general case has a cubic complexity and it is sufficiently 
large for all possible pairs of nodes. So a problem is to simplify this algorithm for some families 
of graphs. In (Tsitsiashvili, 2010) such simplification is made for a rectangle on a lattice. In this 
paper a radial-circle graph Γ  with m concentric circles and l  radiuses is considered.  

Using the Ford-Falkerson theorem about an equality of maximal flow and minimal ability 
to handle of cuts (Ford et al. 1962) it is easy to obtain the inequality 

                           d δ≤ , ( )min ,u vδ α α= .                                                   (7) 
Here uα  is the number of edges connected with the initial node u  and vα  is the number of edges 
connected with the final node v . From the Ford-Falkerson theorem and from the inequality (7) 
we have that 

d δ=  
if there are d  independent (no intersected by edges) ways between the nodes ,u v . 

Use this sufficient condition to calculate the constant d . Denote ,u vC C  the circles which 
contain the nodes ,u v  and put ,u vR R  radiuses which contain ,u v  appropriately. Without a 
restriction of a generality suppose that uC  borders vC . 
The constant d  calculation. Suppose that 2l > . 
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1) If the nodes ,u v  belong to an external circle then 3δ =  and between ,u v  there are the 
following independent: two ways on the internal circle and a way via the center (Fig. 1) 
consequently 3d = . 

2) If the nodes ,u v  belong to an internal circle then 4δ =  and between ,u v  there are the 
following independent ways: two of them on the same circle, one way via the center and one way 
via external circle (Fig. 2). In this case we have 4d = . 

               
Figure 1.                             Figure 2. 

 
3) Suppose that u  belongs to external circle and v  to internal circle then 3δ = . If ,u v  

belong to different radiuses then between ,u v  there are the following independent ways: the first 
way is from u  along uR  to vC  and then to v , the second way is along uC  to vR  and then to v , 
the third way is along uC  to a radius which does not coincide with ,u vR R  then to the center and 
then along vR  to v  (Fig. 3a) consequently 3d = . If ,u v  belong to the same radius then there are 
the following independent ways between ,u v : the radial way, two ways along the external circle 
to some radius then to the center and then along radius to v  (Fig. 3b), consequently 3d = . 

                  
Figure 3а.                               Figure 3b. 

 
4) Suppose that the nodes ,u v  belong to internal circles then 4δ = . Consider the case when 

these nodes belong to different radiuses. 
If 3l =  then it is possible to construct the cut between ,u v  which consists of edges with ends 

on uC  and place on different radiuses (Fig. 4a) consequently 3d ≤ . It is easy to prove that between 
,u v  there are not cuts with two edges consequently 3d = . 

If 3l >  then 4δ =  and it is possible to find four independent ways between ,u v  (Fig. 4b) 
consequently 4d = . 

If the nodes ,u v  belong to the same radius then analogously it is possible to obtain that for 
3l =  we have 3d = , and for 3l >  we have 4d = . 
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Figure 4а.                                                Figure 4b. 

 
The constant c calculation. 

Suppose that the node v  is the center and the node u  is on the 1m -th concentric (from the 
center) circle, 1m m≤ . If 2l =  then 1c m= . If 3l =  then for 1m m<  we have 1c m=  and for 1m m=  
we have 1 1c m= + . Suppose that 4l =  then for 1m m<  we have 1 1c m= +  and for 1m m=  we have 

1c = . Suppose that 4l >  then 1c = . 
 

4  CONCLUSION 
 

Remark that an application of Burtin-Pittel asymptotic formula for networks with identical 
and high reliable edges is sufficiently complicated procedure independently on considered 
(mainly heuristic arguments). So it is necessary to find some more arguments for the example of 
radial-circle network with a few concentric circles and radial edges with positive and fixed 
reliability and low reliable circle edges. This network may be considered using statements from 
(Tsitsiashvili et al. 2010)]. 

Consider the port Γ  with fixed initial and final nodes ,u v  and the finite sets of nodes U  
and edges W . Suppose that the set W consists of no intersected subsets 1 2,W W  where 

( ) 10, ,w wp h p w W≡ > ∈ and for 2w W∈  we have ( ) 0, 0wp h h→ → . Denote { }1,..., nR R=R  the set of 
all acyclic ways between ,u v . 
Theorem 4. If 1 1R W⊆ , 2 2R W ≠I Ø 2,..., nR W ≠I Ø then the connection probability  

                    ( )
1

, w
w R

P u v pΓ
∈

→ ∏ , 0h → . 

Using this theorem it is easy to obtain that ( ),P u vΓ  may be approximated by a product of 
reliabilities of radial edges which belong to acyclic way between the nodes ,u v . An accuracy and a 
performance of this approximation for the network with a single circle is discussed in (Tsitsiashvili 
et al. 2010). 

The author thanks I Gerstbakh for useful discussions. Supported by Far Eastern Branch of 
RAS, projects 09-1-Π2-07, 09-1-OMN-07. 
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ABSTRACT 

 
Asymptotic formulas for a ruin probability in discrete time risk model with a dependence of financial and 

insurance risks are obtained. These formulas are constructed in a suggestion which is adequate to economical crisis: the 
larger is a financial risk the larger is an insurance risk. 
 
1. INTRODUCTION 
 

In this paper we obtain asymptotic formulas for a ruin probability in discrete time risk model 
with a dependence of financial and insurance risks. Earlier simple asymptotic formulas for the ruin 
probability in a case of independent financial and insurance risks have been obtained in [1]. More 
complicated cases with special restrictions on insurance risks dependence are considered for 
example in [2,3]. Nevertheless until recently an asymptotic analysis of risk model with a 
dependence of insurance and financial risks is not made. But in modern period of strong economical 
crisis such dependence may be recognized easily in different large anthropogenic catastrophes. So a 
problem to analyze asymptotically this dependence is actual now. 

In this paper we consider special model of insurance and financial risks dependence based on 
suggestion that a financial risk has a finite number of meanings and for each meaning an insurance 
risk has its own distribution. Then Pareto-tailed and Weibull-tailed asymptotics of insurance risks 
distributions are considered. In frames of this suggestion we assume that the larger is the financial 
risk the larger is the insurance risk. This stochastic modeling approach allows to obtain new 
asymptotic formulas for ruin probability in risk models. 

 
2   PRELIMINARIES 
 

Classes of distributions. Throughout, for a given random variable (r.v.) X  concentrated 
on ( ),−∞ ∞ with a distribution function (d.f.) F  then its right tail ( ) ( )F x P X x= > . For two d.f.'s 

1F  and 2F  concentrated on ( ),−∞ ∞  we write by ( )1 2*F F x  the convolution of 1F  and 2F  and write 
by *2

1 1 1*F F F=  the convolution of 1F  with itself. All limiting relationships, unless otherwise 
stated, are for x → ∞ . Let ( ) 0a x ≥  and ( ) 0b x > be two infinitesimals, satisfying 

 ( )
( )

( )
( )

lim inf lim sup
x x

a x a xl l
b x b x

− +

→∞ →∞
≤ ≤ ≤ .  

We write ( ) ( )( )a x O b x= , if l+ < ∞  and ( ) ( )~a x b x  if 1l l+ −= = . 
Introduce the following classes of d.f.`s concentrated on [ )0,∞ : 

              ( ) ( )
( )

*2
: lim 2

x

F xF x
F x→∞

⎧ ⎫⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭

S , ( ) ( )
( )

: lim 1
x

F x tF x t
F x→∞

⎧ ⎫−
= ∀ =⎨ ⎬

⎩ ⎭
L ,  

             ( ) ( )
( )- : 0 lim

x

F xF x
F x

−α
α

→∞

⎧ ⎫θ
= ∀θ > = θ⎨ ⎬

⎩ ⎭
R , 0 < α < ∞ ,  -

0
.α

<α <∞
= UR R . S  is called the class of 

subexponential d.f.`s. L  is called the class of long tailed d.f.`s. R  (or α-R ) is called the class of 
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regular varying d.f.`s (with index α ). More generally, d.f. F  concentrated on ( ),−∞ ∞  is also said to 
belong to these classes if its right-hand distribution ( ) ( ) ( )� 0F x F x x= >  does. 

Proposition 1. The classes R , S , L  satisfy the formula [4] ⊂ ⊂R S L . If for some 
, ,0 ,0 1a b a b< < <  d.f. F  satisfies the equivalence ( ) ( )~ exp bF t at− , t → ∞  then F ∈ S . 

Proposition 2. Let 1F  and 2F  be two d.f.'s concentrated on ( ),−∞ ∞ . If 2F ∈L , 1F ∈ S and 
( ) ( )( )2 1F x O F x= , then [1, Lemma 3.2] 1 2*F F ∈ S  and ( ) ( ) ( )1 2 1 2* ~F F x F x F x+ . 

 
3   DISCRETE TIME RISK MODEL AND ITS PROPERTIES 

 
Consider discrete time risk model (with annual step) with initial capital , 0x x ≥ and 

nonnegative losses 
 nZ , 1, 2,...n = , ( ) ( )nP Z t F t< = .  

Suppose that income nA , 1, 2,...n = to end of n-th year is defined as difference between unit 
premium sum and loss 1n nA Z= − . Assume that 1nR > is inflation factor from 1n −  to n year, 

1, 2,...n = . In [5] n nX A= −  is called insurance risk and 1
n nY R−=  is called financial risk. 

Suppose that the following condition is true: 
(A). ( ){ }, , 1n nA R n ≥  is sequence of independent and identically distributed random vectors 

(i.i.d.r.) vectors 
 0S x= , 1n n n nS R S A−= + , 1, 2...n =  (1) 

In this model with initial capital x  ruin time is defined by formula 
 ( ) { }0inf 1, 2,... : 0nx n S S xτ = = ≤ = ,  

and finite time ruin probability ( ),x nψ - by formula 

 ( ) ( )( ),x n P x nψ = τ ≤ .  

So the sum nS  money accumulated by insurance company to n- th year end satisfies recurrent 
formula 

 0S x=  ,
11 1

n nn
n j i j

ij j i
S x B A B

== = +
= + ∑∏ ∏ ,  1, 2...n = , (2) 

where 1 1n
j n= + =∏ by convention. 

According to the notation above, we can rewrite the discounted value of the surplus nS  in (2) 
as  

 � 0S x= ,      �
11 1

n in
n n j i j n

ij j
S S Y x X Y x W

== =
= = − = −∑∏ ∏ .  

Hence, we easily understand that, for each 0,1,...n = ,  

 ( ) ( ), nx n U xψ = Ρ > , (3) 

where  

 
1

max 0, maxn k
k n

U W
≤ ≤

⎧ ⎫= ⎨ ⎬
⎩ ⎭

, with 0 0U = . (4) 

Define another Markov chain as 

 0 0V = ,   ( )10,n n n nV Y X V −= + ,   1, 2...n = . (5) 
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Theorem 1. Suppose that the condition (A) is true. 

1. Random variables nU  and nV  coincide by distribution 

 
d

n nU V= , . 0,1,...n =  (6) 

2. Equality 

 ( ) ( ), nx n P V xψ = ≥  (7) 

is true. 
Proof: The result (6) is trivial for the case when 0n = . Now we aim at (6) for each 1, 2...n = . Let 

1n ≥  be fixed. It is easy to obtain the equality 

 ( ) ( )( )1 11 1 1
max 0, max , ,..., ,

ik
n i i n n nk n i j

U X Y T X Y X Y
≤ ≤ = =

⎧ ⎫= =∑ ∏⎨ ⎬
⎩ ⎭

.  

Here nT  is a deterministic function. From the condition (A) we obtain that 

 ( ) ( )( )
( )

( ) ( )( )1 1 1 1, ,..., , , ,..., ,
d

n n n nX Y X Y X Y X Y= .  

and consequently 

 ( ) ( )( )
( )

( ) ( )( )1 1 1 1, ,..., , , ,..., ,
d

n n n n n n nU T X Y X Y T X Y X Y= = =   

 *
** * *

1 11 11 1 1
max 0, max max 0, max

i nk n
n i n j i jk n k ni j i n k j i

X Y X Y+ − + −
≤ ≤ ≤ ≤= = = + − =

⎧ ⎫⎧ ⎫= = =∑ ∑∏ ∏⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

  

 *
** * * * *1

max 0, max
nn

i njk n i k j i
X Y V

≤ ≤ = =

⎧ ⎫
= =∑ ∏⎨ ⎬

⎩ ⎭
% . (8) 

Here 
 ( )10,n n n nV Y X V +

−= +% % , 1, 2...n = ,  

which is just the same as (5). So we immediately conclude that n nV V=% for each 1, 2...n = . Finally, 
it follows from (8) that (6) holds for each 1, 2...n = . The formula (7) is a sequence of the formulas 
(3), (6). This ends the proof of Theorem 1. 
Remark 1. Theorem 1 proof practically repeats the proof of [1,Theorem 2.1]. A single difference 
is that the condition of r.v.`s 1 1, ,..., ,n nX Y X Y  independence is replaced by more weak condition 
(C). 

Introduce the finite set { }1,...,Q m=  and for any q Q∈  define d.f.`s ( )qF t  and i.i.d.r.v.`s ,n qX  
, ( ) ( ), qn qP X t F t> = and positive constants qR , 1 qR R< , 1q ≠ , q Q∈ . Suppose that 0 1qp< < , 

1q
q Q

p
∈

=∑ . 

(B). Random vector ( ),n nX Y satisfies the condition 

 ( ) ( )
( )
1, ,q

n n n qqP X Y X p
R

⎛ ⎛ ⎞⎞= =⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠

, q Q∈ . (9) 

From the formula (2) and the condition (9) we have 
 ( ) ( ) ( )( )1

q q
n q n n

q Q
P V t p P X V R t−

∈
> = + >∑ , 0t > . (10) 

(C). Suppose that ( )qF t ∈S , q Q∈  and for any 1 2,q q Q∈ , 1 2q q≠  one of the following equalities is 
true 
 ( ) ( )( )1 2q qF t O F t=  or ( ) ( )( )2 1q qF t O F t=   (11) 



G. Tsitsiashvili – ASYMPTOTIC FORMULAS IN DISCRETE TIME RISK MODEL WITH DEPENDENCE OF FINANCIAL AND INSURANCE 
RISKS 

 
RT&A # 02 (17)  

(Vol.1) 2010, June 
 

 

59 

4  ASYMPTOTIC ANALYSIS OF RUIN PROBABILITY 
 

Theorem 2. If the conditions (A), (B), (C) are true then for t → ∞  

 
( ) ( )( ) ( ) ( )( )

( ) ( )( )

1 1 2
1 11 1 2

1 1 2

1
11

1

,

,...,

~ ...

... ... .n
n

n

q q q
q qn q q q

q Q q q Q
q q

qq q
q q Q

P V t p F R t p p F R R t

p p F R R t
∈ ∈

∈

> + + +∑ ∑

+ ⋅ ⋅ ⋅ ⋅∑
 (12) 

Proof:  Suppose that 1n =  then 

 ( ) ( ) ( )( ) ( )( )11 1 , 0q q q
qq q

q Q q Q
P V t p P X R t p F R t t

∈ ∈
> = > = >∑ ∑ .  

So for 1n =  the asymptotic formula (12) is true. Suppose that the formula (12) takes place for fixed 
n. Then from the formula (10) we obtain 

 ( ) ( ) ( )( )1 1
1

1
1 1 , 0n n

n
n

q q
n q nn

q Q
P V t p P X V R t t+ +

+
+

+ +
∈

> = + > >∑ .  

So from the formula 12) and from Propositions 1, 2 and from the conditions A), (B), (C)  we have 
for t → ∞  that 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 1 21
1 11 1 1 2

1 1 1 2
1

,
~ ...n n

n n
n

qq q q q
q qn q q q q

q Q q Q q q Q
P V t p p F R R t p p F R R R t+ +

+ +
+

+
∈ ∈ ∈

⎡
> + + +∑ ∑ ∑⎢

⎣
  

 ( ) ( ) ( )( ) ( )( )1 1 1
11 1
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... ...n n n

n n
n

q q q q
qq q q

q q Q
p p F R R R t F R t+ +

+∈

⎤
+ ⋅ ⋅ ⋅ ⋅ + =∑ ⎥

⎦
  

 ( ) ( )( ) ( ) ( ) ( )( )1 1 1 1 2
1 11 1 1 1 2

1 1 1 1 2, , ,
...n n

n n
n n

q q q q q
q qq q q q q

q q Q q q q Q
p p F R R t p p p F R R R t+ +

+ +
+ +∈ ∈

= ⋅ + ⋅ + +∑ ∑   

 ( ) ( ) ( )( ) ( )( )1 1 1
11 1 1 1

1 1 1, ,...,
... ...n n n

n n n n
n n n

q q q q
qq q q q q

q q q Q q Q
p p p F R R R t p F R t+ +

+ + +
+ +∈ ∈

+ ⋅ ⋅ ⋅ ⋅ ⋅ + =∑ ∑   

 ( )( ) ( ) ( )( )1 1 2
1 11 1 2

1 1 2,
...q q q

q qq q q
q Q q q Q

p F R t p p F R R t
∈ ∈

= + + +∑ ∑   

 ( ) ( )( )1 1
11 1

1 1,..., ,
... ... n

n
n n

q q
qq q

q q q Q
p p F R R t+

+
+ ∈

+ ⋅ ⋅ ⋅ ⋅ ⋅∑ .  

Last equality is obtained by a replacement of indexes 1,..., 1n +  in its summands. So the formula 
(12) is proved for index 1n +  also. 

Consider the following asymptotic conditions for t → ∞ . 

(D1). There are positive numbers ,q qc α , q Q∈ , 1 qα < α , 1 q m< ≤  so that ( ) ~ qq qF t c t −α  

(D2). There are positive numbers qc , q Q∈ , α  so that ( ) ~q qF t c t−α   

(D3). There are positive numbers ,q qc β , q Q∈ , 1 qβ < β , 1 q m< ≤  so that ( ) ( )~ exp qq qF t c tβ− . 

(D4). There are positive numbers qc , q Q∈ , β  so that ( ) ( )~~ expq qF t c tβ−   

It is easy to prove that the family ( )qF t , q Q∈ under each of the conditions (D1), (D2), (D3), 
(D4) satisfies the condition (C). 

In the condition (D1) the formula (12) may be represented in the following form 
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 ( ) ( ) 1 111 1 1
1 1 1

, ~ ~
kn nk k

kk k

pt n p F R t c t
R

−α
α

= =
ψ ∑ ∑   

and consequently 

 ( )

( )
1

1

11
1 1

1 1 1
1 1

1 1 1

1 , 1, ~ 1
, 1.

nnp Rc t p Rt n p R
nc t p R

− + α+
−α −α

−α

−α −α

⎧ −
≠⎪ψ −⎨

⎪ =⎩

 (13) 

    In the condition (D2) the formula (12) may be represented in the following form 

 
( )

1 1 1 1 1 2 1 2
1 1 2

1 1 1
1

,

2
1

,..., 2

, ~

1... ... .
1n n

n

q q q q q q q q
q Q q q Q

n

q q q q q
q q Q

t n t c p R c p p R R

Sc p p R R t S
S

−α −α −α −α

∈ ∈

−α −α −α

∈

⎡
ψ + +∑ ∑⎢

⎣
−⎤

+ ⋅ ⋅ ⋅ ⋅ + =∑ ⎥ −⎦

 (14) 

with 

                        1S =
1q Q∈
∑

1 1 1q q qc p R−α , 1S =
1q Q∈
∑

1 1 1q q qc p R−α  

In the condition (D3) the formula (12) may be represented in the following form 

 ( ) ( ) ( )( )1
1 1 1 1 1 1

1 1
, ~ exp

n nk k k k

k k
t n p F R t p c R t β

= =
ψ = −∑ ∑   

and so 

 ( )
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1

1

1

1 1 1 1

1 1 1 1

1
1

1 1 1
1

, 1,

, ~ , 1,

1exp , 1.
1

n n

n

p c R t R

t n p c R t R

pc R t R
p

β

β

+β

⎧
⎪ − <
⎪⎪ψ − >⎨
⎪

−⎪ − =⎪ −⎩

 (15) 

In the condition (D4) the formula (12) may be represented in the following form 

 ( ) ( )( )1 1 1
11 ,...,

, ~ ... exp ...
k k

k

n
q q q q q

k q q Q
t n p p c R R t

β

= ∈

⎡ ⎤
ψ ⋅ ⋅ − ⋅ ⋅∑ ∑⎢ ⎥

⎣ ⎦
. (16) 

Suppose that there is the constant q′  satisfying the inequalities 
 q q qqc R c Rβ β

′ ′′ < , q q′≠ , q Q∈ .  

The equivalences (16) may be rewritten as follows 

 ( ) ( )( )1 1
1 1

1
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n k k
q q q

k
t n p p c R R t β− −
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=

ψ −∑ .  

and so 
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1 1 1

1

1
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 (17) 
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5  CONCLUSION 
 

A comparison of the asymptotic formulas (13), (14), (15), (17) with the results of [1] shows 
that a dependence of financial and insurance risks introduces significant changes into asymptotic 
formulas for ruin probability of discrete time risk model. 
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ABSTRACT 
 

Internationally, probabilistic safety analyses represent the state of the art in the licensing process for new 
industrial facilities, but increasingly also for evaluating the safety level of older industrial plants, e. g. as part 
of periodic safety reviews of nuclear power plants. Quantitative safety goals have not yet reached the same 
level of acceptance. However, this depends on the type of industry. Most of the countries consider those 
criteria as safety targets rather than as sharply defined boundary values. The Netherlands and the United 
Kingdom are exceptions, they require demonstration of compliance with legally binding safety goals in the 
licensing procedure. 

 
 
 
1  INTRODUCTION 
 
1.1 General 
 

Originated for applications in the nuclear industry, quantified risks and hazard analysis 
techniques are emerging as powerful tools for the safety management of hazardous plants in the 
process industry (chemical, petrochemical, petroleum and related industries). 

Although the concept remains similar, i.e. is a probabilistic approach to risk quantification, 
there are apparent variations in methodological practices and particularly in the range of 
applications, focus and emphasis in the implementation of these tools for the different industries. 
This probably stems from the fundamental difference between the nuclear industry, essentially a 
one process industry, and the process industry which is characterized by a multitude of in-
terdependent processes where raw materials undergo physical and chemical changes. 

The more apparent variation between quantified risk and hazard analysis in the process 
industry and probabilistic safety assessment (PSA) in the nuclear industry lies in the relatively 
narrower range of applications of these tools in the process industry when compared to the more 
extensive use made use made by the nuclear industry in implementing PSA at the design and 
operational stages of nuclear power plants including plant changes (Cepin 2004, 2007). 

There is much debate about the concept of acceptable risk. The question what level of risk 
should be tolerated and who determines acceptability is still controversial in the area of safety 
management. The importance of communicating is illustrated by the differential in willingness to 
tolerate risks from different sources, independent from benefit considerations, and the differential in 
willingness to accept types of risks between different groups of individuals. 

The concept that some level of risk is tolerable is fundamental to risk assessment and risk 
management (Kumamoto 2007). Without the definition of such a tolerable risk criterion, risk 
assessment may be hampered in terms of decision making and formulation of risk management 
strategies. The setting of and adherence to precise and rigid criteria, however, does not 
acknowledge the limitation in accuracy of methodologies, nor does it allow for appropriate 
consideration of the benefits against which the acceptability of the risk may be assessed in each 
case. Furthermore, the extent of compliance with any risk criteria should not be the sole basis for 
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evaluating the success of risk management measures. Other criteria include: the extent of risk and 
risk reductions achieved, the cost of risk reductions in social, economic and environmental terms, 
and the cost effectiveness of control measures.  

As such, while debate will probably continue on the appropriateness of quantitative risk 
criteria as a measure of tolerability, future applications of quantitative risk assessment will greatly 
benefit from focusing more on the assessment process itself and the interpretation of such criteria as 
a target guideline.  

As demonstrated by the wide spectrum of applications, the fact is illustrated that in the 
nuclear industry uses of PSA for other than compliance with formal criteria dominate. Some 
countries which operate nuclear power plants apply numerical safety objectives / criteria / rules / 
goals. The role and interpretation of such quantitative guidelines vary from country to country. A 
dominant opinion is that “the safety goals should not be used within a regulatory framework of 
strict acceptance or non-acceptance criteria but should be considered as one factor in arriving at 
regulatory judgement”. 
 
1.2 Scope and purpose of the paper 
 

The probabilistic safety analysis as already explained is the most powerful approach to 
quantification of risk and safety where risk is a combination of probability of harm and severity of 
that harm, while safety is freedom from unacceptable risk (Kumamoto 2007). 

Basically, any plant, activity or item should be designed and operated in such a way as to 
satisfy a given set of safety goals. This is a goal-oriented approach where goals are first specified, 
and then the plant, activity or item is designed, created, operated and maintained accordingly. 
However, two problems must be answered for the goal-oriented approach: 

1. How safe is safe enough? This requires a set of safety goals to be satisfied. 
2. How to deal with uncertainties? The current risk quantification involves significant 

uncertainties. 
The target discussed in this paper is mainly focused on a nuclear power plant. However, the 

implications can certainly be translated into other fields including process, aerospace, machinery, 
and automobile industries. Prevention of core damage in a nuclear power plant corresponds in 
general to prevention of vehicle collision (active safety), and accident mitigation by a containment 
structure corresponds to collision mitigation by an air bag (passive safety). However, one has to 
have in mind the more  catastrophic consequence of a core damage compared with a vehicle 
accident. Prevention coupled with mitigation is an indispensable element of the defense-in-depth 
philosophy to cope with the uncertainty of current risk quantification. 

Although the use of quantitative safety goals is sometimes questioned see for example (Aven 
& Vinnem 2005) and (Hokstad et al. 2004), many industries and countries have introduced such 
goals or criteria. This is due to the fact that probabilistic safety analysis is part of safety assessment 
to be submitted to the competent authority or licensing institution. This immediately rises the 
question how to assess the results, even in case – as in Germany – where no quantitative safety 
goals are determined.  

The main underlying problem is that the quantitative results had to be evaluated together with 
the content, assumptions, models and data used which normally does not allow an easy comparison 
with the result of another plant or activity. Therefore, people performing a probabilistic safety 
analysis have to be aware to provide a very carefully elaborated analysis with high quality because 
the results may lead to costly technical changes or the shutdown of the respective plant. On the 
other hand, it is the responsibility of those performing risk assessment not to tailor the numbers 
used in the analysis to ensure that the results do not exceed the given goals. 
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2  PROBABILISTIC SAFETY ANALYSIS AND PROBABILISTIC SAFETY CRITERIA 
FOR THE NUCLEAR INDUSTRY 

 
2.1 Methods and results of PSA 
 

For historical reasons, the safety philosophy in the nuclear industry is mainly based on 
deterministic principles such as 

− A multi-level safety concept ("defense in depth") with engineered safety systems to 
prevent or control anomalous events, 

− ‘Conservative’ design, i. e. preference for proven technology and ample design margins 
− Multiple barriers against the release of radioactivity, 
− Redundant and diverse safety systems of high reliability. 
The safety-related requirements which are the base of the plant safety design, are derived 

from events which are defined so that they represent in each case a whole class of similar events in 
an enveloping way.  

In contrast, it is the essential task of the PSA also to determine the probability of occurrence 
of event sequences that are not covered by the design base and consequently cannot be assumed to 
be controlled by the engineered safety systems (Berg 1995). This goal is achieved by means of the 
accident sequence development analysis, an analysis tool which contains the following essential 
elements: 

− Initiating event analysis, 
− Definition of the event sequences and supporting analyses (e.g. thermo-hydraulic model 

calculations, success criteria analysis), 
− Quantification of the probabilities of occurrence of the various event sequences with the 

aid of fault tree analyses. 
Depending upon the nature of the initiating event and the plant status at the time of its occur-

rence, those functions of the operating and safety systems as well as the manual actions have to be 
determined that are planned for the control of the event sequence and are required. Inputs are the 
initiation or trip criteria for the safety systems; manual control actions of the operating staff can be 
also considered. The different sequences, that result depending on the availability (function or non-
function) of these systems are to be represented in the form of event tree diagrams. The availability 
of a system function is derived quantitatively either from the operational experience or from fault 
tree analyses, by which the availability of a system is calculated from its logical structure and 
availability data based on operating experience for sub-units or components, respectively. 

It is usual to distinguish three levels of PSA: 
− Level 1: The analysis focuses on the responses from operating and safety systems to 

different initiating events. The end point of the analysis is either the occurrence of a core damage 
state or the stabilization of the plant state such that a core damage state is prevented.  

− Level 2. Starting from the results of level 1 the physical processes of the accident 
progression post core damage are analyzed. Probabilities are determined for timing and mode of 
containment failure as well as for the release of radioactivity within the plant as well as for the 
source term for a release into the environment, determination of the time frame when a certain 
release is to be expected is of particular importance in this case.  

− Level 3: Starting from the probabilities for releases as determined in level 2, the 
probabilities and extent of damages in the environment of the plant are determined as individual 
risk, dependent on the distance from the plant, as a complementary frequency distribution of in-
dividual risks (counting early fatalities only or including somatic late damages) or as a 
complementary frequency distribution of the collective dose. 
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2.2 Quantitative probabilistic safety criteria 
 

In a PSA, safety relevant event sequences and the interaction of the safety systems are 
modelled for an entire plant. Accordingly, bottom line results do refer to the behaviour of the entire 
plant, not only to the reliability of single engineered safety systems or components. Those may be 
subject to design rules or the nuclear safety standards or other technical regulations containing 
quantitative reliability requirements. The most important of these integral results were: 

− Total frequency of core damage states (Core Damage Frequency, CDF), 
− Frequency of activity releases due to accidents, most important the Large Release 

Frequency (LRF). The latter may be defined in different ways as an activity release that requires 
immediate mitigation measures outside the plant (one typical definition: release of > 0,1 % of the 
core fission product inventory), 

− Frequency of accident-caused damages and/or exposures. 
These PSA result formats allow the evaluation of plant safety. They may be used together 

with results from the deterministic part of a Periodic Safety Review (PSR). Different strategies are 
followed in different countries (Görtz et al. 2001). The following basic strategies can be 
distinguished: 

1. The PSA results can be used as additional information, without any change of the existing 
design rules and the regulatory framework which are the base for regulatory decisions in each indi-
vidual case. 

2. In addition to the existing design rules and the code of safety standards, requirements 
regarding quantitative PSA results are set (Example: The CDF is not to exceed a set limit). 

3. Some of the existing design rules and/or safety standards are replaced by requirements that 
refer to quantitative PSA results. 

Implementing these basic modes in national regulatory practice, numerous variants are 
possible, in particular with regard to the relative weight PSA results are accorded in the safety 
review process, the specific requirements regarding certification of safety in the review process and 
the applications of the results. In the chronological course transitions are conceivable between the 
basic modes. Typical pitfalls encountered when quantitative PSA results are added onto existing 
deterministic safety standards are shown in Figure 1. 
 

 
Figure 1. Possible pitfalls of "complementary" use of PSA-results (Villadóniga 2001). 

 
2.3 International recommendations 
 
2.3.1 IAEA 
 

Quantitative probabilistic criteria were included in (INSAG 1999) and complemented with the 
annotation that for future plants 'another objective ... is the practical elimination of accident 
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sequences that could lead to large early releases ... '. The recommendations of INSAG were adopted 
into IAEA Safety Guide No. NS-G-1.2 (IAEA 2001) in a more explicit form: 

− 'Core damage frequency: For this, INSAG ... has proposed the following objectives:  
–10-4 per reactor-year for existing plants, 
–10-5 per reactor-year for future plants. ' 

− '... Large radioactive release. The following objectives are given:  
–10-5 per reactor-year for existing plants, 
–10-6 per reactor-year for future plants. ' 

Furthermore, the IAEA recommended in (IAEA 1992) to distinguish three regions as shown 
in Figure 2. 
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Figure 2. IAEA guidance on acceptance criteria. 
 

This general scheme described has been implemented in various countries (see 2.4). 
Figure 3 shows Decision Regions for strategic risk-informed decision making (RIDM) 

according to (IAEA 2007) The axis is CDFBL-A; it accounts for anticipated routine configurations 
for activities during the year. The ordinate is ΔCDF, accounting for a change in the CDF, the annual 
average CDF above CDFBL-0 as a result of a specific activity or situation being evaluated. 
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Figure 3. Strategic RIDM Decision Regions for CDF. 
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There are five decision regions, A to E in Figure 3: 
− Results clearly inside Region A are considered to be normal operation and would be within 

the purview of licensed operators or equivalent. 
− Results in Region B would be within the purview of facility management with possibly 

some regulatory approval depending upon the application, the facility license, and the regulatory 
structure. 

− Results in Region C would require regulatory approval or licensed control depending upon 
the regulatory structure. 

− Results in Region D would not normally be permitted and would always require regulatory 
approval. The regulatory authority would not normally permit operation in Region D. 

− Results in Region E would not be permitted. Immediate action must be taken to remove 
operation from Region E, or the facility must be immediately shutdown in an orderly manner. 

 
2.3.2 OECD/NEA 
 

In (NEA 2007 a) it is underlined that regulatory bodies have the legal duty and authority to 
make final safety judgments on all nuclear activities under their responsibility. In a practical sense a 
nuclear activity is deemed to be safe if the perceived risks are judged to be acceptable. But the 
regulator can never have a certain quantitative assessment of the risk involved. Therefore, in 
arriving at its safety judgements, the regulatory body must be guided by the basic safety criteria 
embedded in its national laws, regulations and policies. One of these criteria is the level of safety 
protection required by the regulator. There are various statements of the basic level of safety 
required by OECD/NEA countries, but they all acknowledge that it is not possible to achieve 
absolute safety (i.e., zero risk) in nuclear activities. Some of these criteria are (see NEA 2007 a): 

− no unreasonable risk, 
− adequate protection of public health and safety, 
− risk as low as reasonably practicable, 
− safety as high as reasonably achievable, 
− limit risk by use of best technologies at acceptable economic costs. 
A related safety criterion is the degree of assurance needed by the regulator that the basic 

level of safety protection is being met. Here again, there are various formulations of this criterion 
among OECD/NEA countries. 

In 2007 OECD/NEA has published a very exhaustive report on 'The Use, and Development of 
Probabilistic Safety Assessment (NEA 2007 b), compiled by the Working Group on Risk 
Assessment (WGRisk) of the Committee on the Safety of Nuclear Installations (CSNI). This report  
describes the current status of PSA programs in the member states, including general background 
information, rules and guidelines, different uses of PSA, essential results of recent analyses, brief 
descriptions of retrofits of plants initiated by PSA results and current topics from R & D in the field. 
The report is meant as a description of the current state of the art in the member states. A separate 
chapter, is dealing with quantitative safety criteria. The main statements are summarized in the fol-
lowing. 

There are differences in the status of the numerical safety criteria that have been defined in 
different countries. Some have been defined in law and are mandatory, some have been defined by 
the regulatory authority (which is the case in the majority of countries where numerical safety 
criteria have been defined), some have been defined by an authoritative body such as a Presidents 
Commission and some have been defined by plant operators or designers. Hence there is a 
difference in the status of the numerical safety criteria which range from mandatory requirements 
that need to be addressed in law to informal criteria that have been proposed by plant operators or 
designers for guidance only. 

There are a variety of reasons for defining the criteria which includes: 
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− a change in the law to introduce risk management into the environmental policy, 
− the need to define an acceptable level of safety for nuclear power plants following an 

accident, 
− a recommendation from a public enquiry to build a new plant,  
− the need for guidance for improving old plants or designing new ones. 
In some countries, high level qualitative and quantitative guidance has been defined and the 

has been used to derive lower level or surrogate criteria than are easier to address and are sufficient 
to demonstrate that the higher level criteria are met. 

In some countries, criteria  have been defined for existing plants and for new plants. In 
general, the expectation is that the target/ objective for the level of risk from a new plant should be 
about an order of magnitude lower than for existing plants. 

In a number of countries no numerical safety criteria have been defined. However, there is a 
general requirement that the level of risk should be comparable to (or lower than) the risk from 
existing plants for which a PSA is available. 

In most of the countries in which numerical safety criteria have been defined they have been 
defined as a “target”, an “objective” or a “goal” where the recommendation is that the risk should 
be lower than the prescribed value with no guidance given on what action needs to be taken if it is 
exceeded. 

The way that the safety criteria have been defined ranges from high level qualitative and 
quantitative requirements relating to individual and societal risk for members of the public to lower 
level criteria relating to core damage, a large release or a large early release of radioactivity to the 
environment, and radiation doses to an individual living near the plant. 

The high level qualitative criteria state that the additional health effects to the public from 
operation of the nuclear power plant should not lead to a significant increase in the risk of death of 
members of the public. The high level quantitative goals state that the level of increase should be 
less than about 0.1% of the existing risks. 

In some countries the risk criteria are defined for individual members of the public and for 
societal risks involving 10 or 100 members of the public. The societal risks are sometimes defined 
as acute fatalities that occur in a short time after the accident or in the longer term. 

The most common metrics used are core damage frequency (CDF) and large release 
frequency (LRF) or large early release frequency (LERF). In some cases these criteria have been 
defined as surrogates for higher level metrics and some cases they have been defined in their own 
right. 
 
2.4 Examples of national approaches 
 
2.4.1 Quantitative safety criteria on level 3 
 

The Netherlands 
In the Netherlands risk based criteria were formulated to judge the safety and environmental 

effects of industrial plants with great hazard potential, nuclear power plants obviously belonging to 
these. One of these criteria refers to the individual risk, the other one limits the collective risk 
('societal risk'). 

The maximally permissible individual risk, which means the risk of premature death as a 
result of the plant operation, is 10-6 / a. The individual risk is to be calculated according to a rather 
restrictive rule which postulates that a child one year old at the time of the accident will spend 
further seventy years at the location of the accident (Eendebak 1995). 

According to Figure 4, societal risk is limited in such a way that the probability for ten 
fatalities is less than 10-5 per operating year, for a hundred fatalities less than 10-7 per year and so 
forth. Societal risk refers only to early radiation-induced fatalities, often designated as deterministic 
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radiation-induced damages. In the calculations, accident mitigation measures are not taken into 
account. 
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Figure 4. Limit of societal risk for any industrial plant in the Netherlands (Directorade 1989). 
 

Although in the Netherlands nuclear power is of minor importance, there being a single NPP 
in operation providing less than 5 % of the electric power production, PSA is used to a considerable 
extent including PSA of level 3. 

For new plants - NPPs or other nuclear installations - a PSA of level 3 is required in the 
licensing procedure. There is an official detailed guideline for performing PSAs, also describing the 
stipulation of specific atmospheric dispersion models and/or programs to be used. (JCSS 2008) 
gives an overview of the utilization of probabilistic acceptance criteria and the structure of the 
relevant code of standards, focussing mainly on the chemical industry.  

For periodic safety reviews of NPPs, secondary safety criteria for evaluation of PSA results 
were derived from the above-mentioned societal risk limits. This means that for CDF a probability 
of < 10-4 per year is to be proved, the frequency of large early releases must not exceed 10-6 per 
year. 

(Eendebak 1995) states that the PSAs carried out both for Borssele NPP and Doodeward NPP 
(meanwhile shutdown) show that the associated societal risks are small compared to those of other 
technical activities and that the Dutch acceptance criteria are unambiguously fulfilled. (Van der 
Borst & Versteeg 1996) shows this for Borssele NPP and points out the risk reduction effect of 
retrofitting measures that were initiated based on PSA  insights (see Figure 5). 
 

 
Figure 5.  Societal risk of Borssele NPP, before and after AM measures and modifications. 

 
Dutch regulations treat risks from nuclear installations in the same manner as those from non-

nuclear installations, e. g. from chemical plants. Thus, an objective evaluation of diverse technical 
risks is achieved. 
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In (Vrijling et al. 1996, 2004) a possible extension of the Dutch concept of individual and 
societal risk is discussed. Application to airports, road traffic and to the transport of dangerous 
goods frequently shows surprisingly high risk figures compared with nuclear activities. 

United Kingdom 
The U.K Health and Safety Executive as the British regulatory authority, issued the paper 

"Tolerability of Risk from Nuclear Power Stations" (HSE 1988) as 'draft for comment'. The 
proposals contained in this paper became compulsory and were published as "Safety Assessment 
Principles for Nuclear Power Plants" in 1992. These safety assessment principles have been 
currently updated (see HSE 2006 a, b). 

It must be emphasized that the Nuclear Installation Inspectorate (NII) in its 'Safety 
Assessment Principles' has a number of different quantitative safety goals. Like in the approach of 
the IAEA (cf. Fig. 6), there is between the 'broadly acceptable' region (below the Basic Safety 
Objective, BSO) and the 'unacceptable' region (above the Basic Safety Limit, BSL) an intermediate 
field in which risk optimization is to be carried out. It should be pointed out that in principle this 
criterion does not only apply to NPPs, but also to other nuclear installations. 
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Figure 6. Limits to radiological effects vs. their expected frequencies of occurrence (acc. to HSE 1992). 
Doses are calculated for a person living approx. 1 km downwind from the plant. 

 
2.4.2 Quantitative safety criteria on level 2 
 

The Argentine code of regulations basically does not distinguish between NPPs on the one 
hand and ‘other nuclear installations’ on the other; rather does it only distinguish between relevant 
and non-relevant installations based on their associated radiological hazard (Berg et al. 2003). To 
the first category belong, besides NPPs, also larger test reactors and plants of the fuel cycle, e. g. 
fuel factories. There exist two criteria: one applicable to the general population near the plant and a 
second one applicable to the work force (cf. Fig. 7). 

The criterion which links the effective dose with the expected frequency of occurrence of the 
event causing the exposure to a person of the general public outside of the plant boundary (Fig. 7) is 
defined so that no conceivable accident sequence will give rise to a risk greater than 10-7 per year. 
Together with the further criterion which limits the total plant hazard - the sum over all conceivable 
accident sequences - to 10-6 per year, this provides - at least implicitly - a quantitative criterion 
indicating whether the plant safety concept is well-balanced. 
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Figure 7. Boundary curves for the work force and for the general public in Argentina. Values to the 

right and above the curves are not acceptable. 
 

Interpretation of the boundary curve in Figure 7: for effective doses less than 1 Sv, which are 
expected to yield only stochastic effects, a dose risk rate of 10-2 / Sv was used to build the curve. 
Effective doses larger than 1 Sv will yield non-stochastic effects and higher dose risk rates leading 
to an increased slope of the curves. Ultimately, effective doses larger than some 7 to 8 Sv (which 
correspond to the lethal dose in 30 days) may not occur with a probability larger than 10-7 per year 
for the general public (or 10-6 per year for workers). 

In spite of the definition of the criteria in the form of a dose/frequency curve these are really 
criteria of level 2 since in the immediate vicinity of the plant the effective dose for the general 
public (or inside the plant for employees) is simply linearly dependent on the amount of released 
activity. Far field diffusion and accumulation effects do not play a significant role here, in contrast 
to criteria regulating collective doses in large areas. 
 
2.4.3 Quantitative safety criteria on level 1 
 

Quantitative safety criteria that are defined on level 1 – e. g. in the format of maximal allowed 
CDF values – are found less frequently in statutory or regulatory provisions. Some countries, 
despite having and applying quantitative safety criteria defined on a higher level, also have an ex-
plicit statutory or regulatory limitation for CDF.  

As a typical example, Finland may be taken: besides limiting the expected frequency of 
occurrence for large off-site releases, the guideline (STUK 1996) sets a limit which restricts CDF 
for new plant to less than 10-5 per year (the value is designated a design objective). 

Furthermore, countries actively promoting the expansion of their nuclear power plant park 
and the development of advanced NPP designs are known to apply design objectives for CDF like 
e. g. Canada does with the advanced heavy water moderated reactor type CANDU 9 (IAEA 2002). 

In the safety review and for the evaluation of the necessity of back fits for the Ignalina NPP in 
Lithuania, quantitative probabilistic acceptance criteria were used in one application and more 
qualitative, quasi-probabilistic criteria in another one.  

Given an initiating event (under the assumption that no safety device cuts in to control the 
event), that scheme combines in a single matrix the scale of possible accident consequences and the 
number and quality of available safety systems that are available for the control of the considered 
event sequence according to plant design. In this evaluation, safety systems (with conservative 
design, nuclear class quality, operational monitoring, single failure tolerance) and other, non safety-
grade systems (with lower reliability, e. g. balance-of-plant systems) are distinguished; (Holloway 
& Butcher 1995) use the terms 'strong' and. 'weak lines of defense' respectively for these.  
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The former are attributed a failure probability of better than 10-2 per challenge, the latter one 
of between 10-2 and 10-1 per challenge.  

With these roughly estimated values and the accident consequences sorted into four categories 
according to expected severity, an evaluation diagram is derived that points out broadly acceptable 
areas, those with long term tolerable safety weaknesses, those with only temporarily tolerable 
shortcomings safety-wise and, lastly, those areas with safety deficits which are not acceptable, even 
for limited time periods (Fig. 8). 
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Figure 8. Scheme of the quasi-probabilistic LOD procedure for the evaluation of safety upgrade 
requirements for NPP Ignalina (acc. to Rimkevicius et al. 2002) 

W: weak line of defense;   S: strong line of defense  
 
2.5 Discussion and evaluation 
 

The variability of the examples presented in 2.4.1 to 2.4.3 demonstrates how many 
possibilities exist for the formulation of probabilistic safety criteria. Nevertheless the safety level 
described by these criteria - expressed either as core damage or large release frequencies - is largely 
comparable. The yardstick to compare the criteria are accidents leading to large releases. For their 
investigation, a PSA of at least level 2 is necessary, in the case of the Netherlands and the United 
Kingdom a PSA of level 3 is required to calculate the accident-caused individual or collective 
doses. The different criteria can be reformulated directly or implicitly into requirements on the 
expected frequency of large releases. 

As conclusions three fundamental dose limits ca be defined, for additive annual doses from 
normal operation, for non-fatal health detriments (from a single brief exposure, i. e. accident-
caused) and for acute fatalities due to large accident releases, determined the corresponding 
acceptable expected frequencies and thus derived a near-linear complementary cumulative 
distribution function (CCDF) for a Basic Safety Goal. This CCDF he compared with the BSO- and 
BSL-curves of the British HSE, the 'Safety Goal' of the USNRC, a safety design criterion for PWR 
of the ANS, and an ICRP-recommendation (which refers to radioactive waste repositories rather 
than to NPPs). Figure 9 shows a quite reasonable agreement between these rather differently 
formulated quantitative criteria (Hakata 2003). 
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Figure 9. Comparison of different Safety Goals 
 

HSE criteria are CCDF in each decade of doses; ANS and ICRP criteria are frequencies [per year] 
 
3  RISK CRITERIA FOR OTHER INDUSTRIES 
 

In the frame of the EU-project “Safety and Reliability of Industrial Products, Systems and 
Structures” (SAFERELNET), risk criteria used in the EU for population living in vicinity of 
hazardous facilities have been investigated. It can be seen from Table 1 that individual risk of 10-5 
per year represents the upper limit in Europe for existing installations, while in the UK the 
intolerable limit is 10-4 but ALARP is strictly imposed, meaning that in reality the risk is well below 
the limit. The upper limit for individual risk for new installations in Czech Republic and in the 
Netherlands after 2010 is 10-6 per year. The quoted value for the Netherlands (10-5 and 10-6) 
represent so-called location risk (risk contour), or the individual risk to a person who is permanently 
at the particular location. In addition, in the case of the Netherlands, the risk value corresponds to 
one establishment (facility), and the cumulative risks from several establishments are not taken into 
account. 

The negligible risk levels specified in the UK as 10-7 per year and in the Netherlands as 10-8 
per year are not questionable and it will be assumed that 10-8 can be a value accepted across the EU 
for the time being. 

Table 1.  Comparison of individual risk criteria  
IRPA UK The Netherlands Hungary Czech Republic 
10-4 Intolerable limit for members 

of the public 
   

10-5 Risk has to be reduced to the 
level As Low As Reasonably 
Practicable (ALARP)  

Limit for existing in-
stallations. ALARA prin-
ciple applies Upper 

limit 

Limit for existing in-
stallations. Risk reduc-
tion must be carried 
out 

3 x 10-

6 
LUP limit of acceptability 
(converted from risk of 
dangerous dose of 3 x 10-7) 

 

10-6 Broadly acceptable level of 
risk 

Limit for the new installa-
tions and general limit after 
2010. ALARA applies 

Lower 
limit 

Limit for the new 
installations 

10-7 Negligible level of risk    
10-8  Negligible level of risk   

 
In the Norwegian offshore petroleum industry, risk analysis are used for more than decades. 

