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SENSITIVITY ANALYSIS  OF OPTIMAL REDUNDANCY SOLUTIONS 
 

Igor Ushakov 
 

San Diego, California, USA 
e-mail: igusha22@gmail.com 

 
 
Solving practical optimal redundancy problems, one can ponder: what is the sense of 

optimizing if input data are taken “from the ceiling”? Indeed, statistical data are so unreliable 
(especially in reliability problems) that such doubts have a very good ground.  

Not found any sources after searching the answer for this question, the author decided to 
make some investigation of optimal solutions sensitivityunder influence of data scattering. 

A simple series system of six units has been considered (see Figure 1). For reliability 
increasing, one uses a loaded redundancy, i.e. if  a main unit k has xk redundant units, its reliability 
is found from 
 

1)1(1)(  kx
kkk pxP  

 
where pk is a probability of failure free operation (PFFO) of a single unit k. And the total cost of xk 
redundant units is equal to ck·xk, where ck is the cost of a single unit of type k.  
 

 
 

Figure 1. Series system underwent analysis 
 
Units’ parameters are presented in Table 1. 
 

Table 1. Input data 
 

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 
pk 0.8 0.8 0.8 0.9 0.9 0.9 
ck 5 5 5 1 1 1 

 
Assumed that units are mutually independent, i.e. system’s reliability is defined as 
 





61

)()61,(
k

kkkSystem xPkxP
 

 
And the total system’s redundant units cost is: 
 





61

)61,(
k

kkkSystem xckxC
 

 
Below presented solutions of both problems of optimal redundancy: direct: 

 *)61,()61,(min
1

PkxPkxC kk
xk



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and inverse: 
 *)61,()61,(max

1
CkxCkxP kk

xk




 

For finding the optimal solutions, the Steepest Descent Method was applied.  For this “base” 
system the solutions for several sets of parameters are presented for Direct Problem in Table 2 and 
for Inverse Problem in Table 3. (Numbers are given with high accuracy only for demonstration 
purposes; in practice, one has to use only significant positions after a row of nines.) 

 
Table 2. Solution for Direct problem 

 
P* x1 x2 x3 x4 x5 x6 Achieved P System C 
0.95 3 3 3 3 2 2 0.9559520 52 
0.99 4 4 3 3 3 3 0.991187 69 
0.995 5 4 4 4 3 3 0.995229 75 
0.999 6 5 5 4 4 4 0.999218 93 

 
Table 3. Solution for Inverse problem 
 
C* x1 x2 x3 x4 x5 x6 Achieved C System P 
50 3 3 2 2 2 2 46 0.931676 
75 4 4 3 3 3 3 75 0.995229 
100 5 4 4 4 3 3 99.5 0.999602 

 
The questions of interest are: how optimal solution will change if input data are changed? 

Two types of experiments have been performed: in the first series of experiments, different unit’s 
costs with fixed probabilities were considered  (see Figure 2) and in another one different unit’s 
probabilities with fixed costs were considered  (see Figure 3). 

 

 
 

Figure 2. Input data for the first series of experiments 
 
 

 
 

Figure 3. Input data for the second series of experiments 
 

The results of calculations are as follows: 
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Table 4. Values of Probabilities of Failure-free operations  
 
 0.999 0.995 0.99 0.95 
Initial 0.999218 0.99566 0.9922 0.955952 
Various C 0.998996 0.99566 0.9922 0.955952 
Various P 0.999218 0.99566 0.9922 0.955952 
 

In conclusion , there was performed a Monte Carlo simulation where parameter of the PFFO 
and cost were changed simultaneously. In this case, parameters of probabilities of each unit were 
calculated (in Excel) as: 

 
pk=0.8pk+0.4pk*RAND() 
and 
ck= 0.8ck+0.4*RAND(), 

 
i.e. considered a random variation of the values within ±20% limits.. 

 
The final results for this case are presented in Tables 5 – 8. 

 
Table 5. Results of Monte Carlo simulations for P*=0.999 
 
 
No. 