These analysis have been closely linked to the use of risk acceptance criteria ( see Aven &Vinnem 
2005, Aven et al. 2006, Hokstad et al. 2004) as upper limits of acceptable risks. 

In order to fulfil the requirements and acceptance criteria for major accidents the NORSOK 
Z-013 standard is usually applied. 

In (Maharik & Vrijling 2002) is explained “If average fatality risk or average individual risk 
is used in the formulation of risk acceptance criteria, also criteria for areas or groups within the 
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platform personnel shall be formulated. It is not sufficient just to have a platform average value as 
criterion. The risk estimates shall be considered on a “best estimate” basis, when considered in 
relation to the risk acceptance criteria, rather than on an optimistic or pessimistic (worst case) basis. 
The approach towards the best estimate shall, however, be from the conservative side, in particular 
when the data basis is scarce.” 

The standard (NORSOK 2001) does not prescribe explicit criteria; however, annex A 
provides some examples of typical risk acceptance criteria to be used, such as  

− The fatality accident rate should be less than 10 for all personnel on the installation, where 
the fatality accident rate value is defined as the expected number of fatalities per 100 million ex-
posed hours. 

− The individual probability that a person is killed in an accident during one year should not 
exceed 0,1%. 

In the railway sector, the European Railway Agency has got in December 2005 the mandate 
from the European Commission (2005) to develop a first set of common safety targets (CST): 

“The CSTs shall define the safety levels that must at least be reached by different parts of the 
railway system and by the system as a whole in each Member State, expressed in risk acceptance 
criteria…” 

Recommendations of this first set of CST will be available in September 2008 at the earliest. 
For the signal technique for railways, safety standards are elaborated as EN 50129 

(CENELEC 2003). A complete analysis of the possible hazards is not performed; instead only the 
hazard H=”failure of level crossing to protect public from train” is considered. It is interpreted as 
covering all situations in which the level crossing should warn the public (of approaching trains), 
but fails to do so. The objective is now to determine the hazard rate HR [1/time] for H which is 
acceptable according to certain risk acceptance criteria.  

The tolerable hazard rate of 10-9 per hour is in the railway area proposed as a target for all 
safety-critical functions (see Braband 2005). This approach is similar to that in civil aviation. It has 
been shown from operational experience with large aircraft fleets that the overall level has actually 
been met in practice. Tolerable hazard rates are correlated here to safety integrity levels (SIL) as 
shown in Table 2. 
 

Table 2.  Definition of safety integrity levels (SILs)  

Tolerable Hazard Rate 
THR per 

hour and per functions 

Safety Integrity 
Level 

10-9 ≤ THR < 10-8 4 
10-8 ≤ THR < 10-7 3 
10-7 ≤ THR < 10-6 2 
10-6 ≤ THR < 10-5 1 

 
SIL is defined as the reliability to perform the required safety functions under all stated 

conditions within a stated operational environment and within a stated period of time. 
According to the British Rail Safety and Standards Board, railway companies are required to 

make safety decisions to reduce risk to a level that is as is as low as is reasonably practicable 
(Dennis 2006). That is their legal duty. What is reasonably practicable must reflect their social duty 
to delver a railway that society demands and pays for through public subsidy and their commercial 
duty to shareholders and customers. The ALARP approach is, e.g., applied for risks of train 
passengers and workers (see Fig. 10). 
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Figure 10. ALARP for risks of workers and train passengers. 
 
In the maritime sector, international organisations have traditionally been capturing 

experience and knowledge into prescriptive legislation, thereby endeavouring to prevent past 
accidents from reoccurring. The current level of safety seems tolerable to the sector, however, the 
set of rules and regulations is extensive and it is not verified whether individual requirements are in 
balance with each other. 

Thus, the Maritime Safety Committee - senior technical body on safety-related matters of the 
International Maritime Organisation (IMO) - agreed to further develop goal-based standards using a 
safety level approach; the task has a five-tier structure: goals (Tier I), functional requirements (Tier 
II), verification of compliance criteria (Tier III), technical procedures and guidelines, classification 
rules and industry standards (Tier IV) and codes of practice and safety and quality systems for 
shipbuilding, ship operation, maintenance, training, manning, etc. (Tier V).  

Some reasons for the application of goal-based standards in shipping are seen by the Maritime 
Safety Committee: 

− to assure a uniform minimum acceptable safety level across the merchant fleet; 
− to facilitate the comparison between alternative risk control options, 
− to facilitate the comparison of accident rates and risk acceptance criteria within the fleet 

and to other sectors such as aviation or offshore, 
− to improve the transparency of the system by the incorporation of rationales; and  
− to balance individual requirements with each other. 
These goal based standards may use risk criteria as the ‘top’ goal which forms the ultimate 

goal to be achieved by subsequent IMO rules such as regulations for fire safety, navigation, life 
saving appliances as well as class society rules and regulations for structures, machinery etc. 
 
4  UNCERTAINTIES IN RISK ASSESSMENT RESULTS 
 

As large-scale accidents occur infrequently and are typically the result of some unique 
combination of human and system failure, there is inevitably a degree of imprecision or ambiguity 
associated with the predicted probability of occurrence of such accidents and uncertainty 
concerning the consequences, should such an accident happen. Procedures for tackling uncertainties 
when assessing risks are described in (HSE 2001). 

These uncertainties may be linked to the relevance of the data basis, the models used in the 
estimation, the assumptions, simplifications or expert judgements that are made. This shall be 
reflected when quantitative safety goals are used to judge the results of a probabilistic safety 
assessment. The requirement may be satisfied in different ways: 

− apply more conservation in the risk analysis. 
− make sure that probabilistic safety assessment are satisfied with some margin. 
Another way to capture uncertainties about a particular risk resulting from a plant, activity or 

item is to construct an exceedance probability (EP) curve. An EP curve specifies the probabilities 
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that a certain level of losses will be exceeded. The losses can be measured in terms of technical 
damages, fatalities, financial consequences or some other relevant unit of the respective analysis. 

By its nature, the EP curve inherently incorporates uncertainty associated with the probability 
of an event occurring and the magnitude of losses. This uncertainty is reflected in the 5 % and 95 % 
confidence interval curves in the EP curve. When determining quantitative safety goals, e.g., the 
competent regulatory body or institution has to provide guidance how to compare results from 
probabilistic safety assessments with these goals and how to deal with the uncertainties in the 
assessment taking into account that the degree of uncertainty in risk analysis increases at lower 
probabilities, which adds another dimension to the evaluation of potentially disastrous hazards and 
resulting consequences. 
 
5  CONCLUDING REMARKS 
 

Risk management and safety management, based on the results of risk analysis, support the 
process of decision making both for the industries and the respective regulatory bodies. 

Whenever, on the basis of risk assessments, decision alternatives have been identified and 
ranked by comparing the expected value of benefits or losses, the risks must be considered in regard 
to their acceptability. It is suggested to differentiate between tangible and intangible risk, i.e. risks 
which may be easily expressed in monetary risks and others. Which intangible values should be 
considered in a given case has to be checked by the risk identification. 

Therefore, the need for the development of risk criteria, which would support risk informed 
decision-making, is expressed worldwide. However, risk acceptance is also correlated to the 
cultural context, even if, e.g., the European Commission is acting in determining or harmonizing 
quantitative safety goals. 

One way of determining quantitative risk criteria is to consider probabilistic safety 
assessment. Ideally, such quantitative safety goals are not limited to one type of plants but to any 
large industrial plant or any industrial activity that requires safety-related systems to ensure safety 
of aviation, aeronautical (Filip 2007), or railway. 
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ABSTRACT 
 

Risk management is an activity which integrates recognition of risk, risk assessment, developing 
strategies to manage it, and mitigation of risk using managerial resources. Some traditional risk managements 
are focused on risks stemming from physical or legal causes (e.g. natural disasters or fires, accidents, death). 
Financial risk management, on the other hand, focuses on risks that can be managed using traded financial 
instruments. Objective of risk management is to reduce different risks related to a pre-selected domain to an 
acceptable. It may refer to numerous types of threats caused by environment, technology, humans, 
organizations and politics. The paper describes the different steps in the risk management process which 
methods are used in the different steps, and provides some examples for risk and safety management. 

 
 
1  INTRODUCTION 
 
1.1 Risk 
 

Risk is unavoidable and present in every human situation. It is present in daily lives, public 
and private sector organizations. Depending on the context (insurance, stakeholder, technical 
causes), there are many accepted definitions of risk in use. 

The common concept in all definitions is uncertainty of outcomes. Where they differ is in 
how they characterize outcomes. Some describe risk as having only adverse consequences, while 
others are neutral. 

One description of risk is the following: risk refers to the uncertainty that surrounds future 
events and outcomes. It is the expression of the likelihood and impact of an event with the potential 
to influence the achievement of an organization's objectives. 

The phrase "the expression of the likelihood and impact of an event" implies that, as a 
minimum, some form of quantitative or qualitative analysis is required for making decisions 
concerning major risks or threats to the achievement of an organization's objectives. For each risk, 
two calculations are required: its likelihood or probability; and the extent of the impact or 
consequences. 

Finally, it is recognized that for some organizations, risk management is applied to issues 
predetermined to result in adverse or unwanted consequences. For these organizations, the 
definition of risk which refers to risk as "a function of the probability (chance, likelihood) of an 
adverse or unwanted event, and the severity or magnitude of the consequences of that event" will be 
more relevant to their particular public decision-making contexts.  
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1.2 Risk Management 
 

Two different safety management principles are possible: consequence based safety 
management will claim that the worst conceivable events at an installation should not have 
consequences outside certain boundaries, and will thus design safety systems to assure this. Risk 
based safety management (usually called risk management) maintains that the residual risk should 
be analysed both with respect to the probabilistic and the nature of hazard, and hence give 
information for further risk mitigation. This implies that very unlikely events might, but not 
necessarily will, be tolerated. 

Risk management is not new tool and a lot of standards and guidance documents are available 
(ACT 2004, AZ/NZS 2004, Committee 2004, DGQ 2007, FAA 2007, HB 2004, IEC 2008, ON 
2008, Rio Tinto 2007, Treasury Board of Canada 2001). It is an integral component of good 
management and decision-making at all levels of an organization. All departments in an 
organization manage risk continuously whether they realize it or not, sometimes more rigorously 
and systematically, sometimes less. More rigorous risk management occurs most visibly in those 
departments whose core mandate is to protect the environment and public health and safety. At 
present, a further generic standard on risk management is in preparation as a common ISO/IEC 
standard (IEC 2007) describing a systemic top down as well as a functional bottom up approach 
(see Fig. 1) This standard is intended to support existing industry or sector specific standards. 
 

 
 

Figure 1. Approach of the planned generic standard on risk management. 
 

As with the definition of risk, there are equally many accepted definitions of risk management 
in use. Some describe risk management as the decision-making process, excluding the identification 
and assessment of risk, whereas others describe risk management as the complete process, including 
risk identification, assessment and decisions around risk issues.  
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One well accepted description of risk management is the following: risk management is a 
systematic approach to setting the best course of action under uncertainty by identifying, assessing, 
understanding, acting on and communicating risk issues. 

In order to apply risk management effectively, it is vital that a risk management culture be 
developed. The risk management culture supports the overall vision, mission and objectives of an 
organization. Limits and boundaries are established and communicated concerning what are 
acceptable risk practices and outcomes. 

Since risk management is directed at uncertainty related to future events and outcomes, it is 
implied that all planning exercises encompass some form of risk management. There is also a clear 
implication that risk management is everyone's business, since people at all levels can provide some 
insight into the nature, likelihood and impacts of risk. 

Risk management is about making decisions that contribute to the achievement of an 
organization's objectives by applying it both at the individual activity level and in functional areas. 
It assists with decisions such as the reconciliation of science-based evidence and other factors; costs 
with benefits and expectations in investing limited public resources; and the governance and control 
structures needed to support due diligence, responsible risk-taking, innovation and accountability. 

A typical decision support for risk and safety management at strategic, normative and 
operational level is provided in (JCSS 2008). 
 
1.3 Integrated Risk Management 
 

The current operating environment is demanding a more integrated risk management 
approach (see Bolvin et al. 2007 and Treasury Board of Canada 2001). It is no longer sufficient to 
manage risk at the individual activity level or in functional silos. Organizations around the world 
are benefiting from a more comprehensive approach to dealing with all their risks. 

Today, organizations are faced with many different types of risk (e.g., policy, program, 
operational, project, financial, human resources, technological, health, safety, political). Risks that 
present themselves on a number of fronts as well as high level, high -impact risks demand a co-
ordinated, systematic corporate response. 

Thus, integrated risk management is defined as a continuous, proactive and systematic 
process to understand, manage and communicate risk from an organization-wide perspective. It is 
about making strategic decisions that contribute to the achievement of an organization's overall 
corporate objectives. 

Integrated risk management requires an ongoing assessment of potential risks for an 
organization at every level and then aggregating the results at the corporate level to facilitate 
priority setting and improved decision-making. Integrated risk management should become 
embedded in the organization's corporate strategy and shape the organization's risk management 
culture. The identification, assessment and management of risk across an organization helps reveal 
the importance of the whole, the sum of the risks and the interdependence of the parts. 

Integrated risk management does not focus only on the minimization or mitigation of risks, 
but also supports activities that foster innovation, so that the greatest returns can be achieved with 
acceptable results, costs and risks.  

From a decision-making perspective, integrated risk management typically involves the 
establishment of hierarchical limit systems and risk management committees to help to determine 
the setting and allocation of limits. Integrated risk management strives for the optimal balance at the 
corporate level. However, companies still vary considerably in the practical extent to which 
important risk management decisions are centralised (Basel Committee on Banking Supervision 
2003). 
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1.4 Safety management 
 

Apart from reliable technologies, the operational management of a industrial plant with high 
risk potential is also a highly important factor to ensure safe operation. Owing to the liberalisation 
of the markets and resulting cost pressure to the industries, the importance of operational 
management is growing since cost savings in the areas of personnel and organization result in 
reducing the number of personnel together with changes in the organizational structure and tighter 
working processes.  

For small- and medium-sized companies, specific support is necessary and provided in 
(Rheinland-Pfalz 2008). 

Experience with accidents in different branches of industry shows the importance of safe 
operational management. Today, effective safety management is seen as one crucial element of safe 
operational management (Hess & Gaertner 2006). 

The term safety management subsumes the entirety of all activities relating to the planning, 
organization, management and supervision of individuals and work activities with a view to the 
efficient achievement of a high degree of safety performance, i.e. the achievement of a high quality 
of all activities that are important to safety, and to the promotion of a highly developed safety 
culture. Safety management is not limited to certain organization units but comprises the entire 
safety-related organization of the company. Safety management is the responsibility of the 
management level of a company.  

For example in case of nuclear power plant in Germany (see ICBMU 2004), the licensee is 
according to the Atomic Energy Act responsible for the safety of the plant he operates. To fulfil the 
conditions associated with this responsibility, he has to implement an effective safety management 
system that complies with the requirements of the current regulations and with international 
standards. Typical management systems in nuclear power plants are described in (GRS 2007). 

Sometimes risk management and safety management are seen as the same type of 
management, but in practice safety management is a main and important part of the risk 
management which also covers, e.g. financial risks. 
 
2 RISK MANAGEMENT STEPS AND TOOLS 
 

The risk management steps (see Fig. 2) are: 
1. Establishing goals and context (i.e. the risk environment), 
2. Identifying risks, 
3. Analysing the identified risks, 
4. Assessing or evaluating the risks, 
5. Treating or managing the risks, 
6. Monitoring and reviewing the risks and the risk environment regularly, and 
7. Continuously communicating, consulting with stakeholders and reporting. 
Some of the risk management tools are described in (IEC 2008) and (Oehmen 2005). 

 
2.1 Establish goals and context 
 

The purpose of this stage of planning enables to understand the environment in which the 
respective organization operates, that means to thoroughly understand the external environment and 
the internal culture of the organization. The analysis is undertaken through: 

− establishing the strategic, organizational and risk management context of the organization, 
and 

− identifying the constraints and opportunities of the operating environment.  
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Figure 2. Risk management process. 
 

The establishment of the context and culture is undertaken through a number of 
environmental analyses that include, e.g., a review of the regulatory requirements, codes and 
standards, industry guidelines as well as the relevant corporate documents and the previous year’s 
risk management and business plans. 

Part of this step is also to develop risk criteria. The criteria should reflect the context defined, 
often depending on an internal policies, goals and objectives of the organization and the interests of 
stakeholders. Criteria may be affected by the perceptions of stakeholders and by legal or regulatory 
requirements. It is important that appropriate criteria be determined at the outset.  

Although the broad criteria for making decisions are initially developed as part of establishing 
the risk management context, they may be further developed and refined subsequently as particular 
risks are identified and risk analysis techniques are chosen. The risk criteria must correspond to the 
type of risks and the way in which risk levels are expressed. 

Methods to assess the environmental analysis are SWOT (Strength, Weaknesses, 
Opportunities and Threats) and PEST (Political, Economic, Societal and Technological) 
frameworks, typically shown as tables. 
 
2.2 Identify the risks 
 

Using the information gained from the context, particularly as categorised by the SWOT and 
PEST frameworks, the next step is to identify the risks that are likely to affect the achievement of 
the goals of the organization, activity or initiative. It should be underlined that a risk can be an 
opportunity or strength that has not been realised.  

Key questions that may assist your identification of risks include: 
− For us to achieve our goals, when, where, why, and how are risks likely to occur? 
− What are the risks associated with achieving each of our priorities? 
− What are the risks of not achieving these priorities? 
− Who might be involved (for example, suppliers, contractors, stakeholders)? 
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The appropriate risk identification method will depend on the application area (i.e. nature of 
activities and the hazard groups), the nature of the project, the project phase, resources available, 
regulatory requirements and client requirements as to objectives, desired outcome and the required 
level of detail.  

The use of the following tools and techniques may further assist the identification of risks: 
− Examples of possible risk sources, 
− Checklist of possible business risks and fraud risks, 
− Typical risks in stages of the procurement process, 
− Scenario planning as a risk assessment tool , 
− Process mapping, and  
− Documentation, relevant audit reports, program evaluations and / or research reports.  
Specific lists, e.g. from standards, and organizational experience support the identification of 

internal risks. To collect experience available in the organization regarding internal risks, people 
with appropriate knowledge from the different parts of the organization should be involved in 
identifying risks. Creativity tools support this group process (see Fig. 3). 

The identification of the sources of the risk is the most critical stage in the risk assessment 
process. The sources are needed to be managed for pro-active risk management. The better the 
understanding of the sources, the better the outcomes of the risk assessment process and the more 
meaningful and effective will be the management of risks.  
 

 
 

Figure 3. Creativity tools. 
 

Key questions to ask at this stage of the risk assessment process to identify the impact of the 
risk are: 

− Why is this event a risk? 
− What happens if the risk eventuates? 
− How can it impact on achieving the objectives/outcomes? 
Risk identification of a particular system, facility or activity may yield a very large number of 

potential accidental events and it may not always be feasible to subject each one to detailed 
quantitative analysis. In practice, risk identification is a screening process where events with low or 
trivial risk are dropped from further consideration.  

However, the justification for the events not studied in detail should be given. Quantification 
is then concentrated on the events which will give rise to higher levels of risk. Fundamental 
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methods such as Hazard and Operability (HAZOP) studies, fault trees, event tree logic diagrams 
and Failure Mode and Effect Analysis (FMEA) are tools which can be used to identify the risks and 
assess the criticality of possible outcomes. 

An example of a systematic method for identifying technical risks of a plant is the elaboration 
of a risk register where different types of risks and damage classes are correlated to local areas of a 
plant (cf. Fig. 4). 
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Figure 4. Example of a risk register. 
 
2.3 Analyse the risk 
 

Risk analysis involves the consideration of the source of risk, the consequence and likelihood 
to estimate the inherent or unprotected risk without controls in place. It also involves identification 
of the controls, an estimation of their effectiveness and the resultant level of risk with controls in 
place (the protected, residual or controlled risk). Qualitative, semi-quantitative and quantitative 
techniques are all acceptable analysis techniques depending on the risk, the purpose of the analysis 
and the information and data available.  

Often qualitative or semi-quantitative techniques can be used for screening risks whereas 
higher risks are being subjected to more expensive quantitative techniques as required. Risks can be 
estimated qualitatively and semi-quantitatively using tools such as hazard matrices, risk graphs, risk 
matrices or monographs but noting that the risk matrix is the most common. 

Applying the risk matrix, it is required to define for each risk its profile using likelihood and 
consequences criteria. Typical definitions of the likelihood and consequence are contained in the 
risk matrix (cf. Table 1). 

Using the consequence criteria provided in the risk matrix, one has to determine the 
consequences of the event occurring (with current controls in place). 

To determine the likelihood of the risk occurring, one can apply the likelihood criteria (again 
contained in the risk matrix). As before, the assessment is undertaken with reference to the 
effectiveness of the current control activities. 

To determine the level of each risk, one can again refer to the risk matrix. The risk level is 
identified by intersecting the likelihood and consequence levels on the risk matrix.  

Complex risks may involve a more sophisticated methodology. For example, a different 
approach may be required for assessing the risks associated with a significantly large procurement.  
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Table 1. Example of a risk matrix  
Consequence 

Significance 1 
Insignificant

Impact 

2 
Minor Impact 

to Small 
Population 

3 
Moderate- Minor 

Impact to Large 
Population 

4 
Major 
Impact 

to Small 

Population 

5 
Catastrophic 

– 

Major 
Impact to 

Large 
Population 

1 Rare Low Low Moderate High High 

2 Unlikely Low Low Moderate High Very High 

3 Moderate / 
Possible 

Low Moderate High Very High Very High 

4 Likely Moderate High High Very High Extreme L
ik

el
ih

oo
d 

5 Almost Certain Moderate High Very High Extreme Extreme 

 
 

Special approaches exist to analyse major risk in complex projects, e. .g. described in (Cagno 
et al. 2007). 
 
2.4 Evaluate the risk 
 

Once the risks have been analysed they can be compared against the previously documented 
and approved tolerable risk criteria. When using risk matrices this tolerable risk is generally 
documented with the risk matrix. Should the protected risk be greater than the tolerable risk then the 
specific risk needs additional control measures or improvements in the effectiveness of the existing 
controls. 

The decision of whether a risk is acceptable or not acceptable is taken by the relevant 
manager.  A risk may be considered acceptable if for example: 

− The risk is sufficiently low that treatment is not considered cost effective, or  
− A treatment is not available, e.g. a project terminated by a change of government, or 
− A sufficient opportunity exists that outweighs the perceived level of threat. 
If the manager determines the level of risk to be acceptable, the risk may be accepted with no 

further treatment beyond the current controls. Acceptable risks should be monitored and 
periodically reviewed to ensure they remain acceptable. The level of acceptability can be 
organizational criteria or safety goals set by the authorities. 
 
2.5 Treat the risk 
 

An unacceptable risk requires treatment. The objective of this stage of the risk assessment 
process is to develop cost effective options for treating the risks. Treatment options (cf. Fig. 5), 
which are not necessarily mutually exclusive or appropriate in all circumstances, are driven by 
outcomes that include: 

− Avoiding the risk, 
− Reducing (mitigating) the risk,  
− Transferring (sharing) the risk, and 
− Retaining (accepting) the risk. 
Avoiding the risk - not undertaking the activity that is likely to trigger the risk.  
Reducing the risk - controlling the likelihood of the risk occurring, or controlling the impact 

of the consequences if the risk occurs.  
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Figure 5. Treatment of risks 
 

Factors to consider for this risk treatment strategy include: 
− Can the likelihood of the risk occurring be reduced? (through preventative maintenance, or 

quality assurance and management, change in business systems and processes), or  
− Can the consequences of the event be reduced? (through contingency planning, minimizing 

exposure to sources of risk or separation/relocation of an activity and resources). 
Examples for the mitigation activity effectiveness are described in (Wirthin 2006). 
Transferring the risk totally or in part - This strategy may be achievable through moving the 

responsibility to another party or sharing the risk through a contract, insurance, or partnership/joint 
venture. However, one should be aware that a new risk arises in that the party to whom the risk is 
transferred may not adequately manage the risk! 

Retaining the risk and managing it - Resource requirements feature heavily in this strategy. 
The next step is to determine the target level of risk resulting from the successful 

implementation of the preferred treatments and current control activities.  
The intention of a risk treatment is to reduce the expected level of an unacceptable risk. Using 

the risk matrix one can determine the consequence and likelihood of the risk and identify the 
expected target risk level.  
 
2.6 Monitoring the risk 
 

It is important to understand that the concept of risk is dynamic and needs periodic and formal 
review. 

The currency of identified risks needs to be regularly monitored. New risks and their impact 
on the organization may to be taken into account. 

This step requires the description of how the outcomes of the treatment will be measured. 
Milestones or benchmarks for success and warning signs for failure need to be identified.  

The review period is determined by the operating environment (including legislation), but as a 
general rule a comprehensive review every five years is an accepted industry norm. This is on the 
basis that all plant changes are subject to an appropriate change process including risk assessment.  

The review needs to validate that the risk management process and the documentation is still 
valid. The review also needs to consider the current regulatory environment and industry practices 
which may have changed significantly in the intervening period.  

The organisation, competencies and effectiveness of the safety management system should 
also be covered. The plant management systems should have captured these changes and the review 
should be seen as a ‘back stop’. 

The assumptions made in the previous risk assessment (hazards, likelihood and consequence), 
the effectiveness of controls and the associated management system as well as people need to be 
monitored on an on-going basis to ensure risk are in fact controlled to the underlying criteria. 

For an efficient risk control the analysis of risk interactions is necessary.  
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Figure 6. Results of a cross impact analysis. 

 
This ensures that the influences of one risk to another is identified and assessed. Usual 

method for that purpose are a cross impact analysis (cf. Fig. 6), Petri nets or simulation tools.  
A framework needs to be in place that enables responsible officers to report on the following 

aspects of risk and its impact on organizations´ operations: 
− What are the key risks? 
− How are they being managed? 
− Are the treatment strategies effective? – If not, what else must be undertaken? 
− Are there any new risks and what are the implications for the organization? 

 
2.7 Communication and reporting 
 

Clear communication is essential for the risk management process, i.e. clear communication 
of the objectives, the risk management process and its elements, as well as the findings and required 
actions as a result of the output. 

Risk management is an integral element of organization´s management. However, for its 
successful adoption it is important that in its initial stages, the reporting on risk management is 
visible through the framework. The requirements on the reporting have to be fixed in a qualified 
and documented procedure, e. g., in a management handbook. The content of such a handbook is 
shown in Figure 7.  
 

2. Risk
categories 

 
1. Fundamental  

policy 
3. Risk 

management 
process

4.Risk 
organisation 

 
Figure 7. Structure of a risk management handbook. 

 
Documentation is essential to demonstrate that the process has been systematic, the methods 

and scope identified, the process conducted correctly and that it is fully auditable. Documentation 



 Heinz‐Peter Berg –  RISK MANAGEMENT: PROCEDURES, METHODS AND EXPERIENCES 

 
RT&A # 2(17)  

(Vol.1) 2010, June  
 

 

89 

provides a rational basis for management consideration, approval and implementation including an 
appropriate management system.  

A documented output from the above sections (risk identification, analysis, evaluation and 
controls) is a risk register for the site, plant, equipment or activity under consideration. This 
document is essential for the on-going safe management of the plant and as a basis for 
communication throughout the client organisation and for the on-going monitor and review 
processes. It can also be used with other supporting documents to demonstrate regulatory 
compliance. 
 
3  EXAMPLES 
 
3.1 NASA risk management to the SOFIA programm 
 

NASA and DLR (German Aerospace Center) have been working together to create the 
Stratospheric Observatory For Infrared Astronomy (SOFIA). SOFIA is a Boing 747SP (Special 
Performance) aircraft, extensively modified to accommodate a 2.5 meter reflecting telescope and 
airborne mission control system. In (Datta 2007) it is shown how the SOFIA program handled one 
safety issue through appropriate use of NASA`s Risk Management Process based on (NASA 2002). 
 
3.1.1 Risk identification 
 

The safety issue was identified while reviewing the Probabilistic Risk Assessment of a 
depressurization scenario in the telescope cavity. The failure scenario itself was previously known 
where a leak in the telescope cavity door seal sucks air out from the telescope cavity creating a 
negative pressure differential between the telescope cavity and the aft cavity. Two negative pressure 
relief valves were designed to handle this and other cavity negative pressure scenarios. However, 
the proposed new scenario had a leak area that was beyond the original design basis. Nevertheless, 
this failure scenario was deemed credible but with a lower probability of occurrence. 
 
3.1.2 Risk analysis 
 

After identification of the safety issue, both the risk management and the engineering 
processes required an analysis of this depressurization scenario. Multiple models of the 
depressurization scenarios were created and analyzed at peak dynamic pressures. The results 
revealed that under some failure scenarios the relief valves might not be redundant. Both valves 
need to function for adequate pressure equalization without exceeding structural design loads. 
These conditions created a program risk state that needed to be mitigated. 

All considerations within the risk analysis were based on prescribed project risk definitions. 
 
3.1.3 Risk control 
 

As a result, the program started a risk mitigation plan where a test will be performed to 
characterize the seal failure scenario by intentionally deflating the seal at lower dynamic pressure. 

This risk continues to reside in the SOFIA program risk list so as to ensure that the risk 
mitigation plan is carried out in the future. The risk list is the listing of all identified risks in priority 
order from highest to lowest risk, together with the information that is needed to manage each risk 
and document its evolution over the course of the program. The highest risks are extracted from the 
list. The negative pressure relief valve risk has not yet reached among the top fifteen list of risks 
(see Datta 2007). 
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3.2 Construction of a nuclear power plant 
 

Risk identification and risk analysis can not only be performed on component or system level, 
but also for a comprehensive technical project such as a (nuclear) power plant.  
 
3.2.1 Risk context 
 

Since many years, no new nuclear power plant has been constructed in USA. However, in 
near future, decisions have to be made which types of power plants will reset the nuclear power 
plants which have to be shut down in the next ten years. Thus, for a new project the resulting risks 
have to be evaluated. 

The risk context is determined by the electricity market, the license, the technical aspects of 
the design, the construction of the plant, the operation of the new plant as well as the financing of 
the project. 
 
3.2.2 Risk identification 
 

On the background of this context, a potential operator has to take into account the following 
risks: 

− Licensing risks: will the plant be licensed in a predictable time schedule or will this be a 
longer procedure, which strongly influences the start of the commercial operation. 

− Design risks: is the plant completely designed before construction or are surprises to be 
expected which lead to cost- intensive changes of the plant and delay of the construction period. 

− Technical risks: will the plant behave as planned or will unknown technical problems lead 
to shut down and thus fail the projected goals. 

− Cost risks: will the plant to more expensive as planned and the chances in the free 
electricity market reduced. 

− Time schedule risks: will the plant start the production at the scheduled time or have delays 
to be expected. 

− Finance risks: which possible uncertainties have to be taken into account by investors with 
respect to the new project, e.g., how is the public acceptance of a new nuclear power plant. 
 
3.2.3 Risk analysis 
 

In a specific case, General Electric has analysed the risk of constructing a new plant in the 
following manner: 

− License risks: the new reactor type has been developed in accordance with current nuclear 
safety standards and is already certified site-independently by the US licensing authority. Moreover, 
this type of reactor has already been licensed in Japan, where two plants are running successfully 
since five years. 

− Design risks: the reactor type is completely planned with all necessary drawings. Material 
and costs are exactly known. 

− Technical risks: the plants constructed in Japan have a total operating time of ten years 
with a high availability. 

− Finance risks: main problem is the financing of a new nuclear power plant project because 
of experiences in the eighties with construction times up to 15 years. 
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3.2.4 Risk evaluation 
 

Following this risk analysis, an evaluation of the risks has been the next step: 
− License risk: the experiences listed in the risk analysis lead to the expectations that the 

licensing process should not last more than one year. 
− Design risk: due to the completely available design documentation no larger deviations are 

expected that result in expensive delays. 
− Technical risk: the risk evaluation of the potential operator and the investors will not only 

be based on the expected high availability, but also on the occurrence frequency of an accident and 
the acceptance by the public in comparison with other energy producing systems. 
 
3.2.5 Risk treatment 
 

General Electric has chosen from the different alternatives to treat risks as described in 2.5 to 
retain and accept the risks for costs and time schedule by offering a fixed price and a construction 
time which will be determined in the contract. 
 
3.3 National foresight program "Poland 2020" 
 

Totally different and more global types of risk management are so-called foresight programs. 
Foresight means a systematic method of building a medium and long-term vision of development of 
the scientific and technical policy, its directions and priorities, used as a tool for making on-going 
decisions and mobilizing joint efforts. The aim of foresight is to indicate future needs, opportunities 
and threats associated with the social and economic growth and to plan appropriate measures in the 
field of science and technology. 

The scope of realization of the National Foresight Programme “Poland 2020” (see Fig. 8) 
covers the three research areas “sustainable development of Poland”, “information and 
telecommunications technologies” and “security”. 
 

 
 

Figure 8. Cover of the brochure describing the Polish foresight program. 
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The aim of the National Foresight Programme “Poland 2020” is to: 
− lay out the development vision of Poland until the year 2020, 
− set out – through a consensus with the main beneficiaries – the priority paths of scientific 

research and development which will, in the long run, have an impact on the acceleration of the 
social and economic growth, 

− put the research results into practice and create preferences for them when it comes to 
allotting funds from the budget, 

− adjust the Polish scientific policy to the requirements of the European Union, 
− shape the scientific and innovative police towards knowledge-based economy. 
For the purpose of foresight, different methods can be applied to prepare long-term 

development scenarios (see Table 2).  
Foresight can never be completely dominated by quantitative methods: the appropriate mix of 

methods depends on access to relevant expertise and the nature of the issues. 
Various foresight methods are planned to be used in the National Foresight Programme 

“Poland 2020”, among which the following methods will be the leading ones: 
− Expert panels, 
− SWOT analysis, 
− Delphi analysis, 
− PEST analysis, 
− Cross-impact analysis, 
− Scenarios of development. 

 
Table 2.  Methods typically used for foresight programs   

Categories by Criteria Methods 

Quantitative methods (use of 
statistics and other data) to elaborate 
future trends and impacts 

−  Trend extrapolation  

−  Simulation modelling 

−  Cross impact analysis  

−  System dynamics 

Qualitative methods (drawing on 
expert knowledge) to develop long 
term strategies 

−  Delphi method 

−  Experts panels 

−  Brainstorming 

−  Mindmapping 

−  Scenario analysis workshops 

−  SWOT analysis 

Methods to identify key points of 
action to determine planning 
strategies 

−  Critical/ key technologies 

−  Relevance trees  

−  Morphological analysis 

 
 
3.4 Risk management in the sector of banks and insurance companies 
 

Basel II and the Capital Requirements Directive (Committee for 2005) are especially 
important for banks and small and medium sized companies. Rules on capital requirements are 
designed to protect savers and investors from the risk of the failure or bankruptcy of banks. They 
ensure that these institutions hold a minimum amount of capital. The Capital Requirements 
Directive was adopted on 14 June 2006 and comes into force January 2007 with full 
implementation by 2008. Capital adequacy rules set down the amount of capital a bank or credit 
institution must hold. This amount is based on risk.  

Therefore, it is expected that this rules will have an important influence on the establishment 
of a risk management system. 
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Three main issues of the Capital Requirements Directive are:  
− the new directive is more risk sensitive, 
− costs to smaller banks and consequently to small-company growth, where the EU lags 

other regions, and 
− moral hazard concerns in that risks are partly passed to insurers and banks, unlike insurers 

have potential last resort support from central banks. 
Some commentators argue that strengthening the capital base of banks and encouraging the 

management of risk does not reduce the risk but merely passes it on elsewhere. Credit risk in 
particular is being passed on to insurance companies and funds, which are in turn passing it on to 
householders, i. e., one can ask the question whether ultimately, it may be the consumer who stands 
to lose if things go wrong.  

Comparable to Basel II for the banks and investment institutions will Solvency II 
fundamentally change and support risk management of the insurance companies. The requirements 
on the capital equipment will then depend on the risk profile of the insurance company. Besides the 
quantitative determination of the capital equipment it is part of Solvency II to determine the internal 
risk management. 

Basis in economics and finance is the so-called value at risk (VaR) method. VaR is the 
maximum loss, not exceeded with a given probability defined as the confidence level, over a given 
period of time. Although VaR is a very general concept that has broad applications, it is most 
commonly used by security firms or investment banks to measure the market risk of their asset 
portfolios (market value at risk). VaR is widely applied in finance for quantitative risk management 
for many types of risk. VaR does not give any information about the severity of loss by which it is 
exceeded.  

A variety of models exist for estimating VaR. Each model has its own set of assumptions, but 
the most common assumption is that historical market data is the best estimator for future changes. 
Common models include: 

− variance-covariance, assuming that risk factor returns are always (jointly) normally 
distributed and that the change in portfolio value is linearly dependent on all risk factor returns, 

− the historical simulation, assuming that asset returns in the future will have the same 
distribution as they had in the past (historical market data), 

− Monte Carlo simulation, where future asset returns are more or less randomly simulated. 
In (Taleb 2007 a, b), VaR is seen as a dangerously misleading tool. Two issues are mentioned 

with regard to conventional calculation and usage of VaR: 
− Measuring probabilities of rare events requires study of vast amounts of data. For example, 

the probability of an event that occurs once a year can be studied by taking 4-5 years of data. But 
high risk-low probability events like natural calamities, epidemics and economic disasters (like the 
bank crash of 1929) are once a century events which require at least 2-3 centuries of data for 
validating hypotheses. Since such data does not exist in the first place, it is argued, calculating risk 
with any accuracy is not possible. 

− In the derivation of VaR normal distributions are assumed wherever the frequency of 
events is uncertain. 

Although many problems are similar for the banking and insurance sector respectively, there 
are some distinctions between these two kinds of companies. Banks mainly deal with bounded 
risks, e. g., facing credit risks. On the other hand, insurance companies often have to consider 
unbounded risks, e. g., when heavy-tailed distributed financial positions are present. To address 
both situations, one always treats integrable but not necessarily bounded risks in this work. 
Furthermore, a main issue will be to develop risk management tools for dynamic models. These 
naturally occur when considering portfolio optimisation problems or in the context of developing 
reasonable risk measures for final payments or even stochastic processes. One considers only 
models in discrete time and denotes these approaches with dynamic risk management. In dynamic 
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economic models one often faces a Markov structure of the underlying stochastic processes (Mundt 
2008). 

Systemic financial risk is the most immediate and the most severe. With so many potential 
consequences of the 2007 liquidity crunch unresolved, the outlook for the future is uncertain (WEF 
2008). 

The crisis of Société Générale in connection with the real estate credits in the US in 
2007/2008 and the breakdown of further US banks in September 2008 might be a symptom for the 
fact that banks are underestimating the risks or do not apply the risk management tools in an 
appropriate manner. 
 
4  CONCLUDING REMARKS 
 

Risk management is, at present, implemented in many large as well as small and medium 
sized industries. In (Gustavsson 2006) it is outlined how a large company can handle its risks in 
practice and contains a computer based method for risk analysis that can generate basic data for 
decision-making in the present context. In that study, Trelleborg AB has been chosen as an example 
to illustrate the difficulties that can be encountered concerning risk management in a large company 
with different business areas. One typical difficulty is reaching the personnel. Another typical 
weakness is a missing system for controlling and following up on the results of the risk analysis that 
has been performed. 

However, not only industries but also governmental organizations, research institutes and 
hospitals are now introducing risk management to some extent. 

In case of hospitals. patient safety is endangered, e. g., by adverse events during medical 
treatment. Patient safety can be increased through risk management which reduces errors through 
error prevention. This presupposes the recognition of causes for errors and near misses which can 
be achieved through a critical incident reporting system (CIRS) with a detailed incident reporting 
form. CIRS is seen as an important instrument in the process of risk management and is, at present, 
of increasing importance and Switzerland and Germany. 

Why is it important to have risk management in mind when performing risk assessment? The 
different tools support the answer to the following questions: 

− risk analysis – how safe is the system, process or item to be investigated,  
− risk evaluation – how safe is safe enough, e.g. by comparing the results of the risk analysis 

with prescribed safety criteria, 
− risk management – how to achieve and ensure an adequate level of safety. 
Thus, the results of technical risk assessments are one (often very important) part of an overall 

risk or safety assessment of an organization. 
A further step is to couple knowledge management with risk management systems to capture 

and preserve lessons learned as described in (NASA 2007).  
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ABSTRACT 
 

In the paper the environment and infrastructure influence of the ship-rope elevator operating  in Naval 
Shipyard in Gdynia on its operation processes is considered. The results are presented on the basis of a general 
model of technical systems operation processes related to their environment and infrastructure. The elevator 
operation process is described and its statistical identification is given. Next, the elevator is considered in 
varying in time operation conditions with different its components’ reliability functions in different operation 
states. Finally, the reliability, risk and availability evaluation of the elevator in variable operation conditions is 
presented.  

 
1  DESCRIPTION OF THE SHIP-ROPE ELEVATOR IN NAVAL SHIPYARD IN 

GDYNIA 
 

Ship-rope elevators are used to dock and undock ships coming to shipyards for repairs. The 
elevator utilized in the Naval Shipyard in Gdynia, with the scheme presented in Figure 4, is 
composed of a steel platform-carriage placed in its syncline (hutch). The platform is moved 
vertically with 10 rope-hoisting winches fed by separate electric motors. Motors are equipped in 
ropes “Bridon” with the diameter 47 mm each rope having a maximum load of 300 tonnes. During 
ship docking the platform, with the ship settled in special supporting carriages on the platform, is 
raised to the wharf level (upper position). During undocking, the operation is reversed. While the 
ship is moving into or out of the syncline and while stopped in the upper position the platform is 
held on hooks and the loads in the ropes are relieved. Since the platform-carriage and electric 
motors are highly reliable in comparison to the ropes, which work in extremely aggressive 
conditions, in our further analysis we will discuss the reliability of the rope system only.  
 

 
Figure 1. The ship-rope transportation system (upper position). 
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The system under consideration is composed of 10 ropes linked in series. Each of the ropes is 
composed of 22 strands: 10 outer and 12 inner. 
 
 

 
 

Figure 2. The scheme of the ship-rope elevator. 
 

The assumption that ropes satisfy the technical conditions when at least one of its strands 
satisfies these conditions is not always true. In reality it is said that a rope is failed after some 
number of strands use. Therefore better, closer in reality approach to the system reliability 
evaluation is assumption that the ship-rope transportation system is “ m  out of nl ”-series system. 
Further we assume that m = 5.  
 
2 OPERATION PROCESS AND ITS STATISTICAL IDENTIFICATION 
 

Considering the tonnage of the docked and undocked ships by the rope elevator in Naval 
Shipyard in Gdynia we can divide the system’s load, similarly as in the previous ships’ 
transportation system, into six groups and due to fact that the rope elevator system depends mainly 
on the tonnage of docking ships we can distinguish the following (v = 6) operation states of the rope 
elevator system operation process:  

− an operation state 1z  – without loading (the system is not working), 
− an operation state 2z  – loading over 0 up to 500 tonnes, 
− an operation state 3z  – loading over 500 up to 1000 tonnes, 
− an operation state 4z  – loading over 1000 up to 1500 tonnes, 
− an operation state 5z  – loading over 1500 up to 2000 tonnes, 
− an operation state 6z  – loading over 2000 up to 2500 tonnes. 
In all six operational states system has the same structure. There are 10 rope-hoisting winches 

equipped in identical ropes and each of the ropes is composed of 22 strands. We assume that the 
rope is ”5 out of 22” system, so we consider the ship-rope elevator as a regular ”5 out of 22”-series 
system. 
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Figure 3. The scheme of the rope-hoisting winches placing. 
 

On the basis of the statistical data coming from experts using the shipyard ship-rope elevator 
in Naval Shipyard in Gdynia (Blokus-Roszkowska et al. 2009) the transition probabilities blp  from 
the operation state bz  into the operation state ,lz  ,6,...,1, =lb ,lb ≠  were evaluated. Their 
approximate evaluations are given in the matrix below. 
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On the basis of the realizations of the operation process )(tZ  conditional sojourn times ,blθ  
,6,...,2,1, =lb ,lb ≠  in the state bz  while the next transition is to the state lz , given in (Blokus-

Roszkowska et al. 2009), there were formulated hypotheses about the distributions of the 
conditional sojourn times .blθ  These hypotheses allows us to estimate the conditional mean values 

],[ blbl EM θ=  ,6,...,2,1, =lb  ,lb ≠  of the lifetimes in the particular operation states:  
,06.305712 =M ,12.331913 =M ,07.1040614 =M ,86.468715 =M ,00.554016 =M  

,00.5821 =M ,18.3731 =M ,21.18341 =M ,50.12451 =M  .00.27061 =M  
Hence, by (Kołowrocki & Soszyńska 2008), the unconditional mean sojourn times in the particular 
operation states are determined from the formula  
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and takes values: 
1M ,13.5233≅ 2M ,00.58≅ 3M ,18.37≅ ,21.1834 ≅M ,50.1245 ≅M .00.2706 ≅M  

Since from the system of equations below (Kołowrocki & Soszyńska 2008, Soszyńska 2006)  
[ ]

⎩
⎨
⎧

=+++++
=

,1
],,,,,[],,,,,[

654321

654321654321
ππππππ

ππππππππππππ blp  

we get 
,5.01 =π ,14655.02 =π ,14655.03 =π ,1207.04 =π ,06035.05 =π .02585.06 =π  

Then the limit values of the transient probabilities )(tpb  at the operational states bz , according to 
results given in (Blokus-Roszkowska et al. 2008b, Grabski 2002), are equal to:  

,9810.01 =p ,0032.02 =p ,0021.03 =p ,0083.04 =p ,0028.05 =p .0026.06 =p                      (1) 
3 RELIABILITY OF THE SHIPYARD SHIP-ROPE ELEVATOR 
 

According to rope reliability data given in their technical certificates and experts’ opinions 
based on the nature of strand failures the following reliability states have been distinguished: 
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− a reliability state 3 – a strand is new, without any defects, 
− a reliability state 2 – the number of broken wires in the strand is greater than 0% and less 

than 25% of all its wires, or corrosion of wires is greater than 0% and less than 25%, 
− a reliability state 1 – the number of broken wires in the strand is greater than or equal to 

25% and less than 50% of all its wires, or corrosion of wires is greater than or equal to 25% and less 
than 50%, 

− a reliability state 0 – otherwise (a strand is failed). 
We consider the strands as basic components of the system. The system of ropes is in the 

reliability state subset },3{},3,2{},3,2,1{  when all of its ropes are in this state subset and each of the 
ropes is in the reliability state subset },3{},3,2{},3,2,1{  if at least 5 of 22 strands are in this state 
subset. Thus, we conclude that the ship-rope elevator is a regular 4-states “5 out of 22”-series 
system composed of kn = 10 series-linked subsystems (ropes) with ln = 22 parallel-linked 
components (strands). 

Then, taking into account above remarks, we obtain the reliability function of the considered 
ship-rope elevator given by the vector  

),( ⋅tR )1,(,1[ tR= , ),2,(tR )]3,(tR )],3,(),2,(),1,(,1[ )5(
22,10

)5(
22,10

)5(
22,10 ttt RRR= ).,0 ∞∈<t                   (2) 

We assume strands as a basic components of a system with the reliability functions given by the 
vector  

)],3,(),2,(),1,(),0,([),( tRtRtRtRtR =⋅ ),,0 ∞∈<t  
with the co-ordinates  

),)(()3)0(|)((),( tuTPSutSPutR >==≥= ),,0 ∞∈<t ,3,2,1,0=u .1)0,( =tR  
T(u) is independent random variable representing the lifetime of system components in the 
reliability state subset {u, u + 1, ..., 3}, while they were at the reliability state 3 at the moment t = 0 
and S(t) are components’ reliability states at the moment t, ).,0 ∞∈<t   
Moreover we assume that the components of the ship-rope elevator i.e. strands have multi-state 
reliability functions 

=⋅),()( tR b )],3,(),2,(),1,(,1[ )()()( tRtRtR bbb  

with exponential co-ordinates )1,()( tR b , )2,()( tR b and )3,()( tR b  different in various operation states 

bz , .6,...,2,1=b   
At the system operational state 1z  the strands in the ropes have following conditional 

reliability functions co-ordinates: 
],1613.0exp[)1,()1( ttR −= ],2041.0exp[)2,()1( ttR −= ],2326.0exp[)3,()1( ttR −= .0≥t  

Thus the conditional multi-state reliability function of the ship-rope elevator at the operational state 
1z  is given by:  

)1()],([ ⋅tR ,)]1,([,1[ )1(tR= ],)]3,([,)]2,([ )1()1( tt RR  
where 

)1()5(
22,10

)1( )]1,([)]1,([ tt RR = ( ) ,]]]1613.0exp[1][1613.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                     (3) 

)1()5(
22,10

)1( )]2,([)]2,([ tt RR = ( ) ,]]]2041.0exp[1][2041.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                     (4) 

)1()5(
22,10

)1( )]3,([)]3,([ tt RR = ( ) ,]]]2326.0exp[1][2326.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                     (5) 

for t ≥ 0. 
The expected values and standard deviations of the ship-rope elevator conditional lifetimes in the 
reliability state subsets calculated from the above result given by (3)-(5), according to (Blokus-
Roszkowska et al. 2008a, Kołowrocki 2004), at the operation state 1z , in years, are respectively 
given by:  
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)1(1μ ≅ 6.4415, )2(1μ ≅ 5.0907, )3(1μ ≅ 4.4669,                                           (6) 
)1(1σ ≅ 1.0563, )2(1σ ≅ 0.8345, )3(1σ ≅ 0.7323,                                           (7) 

and further, using (6), from (Kołowrocki 2004) it follows that the conditional lifetimes in the 
particular reliability states at the operation state 1z , in years, are:  

)1(1μ ≅ 1.3508, )2(1μ ≅ 0.6239, )3(1μ ≅ 4.4669. 