P* = 0.999 
P C x1 x2 x3 x4 x5 x6 

1 0.999352 100 6 6 6 4 4 4 
2 0.999218 102 6 6 6 5 4 4 
3 0.999313 102 6 6 6 4 4 4 
4 0.999212 97 5 6 6 4 4 4 
5 0.999182 102 6 6 6 4 4 4 
6 0.999171 97 6 6 5 4 4 4 
7 0.999171 103 6 6 6 4 5 4 
8 0.999596 100 6 6 6 4 4 4 
9 0.999526 100 6 6 6 4 4 4 
10 0.999399 100 6 6 6 4 4 4 
 
Table 6. Results of Monte Carlo simulations for P*=0.995 
 
 
No. 

P* = 0.995 
P C x1 x2 x3 x4 x5 x6 

1 0.995478 84 5 5 5 3 3 3 
2 0.996755 85 5 4 4 4 3 3 
3 0.995026 85 5 4 5 4 3 3 
4 0.996777 79 4 5 5 3 3 3 
5 0.996777 84 5 5 5 3 3 3 
6 0.995525 79 5 5 4 3 3 3 
7 0.996732 85 5 5 5 3 4 3 
8 0.996732 85 5 5 5 3 4 3 
9 0.995645 84 5 5 5 3 3 3 
10 0.99567 84 5 5 5 3 3 3 
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Table 7. Results of Monte Carlo simulations for P*=0.99 
 
 
No. 

P* = 0.99 
P C x1 x2 x3 x4 x5 x6 

1 0.990147 69 4 4 4 3 3 3 
2 0.990965 70 4 4 4 4 3 3 
3 0.990229 70 4 4 4 4 3 3 
4 0.99185 69 4 4 4 3 3 3 
5 0.990389 71 4 4 4 4 4 3 
6 0.99107 69 4 4 4 3 3 3 
7 0.992185 74 5 4 4 3 3 3 
8 0.990422 71 4 4 4 3 4 3 
9 0.990893 71 5 4 4 3 3 3 
10 0.990466 69 4 4 4 3 3 3 

 
Table 7. Results of Monte Carlo simulations for P*=0.95 
 
 
No. 

P* = 0.95 
P C x1 x2 x3 x4 x5 x6 

1 0.950045 52 3 3 3 3 2 2 
2 0.955842 52 3 3 3 3 2 2 
3 0.951936 52 3 3 3 3 2 2 
4 0.951711 54 3 3 3 2 2 2 
5 0.957883 50 3 3 3 3 3 2 
6 0.951908 51 3 3 3 2 2 2 
7 0.962227 51 3 3 3 2 2 2 
8 0.962227 51 3 3 3 3 3 2 
9 0.95261 50 3 3 3 3 2 3 
10 0.950393 52 3 3 3 3 2 2 

 
Analysis of data presented in Tables 5-8 shows relatively significant difference in numerical 

results (see Figure 4). 
 

 
 

Figure 4. Deviation of maximum and minimum values of probability  
of failure-free operation in results of Monte Carlo simulation 
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However, the problem is not in coincidence of final values of PFFO or cost. The problem is: 
how change of parameters influences on the optimal values of x1, x2, … .  

However, one can observe that even with a system of six units (redundant groups) a visual 
analysis of sets (x1, x2, …, x6)  is extremely difficult and, at the same time, deductions based on 
some averages or deviations of various xk  are almost useless.  

The author was forced to invent some kind of a special presentation of sets of xk’s. Since 
there is no official name for such kind of graphical presentation, it is called “multiple polygons” (in 
Russian “мульти-звездограммы»). On such multiple polygon there are numbers of “rays” 
corresponding to the number of redundant of units (groups). Each ray has several levels 
corecponded to the number of calculated redundant units for considered case (see Figure 5). 

 
 

Figure 5. Multiple polygon axes with numbered levels 
 

 These multiple polygons give a perfect visualization of “close-to-optimal” solutions and 
characterize observed deviation of particular solutions. Such multiple polygons for considered 
example are given in Figure 6. (Here bold lines re used for connection xk obtained as optimal 
solution for units with parameters given in Table 1.) 