At the system operational state 2z  the strands in the ropes have following conditional reliability 
functions co-ordinates: 

],2041.0exp[)1,()2( ttR −= ],2564.0exp[)2,()2( ttR −= ],2941.0exp[)3,()2( ttR −= .0≥t  
Thus the conditional multi-state reliability function of the ship-rope elevator at the operational state 

2z  is given by:  
)2()],([ ⋅tR ,)]1,([,1[ )2(tR= ],)]3,([,)]2,([ )2()2( tt RR  

where 
)2()5(

22,10
)2( )]1,([)]1,([ tt RR = ( ) ,]]]2041.0exp[1][2041.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                     (8) 

)2()5(
22,10

)2( )]2,([)]2,([ tt RR = ( ) ,]]]2564.0exp[1][2564.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                    (9) 

)2()5(
22,10

)2( )]3,([)]3,([ tt RR = ( ) ,]]]2941.0exp[1][2941.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                   (10) 

for t ≥ 0. 
The expected values and standard deviations of the ship-rope elevator conditional lifetimes in the 
reliability state subsets calculated from the above result given by (8)-(10), according to (Kołowrocki 
2004) at the operation state 2z  are respectively given by:  

)1(2μ ≅ 5.0907, )2(2μ ≅ 4.0523, )3(2μ ≅ 3.5335,                                        (11) 
)1(2σ ≅ 0.8345, )2(2σ ≅ 0.6639, )3(2σ ≅ 0.5744,                                        (12) 

and further, using (11), from (Kołowrocki 2004) it follows that the conditional lifetimes in the 
particular reliability states at the operation state 2z  are:  

)1(2μ ≅ 1.0384, )2(2μ ≅ 0.5188, )3(2μ ≅ 3.5335. 
At the system operational state 3z  the strands in the ropes have following conditional reliability 
functions co-ordinates: 

],2222.0exp[)1,()3( ttR −= ],2857.0exp[)2,()3( ttR −= ],3226.0exp[)3,()3( ttR −= .0≥t  
Thus the conditional multi-state reliability function of the ship-rope elevator at the operational state 

3z  is given by:  
)3()],([ ⋅tR ,)]1,([,1[ )3(tR= ],)]3,([,)]2,([ )3()3( tt RR  

where 
)3()5(

22,10
)3( )]1,([)]1,([ tt RR = ( ) ,]]]2222.0exp[1][2222.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                  (13) 

)3()5(
22,10

)3( )]2,([)]2,([ tt RR = ( ) ,]]]2857.0exp[1][2857.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                 (14) 

)3()5(
22,10

)3( )]3,([)]3,([ tt RR = ( ) ,]]]3226.0exp[1][3226.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                 (15) 

for t ≥ 0. 
The expected values and standard deviations of the ship-rope elevator conditional lifetimes in the 
reliability state subsets calculated from the above result given by (13)-(15), according to results 
given in (Kołowrocki 2004), at the operation state 3z , in years are equal to:  

)1(3μ ≅ 4.6760, )2(3μ ≅ 3.6367, )3(3μ ≅ 3.2207,                                        (16) 
)1(3σ ≅ 0.7665, )2(3σ ≅ 0.5956, )3(3σ ≅ 0.5273,                                        (17) 
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and further, from (16) and (Kołowrocki 2004) it follows that the conditional lifetimes in the 
particular reliability states at the operation state 3z  are:  

)1(3μ ≅ 1.0393, )2(3μ ≅ 0.4160, )3(3μ ≅ 3.2207. 

At the system operational state 4z  the strands in the ropes have following conditional reliability 
functions co-ordinates: 

],2702.0exp[)1,()4( ttR −= ],3508.0exp[)2,()4( ttR −= ],4167.0exp[)3,()4( ttR −= .0≥t  
Thus the conditional multi-state reliability function of the ship-rope elevator at the operational state 

4z  is given by:  
)4()],([ ⋅tR ,)]1,([,1[ )4(tR= ],)]3,([,)]2,([ )4()4( tt RR  

where 
)4()5(

22,10
)4( )]1,([)]1,([ tt RR = ( ) ,]]]2702.0exp[1][2702.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                    (18) 

)4()5(
22,10

)4( )]2,([)]2,([ tt RR = ( ) ,]]]3508.0exp[1][3508.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                   (19) 

)4()5(
22,10

)4( )]3,([)]3,([ tt RR = ( ) ,]]]4167.0exp[1][4167.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                   (20) 

for t ≥ 0.                                                                         
The expected values and standard deviations of the ship-rope elevator conditional lifetimes in the 
reliability state subsets calculated from the above result given by (18)-(20), according to results in 
(Kołowrocki 2004), at the operation state 4z  are respectively given by:  

)1(4μ ≅ 3.8453, )2(4μ ≅ 2.9618, )3(4μ ≅ 2.4934,                                         (21) 
   )1(4σ ≅ 0.6301, )2(4σ ≅ 0.4846, )3(4σ ≅ 0.4074,                                        (22) 

and further, using (21), from (Kołowrocki 2004) it follows that the conditional lifetimes in the 
particular reliability states at the operation state 4z  are:  

)1(4μ ≅ 0.8835, )2(4μ ≅ 0.4684, )3(4μ ≅ 2.4934. 
At the system operational state 5z  the strands in the ropes have following conditional reliability 
functions co-ordinates: 

],3333.0exp[)1,()5( ttR −= ],4762.0exp[)2,()5( ttR −= ],5882.0exp[)3,()5( ttR −= .0≥t  
Thus the conditional multi-state reliability function of the ship-rope elevator at the operational state 

5z  is given by:  
)5()],([ ⋅tR ,)]1,([,1[ )5(tR= ],)]3,([,)]2,([ )5()5( tt RR  

where 
)5()5(

22,10
)5( )]1,([)]1,([ tt RR = ( ) ,]]]3333.0exp[1][3333.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                  (23) 

)5()5(
22,10

)5( )]2,([)]2,([ tt RR = ( ) ,]]]4762.0exp[1][4762.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                 (24) 

)5()5(
22,10

)5( )]3,([)]3,([ tt RR = ( ) ,]]]5882.0exp[1][5882.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                 (25) 

for t ≥ 0.                                                                        
The expected values and standard deviations of the ship-rope elevator conditional lifetimes in the 
reliability state subsets from the above result given by (31)-(33), and from (Kołowrocki 2004) at the 
operation state 5z  are respectively given in years by:  

)1(5μ ≅ 3.1173, )2(5μ ≅ 2.1819, )3(5μ ≅ 1.7664,                                        (26) 
)1(5σ ≅ 0.5103, )2(5σ ≅ 0.3574, )3(5σ ≅ 0.2894,                                        (27) 

and further, using (26), from (Kołowrocki 2004) it follows that the conditional lifetimes in the 
particular reliability states at the operation state 5z  are:  



 A. Blokus‐Roszkowska, K. Kołowrocki ‐ RELIABILITY AND AVAILABILITY OF A SHIPYARD SHIP‐ROPE ELEVATOR IN VARIABLE 
OPERATION CONDITIONS 

 
RT&A # 2(17)  

(Vol.1) 2010, June  
 

 

102 

)1(5μ ≅ 0.9354, )2(5μ ≅ 0.4155, )3(5μ ≅ 1.7664. 
At the system operational state 6z  the strands in the ropes have following conditional reliability 
functions co-ordinates: 

],4348.0exp[)1,()6( ttR −= ],7143.0exp[)2,()6( ttR −= ],9091.0exp[)3,()6( ttR −=  .0≥t  
Thus the conditional multi-state reliability function of the ship-rope elevator at the operational state 

6z  is given by:  
)6()],([ ⋅tR ,)]1,([,1[ )6(tR= ],)]3,([,)]2,([ )6()6( tt RR  

where 
)6()5(

22,10
)6( )]1,([)]1,([ tt RR = ( ) ,]]]4348.0exp[1][4348.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                  (28) 

)6()5(
22,10

)6( )]2,([)]2,([ tt RR = ( ) ,]]]7143.0exp[1][7143.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                 (29) 

)6()5(
22,10

)6( )]3,([)]3,([ tt RR = ( ) ,]]]9091.0exp[1][9091.0exp[1[ 104

1

2222∑ −−−−=
=

−

i

i
i tit                  (30) 

for t ≥ 0.                                                                        
The expected values and standard deviations of the ship-rope elevator conditional lifetimes in the 
reliability state subsets calculated from the above result given by (28)-(30), and from (Kołowrocki 
2004) at the operation state 6z  are respectively given in years by:  

)1(6μ ≅ 2.3896, )2(6μ ≅ 1.4546, )3(6μ ≅ 1.1429,                                        (31) 
)1(6σ ≅ 0.3918, )2(6σ ≅ 0.2378, )3(6σ ≅ 0.1865,                                        (32) 

and further, from (31) and (Kołowrocki 2004) it follows that the conditional lifetimes in the 
particular reliability states at the operation state 6z  in years are equal to:  

)1(6μ ≅ 0.9350, )2(6μ ≅ 0.3117, )3(6μ ≅ 1.1429. 
In the case when the operation time is large enough its unconditional multi-state reliability function 
of the ship-rope elevator is given by the vector  

=⋅),(tR )1,(,1[ tR , ),2,(tR )],3,(tR  ),,0 ∞∈<t  
where according to (Blokus-Roszkowska et al. 2008b, Soszyńska 2006), the vector co-ordinates are 
given respectively by:   

),( utR ∑=
=

6

1

)( ,)],([
i

i
i utp R ,0≥t ,3,2,1=u                                              (33)                  

where ,)],([ )(iutR  ,6,,1K=i  are given by (3)-(5), (8)-(10), (13)-(15), (18)-(20), (23)-(25), (28)-
(30). 
The mean values and the standard deviations of the ship-rope elevator unconditional lifetimes in the 
reliability state subsets, according to (Kołowrocki & Soszyńska 2008, Soszyńska 2006) and after 
considering (6)-(7), (11)-(12), (16)-(17), (21)-(22), (26)-(27), (31)-(32) and (1), respectively are: 

)1(μ ∑=
=

6

1
)1(

i
iip μ ,3887.6≅ )1(σ ,1336.1≅                                            (34)                   

)2(μ ∑=
=

6

1
)2(

i
iip μ ,0463.5≅ )2(σ ,9041.0≅                                           (35)                   

)3(μ ∑=
=

6

1
)3(

i
iip μ ,4266.4≅ )3(σ .7964.0≅                                            (36)                   

Next, the unconditional mean values of the ship-rope elevator lifetimes in the particular reliability 
states, by (Kołowrocki 2004) and considering (34)-(36), in years are:  

,3424.1)2()1()1( =−= μμμ ,6197.0)3()2()2( =−= μμμ .4266.4)3()3( == μμ  
If the critical reliability state is r = 2, then according to (Blokus-Roszkowska et al. 2008a), the 
system risk function takes the form 

)2,(1)( tt Rr −= ,)]2,([1
6

1

)(∑−=
=i

i
i tp R ,0≥t  



 A. Blokus‐Roszkowska, K. Kołowrocki ‐ RELIABILITY AND AVAILABILITY OF A SHIPYARD SHIP‐ROPE ELEVATOR IN VARIABLE 
OPERATION CONDITIONS 

 
RT&A # 2(17)  

(Vol.1) 2010, June  
 

 

103 

where )2,(tR  is the unconditional reliability function of the ship-rope elevator at the critical state 
and ,)]2,([ )(itR  ,6,,1K=i  are given by (4), (9), (14), (19), (24), (29).  
Hence, the moment when the system risk function exceeds a permitted level, for instance δ  = 0.05, 
from (Blokus-Roszkowska et al. 2008a), is  

τ = r−1(δ) 577.3≅  years 3≅  years 205 days. 
 
            

0

0,2

0,4

0,6

0,8

1

1,2

0 1 2 3 4 5 6 7 8 9

t

r(
t)

 
 

Figure 4. The graph of the ship-rope elevator risk function )(tr . 
                            
4 AVAILABILITY OF THE SHIPYARD SHIP-ROPE ELEVATOR 
 

In this point the asymptotic evaluation of the basic reliability and availability characteristics 
of renewal systems with non-ignored time of renovation are determined in an example of the 
shipyard ship-rope elevator. The theoretical results of multi-state systems availability analysis can 
be found in (Blokus 2006, Blokus-Roszkowska et al. 2008a). 

Assuming that the ship-rope elevator is repaired after its failure and that the time of the 
system renovation is not ignored and it has the mean value ≅= 0014.0)2(0μ 12 hours and the 
standard deviation 20002.0)2(0 ≅=σ hours, applying results from (Blokus-Roszkowska et al. 
2008a), we obtain the following results: 

− the distribution function of the time )2(NS  until the Nth system’s renovation, for 
sufficiently large N, has approximately normal distribution )9041.0,0477.5( NNN , i.e., 

=)2,()( tF N ),
9041.0

0477.5())2(( )1,0(
N
NtFtSP NN

−
≅<

=
 ),,( ∞−∞∈t ,...2,1=N , 

− the expected value and the variance of the time )2(NS  until the Nth system’s renovation 
take respectively forms  

NSE N 0477.5)]2([ ≅
=

, NSD N 8174.0)]2([ ≅
=

, 
− the distribution function of the time )2(NS  until the Nth exceeding the reliability critical 

state 2 of this system takes form 

=)2,()( tF N ),
9041.0

0014.00477.5())2(( )1,0(
N

NtFtSP NN
+−

=<
−

),,( ∞−∞∈t ,...2,1=N , 

− the expected value and the variance of the time )2(NS  until the Nth exceeding the 
reliability critical state 2 of this system take respectively forms 

)1(0014.00463.5)]2([ −+≅ NNSE N , NSD N 8174.0)]2([ ≅  
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− the distribution of the number )2,(tN  of system’s renovations up to the moment ,0, ≥tt  is 
of the form 

))2,(( NtNP =
=

)
4024.0

0477.5()1,0(
t

tNFN
−

≅ ),
4024.0

)1(0477.5()1,0(
t

tNFN
−+

− ,...2,1=N , 

− the expected value and the variance of the number )2,(tN  of system’s renovations up to 
the moment ,0, ≥tt  take respectively forms 

,1981.0)2,( ttH ≅
=

 ,0064.0)2,( ttD ≅
=

 
− the distribution of the number )2,(tN  of exceeding the reliability critical state 2 of this 

system up to the moment ,0, ≥tt  is of the form 

))2,(( NtNP =
−

)
0014.04024.0

0014.00477.5()1,0(
+

−−
≅

t
tNFN ),

0014.04024.0
00014)1(0477.5()1,0(

+

−−+
−

t
tNFN ,...2,1=N , 

− the expected value and the variance of the number )2,(tN  of exceeding the reliability 
critical state 2 of this system up to the moment ,0, ≥tt  are respectively given by 

,0003.01981.0)2,( +≅ ttH  ),0014.0(0064.0)1,( +≅ ttD  
− the availability coefficient of the system at the moment t is given by the formula 

9997.0)2,( ≅tK , ,0≥t  
− the availability coefficient of the system in the time interval ,0),, >+< ττtt  is given by the 

formula 

,)2,(1981.0)2,,( ∫≅
∞

τ
τ dtttK R ,0≥t ,0>τ  

where the reliability function of a system at the critical state )2,(tR  is given by the formula (33). 
 
5 CONCLUSIONS 

 
In the paper an analytical model of port transportation systems environment and infrastructure 

influence on their operation process is presented. The theoretical results of reliability, risk and 
availability evaluation of industrial systems in variable operation conditions are applied to the 
shipyard ship-rope elevator in Naval Shipyard in Gdynia. These results may be considered as an 
illustration of the proposed methods possibilities of application in rope transportation systems 
reliability analysis. Other technical systems reliability evaluation related to their operation process 
are presented for example in (Blokus et al. 2005, Soszyńska 2006). The obtained evaluations may 
be discussed as an example in transportation systems reliability characteristics evaluation, 
especially during the design and while planning and improving its operation process safety and 
effectiveness. 
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ABSTRACT 

 

Many real systems are characterized by a hybrid dynamics of transitions among discrete 

modes of operation, each one giving rise to a specific continuous dynamics of evolution. The 

estimation of the state of these hybrid dynamic systems is difficult because it requires 

keeping track of the transitions among the multiple modes of system dynamics 

corresponding to the different modes of operation. A Monte Carlo-based estimation method 

is here illustrated through an application to a case study of literature.  

 

 

 

1  INTRODUCTION 

 

Diagnosis and prognosis of system faults rely on the knowledge or anticipation of the system 

state to provide advanced warning and lead time for preparing the necessary corrective actions to 

maintain the system in safe operation. 

The related state estimation task becomes quite challenging for systems with a hybrid dynamic 

behavior characterized by continuous states and discrete modes. Sudden transitions of the discrete 

modes, often autonomously triggered by the continuous dynamics, affect the system evolution and a 

large computational effort is required to keep track of the multiple models of the discrete system 

modes and the autonomous transitions between them (Koutsoukos et al. 2002). Since the dynamic 

states cannot be directly observed, the problem becomes that of inferring the system state from 

related measured parameters. 

The soundest model-based approaches to the estimation of the state of a dynamic system or 

component build a posterior probability distribution of the unknown states by combining the 

probability distribution assigned a priori to the possible states with the likelihood of the 

observations of the measurements actually collected (Doucet 1998, Doucet et al. 2001). In this 

Bayesian setting, the estimation method most frequently used in practice is the Kalman filter, which 

is optimal for linear state space models and independent, additive Gaussian noises. In practice, 

however, the dynamic evolution of many systems and components is non-linear and the associated 

noises are non-Gaussian (Kitagawa 1987). In these cases, one may resort to Monte Carlo sampling 

methods also known as particle filtering methods, which are capable of approximating the 

continuous distributions of interest by a discrete set of weighed ‘particles’ representing random 

trajectories of system evolution in the state space and whose weights are estimates of the 

probabilities of the trajectories (Doucet et al. 2000, Djuric et al. 2003, Cadini et al. 2009a, b). 

In this paper, particle filtering is applied for the estimation of the state of a hybrid system of 

literature often taken as a benchmark for dynamic reliability estimation and fault 

diagnosis/prognosis methods (Aldemir et al. 1994, Marseguerra et al. 1996, Labeau et al. 1998, 
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Wang et al. 2002). The system consists of a tank filled with a liquid whose level is autonomously 

maintained between two thresholds by actuators driving three filling and emptying flows triggered 

by the actual liquid level. The actuators discrete mode is estimated by the particle filter on the basis 

of noisy level and temperature measurements. 

 

2 PARTICLE FILTERING FOR OPERATION MODE ESTIMATION 

 

2.1 General model-based framework for state estimation 

 

Let us consider a continuous system whose evolution can be described by: 

 

  ωxf
x

,
dt

d
 (1) 

 

where x is the system state vector, xx nnn
RRR  :f is possibly non-linear and ω is an 

independent identically distributed (i.i.d.) state noise vector of known distribution. 

The state x cannot in general be directly observed; rather, information about x can be inferred 

from the observation of a related variable z whose relation to the state x is described in general 

terms by the equation: 

 

  υxhz ,  (2) 

 

where xx nnn
RRR  :h  is possibly non-linear and υ is an i.i.d. measurement noise vector 

sequence of known distribution. The measurements z are, thus, assumed to be conditionally 

independent given the state process x. 

The practical implementation of computational tools for state estimation requires that the 

continuous system dynamics be discretized appropriately. Regardless of the discretisation method 

adopted, the system state dynamics can be represented by an unobserved (hidden) Markov process 

of order one: 

 

  11  kkk ,ωxfx  (3) 

 

where xx nnn

k RRR  :f  is possibly non-linear and {ωk, kN} is an independent identically 

distributed (i.i.d.) state noise vector sequence of known distribution. 

The transition probability distribution p(xk|xk-1) is defined by the system Equation (3) and the 

known distribution of the noise vector ωk. The initial distribution of the system state p(x0) is 

assumed known. 

A sequence of measurements {zk, kN} is assumed to be collected at the successive time 

steps tk. The sequence of measurement values is described by the measurement (observation) 

equation: 

 

  kkkk υxhz ,  (4) 

 

where xx nnn

k RRR  :h  is possibly non-linear and { υk, kN} is an i.i.d. measurement noise 

vector sequence of known distribution. The measurements {zk, kN} are, thus, assumed to be 

conditionally independent given the state process {xk, kN}. 
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Within a Bayesian framework, the filtered posterior distribution p(xk|z0:k) can be recursively 

computed in two stages: prediction and update (Doucet 1998, Arulampalam et al. 2002). Given the 

probability distribution p(xk-1|z0:k-1) at time k–1, the prediction stage involves using the system 

model (3) to obtain the prior probability distribution of the system state xk at time k via the 

Chapman-Kolmogorov equation: 

 

           11:01111:011:011:0    kkkkkkkkkkkkk dppdppp xzxxxxzxzxxzx  (5) 

 

where the Markovian assumption underpinning the system model (3) has been used. 

At time k, a new measurement zk is collected and used to update the prior distribution via 

Bayes rule, so as to obtain the required posterior distribution of the current state xk (Arulampalam et 

al. 2002): 

 

  
   

 1:0

1:0

:0






kk

kkkk

kk
p

pp
p

zz

xzzx
zx  (6) 

 

where the normalizing constant is 

 

         kkkkkkk dppp xxzzxzz 1:01:0  (7) 

 

The recurrence relations (5) and (6) form the basis for the exact Bayesian solution. 

Unfortunately, except for a few cases, including linear Gaussian state space models (Kalman filter) 

and hidden finite-state space Markov chains (Wohnam filter), it is not possible to evaluate 

analytically these distributions, since they require the evaluation of complex high-dimensional 

integrals. 

One way to overcome this problem is to resort to Monte Carlo sampling or PF methods 

(Pulkkinen 1991, Doucet et al. 2000, Doucet et al. 2001, Seong et al. 2002). Assuming that a set of 

random samples (particles) x
i
0:k, i = 1, 2,…, Ns, of the system state at the time k-1 is available as a 

realization of the posterior probability p(xk-1|z0:k-1), the predicting step at time k is accomplished by 

sampling from the probability distribution of the system noise ωk-1 and simulating the system 

dynamics (3) to generate a new set of samples x
i
k which are realizations of the predicted probability 

distribution p(xk|z0:k-1). 

In the update step, based on the likelihoods of the observations zk collected at time k, each 

sampled particle x
i
k-1 is assigned a weight: 

 

 
 
 




N

j

j

kk

i

kki

k

p

p
w

1

xz

xz
 (8) 

 

An approximation of the posterior distribution p(xk|z0:k) can be obtained in terms of the weighted 

samples (x
i
k, w

i
k), i = 1, 2,…, Ns (Doucet et al. 2001). 

One difficulty that arises in the implementation of PF is the degeneracy problem: as the 

algorithm evolves in time, the weight variance increases (Doucet 1998) and the importance weight 

distribution becomes progressively skewed, until (after a few iterations) all but one particle have 

negligible weights (Arulampalam et al. 2000, Doucet et al. 2000, Andrieu et al. 2001). As a result, 

the approximation of the target distribution p(xk|z0:k) becomes very poor and significant 

computational resources are spent trying to update particles with minimum relevance. A possible 
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solution to this problem is to proceed to a resampling of a new swarm of realizations x
i
k from the 

approximate posterior distribution, constructed on the weighted samples previously drawn; all 

particles thereby generated are assigned equal weights, w
i
k = 1/Ns (Doucet et al. 2001). 

As the final step, one has to resample from the posterior distribution a new swarm of points 

x
i
k. The prediction, update and resample steps form a single iteration, recursively applied at each 

time k. 

 

2.2 Hybrid system model 

 

Let us consider a hybrid system whose dynamic evolution can be described by: 

 

 
 
 












11

11

,

,

kkkk

kkk k

xg

ωxfx




 (9) 

 

βk = {1,2,3,…,M} is the discrete state which indicates the mode in which the system is evolving at 

time k, fβk is the non-linear function describing the (discretized) continuous evolution of system state 

x when the system is in mode βk at time k, gk is the discrete mode transition function. In what 

follows, we shall consider only autonomous transitions between the system modes, i.e. those 

triggered by the control of the continuous state x which demands transitions among the system 

modes when reaching specified thresholds. 

Let s
i
k = (β

i
k,x

i
k) indicate the i

th
 sample of the extended hybrid system state, where x

i
k is the 

random sample drawn from the importance function p(xk|x
i
k-1) and β

i
k is the corresponding discrete 

mode of system behavior. Then, the posterior probability density of the continuous and discrete 

states can be represented by the random measure {s
i
k,wk

i
,i=1...Ns}, where wk

i
 is the particle weight 

of the i
th

 sample of the hybrid state at time k after resampling. 

The estimation of system mode of operation as the most likely one is given by: 

 

 



jGi

i

kk w
ˆ

max arg̂  (10) 

 

where  jiG i

kj
 ˆ . Whereas, the posterior estimate mean of the continuous state xk and its 

variance 2ˆ
k  are given by: 
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where only the particles belonging to the most likely mode i

k
̂  are considered  i

k

i

kj
iG  ˆˆ  . 

 

3 APPLICATION TO A TANK CONTROL SYSTEM 

 

The particle filter estimation algorithm is applied to a hybrid system of literature (Aldemir et 

al. 1994, Marseguerra et al. 1996, Labeau et al. 1998, Wang et al. 2002). The system consists of a 

tank containing a fluid whose level is controlled by three control units which open or close 
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depending on the fluid level crossing of predefined thresholds (HLV and HLP) (Figure 1). The fluid 

in the tank is uniformly heated, under adiabatic conditions, by a thermal power source W. 

 

 
Figure 1. Tank control system  (Aldemir et al. 1994, Marseguerra et al. 1996, Labeau et al. 1998, Wang et al. 

2002). 

 

 

The control aims at maintaining the fluid level x1 in the range (x1,min = HLV, x1,max = HLP), 

while also monitoring the fluid temperature x2 which may become relevant from a safety point of 

view.  

The operational states of the control units at time k are described by the Boolean indicator αl,k, 

l = 1,2,3, where αl,k assumes the value 1 or 0 according to whether the unit is on (αl,k = 1) or off (αl,k 

= 0). The autonomous control actions modify the states αl,k of the units according to the following 

rules: 
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Thus, the following four modes of system dynamic evolution may be identified: 
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With the additional simplifying physical assumptions that the fluid input in the tank by units 1 

and 3 mixes instantaneously and the flow rate through the outlet unit 2 is independent of the fluid 

level, and the discretisation of the system dynamics, the time evolution of the state x1,k and x2,k can 

be described by two first-order, decoupled, non-linear difference equations determined by the mass 

and energy conservation laws  (Wang et al. 2002). 

The aim of the analysis is that of estimating the discrete mode of the system, i.e. the 

operational states of the three control units on the basis of Ns trajectories drawn from the system 

model and a sequence of noisy measurements of the level x1,k and the temperature x2,k: 

 

 
kkk

kkk

xz

xz

,2,2,2

,1,1,1








 (15) 

 

where υ1,k and υ2,k are the measurement noises. Knowledge of the system mode of operation allows 

the proper control and maintenance of its components. 

Let us suppose that the control system starts from x1,0 =6m and x2,0 =10m. The time horizon 

considered for the evolution of the system dynamics is Nt = 40h, with level and temperature 

observations at discrete time steps of Δt = 30min (Nk = 80). As in the application of reference 

(Wang et al. 2002), the inlet fluid temperature is m  = 15ºC, the level thresholds are set at HLV = 

4m and HLP = 10m and the fluid flow rates are Q1 = 1m/h, Q2 = 4m/h and Q3 = 4.5m/h. A zero – 

mean Gaussian noise with variance σ
2

Q = 0.0025 is added to the flow rates, for closer adherence to 

reality. The process and the measurement noises are assumed Gaussian with zero mean and 

variances σ
2
ω = [0.02 0.01] and σ

2
υ = [0.16 0.05] respectively. 

Assuming independence of the level and temperature measurements, the observation 

likelihood in (8) can be written as: 
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First, a crude, measurement-based, empirical algorithm is proposed for the estimation of the 

mode βk at time k: 
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where z1,k is the level measurement at time k.  

Figure 2 shows the estimated mode ̂  (dot-dashed line) and the model simulated one β 

(solid line). The performance is not satisfactory because the noise υ1 generates spurious oscillations 

in the level measurement z1 with respect to the model-simulated x1 actually driving the mode 

transitions. 
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Figure 2. Measurement-based estimated system modes (dotted line) and model-based simulated system modes 

(solid line). 

 

 

To overcome this problem, the particle filter method is implemented with a number of 

particles Ns = 1000 (Figure 3). Figure 4 shows the particle filter-estimated mode ̂  (dot-dashed 

line) and the model simulated one β (solid line). The agreement is satisfactory, with the only 

exception in correspondence of the first time when the system enters mode β = 4, i.e. the fluid level 

is higher than HLP. This is due to the fact that the first few observations of the fluid level higher 

than HLP do not provide the filter with enough information for properly performing the mode 

estimation. This is confirmed in Figure 5, where the estimated level 1x̂  (dotted) is affected by a 

larger uncertainty k,1̂  when approaching the threshold HLP for the first time. 

 

 

Figure 3. Fluid level measurements (dotted line), with measurement noise uncertainty ±
1

1   bands (solid line); 

model-simulated fluid level (dots). 
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Figure 4. Particle filter-estimated (dotted line) and model-simulated (solid line) modes. 

 

 

 

Figure 5. Particle filter-estimated mean fluid level (dotted line), with ±
1

1   uncertainty bands (solid line) and 

model-simulated fluid level (dots). 

 

 

Figure 6. Particle filter-estimated mean of the fluid temperature (dotted line), with ±
1

1   uncertainty bands 

(solid line) and simulated fluid temperature (dots). 

 

 

Similar satisfactory results (not reported for brevity’s sake) have been obtained in the 

estimation of the temperature state variable, x2.  
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4 CONCLUSIONS 

 

In this paper, a Monte Carlo-based filter has been devised for estimating both the continuous 

states and the discrete modes of a controlled system, whose transitions between the discrete modes 

are autonomously triggered by the continuous states. Comparison with a crude algorithm which 

bases its estimates directly on the observed measurements, shows the higher performance of the 

particle filter on a wider range of measurements noises, thus counterbalancing the larger 

computational effort required. 

 

5 PREFERENCES 

 
Aldemir, T., Siu, N., Mosleh, A., Cacciabue, P.C. & Goktepe, B.G. (1994). Eds.: Reliability and Safety Assessment of 

Dynamic Process Systems. NATO-ASI Series F. 120, Berlin: Springer-Verlag. 

Andrieu, C., Doucet, A., & Punskaya, E. (2001) .Sequential Monte Carlo Methods for Optimal Filtering. Sequential 

Monte Carlo Methods in Practice, Doucet, A., de Freitas, N., and Gordon, N., Eds. New York: Springer-Verlag. 

Arulampalam, M.S., Maskell, S., Gordon, N. & Clapp, T. (2002). A Tutorial on Particle Filters for Online 

Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Trans. On Signal Processing. 50, 2, 174-188. 

Cadini, F., Zio, E. & Avram, D. (2009a). Model-based Monte Carlo state estimation for condition-based component 

replacement. Reliab. Eng. and Sys. Saf. 94, 752-758. 

Cadini, F., Zio, E. & Avram, D. (2009b). Monte Carlo-based filtering for fatigue crack growth estimation. Probabilistic 

Engineering Mechanics. 24, 367-373. 

Djuric, P.M., Kotecha, J.H., Zhang, J., Huang, Y., Ghirmai, T., Bugallo, M. F. & Miguez, J. (2003). Particle Filtering, 

IEEE Signal Processing Magazine. 19-37. 

Doucet, A. (1998). On Sequential Simulation-Based Methods for Bayesian Filtering. Technical Report, University of 

Cambridge, Dept. of Engineering, CUED-F-ENG-TR310. 

Doucet, A., Godsill, S. & Andreu, C. (2000). On Sequential Monte Carlo Sampling Methods for Bayesian Filtering. 

Statistics and Computing. 10, 197-208. 

Doucet, A., de Freitas, J.F.G. & Gordon, N.J. (2001). An Introduction to Sequential Monte Carlo Methods, in 

Sequential Monte Carlo in Practice. A. Doucet, J.F.G. de Freitas and N.J. Gordon, Eds., New York: Springer-

Verlag,. 

Kitagawa, G. (1987). Non-Gaussian State-Space Modeling of Nonstationary Time Series. Journal of the American 

Statistical Association. 82, 1032-1063. 

Koutsoukos, X., Kurien, J. & Zhao, F. (2002). Monitoring and diagnosis of hybrid systems using particle filtering 

methods. Proceedings of the 15th International Symposium on the Mathematical Theory of Networks and Systems 

(MTNS). 

Labeau, P.E. & Zio, E. (1998). The Cell-to-Boundary Method in the Frame of Memorization-Based Monte Carlo 

Algorithms. A New Computational Improvement in Dynamic Reliability. Mathematics and Computers in 

Simulation. 47, 2-5, 329-347. 

Marseguerra, M. & Zio, E. (1996). Monte Carlo approach to PSA for dynamic process systems. Reliab. Eng. and Sys. 

Saf. 52, 227-241. 

Pulkkinen, U. (1991). A Stochastic Model for Wear Prediction through Condition Monitoring. K. Holmberg & A. 

Folkeson Eds.. Operational Reliability and Systematic Maintenance. London/New York: Elsevier. 223-243. 

Seong, S.-H., Park, H.-Y., Kim, D.-H., Suh, Y.-S., Hur, S., Koo, I.-S., Lee, U.-C.,. Jang, J.-W & Shin, Y.-C. (2002). 

Development of Fast Running Simulation Methodology Using Neural Networks for Load Follow Operation. Nuclear 

Science and Engineering. 141, 66-77. 

Wang, P., Chen X.M. and Aldemir T. (2002). DSD: a Generic Software Package for Model-Based Fault Diagnosis in 

Dynamic Systems. Reliab. Eng. and Sys. Saf. 75,  31-39. 

 

F. Cadini, D. Avram, E. Zio ‐  A MONTE CARLO‐BASED TECHNIQUE FOR ESTIMATING THE OPERATION MODES OF HYBRID DYNAMIC 
SYSTEMS 

 
RT&A # 02 (17)  

(Vol.1) 2010, June 
 

114 



F. Grabski, A. Załęska-Fornal – BOOTSTRAP METHODS FOR THE CENSORED DATA IN EMPIRICAL BAYES ESTIMATION OF THERELIABILITY PARAMETERS R&RATA # XXX(Vol.X) 200X, XXXXX

115

BOOTSTRAP METHODS FOR THE CENSORED DATA IN EMPIRICAL BAYES
ESTIMATION OF THE RELIABILITY PARAMETERS

F. Grabski, A. Załęska-Fornal


Department of Mathematics, Naval University, Gdynia, Poland

e-mail: f.grabski@amw.gdynia.pl ; a.fornal@amw.gdynia.pl

ABSTRACT

Bootstrap and resampling methods are the computer methods used in applied statistics. They are types of
the Monte Carlo method based on the observed data. Bradley Efron described the bootstrap method in 1979
and he has written a lot about it and its generalizations since then. Here we apply these methods in an empirical
Bayes estimation using bootstrap copies of the censored data to obtain an empirical prior distribution.

1 INTRODUCTION

The bootstrap is a computer-based method used in applied statistics. It is a databased method
of simulation for assessing statistical accuracy. The term bootstrap derives from the phrase ‘to pull
oneself up by one’s bootstrap’ which can be found in the eighteenth century Adventures of Baron
Munchausen by Rudolf Erich Raspe. The method was proposed by Bradley Efron in 1979 as a
method to estimate the standard error of a parameter. The main goal of the bootstrap method is a
computer-based fulfilling of basic statistical ideas. The recent environment applications of bootstrap
can be found in toxicology, fisheries survey, ground water and air pollution modeling, hydrology
etc. Bootstrapping is a methodology whose implementation involves a powerful principle: creating
many repeated data samples from a single one we have and making inference from those samples.
We apply bootstrap in empirical estimation using the so-called bootstrap copies of the censored data
to obtain an empirical distribution.

2 BOOTSTRAP AND RESAMPLING COPIES OF THE CENSORED

 The random variable X  denotes time to failure of an element. The probability distribution of
the time to failure is defined by the cumulative distribution function (cdf)

)()( xXPxF                                                         (1)
where   is true but unknown parameter. To assess this distribution we test n identical
elements neee ,...,, 21 through the times nyyy ,...,, 21  correspondingly. Suppose, that the numbers

nxxx ,...,, 21  are the times to failures of the elements mentioned above.  A vector ),...,,( 21 nn xxxx
of the data is assumed to be the value of the random vector ),...,,( 21 nn XXXX , where random
variables nXXX ,...,, 21  are mutually independent and identically distributed (i.i.d.). That random
vector is a sample from the distribution )(F . A vector ),...,,( 21 nn yyyy  of the testing times of
elements (times of the observations, censoring points) we can treat as the value of the random vector

),...,,( 21 nn YYYY . We assume that nYYY ,...,, 21  are mutually independent random variables and they
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are also independent of X’s.  Probability distributions of the random variables nYYY ,...,, 21  are
defined by cdf

niyYPyG iii ,...,2,1),()(                                                     (2)
Those functions do not depend on the parameter  . In many cases those functions are

defined as

],0[
for1
for0

)( 







 i
i

i
i y

yy
yy

yG  .

It means that the quantities of nYYY ,...,, 21  are determined.
The observations are described by the random variables

),min( jjj YXU  , nj ,...,1                                               (3)









jj

jj
j YX

YX
for0
for1

  .                                                       (4)

The sufficient statistic describing observations can be written as the vector
),(),...,,(( 11 nnn UU Z . The value of that random vector is )),(),...,,(( 11 nnn uu z , which

allows to obtain the vector ),...,,,..,( )()1()()2()1()( nkkn zzzzz z , where )()2()1( ,...,, kzzz  are the instants
of the elements failure and )()2()1( ,...,, nkk zzz   are the times observations of the working elements.

Suppose that we are able to estimate a parameter   by using estimator )( nn T Zθ  (or

)(~
)(nn T Zθ  ).  The numbers )( nn T z    (or )(~

)(nn T z ) are their values. After that we can use
the distribution )(

n
F  to simulate so-called bootstrap copies

Bbzzz b
n

bbb
n ,....,2,1),,...,,( )*(

)(
)*(

)2(
)*(

)1(
)*(

)( z
of data ),...,,( )()2()1()( nn zzzz . The bootstrap copies of data   are the values of the random vectors

BbZZZ b
n

bbb
n ,....,2,1),,...,,( )*(

)(
)*(

)2(
)*(

)1(
)(

)( Z ,
that are called the bootstrap samples. The function )(b

n
F


 is a cumulative probability distribution of

the independent random variables )*()*(
2

)*(
1 ,...,, b

n
bb ZZZ .

If we have a vector of observation ),...,,( )()2()1()( nn zzzz  of size n , we can define the empirical

cumulative distribution function F  as

n
zzz

zF ii
n

}:{#
);( )()(

)(


z

that is equivalent to the discrete distribution

lk
n
np k

k ,...,2,1,  ,

where }:{# ))()( kik zzin  .
This distribution can be expressed as a vector of frequencies ),...,,( 21 lpppp .
Vectors of the data

Rrzzz r
n

rrr
n ,....,2,1),,...,,( )()(

2
)(

1
)(  z

coming from distribution );( )(nzF z  are said to be resampling copies of the data
),...,,( )()2()1()( nn zzzz .
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In other words a resampling copy of the data ),...,,( )()(
2

)(
1

)( r
n

rrr
n zzz  z  is generated by randomly

sampling n times with replacement from the original data points ),...,,( )()2()1()( nn zzzz . The
randomly sampling means the random choice of an element from among )()2()1( ,...,, nzzz  in each of
n drawings. The resampling copy of the data is composed of the elements of the original sample,
some of them can be taken zero times, some of them can be taken ones or twice etc. Notice that in

),...,,( )()(
2

)(
1

)( r
n

rrr
n zzz  z  the resampling copy, the elements are repeated as a rule.

The typical number of the bootstrap B or resampling copies of the data range from 50 to 1000.

3  BOOTSTRAP ESTIMATORS

Let ),...,,( **
2

*
1 nn ZZZZ  be a bootstrap sample for the given vector of data

),...,,( 21 nn zzzz . A random variable )(   nn T Zθ  is said to be a bootstrap estimator of the
parameter .

The distribution of the statistics nn θθ   for the bootstrap sample with the fixed values data is
close to the distribution of the statistics nθ .
From that rule it follows that the shapes of the distributions of the statistics nn θθ , are similar .To
obtain empirical distribution of the random variable 

nθ we have to simulate bootstrap copies
Bbzzz b

n
bbb

n ,....,2,1),,...,,( )*()*(
2

)*(
1

)*( z
of data ),...,,( 21 nn zzzz . After that we calculate the values of statistics

BbT b
n

b
n ,....,2,1),( )*()(  z .

We can use a nonparametric kernel estimator to obtain the estimate of probability density of the
bootstrap estimator 

nθ . The value of this estimator with Gaussian kernel is given by



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






 
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B

b

b
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h
K
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)(1)( 

where ),,(,
2
1)( 2

2










eK

and 2.006.1  Bsh , s - standard deviation of Bbb
n ,....,2,1,)(  .

4 THE BOOTSTRAP ESTIMATE OF STANDARD ERROR

Bbzzz b
n

bbb
n ,....,2,1),,...,,( )*()*(

2
)*(

1
)*( z

are the bootstrap replications of the statistics values
BbzT b

n
b

n ,....,2,1),( )*()(                                                   (5)
and they correspond to the bootstrap censoring data.

The bootstrap estimate of the standard error of   is defined by the following formula

 
1

1
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,                                                                (6)

where
B
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


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

.
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The bootstrap algorithm for estimating standard errors is as follows:
- Get B independent bootstrap samples Bbzzz b

n
bbb

n ,....,2,1),,...,,( )*()*(
2

)*(
1

)*( z
    (for estimating a standard error, the number of B  should be in the range 30-200).

-     Compute the bootstrap replication correspond each bootstrap sample,
.,....,2,1),( )*()( BbT b

n
b

n  z

-     Compute the standard error 
se by the sample standard deviation of B  replications

             according to (6).

5  EMPIRICAL BAYES ESTIMATION

The recent work deal with empirical Bayes estimation has been stimulated by the work of
Robbins  (1955). It is well known that the value of Bayes estimator B  of parameter   under the
squared-loss function is an expectation in posterior distribution. If   is a value of sufficient
statistics for parameter  , than the value of Bayes estimator B  of the parameter   is

)()()|(~
)()()|(~

)|(





dg

dg
EB






f

f
                                                         (7)

where   denotes a discrete counting measure or Lebesgue measure and )(g  is a prior density
function of the parameter   with respect to measure  .
We suppose that a prior density of mentioned above parameter is unknown. In classical empirical
Bayesian procedure a prior distribution is assessed from the past data. Very often the only data we
have is the small sample ),...,,( 21 nzzzz .  In those cases instead of past data, we can use the
vectors Bbzzz b

n
bbb

n ,....,2,1),,...,,( )*()*(
2

)*(
1

)*( z , that are values of the bootstrap samples
corresponding to an unknown distribution )(F  of a random variable X denoting (for example)
time to failure.  The bootstrap copies for censored data are generated from the distribution )(F ,

where )( )(nT z . To estimate the unknown parameter   we have to calculate values of the

bootstrap statistics BbzT b
n

b ,....,2,1),( )*()(  of that one.  As a prior density we propose
discrete density function

},...,1{},...,,{
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m
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where }:{# )()( ik
i km    denotes number observations equal to )(i ,
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.
From  (7), for the counting measure   and the density function defined by (8) we obtain
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Let );()( )*(
)(

)*(
)( 

b
n

b
n l zzf   be a likelihood    function for the bootstrap sample

),...,,( )*(
)(

)*(
)2(

)*(
)1(

)*(
)(

b
n

bbb
n zzzz

with unknown parameter  . The function is defined by the formula
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b
n zFzfl

b

b

 
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z .                                               (10)

Notice that a prior distribution is constructed on the basis on the bootstrap samples. Since, a value
of bootstrap empirical Bayes estimator has the form of (9).

6  EXAMPLES

Example 1.
Suppose that we wish to estimate a failure rate    in the exponential distribution given by

pdf
0,0,)(    

 xexf x  .                                                     (11)
Assume that we have data, which is the vector

),...,,,..,( )()1()()2()1()( nkkn zzzzz z ,
where )()2()1( ,...,, kzzz  are times to failure of the tested elements and )()2()1( ,...,, nkk zzz  are times of
the working elements observations. In that case a likelihood function is
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The number




n

i
iz

1
)(                                                                             (13)

is the value of some sufficient statistics for the unknown parameter λ. By substitution we obtain the
likelihood function

,),(   el k

which depends on  . To find the value of the maximum likelihood estimator we have to solve an
equation

.0),(ln
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The solution of it is
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The same way, using formula (7) for the bootstrap samples
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The function (9) in this case is given by the formula
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By repetition we can obtain a sequence of values of a Bayes estimator that we can use to construct
its empirical distribution.

Example 2.
We wish to estimate a value of an exponential reliability function

.,0,0,)( 
   xexR x                                                 (15)

At a fixed moment 0x  the number
0)( 0

xexRr 



is a value of the reliability function.  Hence

.ln

0x
r

                                                                           (16)

There is a given vector
),...,,,..,( )()1()()2()1()( nkkn zzzzz z

the coordinates of which have the same meaning as in Example 1. Let   be described by (13).
A likelihood function of the parameter   for nz  is

.),(   el k

Substituting the value of   and rer ln  we get the form of the likelihood function
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 The likelihood equation
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




l

is carried out to the following form 0
ln 0


rxrr

k  .

A root of the equation is a value of the maximum likelihood estimate of r and it has a form of
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Using the bootstrap samples
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7  CONCLUSIONS

In that paper we present the possibility of applying the bootstrap and resampling methods in
empirical Bayes estimation. The bootstrap and resampling copies of the given data are used to
construct an empirical prior distribution.
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ABSTRACT 
 

Continuous-time Markov chains are an important subclass in stochastic processes, 
which have facilitated many applications in business decisions, investment risk analysis, 
insurance policy making and reliability modeling.  One should be fully aware that the 
existing continuous-time Markov chains theory is merely a framework under which the 
random uncertainty governs the phenomena. However, the real world phenomena often 
reveal a reality in which randomness and vagueness co-exist, and thus probabilistic 
continuous-time Markov chains modeling practices may be not wholly adequate. In this 
paper, we define random fuzzy continuous-time Markov chains, explore the related average 
chance distributions, and propose both a scheme for parameter estimation and a simulation 
scheme. It is expected that a foundational base can be established for reliability modeling 
and risk analysis, particularly, repairable system modeling.  

 
 
 
1  INTRODUCTION 
 

One should be fully aware that vagueness is an intrinsic feature of today’s diversified 
business environments. As Carvalho and Machado (2006) commented, “In a global market, 
companies must deal with a high rate of changes in business environment. … The parameters, 
variables and restrictions of the production system are inherently vagueness.” Therefore a co-
existence of random uncertainty and fuzzy uncertainty is inevitable aspect of safety and reliability 
analysis and modelling.  