 
P* = 0.999 P* = 0.999 P* = 0.999 P* = 0.999 

    
 

Figure 6. Deviations of optimal solutions for randomly variation of parameters   
from  the optimal solution obtained for parameters given in Table 1 

 
Thus, one can notice that input parameters variation may influence enough significantly 

enough on probability of failure-free operation and the total system cost from run to run  of Monte 
Carlo simulation though optimal solution remains more or less stable.  
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ABSTRACT 
 
The paper offers the method for calculation of reliability parameters and functional safety of 

technical systems, differing from known methods by an opportunity of obtaining strict formula 
expressions of stationary parameters directly from a system state graph. The method is suitable for 
solution of both Markov, and semi-Markov models of reliability and safety. In addition the paper 
presents some examples of determining safety and availability factors, as well as time parameters of 
safety and reliability of the two-channel safety related device.  

 
Keywords: reliability, functional safety, parameters of reliability and safety, Markov and 

semi-Markov models of reliability, loop weight, graph breakdown weight.  
 
1. Introduction 
 
When solving problems of reliability and functional safety of technical systems 

mathematical tools of Markov and semi-Markov random processes are widely applied. 
Development and solution of Markov and semi-Markov reliability models by traditional methods in 
general terms is brought into making up a system of the homogeneous differential equations 
describing behavior of the investigated system, their operational transformation, solving system of 
equations in the operational form, inverse transformation and finding the required reliability 
parameters. Such a way is always fraught with mathematical difficulties, especially when the 
number of equations exceeds ten and is problematic to execute correctly inverse transformations of 
solutions of system equations obtained in the operational form. Therefore in the majority research 
people and, especially practical workers, are compelled to introduce a lot of assumptions which 
radically simplify solution of reliability models and allow obtaining reliability parameters of 
considered systems in the analytical or numerical form. However these results are already far from 
true and there is a natural question: whether it is necessary to aspire to realization of the traditional 
plan of construction and solving reliability models of systems.  

In many problems of reliability calculation it is enough to be limited by stationary reliability 
and availability factors (parameters). In these cases it is necessary to switch over from the model of 
differential equations to the model of algebraic equations describing system behavior in the steady-
state mode, to solve them, find stationary probabilities of staying system in each of possible states. 
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Then based on system failure criteria with the help of the specified probabilities probabilistic 
system availability and unavailability should be found. Thereafter stationary parameters of system 
non-failure operation and maintainability should be defined. Such problems are not connected with 
necessity of operational calculus application for development and solution of reliability models. The 
required stationary reliability parameters are calculated sufficiently strictly. However, alongside 
with the fact that the given plan does not provide definition of a full list of reliability parameters, 
there is also the unsolved problem of the big dimension of algebraic equations’ model. Therefore 
even at rather small number of states it is not possible in many cases to analytically describe 
required reliability parameters of the system. This circumstance does not depend on a degree of 
system graph model connectivity. Dimensions of a system matrixes for algebraic equations 
representing reliability of investigated technical system model do not vary both with weak 
connectivity and with strong connectivity.  

At the same time, graph models of complex systems’ reliability, as a rule, are poorly 
connected. This circumstance has stimulated us to switch from the traditional plan of solving linear 
algebraic equations by Kramer's rule to the scheme of breakdown initial graph to the constituent sub 
graphs which are not containing single out nodes (for example, disabled states of model or states 
which are being on the way from one node to another, or an initial system state). At application of 
such a scheme (plan) it has turned out sufficient for solving the system of algebraic equations. 
Moreover it has turned out sufficient to be limited by finding ways and loops on the graph, what is 
now well formalized. 

 
2. Problem definition  
Stationary parameters of technical systems’ reliability are factors of availability ГK and 

unavailability ГK , mean time to failure СРT , dispersion of  mean time to failure СРD , an average 
time between failures T , mean idle time average of a ПРT . As functional dependence 

)T(T, fK ПРГ   is known methods of calculation of these three parameters are expedient for 
considering simultaneously. Similarly it is necessary to simultaneously consider methods for 
calculation of parameters СРT  and СРD . 

Stationary parameters of functional safety of safety related  systems is a factor of safety БK
, mean time to dangerous failure ОПT , dispersion of time to dangerous failure ОПD , mean time to 
protective failure ЗT , dispersion of time to protective failure ЗD , mean time to dangerous 
(hazardous)  failure ПT .  

Methods of calculation of corresponding groups of reliability and functional safety 
parameters are identical. Difference is only in the separation of initial system states on efficient and 
disabled (concerning reliability) subsets and nonhazardous, hazardous and protective subsets of 
states (relating to functional safety). So in the study [1] the following formula of calculation of 
system availability factor which behavior is described by semi-Markov random process is 
determined  

                                                S);,(
Pi










Р

Sj
jj

Si
i

Г SSji
TP

T
K Р ,                                           (1) 

where РS  is a subset of efficient system’ states , S  is full set of system states; iP  is a final 
probability of staying Markov chain in i-th state; iT  is an expectancy of unconditional time of 
system staying in i-th  state. 

By turn, formulas of the calculation of mean time to failure (time between failures) and the 
average idle time of the system which behavior is described by semi-Markov random process, and 
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determined according to the study [2] are the following: 
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Si Sj
iji

Si
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T0 ;                                                                   (2) 

 



 



Sj Si
jij

Sj
jj

ПР

Р

Р

pP

TP
T ,                                                             (3) 

where it is implied, that transition from a subset РS  into a subset РS  can be carried out not from 
any working state capacity, but only from boundary conditions (subset) S . Similarly transition 
from РS  into РS  can be carried out from a subset belonging to the subset of boundary disabled 
states S . 

Practical methods for calculation of functional safety parameters of recoverable safety 
related systems nowadays are poorly developed. 

The purpose of this paper consists in development of practical methods of calculation listed 
above stationary parameters of reliability and functional safety of complex technical systems. It is a 
question of formalization of calculations on the basis of the graph theory. 

 
3. Calculation of availability and safety factors 
 
3.1. Topological concepts: 
 
 Path – chain of consistently connected unidirectional arcs starting from a state i and 

ending in a state j, path weight rj
Sjri

ir
ij ppl 




,,

, where irp  - probability of one step transition for i –

th state in a state r; 
 
 Closed loop is a chain of consistently connected unidirectional arcs in which the output of 

final vertex in the chain is connected to starting vertex of the chain; 
 Weight of  j – th loop ji

Sji
ijj ppC 




,

; self-loop is a special case of the closed loop 

(entering and leaving arcs in self-loop merge into one arch), weight of a self-loop jjj pC  ; 
 Graph decomposition - a graph part which is not containing assigned vertices and arcs 

connected with them; weight of a decomposition iG is calculated taking into account  the 
exclusion from the graph a vertex i and the arcs connected with it; the weight of a decomposition 

i
SР

G  is calculated taking into account  the additional exclusion from the graph the vertices of a set 

of disabled states РS  and the arcs connected with them; the weight of a decomposition i
kG  is 

calculated taking into account  the exclusion from the graph the vertex i, as well as the vertices 
located on  k-th path from starting vertex into a vertex i and arcs connected with them;  

 The decomposition weight (determinant) is calculated under Mason’s formula  
 

           ...1   jr
irj

ij
rj

r
j

j CCCCCCG                                           (4) 

Application of Mason’s formula allows to considerably reducing labor input of calculations 
of minors on the rarefied matrixes, and matrix G, as a rule, is rarefied. 
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3.2. Topological formulas of calculation of availability and functional safety factors  
 
The statement 1. If system reliability is modeled by means of the graph states and semi-

Markov random process on this set of states, specified by transition probability matrix and a vector 
of unconditional expectances of staying time in each graph state the factor of system availability in 
the topological form is equal: 

 

       ,РSi













Sj
j

j

i
i

Г TG

TG
K                                                                  (5) 

 
where iG - decomposition weight of the graph without a state i, iT  - expectance of unconditional 
staying time  of the system in  states is . 