It is obvious that probabilistic modeling is a good approximation to real world problem only 
when random uncertainty governs the phenomenon. Philosophically, if fuzziness and randomness 
both appear then probabilistic modeling alone may be questionable or inadequate. Therefore, it is 
logical to develop appropriate models for co-existent fuzziness and randomness. 

Markov processes have been applied to large and complex system modeling and analysis in 
the reliability literature, for example, in recent work of Kolowrocki (2007), Love et al. (2000), 
Soszynska (2007), and Tamura (2004), etc. 

We may also note that in recent year researchers in repairable system modeling, particularly 
in Asian reliability communities, proposed repair impact scenario models, which assume that the 
repair impacts to a repairable system may be classified into several states: no improvement, minor 
improvement, medium improvement, and major improvement. Hence one may utilize Kijima’s age 
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models (Kijima, 1989) to estimate those repair effects on the system repair states for optimal 
maintenance policy decision making, see Chan and Shaw (1993), Dohi et al. (2006), Lim and Lie 
(2000), Love et al. (2000), Wang, H. and Pham, H. (1996), Sheu et al. (2004), and Zhang (2002). 
However, less attention has been paid to the repair effect estimation, except for a few authors, Guo 
and Love (1992, 2004), Lim and Lie (2000), Yun et al. (2004), etc. 

In this paper, we will give a systematic treatment for random fuzzy continuous-time Markov 
chains not only in the mathematical sense (building models based on postulates and definitions), but 
also in the statistical sense (estimation and hypothesis testing based on sample data).   
 
2  PROBABILISTIC CONTINUOUS-TIME MARKOV JUMP PROCESSES 
 

Grimmett and Stirzaker (1992) and also Guo (2009) describe continuous-time Markov jump 
processes by focusing the stochastic semigroup and the rate matrix. 

Let { }, 0tX X t= ³  be a Markov chain with state space { }0,1,2, , 1N= - . Further, let  

( ) { }, Pr |ij t sp s t X j X i= = =  (1)

be the transition probabilities. For the stationary Markov chain 

( ) ( )0, , ,  ij ijp t s p s t s t- = " <  (2)

Definition 1: (Grimmett and Stirzaker (1992)) A stochastic semigroup { }P P , 0t t= ³ , with 

( )( )Pt ij N N
p t

´
=  satisfies the following properties:  

(a) 0P I= , an N N´ identity matrix; 

(b) For t" , ( )0 1ijp t£ £ , ( ) 1ijj
p t =å ; 

(c) The Chapman-Kolmogorov equations, for any , 0s t > , P P Pt s t s+ = .   

A stochastic semigroup { }P P , 0t t= ³  is standard if 0lim P It t = . The characterization of a 

stochastic semigroup { }P P , 0t t= ³  can be stated as a theorem. 

Theorem 1: For a standard stochastic semigroup { }P P , 0t t= ³ , the limit  

( )
0

( ) 1
lim ii

i ii
h

p h
q q

h

-
=- =  (3)

exists (maybe -¥ ), while the limit 

0

( )
lim ij

ij
h

p h
q

h
=  (4)

exists and is finite. Guo (2009) detailed the proof of Theorem 1. 
Definition 2: The matrix Q  

0 01 0, 1

10 11 1, 1

1,1 1,2 1, 1

Q

N

N

N N N N

q q q

q q q

q q q

-

-

- - - -

é ù-
ê ú
ê ú-ê ú= ê ú
ê ú
ê ú-ê úë û




   


 (5)

where 

0

( )
lim ij ij

ij
h

p h
q

h

-d
=  (6)

with 1,  ij i jd = = , 0 otherwise. 

Lemma 1: In the rate matrix Q, 



R. Guo, D. Guo, and T. Dunne – RANDOM FUZZY CONTINUOUS‐TIME MARKOV JUMP PROCESSES 
RT&A # 2 (17) 

(Vol.1) 2010, June 
 

 

124  

1

0,

,  , 0,1, 2, , 1
N

i ij
j j i

q q i j N
-

= ¹

= = -å   (7)

The rate matrix Q characterizes the movements of the continuous-time Markov chain 
{ }, 0tX X t= ³ . The following theorem reveals that fundamental fact.  

Theorem 2: If the process { }, 0tX X t= ³  is currently halted at state i , it halts in state i  

during a time exponentially distributed with parameter iq , independently of how the process 

reached state i  and of how long it takes to get there. Furthermore, The process { }, 0tX X t= ³  

leaves state i , and moves to state j  with probability ( ) ij iq q i j¹ .  

Theorem 3. A standard stochastic semigroup { }P P , 0t t= ³  satisfies Kolmogorov equations: 

P P Q (Forward)

P QP  (Backward)

t t

t t

d

dt
d

dt

=

=
 (8)

 Corollary 1. A standard stochastic semigroup { }P P , 0t t= ³  satisfies 
QP t

t e=  (9)

where matrix 

( )Q

0

1
Q

!
it

i

e t
i

¥

=

=å  (10)

It is well-established fact that every entry of Pt ,  say ( )ijp t , can be expressed by a linear 

combination of l ter  with appropriate coefficient ( )c l , where lr is the thl eigenvalue of Q  or of 

an appropriate minor matrix of Q , i.e.,  

( ) ( )
1

0

l

N
t

ij
l

p t c l e
-

r

=

=å  (11)

Example 1: Two-state continuous-time Markov chain. Let the rate matrix  

Q
é ù-n n
ê ú= ê úl -lë û

 (12)

The eigenvalues are ( ) ( )( )1 2, 0,r r = - n+l , thus 

( ) ( )

( ) ( )
P

t t

t
t t

e e

e e

- l+n - l+n

- l+n - l+n

é ùl n n n
ê ú+ -
ê úl +n l+n l+n l+n= ê ú
ê úl l n l

- +ê ú
ê úl +n l+n l+n l+në û

 (13)

which confirms the formal result Equation (11). 
 
3  FOUNDATION OF RANDOM FUZZY PROCESSES 
 

Without a solid understanding of the intrinsic feature of random fuzzy processes, there is no 
base for exploring the modelling of random fuzzy continuous-time Markov chains. Liu’s (2004, 
2007) hybrid variable theory established on the axiomatic credibility measure and probability 
measure foundations provides the mathematical foundation. 
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Guo et al. (2009) gave a systematic review on random fuzzy variable theory. In order to 
shorten the current paper, we keep only contents necessary for notational clarity, for details, see 
Guo and Guo (2009), or directly Liu’s books (2004, 2007). 

First let us review the credibilistic fuzzy variable theory. Let   be a nonempty set, and 
 P  the power set on  .  

Definition 3: Any set function ( ) [ ]Cr : 0,1Q P  which satisfies Liu’s four Axioms (2004, 

2007) is called a credibility measure. The triple ( )( ), ,CrQ QP  is called the credibility measure 

space. 
Definition 4: A fuzzy variable   is a measurable mapping, i.e.,      : , ,     P B . 

A fuzzy variable is not a fuzzy set in the sense of Zadeh’s fuzzy theory (1965, 1978), in 
which a fuzzy set is defined by a membership function. 

Definition 5: (Liu (2004, 2007)) The credibility distribution  : 0,1   of a fuzzy variable 

  on ( )( ), ,CrQ QP  is 

    Crx x        (14)

         Liu (2004, 2007) defines a random fuzzy variable as a mapping from the credibility 
space ( ),2 ,CrQQ  to a set of random variables. 

Definition 6: (Guo et al, (2007)) A random fuzzy variable, denoted as   ,X    , is a 

set of random variables X  defined on the common probability space  , Pr A,  and indexed by a 

fuzzy variable     defined on the credibility space ( ),2 ,CrQQ .  

Definition 7: (Liu (2004, 2007)) Let x  be a random fuzzy variable, then the average chance 

measure denoted by {}ch ⋅ , of a random fuzzy event { }xx£ , is  

{ } ( ){ }{ }
1

0

ch Cr |Pr dx xx£ = q ÎQ x q £ ³a aò  (15)

Then function ( )Y ⋅  is called as average chance distribution if and only if 

( ) { }chx xY = x£  (16)

Definition 8: A random fuzzy process is a family of random fuzzy variables defined on the 
common Product measure space ( ) ( ),2 ,Cr , PrQQ ´ W A, , denoted by { },t tx = x Î , where   is an 

index set. 
Theorem 4: Let   be a fuzzy variable defined on the credibility space   , ,CrP   and 

  be a random variable defined on the probability space   , , P A , then 

(1) Let   be an arithmetic operator, which can be “  ”, “  ”, “  ” or “  ” operations, such that 
   maps from   , ,Cr P  to a collection of random variables on   , , P A , denoted by  . 

Then   is a random fuzzy variable defined on hybrid product space      , ,Cr , , P    P A . 

(2) Let :f     be a continuous mapping, such that  ,f    maps from   , ,Cr P  to a 

collection of random variables on   , , P A , denoted by  . Then  ,f    is a random 

fuzzy variable defined on hybrid product space      , ,Cr , , P    P A . 
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(3) Let  ;F x   be the probability distribution of random variable  with parameter   (possibly 
vector-valued), then  ;F x   defines a random fuzzy variable   on the hybrid product space 

     , ,Cr , , P    P A . 

         Note that Theorem 4 merely repeats facts stated in Liu’s books, (2004, 2007).  
 
4  STATIONARY RANDOM FUZZY CONTINUOUS-TIME MARKOV CHAIN 
 

Let { }, 0tX X t= ³  be a Markov process with a standard stochastic semigroup { }P P , 0t t= ³  

having a fuzzy rate matrix Q defined on credibility space ( )( ), ,CrQ QP  with credibility distribution 

function matrix ( )ij N N´
L= L . Then by a direct application of Theorem 4, Item (3), a random fuzzy 

continuous-time Markov chain can be obtained.  
Definition 9: A process is called a random fuzzy continuous-time Markov chain 

{ }, 0t tx= x ³  taking values in set { }0,1,2, , 1N= - , if   

(a) { }, 0t tx= x ³  satisfies a Markov property:  

{ }
{ }

1 21 2Pr | , , ,

Pr |

t t t s

t s

j i i i

j i

x = x = x = x =

= x = x =


 (17)

for all 1 2t t s t< < < <  and any 1 2, , , ,i i i j Î  . 

(b) the stochastic semigroup { }P P , 0t t= ³  is standard; 

(c) and the fuzzy rate matrix 

( )
0

P I
Q lim t

ij N N t
q

t´ 

-
= =  (18)

is defined on credibility space ( )( ), ,CrQ QP  with credibility distribution function matrix 

( )ij N N´
L= L . 

It is obvious that in Definition 9 for a given value of matrix 0Q Q= , { }, 0t tx= x ³  is a 

probabilistic continuous-time Markov chain. However, if Q  is a fuzzy matrix, then for any given 
time t , the count tx is a random fuzzy variable according to Theorem 5. Therefore, Definition 9 
defines a stationary random fuzzy Poisson process.  

Theorem 5: If the process { }, 0t tx= x ³  is currently halted at state i , it halts in state i  

during a a time interval which is exponentially distributed with fuzzy parameter iq , independently 
of how and when the process reached state i  and of how long it has been there. Furthermore, The 
process { }, 0t tx= x ³  leaves state i , and moves to state j  with a fuzzy probability 

( ) ij iq q i j¹ .  

Proof: A straightforward application of Definition 9 and Theorem 2. 
Corollary 2: If ijq  ( )i j¹ , , 0,1, , 1 i j N= - , follow piecewise linear credibility 

distributions 
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( )
( )

( )

0        

 
2

,  
2

2

1          

ij

ij
ij ij

i ij

ij
ij ij

ij ij

ij ij

ij

x a

x a
a x b

b a
x i j

x c b
b x c

c b

x c

ì <ïïïï -ïï £ <ïï -ïïL = ¹íï + -ï £ <ïï -ïïïï ³ïïî

 (19)

The halting times, denoted by iT , 0,1, , 1i N= - , are independent random fuzzy exponential 

variables with fuzzy parameter i ijj
q q=å  following a piecewise linear credibility distribution 

( )
( )

( )

0        

 
2

,  
2

2

1          

i

i
i i

i i

i
i i

i i
i i

i

x a

x a
a x b

b a
x

x c b
b x c

c b

x c

ì <ïïïï -ï £ <ïï -ïïL =íï + -ï £ <ïï -ïïïï ³ïî

 (20)

where 
1

1,

1

1,

1

1,

N

i ij
j j i

N

i ij
j j i

N

i ij
j j i

a a

b b

c c

-

= ¹

-

= ¹

-

= ¹

ìïï =ïïïïïïï =íïïïïïï =ïïïî

å

å

å

 (21)

Thus the average chance distributions (for holding times) are 

( ) ( ) ( ){ }

( ) ( )

1

0

= Cr : ln 1 d

       1
2 2

i i i i

i i

b t a t c t b t

i i i i

t q t

e e e e

b a t b c t

- - - -

Y ³- -

- -
= + +

- -

ò q q a a

 (22)

Proof: Note that 

  Pr 1 iq t
iT q t e    (23)

Therefore the event ( )( ){ }{ }: Pr iT q t£ ³q q a  is a fuzzy event and is equivalent to the fuzzy 

event ( ) ( ){ }: ln 1iq t³- -q q a . As a critical part of the derivation of the average chance 

distribution, it is necessary to calculate the credibility measure for fuzzy event 
( ) ( ){ }: ln 1iq t³- -q q a , i.e., to obtain the expression for 

( ) ( ){ }Cr : ln 1iq t³- -q q a  (24)

Recall that for the credibilistic fuzzy variable, i ijj i
q q

¹
=å , the credibility measure takes the 

form 
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( ){ }
( )

( )

1           

2
 

2
Cr : ,  

    
2

0           

i

i i
i i

i i

i
i

i i
i i

i

x a

b a x
a x b

b a
q x

c x
b x c

c b

x c

ì <ïïïï - -ï £ <ïï -ïï> =íï -ï £ <ïï -ïïïï ³ïî

q q  (25)

Accordingly, the range for integration over a can be determined as shown in Table 1. Recall that 
the expression of ( )ln 1x ta=- -  appears in Equation (25), which constitutes the link between 

intermediate variable   and average chance measure. 
The average chance distribution for the exponentially distributed random fuzzy lifetime is 

then derived by splitting the integration into five terms according to the range of   and the 
corresponding mathematical expression for the credibility measure ( ) ( ){ }Cr : ln 1iq t³- -q q a , 

which is detailed in the following table. 
 

Table 1.  Range analysis for   
 

x a  and credibility measure expression 

x a-¥< <  Range for a  0 1 ate-£ £ -a  

( ) ( ){ }Cr ln 1 t³- -l q a  1 
a x b£ <  Range for a  1 1at bte e- -- < £ -a  

( ) ( ){ }Cr ln 1 t³- -l q a  ( ) ( )( )1 2x a b a- - -  
b x c£ <  Range for a  1 1bt cte e- -- < £ -a  

( ) ( ){ }Cr ln 1 t³- -l q a  ( ) ( )2c x c b- -  
c x£ <+¥  Range for a  1 1cte-- < £a  

( ) ( ){ }Cr ln 1 t³- -l q a  0 

 
Then the exponential random fuzzy lifetime has an average chance distribution function:  

( ) ( ) ( ){ }

( ) ( )

1

0

= Cr : ln 1 d

       1
2 2

bt at bt ct

t t

e e e e

b a t c b t

- - - -

Y ³- -

- -
= + +

- -

ò q l q a a

 (26)

and the average chance density is 

( )
( ) ( )

( ) ( )

2

2

=
2 2

       
2 2

at bt bt at

bt bt ct bt

e e be ae
t

b a t b a t

e e ce be

c b t c b t

- - - -

- - - -

- -
+

- -

- -
+ +

- -

y
 

(27)

This expression concludes the proof. 
Similarly to the probabilistic reliability theory, we define a reliability function or survival 

function for a random fuzzy lifetime and accordingly name it as the average chance reliability 
function, which is defined accordingly as 

( ) ( )1t tY = -Y  (28)

Then, for an exponential random fuzzy lifetime, the average chance reliability function is 
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( )
( ) ( )

=
2 2

at bt bt cte e e e
t

b a t c b t

- - - -- -
Y +

- -
 (29)

Remark 1: The average chance distributions of jump probabilities ij jq q do not have closed 

forms, which require the application of Zadeh’s extension theorem (1978). However, the values of 
fuzzy probability ij jq q  fall in intervals 

min , ,max ,ij ij ij ij

ij ij ij ijj i j i j i j i

a c a c

a c a c
¹ ¹ ¹ ¹

é ùæ ö æ ö÷ ÷ç çê ú÷ ÷ç ç÷ ÷ê úç ç÷ ÷ç ç÷ ÷ê ú÷ ÷ç çè ø è øë ûå å å å
 (30)

which will inform the explorations of the process { }, 0t tx= x ³ . 

 
5  NON-STATIONARY RANDOM FUZZY CONTINUOUS-TIME MARKOV CHAIN 
 

The probabilistic non-stationary continuous-time Markov chain is an extension to the 
stationary case except that the rate matrix is function of time, i.e., time-dependent. Hence, a non-
stationary random fuzzy continuous-time Markov chain can be defined as follows. 

Definition 10: A process is called as random fuzzy continuous-time non-stationary Markov 
chain { }, 0t tx= x ³  taking values in state space { }0,1,2, , 1N= - , if: 

(a) { }, 0t tx= x ³  satisfies Markov property:  

{ }
{ }

1 21 2Pr | , , ,

Pr |

t t t s

t s

j i i i

j i

x = x = x = x =

= x = x =


 (31)

for all 1 2t t s t< < < <  and any 1 2, , , ,i i i j Î  . 
(b) for s t" < , ( ) { }, Pr |ij t sp s t j i= x = x = , the transitional probabilities satisfy: 

(i) for a small time-increment h, { }, 0t tx= x ³  moves from state i  to state j  with (fuzzy) 

probability: 

( ) ( ) ( ) ( ),  0ij ijp t t h q t h o h h i j+ = +  ¹  (32)

(ii) for a small time-increment h, { }, 0t tx= x ³  remaining in state i  with (fuzzy) probability:  

( ) ( ) ( ), 1  0ii ip t t h q t h o h h+ = - +   (33)

where the rate functions are given by 

( ) ( )
1

0,

,  0,1, , 1
N

i ij
j j i

q t q t i N
-

= ¹

= = -å   (34)

(c) The parameters of rate functions, i.e., the entries of the fuzzy rate matrix ( ) ( )Q ( )ij N N
t q t

´
=  are 

credibilistic fuzzy variables defined on the common credibility measure space ( )( ), ,CrQ QP . 

 Theorem 6: If the process { }, 0t tx= x ³  is currently halted at state i , it halts in state i  

during a time interval that is exponentially distributed with fuzzy parameter ( )iq t , independently of 

how and when the process reached state i  and of how long it has been there. Furthermore, the 
process { }, 0t tx= x ³  leaves state i , and moves to state j  with a fuzzy probability 

( ) ( ) ( ) ij iq t q t i j¹ .  

Corollary 3: The probability distribution of halting times given the current state 

1 1lw lx
- -x = Î , is 
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{ }
( )( ) ( )( )

1

1 1

1 1

1 1

Pr ,

exp

l

l l

l l w l

x l x l

W w t x

m w t m w t

-

- -

- -

- -

- > x = =

- + - +
 (35)

where 

( ) ( )
0

t

i im t q u du= ò  (36)

is called the thi integrated rate function. 
Example 2: Assume a linear rate function:  

( ) ( )0, 1, 0, 1,,  , 0,  0ij ij ij ij ijq t t j i= b +b ¹ b > b >  (37)

Further, we assume that 0b  and 1b both have piecewise linear credibility distribution:  

( ) ( )

( )

( )

( ) ( )( )
( ) ( )

( ) ( )

( ) ( )( )
( ) ( )

( )

0        

 
2

,  0,1
2

2

1          

k
ij

k
k kij

ij ijk k
ij ij

k
ij k k

k kij ij
ij ijk k

ij ij

k
ij

x a

x a
a x b

b a
x k

x c b
b x c

c b

x c

ìï <ïïïï -ïï £ <ïï -ïïL = =íï + -ïï £ <ïï -ïïïïï ³ïî

 (38)

Then the diagonal entries ( )iq t , 0,1, , 1i N= - , have credibility distributions 

( )
( )

( )

0        

 
2

,  0,1, , 1
2

2

1          

i

i
i i

i i

i
i i

i i
i i

i

x a

x a
a x b

b a
x i N

x c b
b x c

c b

x c

ì <ïïïï -ï £ <ïï -ïïL = = -íï + -ï £ <ïï -ïïïï ³ïî

  (40)

where 

( ) ( )( )
( ) ( )( )
( ) ( )( )

1
0 1

0

1
0 1

0

1
0 1

0

N

i ij ij
j

N

i ij ij
j

N

i ij ij
j

a a a t

b b b t

c c c t

-

=

-

=

-

=

ìïï = +ïïïïïïï = +íïïïïïï = +ïïïî

å

å

å

 (41)

The integrated diagonal entries of ( )Q t :  

( ) 2
0, 1,i i im t t t= b +b  (42)

will have credibility distributions: 
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( ) ( )
( )

( )

0        

 
2

2

2

1          

i

i

i
i i

i i

m t
i i

i i
i i

i

y A

y A
A y B

B A
y

y C B
B y C

C B

y C

ì <ïïïï -ï £ <ïï -ïïL =íï + -ï £ <ïï -ïïïï ³ïî

 (43)

where 

( ) ( )( )
( ) ( )( )
( ) ( )( )

1
0 1 2

0

1
0 1 2

0

1
0 1 2

0

N

i ij ij
j

N

i ij ij
j

N

i ij ij
j

A a t a t

B b t b t

C c t c t

-

=

-

=

-

=

ìïï = +ïïïïïïï = +íïïïïïï = +ïïïî

å

å

å

 (44)

In general, to obtain the credibility distribution denoted as ( )im tL ,  of the integrated intensity 

function ( )m t , it is necessary to apply Zadeh’s extension principle (1978), but for the piecewise 

linear credibility distribution case, the mathematical arguments are relatively simple. 
Now let us derive the average chance distribution for the first halting times at thi  state (the initial 
state).  

( ) ( ){ }( )
1

1

0

Cr : PrT t T t dY = q q £ ³a aò  (45)

Note that for the first arrival time, 

( ){ }{ }

( )

( ){ }
( ) ( ){ }

1

0 1

0

: Pr

:1 exp

:1

: ln 1

t

m t

T t

u du

e

m t

-

q q £ ³a

ì üæ öï ï÷ï ïçï ï÷ç= q - - b +b ³aí ý÷ç ÷ï ï÷çè øï ïï ïî þ

= q - ³a

= q ³- -a

ò
 (46)

Therefore, the average chance distribution for 1T , the first halting at state i, is 

( )

( ){ }( )

( )( )

1

1

0

1

0

Cr : Pr

Cr : ( ) ln 1

iT t

T t d

m t d

Y

= q q £ ³a a

= q ³- -a a

ò

ò

 
(47)

We observe that ( )ln 1y =- -a , therefore,  
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( ){ }
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i i
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A y B
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m t y

C y
B y C
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y C

ì <ïïïï - -ï £ <ïï -ïï> =íï -ï £ <ïï -ïïïï ³ïî

 (48)

Hence,  

( )

( )

( )
( ) ( )( )

( ) ( ) ( ) ( )( )

( )
( ) ( )( )

( ) ( ) ( ) ( )( )

2 1
1

2

1

2( )

1

2

1

2( )
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i i i

i i

i i

i i
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m A m A m Bi i

i i

m B m A
i i

i i

m B m Ci

i i

m C m B
i i

i i

t

B A
e e e

B A

m B e m A e
B A

C
e e

C B

m C e m B e
C B

- - -

- -

- -

- -

Y =

- -
- + -

-

+ - +
-

-
+ -

-

+ - +
-

 
(49)

 
6  A PARAMETER ESTIMATION SCHEME  
 

Here parameter estimation is essentially a problem of estimation of credibility distributions 
from fuzzy observations. Guo and Guo (2009) recently proposed a maximally compatible random 
variable to a credibilistic fuzzy variable and thus the fuzzy estimation problem is converted into 
estimating the distribution function of the maximally compatible random variable. The following 
scheme is for estimating a piecewise linear credibility distribution. 

Definition 11:  Let X  be a random variable defined in   , B  such that 

Crc P X      1 1  (50)

Then X  is called a maximally compatible to fuzzy variable . 
In other words, a random variable X can take all the possible real-values the fuzzy variable   

may take and the distribution of X  , ( )XF r  equals the credibility distribution of x , ( )rxL  for all 

r . 
It is observed that the induced measure Crc    1  and measure P X  1  are defined on the 

same measurable space   , B . Furthermore, we note that the pre-image    B   1 P , but the 

pre-image      X B    1 A P , which implies that for the same Borel set  B B ,  the pre-

images under fuzzy variable   and random variable X  are not the same. It is expected that 

( ){ } ( ){ }: :X r rq ÎQ q £ Í qÎQ x q £  (51)

but  

( ){ } ( ){ }Pr : Cr :X r rq ÎQ q £ = qÎQ x q £  (52)

The statistical estimation scheme for parameters  , ,a b c  of the credibility distribution based 

on fuzzy observations  1 2, , , nx x x  can be stated as: 

Estimation Scheme 1: 
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Step 1: Rank fuzzy observations  1 2, , , nx x x to obtain “order” statistics       1 2, , , nx x x  in 

ascending order; 
Step 2: Set  1â x  and  ˆ

nc x ; 

Step 3: Set a tentative estimator for b ,  

   14
ˆ

2

n n

e

x x x
b

 
  (53)

where 

1

1 n

n i
i

x x
n 

   (54)

Step 4: Identify ( )0i
x  from       1 2, , , nx x x  such that ( ) ( )10 e ii

ˆx b x£ <  and 0 11 i i  , then we 

may see       
01 2, , , ix x x  as a set of order statistics from uniform [a,b]. Hence the “sufficient” 

statistic for parameter b  is ( )0i
x . 

Then         
01

ˆ垐, , , , nia b c x x x  is the parameter estimator for the piecewise linear credibility 

distribution.  

 
 

 

ˆ0      

ˆ ˆˆ
ˆ ˆ2

ˆ
ˆˆ 2 ˆ ˆ

ˆˆ2

ˆ1         

x a

x a
a x b

b a
x

x c b
b x c

c b

x c


   
 
  

    
 

 (55)

The next issue is how to extract the information on matrix rate Q  in the stationary random 
fuzzy continuous-time Markov chain. Basawa and Prakasa Rao (1980) developed a maximum 
likehood procedure for estimating the entries ijq in Q. 

It is noted that for a given random fuzzy continuous-time Markov chain { },t t tx= x ³ , if we 

fix the fuzzy rate matrix at a given value 0Q , then { },t t tx= x ³  becomes a probabilistic 

continuous Markov chain, Obtain the sample of the process: 
( ) ( ) ( ){ }1 1 2, 0 , , , , , N NK N X W X W W W X W

t tt t= + +  , which is sufficient. Then an MLE estimator for 0Q  

, denoted as 0Q̂  is obtained. Repeat the sampling procedure from the random fuzzy continuous-
time Markov chain as many times as possible, say, m  times, then the fuzzy rate matrix 
“observation” sequence is  

{ } ( )( ) ( )( ) ( )( ){ }1 2
1 2

垐 ? 垐 ?Q ,Q , ,Q , , , m
m ij ij ijq q q=   (56)

Apply the Estimation Scheme 1 to the estimated observations at ( ),
th

i j  entry of rate matrix 

Q  ( ) ( ) ( ){ }1 2垐 ?, , , m
ij ij ijq q q , then the piecewise linear credibility distribution shown in Equation (55) for ijq .  

For the non-stationary random fuzzy continuous-time Markov chain, the parameters 
specifying the rate matrix ( )Q ;t b , we may use a maximum likelihood procedure for estimating the 

parameters that define fuzzy parameters b . Therefore the idea is similar to that of stationary case 

but the credibility distribution treatments involved may be very complicated, since Zadeh’s 
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extension principle (1978) must be applied.  And mean measure involves two linear piecewise 
credibility distributions for fuzzy parameters 0b  and 1b  respectively.  
 
7  A SIMULATION SCHEME 
 

Simulation of a random fuzzy continuous-time Markov chain is intrinsically two-stage 
procedure: a fuzzy parameter simulation for generating realizations ( )( ) ( )( ) ( )( ){ }1 2, , , m

ij ij ijq q q  from a 

matrix of credibility distribution functions ( )ijL  and then for each realization of ( )ijq , a 

probabilistic continuous-time Markov chain is simulated. Repeat this procedure until all the ( )ijq  

realizations are complete. 
As to the fuzzy parameter simulation, following Guo and Guo (2009), we utilize the concept 

of a maximally compatible random variable to a fuzzy variable and the inverse transformation of 
the probability distribution function approach to generate fuzzy variable realizations. An algorithm 
is stated as follows:  

Simulation scheme 1: 
Step 1: Simulate a uniform random variable U[0,1], and denote the simple random sample as 

 , , , nu u u1 2  ; 

Step 2: Set    ,  , , ,i ix u k n   1 2 ; 

Step 3: Set  ,  , , ,ix i n 1 2 : 

( )
( )

2 if 0 0.5

2 2 if  0.5 1
i i

i
i i

a b a u u
x

b c c b u u

ì + - £ £ïï=íï - + - £ £ïî
 (57)

Then  , , , nx x x1 2   is a sample from the fuzzy variable   with a piecewise linear credibility 

distribution . 
Step 4: Repeat Step 1 to Step 3, until m  realizations of fuzzy rate matrix { }1 2Q ,Q , ,Qm  are 

obtained. 
Step 5: For each rate matrix, say, Qi , simulate a probabilistic continuous-time Markov chain, 

until m  set of realizations of random fuzzy continuous-time Markov chain are obtained. 
It should be mentioned that simulating a probabilistic continuous-time Markov chain is well-

established in the literature. 
 
8  CONCLUSION 
 

In this paper, we give a systematic treatment of random fuzzy continuous-time Markov chains 
not only for the stationary one, and then for the non-stationary case, but also propose a parameter 
estimation scheme and a simulation scheme. In this way, the foundation is provided for the random 
fuzzy continuous-time Markov chains, although in its early stage. The applications to reliability 
engineering fields and the risk analysis now can extend from case with only random uncertainty to 
case with both co-existing randomness and fuzziness. It is expected that this development will assist 
reliability and risk analysis researchers as well as reliability analysts and engineers. 
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ABSTRACT 
 

The theoretical background and technical information for the program are presented. Further, the 
components of the program are described and user manual is given.  

 
 
 
1  INTRODUCTION 
 

The computers programs are the tool to make life easier. Especially it is important if we have to perform 
a lot of complex and laborious calculations.  

It is usually when we are a contactors in research projects. Since 2007 team of Department of 
Mathematics in Gdynia Maritime University is working on Poland – Singapore Joint Research Project 
entitled “Safety and Reliability of Complex Industrial Systems and Processes”. The described 
computer program is one of the tools for this Project.  

 
 
2 THEORETICAL BACKGROUND AND TECHNICAL INFORAMTION 
 

The computer program is written in Java with using SSJ V2.1.3. The SSJ is a Java library for 
stochastic simulation, developed in the Département d'Informatique et de Recherche Opérationnelle 
(DIRO), at the Université de Montréal. 
The computer program implements  the results from WP6 Poland – Singapore Joint Research 
Project.  
Its first part is verifying the hypothesizes about the conditional distribution functions )(tHbl  of the 
system operation process )(tZ  sojourn times ,blθ  ,,...,2,1, ν=lb  b ≠ l, in the state bz  while the next 
transition is the state lz   on the base of their realizations ,k

blθ  blnk ,...,2,1=  during the experiment 
time Θ . We assume that the typical distributions to describe these sojourn times are: 
-    the uniform distribution;  
-   the triangle distribution; 
-   the double trapezium distribution; 
-   the quasi-trapezium distribution; 
-   the exponential distribution; 
-   the Weibull distribution; 
-   the normal distribution; 
-   the chimney distribution. 
The computer program uses to verify the hypothesizes a non-parametric chi-square goodness-of-fit 
test.  
Second aim of the program is to estimate the unknown parameters of the system operation process.  



S. Guze, B, Kwiatuszewska‐Sarnecka, J. Soszyńska ‐ THE COMPUTER PROGRAM  TO VERIFY THE HYPOTHESIZES AND TO PREDICT OF 
THE PARAMETERS FOR OPERATIONAL PROCESS 

 
RT&A # 2(17)  

(Vol.1) 2010, June  
 

 

137 

It estimates the following parameters:  
- the matrix of probabilities of the system operation process Z(t) transitions between the operation 

states ][ blp  
- the mean values ][ bb EM θ= of the unconditional sojourn times ,bθ  ,,...,2,1 vb =    
- the steady probabilities bπ , ,,...,2,1 vb =  
the limit values of the transient probabilities at the particular operation states .bp  
 
3 COMPONENTS OF THE COMPUTER PROGRAM 
 

There are two main tabs in computer application. One of them gives possibility to verifying 
hypotheses about distribution function of sojourn times in particular operational states. Second one 
gives the predicts of parameters of operational process. (see Figure 1 and Figure 2). 
 

 
 

Figure 1. Main window for verifying the hypothesizes  
 
As it is shown in Figure 1 the window of the section for verifying hypothesizes has the two parts: 
INPUT and OUTPUT. 
The INPUT  is composed by the following components: 
- button to choose the file with probe; 
- text field with the path to chosen file; 
- text field to set a factor α  - the level of significance for investigated hypothesizes, 
- button to start of the verification of the hypothesizes. 
 
In OUTPUT it is shown the following results in particular text fields: 
- size of probe – nbl 
- number of subintervals – r; 
- length of subintervals – d; 
- the begin of the interval and the end of the one (xbl, ybl), 
- mean value from probe, 
- values qbl, wbl and in case of quasi-trapezium distribution: zbl1, zbl2, 
- values of theoretical statistics, 
- values of statistics un, 
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- mean value of the conditional sojourn times blθ  of the system operations process at the 
operations state )(tH bl  when the next transition is to the operation state blθ  – Mbl. 

 

 
 

Figure 2. Main window for estimation the parameters of the operational process 
 

 
In the text area it is shown: 
- name of the validate distribution 
- density function for this distribution. 

 
In the case of using the computer program to estimate the unknown parameters of operational 
process, the main window has following components: 
a)  text field to set a number of operational states, 
b) button to accept setting parameter, 
c) text area to present the given data  
d) text area to present the determined values. 

 
After pressing the button “OK”: 
a) the program allows to set the following values: 

- the matrix of the realizations of the numbers of the transients of the system operation process 
between the operation states, 

- the matrix of the realizations of the mean values blM  of the conditional sojourn times blθ  of 
the system operations process at the operations state )(tHbl  when the next transition is to the 
operation state blθ  ; 

b) the program determines: 
- the matrix of the realizations of the probabilities blp , ,,...,2,1, ν=lb  of the system operations 

process transitions  from the operations state bz  to the operations state lz  during the 
experiment time ,Θ  

- the vector of the mean values ][ bb EM θ= of the unconditional sojourn times ,bθ  ,,...,2,1 vb =  
- the vector of the probabilities bπ  of the vector νπ xb 1][ , ,,...,2,1 vb =  

the vector of the limit values of the transient probabilities at the particular operation states. 



S. Guze, B, Kwiatuszewska‐Sarnecka, J. Soszyńska ‐ THE COMPUTER PROGRAM  TO VERIFY THE HYPOTHESIZES AND TO PREDICT OF 
THE PARAMETERS FOR OPERATIONAL PROCESS 

 
RT&A # 2(17)  

(Vol.1) 2010, June  
 

 

139 

  
4 INSTRUCTIONS FOR USERS 
 

Now, we present the steps how fluently using the particular sections of the computer program. 
 
4.1 Verifying the hypothesizes  
 

Our work with program we  start from preparing the data file. This text file should include a 
data set in one column as below example  shows. (see Example 1) 
 
Example 1. Correct form of the text file with data. 
... 
34.6 
31.0 
56.9 
60.4 
... 
When we have the text file in correct form we can use the program with the following instruction of 
use: 
 
In the section “INPUT”: 
Step 1. Press the button “Read TXT file with data” to choose the file with the data set, 
 
Step 2. Set the level of significant alfa; 
 
Step 3. Press the button “TESTING”. 
 

 
Figure 3. Instructions for users 

 
The computer program fits the correct distribution function for the included file and shows results 
in section “OUTPUT” as it has been described before. 
 

Step 1 Step 2 

Step 3 
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Figure 4. Exemplary results of the computer program 
 
 
4.2 Predicts of operational process parameters 
 
The instruction of use is as follows: 
 
Step 1. Set the number of states. 
 
Step 2. Press the “OK” button. 
 
Step 3. Set the realizations of the numbers of the transients of the system operation process between the 
operation states, 
 

Step 4. Set the matrix of the realizations of the mean values blM  of the conditional sojourn times blθ  of the 
system operations process at the operations state )(tHbl  when the next transition is to the operation state blθ  
; 
 

 
 

Figure 5. Instruction of use for prediction parameters 
 
 
The computer program based on these values calculates: 
a) the matrix of the realizations of the probabilities blp , ,,...,2,1, ν=lb  of the system operations process 

transitions  from the operations state bz  to the operations state lz  during the experiment time ,Θ  

Step 1 Step 2 
Step 3 
Step 4 
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b) the vector of the mean values ][ bb EM θ= of the unconditional sojourn times ,bθ  ,,...,2,1 vb =  
c) the vector of the probabilities bπ  of the vector νπ xb 1][ , ,,...,2,1 vb =  
d) the vector of the limit values of the transient probabilities at the particular operation states. 
 

 
 

Figure 4. Exemplary results for estimating parameters 
  
5 APPLICATIONS 
 

 Example 2. There are shown the consecutive steps of using the computer programme for 
hypothesizes verification. 
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Figure 5. The steps of using computer programme for the verify the hypothesizes 
 
 
 Example 3. It is shown how to use the computer programme for validation of parameters of 
operational processes. 
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Figure 6. The steps of using the computer programme for prediction of parameters of operational process 
 

 
6 CONCLUSIONS 

 
The paper has described the computer program for Poland - Singapore Joint Research Project. 

The theoretical backgrounds and the technical information have been presented. Further, the short 
introduction about components of the program have been discussed and the manual for users has 
been given. The computer program can be used to verification and prediction for every operational 
process. 
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ABSTRACT 
 

The paper is concerned with the construction of lower bounds for the reliability of a system when 
statistical data come from independent tests of its elements. The overview of results known from literature 
and obtained under the assumption that elements in a system are independent is given. It has been 
demonstrated using a Monte Carlo experiment that in case when these elements are dependent and when 
their dependence is described by Clayton and Gumbel copulas these confidence bounds are not satisfactory. 
New simple bounds have been proposed which in some practical cases perform better than the classical ones.  

 
 
 
1  INTRODUCTION 
 

Reliability indices of complex systems can be estimated from the results of lifetime tests. When 
a system is treated as a one entity we can distinguish two different types of reliability tests. In the 
first one, we observe consecutive failures of a system, and after each of them a failed system is 
completely renewed. In such a case, random times between consecutive failures are described by 
random variables having independent and identical probability distributions. If this assumption is true, 
we can estimate a required reliability characteristic using a sample of observed lifetimes. In the 
second case, we have to observe several identical systems working in the same conditions. Times to 
first failures of these systems constitute a sample which may be used for the estimation of the 
considered reliability characteristic. In both cases, however, we need to have either sufficiently long 
time of test or sufficiently large number of observed systems. Both these requirements are seldom 
met in practice. Thus, this method of the reliability estimation is rarely used in practice despite the 
fact that from a statistical point of view the required estimators are obtained in the simplest possible 
way. Moreover, in such a case we do not profit from the information about the structure of the 
considered system, and from the knowledge of times to failure of its elements.  

In practice we are frequently faced with a different problem: how to evaluate reliability 
characteristics of a system on its design stage. There exist many methods for the prediction of 
reliability using available statistical data. In this paper we consider the simplest one, when we can 
utilize the results of reliability tests of system’s elements performed in presumably the same 
conditions as the conditions of work of the designed complex system. 

Research studies on statistical methods aimed at the estimation of system’s reliability using the 
results of reliability tests of its elements were initiated independently in the 1950s in the United 
States and the Soviet Union, where they were performed by prominent mathematicians and 
statisticians. Some strong mathematical results were obtained, and these results can be used for both 
point and interval estimation of system’s reliability using the data obtained for its elements or 
subsystems. In this paper we will focus our attention on the interval estimation. The reason for the 
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importance of the results of this type stems from practice. Usually we can use scarce reliability data, 
and thus the obtained point estimators are not very precise. Therefore, we need to know some lower 
bounds for the predicted reliability characteristics.  

Preliminary analysis of the theoretical results shows undoubtedly that even in the cases of 
simple systems exact analytical methods require utilization of complex mathematical tools such as 
nonlinear mathematical programming. On the other hand, interesting approximate results, obtained 
mainly by American researchers, can be used in practice when a sufficiently large number of failures 
have been observed. For this reasons already in the 1980s the reliability theoreticians lost their 
interest in further research on those problems. However, the problem is still interesting for 
practitioners who need approximate, or even heuristic, methods which may be used for the 
prediction of reliability using existing statistical data.  

The paper is partly based on the lecture for young scientists working in the area of reliability. 
Therefore the purpose of this paper is two-fold. In first six sections we give a short overview of 
different methods for the construction of confidence intervals for the reliability of systems. In all 
these methods it has been assumed that the elements of a system are independent. In the last section 
of the paper we present new heuristically designed bounds which seem to be robust to deviations 
from this assumption in certain practical cases. 

 
2  GENERAL METHODOLOGY FOR THE EVALUATION OF SYSTEM’S 

RELIABILITY 
 

Evaluation of reliability of complex systems became the subject of intensive theoretical 
investigation in the beginning of 1960s. Fundamental results were summarized in the famous book 
(Barlow & Proschan 1965). In the developed mathematical models we assume that both the system 
as a whole, and system’s elements at any time instant t>0 are either in the state of functioning (or 
failure-free state), when the random variable X(t) describing the reliability state adopts the value 1, or  
in the state of failure, when this random variable adopts the value 0. When the considered system 
consists of m elements, then its reliability state is described by the random vector X=(X1,X2,…,Xm), 
and the probability of the observation of  any reliability state is given by 

    



m

i

X
i

X
i

ii ppP
1

11X  (1) 

where 
     n,,i,XEXPp iii 11  .     
 (2) 
In the above formulae we have omitted time t assuming that in case of specific calculations it adopts 
the same value for all components of the random vector. 

Reliability state of the whole system depends on the states of all individual system’s elements. 
Denote by  the set of all 2m possible states of system’s elements. We can divide this set into two 
exclusive subsets: the subset of all functioning states of the system G, and the system of all failure 
states of this system  G  ( GG ). The function 

   








G
G

X
X

X
0
1

        

 (3) 
is called the structure function, and it describes the relation between reliability state of the whole 
system and reliability states of its elements. The effective construction of this function is the subject 
of numerous research works. Particular results may be found in all classical textbooks on reliability 
such as (Barlow & Proschan 1965, 1975). 
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Probability that the considered system is in the failure-free state depends on the vector 
p=(p1,p2,…,pm) that describes the probabilities of failure-free functioning of system’s elements, and 
system’s reliability structure function. It is given by the function called the reliability function which 
is given by the following formula 

    
      

   









m

i

X
i

X
i

G

ii pp

EGPR

1

11
X

X

XXp




.       

 (4) 
Below, we present the respective formulae for the reliability structures which are most frequently 
met in practice. 
a) In case of a system with series reliability structures which consists of m groups of identical ni, 
i=1,…,m elements we have: 

   



m

i

n
i

ipR
1

p  (5) 

b) For the system with a parallel reliability structure which consists of m elements the respective 
formula is given by 

     



m

i
i

m

i
i qpR

11
111p .       

 (6) 
c) In case of a series-parallel reliability system which consists of m connected in series groups, where 
each of these groups consists of ni connected in parallel identical elements, the reliability function is 
given by the formula: 

      



m

i

n
i

ipR
1

11p .       

 (7) 
d) For a parallel-series system consisting of m connected in parallel groups, where each of these 
groups consists of ni identical elements connected in series, the reliability function is given by the 
formula: 

    
  













m

i

n

j
ij

i

pR
1 1

11p .       

 (8) 
In formulae (5) – (8) pij denotes the probability that the j-th element in the i-th subsystem is in a 
failure-free state. 

The systems with structures described above belong to a more general class of systems called 
coherent systems, or systems with monotonic structure. The system has monotonic structure if 
    YX          
 (9) 
holds when XiYi, i=1,...,m, and when  
      10  10  , , (10) 
with 0=(0,…,0) and 1=(1,…,1). For systems with a monotonic structure the reliability function can 
be always computed. However, for large and complex systems this can be a hard computational task. 

In order to compute the probability that the system is in the failure-free state we need to know 
the estimates of the elements of the vector p. These estimates can be obtained from the results of 
reliability tests. We assume that for each of system’s elements we have the results of independent 
reliability tests. From these tests we obtain the vector of estimates p*=(p1

*, p1
*,…, pm

*). The 
estimators pi

* are unbiased estimators of unknown probabilities pi only in certain particular cases. 
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However, in the majority of practical cases, when we apply the maximum likelihood method of 
estimation, these estimators are asymptotically unbiased, but in practice the conditions of 
asymptotics usually do not hold due to the limited number of the pertinent statistical data. The 
knowledge of estimates p*=(p1

*, p1
*,…, pm

*) allows for simple estimation of the reliability R(p). In 
such a case we apply the method of substitution. We substitute in (4) unknown probabilities p with 
their estimates p*. The estimator of the reliability of the whole system R(p*) is unbiased only in a 
particular case of systems with a series reliability structure and unbiased estimators of pi. In all other 
cases R(p*) is biased or at best asymptotically unbiased. Therefore, in practical situations the 
estimates of the system’s reliability are very uncertain, and we need to have methods for the 
computation of lower bounds for its possible value. Such bounds may be obtained by the calculation 
of confidence intervals for R(p). 

Let us now consider a system consisting of element s of m different types. Suppose that the 
reliability of the element of the i-th type, i=1,…,m, is a certain function of a parameter i  whose 
value is unknown. Thus, we may assume that the reliability of the whole system is described by a 
function R() which depends on the vector m) of parameters describing the reliability 
of system’s elements. Moreover, we assume that the information from reliability tests of system’s 
elements is denoted by xi, i=1,…,m. Thus, the results of the tests are described by a vector x=(x1, 
x2,…, xm). We have to note that the values of i and xi only in special cases are represented by single 
numbers. In a general case they are represented by vectors of numbers. The interval  R,R , where 

 xRR   and  xRR   is the two-sided confidence interval, calculated on the confidence level    
for the unknown value of R() if the following condition is fulfilled 
     RRRP θθ . (11) 

In an analogical way we can define one-sided lower and upper confidence intervals for the 
reliability function R(). In the sections which follow we present methods for the calculation of such 
confidence intervals. In this presentation we use notation given in the book (Gnedenko et al. 1999). 
 
3  CONFIDENCE INTERVALS FOR SYSTEM’S RELIABILITY IN THE CASE OF 

DISCRETE RELIABILITY DATA 
 

Let us consider the problem of reliability estimation when the results of reliability tests of 
system’s elements are available in a discrete form. Let us assume that the elements of all types are 
independently tested in exactly the same conditions as the work conditions of the considered system. 
In the simplest case we test samples of size Ni, i=1,…,m, for all m types of elements, and the 
duration of all tests is the same, and is equal to t.  In this simplest case we assume that we know the 
reliability state of each tested element at the end of the test. Thus, we assume that we know the 
numbers of elements di, i=1,…,m, which failed during the test. The test result is described, therefore, 
by pairs of integer numbers (di,Ni), i=1,…,M. In such a case we say that the reliability tests, also 
known as pass-fail tests, are performed according to a binomial scheme. In this simple case there 
exists an unbiased estimator of the reliability of a tested element given by a simple formula  

 mi
N
dp

i

i
i ,,1,1 



 (12) 

The random number of the observed failures is thus described by the binomial distribution 

     m,,i,pp
d
N

ddP iii dN
i

d
i

i

i
ii 11 










 


  (13) 

Calculation of the confidence interval for the reliability pi is not simple. For a given confidence level 
one can calculate the confidence interval using a so called fiducial approach. The respective 
formulae are known as the Clopper-Pearson formulae, and in the considered case of reliability 
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estimation they have the form given in (Gnedenko et al. 1999). The lower bound p  of the one-sided 
confidence interval for the reliability p is given as the solution of the following equation 

     






 


 11

0

kNk
d

k
pp

k
N

, (14) 

and the upper bound p  of the one-sided confidence interval for the reliability p is given as the 
solution of the equation 

   






 



 11

0

kNk
dN

k
pp

k
N

. (15) 

In case of d=N we have 1p , and when d=0 we have 0p . It is worth noticing that if we replace 
1– in (14) – (15)with0,5< and 0,5<, respectively, we can use these formulae for the 
calculation of a two-sided confidence interval for the reliability p on the confidence level equal to  1– 
.  