 
Proof.  The stationary probability of enclosed homogeneous Markov chain staying in a state

i , is equal 




 n

j
j

i
i

D

D
P

1

, 

where n - number of states in initial set of states of the system S 
 

1          2  …   n 
1      1- 11p   - 12p  … - np1  

                                            D     2     - 21p    1- 22p  …- np2  
……………………. 

   n       - 1np    - 2np   … 1- nnp  
 

 
and )( ji DD - a minor obtained by deletion of  i (j) line and of  i (j) column in matrix D . In turn, 
both the determinant D  and minors )( ji DD can be strictly or with acceptable accuracy calculated 
under Mason’s formula (4). Hence, the stationary probability of enclosed homogeneous Markov 
chain staying in a state i , is equal to the following  

 

 
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j
j

i
i G
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G

G

D

DP

11

                                                 (6) 

Substituting the formula (6) in the expression (1) we obtain the formula (5), as was to be 
shown. 

 
The consequence 1. If SНS - a subset of nonhazardous states of safety related system. 

The system safety factor is determined as the following  
 



I. Shubinsky, A. Zamyshlyaev - TOPOLOGICAL SEMI-MARKOV METHOD FOR CALCULATION OF STATIONARY PARAMETERS OF RELIABILITY AND 
FUNCTIONAL SAFETY OF TECHNICAL SYSTEMS 

 
RT&A # 02 (25)  

(Vol.1) 2012, June 
 

 

16 



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
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Sj
j
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Б TG

T
K 1Si

iG
                                                              (7) 

The formula (7) is obtained by analogy to the formula (5) concerning set of nonhazardous 
states. 

 
 
4. Topological formulas for calculation of stationary time parameters of reliability   
 
Mean time to system failure 

 


 








Si Sj
ij

i
Si

i
i

Р

Р

pG

TG
T0                                                           (8) 

Average idle time of a system 
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Formulas (8) and (9) are obtained from formulas (2) and (3) by substitution in them the 

formula (6). 
Mean time between hazardous failures  
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1 1

1

Si Sj
ij

i
Si

i
i
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T ,                                                              (10) 

where 1S  - a subset of nonhazardous states, 1S - a subset of hazardous states SSS 11  , 1S - a 
subset of boundary nonhazardous states ( 11 SS  ). 

 
Mean time to system failure and dispersion of mean time to failure  
With a view of development of the formalized engineering methods for determining these 

parameters we shall prove the following statement. 
The statement 2. If system reliability is modeled by means of the graph states and semi-

Markov random process on this set of states then the confidence curve to system failure in Laplace 
transformations at i-th initial state is determined by the following expression 

)(~

)(~)(~

)(~
zG

zGzl
z

Р

Р

S

Sj

j
k

k

ij
k

i






 ,                                                       (11) 

where )(~ zl ij
k - k-th path  in Laplace transformations, leading from an efficient state of the graph 

РSi  into the failure state РSj ;  )(~ zG j
k  - graph decomposition weight in Laplace 

transformations without j-th vertex and the graph vertices located on the k-th path;  )(~ zG
нS  - 

without vertices, graph decomposition weight of a set of failure states  
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Proof 
 In the study [1] it is shown, that the function of time distribution of system staying in a set 

of efficient conditions РS  in Laplace transformations can be obtained from the following equation 





РР Sl

ilj
Sj

iji SQSSQS )(~)(~)(~)(~
. 

Let's transform this equation to a matrix form, keeping in mind, that the right part of the 
equation is a vector-column of free terms of semi-Markov transitions’ probabilities for one step 
from vertices РSzji ,..., into the vertex РSl . 

 
)(~)(~)(~)(~ * SQSSQS  , 

where  ))(~()(~ SQSQ ij - is a matrix of semi-Markov probabilities; ))(~()(~* SQSQ il - is a vector-
column. 

In system of the equations the unknown elements are those of the vector-column )(~ S . 
After their grouping in the left part we shall obtain  

 
  ).(~)(~)(~ * SQSQIS   

 

Then by Kramer's rule we can find
)(
)(

)(~
S
S

S i
i 


 , where )(~)( SQIS  , and )(Si  - 

the determinant, obtained by  replacement of i-th column in the matrix )(~ SQI   on a vector-
column of free terms )(~ * SQ  provided that )(Si  and )(S  are not equal to zero. 