When the probability of a failure is low, or when reliability is high, i.e. when the strong 
inequality qi=1–pi<<1, i=1,…,m holds, and when the number of tested elements Ni, i=1,…,m is large, 
the probability distribution of the number of failed elements di, i=1,…,m can be approximated by the 
Poisson distribution with the parameter i=qiNi, and the probability mass function given by the 
formula 

   m,,i,e
d

ddP i
i

i

d
i

ii 1 







!

 (16) 

This approximation is valid when in case of q  and N   the condition Nq=const holds.  
One-sided confidence intervals for the parameter  of the Poisson distribution can be found by 

solving the following equations 

  




 1
1

0

d

j

j

j
e

!
 (17) 

 
 




d

j

j

j
e

0 !
 (18) 

When d = 0 we have 0 . For further calculation we can use the connection between the Poisson 
distribution and the special case of the gamma distribution, namely the chi-square distribution. The 
confidence intervals can be thus calculated from the formulae: 

  d2
2
1 2

  , (19) 

                   22
2
1 2

1   d , (20) 

where  n2
  is the quantile of order    of the chi-square distribution with n degrees of freedom. 

Similarly, as in the case of the binomial distribution, for  0,5< and 0,5<we can use(19) – 
(20) for the calculation of the two-sided confidence interval for the parameter   on the confidence 
level 1 – .  

The Poisson distribution can be also used when the times to failure are described by the 
exponential distribution. When all elements failed during the test are replaced by new ones, and the 
duration of the test is equal to T, the observed number of failures is described by the Poisson 
distribution with the parameter , where  is the failure (hazard) rate in the exponential 
distribution, and N is the number of simultaneously tested elements. Confidence intervals for the 
parameter  (and for the failure rate ) are in this case calculated from the formulae (19) – (20). 
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4  CONFIDENCE INTERVALS IN THE ABSENCE OF OBSERVED FAILURES 
 

Contemporary technical systems are built of very reliable elements. For such elements we 
usually do not observe failures during reliability tests. In such a case, the point estimation of system’s 
reliability is trivial, and is equal to 1. However, we are interested in the lower bound for this 
characteristic which may be interpreted as kind of guaranteed reliability. Suppose, that for each of 
the m types of elements the system is built of we test Ni, i=1,…,m, elements, and in every case the 
number of observed failures is di = 0, i=1,…,m. For such results tests the upper bound for the 
confidence interval is always equal to 1R . On the other hand, it is possible to calculate the lower 
bound R  of the confidence interval for the reliability of the considered system. In the book 
(Gnedenko et al. 1999), where results of many works were summarized, it has been shown that the 
computation of this bound is equivalent to solving the following optimization problem 
  p

p
RminR

H 0
 , (21) 

where the set H0 contains all values of the vector p=(p1,p2,…,pm) such that 

 


1
1

m

i

N
i

ip  (22) 

and 
 m,,i,pi 110  . (23) 

In many interesting cases there exist closed solutions to this optimization problem. In case of a 
series system such solution was given in (Mirnyi & Solovev 1964). They showed that the lower 
bound of the confidence interval for system’s reliability is given by a simple formula 
 

ii
pminR   (24) 

where 
i

p  is the lower bund of the one-sided confidence interval, calculated according to the 
Clopper-Pearson method (14). It is easy to show that this bound can be calculated from an 
equivalent formula  
   

 NR 11   (25) 
where 
 ii

NminN  . (26) 

For systems with a more complicated structure very strong theoretical results were obtained in 
(Pavlov 1982) who considered systems with a convex cumulative risk function defined as follows 
    tHetR  . (27) 
He has shown that for such systems 
  1111 ,,,p,,,RminR

ii
  (28) 

where 
   m,,i,p iN

i
11 1   . (29) 

The solutions of this problem for parallel, series-parallel, parallel-series, and k-out-of-n systems have 
been presented in the book (Gnedenko et al. 1999). For example, in the case of a system with a 
parallel reliability structure, consisting of n different elements the lower bound of the one-sided 
confidence interval for system’s reliability is given by: 

 
 


n

j jNt
tR

1

1  (30) 

where t is the solution of the following equation 
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  













11
1

ln
N
tlnN

n

j j
j   (31) 

In a particular case, when N1=…=Nn=N Tyoskin and Kurskiy obtained a simple analytic solution (see 
(Gnedenko et al. 1999)) 
   nnNR 1111  . (32) 

For systems with a more general coherent structure such simple solutions do not exist. 
However, in the book (Gnedenko et al. 1999) two boundaries for the lower bound of the confidence 
interval have been proposed. Consider the set of all minimal cuts of the system, and assume that the 
minimal cut with the smallest number of elements consists of b elements. Then, consider the set of all 
possible minimal paths. For this set consider its all possible subsets consisting of independent, i.e. 
having no common elements, paths. Let a be the number of such paths in the subset with the largest 
number of independent paths. Assume additionally, that for each type of system elements exactly N 
elements have been tested.   The boundaries for the lower bound for the system’s reliability are the 
given by  
      bNbaNa R 11 111111    (33) 
In a particular case of  a = b we have 
   bNbR 1111   (34) 
The authors of (Gnedenko et al. 1999) notice, that this case is typical for many reliability structures 
such as lattice or radial structures which are typical for large network systems. 

Another very interesting method for the calculation of the lower bound of the confidence 
interval for system’s reliability was presented in (Gnedenko et al. 1999). Let us assume that the same 
vector of reliabilities p=(p1,p2,…,pm) is used for the calculation of reliability of two systems: the 
reliability R(p) of the considered complex system, and the reliability R’(p) of a simple (e.g. series) 
auxillary system. For this auxillary system we must know the lower bound of the respective 
confidence interval  p'R . In order to find the lower bound of the confidence interval for the 
reliability of the considered system we have to solve the following optimization problem: 
  p

p
RminR   (35)  

where the element of the vector p must fulfill the following constraint  

 m,,i,p,Rp
m

i
i

'
i 110

1




. (36) 

The lower bound calculated in this way fulfills all the requirements for a lower bound of a confidence 
interval, but the length of such interval is usually not the shortest possible. 
 
5  CONFIDENCE INTERVALS IN THE PRESENCE OF OBSERVED FAILURES 

 
When failures are observed during reliability tests of system’s elements the problem of building 

confidence intervals for the reliability of the whole system becomes much more complicated. 
Comprehensive information about available methods can be found in the fundamental book 
(Gnedenko et al. 1999). Below, we present only some basic results considered in this book and 
related literature. 

Let us assume that the considered system consists of elements of m different types. For each of 
these types we test a sample of Ni elements, and for each sample we observe di 0, i=1,...,m failures. 
Let 
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 









mpppRS ,,, 21   (37) 

be the point estimator of system’s reliability, where mip i ,,1, 


 are the estimators of the 
reliability of systems elements calculated according to (12). Now, denote by d*= (d1

*, d2
*,…, dm

*) the 
vector of numbers of observed failures. Moreover, denote by S*=S(d*) the observed value of the 
estimator of system’s reliability presented as the function of the vector d*. The lower bound of the 
confidence interval for the system’s reliability is now calculated from the formula 

 
   
 

 














dd
p

SS

m

i

d
i

dN
i

i

i

A
iii

R

pp
d
N

max
1

11  ,                                    (38) 

where maximum is calculated over the set AR of vectors  mp,,p,p 21 , such that 
  m,,,p,Rp,,p,pR im  111021  .                                    (39) 

The sum in (38) is calculated over all possible values of the vector d*= (d1
*, d2

*,…, dm
*)  that fulfill 

the condition given for this sum in (38). In certain cases other formulation of this optimization 
problem is more suitable for computations. According to this formulation we denote by  
n(d)=n(d1,d2,…,dm) a non-decreasing, with respect to all components, series of vectors. The first 
element of this series is the vector  (0,0,…,0), and then we have the vectors of the type 
(0,..,0,1,0,…,0), etc. The lower bound of the confidence interval for system’s reliability can be 
calculated from 
  mp,,p,pRminR 21 , (40) 
where minimum is taken over the set of all values of the vector (p1,p2,…,pm) such that 

  
   

m,...,i,p

,pp
d
N

i

nn

m

i

d
i

dN
i

i

i iii

110

11
1










 
 



dd

                                             (41) 

 
The optimization problem given by (40) – (41) was formulated first time in (Buehler 1957) 

where a system consisted of two elements was considered. This was the first result of the calculation 
of the confidence interval for system’s reliability.  

Let us now consider the series system consisted of m different elements. The optimization 
problem is now the following: 

 



m

i
ipminR

1
, (42) 

where minimum is taken over all vectors (p1,p2,…,pm) such that 
  

   
 

 

 








dd RR

m

i
i

d
i

dN
i

i

i m,...,i,p,pp
d
N

iii

1

11011   (43) 

The calculation of the lower bound of the confidence interval for system’s reliability R  can be 
simplified when the probabilities of failures are small, i.e. when the inequality qi=1–pi <<1, i=1,…,m 
holds. In such a case we can assume that the number of failures is described by the Poisson 
distribution with the parameter i=qiNi, i=1,…,m. It has been shown in (Gnedenko et al. 1999) that 
in this case we have 
 feR   (44) 
where 
 

 







 



m

i i

i

N
maxf

1

 , (45) 
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and the maximum in (45) is taken over all vectors m such that 

 
   
 

 

 








dd !RR

m

i
i

i

d
i m,...,i,,

d
e

i
i

1

101   (46) 

This practical result was obtained first time in (Bol’shev & Loginov 1966) for the case of equal 
values of Ni, and, independently, in (Pavlov 1973) and (Sudakov 1974) for any values of these 
numbers. 
 
6  APPROXIMATE CONFIDENCE INTERVALS FOR SYSTEM’S RELIABILITY 
 

Computation of exact bounds of confidence intervals for system’s reliability requires, with only 
few exceptions, solving difficult optimization problems. Therefore, its practical applicability is 
somewhat limited unless specialized software is available. For this reason several authors, mainly 
American, have tried to obtain approximate, but relatively easy for computation, solutions. Different 
approximate solutions have been proposed in the papers like (Madansky 1965, Myhre & Saunders 
1968, Easterling 1972, Mann 1974 a, b, Mann & Grubbs 1972, 1974). Comprehensive review of 
such results can be found in a well known book (Mann, Shaefer & Singpurwalla 1974). However, 
probably the most interesting from a practical point of view result was presented in one of the first 
textbooks on reliability (Lloyd & Lipow 1962). These authors presented a heuristic method, 
attributed to Lindstrom and Madden, for the calculation of the approximate confidence interval for 
the system with a series reliability structure. This method utilizes the concept of so called equivalent 
tests. To present this method we consider, following the book (Gnedenko et al. 1999), a system with 
a series-parallel structure which has the same elements in its parallel subsystems. Let R*

 be the 
estimated value of the reliability function for the considered system, and Ni, i=1,…,m be the number 
of tested items for the element of the i-th type. The equivalent number of failures Di

* for the element 
of this type is then calculated from the equation 

 








  R,,,N

D,,,R
i

i 11111   (47) 

At the next stage of the computation procedure, for each equivalent test (Ni,Di
*) we calculate the 

lower bound of the confidence interval  iii D,NP  by solving the equation 
     11*

iiip D,DNB , (48) 
where 

  
 

 









 1

0

11

0

11

1

1

dxxx

dxxx
b,aB

ba

p
ba

p  (49) 

is the incomplete beta function whose values can be computed using an available numerical 
procedure. The lower bound of the confidence interval is now calculated from a simple formula 
   1111

1
,,,D,NP,,,RminR iiimi

 


 . (50) 

The Lindstrom-Madden method was proposed as an approximate heuristic method. However, 
it has been proved (see (Gnedenko et al. 1999) for additional information) that for many simple 
reliability structures it produces exact confidence intervals. 

Another method which uses the concept of equivalent tests, and which can be used for the 
analysis of complex systems consisted of many simple subsystems, was proposed in (Martz & Duran 
1985). In this method it is assumed that for each simple subsystem we are able to calculate the value 
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of its reliability estimator Ri, and the lower bound for the respective confidence interval iR . Next, 
from a set of equations 

 i
i

i R
M
r

1  (51) 

and 
  iiii r,MPR   (52) 
we calculate the parameters (Mi,ri) of the equivalent binomial reliability tests. In further analysis the 
considered subsystem is treated as a single element described by the equivalent test. Note, that for 
the application of this method it is not important how we have found the values of Ri and iR . 
 
7  SOME REMARKS ABOUT OTHER METHODS FOR THE CALCULATION OF 

CONFIDENCE INTERVALS FOR SYSTEM’S RELIABILITY 
 

In the previous sections we have presented methods for the calculation of confidence intervals 
for system’s reliability for the case of discrete reliability data from tests, i.e. when the numbers of 
tested elements and the numbers of observed failures are known. It is a well known fact that the 
knowledge of lifetime distributions combined with the knowledge of observed times to failures may 
increase the accuracy of reliability estimation. Moreover, this knowledge may be sufficient for the 
prediction of reliability at time instants other than the times of the performed reliability tests. 
Unfortunately, even in the simplest case of the exponential distribution of lifetimes the exact and 
practically applicable solutions are known only in few cases when lifetime tests are performed 
according to the type-II censoring scheme (a fixed number of observed failures). For example, 
(Lentner & Buehler 1963) considered the case of a series system with only two elements. Their 
result was generalized in an unpublished PhD thesis (El Mawaziny 1965) who proposed an iterative 
method for the calculation of the lower bound of the confidence interval for reliability of a series 
system consisted of m elements. Because of its complicated nature this algorithm has not been 
described in reliability textbooks. However, there exists a good approximation proposed in (Mann & 
Grubbs 1972), and in a simplified version in (Mann 1974b). 

Consider the case when the lifetimes are exponentially distributed, and reliability tests provide 
type-II censored data. For each type of system elements we test a sample of ni items, and observe 
times ti,j of the first ri>0, i=1,…,m failures.  The respective value of the total time on test zi, is given 
by 

  



i

i

r

j
riiijii mitrntz

1
,, ,,1,   (53) 

 
Denote by z(1) the minimal value of zi, i=1,…,m.  (Mann 1974b) has shown that the estimator of the 
hazard rate of the series system has approximately the expected value given by 

 
)1(1

11
zz

rk

i i

i 





 , (54) 

and the variance given by 

 2
)1(1

2

11
zz

rk

i i

i 





 . (55) 

To approximate the optimum lower bound on series system reliability )(tR s  at confidence level , 
using the Wilson-Hilferty transformation, one calculates 
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
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ttR s , (56) 

where y  is the quanitile from the standardized normal distribution. For systems with more complex 
structures an interesting approach has been proposed in (Gnedenko et al. 1999). According to this 
approach first we have to calculate upper bounds for the hazard rates of system’s elements using the 
following simple formula 

 
 

m,,i,
S

r

i

i
i 1

2
22

  , (57) 

where  r22
  is the quantile of the  order from the chi-square distribution with 2r degrees of 

freedom. When we insert these lower bounds into a formula for the calculation of the system’s 
reliability function instead of respective hazard rates, i.e. if we calculate 
  m,,.RR  21 , (58) 
the obtained value usually fulfills the requirements for a confidence interval. (Pavlov 1982) has 
shown that in case of >0,778 this approach allows to calculate confidence intervals for a broad class 
of reliability structures for lifetime distributions having non-decreasing (in time) hazard rates (i.e. for 
elements with the ageing property).  

The general methodology for the calculation of confidence intervals for system’s reliability was 
proposed in (Belyaev 1966, 1968). Other, but completely equivalent general method, was proposed 
in (Bol’shev & Loginov 1966). Below, we present the main results of Belyaev.  

Suppose that we know the statistic S which can be used as a point estimator of system’s 
reliability, i.e. R€S  . Moreover, we assume that this statistic is a function of a vector of parameters 
describing probability distributions of lifetimes of system’s elements. Additionally, we assume that 
the probability distribution of this statistic is known, i.e. we know 
    tSP,tF  θθ . (59) 
For a given value of the vector  we can now introduce two functions t1() and t2(), such that 
   θ,tF 1  (60) 
and 
   12 θ,tF . (61) 
Now, let’s denote by 
   RRAR  θθ :  (62) 
the set of all values of the vector for which the reliability function adopts a given value R. Next, 
introduce two functions 
    θ

θ 11 tminRK
RA

  (63) 

and 
    θ

θ 22 tminRK
RA

 . (64) 

The lower and upper bounds of the confidence interval on the confidence level 1for system’s 
reliability can be found by solving equations 
    SRK1  (65) 
and 
    SRK2 , (66) 
where S* is the observed value of the statistic S. 



O. Hryniewicz – CONFIDENCE BOUNDS FOR THE RELIABILITY OF A SYSTEM FROM SUBSYSTEM DATA 

 
RT&A # 02(17)  

(Vol.1) 2010, June 
 
 

 

156 

The described general methodology is based on the original methodology for the construction 
of confidence sets proposed in (Neyman 1935), and is valid for any type of reliability data, and any 
type of reliability structure. However, its practical applicability is limited only to rather simple cases. 
 
8  APPROXIMATE LOWER BOUNDS FOR SYSTEM’S RELIABILITY BASED ON 

MINIMUM VALUES OF THE RELIABILITY OF SYSTEM’S ELEMENTS 
 

Computation of optimal (i.e. the shortest) and exact confidence intervals is, with a few 
exceptions, a very difficult task. Moreover, in all published results it is assumed that the elements in a 
system are mutually independent. Additional problems arise from a fact that confidence intervals 
used for the description of test results may be conservative, as in the case of intervals based on the 
Clopper-Pearson formula.  In this section we present approximate bounds for system’s reliability 
which, under certain conditions, may replace lower bounds of confidence intervals. 

In order to investigate the robustness of the confidence intervals for system’s reliability against 
the departure from the assumption of independence of system’s elements let us introduce the notion 
of a copula. According to a famous theorem of Sklar (see e.g. (Nelsen 2006)) any two-dimensional 
probability distribution function H(x,y) with marginals F(x) and G(y) is represented using a function 
C called a copula in the following way: 
       yGxFCyxH ,,   (67) 
for all x,y  R. Conversely, for any distribution functions F and G and any copula C, the function H 
defined by (67) is a two-dimensional distribution function with marginals F and G. Moreover, if F 
and G are continuous, then the copula C is unique. In our investigation we will consider three types 
of copulas: 

a) Clayton copula defined as 

      0,1,
1


  GxFyxH  (68) 

b) Gumbel copula defined as 

          0
1







  

 ,yGlnxFlnexpy,xH , (69) 

c) Fairlie-Gumbel-Morgenstern (FGM) copula defined as 
              11111   ,yGxFyGxFy,xH  (70) 

The Clayton and Gumbel copulas can be used for modeling a positive stochastic dependence. 
The FGM copula can be used for modeling both negative ( and positive ( dependence. The 
Clayton copula is especially interesting in reliability applications as it describes stronger dependence 
for smaller lifetimes than for larger ones. If this type of dependence exists the reliability of a series 
system with dependent elements is greater than in the case of independence. On the other hand, for a 
parallel system the reliability of a system with dependent elements is smaller. 

In the majority practical cases the reliability of tested elements is high, and even for moderate 
sample sizes the number of observed failures is small. This suggests utilization of the result obtained 
for the case of zero-failure tests for the calculation of the lower bounds for reliability of a series 
system given by the expression (24). To analyze the properties of this approximation let us consider 
a two-element series system whose elements are equally reliable. We also assume that the sample 
sizes for both elements are the same. On Figure 1 we present the comparison of the values of our 
simple approximate bound with the bounds calculated for this system using a substitution method. 
For obtaining the presented results we performed a Monte Carlo simulation experiments, and in each 
of them we generated 500 000 test cases, Our approximate bound, plotted against the expected 
number of observed  failures in a sample (for a probability of failure equal to 0,01), is represented by 
a continuous upper curve. The middle curve represents the bound calculated by the insertion into (5) 
the respective lower bound of the confidence intervals for the reliability of elements, calculated for 
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the same confidence level (=0,9).The lower curve is a similar to the previous one, but calculated for 
the confidence level equal to  , as it is suggested in statistical literature. 

Then, we calculated the coverage probability of the considered confidence intervals. The 
results of the comparison are presented on Figure 2 for our approximate bound, and the bound 
represented by a middle curve on Figure 1. 

As we can see, our simple bound fulfills requirements for a confidence interval not only for 
zero-failure reliability tests, but for all tests with the expected number of failures not greater than 
1,95. The classical and much wider confidence intervals have the probability of coverage close to 1, 
i.e. much greater than the designed value of 0,9.  

 
 

 
 
 

Figure 1. Lower bounds for a series system 
 

 
 
 

Figure 2. Coverage probabilities for a series system in case of independence 
 
 

Now, let us consider the case when the elements of the system are dependent. On Figure 3 we 
show the coverage probability when this dependence is described by the Clayton copula with 
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dependence parameter , and the Gumbel copula, with dependence parameter For this value 
of the parameter the Kendall measure of dependence for both copulas is equal to 0,5. It means that 
the dependence is positive and fairly strong. 

The coverage probability in the case of the Clayton copula (solid line) is greater than the 
designed value for tests with the expected value of observed failures greater than 5. However, in the 
case of the dependence described by the Gumbel copula (dashed line) this feature is guaranteed only 
for this value not greater than 2. It shows, how the type of dependence influences the results despite 
the fact that the popular measure of dependence, such as Kendall in both cases gives exactly the 
same value. 

 
 

 
 
 

Figure 3. Coverage probabilities for a series system in case of dependence 
 
 

Now, let us consider the case of the system with elements connected in parallel. For such 
systems a simple for computation bound which is similar to that for a series system does not exist. 
Instead we propose the following approximation  
 

i
iqR min1 , (71) 

where iq   is the upper bound of the confidence interval for the probability of failure. The lower 
bound calculated according to (71) is always smaller than the bound obtained by substitution of the 
probabilities of failures qi with their respective upper bounds iq . Thus, the coverage probability in 
case of independent elements of the system, calculated according to (71), is always greater than the 
respective confidence level. It can be seen at Figure 4, where this probability is always equal to 1. 
(Note that the coverage probability in case of the bound obtained by substitution is also much greater 
than the confidence level which is equal to 0,9). 

The situation changes dramatically when the elements of the system are dependent, and when 
their dependence is described either by the Clayton copula or by the Gumbel copula. On Figure 5 we 
present the coverage probabilities in such cases when the confidence intervals are calculated using 
the substitution method. 
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Figure 4. Coverage probabilities for a parallel system in case of independence 
 
 

 
 
 

Figure 5. Coverage probabilities for a parallel system in case of dependence 
 

The coverage probabilities (the left-most curve for the Clayton copula, and the curve next to it 
for the Gumbel copula) show dramatically that the confidence intervals obtained by substitution 
under the assumption of independence are too narrow. On the other hand, the interval calculated 
according to (71) has the coverage probability (depicted by a dashed curve for the Clayton copula, 
and equal to one for the Gumbel copula) greater than the confidence level. 
 
9  CONCLUSIONS 
 

Many prominent authors, mainly from USA and the Soviet Union, contributed to the problem 
of computing the lower confidence bounds for system’s reliability using the data from tests of 
separate elements or subsystems. The proposed exact bounds are usually difficult to compute. Good 
approximations exist, but they are usually obtained under the assumption that failures of all elements 
or subsystems are observed during the tests. In the paper we have shown using Monte Carlo 
simulation that in case when elements working together in a system are dependent these bounds are 
inaccurate or even useless, as it is the case of parallel (redundant) systems. In the paper, we have 
proposed very simple bounds characterized by satisfactory performance, at least for highly reliable 
system elements, which are robust against the presence of positive dependence of the elements of a 
system. 
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ABSTRACT 
 

The paper deals with analysis of ships operation stages in open water areas effected by environmental 
constraints influencing on ship sea keeping parameters in application to ferry “Stena Baltica” operated in the 
Baltic Sea between Gdynia and Karlskrona harbors.  

 
 
 
1   INTRODUCTION 
Sea effects the ship during open water passage induces ship responses as motion, slamming, rolling 
etc. as the main constraints the whole system. To describe the ship system as a simply model in a 
seaway, it is necessary to introduce dynamic responses of     a ship during passage (see Figure 1). 

 

U

( )P,Ψ

M

Ship ( )S (x, y, t)

 
Figure 1. Model of a ships in a seaway 

 
The state of a ship is describe by control vector U

r
 expressed by heading (Ψ) and power output  (P). 

The ship motion is depicted by sea keeping constraints vector ( M
r

). The ship position is expressed 
by x (lat) y (long) and time (t) determines the actual ship’s position in a seaway. 
Vector ( S

r
) specifying the ship’s geometrical parameters (Chen). Based on the type of ship and her 

operation criteria of the vessel and a set of operating criteria is recommended for each trip. The 
main available sea keeping criteria recommended for passenger ferry operation should be her lack 
of casual contents to ship, less fatigue to passenger (crew injure) and to cargo damages.  
Judgment of degree of danger to the ship is dependent on control vector: speed and course. Control 
of the ship movement in open sea is based on recommendation for reducing speed and or course 
changes in proper time. 
There are the main factors that should be taken into account to establish state of ship control vector: 
• Observation of waves; 
• Encounter degrees of waves; 
• Observation of wind; 
• Main engine revolution; 
• Propeller slip; 
• Shipping seas on deck the bow; 
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• Degree of rolling; 
• Degree of yawing; 
• Degree of slamming; 
• Other general observation of the ship behavior. 

Additionally it is recommended to reduce fuel consumption, expected  time to arrival (ETA) and in 
conclusion to care of ship safety. 
The analysis of environmental effects on ship movements during sea passage must be considered 
taking into account the following aspects (IMO 2002): 
• Ship category (type of cargo, age, geometrical parameters etc); 
• Ship systems or functions (layout, type of propulsion); 
• Ship operation (voyage duration, areas); 
• External influences (weather, season, navigational infrastructure, shore based systems); 
• Risk associated with consequences (damage to ship or fatalities to passengers or crew); 
• Accident category. 

Every master of a ship is obliged to receive an accurate description of the sea environmental 
condition before departure and during sea passage. 
There are emergency states in which the ship can be found during her operation as damage by 
waves, taking water, collision, fire, grounding, oil spill, the crew or passenger sickness, or total loss. 
The main forecast environmental data is given in Table 1. 
 

Table 1. Forecast environmental data 
 

Kind of data Units Remarks 

Wind 

Sea 

Swell 

Currents 

Dangers  

[m/s, [o] 

[m], [o], [s] 

[m], [o], [s] 

[m/s], [o] 

- 

Speed, direction 

Height, direction, period 

Height, direction, period 

Speed, direction 

Ice, Fog etc. 

 
 
It is important to every master the knowledge of the ship’s responses as waves and winds 
components that may met the ship during her sea passage. 
Information on surface currents are important specially during navigation in restricted water areas. 
Ships sailing in rough seas are subject to motions and in consequences are loosing their speed. 

In Figure 2 there has been shown the environmental effects on speed loss by ship in rough seas.  
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WIND FIELD Surface currents

Locally generated waves Caused Ship
Drift

Caused Ship
Leeway

Sailing time increased

Ship motionHull resistance
increased

X Y Z

Engine Power Loss
(Δ P)

Slamming
(vibrations)

Rolling

Green water on
deck

(Loss of stability)

Natural engine
revolution losses

Total speed loss
(ΔV)

Engine revolution
decreased  

 
Figure 2.  Environmental effects on speed loss during sea passage in rough seas (Jurdziński 1989) 

 

The speed depends on the hull form, draft of the ship, depth of water, environmental condition and 
state of the engine power, or propeller setting. In Figure 3 there have been shown two different 
ship’s hull reaction on environmental condition in different phase of navigation. 

 

 

 
Figure 3. Different ship’s curves reaction on environmental conditions: a. navigation in restricted 

 water areas (Ferry); b. navigation in open water areas (Bulk Carriers) (Jurdziński 2003) 
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For practical application the ship speed loss curves are used. Environmental parameters such 
as waves, swell, wind and current are used in calculation. A ship being influence by many factors 
which interact in a complex manner. Relation between the ship speed and total hull resistant will 
clarify the action of particular forces on hull during ship movement in different environmental 
condition. 
 
2   ENVIRONMENTAL CONDITIONS AND THE SHIP SPEED LOSS 

The thrust that is gain by the propeller effects is equal to the sum of calm water resistance, 
environmental effects as wave, wind, currents  and shallow water resistances. (See Figure 4.) 

 

0 2 4 6 8 10 12 14 [knot]

Speed [knots]

0

Propeller Thrust
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ΔRC

VS V0ΔVS
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R0
RC

RW

RF

RD

 
 

Figure 4. The ship speed changes due to environmental conditions 
 

Total resistance of the ship during her movements is given by: 
 

   RT = RO + RC + RW + RF + RD  [kN]     (1) 
 

Where: 
RT  –  total hull resistance in difficult environmental     conditions; 
RO – resistance in calm water; 
RW – additional resistance in waves; 
RF– additional resistance in wind; 
RD –additional resistance in shallow waters; 
RC –additional resistance in currents. 

 
In the same way is determined the speed loss of the ship during her moving: 

 
   VS = V0 - ΔVS,    

 
   ΔVS = ΔVC + ΔVW + ΔVF + ΔVD [knot]    (2) 

 
Where  
V0 – speed in calm water; 
VS – speed in different environmental  constraints; 



M. Jurdziński, S. Guze, P. Kamiński ‐ TIME DIFFERENCES IN PERATION STATES OF STENA BALTICA FERRY DURING THE OPEN 
WATER AREAS PASSAGE 

 
RT&A # 2(17)  

(Vol.1) 2010, June  
 

 

165 

ΔVS – total speed loss due to environmental conditions; 
ΔVC – speed loss in currents; 
ΔVW – speed loss in waves; 
ΔVF – speed loss in wind; 
ΔVD – speed loss in shallow water. 
 
Ferry make vessel especially susceptible to wind due to her large windage of super structure AW but 
the external forces of waves seems to be small (see Figure 3). 
Dynamic characteristic of ship motion is important to predict ship responses in term of wave spectra 
and ship geometry during her sea passage. 
Speed is the main ship performance characteristic. The actual ship speed can be expressed in 
functional form as:  

 
   VS = VO – ΔVW  [knot]    (3) 

 
   V0 =  F(n)  [knot]    (4) 

 
Where: 
a1b1 – coefficients obtained by experimental method; 
F{n}  - propeller revolution function [r p m]; 

 
Loss of speed in waves during passage in open waters conditions is given by formula:[5] 

 
   ΔVW = aH + bH2 + cHcosqw [knot]    (5) 

 
where: 
a,b, c – coefficients obtained by experimental method; 
H  -  significant wave heights [m]; 
qw – wave to ship track angle [0]. 

 
Prediction of engine power in the open sea phase of navigation is given by formula:[11] 

 
   P = PO – ΔP [kW]    (6) 

 
   PO = a1 n3 [kW]    (7) 

 
ΔP = b1ΔVW + c1ΔVW2 [kW]   (8) 

 
where: 
a1, b1, c1 – coefficient; 
n – propeller revolutions [rpm]; 
ΔVw – speed loss due to waves  [knot]. 
 
Speed loss presented in graphical form is given in Figure 5. 
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Figure 5. Speed curves for various engine power setting. It is possible to establish the functional relation between ship, 
wave period and wave to ship track in relation to available power output 

 
 

Such function is given as (Chan): 
 

   VS = f(P, H2, qw, Tw) [knots]     (9) 
 
where: 
P – power output [kW]; 
H – significant wave height [m]; 
TW – predominant wave period  [s]; 
qw–  wave to ship track  [0]. 

 

For safety reason an approach to model of the ship speed function on a seaway should be prepared 
for every ship. Information recorded from ship’s logbook as speed against wave height or wind 
speed will make possible construct speed curves. The speed function to established is effective and 
useful in navigation passage planning. 
   
3   SHIP SPEED IN SHALLOW WATERS  
The shallow water influence the ship speed. There have been given information in reference (Barrass 
2004) on depth influence the ship speed. The formula is as fallow: 

 
   h = k ⋅  T [m]    (10) 

 
where: 
h – depth of water influencing on ship speed[m]; 
k – coefficient equals to:  

3.1
44.4

BC
; 

CB – ship block coefficient; 
T – ship draft [m]. 

 
The amounts that the ship is reducing her speed will depend on the following elements (Barrass 
2004): 
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• Type of ship; 
• Proportion of water depth (h) to static mean draft of the ship (T), (i.e. the h/T value); 
• Ship block coefficient (CB). 

Loss in speed in shallow water is given in Figure 6. 
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Figure 6. Loss in speed in shallow water (Barrass 2004) 
 
 

The loss of speed in %  equals to: 

   ΔVD = 60 – (25 ⋅  h/T) , [%]  (11) 
 

for an h/T of 1.10 – 1.40 
 

  ΔVD = 36 – (9 ⋅ h/T),  [%]  (12) 
 
for an h/T of 1.5 – 3.0 
The formula (11) and (12) shows the percentage of loss speed relative to full service speed in deep 
water (h/T > 7). 
In conclusion the ship speed can decrease by about 30% when h/T is 1.10 – 1.40. 
Propeller rpm can decrease by about 15% when h/T is 1.10 – 1.40 (Barrass 2004). 
According to above the times of each ships operation stage during sea passage is different in each 
trip. Ship liner as ferry is covering in calm water the same distances from A to B ports. Weather the 
times of the time of sea passage during each voyage is changing due to degree of environmental 
constraints. Distances to cover may change in order to alternatives for course diversion. This make 
increasing in fuel consumption. 
The fuel consumption during sea passage depends on the following factors: 
• Ship parameters such as from of hull, weight type of main engines, propellers, etc.; 
• Number of engaged main engines; 
• Ship speed relative to ground; 
• Water depth; 
• Weather, current, wind, waves; 
• Ship draft. 
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A set of collected statistic on time difference in which the ship is operated in different states there will 
developed the realistically ship operation criteria to establish save speed during passages in open sea 
phase. 

5

10

200

15 knots

18 knots

20 knots

[h]
Travel time

[hours]

Distance in nautical miles  
 

Figure 7. Heuristically defined feasible state space as a function of voyage distance and max/min 
ship speed in open sea phase (Chen). 

 
 
4   THE SHIP SPEED LOSS OF FERRY “STENA BALTICA” 
The speed characteristics of ferry were estimated in empirical way. Number of observations 
collected in 2008 (winter time) was limited to 319. 
This has given us a rough estimation the speed loss mainly in bad weather condition. (See Figure 
8).The ship speed over the ground was measured against wind speed in Beaufort scale using GPS 
navigator and ECDiS systems. 
The ferry has large superstructure in the transverse projection area above waterline so the ship is 
very susceptible to wind, less to waves. 
The ratio of superstructure area to transverse projected area below waterline (draft of the ship) 
AT/Aw equals to 7.8. She moves at sea as a sailing vessel. The high speed loss in the head winds is 
suspected to be cause by the fact that the forward ship superstructure amounts to 573 m2. The side 
superstructure area equals to 4200 m2. In this case the speed loss characteristics have been 
constructed against wind speed.  
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Figure 8. The ship speed in knot against the wind speed in Beaufort scale. 
 
To establish the ferry speed characteristic the polynomial regression function have been used. The 
output shows the results a second order polynomial model to describe the relationship between ΔVs 
and B. (See equations 13-16). The equations to fitted model is: 
 

   ΔVSi = a1B + b1B2 + r1,              (13) 
 
for an qw = 0000, 
 

   ΔVSi = a2B + b2B2 + r2,             (14) 
 
for an qw = 0900, 
 

   ΔVSi = a3B + b3B2 + r3,             (15) 
 
for an qw = 1800,    
 
then 
 

VSi= Vo - ΔVSi,        (16) 
 
where 
a1 = +0.14958,  b1 = + 0.63520, r1 = - 0.00121, 

a2 = -0.04758, b2 = + 0.056061, r2 = - 0.00667, 

a3 = - 0.50050, b3 = + 0.91883, r3 = - 0.59286. 
 

The actual speed curves for different qw have been shown in Figure 8. 
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5   THE STATISTICS OF TIME DIFFERENCES IN OPEN SEA OPERATION 

STATES OF “STENA BALTICA” 

Taking into account the operation process of the considered ferry we distinguish the following as its 
eighteen operation states (Jurdizński et. al 2008):  
• an operation state −1z loading at Gdynia Port, 
• an operation state −2z unmooring operations at Gdynia Port, 
• an operation state −3z leaving Gdynia Port and navigation to “GD” buoy,  
•  an operation state −4z navigation at restricted waters from “GD” buoy to the end of Traffic 

Separation Scheme, 
• an operation state −5z navigation at open waters from the end of Traffic Separation                

Scheme to “Angoring” buoy, 
• an operation state −6z navigation at restricted waters from “Angoring” buoy to                   

“Verko” Berth at Karlskrona, 
• an operation state −7z mooring operations at Karlskrona Port, 
• an operation state −8z unloading at Karlskrona Port, 
• an operation state −9z loading at Karlskrona Port,  
• an operation state −10z unmooring operations at Karlskrona Port, 
• an operation state −11z ship turning at Karlskrona Port,  
• an operation state −12z leaving Karlskrona Port and navigation at restricted waters to                   

“Angoring” buoy, 
• an operation state 13z  -  navigation at open waters from “Angoring” buoy to the                   

entering Traffic Separation Scheme, 
• an operation state −14z navigation at restricted waters from the entering Traffic                   

Separation Scheme to “GD” buoy, 
• an operation state −15z navigation from “GD” buoy to turning area, 
• an operation state −16z ship turning at Gdynia Port,  
• an operation state −17z mooring operations at Gdynia Port, 
• an operation state −18z unloading at Gdynia Port. 

 
To identify all parameters of “Stena Baltica” ferry operation process the statistical data about this 
process, have been collected during 42 round trip. (Soszyńska et. al.) 
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Figure 9. The “Stena Baltica” round trip operation process at sea 

 
In Figure 9 there have been distinguished only the states of the ferry in her round trip when she was 
in the navigation process. 
In Table 2 there have been collected the statistical data time differences in sea navigation states. 

 
Table 2. The time difference of states during navigation passage 

 
Time of operation  

State 
 

Phase of navigation tmin [h] tmax [h] 

 
Remarks 

z3 Harbour. Restricted waters 0.50 0.75 Harbour, regulation speed limitation 
z4 Restricted waters 0.75 1.50 Weather restrictions 
z5 Open waters 7.75 12.00 Environmental constraints 
z6 Restricted waters. Harbour 0.50 0.67 Different weather condition 
z11 Harbour. Restricted waters 0.05 0.10 Ships turning abilities 
z12 Restricted waters 0.35 0.67 Weather and ships traffic condition 
z13 Open waters 7.75 <12.00 Environmental constraints 
z14 Restricted waters 0.70 1.15 VTS operation and harbour regulations 
z15 
z16 

Harbour 0.77 0.77 Due to dense traffic in harbour, speed limitation 

 
These experimental data have shown that the main constrains in ferry operation states in open sea is the 
speed loss due to bad weather condition. 
 
6   CONCLUSION 

1. The ferry operation states z5 and z13 are the longest time differences occurred in open water navigation due 
to speed loss during unexpected environmental constraints. 
2. The major uncertainties involved in the present analysis of the speed loss characteristic are introduced by 
calculation using small amount of information (319 observations). 
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3. The required ship speed loss appeared not to exceed 25 percent of full speed in calm water in forward 
direction of the wind speed below 8-9 Beaufort scale. 
4. To say more about the ferry sea keeping characteristic that the route optimization especially in winter 
season is expected to improve the economics.  
5. In commercial applications the most important objective function for ship operation problem is the 
minimize the voyage cost. 
In modern ship operation the following criteria are commonly used; 

a. Ship safety; 
b. Prevention of ship damage; 
c. Maintenance of time schedule; 
d. Passenger / crew comfort; 
e. Economy of navigation; 
f. Minimize the voyage costs (mainly fuel costs). 

6. The recorded date from the ship’s logbook the wave height, speed and power output, from the past 
voyages, will help to further development in establish the ship sea keeping characteristic.  
7. Information on the actual speed of the ship in different phase of navigation and in different environmental 
constraints will help the navigator to establish ETA (Estimated Time of Arrival) with good approximation to 
every position of the ship destination.          
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ABSTRACT 
 
In the paper, definitions and theoretical results on system operations process, multi-state system reliability, risk and 
availability modelling are illustrated by the example of their application to a bulk cargo transportation system operating 
in Gdynia Port Bulk Cargo Terminal. The bulk cargo transportation system is considered in varying in time operation 
conditions. The system reliability structure and its components reliability functions are changing in variable operation 
conditions. The system reliability structures are fixed with a high accuracy. Whereas, the input reliability characteristics 
of the bulk cargo transportation system components and the system operation process characteristics are not sufficiently 
exact because of the lack of statistical data. Anyway, the obtained evaluation may be a very useful example in simple 
and quick systems reliability characteristics evaluation, especially during the design and improving the transportation 
systems operating in ports.  
  
 
1  INTRODUCTION 
 

Taking into account the importance of the reliability and operating process effectiveness of 
technical systems it seems reasonable to expand the two-state approach to multi-state approach in 
their reliability analysis. The assumption that the systems are composed of multi-state components 
with reliability states degrading in time gives the possibility for more precise analysis and diagnosis 
of their reliability and operational processes’ effectiveness. This assumption allows us to distinguish 
a system reliability critical state to exceed which is either dangerous for the environment or does not 
assure the necessary level of its operational process effectiveness. Then, an important system 
reliability characteristic is the time to the moment of exceeding the system reliability critical state 
and its distribution, which is called the system risk function. This distribution is strictly related to 
the system multi-state reliability function that is a basic characteristic of the multi-state system. 
Determining the multi-state reliability function, the risk function and the availability of systems on 
the base of their components’ reliability functions is then the main research problem. Modeling 
complicated systems operations’ processes is difficult mainly because of large number of operations 
states and impossibility of precise describing of changes between these states. One of the useful 
approaches in modeling these complicated processes is applying the semi-markov processes  
Modeling of multi-state real technical systems’ reliability and linking it with semi-markov model of 
these systems’ operation processes is the main and practically important research problem of this 
paper. The paper is devoted to this research problem with reference to basic reliability structures of 
technical systems and particularly to reliability analysis of a port bulk cargo transportation system 
in variable operation conditions. This approach to system reliability investigation is based on the 
multi-state system reliability analysis and on semi-markov processes modeling. 
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2 THE BULK CARGO TRANSPORTATION SYSTEM DESCRIPTION  
 

The Baltic Bulk Terminal Ltd. In Gdynia is designated for storage and reloading of bulk cargo 
such as different kinds of fertilisers i.e.: ammonium sulphate, but its main area of activity is to load 
bulk cargo on board the ships for export. The BBT is not equipped with any devices to enable the 
discharge of vessels. 

There are two independent shipment systems: 
1. The system of reloading rail wagons. 
2. The system of loading vessels. 

Cargo is brought to BBT by trains consisting of self discharging wagons which are discharged 
to a hopper and then by means of conveyors are transported into the one of four storage tanks 
(silos). Loading of fertilizers from storage tanks on board the ship is done by means of special 
reloading system which consists of several belt conveyors and one bucket conveyor which allows 
the transfer of bulk cargo in a vertical direction. Researched system is a system of belt conveyors, 
called later on the transport system. 
In the conveyor reloading system we distinguish the following transportation subsystems: 
S1, S2, S3 – the belt conveyors. 
In the conveyor loading system we distinguish the following transportation subsystems:  
S4 – the dosage conveyor,  
S5 – the horizontal conveyor,  
S6 – the horizontal conveyor,   
S7 – the sloping conveyors,   
S8 – the dosage conveyor with buffer,   
S9 – the loading system. 
The scheme of this system is presented in Figure 1. 
 

 
 
 
 
 
 
Figure 1. The scheme of port bulk cargo 
transportation system. 

 
 
 GETTING STARTED 
 
 
 

                   Figure 1. The scheme of port bulk cargo transportation system 
 

After discussion with experts, taking into account the reliability of the operation of the 
system, we distinguish the following four reliability states of its components:  

-  a reliability state 3 – ensuring the highest efficiency  of the conveyor,  
-  a reliability state 2 – ensuring less efficient of the working conveyor by spilling cargo out of 

the belt caused by partial damage to some of the rollers  or misalignment  of the belt,  
-  a reliability state 1 – ensuring less efficiency of the working conveyor controlled directly  

by operator caused by i.e.: stretched or slightly damaged  belt,  
-  a reliability state 0 – the conveyor unable to work which my be caused by i.e.: breakage of 

the belt, failure of rollers or elongated belt beyond adjustment  range. 

S4 

S5

S

S7S8
S9 
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We preliminarily assume that the bulk cargo transportation system is composed of nine 
subsystems  1S , 2S , 3S and 4S , 5S , 6S , 7S , 8S , 9S , having an essential influence on its reliability.  

We mark the reliability functions of these subsystems respectively by the vectors 
Ri(t , ⋅ ) = [Ri(t,0), Ri(t,1), Ri(t,2), Ri(t,3)],   ),,0 ∞∈<t ,3,2,1=i …,9, 

with the co-ordinates  
Ri(t,u) = P(Si(t) ≥ u | Si(0) = z) = P(Ti(u) > t), 

defined for ),,0 ∞∈<t  u = 0,1,2,3, ,3,2,1=i …,9, where Ti(u), i = 1,2,3,…,9,  are independent 
random variables representing the lifetimes of subsystems Si in the reliability state subset 
{u,u+1,...,3}.  

Further, assuming that the system is in the reliability state subset {u,u+1,...,3} if all its 
subsystems are in this subset of reliability states, we conclude that the system is a series system of 
subsystems 1S , 2S , 3S and 4S , 5S , 6S , 7S , 8S , 9S  with a general scheme presented in  Figure 2.  
 

 
 

 
 
 

Figure 2. General scheme of transportation system structure 
 

The bulk cargo transportation system consists nine subsystems 1S , 2S , 3S , 4S , 5S , 6S , 7S , 8S , 

9S :  
-  the subsystem 1S  composed of 1 rubber belt, 2 drums, set of 121 bow rollers, set of 23 belt 

supporting rollers,  
-  the subsystem 2S  composed of 1 rubber belt, 2 drums, set of 44 bow rollers, set of 14 belt 

supporting rollers,  
-  the subsystem 3S  composed of 1 rubber belt, 2 drums, set of 185 bow rollers, set of 60 belt 

supporting rollers,  
-  the subsystem 4S  composed of three identical belt conveyors, each composed of 1 rubber 

belt, 2 drums, set of 12 bow rollers, set of 3 belt supporting rollers,  
-  the subsystem 5S  composed of 1 rubber belt, 2 drums, set of 125 bow rollers, set of 45 belt 

supporting rollers,  
-  the subsystem 6S  composed of 1 rubber belt, 2 drums, set of 65 bow rollers, set of 20 belt 

supporting rollers,  
-  the subsystem 7S  composed of 1 rubber belt, 2 drums, set of 12 bow rollers, set of 3 belt 

supporting rollers,  
-  the subsystem 8S  composed of 1 rubber belt, 2 drums, set of 162 bow rollers, set of 53 belt 

supporting rollers,  
-  the subsystem 9S  composed of 3 rubber belts, 6 drums, set of 64 bow rollers, set of 20 belt 

supporting rollers.  
 
 
 
 

5              . . .S4 S5 S9 

S1 S2 S3 
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3 THE BULK CARGO TRANSPORTATION SYSTEM OPERATION PROCESS 
CHARACTERISTICS EVALUATION  

 
Technical subsystems 1S , 2S ,…, 9S , indicated in Figure 1 are forming a general bulk cargo 

transportation system reliability structure presented in Figure 2. However, the bulk cargo 
transportation system reliability structure and the subsystems reliability depend on its changing in 
time operation states. Taking into account the operation process of the considered system we 
distinguish the following as its three operation states:  

- an operation state −1z  the discharging rail wagons to storage tanks or hall when 
subsystems S1, S2, S3, are used. 

- an operation state −2z  the loading of fertilizers from storage tanks or hall on board the 
ship is done by using S4, S5, S6, S7, S8  , S9, subsystems.  

- an operation state −3z  the loading of fertilizers from rail wagons on board the ship is done 
by using S1, S2, S3, S6, S7, S8  , S9 subsystems. 

According to expert opinions in the operation process, ),(tZ  0≥t , we distinguished three 
operation states: 1z , 2z , 3z . On the basis of data coming from experts, the probabilities of transitions 
between the operation states are approximately given by   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

001
001
63.037.00

][ 33xblp . 

 
Using the results given above and when the mean values of the conditional sojourn times  blM , 

3,2,1, =lb , ,lb ≠  are given, we can find the mean values of the unconditional sojourn times bM , 
3,2,1=b , in particular operation states bz . Next, knowing the mean values of the unconditional 

sojourn times in particular operation states bz  and solving the system of equations 
[ ]

⎩
⎨
⎧

=++

=

,1
],,[],,[

321

33321321

πππ
ππππππ xblp

 

5.01 =π , 185.02 =π , 315.03 =π , 
we obtain the limit values of the transient probabilities )(tpb  at the operational states bz , 
 
                                                  =1p 0.6679,  =2p 0.0945,   =3p 0.2376.                                       (1) 
 
4 THE BULK CARGO TRANSPORTATION SYSTEM IN VARIABLE OPERATION 

CONDITIONS RELIABILITY, RISK AND AVAILABILITY EVALUATION  
 

We assume as earlier that the bulk cargo transportation system is composed of 9=n  
subsystems ,iS  9,...,3,2,1=i  and that the changes of the process Z(t) of the bulk cargo transportation 
system operation states have an influence on the system subsystems iS  reliability and on the 
reliability structure as well. Thus, we denote the conditional reliability function of the bulk cargo 
transportation system subsystem iS  while the system is at the operational state ,bz  ,3,2,1=b  by 

),()( ⋅tR b
i  = [1, ),1,()( tR b

i ),2,()( tR b
i  ..., ),()( ztR b

i ], 
where for ),,0 ∞∈<t  ,3,2,1=b  ,,...,2,1 zu =  

),)()((),( )()(
b

b
i

b
i ztZtuTPutR =>=  
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and the conditional reliability function of the bulk cargo transportation system while the system is at 
the operational state ,bz  ,3,2,1=b  by 

),()( ⋅tb
nb

R  = [1, ),1,()( tb
nb

R ),2,()( tb
nb

R .., ),()( ztb
nb

R ], 
where for ),,0 ∞∈<t  ,3,2,1=b  },9,...,2,1{∈bn  ,,...,2,1 zu =  

),()( utb
nb

R ).)()(( )(
b

b ztZtuTP =>=  
We assume that the bulk cargo transportation system subsystems ,iS  ,9,...,3,2,1=i  are its 

three-state components, i.e. z = 3, with the multi-state reliability functions 
),()( ⋅tR b

ij = [1, )1,()( tR b
ij , )2,()( tR b

ij , )3,()( tR b
ij ], 

with exponential co-ordinates different in various operation states bz , .3,2,1=b  From Kołowrocki 
K. & Kwiatuszewska-Sarnecka B. (2008), we have following results. 
At system operational state 1z , system is composed of three series subsystems S1, S2, S3. 

The subsystem S1 is a multi-state series system consists of  n = 147 components and its 
reliability function is given by  
                           [ ),(147 ⋅tR ](1 ) = [1, [ )1,(147 tR ](1), [ )2,(147 tR ](1), [ )3,(147 tR ](1)],  ),,0 ∞∈<t            (2) 
where  
                                                  [ )1,(147 tR ](1) = exp[-13.132t],                                                          (3)       
                                                  [ )2,(147 tR ](1) = exp[-16.569t],                                                          (4)       
                                                  [ )3,(147 tR ](1) = exp[-21.642t].                                                         (5) 

The subsystem S2 is a multi-state series system, consists of n = 61 components, its reliability 
function is given by 
                           [ ),(61 ⋅tR ](1)  = [1, [ )1,(61 tR ](1), [ )2,(61 tR ](1), [ )3,(61 tR ](1)],  ),,0 ∞∈<t                (6) 
where  
                                                   [ )1,(61 tR ](1) = exp[-5.204t],                                                            (7)       
                                                   [ )2,(61 tR ](1) = exp[-6.517t],                                                            (8)       
                                                   [ )3,(61 tR ](1) = exp[-8.406t].                                                            (9) 

The subsystem S3 is a multi-state series system, consists of n = 248 components, its reliability 
function is given by 
                          [ ),(248 ⋅tR ](1) = [1, [ )1,(248 tR ](1), [ )2,(248 tR ](1), [ )3,(248 tR ](1)],  ),,0 ∞∈<t           (10) 
where  
                                                  [ )1,(248 tR ](1) = exp[-21.227t],                                                        (11)       
                                                  [ )2,(248 tR ](1) = exp[-26.577t],                                                       (12)       
                                                  [ )3,(248 tR ](1) = exp[-34.232t].                                                        (13) 

The reliability function of the bulk cargo transportation system, at the operational state 1z , is 
given by 
                                      [ R(t ⋅, )](1) = [1, [ )1;(tR ](1), [ )2;(tR ](1), )3;(tR ](1)],                                  (14) 
where 
                                                  [ )1;(tR ](1) = exp[-39.563t],                                                            (15) 
                                                  [ )2;(tR ](1) = exp[-49.663t],                                          (16) 
                                                  [ )3;(tR ](1) = exp[-64.280t].                                                           (17) 
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The expected values and standard deviations of the bulk cargo transportation system 
conditional lifetimes in the reliability state subsets calculated from the above result given by (15)-
(17), at the operational state 1z , are:  
                          m(1)(1) ≅ 0.025, m(1)(2) ≅ 0.020, m(1)(3) ≅ 0.016 y,                                            (18)                     
                         )1()1(σ ≅ 0.025 , )2()1(σ ≅ 0.020, )3()1(σ ≅ 0.016,                                                (19)   
from (18)-(19) it follows the conditional lifetimes in the particular reliability states at the 
operational state 1z  are:  

≅)1()1(m 0.005, )2()1(m ≅ 0.004, )3()1(m ≅ 0.016. 
At system operational state 2z , system is composed of one series-parallel subsystem S4 and 

five series subsystems S5, S6, S7, S8, S9 . 
The subsystem 4S  consists of  k = 3 identical belt conveyors, each composed of  l = 18 

components. Thus the subsystem S4 is a multi-state series-parallel system, its reliability function is 
given by 
                      [ ),(18,3 ⋅tR ](2) = [1, [ )1,(18,3 tR ](2), [ )2,(18,3 tR ](2), [ )3,(18,3 tR ](2)], ),,0 ∞∈<t              (20) 
where  
                [ )1,(18,3 tR ](2) = 3]]751.2exp[1[1 t−−− = exp[-8.253t]-3exp[-5.502t]+3exp[-2.751t],     (21)       

                [ )2,(18,3 tR ](2) = 3]]956.2exp[1[1 t−−− = exp[-8.868t]-3exp[-5.912t]+3exp[-2.956t],    (22)       

                [ )3,(18,3 tR ](2)  = 3]]276.3exp[1[1 t−−− = exp[-9.828t]-3exp[-6.552t]+3exp[-3.276t]],  (23)       
Thus the subsystem S5 is a multi-state series system, its reliability function, is given by 

                      [ ),(173 ⋅tR ](2) = [1, [ )1,(173 tR ](2), [ )2,(173 tR ](2), [ )3,(173 tR  ](2)], ),,0 ∞∈<t                (24) 
where  
                                                  [ )1,(173 tR ](2) = exp[-14.642t],                                                        (25)       

                                                  [ )2,(173 tR ](2) = exp[-18.297t],                                                        (26)       

                                                  [ )3,(173 tR ](2) = exp[-23.662t].                                                        (27) 

Thus the subsystem S6 is a multi-state series system, consists of n = 88 components, its 
reliability function, is given by 
                       [ ),(88 ⋅tR ](2) = [1, [ )1,(88 tR ](2), [ )2,(88 tR ](2), [ )3,(88 tR  ](2)],  ),,0 ∞∈<t                  (28) 
where  
                                                 [ )1,(88 tR ](2) = exp[-7.547t],                                                            (29)       

                                                 [ )2,(88 tR ](2) = exp[-9.457t],                                                            (30)       

                                                 [ )3,(88 tR ](2) = exp[-12.272t].                                                          (31) 

Thus the subsystem S7 is a multi-state series system, consists of  n = 18 components, its 
reliability function, is given by 
                               [ ),(18 ⋅tR ](2) = [1, [ )1,(18 tR ](2), [ )2,(18 tR ](2), [ )3,(18 tR ](2)],  ),,0 ∞∈<t           (32) 
where  
                                                  [ )1,(18 tR ](2) = exp[-2.751t],                                                            (33)       

                                                  [ )2,(18 tR ](2) = exp[-2.956t],                                                          (34)       

                                                  [ )3,(18 tR ](2) = exp[-3.276t].                                                           (35) 

Thus the subsystem S8 is a multi-state series system, consists of  n = 218 components, its reliability 
function, is given by 
                         [ ),(218 ⋅tR ](2) = [1, [ )1,(218 tR ](2), [ )2,(218 tR ](2), [ )3,(218 tR  ](2)],  ),,0 ∞∈<t           (36) 
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where  
                                                          [ )1,(218 tR ](2) = exp[-18.639t],                                                (37)       

                                                          [ )2,(218 tR ](2) = exp[-23.333t],                                               (38)       

                                                          [ )3,(218 tR ](2) = exp[-30.226t].                                                (39) 
Thus the subsystem S9 is a multi-state series system, consists of  n = 93 components, its reliability 
function, is given by 
                         [ ),(93 ⋅tR ](2)= [1, [ )1,(93 tR ](2), [ )2,(93 tR ](2),  [ )3,(93 tR  ](2)],  ),,0 ∞∈<t                (40) 
where  
                                                          [ )1,(93 tR ](2) = exp[-5.926t],                                                   (41)       

                                                          [ )2,(93 tR ](2)  = exp[-8.063t],                                                  (42)       

                                                          [ )3,(93 tR ](2) = exp[-10.152t].                                                 (43) 

The reliability function of the bulk cargo transportation system, at the operational state 2z , is given 
by 

                                       
)2()],([ ⋅tR  = [1, [ )1;(tR ](2), [ )2;(tR ](2), [ )3;(tR ](2)], ,0≥t                       (44) 

where 
                                       [ )1;(tR ](2) = exp[-57.758t]-3exp[-55.007t]+3exp[-52.256t],                    (45) 
                                       [ )2;(tR ](2)  = exp[-70.974t]-3exp[-68.018t]+3exp[-65.062t],                  (46) 
                                       [ )3;(tR ](2) = exp[-89.416t]-3exp[-86.140t]+3exp[-82.864t],                   (47) 
The expected values and standard deviations of the bulk cargo transportation system lifetimes at the 
operational state 2z ,  in the safety state subsets calculated from the above result, according to (45)-
(47), are:  
                                                m(2)(1) ≅ 0.020, m(2)(2) ≅ 0.016, m(2)(3) ≅ 0.013,                               (48) 
                                               )1()2(σ ≅ 0.020 , )2()2(σ ≅ 0.016, )3()2(σ ≅ 0.013,                         (49)   
and further, using (48), it follows the conditional lifetimes in the particular reliability states at the 
operational state 2z , are:  

≅)1()2(m 0.004, )2()2(m ≅ 0.003, )3()2(m ≅ 0.013. 
At system operational state 3z , system is composed of seven non-homogenous series subsystems 
S1, S2, S3, S6, S7, S8, S9.           
The reliability function of the bulk cargo transportation system, at the operational state 3z , is given 
by 

                                          
)3()],([ ⋅tR  = [1, [ )1;(tR ](3), [ )2;(tR ](3), [ )3;(tR ](3)],  ,0≥t                  (50) 

where 
                                                      [ )1;(tR ](3) = exp[-74.426t],                                                        (51) 
                                                      [ )2;(tR ](3) = exp[-93.472t],                                                       (52) 
                                                      [ )3;(tR ](3) = exp[-150.206t].                                                     (53) 
The expected values and standard deviations of the bulk cargo transportation system lifetimes at the 
operational state 3z ,  in the safety state subsets calculated from the above result, according to (51)-
(53), are:  
                                        m(3)(1) ≅ 0.013, m(3)(2) ≅ 0.011,  m(3)(3) ≅ 0.007,                                   (54)                    
                                       )1()3(σ  ≅ 0.013 , )2()3(σ ≅ 0.011, )3()3(σ ≅ 0.007,                                 (55)                     
and further, using (54), it follows the conditional lifetimes in the particular reliability states at the 
operational state 3z , are:  
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≅)1()3(m 0.002, )2()2(m ≅ 0.004, )3()3(m ≅ 0.007. 
In the case when the system operation time is large enough, the unconditional reliability function of 
the bulk cargo transportation system is given by the vector  

                                     ),( ⋅t9R = [1, ),1,(t9R ),2,(9 tR )3,(t9R ], ,0≥t                                           (56) 
the vector co-ordinates are given respectively by   

              )1,(9 tR )1(
1 )]1,([ tp R= )2(

2 )]1,([ tp R+ )3(
3 )]1,([ tp R+  

                           0945.0]563.39exp[6679.0 +−= t (exp[-57.758t] - 3exp[-55.007t] +3exp[-52.256t]) 
                           2376.0+ exp[-74.426t]  for t ≥ 0,                                                                         (57)                     

              )2,(9 tR )1(
1 )]2,([ tp R= )2(

2 )]2,([ tp R+ )3(
3 )]2,([ tp R+  

                            0945.0]663.49exp[6679.0 +−= t (exp[-70.974t] - 3exp[-68.018t]+3exp[-65.062t]) 
                            2376.0+ exp[-93.472t] for t ≥ 0,                                                                         (58)                     

              )3,(9 tR )1(
1 )]3,([ tp R= )2(

2 )]3,([ tp R+ )3(
3 )]3,([ tp R+  

                           0945.0]280.64exp[6679.0 +−= t (exp[-89.416t] - 3exp[-86.140t]+3exp[-82.864t]) 
                           2376.0+ exp[-150.206t] for t ≥ 0,                                                                        (59)   
where ,)]1,([ )1(tR ,)]1,([ )2(tR )3()]1,([ tR  are given by (15), (45), (51) and ,)]2,([ )1(tR  ,)]2,([ )2(tR  

)3()]2,([ tR are given by (16), (46), (52) and ,)]3,([ )1(tR ,)]3,([ )2(tR )3()]3,([ tR  are given by (17), (47), 
(53).  

The mean values of the system unconditional lifetimes in the reliability state subsets, after 
considering (17), (47), (81), and (57)-(59), respectively are   

)1(m = 0.022, )2(m = 0.017, )3(m  = 0.014. 
The mean values of the system lifetimes in the particular reliability states are  

,005.0)1( =m  ,003.0)2( =m .014.0)3( =m  
If the critical safety state is r =2, then the system risk function, is given by  

r(t) = )2,(1 9 tR−  t ≥ 0, 
where  
                        r(t) 0945.0]663.49exp[6679.0[1 +−−= t (exp[-70.974t] - 3exp[-68.018t] 
                               +3exp[-65.062t]) 2376.0+ exp[-93.472t]], t ≥ 0. 
Hence, the moment when the system risk function exceeds a permitted level, for instance δ  = 0.05, 
is  

τ = r−1(δ) ≅ 0.00084 year.  
If  δ  = 0.1 then τ = r−1(δ) ≅ 0.00173 year. 
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Figure 3. The graph of the port bulk cargo transportation system risk function )(tr  
Further, assuming that the bulk cargo transportation system is repaired after its failure and that 

the time of the system renovation is ignored, we obtain the following results: 
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i) the distribution of the time )2(NS  until the Nth exceeding of reliability critical state 2 of this 
system, for sufficiently large N, has approximately normal distribution )017.0,017.0( NNN , i.e., 

=)2,()( tF N ))2(( tSP N < ),
017.0

017.0()1,0( N
tNFN

−
≅  ),,( ∞−∞∈t  

ii) the expected value and the variance of the time )2(NS  until the Nth exceeding the reliability 
critical state 1 of this system take respectively forms 

,017.0)]2([ NSE N =  NSD N 000289.0)]2([ = , 
iii) the distribution of the number )2,(tN  of exceeding the reliability critical state 2 of this system 
up to the moment ,0, ≥tt  for sufficiently large t, is approximately of the form 

))2,(( NtNP =  )
00222.0
017.0()1,0( t

tNFN
−

≅ ),
00222.0

)1(017.0()1,0( t
tNFN

−+
−  ,...2,1,0=N , 

iv) the expected value and the variance of the number )2,(tN  of exceeding the reliability critical 
state 2 of this system at the moment ,0, ≥tt  for sufficiently large t, approximately take respectively 
forms  

,824.58)1,( ttH =  .824.58)1,( ttD =  
Further, assuming that the bulk cargo transportation system is repaired after its failure and that the 
time of the system renovation is not ignored and it has the mean value ,001.0)2(0 =μ  and the 
standard deviation ,001.0)2(0 =σ  we obtain the following results: 

i) the distribution function of the time )2(NS  until the Nth system’s renovation, for sufficiently 
large N, has approximately normal distribution )01703.0,018.0( NNN , i.e., 

=
=

)2,(
)(

tF
N

 ),
01703.0

)018.0())2(( )1,0( N
NtFtSP NN

−
≅<

=

  ),,( ∞−∞∈t ,...2,1=N , 

ii) the expected value and the variance of the time )2(NS until the Nth system’s renovation take 
respectively forms 

NSE N 018.0)]2([ ≅
=

, NSD N 00029.0)]2([ ≅
=

, 
iii) the distribution function of the time )2(NS  until the Nth exceeding the reliability critical state 1 
of this system takes form 

=
−

)2,(
)(

tF
N

))2(( tSP N <
−

),
000001.000029.0

001.0018.0()1,0(
−

+−
=

N
NtFN  ),,( ∞−∞∈t ,...2,1=N , 

iv) the expected value and the variance of the time )2(NS  until the Nth exceeding the reliability 
critical state 2 of this system take respectively forms 

)1(001.0017.0)]2([ −+≅
−

NNSE N , )1(000001.0000289.0)]2([ −+≅
−

NNSD N , 

v) the distribution of the number )2,(tN  of system’s renovations up to the moment ,0, ≥tt  is of 
the form       

))2,(( NtNP =
=

),
1269.0

))1(018.0()
1269.0

)018.0( )1,0()1,0( N
tN

N
tNF NN

−+
−

−
≅   ,...2,1=N , 

vi) the expected value and the variance of the number )2,(tN  of system’s renovations up to the 
moment ,0, ≥tt  take respectively forms 

,556.55)2,( ttH ≅
=

 ,743.49)2,( ttD ≅
=
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vii) the distribution of the number )2,(tN  of exceeding the reliability critical state 2 of this system 
up to the moment ,0, ≥tt  is of the form 

))2,(( NtNP =
−

)
001.01269.0
001.0018.0()1,0(

+
−−

≅
t
tNFN ),

001.01269.0
0001)1(018.0()1,0(

−
−−+

−
t

tNFN ,...2,1=N , 

viii) the expected value and the variance of the number )2,(tN  of exceeding the reliability critical 
state 2 of this system up to the moment ,0, ≥tt  are respectively given by 

018.0
001.0)2,( +

≅
− ttH ,  ),001.0(743.49)1,( +≅

−

ttD  

ix) the availability coefficient of the system at the moment t is given by the formula 
9444.0)2,( ≅tK , ,0≥t  

x) the availability coefficient of the system in the time interval ),, τ+< tt  ,0>τ  is given by the 
formula 

,)2,(556.55)2,,( 3∫
∞

≅
τ

τ dtttK R ,0≥t .0>τ  

 
5 CONCLUSION 
  

In the paper the multi-state approach to the reliability, risk and availability analysis and 
evaluation of complex technical systems operating in variable operation conditions has been 
practically applied. Theoretical definitions and results have been illustrated by the example of their 
application in the reliability, risk and availability evaluation of a bulk cargo transportation system. 
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ABSTRACT

The paper objectives are to present the methods and tools useful in the statistical identifying
unknown parameters of the operation models of complex technical systems  and to apply
them in the maritime industry. There are presented statistical methods of determining
unknown parameters of the semi-markov model of the complex technical system operation
processes. There is also presented the chi-square goodness-of-fit test applied to verifying the
distributions of the system operation process conditional sojourn times in the particular
operation states. Applications of these tools to identifying and predicting the  operation
characteristics of a ferry operating at the Baltic Sea waters are presented as well.

1 INTRODUCTION

Many real transportation systems belong to the class of complex systems. It is concerned with
the large numbers of components and subsystems they are built and with their operating complexity.
Modeling the complicated system operation processes, is difficult because of the large number of
the operation states, impossibility of their precise defining and because of the impossibility of the
exact describing the transitions between these states. The changes of the operation states of the
system operations processes cause the changes of these systems reliability structures and also the
changes of their components reliability functions (Blokus-Roszkowska et all. 2008b). The models of
various multistate complex systems are considered in (Blokus-Roszkowska et all. 2008a). The
general joint models linking these system reliability models with the models of their operation
processes (Kolowrocki, Soszynska 2008), allowing us for the evaluation of the reliability and safety
of the complex technical systems in variable operations conditions, are constructed in (Blokus-
Roszkowska et all. 2008b).
In order to be able to apply these general models practically in the evaluation and prediction of the
reliability of real complex technical it is necessary to elaborate the statistical methods concerned
with determining the unknown parameters of the proposed models, namely the probabilities of the
initials system operation states, the probabilities of transitions between the system operation states
and the distributions of the sojourn times of the system operation process in the particular operation
states and also the unknown parameters of the conditional multistate reliability functions of the
system components in various operation states. It is also necessary the elaborating the methods of
testing the hypotheses concerned with the conditional sojourn times of the system operations
process in particular operations states and the hypotheses concerned with the conditional multistate
reliability functions of the system components in the system various operation states. The model of
the operation process of the complex technical system with the distinguished their operation states is
proposed in (Kolowrocki, Soszynska 2008). The semi-markov process is used to construct a general
probabilistic model of the considered complex industrial system operation process. To construct this
model there were defined the vector of the probabilities of the system initial operation states, the
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matrix of the probabilities of transitions between the operation states, the matrix of the distribution
functions and the matrix of the density functions of the conditional sojourn times in the particular
operation states. To describe the system operation process conditional sojourn times in the particular
operation states the uniform distribution, the triangular distribution, the double trapezium
distribution, the quasi-trapezium distribution, the exponential distribution, the Weibull’s
distribution, the normal distribution and the chimney distribution are suggested in (Kolowrocki,
Soszynska 2008). In this paper, the formulae estimating unknown parameters of these distributions
are given and the chi-square test is applied to verifying the hypotheses about these distributions
validity. Moreover these tools are applied to unknown parameters estimation and characteristics
prediction of the Stena Baltica ferry operation process.

2 IDENTYFICATION OF THE OPERATION PROCESS OF THE COMPLEX
TECHNICAL SYSTEM

2.1. Estimation of unknown parameters of the semi-markov model of the operation process

We assume, similarly as in (Blokus-Roszkowska et all 2008b, Kolowrocki, Soszynska 2008)
that a system during its operation at the fixed moment t, t  <0,  , may be in one of v, ,Nv
different operations states ,bz  b = 1,2, ..., v. Next, we mark by Z(t), t  <0,  >, the system
operation process, that is a function of a continuous variable t, taking discrete values in the set Z =
{ vzzz ,..., 21 } of the operation states. We assume a semi-markov model (Blokus-Roszkowska et all
2008b, Kolowrocki, Soszynska 2008) of the system operation process Z(t) and we mark by bl  its
random conditional sojourn times at the operation states bz  when its next operation state is ,lz

,,...,2,1, vlb  .lb 
Under these assumption, the operation process may be described by the vector x1)]0([ bp  of
probabilities of the system operation process staying in particular operations states at the initial
moment t = 0, the matrix x)]([ tpbl  of the probabilities of the system operation process transitions
between the operation states and the matrix x)]([ tH bl  of the distribution functions of the
conditional sojourn times bl  of the system operation process at the operation states or equivalently
by the matrix x)]([ thbl  of the distribution functions of the conditional sojourn times bl  of the
system operation process at the operation states.
To estimate the unknown parameters of the system operations process, firstly during the experiment,
we should collect necessary statistical data performing the following steps:
i) to analyze the system operation process and either to fix or to define its following general
parameters:
-  the number of the operation states o the system operation process  ,
- the operation states o the system operation process 1z , 2z , …, z ,
- the duration time of the experiment  ;
ii) to fix and to collect the following statistical data necessary to evaluating the probabilities of the
initial states of the system operations process:
- the number of the investigated (observed) realizations of the system operation process )0(n ,
- the numbers of staying of the operation process respectively in the operations states 1z , 2z , …, z ,
at the initials moment 0t  of all )0(n observed realizations of the system operation process

)0(1n , )0(2n , …, )0(n ;
iii) to fix and to collect the following statistical data necessary to evaluating the probabilities of
transitions between the system operation states:
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- the numbers bln , b, l = 1,2,...,v, b l, of the transitions of the system operation process from the
operation state bz  to the operation state lz  during all observed realizations of the system operation
process;
- the numbers bn , b = 1,2,...,v, of departures of the system operation process from the operation
states bz ;
iv) to fix and to collect the following statistical data necessary to evaluating the unknown
parameters of the distributions of the conditional sojourn times of the system operation process in
the particular operation states:
- the realizations k

bl , k = 1,2, …, ,bln  for each b, l = 1,2,...,v, lb   of the conditional sojourn times
bl of the system operations process at the operation state bz  when the next transition is to the

operation state lz  during the observation time;
After collecting the above statistical data it is possible to estimate the unknown parameters of the
system operation process performing the following steps:
i) to determine the vector

)]0(.,..),0(),0([)]0([ 21 pppp  ,

of the realizations of the probabilities )0(bp , ,,...,2,1 b  of the initial states of the system operation
process, according to the formula

)0(
)0(

)0(
n
n

p b
b   for ,,...,2,1 b

where 




1
),0()0(

b
bnn is the number of the realizations of the system operation process starting at the

initial moment t = 0;
ii) to determine the matrix

,

...
...

...
...

][

21

22221

11211























vvvv

v

v

bl

ppp

ppp
ppp

p

of the realizations of the probabilities blp , ,,...,2,1, lb  of the system operations process transitions
from the operations state bz  to the operations state lz  during the experiment time ,  according to
the formula

b

bl
bl n

n
p   for ,,...,2,1, lb b  l, bbp  = 0   for ,,...,2,1 b

where 




lb
blb nn , ,,...,2,1 b  is the realization of the total number of the system operations process

departures from the operations state bz  during the experiment time ;
iii) to determine the following empirical characteristics of the realizations of the conditional sojourn
time of the system operation process in the particular operation states:
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- the realizations of the mean values bl  of the conditional sojourn times bl  of the system
operations process at the operations state )(tH bl  when the next transition is to the operation state bl
, according to the formula




bln

k

k
bl

bl
bl n 1

1  ,,...,2,1, lb b  l,

- the number ,k
bl  of the disjoint intervals ,,...,2,1 blnk  , bl , that include the realizations k

bl ,
,,...,2,1 blnk   of the conditional sojourn times bl  at the operation state bz  when the next transition

is to the operation state lz , according to the formula

blnr  ,

- the length d  of the intervals ), j
bl

j
blj baI  , rj ,...,2,1 , according to the formula

1


r
Rd , where k

bl
blnk

k
bl

blnk
R 




11
minmax ,

-  the ends ,j
bla j

blb , of the intervals ), j
bl

j
blj baI  , rj ,...,2,1 , according to the formulae

,
2

min
1

1 da K
bl

blnkbl 

 ,1 jdab bl

j
bl  rj ,...,2,1 , 1 j

bl
j

bl ba , ,,...,3,2 rj 

in the way such that

),... 1
21

r
blblr baIII  ,

and

 ji II  for all ji  , },...,2,1{, rji  ,

- the numbers j
bln  of the realizations k

bl in particular intervals jI , rj ,...,2,1 , according to the
formula

#j
bln }},,...,2,1{,:{ blj

k
bl nkIk  rj ,...,2,1 ,

where  


r

j
bl

j
bl nn

1
, whereas the symbol #  means the number of elements of the set;

iv) to estimate the parameters of the distributions of the conditional sojourn times of the system
operation process in the particular operation states for the following distinguished distributions
respectively in the following way:
- the uniform distribution with a density function
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)(thbl
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where ,0  blbl yx
the estimates of the unknown parameters of this distribution are:

1
blbl ax  , drxy blbl  ;

- the triangular distribution with a density function
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where ,0  blblbl yzx
the estimates of the unknown parameters of this distribution are:

1
blbl ax  , drxy blbl  , ;,...,2,1 rj 

- the double trapezium distribution with a density function
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- the quasi-trapezium distribution with a density function

)(thbl


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

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
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
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where

blblblbl

blblblblblbl
bl xyzz

zywxzqA



 12

21 )()(2 ,  blblblbl yzzx 210 , ,0  blq

,0  blw 2)()(0 21  blblblblblbl yzwxzq ,

the estimates of the unknown parameters of this distribution are:
1
blbl ax  , ,drxy blbl 

dn
nq
bl

bl
bl

1

 ,
dn

nw
bl

r
bl

bl  , ,11
blblz  ,22

blblz 

where
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bln

menj
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bl nn 1)()(
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1[ bln ;

- the exponential distribution with a density function

)(thbl







,)],(exp[
,0,,0

blblblbl

blbl

xtxt
xxt



where ,0  bl ,0 1
blbl ax  ,

the estimates of the unknown parameters of this distribution are:

1
blbl ax  , bl

blbl x



1 ,

- the Weibull’s distribution with a density function

)(thbl 








 ,],)(exp[)(

0,,,0
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bl

blbl
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 

where ,0  bl ,0  bl ,0 1
blbl ax  ,

the estimates of the unknown parameters of this distribution are:
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1
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- the normal distribution with a density function

)(thbl ],
2

)(
exp[

2
1

2

2

bl

bl

bl

mt



 ),,( t

where , blm ,0  bl
the estimates of the unknown parameters of this distribution are:
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- the chimney distribution with a density function
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The estimates of the unknown parameters of this distribution are:
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2.2.  Identification of distributions of conditional sojourn times in operation states

To formulate and next to verify the non-parametric hypothesis concerning the form of the
distribution function )(tH bl  of the system conditional sojourn time bl  at the operation state bz
when the next transition is to the operation state lz , on the basis of its realizations ,k

bl ,,...,2,1 blnk 
it is necessary to proceed according to the following scheme:
- to construct and to plot the realization of the histogram of the system conditional sojourn time bl
at the operation states, defined by the following formula

bl

j
bl

bln n
n

th )(  for jIt  ,

- to analyze the realization of the histogram, comparing it with the graphs of the density functions
)(thbl  of the previously distinguished distributions, to select one of them and to formulate the null

hypothesis 0H  and the alternative hypothesis AH , concerning the unknown form of the distribution
function )(tH bl  of the conditional sojourn time bl  in the following form:

:0H  The system conditional sojourn time bl  at the operation state bz  when the next transition is to
the operations state lz , has the distribution function )(tH bl ,

:AH  The system conditional sojourn time bl  at the operation state bz  when the next transition is to
the operations state lz , has the distribution function different from )(tH bl ,
- to join each of the intervals jI  that has the number j

bln  of realizations is less than 4 either with the
neighbour interval 1jI  or with the neighbour interval 1jI  this way that the numbers of realizations
in all intervals are not less than 4,
- to fix a new number of intervals r ,
- to determine new intervals ),, j

bl
j

blj baI  ,,..,2,1 rj 

- to fix the numbers j
bln  of realizations in new intervals ,jI ,,..,2,1 rj 

- to calculate the hypothetical probabilities that the variable bl takes values from the interval ,jI

under the assumption that the hypothesis 0H  is true, i.e. the probabilities

)()( j
blbl

j
bljblj baPIPp   )( j

blbl bH )( j
blbl aH , ,,...,2,1 rj 

where )( j
blbl bH  and )( j

blbl aH  are the values of the distribution function )(tH bl  of the random
variable bl  defined in the null hypothesis ,0H
- to calculate the realization of the 2 (chi-square)-Pearson’s statistics

blnU , according to the
formula
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j jbl

jbl
j

bl
bln pn

pnn
u

- to assume the significance level   ( ,01.0 ,02.0 05.0  or )10.0  of the test,
- to fix the number 1 lr  of degrees of freedom, substituting for l  for the distinguished
distributions respectively the following values: 0l  for the uniform, triangular, double trapezium,
quasi-trapezium and chimney distributions, 1l  for the exponential distribution, 2l  for the
Weibull’s and normal distributions,
- to read from the Tables of the 2 Pearson’s distribution the value u  for the fixed values of the
significance level   and the number of degrees of freedom 1 lr  such that the following equality
holds

,1)(   uUP
bln

and next to determine the critical domain in the form of the interval ),( u  and the acceptance
domain in the form of the interval  u,0 ,
- to compare the obtained value

blnu of the realization of the statistics
blnU  with the red from the

Tables critical value u  of the chi-square random variable and to verify previously formulated the
null hypothesis 0H  in the following way: if the value

blnu  does not belong to the critical domain, i.e.
when ,uu

bln  then we do not reject the hypothesis 0H , otherwise if the value
blnu  belongs to the

critical domain, i.e. when ,uu
bln   then we reject the hypothesis 0H  in favor of the hypothesis AH .

3 APPLICATION IN MARITIME TRANSPORT

3.1. The Stena Baltica ferry operation process and its statistical identification

Taking into account the operation process of the considered ferry we distinguish the following
as its eighteen operation states:
 an operation state 1z loading at Gdynia Port,
 an operation state 2z unmooring operations at Gdynia Port,
 an operation state 3z leaving Gdynia Port and navigation to “GD” buoy,
 an operation state 4z navigation at restricted waters from “GD” buoy to the end of Traffic

Separation Scheme,
 an operation state 5z navigation at open waters from the end of Traffic Separation Scheme to

“Angoring” buoy,
 an operation state 6z navigation at restricted waters from “Angoring” buoy to “Verko” Berth at

Karlskrona,
 an operation state 7z mooring operations at Karlskrona Port,
 an operation state 8z unloading at Karlskrona Port,
 an operation state 9z loading at Karlskrona Port,
 an operation state 10z unmooring operations at Karlskrone Port,
 an operation state 11z ship turning at Karlskrone Port,
 an operation state 12z leaving Karlskrone Port and navigation at restricted waters to “Angoring”

buoy,
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 an operation state 13z navigation at open waters from “Angoring” buoy to the entering Traffic

Separation Scheme,
 an operation state 14z navigation at restricted waters from the entering Traffic Separation

Scheme to “GD” buoy,
 an operation state 15z navigation from “GD” buoy to turning area,
 an operation state 16z ship turning at Gdynia Port,
 an operation state 17z mooring operations at Gdynia Port,
 an operation state 18z unloading at Gdynia Port.
To identify all parameters of Stena Baltica ferry operation process the statistical data about this
process is needed. The statistical data that has been collected up to now is given in Tables 1-7 in
(Soszynska et all 2009, Appendix 5A). In the Tables 1-7 there are presented the realizations k

bl ,
,42,...,2,1k  for each ,17,...,2,1b 1 bl  and ,18b 1l  of the ship operation process

conditional sojourn times ,bl ,17,...,2,1b 1 bl  and ,18b 1l  in the state bz while the next
transition is the state lz  during the experiment time 42  days.
These statistical data allow us, applying the methods and procedures given in the section 2, to
formulate and to verify the hypotheses about the conditional distribution functions )(tH bl  of the
Stena Baltica ferry operation process sojourn times ,bl ,17,...,2,1b 1 bl  and ,18b 1l  in the
state bz while the next transition is to the state lz  on the base of their realizations k

bl , .42,...,2,1k
On the basis of the statistical data, given in the Appendix 5A in [5], the vector of the probabilities of
the system initial operation states was evaluated in the following form

 .0,0.,..,0,0,1)]0([ bp

 The matrix of the probabilities blp  of transitions from the operation state bz  into the operation state
lz  were evaluated as well. Their evaluation are given in the matrix below

,

00...001
10...000

...
00...100
00...010

][ 1818























xblp

Next the matrix 1818)]([ xbl th of conditional density functions of the system operation process Z(t)
conditional sojourn times bl (Soszynska et all 2009,  Appendix 5A) were evaluated.
The results of the distributions unknown parameters estimation and the hypotheses testing  are as
follows:
-    the conditional sojourn time 12  have a triangular distribution with the density function


















;103,0
,10354;00043.0044.0

,547,0031.000044.0
,7,0

)(12

t
tt
tt
t

th

-  the conditional sojourn time 23  have an exponential distribution with the density function
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







;6.1)],6.1(03.1exp[03.1

6.1,0
)(23 tt

t
th

-  the conditional sojourn time 34  have a steep chimney distribution with the density function

)(34 th




















;47,0
,4738,0266.0
,3835,1984.0
,3529,0278.0
,29,0

t
t
t
t
t

-  the conditional sojourn time 45  have a chimney distribution with the density function

)(45 th




















;71,0
,7156,0127.0
,5646,0762.0
,4641,0095.0
,41,0

t
t
t
t
t

-  the conditional sojourn time 56  have a double trapezium distribution with the density function

)(56 th
















;2.650,0
,2.65095.525,0397.000006.0
,95.5258.467,0277.000004.0

,8.467,0

t
tt

tt
t

-  the conditional sojourn time 67  have a double trapezium distribution with the density function

)(67 th













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

;1.45,0
,1.457.37,0395.00031.0

,17.379.31,1747.00067.0
,9.31,0

t
tt
tt
t

-  the conditional sojourn time 78  have a double trapezium distribution with the density function

)(78 th
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-  the conditional sojourn time 89  have a triangular distribution with the density function
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)(89 th
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-  the conditional sojourn time 910  have a double trapezium distribution with the density function
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- the conditional sojourn time 1011  have a double trapezium distribution with the density function
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- the conditional sojourn time 1112  have a quasi-trapezium distribution with the density function
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- the conditional sojourn time 1213  have a triangular distribution with the density function

)(1213 th
















;3.34,0
,3.3486.23,4116.0012.0
,86.237.18,4675.0025.0

,7.18,0

t
tt
tt
t

- the conditional sojourn time 1314  have a chimney distribution with the density function

)(1314 th




















;614,0
,614512,0024.0
,512478,0189.0
,478410,0017.0
,410,0

t
t
t
t
t

-  the conditional sojourn time 1415  have a double trapezium distribution with the density function
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)(1415 th
















;2.75,0
,2.7514.50,0062.00003.0

,14.508.36,0518.00006.0
,8.36,0

t
tt
tt

t

- the conditional sojourn time 1516  have a chimney distribution with the density function

)(1516 th




















;48,0
,4836,0084.0
,3633,2698.0
,3330,0317.0
,30,0

t
t
t
t
t

- the conditional sojourn time 1617  have a triangular distribution with the density function

)(1617 th
















;3.6,0
,3.652.4,9719.1313.0

,52.47.2,823.0305.0
,7.2,0

t
tt
tt
t

- the conditional sojourn time 1718  have a double trapezium distribution with the density function

)(1718 th
















;7.10,0
,7.1062.5,0063.00071.0
,62.53.2,6707.01134.0
,3.2,0

t
tt
tt
t

- the conditional sojourn time 181  have a triangular distribution with the density function

)(181 th
















.59.45,0
,59.4574.18,0729.00016.0
,74.180,0023.0

,0,0

t
tt
tt
t

3.2. The Stena Baltica ferry operation process prediction

On the basis of the previous section, the mean values ],[ blbl EM  ,18,...,2,1, lb ,lb  (12) in
(Kolowrocki, Soszynska 2008) of the system operation process Z(t) conditional sojourn times in
particular operation states were determined and there are given by:

,33.5412 M ,57.223 M ,57.3634 M

,5.5245 M ,95.52556 M ,16.3767 M
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,02.778 M ,43.2189 M ,69.53910 M

,93.21011 M ,38.41112 M ,86.231213 M

,69.5091314 M ,14.501415 M ,28.341516 M

,52.41617 M ,62.51718 M .74.18181 M

Hence, by (21) in (Kolowrocki, Soszynska 2008), the unconditional mean sojourn time in the
particular operation states are given by:

 ][ 11 EM 1212 Mp ,33.5433.541 

 ][ 22 EM 2323Mp ,57.257.21 

 ][ 33 EM 3434Mp ,57.3657.361 

 ][ 44 EM 4545Mp ,5.525.521 

 ][ 55 EM 5656Mp ,95.52595.5251 

 ][ 66 EM 6767 Mp ,16.3716.371 

 ][ 77 EM 7878Mp ,02.702.71 

 ][ 88 EM 8989Mp ,43.2143.211 

 ][ 99 EM 910910Mp ,69.5369.531 

 ][ 1010 EM 10111011Mp ,93.293.21 

 ][ 1111 EM 11121112 Mp ,38.438.41 

 ][ 1212 EM 12131213Mp ,86.2386.231 

 ][ 1313 EM 13141314Mp ,69.50969.5091 

 ][ 1414 EM 14151415Mp ,14.5014.501 

 ][ 1515 EM 15161516Mp ,28.3428.341 

 ][ 1616 EM 16171617Mp ,52.452.41 

 ][ 1717 EM 17181718Mp ,62.562.51 

 ][ 1818 EM 181181Mp .74.1874.181 
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Since from the system of equations below (23) in (Kolowrocki, Soszynska 2008) that takes the form

 








,1...
],...,,[],...,,[

1821

181818211821


 xblp

we get

1 2  ... = ,056.018 

then the limit values of the transient probabilities (the portions of time of a week, as the operation
process is periodic) )(tpb  at the operational states bz , according to (22) in (Kolowrocki, Soszynska
2008), are given by

,037.01 p ,002.02 p ,025.03 p

,036.04 p ,364.05 p ,025.06 p

,005.07 p ,014.08 p ,037.09 p

,002.010 p ,003.011 p ,017.012 p

,354.013 p ,035.014 p ,024.015 p

,003.016 p ,004.017 p .013.018 p

Hence by (26) in (Kolowrocki, Soszynska 2008), the mean values of the system operation process
total sojourn times b  in the particular operation states ,bz  for the operation time 1  month = 720
hours  are approximately given by

 11 ][ pE   = 26.64,  22 ][ pE   = 1.44,

 33 ][ pE   = 18.00,  44 ][ pE   = 25.92,

 55 ][ pE   = 262.08,  66 ][ pE   = 18.00,

 77 ][ pE   = 3.6,  88 ][ pE   = 10.08,

 99 ][ pE   = 26.64,  1010 ][ pE   = 1.44,

 1111 ][ pE   = 2.16,  1212 ][ pE   = 12.24,

 1313 ][ pE   = 25.88,  1414 ][ pE   = 25.20,

 1515 ][ pE   = 17.28,  1616 ][ pE   = 2.16,
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 1717 ][ pE   = 2.88,  1818 ][ pE   = 9.36.

4 CONCLUSION

The statistical methods and algorithms for the unknown parameters of the operation process of
complex technical systems in variable operation conditions are proposed. Next, these methods are
applied to estimating the operation process of Stena Baltica ferry operating between Gdynia Port in
Poland and Karsklone Port in Sweden. The proposed methods other very wide applications to port
and shipyard transportation systems operation processes characteristics evaluation are obvious. The
results are expected to be the basis to the reliability and safety of complex technical systems
optimization and their operation processes effectiveness and cost analysis
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ABSTRACT

The paper objectives are to present the methods and tools useful in the statistical identifying the unknown
parameters of the components reliability and safety of complex industrial systems and to apply them in the
maritime industry. There are presented statistical methods of estimating the unknown intensities of departure
from the reliability state subsets of the exponential distribution of the component lifetimes of the multistate
systems operating in various operation states. The goodness-of-fit method applied to testing the hypotheses
concerned with the exponential form of the multistate reliability function of the particular components of the
complex technical system in variable operations conditions is suggested. An application of these tools to
reliability characteristics of a ferry operating at the Baltic Sea waters is presented as well.

1 INTRODUCTION

Many real transportation systems belong to the class of complex systems. It is concerned with
the large numbers of components and subsystems they are built and with their operating complexity.
Modeling the complicated system operation processes, first of all, is difficult because of the large
number of the operation states, impossibility of their precise defining and because of the
impossibility of the exact describing the transitions between these states. The changes of the
operation states of the system operations processes cause the changes of these systems reliability
structures and also the changes of their components reliability functions (Blokus-Roszkowska et all
2008a). The models of various multistate complex systems are considered in (Blokus-Roszkowska
et all 2008b). The general joint models linking these system reliability models with the models of
their operation processes, allowing us for the evaluation of the reliability and safety of the complex
technical systems in variable operations conditions, are constructed in (Kolowrocki, Soszynska
2008). In these general joint reliability and safety models of the complex systems it was assumed
that the conditional multistate reliability functions of the considered systems components in the
particular operations states are exponential.
In order to be able to apply these general models practically in the evaluation and prediction the
reliability of real complex technical it is necessary to elaborate the statistical methods concerned
with determining the unknown parameters of the proposed models. Namely, the probabilities of the
initials system operation states, the probabilities of transitions between the system operation states
and the distributions of the sojourn times of the system operation process in the particular operation
states and also the unknown parameters of the conditional multistate reliability functions of the
system components in various operation states. It is also necessary the elaborating the methods of
testing the hypotheses concerned with the conditional sojourn times of the system operations
process in particular operations states and the hypotheses concerned with the conditional multistate
reliability functions of the system components in the system various operation states. In this paper,
the methods for evaluating unknown parameters of the exponential reliability functions in various
experimental cases with a special stress on small samples and unfinished investigations are defined
and formulae for estimating the intensities of departure from the reliability state subsets in all cases

mailto:katmatkk@am.gdynia.pl
mailto:joannas@am.gdynia.pl
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are proposed.  The common principle to formulate and to verify the hypotheses about the
exponential distribution functions of the lifetimes in the reliability state subsets of the multistate
system components by chi-square test is also  discussed. These tools on exemplary application to
estimating unknown intensity of departure on Stena Baltica ferry component is shown.

2 IDENTYFICATION OF CONDITIONAL MULTISTATE RELIABILITY FUNCTIONS
OF THE SYSTEM COMPONENTS

2.1. Estimation of intensities of departure from the reliability state subsets

We assume as in (Blokus-Roszkowska et all 2008b) that the changes of operations states of the
multistate system operations process )(tZ have an influence on the reliability functions of the
system components and we mark the conditional multistate reliability function of the system
component when the system is in the operation state ,bz ,,...,2,1 b by

)()],([ btR  = [1, ,)]1,([ )(btR ..., )()],([ bztR ], (1)
where

))()(()],([ )()(
b

bb ztZtuTPutR  (2)
for ),,0 t ,,...,2,1 zu  ,,...,2,1 vb 
is the conditional reliability function standing the probability that the conditional lifetime )()( uT b of
the system component in the reliability states subset },...,1,{ zuu  , ,,...,2,1 zu   is greater than t,
while the system operation process Z(t) is in the operation state ,bz .,...,2,1 b
Further, we assume that the coordinates of the vector of the conditional multistate reliability
function (1) are exponential reliability functions of the form

])(exp[))(,(),( )()()( tuutRutR bbb    for ),,0 t ,,...,2,1 zu  .,...,2,1 vb                   (3)
Te above assumptions mean that the density functions of the system component conditional life
time )()( uT b  in the reliability states subset },...1,{ zuu  , ,,...,2,1 zu   at the operations state bz ,

,...,2,1b , are exponential of the form
])(exp[)())(,(),( )()()()( tuuutfutf bbbb    for ),,0 t                   (4)

where ),()( ub ,0)()( ub  is an unknown intensity of departure from this subset of the reliability
states.
We want to estimate the value of this unknown intensity of departure )()( ub from the reliability
states subset },...1,{ zuu  , ,,...,2,1 zu   on the basis empirical data. The estimators of the of the
unknown intensity of departure )()( ub , i.e. the unknown failure rate )(b , in the case of the two-
state system reliability for various experimental conditions, are determined by maximum likelihood
method in (Kolowrocki, Kwiatuszewska-Sarnecka 2009). The modified and transmitted to the
multistate system reliability results obtained in (Soszynska et all 2009) are presented below.

Case 1.
The estimation of the component intensity of departure from the reliability states subset on the
basis of the realizations of the component lifetimes up to the first departure from the reliability
states subset on several experimental posts – Completed investigations, the same observation time
on all experimental posts
We assume that during the time , ,0  we are observing the realizations of the component
lifetimes )()( uT b  in the reliability states subset },...1,{ zuu  , ,,...,2,1 zu   at the operation state bz ,

,...,2,1b , on n identical experimental posts. Moreover, we assume that during the fixed
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observation time   all components left the reliability states subset and we mark by )()( ut b
i ,

ni ,...,2,1 , the moment of departure from the reliability states subsets of the component on the
i th observational post, i.e. the realizations of the identical component lifetimes )()( uT b

i ,
ni ,...,2,1 , to the first departure from the reliability states subsets, that are the independent random

variables with the exponential distribution defined by the density function  (4).
In this case, the maximum likelihood evaluation of the unknown component intensity of departure

)()( ub  from the reliability states subset is
)()]([ bu






)(

1

)(

)(

)(
bn

i

b
i

b

ut

n
, zu ,...,2,1 (5)

Case 2.
The estimation of the component intensity of departure from the reliability states subset on the
basis of the realizations of the component lifetimes up to the first departure from the reliability
states subset on several experimental posts – Non-completed investigations, the same observation
time on all experimental posts
We assume that during the time , ,0  we are observing the realizations of the component
lifetimes )()( uT b  in the reliability states subset },...1,{ zuu  , ,,...,2,1 zu   at the operation state bz ,

,...,2,1b , on n identical experimental posts. Moreover, we assume that during the fixed
observation time   not all components left the reliability states subset and we mark by ,1m ,1 nm 
the number of components that left the reliability states subset and by )()( ut b

i , ,,...,2,1 1mi   the
moments of their departures from the reliability states subsets, i.e. the realizations of the identical
component lifetimes )()( uT b

i , ,,...,2,1 1mi   to the first departure from the reliability states subsets,
that are the independent random variables with the exponential distribution defined by the density
function  (4).
In this case, the maximum likelihood evaluation of the unknown component intensity of departure

)()( ub  from the reliability states subset is
)()]([ bu

 




)()(

1

)()()()(

)(

)]([)(

)(
ubm

i

bbbb
i

b

umnut

um


, .,...,2,1 zu  (6)

Assuming the observation time  as the moment of departure from the reliability states subset of
the components that have not left this reliability states subset we get so called a pessimistic
evaluation of the intensity of departure )()( ub  from the reliability states subset of the form

)()]([ bu
 





)()(

1

)()()()(

)(

)]([)(
ubm

i

bbbb
i

b

umnut

n


, .,...,2,1 zu       (6’)

Case 3.
The estimation of the component intensity of departure from the reliability states subset on the
basis of the realizations of the component lifetimes up to the first departure from the reliability
states subset on several experimental posts – Non-completed investigations, different observation
times on particular experimental posts
We assume that we are observing the realizations of the component lifetimes )()( uT b  in the
reliability states subset },...1,{ zuu  , ,,...,2,1 zu   at the operation state bz , ,...,2,1b , on n identical
experimental posts. We assume that the observation times on particular experimental posts are
different and we mark by )(i , ,0)( i ni ,...,2,1 , the observation time respectively on the i-th
experimental post. Moreover, we assume that during the fixed observation times )(i   not all
components left the reliability states subset and we mark by ,1m ,1 nm   the number of components
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that left the reliability states subset and by )()( ut b
i , ,,...,2,1 1mi   the moments of their departures

from the reliability states subsets, i.e. the realizations of the identical component lifetimes )()( uT b
i ,

,,...,2,1 1mi   to the first departure from the reliability states subsets, that are the independent random
variables with the exponential distribution defined by the density function  (4).
In this case, the maximum likelihood evaluation of the unknown component intensity of departure

)()( ub  from the reliability states subset is
)()]([ bu

 


 

)()(

1

)(

1)()(

)()(

)(

)(

)(
ubm

i

bn

ubmi

b
i

b
i

b

ut

um


, .,...,2,1 zu      (7)

Assuming the observation times ,)(i ,1mi  ,,...11 nm  as the moment of departure from the
reliability states subset of the components that have not left this reliability states subset we get so
called a pessimistic evaluation of the intensity of departure )()( ub  from the reliability states subset
of the form

)()]([ bu
 



 

)()(

1

)(

1)()(

)()(

)(

)(
ubm

i

bn

ubmi

b
i

b
i

b

ut

n


, .,...,2,1 zu    (7’)

Case 4.
The estimation of the component intensity of departure from the reliability states subset on the
basis of the realizations of the component simple renewal flow (stream) on one experimental post

We assume that we are observing the realizations of the component lifetimes )()( uT b  in the
reliability states subset },...,1,{ zuu  , ,,...,2,1 zu   at the operation state bz , ,...,2,1b , on one
experimental post. We assume that at the moment when the component is leaving the reliability
states subset },...,1,{ zuu  , ,,...,2,1 zu   it is replaced at once by the same new component staying
at the best reliability state z . Moreover, we assume that the renewal process of the components is
continuing during the observation time ,)(b ,0)( b  and that during this time ,)( 1

)(
1 mum b 

,)( )()(
1

bb num   components have left the reliability states subset },...,1,{ zuu   and we mark by

i
b

i tut )()( , ),(,...,2,1 )(
1 umi b  the moments of their departures from the reliability states subsets,

i.e. the realizations of the identical component lifetimes )()( uT b
i , ),(,...,2,1 )(

1 umi b  to the first
departure from the reliability states subset },...,1,{ zuu  , that are the independent random variables
with the exponential distribution defined by the density function  (4).
In this case, the maximum likelihood evaluation of the unknown component intensity of departure

)()( ub  from the reliability states subset is
)()]([ bu

)()(

)(
)(

)()(

1

)(

)(

udut

um
b

ubm

i

b
i

b






, ,,...,2,1 zu  (8)

where
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


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
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

In  the case if )()( )( bb mum  , ,,...,2,1 zu   after assuming the observation time )(b as the moment
of departure from the reliability states subset },...,1,{ zuu  , ,,...,2,1 zu   of the last component that
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has not left this reliability states subset we get so called a pessimistic evaluation of the intensity of
departure )()]([ bu  from the reliability states subset },...,1,{ zuu  , ,,...,2,1 zu   of the form

)()]([ bu
)()(

1
)(

)(

1

)(

)(

)(

udut

m
b

um

i

b
i

b

b








, .,...,2,1 zu   (8’)

Case 5.
The estimation of the component intensity of departure from the reliability states subset on the
basis of the realizations of the component simple renewal flows (streams) on several
experimental posts – The same observation time on all experimental posts
We assume that we are observing the realizations of the component lifetimes )()( uT b  in the
reliability states subset },...1,{ zuu  , ,,...,2,1 zu   at the operation state bz , ,...,2,1b , on n
experimental posts. We assume that at the moment when the component is leaving the reliability
states subset },...1,{ zuu  , ,,...,2,1 zu   it is replaced at once by the same new component staying at
the best reliability state z . Moreover, we assume that the renewal process of the components is
continuing at all experimental posts during the same observation time , ,0  and that during this
time km , ,,...,2,1 nk   components at the k-th experimental post left the reliability states subset

},...1,{ zuu   and we mark by )()( )]([ kb
i ut , ,,...,2,1 kmi   the moments of their departures from the

reliability states subsets, i.e. the realizations of the identical component lifetimes )()( )]([ kb
i uT ,

,,...,2,1 kmi   to the first departure from the reliability states subset },...1,{ zuu  , that are the
independent random variables with the exponential distribution defined by the density function  (4).
In this case, the maximum likelihood evaluation of the unknown component intensity of departure

)()( ub  from the reliability states subset is

)()]([ bu
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 , ,,...,2,1 zu                      (9)

where for )(,...,2,1 bnj 
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In the case if there exist ,j },,...,2,1{ )(bnj   such that )()( )( b
j

b
j mum  , ,,...,2,1 zu   assuming the

observation time )(b as the moment of departures from the reliability states subset },...,1,{ zuu  ,
,,...,2,1 zu   of the last components on all experimental posts that have not left this reliability states

subset we get so called pessimistic evaluation of the intensity of departure )()]([ bu  from the
reliability states subset },...,1,{ zuu  , ,,...,2,1 zu   of the form

)()]([ bu
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Case 6.
The estimation of the component intensity of departure from the reliability states subset on the
basis of the realizations of the component simple renewal flows (streams) on several
experimental posts – Different observation times on experimental posts
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We assume that we are observing the realizations of the component lifetimes )()( uT b  in the
reliability states subset },...1,{ zuu  , ,,...,2,1 zu   at the operation state bz , ,...,2,1b , on n
experimental posts. We assume that at the moment when the component is leaving the reliability
states subset },...1,{ zuu  , ,,...,2,1 zu   it is replaced at once by the same new component staying at
the best reliability state z . Moreover, we assume that the renewal process of the components is
continuing at the k-th experimental post during the observation time ,)(k ,0)( k  and that during
this time km , ,,...,2,1 nk   components at this experimental post left the reliability states subset

},...1,{ zuu   and we mark by )()( )]([ kb
i ut , ,,...,2,1 kmi   the moments of their departures from the

reliability states subsets, i.e. the realizations of the identical component lifetimes )()( )]([ kb
i uT ,

,,...,2,1 kmi    to the first departure from the reliability states subset },...1,{ zuu  , that are the
independent random variables with the exponential distribution defined by the density function  (4).
In this case, the maximum likelihood evaluation of the unknown component intensity of departure

)()( ub  from the reliability states subset is

)()]([ bu
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where for )(,...,2,1 bnj 
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In the case if there exist ,j },,...,2,1{ )(bnj  such that )()( )( b
j

b
j mum  , ,,...,2,1 zu   assuming the

observation times )(b
j , ,,...,2,1 )(bnj   as the moments of departures from the reliability states

subset },...,1,{ zuu  , ,,...,2,1 zu   of the last components on experimental posts that have not left
this reliability states subset we get so called a pessimistic evaluation of the intensity of departure

)()]([ bu  from the reliability states subset },...,1,{ zuu  , ,,...,2,1 zu   of the form

)()]([ bu
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2.2. Identification of distributions of conditional lifetimes of system components in reliability
state subsets

To formulate and next to verify the non-parametric hypothesis concerning the exponential form of
the coordinate

])(exp[))(,(),( )()()( tuutRutR bbb    for ),,0 t ,,...,2,1 zu  .,...,2,1 vb  (11)
of the vector

)()],([ btR  = [1, ,)]1,([ )(btR ..., )()],([ bztR ], (12)
of the conditional multistate reliability function of the system component when the system is at the
operations state ,bz ,,...,2,1 b it is necessary to ct according to the scheme below:
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- to fix the realizations ),()(
1 ut b ),()(

2 ut b  …, ),()( ut b
n ,,...,2,1 zu   of the system component conditional

lifetimes )()( uT b , ,...,2,1b , in the reliability states subsets },,...,1,{ zuu  ,,...,2,1 zu 
- to determine the number r of the disjoint intervals ), jjj yxI  , rj ,...,2,1 , that include the
realizations ),()(

1 ut b ),()(
2 ut b  …, )()( ut b

n  of the system component conditional lifetimes )()( uT b  in the
reliability states subset, according to the formula

nr  ,
- to determine the length d  of the intervals ), jjj yxI  , rj ,...,2,1 , according to the formula

1


r
Rd ,

where
)(

1

)(

1
minmax b

ini

b
ini

ttR


 ,

-  to determine the ends ,jx jy , of the intervals ), jjj yxI  , rj ,...,2,1 , according to the formulae

2
min )(

11
dtx b

ini



, ,1 jdxy j  rj ,...,2,1 , 1 jj yx , ,,...,3,2 rj 

in the way such that
),... 121 rr yxIII  ,

and
 ji II  for all ji  , },...,2,1{, rji  ,

- to determine the numbers of realizations jn  in particular intervals jI , rj ,...,2,1 , according to the
formula

#jn }},,...,2,1{,:{ )( niIti j
b

i  rj ,...,2,1 ,
where

 


r

j
j nn

1
,

whereas the symbols #  means the number of elements of a set,
- to evaluate the value of the unknown intensity of the component departure ),()( ub  from the
reliability states subset, applying suitable formula from the section 3.1,
- to construct and to plot the realization of the histogram of the conditional system component
lifetime ),()( uT b ,,...,2,1 b  in the reliability states subset },,...,1,{ zuu  ,,...,2,1 zu   at the system
operation state ,bz ,,...,2,1 b

n
n

utf jb
n ),()(  for ,jIt

- to analyze the realization of the histogram, comparing it with the graph of the exponential density
function

])(exp[)())(,(),( )()()()( tuuutfutf bbbb    for ),,0 t
of the system component lifetime )()( uT b  in the reliability states subset },...1,{ zuu   at the operations
state bz , corresponding the reliability function coordinate

])(exp[))(,(),( )()()( tuutRutR bbb    for ),,0 t
of the vector of the conditional multistate reliability function of the system component

)()],([ btR  = [1, ,)]1,([ )(btR ..., )()],([ bztR ],
and to formulate the null hypothesis 0H  and the alternative hypothesis AH , concerned with the
form of the component multistate reliability )()],([ btR  in the following form:
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:0H  The conditional multistate reliability function of the system component
)()],([ btR  = [1, ,)]1,([ )(btR ..., )()],([ bztR ],

has the exponential reliability functions coordinates of the form
])(exp[))(,(),( )()()( tuutRutR bbb    for ),,0 t

:AH  The conditional multistate reliability function of the system component has different from the
exponential reliability functions coordinates,
- to join each of the intervals jI , that has the number jn  of realizations is less than 4 either with the
neighbor interval 1jI  or with the neighbor interval ,1jI  this way that the numbers of realizations in
all intervals are not less than 4,
- to fix a new number of intervals
r ,
- to determine new intervals

),, jjj yxI  ,,..,2,1 rj 

- to fix the numbers jn  of realizations in new intervals ,jI ,,..,2,1 rj 

- to calculate the hypothetical probabilities that the variable )()( uT b takes values from the interval
,jI  under the assumption that the hypothesis 0H  is true, i.e. the probabilities

))(())(( )()(
j

b
jj

b
j yuTxPIuTPp  ),()( uxR j

b ),()( uyR j
b , ,,...,2,1 rj 

where ),()( uxR j
b  and ),()( uyR j

b  are the values of the coordinate reliability function ),()( utR b  of the
multistate reliability function defined in the null hypothesis .0H
- to calculate the realization of the 2 (chi-square)-Pearson’s statistics nU , according to the formula

,
)(

1

2







r

j j

jj
n np

npn
u

- to assume the significance level   ( ,01.0 ,02.0 05.0  or )10.0  of the test,

- to fix the number 1 lr  of degrees of freedom, substituting 1l ,

- to read from the Tables of the 2 Pearson’s distribution the value u  for the fixed values of the
significance level   and the number of degrees of freedom 1 lr  such that the following equality
holds

,1)(   uUP n

and next to determine the critical domain in the form of the interval ),( u  and the acceptance
domain in the form of the interval  u,0 ,
- to compare the obtained value nu of the realization of the statistics nU  with the red from the Tables
critical value u  of the chi-square random variable and to verify previously formulated the null
hypothesis 0H  in the following way: if the value nu  does not belong to the critical domain, i.e.
when ,uun  then we do not reject the hypothesis 0H , otherwise if the value nu  belongs to the
critical domain, i.e. when ,uun   then we reject the hypothesis 0H  in favor of the hypothesis AH .

3 APPLICATION IN MARITIME TRANSPORT

3.1. The Stena Baltica ferry reliability characteristic statistical identification
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The exact evaluation of the Stena Baltica ferry is not possible at the moment because of the
complete lack of statistical data about the changes the reliability state subsets by the ferry
components and subsystems. Currently, we have only one information about the change from the
reliability state subset }2.1{ into the worst reliability state 0z  (a failure) one of two stern loading
platforms operating at the ferry main deck. This departure happened after its good working for
around 22 years. The remaining components and subsystems of the ferry under considerations are
high reliable and none of them failed during the observation time 5.22  years.
The estimation of this failed component intensity of departure from the reliability states subset }2.1{
can be done by the formula (6) derived in Case 2.  Substituting in this formula 5.22 , ,1u n = 2,

11 m  and 22)1()(
1 bt , we get the maximum likelihood evaluation of the unknown component

intensity of departure )1()(b  from the reliability states subset }2.1{ is

)1()(b .0225.0
)12(5.2222

1





The estimation of this failed component intensity of departure from the reliability states subset }2.1{
can also be done by the formula (9) derived in Case 5.  Substituting in this formula 5.22 , ,1u
n = 2, 11 m  and 22)1()(

1 bt , we get the maximum likelihood evaluation of the unknown
component intensity of departure )1()(b  from the reliability states subset }2.1{ is

)1()(b .0222.0
5.222

01







The unknown intensities of departures from the reliability state subsets for the components that have
not failed during the observation time can be evaluated using so called pessimistic estimation (7’)-
(11’), derived in (Kolowrocki, Kwiatuszewska-Sarnecka 2009).

4 CONCLUSION

The statistical methods estimating the unknown intensities of the components’ exponential
reliability functions existing in the joint general model of complex technical systems reliability
operating in variable operation conditions linking a semi-markov modeling of the system operation
processes with a multi-state approach to system reliability and availability analysis are proposed.
Next, these methods are applied to estimating the reliability characteristics of Stena Baltica ferry
operating between Gdynia Port in Poland and Karsklone Port in Sweden. The proposed methods
other very wide applications to port and shipyard transportation systems reliability and safety
characteristics evaluation are obvious. The results are expected to be the basis to the reliability and
safety of complex technical systems optimization and their operation processes effectiveness and
cost analysis.
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ABSTRACT 
 
Integrated general models of approximate approaches of complex multi-state  series and parallel systems, linking their 
reliability and availability improvement models and their operation processes models caused changing reliability and 
safety structures and components reliability characteristics in different operation states, are constructed. These joint 
models are applied to determining improved reliability and availability  characteristics of the considered multi-state 
series and parallel systems related to their varying in time operation processes. The conditional reliability characteristics 
of the multi-state systems with hot, cold single reservation of component and the  conditional reliability characteristics 
of the multi-state systems with reduced rate of departure by a factor  of system components are defined.  
  
 
 
1  INTRODUCTION 
 

Taking Most real transportation systems are very complex. Large numbers of components and 
subsystems and their operating complexity cause that the evaluation and optimization of their 
reliability improvement and availability improvement is complicated. A convenient tool for solving 
this problem is semi-markov modeling of the systems operation processes combining with three 
methods of reliability and availability improvement proposed in this paper. Therefore, the common 
usage of the system’s reliability and availability improvement models and the semi-markov model 
for the system’s operation process modeling in order to construct the joint general system reliability 
and availability improvement model related to its operation process is proposed.  

. 
 
2 RELIABILITY IMPROVEMENT OF MULTI-STATE SYSTEM COMPONENT IN 

VARIABLE OPERATION CONDITIONS  
 

We assume that the reliability of a single system component can be improved by using hot or 
cold reserve of this component or by replacing this component by an improved component with the 
reduced rates of departure from the reliability state subset },...1,{ zuu +  by a factor 

),(uρ ,1)(0 << uρ  u = 1,2,…,z. Further, we assume that the basic and reserve component have the 
same multi-state exponential reliability function. If basic and reserve components of the multi-state 
system at the operational state ,bz ,,...,2,1 ν=b  have the same exponential reliability functions 
given by 
 

                               ],)],([,,)]1,([,1[)],([ )()()( b
i

b
i

b
i ztRtRtR K=⋅ t ∈ (−∞,∞), ,,...,2,1 ν=b                         

(1) 
where   
                      1)],([ )( =b

i utR  for t < 0, ])(exp[)],([ )()( tuutR b
i

b
i λ−=  for t ≥ 0, ,0)()( >ub

iλ              (2) 
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 i = 1,2,...,n, u = 1,2,…,z, ,,...,2,1 ν=b       
then 
(a) the reliability function of multi-state system component with a single hot reservation at the 
operational state ,bz ,,...,2,1 ν=b   is respectively given by 
                            ],)],([,,)]1,([,1[)],([ )()1()()1()()1( b

i
b

i
b

i ztRtRtR K=⋅  t ∈ (−∞,∞), ,,...,2,1 ν=b               
(3) 
where   

1])],([[1)],([ 2)()()1( =−= b
i

b
i utFutR , t < 0, 

                   2)()()1( ])],([[1)],([ b
i

b
i utFutR −= ])(2exp[])(exp[2 )()( tutu b

i
b

i λλ −−−= , t ≥ 0,                (4) 
,0)()( >ub

iλ  i = 1,2,...,n, u = 1,2,…,z, ,,...,2,1 ν=b                                
(b) the reliability function of multi-state system component with single cold reservation at the 
operational state ,bz ,,...,2,1 ν=b   is respectively given by 
                             ])],([,,)]1,([,1[)],([ )()2()()2()()2( b

i
b

i
b

i ztRtRtR K=⋅ , t ∈ (−∞,∞), ,,...,2,1 ν=b           (5) 
where   

])],([)],([[1)],([ )()()()2( b
i

b
i

b
i utFutFutR ∗−=  1= , t < 0, 

                 ])],([)],([[1)],([ )()()()2( b
i

b
i

b
i utFutFutR ∗−= ])(exp[]])(1[ )()( tutu b

i
b

i λλ −+= ,  t ≥ 0,       (6) 
 (c) the exponential reliability function of multi-state system component with the reduced rate of 
departure by a factor ),(uρ ,,...,2,1 zu =  at the operational state ,bz ,,...,2,1 ν=b   is respectively 
given by 
                             ])],([,,)]1,([,1[)],([ )()3()()3()()3( b

i
b

i
b

i ztRtRtR K=⋅  t ∈ (−∞,∞), ,,...,2,1 ν=b             (7) 
where   
                              1)],([ )()3( =b

i utR  for t < 0,  ])()(exp[)],([ )()()3( tuuutR b
i

b
i ρλ−=  for t ≥ 0,           (8)   

 
3 ASYMPTOTIC APPROACH TO EVALUATION OF RELIABILITY IMPROVEMENT 

OF LARGE MULTI-STATE SYSTEMS IN VARIABLE OPERATION CONDITIONS  
 
Technical Main results concerning asymptotic approach to multi-state system reliability 
improvement with ageing components in fixed operation conditions are comprehensively detailed. 
In order to combine the results on the reliability improvement of multi-state systems related to their 
operation processes and the results concerning limit reliability functions of the multi-state systems, 
and to obtain results of asymptotic approach to evaluation  of the multi-state system reliability 
improvement in variable operation conditions (Kołowrocki K. & Kwiatuszewska-Sarnecka B. 
(2008)), we use the following definition.  
A reliability function    

),,()],,(),...,1,(,1[),( ∞−∞∈=⋅ tzttt ℜℜℜ  
where  

,]),([),( )(

1

bv

b
b utput ∑=

=
ℜℜ   ,,...,2,1 zu =  

is called a limit reliability function of a multi-state system in its operation process with reliability function  
)],,(),...,1,(),0,([),( ztttt nnnn RRRR =⋅  

where 
)(

1
]),([),( bv

b
nbn utput ∑≅

=
RR , ,,...,2,1 zu =  

where 
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bp  = )(lim tpb
t ∞→

= ,

1
∑
=

v

l
ll

bb

M

M

π

π
,,...,2,1 vb =  

are the limit values of the transient probabilities at the particular operation states  
)(tpb = P(Z(t) = bz ) , ),,0 +∞∈<t  ,,...,2,1 vb =  

and the probabilities bπ  of the vector νπ xb 1][  satisfy the system of equations   

⎪⎩

⎪
⎨
⎧

∑ =

=

=

v

l
l

blbb p

1
.1

]][[][

π

ππ
 

if there exist normalising constants  
,0)()( >ua b

n  ),,()()( ∞−∞∈ub b
n ,,...,2,1 zu = ,,...,2,1 vb =  

such that for )()]([ buCt
ℜ

∈ , ,,...,2,1 zu = ,,...,2,1 vb =  
)()()()( )],([)]),()(([lim bbb

n
b

nnn
utuubtua ℜ=+

∞→
R . 

Hence, the following approximate formulae are valid  
)],,(),...,1,(),0,([),( ztttt nnnn RRRR =⋅  

where 

   ,)],
)(

)(
(),( )(

1
)(

)(
bv

b
b

n

b
n

bn u
ua

ubt
put ∑

−
[≅

=
ℜR ),,( ∞−∞∈t  .,...,2,1 zu =                  

The following propositions are concerned with the homogeneous exponential systems i.e. the systems which 
components have at operational states ,bz ,,...,2,1 vb =  exponential reliability functions.  
Proposition 3.1  
If components of the homogeneous multi-state series system at the operational state bz  have exponential 
reliability functions and the system have: 
(a) a single hot reservation of system components  and  
  

)()( ua b
n = ,

)(
1

)( nubλ
 )()( ub b

n  = 0, u = 12,..., ,z, ,,...,2,1 vb =  

then    
                                              )],,(,),1,(,1[),( )1()1()1( zttt ℜℜℜ K=⋅  t ∈ (-∞,∞),                                        (9) 
where    

                                        1),()1( =utℜ  for t < 0,  ]exp[),( 2

1

)1( tput
v

b
b −∑=

=
ℜ  for t ≥ 0,                         (10)   

is its unconditional multi-state limit reliability function. Hence, the following exact formulae is valid  
                                               ),()1( ⋅tnR  = [1, )1,()1( tnR ,..., ),()1( ztnR ],                                                         (11)                       
where   

                1),()1( =utnR  for ,0<t  ),()1( utnR ]))((exp[ 2)(

1
tnup bv

b
b λ−∑=

=
, ,0≥t ,,...,2,1 zu =           (12) 

 (b) a single cold reservation of system components  and   

)()( ua b
n = ,

)(
2

)( nubλ
 )()( ub b

n  = 0, u = 1,2,...,z, ,,...,2,1 vb =  

then    
 
                                      )],,(,),1,(,1[),( )2()2()2( zttt ℜℜℜ K=⋅  t ∈ (-∞,∞),                                    (13) 
where    
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                       1),()2( =utℜ  for t < 0,   ]exp[),( 2

1

)2( tput
v

b
b −∑=

=
ℜ  for t ≥ 0, u = 1,2,...,z             (14) 

is its unconditional multi-state limit reliability function. Hence the following approximate formulae 
is valid  
                                             ),()2( ⋅tnR  = [1, )1,()2( tnR ,..., ),()2( ztnR ],              (15)                                                      
where    

                1),()2( =utnR  for ,0<t  ),()2( utnR ≅ ])
2
)((exp[ 2

)(

1
tnup

bv

b
b

λ
−∑

=
, ,0≥t ,,...,2,1 zu =    (16)                     

(c) components with the reduced rate of departure by a factor ),(uρ ,,...,2,1 zu =  and 

   )()( ua b
n = ,

)()(
1

)( nuub ρλ
 )()( ub b

n  = 0, u = 1,2,...,z, ,,...,2,1 vb =  

then    
                                      )],,(,),1,(,1[),( )3()3()3( zttt ℜℜℜ K=⋅  t ∈ (-∞,∞),                                    (17) 
where    

                        1),()3( =utℜ  for t < 0,  ]exp[),(
1

)3( tput
v

b
b −∑=

=
ℜ , t ≥ 0,  u = 1,2,...,z,                  (18)       

is its unconditional multi-state limit reliability function. Hence the following exact formulae is valid  
                                              ),()3( ⋅tnR  = [1, )1,()3( tnR ,..., ),()3( ztnR ],                                               (19)                    
where    

              1),()3( =utnR  for ,0<t  ),()3( utnR = ntuup bbv

b
b )()(exp[ )()(

1
ρλ−∑

=
,  t ≥ 0, zu ,...,2,1= .      (20) 

Proposition 3.2  
If components of the homogeneous multi-state parallel system at the operational state bz  have 
exponential reliability functions and the system have 
(a) a single hot reservation of system components  and   

)()( ua b
n = 

)(
1
)( ubλ

, )()( ub b
n = n

ub 2log
)(

1
)(λ

,  u = 1,2,...,z, ,,...,2,1 vb =  

then 
                                        )],,(,),1,(,1[),( )1()1()1( zttt ℜℜℜ K=⋅  t ∈ (-∞,∞),                                    (21) 
where 

                                  ]]exp[exp[1),(
1

)1( tput
v

b
b −−∑−=

=
ℜ ,  t ∈ (-∞,∞), u = 1,2,...,z,                      (22) 

is its unconditional multi-state limit reliability function. Hence the following approximate formulae 
is valid  
                                                )],(),...,1,(,1[),( )1()1()1( zttt nnn RRR =⋅ ,                                                  (23) 
where   

                    ),()1( utnR )]]2log)((exp[exp[1 )(

1
ntup bv

b
b −−−∑−≅

=
λ ,  t ∈ (-∞,∞), u = 1,2,...,z,         (24)     

(b) a single cold reservation of system components  and   

                               )()( ua b
n = 

)(
1
)( ubλ

, n
ubu

ubu
b

n
b

b
n

b

=
)()(

)]()(exp[
)()(

)()(

λ
λ

, u = 1,2,...,z, ,,...,2,1 vb =              (25) 

then 
                                        )],,(,),1,(,1[),( )2()2()2( zttt ℜℜℜ K=⋅  t ∈ (-∞,∞),                                   (26) 
where 
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                                   ]]exp[exp[1),(
1

)2( tput
v

b
b −−∑−=

=
ℜ , t ∈ (-∞,∞), u = 1,2,...,z,                      (27) 

is its unconditional multi-state limit reliability function, hence, the following approximate formulae 
is valid  
                                                       )],(),...,1,(,1[),( )2()2()2( zttt nnn RRR =⋅ ,                                          (28)       
where   

             ),()2( utnR 1≅ ))]]()()((exp[exp[ )()()(

1
ubutup b

n
bbv

b
b λλ −−−∑−

=
, t ∈ (-∞,∞), ,,...,2,1 zu =     (29) 

(c) components with the reduced rate of departure by a factor ),(uρ ,,...,2,1 zu =  and 

)()( ua b
n = 

)()(
1

)( uub ρλ
, )()( ub b

n = n
uub log

)()(
1

)( ρλ
, u = 1,2,...,z, ,,...,2,1 vb =  

then 
                                             )],,(,),1,(,1[),( )3()3()3( zttt ℜℜℜ K=⋅  t ∈ (-∞,∞),                              (30) 
where 

                                     ]]exp[exp[1),(
1

)3( tput
v

b
b −−∑−=

=
ℜ , t ∈ (-∞,∞), u = 1,2,...,z,                    (31) 

is its unconditional multi-state limit reliability function hence, the following approximate formulae 
is valid  
                                                     ),()3( ⋅tnR  = [1, )1,()3( tnR ,..., ),()3( ztnR ],                                         (32)                     
where    

             ),()3( utnR 1≅ )]]log)()((exp[exp[ )()(

1
ntuup bbv

b
b −−−∑−

=
ρλ , t ∈ (-∞,∞), .,...,2,1 zu =       (33)           

 
4 AVAILABILITY OF MULTI-STATE SERIES AND PARALLEL SYSTEMS IN 

VARIABLE OPERATION CONDITIONS  
 
There is presented a combination of reliability, availability improvement models of multi-state 
renewal systems only with non-ignored time of renovation in a model of variable in time operation 
processes. On the basis of those joined models, with assumption, that systems’ improved 
conditional reliability functions dependent on variable in time operation states are the same as 
improved limit reliability functions of the exponential non-renewal multi-state series and parallel 
systems, improved availability characteristics of the systems are determined.  
 
4.1 Multi-state systems with non-ignored time of renovation in variable operation conditions 
We assume similarly as in non renewal systems considered in Point 3 that the changes of the 
process Z(t) states have an influence on the multi-state system reliability structure. The main 
characteristics of multi-state renewal system with hot, cold single reservation of system components 
and system with improved component’s reliability related to their operation process can be 
approximately determined by taking account described system’s operation process properties. 

 

 

 

Proposition 4.1 
If components of the multi-state renewal system with non-ignored time of renovation at the 
operational states ,bz ,,...,2,1 vb =  have exponential reliability functions and the time of the system 
renovation has the mean value )()]([ b

o rμ and the standard deviation )(2 )]([ b
o rσ , then:  



B. Kwiatuszewska‐Sarnecka – MODELS OF RELIABILITY AND AVAILABILITY IMPROVEMENT OF SERIES AND PARALLEL SYSTEMS 
RELATED TO THEIR OPERATION PROCESSES 

 
RT&A # 2(17)  

(Vol.1) 2010, June  
 

 

216 

i) the distribution function of the time )()( rS k
N , ,3,2,1=k  until the Nth system’s renovation, for 

sufficiently large N, has approximately normal distribution      

)))()(()),()((( 22)()( rrNrrNN o
k

o
k σσμμ ++  

i.e., 

=
=

),(
)()(

rtF
kN

))(( )( trSP k
N <

=
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))()((
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)(
)(
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o
k

o
k

k
N

σσ

μμ

+

+−
≅  

),,( ∞−∞∈t ,...2,1=N , },,...,2,1{ zr ∈   

ii) the expected value and the variance of the time )()( rS k
N , ,3,2,1=k  until the Nth system’s 

renovation take respectively forms 

))()(()]([ )()( rrNrSE o
kk

N μμ +≅
=

, ))()(()]([ 22)()( rrNrSD o
kk

N σσ +≅
=

, },,...,2,1{ zr ∈  

iii) the distribution function of the time )()( rS k
N , ,3,2,1=k  until the Nth exceeding the reliability 

critical state r of this system takes form 

=
−

),(
)()(
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))(( )( trSP k
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−
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k
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),,( ∞−∞∈t ,...2,1=N , },,...,2,1{ zr ∈   
iv) the expected value and the variance of the time )()( rS k

N , ,3,2,1=k  until the Nth exceeding the 
reliability critical state r of this system take respectively forms 

)()1()()]([ )()( rNrNrSE o
kk

N μμ −+≅
−

, )()1()()]([ 22)()( rNrNrSD o
kk

N σσ −+≅
−

, },,...,2,1{ zr ∈  

v) the distribution of the number ),()( rtN k , ,3,2,1=k  of system’s renovations up to the moment 
,0, ≥tt  is of the form       

≅=
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vi) the expected value and the variance of the number ),()( rtN k , ,3,2,1=k  of system’s renovations 
up to the moment ,0, ≥tt  take respectively forms 
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vii) the distribution of the number ),()( rtN k , ,3,2,1=k  of exceeding the reliability critical state r of 
this system up to the moment ,0, ≥tt  is of the form 
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viii) the expected value and the variance of the number ),()( rtN k , ,3,2,1=k  of exceeding the 
reliability critical state r of this system up to the moment ,0, ≥tt  for sufficiently large t, are 
approximately respectively given by 

)()(
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)(
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rt

rtH
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ix) the availability coefficient of the system at the moment t is given by the formula 

)()(
)(),( )(

)(
)(
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rrtK

o
k

k
k

μμ
μ

+
≅ , ,0≥t  },,...,2,1{ zr ∈  

x) the availability coefficient of the system in the time interval ,0),, >+< ττtt  is given by the 
formula 

,),(
)()(

1),,( )(

)(
)( ∫

+
≅

∞

τμμ
τ dtrt
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rtK k

n
o

k
k R ,0≥t ,0>τ },,...,2,1{ zr ∈  

where for ,ru = and )()( rkμ and )()( rkσ , ,3,2,1=k  are given by:  
- for a homogeneous series system 
(a) with a single hot reservation of system components   

                                        
nr

pr b

v

b
b )(2

)( )(
1

)1(

λ
πμ ∑≅

=
, },,...,2,1{ zr ∈                                                  (34) 

=2)1( )]([ rσ ∫ −
+∞

∞−
,)]([),( 2)1()1(2 rrtdt n μF  },,...,2,1{ zr ∈  

where )()1( rμ   is given by the formula (34)      

),,(1),( )1()1( rtrt nn RF −=  ),,( ∞−∞∈t  

and ),()1( rtnR  is given by the formulae (11)-(12) for ,ru = },...,2,1{ zr ∈ , 
(b) with a single cold reservation of system components   

                                          
nr

pr
b

v

b
b 2)(

)(
)(1

)2(

λ
πμ ∑≅

=
, },,...,2,1{ zr ∈                                            (35) 

=2)2( )]([ rσ ∫ −
+∞

∞−
,)]([),( 2)2()2(2 rrtdt n μF },,...,2,1{ zr ∈  

where )()2( rμ   is given by the formula (35)      

),,(1),( )2()2( rtrt nn RF −=  ),,( ∞−∞∈t  

and ),()2( rtnR  is given by the formulae (15)-(16) for ,ru = },...,2,1{ zr ∈ , 
(c) with the reduced rate of departure by a factor ),(uρ ,,...,2,1 zu =  of its components  

                                       
nrr

pr b

v

b
b )()(

1)( )(
1

)3(

ρλ
μ ∑≅

=
, },,...,2,1{ zr ∈                                             (36) 

=2)3( )]([ rσ ∫ −
+∞

∞−
,)]([),( 2)3()3(2 rrtdt n μF  },,...,2,1{ zr ∈  

 
where )()3( rμ   is given by the formula (36)      

),,(1),( )3()3( rtrt nn RF −=  ),,( ∞−∞∈t  
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and ),()3( rtnR  is given by the formulae (19)-(20) for ,ru = },...,2,1{ zr ∈ , 
-  for a homogeneous parallel system  
(a) with a single hot reservation of system components   

                           ≅)()1( rμ )),(/2log)(/( )()(

1
rnrCp bbv

b
b λλ +∑

=
 },,...,2,1{ zr ∈                                 (37) 

where 5772.0≅C  is Euler’s constant 

=2)1( )]([ rσ ∫ −
+∞

∞−
,)]([),( 2)1()1(2 rrtdt n μF  },,...,2,1{ zr ∈  

where )()1( rμ   is given by the formula (37)      

),,(1),( )1()1( rtrt nn RF −=  ),,( ∞−∞∈t  

and ),()1( rtnR  is given by the formulae (23)-(24) for ,ru = },...,2,1{ zr ∈ , 
(b) with a single cold reservation of system components   

                         )()2( rμ )),()(log()(/( )()()(

1
rbrnrCp b

n
bbv

b
b λλ +∑≅

=
},,...,2,1{ zr ∈                            (38) 

where 5772.0≅C  is Euler’s constant and 

=2)]([ rσ ∫ −
+∞

∞−
,)]([),( 22 rrtdt n μF  },,...,2,1{ zr ∈  

where )()2( rμ   is given by the formula (38)      

),,(1),( )2()2( rtrt nn RF −=  ),,( ∞−∞∈t  

and ),()2( rtnR  is given by the formulae (25)-(26) for ,ru = },...,2,1{ zr ∈ , 
(c) with the reduced rate of departure by a factor ),(uρ ,,...,2,1 zu =  of its components  

                      )()3( rμ ))()(/(( )(

1
rrCp bv

b
b ρλ∑≅

=
))),()(/(log )( rrn b ρλ+ },,...,2,1{ zr ∈                      (39) 

where 5772.0≅C  is Euler’s constant 

=2)3( )]([ rσ ∫ −
+∞

∞−
,)]([),( 2)3()3(2 rrtdt n μF  },,...,2,1{ zr ∈  

where )()3( rμ   is given by the formula (39)      

),,(1),( )3()3( rtrt nn RF −=  ),,( ∞−∞∈t  

and ),()3( rtnR  is given by the formulae (32)-(33) for ,ru = },...,2,1{ zr ∈ . 
 
5 EFFECTS OF COMPARISON ON RELIABILITY AND AVAILABILITY 

IMPROVEMENT 
 
In order to determine the value of the coefficient )(rρ , },,...,2,1{ zr ∈  by which it is necessary to 
reduce (multiply by) the failure rates of departure of the reliability states subsets of basic 
components of the non renewal system or renewal with non-ignored time of renovation in order to 
receive the system having the mean value of the number of exceeding the critical reliability state 
during the time t  as the mean value of the number of exceeding the critical reliability state during 
the time t  of the system with either hot or cold single reserve of basic components we can solve 
either the equation  
                                           )()1( rμ )()3( rμ= , ,0≥t  },,...,2,1{ zr ∈                                               (40)        
or respectively the equation  
                                          )()2( rμ )()3( rμ= , ,0≥t  },,...,2,1{ zr ∈                                              (41)                    



B. Kwiatuszewska‐Sarnecka – MODELS OF RELIABILITY AND AVAILABILITY IMPROVEMENT OF SERIES AND PARALLEL SYSTEMS 
RELATED TO THEIR OPERATION PROCESSES 

 
RT&A # 2(17)  

(Vol.1) 2010, June  
 

 

219 

and  if the system is the system with not ignored time of renovation in order to receive the system 
having the same availability as the availability of the system with either hot or cold single reserve 
of basic components we can solve either the equation  
                                        )()1( rK )()3( rK= , ,0≥t  },,...,2,1{ zr ∈                                                 (42)        
or respectively the equation  
                                        )()2( rK )()3( rK= , ,0≥t  }.,...,2,1{ zr ∈                                                 (43)   
Proposition 5.1  
If components of the multi-state non renewal system or renewal system  with non ignored time of 
renovation at the operational states ,bz  ,,...,2,1 vb =  have exponential reliability functions then the 
coefficient )(rρ , },,...,2,1{ zr ∈  is in the form  
- for a homogeneous series system 
in the first case by  (40) , after considering (34) and (36), we get   

n
r

π
ρ 2)( = , },,...,2,1{ zr ∈  

in the second case by (41), after considering (35) and (36), we get   

n
r

π
ρ 2)( = , },,...,2,1{ zr ∈  

-  for a homogeneous parallel system  
in the first case by  (40) , after considering (36) and (38), we get  

nC
nCr

2log
log)(

+
+

=ρ , },,...,2,1{ zr ∈  

in the second case by (41), after considering (37) and (38), we get   

nrbrC
nCr b

n
b )()(log
log)( )()(λ

ρ
+

+
= , },,...,2,1{ zr ∈  

where 5772.0≅C  is Euler’s constant and n
rbr

rbr
b

n
b

b
n

b

=
)()(

)]()(exp[
)()(

)()(

λ
λ

, }.,...,2,1{ zr ∈  

 
6 CONCLUSION 
  

In the paper the multi-state approach to the improvement of systems’ reliability, and 
availability for series and parallel systems has been presented. Constructed in this paper the final 
integrated, general analytical models of complex systems reliability and availability improvement 
related to their operation processes are very important for the further optimization of system 
operation costs. 
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ABSTRACT 
 

These are presented statistical methods of correlation and regression analysis of the operation processes 
of complex technical systems. The collected statistical data from the Stena Baltica ferry operation process 
are analysed and used for determining correlation coefficients and linear and multiple regression 
equations, expressing the influence of the operation process conditional sojourn times in particular 
operation states on the ferry operation process total conditional sojourn time. 

 
 
1  INTRODUCTION 
 

Many real transportation systems belong to the class of complex systems. First, and foremost, 
these systems are concerned with the large numbers of components and subsystems they are built 
and with their operating complexities. Modeling of these complicated system operation processes is, 
first of all, difficult because of the large number of the operation states, impossibility of their 
precise definition as well as the impossibility of the exact description of the transitions between 
these states. Generally, the change of the operation states of the system operations processes causes 
the changes of these systems reliability structures and their components reliability functions. 
Therefore, the system operation process and its operation states proper definition and accurate 
identification of the interactions between the particular operation states and their influence on the 
entire system operation process is very important. 
The model of the operation processes of the complex technical systems (Blokus et al. 2008) with 
distinguishes their operation states is proposed in (Kolowrocki & Soszynska 2008). The semi-
markov process (Grabski 2002) is used to construct a general probabilistic model of the considered 
complex industrial system operation process. To apply this model in practice its unknown 
parameters have to be identified. Namely, the vector of the probabilities of the system initial 
operation states, the matrix of the probabilities of transitions between the operation states and the 
matrix of the distribution functions or equivalently the matrix of the density functions of the 
conditional sojourn times in the particular operation states, needs to be estimated on the basis of the 
statistical data. The methods of these unknown parameters evaluation are developed and presented 
in details in (Kolowrocki & Soszynska 2009A-B). In addition to these methods the simple data 
mining techniques such as correlation coefficient, linear and multiple regression as well as root 
mean square error can be used on the statistical data samples to perform the analyses. The results of 
that analysis as well as relevant conclusions that can be reached from the studies may give 
practically important information in the operation processes of the complex technical systems 
investigation.  
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The aim of this report is to use these techniques in studying the patterns that can be derived, from 
realizations of the conditional sojourn times, obtained from the Stena Baltica ferry operation 
process, for the early spring data (Kolowrocki et al. 2009A-B).  
The report is organized is the following way. In Section 1, some general comments on complex 
technical systems operation processes modeling are given and the problem considered in this report 
is defined. In Section 2, the general assumptions on the complex system operation process are 
presented. In Section 3, the Stena Baltica ferry operation process is described. In Section 4, the 
formulae for the total conditional sojourn time its mean and standard deviation are presented and 
applied to the spring statistical data of the Stena Baltica ferry operation process. This is then 
followed by determining the correlation coefficient, linear and multiple regression and root mean 
square error for the ferry operation process spring data. In Section 5, the report summary is given. 
 
2 SYSTEM OPERATION PROCESS 
 

We assume, similarly as in (Blokus et al. 2008, Kolowrocki & Soszynska 2008), that a system 
during its operation at the fixed moment t, t ∈ <0, >∞+ , may be in one of v, ,Nv ∈  different 
operations states ,bz  b = 1,2, ..., v. Next, we mark by Z(t), t ∈ <0, ∞+ >, the system operation 
process, that is a function of a continuous variable t, taking discrete values in the set Z = 

{ vzzz ,...,, 21 } of the operation states. We assume a semi-markov model (Blokus et al. 2008, 
Grabski 2002, Kolowrocki & Soszynska 2008) of the system operation process Z(t) and we mark by 

blθ  its random conditional sojourn times at the operation states bz , when its next operation state is 
,lz  ,,...,2,1, vlb =  .lb ≠  

Under these assumptions, the operation process may be described by the vector νx1)]0([ bp  of 
probabilities of the system operation process staying in particular operations states at the initial 
moment t = 0, the matrix ννx)]([ tpbl  of the probabilities of the system operation process transitions 
between the operation states and the matrix ννx)]([ tHbl  of the distribution functions of the 
conditional sojourn times blθ  of the system operation process at the operation states or equivalently 
by the matrix ννx)]([ thbl  of the density functions of the conditional sojourn times blθ , 

,,...,2,1, vlb = ,lb ≠  of the system operation process at the operation states. 
To estimate the unknown parameters of the system operations process, the first phase in the 
experiment, is to collect necessary statistical data. This is performed in the following steps 
(Kolowrocki et al. 2009A-B): 

i) To analyze the system operation process and either to fix or to define the following general 
parameters: 
- the number of the operation states of the system operation process ν ; 
- the operation states of the system operation process 1z , 2z , …, νz ; 

ii) To fix and collect the following statistical data necessary in evaluating the probabilities of the 
initial states of the system operations process: 
- the duration time of the experiment Θ ; 
- the number of the investigated (observed) realizations of the system operation process 

)0(n ; 
- the numbers of staying operation process respectively in the operations states 1z , 2z , …, 

νz , at the initial moment 0=t  of all )0(n  observed realizations of the system operation 
process )0(1n ,  )0(2n , …, )0(νn , where )0(1n  + )0(2n + )0(νn  = )0(n ; 
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iii) To fix and collect the following statistical data necessary to evaluating the transient 
probabilities between the system operation states: 
- the numbers bln , b, l = 1,2,...,v, b≠ l, of the transitions of the system operation process 

from the operation state bz  to the operation state lz  during all observed realizations of the 
system operation process; 

- the numbers bn , b = 1,2,...,v, of departures of the system operation process from the 

operation states bz , where ;
1

∑=
=

ν

l
blb nn  

iv) To fix and collect the following statistical data necessary in evaluating the unknown 
parameters of the distributions of the conditional sojourn times of the system operation 
process in the particular operation states: 
- the realizations k

blθ , k = 1,2, …, ,bln  b, l = 1,2,...,v, lb ≠ ,  of the conditional sojourn 
times blθ  of the system operations process at the operation state bz  when the next 
transition is to the operation state lz  during the observation time; 

After collecting the above statistical data it is possible to estimate the unknown parameters of the 
system operation process (Kolowrocki & Soszynska 2009A-B). It is also possible to analyze rather 
accurately the system operation process sojourn times in the particular operation states and their 
influence on the entire system operation process total sojourn time (Kolowrocki et al. 2009B). 
 
3 STENA BALTICA FERRY OPERATION PROCESS 
 
The problem considered in this report is based on real maritime statistical data, obtained from Stena 
Baltica ferry operation process, whereby the ferry performs continuous journeys from Gdynia in 
Poland to Kalskrona in Sweden. Table 1 show the operation states that the Stena Baltica ferry 
undertakes, beginning with loading at Gdynia then passing through the Traffic Separation Scheme 
to Karlskrona for unloading/loading and back to Gdynia for unloading/loading. This operation 
process is repeated continuously and it is assumed that one voyage from Gdynia to Kalskrona and 
back to Gdynia is a single realization of its operation process. For the voyage described, time-series 
data were collected for the realization of the conditional sojourn times blθ  of the system operations 
process at the operation state bz  when the next transition is to the operation state lz  for spring 
conditions. These data are shown in the Appendix in Tables A1-A4 coming from (Kolowrocki et al. 
2009B). 
 

Table 1. Stena Baltica ferry operation states 
 

Operation 
state Description Operation

State Description 

1z  Gdynia: Loading 10z  Karlskrona: Unmooring 

2z  Gdynia: Unmooring 11z  Karlskrona: Turning 

3z  Gdynia: Navigating to GD buoy 12z  Karlskrona: Navigating to Angoring 
buoy 

4z  Gdynia: Navigating to TSS 13z  Karlskrona: Navigating to TSS 

5z  Gdynia: Navigating to Angoring 
buoy 14z  Karlskrona: Navigating to GD buoy 

6z  Karlskrona: Navigating to Verko 
berth 15z  Karlskrona: Navigating to Turning Area 

7z  Karlskrona: Mooring 16z  Gdynia: Ferry Turning 
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Operation 
state Description Operation

State Description 

8z  Karlskrona: Unloading 17z  Gdynia: Mooring 

9z  Karlskrona: Loading 18z  Gdynia: Unloading 

 
It is also important to note that the operation process is very regular and cyclic, in the sense that the 
operation states changes from the particular state ,bz  where 17....2,1=b  to the neighbouring state 

,1+bz  where 17....2,1=b  only and from 18z  to 1z . Therefore, based on this definition the spring 
realization of the ferry conditional sojourn times k

bb 1+θ , where 17....2,1=b  and k
118θ  for 

,,...,2,1 blnk =  where ,42=bln  are given in Tables A1-A4. Also included in Tables A1-A4 are the 
values of the total conditional sojourn times for each realization, k

Tθ , for ,,...,2,1 blnk =  where 
42=bln . In our analysis the values of k

Tθ  are important in analyzing the behaviour of the Stena 
Baltic ferry operation process. 
 
4 DATA ANALYSIS ON STENA BALTICA OPERATION PROCESS 
 
In this section, the use of several data mining techniques on the system total conditional sojourn 
time is described. The techniques adopted are namely, correlation coefficient, linear and multiple 
regression and root mean square error. These techniques are applied on the early spring data from 
the Stena Baltica ferry operation process. 
 
4.1 Total conditional sojourn time 
 

As discussed above, the Stena Baltica ferry operation process data for spring is shown in the 
Appendix in Tables A1-A4 for spring. In analyzing the behavior of the data patterns, this report 
examines the ferry total conditional sojourn time (the time length of one ferry voyage) Tθ  by 
analyzing its successive realizations k

Tθ , defined as 
 

   k

b

k
bb

k
T 118

17

1
1 θθθ +∑=

=
+       (1) 

 
for ,,...,2,1 blnk =  where 42=bln  for spring data. Using equation (1), the total conditional sojourn 
times were then calculated for both spring with the values shown in Tables A1-A4. These values 
form the basis of our conjecture in this paper. 
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Figure 1. Plot of realizations k

Tθ  of total conditional sojourn time Tθ  for spring data 
 
Figure 1 shows the plot of the realizations k

Tθ  of the ferry total conditional sojourn time Tθ  against 
the realization number k  for spring data. In the picture, by STD there are marked 1-sigma lower 

TT σθ −  and upper TT σθ +  bounds for the ferry total conditional sojourn time Tθ . 
Although the ferry operation process is regular and cyclic, i.e. the operation states follows the 
process in Table 1, it can be observed that the values of Tθ  are not constant. Furthermore, by using 
the mean total conditional sojourn time Tθ , evaluated from the following equation 
 

   ∑
=

=
bln

k

k
T

bl
T n 1

1 θθ       (2) 

 
and the standard deviation defined as 
 

   2

1
)(1 ∑

=

−=
bln

k
T

k
T

bl
T n

θθσ       (3) 

 
it was found that nearly 26% of the k

Tθ  values fall outside of the interval ,TT σθ −< >+ TT σθ .  
The results in Figures 1 seem to indicate a pattern whereby in each realization the contribution of 
the ferry conditional sojourn time k

lbθ  for some operation states towards k
Tθ  is more for some than 

that for others. Thus, identifying the conditional sojourn time for such operation states, which has 
major effect on the ferry total operation process times enable the total conditional sojourn time for 
the operation process to be studied, analysed and predicted. These are discussed in the following 
sections where the use of data mining techniques to understand the behaviour of k

Tθ  is presented. 
 

4.2 Correlation  
 

Correlation analysis is a method commonly used to establish, with certain degree of 
probability, whether a linear relationship exists between two measured quantities. This means that 
when there is correlation it implies that there is a tendency for the values of the two quantities to 
effect one another. Vice-versa also holds true if there is no correlation which implies no effect on 
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each other. Furthermore, using the values of the correlation coefficient, a positive or negative 
relationship can also be identified. If the coefficient values are close to 1, it implies positive linear 
relationship, whilst values close to 0 imply no linear relationship. Thus, based on the values of the 
correlation coefficient, the relationship between two measured quantities can be determined. The 
adopted formula for evaluating the correlation coefficient blr  between the ferry conditional sojourn 
time blθ  in particular operation states and the ferry total conditional sojourn time Tθ  is given by 
 

   ,
)()(

))((

1

2

1

2

1

∑ −∑ −

−∑ −
=

==

=

bln

k
T

k
T

bln

k
bl

k
bl

T
k

T

bln

k
bl

k
bl

blr
θθθθ

θθθθ
                 

(4) 
 
for ,17,...,2,1=b 1+= bl  and ,18=b  where 42=bln  is the number of realizations, k

blθ  is the k-th 
realization of the conditional sojourn time blθ , k

Tθ  is the k-th realization of the total conditional 
sojourn time Tθ  evaluated from (1), Tθ  is the mean total conditional sojourn time evaluated from 
the equation (2) and blθ  is the mean conditional sojourn time obtained from 
 

   .1
1

∑
=

=
bln

k

k
bl

bl
bl n

θθ                    

(5) 
 
Thus, using the values from Tables A1-A4, the correlation coefficient, blr , were then evaluated 
using equation (4). Table 2 shows the values of lbr  for the spring data. 
 

Table 2. Correlation coefficient lbr  values for spring data 
 

Operation 
State 

Correlation 
coefficient 

Operation 
state 

Correlation 
coefficient 

1z  0.221169 10z  0.401463

2z  0.298071 11z  0.324054
3z  -0.13934 12z  0.306238
4z  0.642635 13z  0.640848
5z  0.738339 14z  0.365648
6z  0.020627 15z  0.099242
7z  -0.04948 16z  0.142937
8z  0.2035 17z  0.149159
9z  0.1559 18z  0.057029

 
Figure 2 shows the plot of the correlation coefficient blr  against the number b  of the operation state 

bz . It can be seen that 54θ , 65θ  and 1413θ  has the strongest positive linear relationship, as compared 
to the conditional sojourn times in the remaining operation states, where 65θ  and 1413θ  coincides 
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with the longest parts of the voyage. This implies that any variations in the conditional sojourn 
times 1+bbθ  associated with these 3 operation states, namely ,4z  5z  and ,13z  will significantly 
effect the total conditional sojourn time Tθ .  
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Figure 2. Plot of correlation coefficient blr  between conditional sojourn time and total conditional 

sojourn time for spring data 
 
The plots given in Figure 2 also shows that most of the blr  values are more than 0, which seems to 
indicate a positive linear relationship, albeit weak linear relationship for some. Thus, from the 
correlation coefficient values, it can be deduced that the values of the total conditional sojourn time 

Tθ  is strongly dependent on the conditional sojourn times lbθ  for some operation states. In the 
following section, this understanding of the data behaviour will be used in the regression model to 
predict the values of the total conditional sojourn time Tθ . 
 
4.3 Regression 
 

Regression analysis is a data mining technique used in modeling, analyzing and predicting 
numerical data. In linear regression, input statistical data are necessary, whereby the data is 
modeled as a function, in coming out with the model parameters. These parameters are then 
estimated so as to give a "best fit" of the data, which are then used to predict future data behaviour. 
Multiple regression is another type of regression model. It is similar to linear regression but in this 
model the interest is on examining more than one predictor variables. In this technique the aim is to 
determine whether the inclusion of additional predictor variables leads to increased prediction of the 
outcome. Here, the use of both linear and multiple regression models on the spring data are 
described. 
From the above discussions, it can be seen that the aim of using the linear regression technique is to 
use initial sample data of the conditional sojourn times bθ  to predict subsequent behavior of the 
total conditional sojourn time Tθ . In the paper the equation adopted is given by 
 

blbbbT εθβαθ ++=       (6) 
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for ,17,...,2,1=b  1+= bl  and ,18=b  ,1=l  where bα , bβ  are the unknown regression coefficients 
and bε  is the random noise. 
Before predicting the subsequent behavior, the values of bα  and bβ  based on varying realizations 
of the operation process need to be evaluated. Here, the unknown regression coefficients bα  and 

bβ  are evaluated by minimizing the functions 
 

   2

1
)]([),( k

lbbb

N

k

k
Tbb θβαθβα +∑ −=Δ

=
                 

(7) 
 
for ,17,...,2,1=b 1+= bl  and ,18=b  defined as the measure of divergences between the empirical 
values k

Tθ  and defined by (6) the predicted values k
lbbb

k
blT θβαθθ +=)(  of the total conditional 

sojourn time Tθ . 
From the necessary condition, i.e. after finding the first partial derivatives of ),( bb βαΔ  with respect 
to bα  and bβ  and putting them equal to zero, we get the system of equalities involving the 
realizations k

Tθ  of the total conditional sojourn time Tθ  and the realizations k
blθ  of the conditional 

sojourn times lbθ  defined as follows 
  

   ∑=∑+
==

N

k

k
Tb

N

k

k
lbbN

11
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for ,17,...,2,1=b 1+= bl  and ,18=b  1=l  and .,...,2,1 blnN =   
The remaining question that needs to be addressed is how many realizations marked by N  does it 
take to obtain a reasonable representation of bα  and bβ . By using Matlab and putting the values 
from Tables A1-A4 into the system of equations (6), the varying bα  and bβ  values were calculated 
for blnN ,...,2,1= . 
Figure 3 shows the plot of the regression coefficient bβ  against N , for the operation states of 5z  
and 13z . From the discussions in Section 4.2, these 2 operation states represents among the longest 
part of the voyage and has major influence on the total conditional sojourn time. From the plot, it 
can be observed that other than the initial instability for low values of N , the values of bβ  seems to 
stabilize for larger N . In our analyses, it was discovered that the value of bβ  stabilizes at 30=N . 
Although not shown in the paper this behavior also holds true for all the other operation states. 
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Figure 3. Plot of regression coefficient bβ  for spring data 

 
Thus, based on the above observations, the predicted total conditional sojourn time ∗

Tθ  can then be 
evaluated using bβ  values at 30=N . In evaluating Tθ , the formulations in the system of equations 
(8), lead to 
 
   lbbbT θβαθ ∗∗∗ +=                    
(9) 
 
for ,17,...,2,1=b 1+= bl  and ,18=b  1=l , where ∗

bα  and ∗
bβ  are respectively the value of bα  and 

bβ  at 30=N . 
  

 
Figure 4. Plots of empirical realizations and predicted from linear regression values of total 

conditional sojourn time for spring data  
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Figure 4 shows the comparison plots of the values of the empirical realizations k
Tθ  of the total 

conditional sojourn time Tθ  and the predicted values k
T*θ  of the total conditional sojourn time ∗

Tθ  
defined by the equation (9) against the number of realizations k  for summer data. It can be 
observed that for both the operation states of 5z  and 13z , the predicted k

T*θ  values are not close to 
the empirical k

Tθ  values. Similar pattern of behaviour were also seen when the values of k
T*θ  for 

other operation states, were considered. These results seem to indicate that linear regression does 
not provide an accurate means of predicting the behaviour of the Stena Baltica ferry operation 
process. 
Since linear regression does not provide an accurate prediction of the total conditional sojourn time 
the multiple regression technique is explored instead. As described earlier, the difference in the 
multiple regressions technique is that in this method, more than one predictor variables are 
considered. It is envisaged that the inclusion of additional predictor variables will lead to increased 
prediction of the total conditional sojourn time. Thus, for multiple regressions, the equation adopted 
is given by 
 

   blb

B

b
bBT εθβαθ +∑+=

=1
                           

(10) 
 
for ,17,...,2,1=b 1+= bl  and ,18=b  1=l  and ,,...,2,1 ν=B  ,18=ν  where Bα , ,1β  ,2β  …, Bβ  
are the unknown regression coefficients and bε  is the random noise. 
Before predicting the subsequent behaviour of Bα , ,1β  ,2β  …, Bβ  values based on varying 
realizations of the operation process need to be evaluated. The unknown regression coefficients Bα , 

,1β  ,2β  …, Bβ  are obtained by minimizing the functions, 
 

   2

11
21 )]([),...,,,( k

lb

B

b
bB

N

k

k
TBB θβαθβββα ∑+∑ −=Δ

==
                        

(11) 
 
for ,17,...,2,1=b 1+= bl  and ,18=b  1=l  and ,,...,2,1 ν=B  ,18=ν  that is the measure of 
divergences between the empirical values k

Tθ  and predicted values 
k

lb

B

b
bB

k
lB

k
l

k
lT θβαθθθθ ∑+=

=1
21 ),...,,(  of the total conditional sojourn time Tθ  defined by (8). 

From the necessary condition, i.e. after finding the first partial derivatives of  ),...,,,( 21 BB βββαΔ  
with respect to Bα , ,1β  ,2β  …, Bβ  and putting them equal to zero, we get the system of equalities 
involving the realizations k

Tθ  of the total conditional sojourn time Tθ  and the realizations k
blθ  of the 

conditional  sojourn times lbθ  defined as follows, 
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for ,17,...,2,1=b 1+= bl  and ,18=b  1=l  and ,,...,2,1 ν=B  18=ν  and .,...,2,1 blnN =  The 
remaining question that needs to be addressed here is that how many realizations marked by N  in 
(12) does it take to obtain a reasonable representation of Bα , ,1β  ,2β  …, Bβ . Thus, by using 
Matlab and putting the values from Tables A1-A4 into the system of equations (10) for 

,,...,2,1 blnN =  the varying Bα , ,1β  ,2β  …, Bβ  values were calculated. 
In our analyses on the values of Bα , ,1β  ,2β  …, Bβ , the observation is that the values of Bα , ,1β  

,2β  …, Bβ  stabilizes at 30=N . It was also observed that Bα , ,1β  ,2β  …, Bβ  vary with respect 
to the number ,B ,,...,2,1 ν=B  ,18=ν  of predictor variables considered changing 1 to 18. The 
argument for this method is that by using more than one predictor variables, better results will be 
obtained. The aim is also to use as minimal number of predictor variables to generate accurate 
results, within as short period of time. Thus, based on the above observations, the predicted total 
conditional sojourn time, Tθ , can then be evaluated using Bα , ,1β  ,2β  …, Bβ  values at 30=N . 
In evaluating Tθ , the formulations in the system of equations (10) lead to 
 

   lb

B

b
bBT θβαθ ∑+=

=

∗∗∗

1
      (13) 

 
for ,17,...,2,1=b 1+= bl  and ,18=b  1=l  and ,,...,2,1 ν=B  ,18=ν  where ,∗

Bα  ,1
∗β  ,2

∗β  ...,  ∗
Bβ  

are respectively the value of Bα , ,1β  ,2β  …, Bβ  at 30=N . 
 

 
Figure 5. Plots of empirical realizations and predicted from multiple regression values of total 

conditional sojourn times k
Tθ  and k

T*θ  for spring data  
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Figure 5 shows the comparison plots of the values of the empirical realizations k
Tθ  of the total 

conditional sojourn time Tθ  and the predicted values k
T*θ  of the total conditional sojourn time ∗

Tθ  
defined by the equation (11) against the number of realizations k  for summer data. It can be seen 
that if only 2 predictor variables 21θ  and 32θ  )2( =B  are used in the equation (11), then the 

predicted values differ much from the empirical values k
T*θ  and are not accurate at all. It was 

discovered that as we increased the number of predictor variables, the accuracy improves, leading to 
the best accuracy at 14=B  predictor variables 21θ , 32θ , …, 1541θ . It was also observed that if 
more than 14 predictor variables were used, the results doesn’t change much, indicating that 14 
predictors variables provides a good representation of the prediction. The analyses also show that 
multiple regression is a better method of predicting the behaviour of the Stena Baltica ferry data 
than the linear regression. 
 
4.4 Accuracy  
 
To further access the accuracy of the predicted data the root mean square error ε  is applied. The 
root mean square error is commonly used to calculate the error and is often used to measure the 
success of numerical prediction. If the value of ε  is 0 it simply means that there is no error to the 
prediction and the prediction is accurate. The greater values of ε  mean that the more inaccurate is 
the prediction. Here, the values of the root mean square errors for both the linear and multiple 
regressions are calculated. The adopted for the root mean square error equation is given by  
 

   ,)(1
1

2∑
=

∗ −=
bln

k

k
T

k
T

bln
θθε      (14) 

 
where )( k

lbT
k

T θθθ ∗∗ =  for linear regression, ),...,,( 21
k

lB
k

l
k
lT

k
T θθθθθ ∗∗ =  for multiple regression and 

42=bln  in the case of spring data. By using the predicted values k
T
∗θ  for both linear and multiple 

regressions and the empirical value of k
Tθ  from the spring data the values of ε  were calculated. It 

was found for spring data that for instance for linear regression with one predictor variable 65θ  that 
≅ε 77.9  and for multiple regression with 14 predictor variables 21θ , 32θ , …, 1541θ  this value was 
≅ε 5.3. These values of the the root mean square errors validate the results obtained from the 

regression analyses, indicating the accuracy of multiple regressions as compared to linear 
regression. 
 
5 SUMMARY 
 

This report has described the use of simple data mining techniques on the Stena Baltica ferry 
operation process statistical data given in Tables A1-A4. The aim is to observe the behaviour of the 
ferry operation process total conditional sojourn time and use it to predict future behaviours. In our 
analyses, we applied the correlation coefficient, linear and multiple regressions and root mean 
square error on spring data. From the results, it can be concluded that multiple regressions 
technique provides an accurate of predicting the ferry total conditional sojourn time. 
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Appendix 
 
Statistical summer data collection of the Stena Baltica ferry operation process   
In the Tables A1-A4 there are given realizations of the conditional sojourn times in particular 
operation states on the basis of a sample composed of 42=n  realizations of the Stena Baltica ferry 
operation process. It is assumed that one voyage from Gdynia to Kalskrone and back to Gdynia of 
the ferry is a single realization of its operation process. The conditional sojourn times in particular 
operation states of each single realization of the ferry operation process are given in separate 
columns. The operation process is very regular in the sense that the operation state changes are from 
the particular state ,bz  ,17,...,2,1=b to the neighboring state ,1+bz  ,17,...,2,1=b  only and from 18z  
to 1z . Therefore the realizations of the conditional sojourn times ,1

j
bb +θ  ,17,...,2,1=b   ,42,...,2,1=j  

are given in the Tables b-th row and the realizations of the conditional sojourn time ,118
jθ  

,17,...,2,1=b  are given in the Tables 18-th row.  
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Appendix 5A 
 
5A. 1. Statistical summer data collection of the Stena Baltica ferry operation process   

In the Tables A1-A4 there are given realizations of the conditional sojourn times in particular 
operation states on the basis of a sample composed of 42=n  realizations of the Stena Baltica ferry 
operation process. It is assumed that one voyage from Gdynia to Kalskrone and back to Gdynia of 
the ferry is a single realization of its operation process. The conditional sojourn times in particular 
operation states of each single realization of the ferry operation process are given in separate 
columns. The operation process is very regular in the sense that the operation state changes are from 
the particular state ,bz  ,17,...,2,1=b to the neighboring state ,1+bz  ,17,...,2,1=b  only and from 18z  
to 1z . Therefore the realizations of the conditional sojourn times ,1

j
bb +θ  ,17,...,2,1=b   ,42,...,2,1=j  

are given in the Tables b-th row and the realizations of the conditional sojourn time ,118
jθ  

,17,...,2,1=b  are given in the Tables 18-th row.  
 

Table A1: Realization of conditional sojourn times in operations states (early spring) 
 

 
 
 

Date/2008 24/25 
Jan 

26/27 
Jan 

27/28 
Jan 

11/12 
Feb 

12/13 
Feb 

26/27 
Feb

 27/28 
Feb 

28/01 
Mar 

01/02 
Mar 

02/03 
Mar 

11/12
Mar 

12/13 
Mar 
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Realization 
number 

k  

1 2 3 4 5 6 7 8 9 10 11 12

 Realization of conditional sojourn times in operations states (in minutes) 
Operation 
state 

bz  

1
1+bbθ  2

1+bbθ  3
1+bbθ  4

1+bbθ 5
1+bbθ 6

1+bbθ 7
1+bbθ 8

1+bbθ 9
1+bbθ  10

1+bbθ  11
1+bbθ 12

1+bbθ

1z  55 52 47 75 60 60 62 43 50 61 65 63 
2z  4 3 3 2 2 2 2 3 3 4 3 2 
3z  28 31 32 35 37 48 33 38 39 43 40 42 
4z  52 46 48 65 53 47 49 62 45 46 51 47 
5z  598 635 539 572 499 507 621 580 507 511 497 496 
6z  35 42 42 44 35 37 34 40 36 33 38 38 
7z  7 9 8 7 7 5 5 5 5 5 8 7 
8z  25 20 23 27 20 31 15 17 16 21 33 34 
9z  75 59 56 40 66 47 26 60 65 25 55 40 

10z  5 3 2 3 2 3 5 6 3 4 4 2 
11z  6 5 4 5 4 5 4 4 4 6 4 5 
12z  25 22 25 25 23 25 20 33 24 24 22 22 
13z  574 427 461 501 498 490 438 561 491 513 496 500 
14z  61 43 43 46 49 52 42 63 46 60 50 50 
15z  33 32 33 36 35 33 35 34 31 33 34 36 
16z  4 4 5 4 4 4 3 4 4 4 4 4 
17z  8 10 6 5 5 6 4 5 8 7 6 7 
18z  26 26 30 20 16 17 16 22 17 8 17 17 

Total k
Tθ  1621 1469 1407 1512 1415 1419 1414 1580 1394 1408 1427 1412 
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Table A2: Realization of conditional sojourn times in operations states (early spring) 
 

 

Date/2008 13/15 
Mar 

15/16 
Mar 

16/17 
Mar 

17/18
Mar 

18/19 
Mar 

19/20 
Mar 

20/21 
Mar 

21/22 
Mar 

22/23 
Mar 

23/24 
Mar 

08/09 
Apr 

09/10
 Apr

 
Realization 
number 
k  

13 14 15 16 17 18 19 20 21 22 23 24 

 Realization of conditional sojourn times in operations states (in minutes) 
Operation 
state 

bz  

13
1+bbθ  14

1+bbθ  15
1+bbθ  16

1+bbθ 17
1+bbθ 18

1+bbθ 19
1+bbθ 20

1+bbθ 21
1+bbθ  22

1+bbθ  23
1+bbθ 24

1+bbθ

1z  45 45 40 20 33 50 43 15 45 57 97 68 
2z  2 2 2 2 2 3 2 2 3 2 2 3 
3z  35 36 36 36 37 35 34 34 36 36 39 36 
4z  51 51 51 49 53 44 51 52 50 53 53 54 
5z  595 495 504 507 498 483 497 504 507 503 500 492 
6z  34 39 38 39 38 35 37 36 37 34 38 40 
7z  7 8 7 10 8 8 7 8 8 8 7 9 
8z  18 16 13 3 15 6 9 25 19 31 30 35 
9z  75 77 60 73 82 118 71 55 30 24 34 41 

10z  5 2 2 2 3 4 2 2 3 3 2 5 
11z  4 4 4 4 4 4 4 4 4 4 4 4 
12z  24 24 25 24 23 22 23 22 22 22 26 22 
13z  522 491 499 488 464 484 498 496 505 595 483 499 
14z  72 50 48 50 48 52 47 53 51 61 61 48 
15z  34 35 35 34 35 34 31 32 33 46 34 34 
16z  5 5 5 4 4 4 5 5 3 4 6 6 
17z  7 7 6 4 4 7 5 5 7 5 4 5 
18z  26 40 21 34 40 35 28 22 8 2 12 13 

Total k
Tθ  1561 1427 1396 1383 1391 1428 1394 1372 1371 1490 1432 1414 
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Table A3: Realization of conditional sojourn times in operations states (early spring) 

Date/2008 10/12
 Apr

 12/13
 Apr

 13/14
 Apr

 14/15
 Apr

 15/16 
Apr 

16/17
 Apr

 18/19
 Apr

 19/20
 Apr

 20/21
 Apr

 05/06 
May 

06/07
May 

07/08 
May 

Realization 
numbr 
k  

25 26 27 28 29 30 31 32 33 34 35 36 

 Realization of conditional sojourn times in operations states (in minutes) 
Operation 
state 

bz  

25
1+bbθ  26

1+bbθ  27
1+bbθ  28

1+bbθ 29
1+bbθ 30

1+bbθ 31
1+bbθ 32

1+bbθ 33
1+bbθ  34

1+bbθ  35
1+bbθ 36

1+bbθ

1z  58 35 45 75 72 62 37 44 46 78 59 65 
2z  3 4 3 3 2 3 6 3 2 2 2 2 
3z  37 36 35 39 37 36 37 36 36 37 36 36 
4z  67 51 50 62 49 48 64 51 53 63 55 53 
5z  573 498 506 576 494 505 576 495 502 574 492 497 
6z  36 37 35 38 38 36 35 39 37 36 38 37 
7z  8 7 5 7 10 9 10 6 7 7 6 6 
8z  25 11 17 31 23 25 23 15 18 19 18 24 
9z  55 55 43 45 52 48 50 58 53 30 30 45 

10z  3 3 3 3 2 3 2 2 3 3 2 2 
11z  4 4 5 5 4 5 4 5 4 5 4 4 
12z  23 22 23 26 23 23 24 23 24 23 28 24 
13z  573 497 531 500 492 496 590 508 520 502 508 508 
14z  58 51 54 47 40 51 47 47 56 47 46 42 
15z  34 35 33 35 35 34 33 34 35 36 35 35 
16z  5 5 6 5 4 6 5 5 4 4 5 4 
17z  4 5 5 5 7 6 5 6 6 10 5 4 
18z  18 20 11 10 16 18 25 18 12 12 17 14 

Total k
Tθ  1584 1376 1410 1512 1400 1414 1573 1395 1418 1488 1386 1402 
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Table A4: Realization of conditional sojourn times in operations states (early spring) 
 

 

Date/2008 08/09 
May 

10/11 
May 

11/12 
May 

12/13 
May 

13/14 
May 

14/15 
May 

      

Realization 
number 
k  

37 38 39 40 41 42       

 Realization of conditional sojourn times in operations states (in minutes) 
Operation 
state 

bz  

37
1+bbθ  38

1+bbθ  39
1+bbθ  40

1+bbθ 41
1+bbθ 42

1+bbθ       

1z  53 25 55 84 71 67       

2z  2 2 3 2 2 2       

3z  38 37 40 36 37 34       

4z  60 49 46 57 53 51       

5z  584 504 505 573 494 495       

6z  38 35 36 39 36 36       

7z  5 7 5 5 6 6       

8z  15 6 40 28 32 28       

9z  70 35 35 47 40 50       

10z  2 2 3 3 3 2       

11z  5 4 5 5 4 4       

12z  25 25 24 23 26 24       

13z  595 506 535 506 503 503       

14z  42 45 47 46 51 43       

15z  34 35 34 34 33 33       

16z  6 4 4 5 5 4       

17z  5 3 4 5 3 5       

18z  20 11 11 10 13 18       

Total k
Tθ  1599 1335 1432 1508 1412 1405       
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ABSTRACT 
 

In recent years the intensive efforts in developing and producing electronic devices have more and more 
critical inference in many areas of human activity. Engineering is one of the areas which have been also 
importantly affected. The paper deals with dependability namely reliability analysis procedure of a highly 
reliable item. The data on manufacturing and operating of a few hundred thousands pieces of electronic item 
are available and they are statistically a very important collection/set. However, concerning some items the 
manufacturing procedure was not checked and controlled accurately. The procedure described in the paper is 
based on the thorough data analysis aiming at the operating and manufacturing of these electronic elements. 
The results indicate some behaviour differences between correctly and incorrectly made elements. It was 
proved by the analysis that dependability and safety of these elements was affected to a certain degree. 
Although there is a quite big set of data the issue regarding the statistical comparability is very important. 

 
 
 
1  INTRODUCTION 
 

The application of electronic elements introduces a number of advantages as well as 
disadvantages. Let us start with operating process itself – the operating is more ecological, smoother 
and cheaper. Also the area of safety, both passive and active, is optimised. On the other hand the 
complexity of a system is getting higher as well as its sensitivity to previously not perceived factors. 
The electronic elements are also applied into so called service and comfort systems. However new 
the technology would be, all the elements are subject to certain factors set by a design, 
manufacturing, operating and environment in which they are used. Besides performance and utility 
properties we are supposed to follow dependability as well. Regarding electronic elements they are 
highly reliable and in terms of dependability measures they are at the highest level. If the elements 
are well manufactured and their construction and software equipment meets the required 
dependability level, we are usually satisfied and there is no reason to act otherwise. If occasional 
fluctuations in the dependability level do not limit the function or safety of a system or its operating, 
the problem of unreliability of electronic elements in systems is not so serious. The real problem is 
not meeting the requirements and errors. 
In the paper we are going to address reliability assessment of a highly reliable electronic item. In 
this paper the evaluated application is perceived as an item produced for systems´ specific 
use/utilization. Item is implemented in a system in order to control one of the step functions of the 
system. The manufacturer has had long term experience of item manufacturing. This item is also 
widely introduced into the market where it successfully meets the parameters within technical 
applications. The introduced item has been applied in the systems´ environment many times and no 
major problems have been detected regarding its function.  



D. Valis, Z. Vintr, M. Koucky ‐ CONTRIBUTION TO RELIABILITY ANALYSIS OF HIGHLY RELIABLE ITEMS 

 
RT&A # 2(17)  

(Vol.1) 2010, June  
 

 

240 

As we know from previous publications the item is initialised by start power. Unfortunately non-
intentional causes resulted in non-compliance with the manufacturing process during development 
and manufacturing a new item. While manufacturing the item a relatively minor shortening of 
program protocol took place, thereby shortening the initialisation time. This situation resulted in the 
production of many tens of thousands of incorrectly manufactured items where the initialisation 
time was shortened by the program. The non-compliance with the manufacturing process was 
detected only by accident and that was after some time. However, most of the items manufactured 
this way have been mounted in systems and they have been in operation. 
The non-compliance with the manufacturing process itself, thereby shortening the programming 
time might not be a serious problem. More related circumstances might be the real problem. The 
first one is the fact that the items have been mounted in systems and they have been in operation. 
Another quite serious problem is the fact that a item function failure can result in failure occurrence 
on the device which is supposed to perform a system’s step function. If a system step function is 
just being used, its interruption-failure might lead to a critical accident with serious consequences. 
In case this type failure occurs, it affects significantly system’s dependability. Moreover, it breaks 
the confidence in the step function which leads to the lack of confidence in a system as a whole.  
Resulting from the arguments mentioned above the producer decided to solve the problem 
immediately. The producer wanted to find out if the errors occurring when manufacturing items 
have a possible effect upon operational dependability – reliability. Basically a few solutions could 
have been taken into account at that moment. Finally two of the solutions were chosen to be 
accomplished.  
One of the options is to carry out a one-side interval calculation of a item reliability measure at a 
required confidence level. This intention is easy to be fulfilled since the data on the item operation 
were carefully and systematically collected. The aim of the paper is to describe an estimation 
procedure of a reliability measure and assess the validation of the statistical hypothesis testing based 
on the available data. 
Suggesting and carrying out an accelerated reliability test of item is another option. However, this 
method is not included in this paper and represents a separate methodology. All terms mentioned 
here are in accordance with the (IEC 60050/191). 
 
2  FIELD DATA ASSESSMENT PROCEDURE 
 

The procedure follows widely known and basic approaches and terminology (IEC 
60050/191). The producer provided data on the item operation over a complete period. Regarding 
the nature of the analysis the following facts were agreed on:  

1) The aim of the analysis was to calculate the one-side item reliability interval. The item 
“programmed incorrectly” was assessed first, and the item “programmed correctly” was 
assessed as the second. The calculation of a reliability one-side interval determined for each 
set separately was the outcome of the analysis. 

2) The next step was to compare both items sets and decide whether the „incorrect 
programming“ can/cannot affect the item’s reliability. A one-side interval was determined at 
a required confidence level and it specifies a minimal reliability level of a item set obtained 
by a calculation. 

3) The operation time of the item started the moment a production range was produced plus 
two weeks (the assumption that it will be delivered to the customer, mounting into the 
system, and physical start of the operation). 

4) The real operation time equivalent was determined by recommending the standards and is 
based on a calendar time (GS 95003-1, GS 95003, GS 95003-4). The real operation time is 
believed to start at the moment as stated in point 3). The transforming coefficient value 
following the sources/standards mentioned above is: dormant time versus operation time ≈ 
24,836 : 1. 



D. Valis, Z. Vintr, M. Koucky ‐ CONTRIBUTION TO RELIABILITY ANALYSIS OF HIGHLY RELIABLE ITEMS 

 
RT&A # 2(17)  

(Vol.1) 2010, June  
 

 

241 

5) The standard IEC 60605-4 “Equipment reliability testing - Part 4: Statistical procedures for 
exponential distribution - Point estimates, confidence intervals, prediction intervals and 
tolerance intervals” has been used for calculating the reliability measure one-side interval at 
a required confidence level. 

6) The reliability confidence interval was set according to common roles. One of the very 
accurate levels which were decided to be used is 95%. This level was used for following 
calculations. 

7) End of observation, censoring by time is given by the date of 31st December 2008. This was 
negotiated with the item producer. 

8) The hour [h] is a reliability measure unit.  
 
Since the standard IEC 60605-4 deals with a few possible types of the assessed sets, it is necessary 
to determine what type it is referred to. The operation profile and the agreement that the analysis 
assessment will be finished on a certain day indicate that this is a case of a specific field test 
finished by time without replacing the item. This assumption resulted in the following solution 
taking into account the standard mentioned above (IEC 60605-4). 
Following the standard (IEC 60605-4) recommendation a lower limit of mean time to failure at the 
required confidence level was calculated. In order to estimate one-side interval of a lower level of 
mean time to failure we used the following equation (see also Holub 1992, Lipson & Sheth 1973, 
Neson 1982, Kapur & Lambertson 1977): 

   2
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accumulated real operation time of all items of i-th production range of either „F“ – „incorrectly“ 
programmed sets or „C“ – „correctly“ programmed sets, where the n is number of the production 
ranges. The interval is the period in which they are put into operation which lasts up to the day 
when the temporary observation is finished; 2

,ναχ  -chi square for a given number of degrees of 
freedom ν; „α“ – confidence level agreed on 95%. 
 
Since it is a one side censored set (it is censored by the agreed date when the observation is to be 
finished; this date is the last possible day when the operation record is to be made), the number of 
degrees of freedom ν to determine chi square is going to be calculated using the standard 
recommendationОшибка! Источник ссылки не найден. following the formula: 
 

   ν = 2rF/C + 1   (2) 
 
where: r is a number of events (failures) in a given group of sets. 
 
Based on the assumptions and the calculation which have been made before, the reliability measure 
values for correctly and incorrectly programmed items were found. These values were calculated at 
the required confidence level. By comparing these values we were able to determine whether the 
error affects the item reliability during a manufacturing process. 
However, concerning the field data we face a theoretical problem. The data set is apparently 
different concerning a digit place in terms of the operation time of the item sets. It means that 
correctly manufactured items obviously operate for a shorter time than the ones manufactured 
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incorrectly. This situation can affect a calculation procedure as well as a comparison of the results. 
Taking into account this situation it is necessary to test the field data using the statistical test which 
is supposed to prove their comparability. The procedures proving the statistical equivalence of the 
evaluated sets is part of another contribution. The objective of the statistical analyses is to compare 
two sets of data both of which have non-similar size. 
 
2.1 Example of the application of above mentioned procedure 
 

Here will be presented restricted part of the above mentioned procedure. The procedure given 
in this example is the same as used in the whole analysis. The difference is that no information 
about portion of data or other relevant indicators will be provided. 
Data were provided in following form: 
Number of production range:     1. 
Number of items produced in this range:   4 200 
Date of production:      16.1. 2006 
Number of failed items in this range:    1 
Date of failure:      12.10. 2006 
 
Ad section 2, point 3), 4), 7), 8) 
Number of days in operation:     43 days 
Number of hours in operation for 4 199 items:  1030 h 
For 1 item:       238 h 
Total hours in operation for all items from this range: 4 325 710 h 
 
Following the calculation (1) and (2) it is: 
ν = 2rF/C + 1 = 2.1 + 1 = 3 
and 
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,
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It means that lover limit of one side confidence interval for MTTF of the item is approximately 
1.106 h. 
The assessment of the other sets which represent the electronic items made (both correctly and 
incorrectly manufactured) is carried out in the same way. Finally the decision about the failure rate 
comparability is performed. From the reason of keeping the industrial confidence of the data and 
their assessment we can not present full range of the calculations made. We can only present that 
the difference between correctly and incorrectly manufactured items is noticeable. 
 
 
 
 
3  RISK ANALYSIS RESULTING FROM THE FAILURE OCCURRENCE 
 

In this phase of observing the object we are talking about partially predictive risk assessment. 
We could choose fully theoretical way of assessment usually made during design. However we do 
have the field data are available so we may also use the process approach. Following one of the 
approaches we would focus on individual risk contributors which would be thoroughly examined. 
The classic probability methods might be used for determining the event occurrence probability. 
The expert assessment based on the defined scales would be used for analysing the consequences. 
Next issue which might be used is recommendation of the standards dealing with such kind of 
items. One very suitable method is mentioned in the standard SAE J 1739:2002. 
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Usually we do not count on other factors when dealing with theoretical risk analysis. However, 
some special characteristics still exist and that is the reason why one of the possible approaches 
where another factor occurs is described below. However, further verification and validation of the 
obtained result will pose a problem while assessing the risk theoretically. In our case, when 
undesired event occurrence probability might be recorded when observing the field data, the result 
will be more realistic and consequent verification of the result will be also possible. Such event 
occurrence information is not a prediction then, but it is estimation based on the real information. 
Consequence decisions resulting from the occurred event might be regarded as a prediction in this 
case. Consequences description options are stated below.  
Using either fully standardised approach, namely industrial standards or software support can be 
another option when analysing the risk. An event occurrence rate or its criticality may be obtained 
using well known dependability analysis methods, e.g. FMECA, PHA or OSHA. The total risk is 
usually based on these two contributors we often work with in industry practice. Concerning 
software support when analysing the risk it is possible to use widely available tools, e.g. Risk 
Spectrum based on the FTA method supported by the ETA method, or the tools by Relia Soft or 
Item Software – Item QRAS which uses both methods individually but basically leads to the same 
result.  
Using so called soft methods when analysing the risk and dependability is another possibility. It is 
namely about non-stochastic methods which are based mostly on the deterministic approach and 
iteration principles. Also the probability plays an important role but most approaches of these 
methods are based just on empiricism and practice. The methods would be used namely for 
analysing the event consequences and also the event occurrence but on a limited scale. The 
determination is not often unambiguous and also it is not easy to decide what defined scale the 
consequences belong to. We would highly recommend fuzzy logic which allows us to work very 
well with qualitative characteristics of some events, and which is able to quantify them. If we were 
to define individual process states in system operation and they would represent the periods in 
which the system is run, we would be able to determine to what extent the event belongs to a 
defined state while an event occurs. That is how we would cover the failure criticality level 
regarding the defined states set and the time vector in which a system might occur during its 
operation/technical life. Unfortunately, in this paper there is no space for presentation and 
development of this approach.  
Generally speaking we can use standardized criteria by which every failure is evaluated following 
the previously defined scales. Using the point estimations the Risk Priority Number is added to each 
failure mode. The RPN is then used for downward arrangement of the assessed failures. The 
failures with a risk number going above the defined scale undergo the corrective actions which are 
supposed to reduce the risk number sufficiently. 
 
 
 
3.1 Evaluated factors 
 

The existing model described in standards (e.g. IEC 60812:2006 and SAE J 1739) considers 
two evaluated factors, Probability – P and Severity – S, or three evaluated factors, Probability, 
Detection and Failure Consequences. These factors result from a fully quantitative assessment 
where the risk is expressed by a conjunction of probability and consequences 

   SPR *=    (3) 
The Detection Factor – D in a full quantitative assessment would decrease the probability that a 
failure will not be detected during design/manufacturing process (see e.g. 0), thus  

   SDPR **=    (4) 
whereas its value would belong to the interval <0;1> (or <0;100%>). 
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As we deal with an electronic item which might be installed inside systems, the SAE standard is 
very suitable to be applied. 
 
3.2 Scales for assessment 
 

In the standards (e.g. IEC 60812:2006 or SAE J 1739) for example there are scales for 
assessment for all three criteria which are used in industry. The scales are put in the form of tables 
with verbal explanation of every level at the scale. These are severity, occurrence probability and 
detection scales. Sometimes a consequence scale in relation either to the customer or manufacturing 
process or operation is completed. These scales are going to be used in the next procedure. Other 
existing and used scales are for example those which are applied in a part of software, Item Toolkit 
or Reliasoft XFMEA. 
 
3.3 Risk Priority Number RPN 
 

The Risk Priority Number is a crucial criterion for detecting weak points in a system, and 
corrective actions which decrease the risk resulting from the device failure are convenient to be 
applied to these weak points. The magnitude of the Risk Priority Number RPN is given by 
conjunction of point estimations of probability, detection and consequences. Since the Risk Priority 
Number is given by conjunction of point estimations, it is a case of a dimensionless quantity as in 
equation (4). SDPRPN **=  
The values interval depends on the selection of assessment scales. Concerning the scales put in the 
(see IEC 60605-4 or MIL-STD-1629a) the range of the Risk Priority Number is 1 up to 1000 (=103) 
(EN 60812:2006, MIL-STD-1629a, SAE J 1739). The application of corrective actions involves all 
the events of the Risk Priority Number value exceeding 125. In our case we can talk namely about: 
The effort to minimize an event occurrence - this was achieved especially by detecting the 
manufacturing disagreement and correcting it. This act should provide reliable item operation at a 
higher level; 
The effort to minimize consequences severity of a failure which might occur – this is provided by 
using standard security measures which are not expected to modify; 
The effort to improve detection of a possible failure – this is provided by a sufficient quality 
manufacturing. 
The consequence of an event occurrence is in the range “9” to “10” according to the standard. The 
frequency according to the same standard is “low” and detection is “moderate” at maximum using 
the same source. Therefore we need to carry out some design change to improve the item´s RPN. 
From this point of view is the service of such item very dangerous and may cause inadvertent 
situation with very sad consequences. 
 
 
Example of the assessment: 
Using the approaches above and the recommendations in the standards we may get following values 
for the RPN calculation. 
The occurrence might be “2” at minimum according to the rating. 
The severity might be “9” at minimum according to the rating. 
The detection ability might be “5” at minimum according to the rating. 
Therefore, the calculation of the RPN is: 

905*9*2** === SDPRPN  
This is the lowest level of the RPN which might be got. 
As said before, as we see that one of the values is “9”, we have to apply countermeasures. 
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3.4 Criticality matrix 
 

In some applications where no detection is assessed apart from failure probability and its 
consequences it is possible to use a so-called criticality matrix (sometimes it is designated as a risk 
matrix). The measures used in the matrix correspond with those ones which have been discussed 
above. 
Contrary to an exact value calculation as it takes place when assessing by the RPN, an event 
positioning in the matrix is a crucial one. The example of criticality matrix which could be used for 
risk assessment is taken from the standard (EN 60812:2006) and is put in Table 1. 
To place a failure mode into a certain matrix field, the scales categories for consequence assessment 
are to be defined (in Table it is put as Severity Levels and Occurrence Frequency of Failure Effect). 
The weak point of such scales is the fact that they can be different considering more application 
fields, and they are defined mostly by an analyst/decision maker. The following scale used for 
assessing the probability put in the standard serves as an example. 
Criticality number 1 or E, Improbable, probability of occurrence: 0 ≤ Pi < 0,001; 
Criticality number 2 or D, Remote, probability of occurrence: 0,001 ≤ Pi < 0,01; 
Criticality number 3 or C, Occasional, probability of occurrence: 0,01 ≤ Pi < 0,1; 
Criticality number 4 or B, Probable, probability of occurrence: 0,1 ≤ Pi < 0,2; 
Criticality number 5 or A, Frequent, probability of occurrence: Pi ≥ 0,2. 
Regarding the criteria described above we can talk about the following intervals distribution of RPN 
components: 
The Severity Component could range over the values 5 – 10; 
The Probability Occurrence Component could range over the values 1 – 2; 
The Detection Component could range over the values 1 – 3.  
Adequate corrective measures for decreasing all the values of the obtained RPN components were 
taken. 
 

Table 1. The example of a risk criticality matrix 
Severity levels 

1 2 3 4 
Frequency of 
occurrence of 
failure effect Insignificant Marginal Critical Catastrophic 
5. Frequent Undesirable Intolerable Intolerable Intolerable 

4. Probable Tolerable Undesirable Intolerable Intolerable 

3. Occasional Tolerable Undesirable Undesirable Intolerable 

2. Remote Negligible Tolerable Undesirable Undesirable 

1. Improbable Negligible Negligible Tolerable Tolerable 

4  CONCLUCION 
 

The procedure as described above was used to calculate reliability of the single sets which 
served as correctly and incorrectly programmed items. Following the obtained results a possible 
effect of a manufacturing error upon the items reliability was estimated. Following the results it is 
obvious that manufacturing error could affect items reliability in some way. Both sets are from the 
statistical point of view slightly different, which is an essential piece of information. This fact 
should be referred to when carrying out statistical data evaluation using the introduced tools. 
 
5  ACKNOWLEDGEMENTS 
 

This paper was supported by the GA Czech Republic project number 101/08/P020 
„Contribution to Risk Analysis of Technical Sets and Equipment”, and by the Ministry of 



D. Valis, Z. Vintr, M. Koucky ‐ CONTRIBUTION TO RELIABILITY ANALYSIS OF HIGHLY RELIABLE ITEMS 

 
RT&A # 2(17)  

(Vol.1) 2010, June  
 

 

246 

Education, Czech Republic project number 1M06047 „The Centre for Production Quality and 
Dependability“. 

REFERENCES 

BMW Group Standard; GS 95003-1 Electrical/Electronic Assemblies in Motor Vehicles – General Information. 
BMW Group Standard GS 95003 (Supplement 1) Electrical/Electronic Assemblies in Motor Vehicles – Tests. 
BMW Group Standard GS 95003-4 Electrical/Electronic Assemblies in Motor Vehicles - Climatic Requirements. 
IEC 600 50 (191) (IEV) 1990. Dependability and quality of services.  
IEC 60605-4 2004. Equipment reliability testing - Part 4: Statistical procedures for exponential distribution - Point 

estimates, confidence intervals, prediction intervals and tolerance intervals. 
EN 60812 2006. Analysis techniques for system reliability - Procedure for failure mode and effects analysis (FMEA). 
MIL-STD-1629a 1998. Procedures for performing a failure mode, effects and criticality analysis. 
SAE J 1739 2006. Potential Failure Mode and Effects Analysis in Design, Manufacturing and Assembly and for 

Machinery (Design FMEA, Process FMEA and Machinery FMEA). 
Holub, R. 1992. Dependability tests (stochastic methods). Brno: Military Academy, 1992. 
Lipson, CH., SHETH, N.J. 1973. Statistical Design and Analysis of Engineering Experiments; New York: Mc Graw 

Hill. 
Neson, V. 1982. Applied Life Date Analysis, New York: John Wiley and Sons. 
Kapur, K.C.; Lamberson, L.R. 1977. Reliability in Engineering Design; New York: John Wiley & Sons. 
 



 

 

 