The determinant )(Si  differs from the determinant 
РSGS  )(  by the fact that in the 

column i the element )(~ Spij  is replaced with the element )(~ Spil where РSji , , and РSl . As a 
result we obtain the following 
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Hence, 
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and at replacement of an index l on j the required result is obtained. The statement is proved. 
 
From the formula (11) follows  
- Mean time to system failure at initial state i=1 
   

                               ;
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 -  Dispersion of the mean time to system failure at initial state i=1 
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Consequence 2 The function of time distribution (confidence curve) to system hazardous 
failure in Laplace transformations at i-th initial state is determined by the following expression 

 
where )(~ zl ij

k - k-th path in Laplace transformations leading from a nonhazardous state of  
the graph НSi  into hazardous failure state НSj ; 
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                   From the formula (14) follows  
 
- Mean time to system failure at an initial state i=1 
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- A dispersion mean time to system failure at an initial state i=1 
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5.  Examples 
 
Example 1 
The two-channel device is analyzed. It contains two identical and independent channels, as 

well as diagnostics tools which check with acceptable frequency for good safety the functioning 
state of each channel and compare their output results. Failures of channels are asymmetrical. When 
diagnostics tools are sound the fact of failure of any one channel is detected and then the device 
transition in a state of protective failure is carried out. In the case of diagnostics tools’ failure only a 
nonhazardous failure of the device can occur. The subsequent behind this event failure of a channel 
leads to hazardous failure of the device. 

Graph states of reliability and safety of the two-channel device with diagnostics tools 
without channels’ restart is shown on fig. 1. 

The description of states: 
1 - Serviceable state; 
2 - Diagnostics tool failure; 
3 - protective failure of the device caused by detected failure of one of the channels; 

detection was carried by regular diagnostics tools with probability ; 
4 - Not detected failure of one of the channels, owing to failure or insufficient efficiency of 

diagnostics tools (hazardous failure of the device). 
For presentation of an illustration of opportunities of the offered method we assume, that 

failure and recovery flows, as well as a flow of detected failures of one channel are  the simple 
flows with rates , д , .. Restoration is carried out in the state of protective failure 2. 

Graph edges on fig. 1 are marked by following parameters: д  - failure rate of diagnostics 
tools; 2  - failure rate of the two working channels;   - recovery rate of failures by one repair 
team. 

Transition from a hazardous state 3 into initial state 0 is shown. The edge 3-0 is marked by 
parameter c  - recovery rate of hazardous failure of the device, where the factor 10  c . If for the 
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elimination of hazardous failure there is no need to update the device then  c=1 and the rate of 
hazardous failure elimination is equal to recovery rate of the device. If it is required to update the 
device depending on duration of updating time   the given factor will have the value 

1c which 

is much less 1. The opportunity of failure of one more channel when the device is in the condition 
3, is not considered, as hazardous failure has already taken place and either one channel or two 
channels are subjects to recovery.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Graph of safety states of the two-channel device without channels’ restart 
 
The model of reliability and functional safety of the two-channel device on fig.1 provides 

the following logic of device operation: an initial state 0 (all elements of the device are serviceable). 
In case of diagnostics tools failure there is a transition into a state 1. If at serviceable diagnostics 
tools any one channel (a state 2) has failed, and the channel failure is detected in due time out with 
probability  the device is transferred into a state of protective failure (the device does not function, 
the channel is under repair). At the latent failure of the channel probability 1 or at failure of one 
channel after the failure of diagnostics tools  (the path 0 - 1 - 3) there is a transition  into transition a 
state 3 of hazardous failure. 

Failure criterion: {0,1}рS {2,3}рS SS РрS  . 

Hazardous failure criterion: {0,1,2}НS {3}S Н SS ННS  . 
 
It is required by means of formulas (5) and (7) to determine availability and functional 

safety factors of the two-channel device 
 
Solution  
- Initial parameters should be defined: 
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- Find availability factor  
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If for elimination of hazardous failure there is no need to update the device then the factor 
с=1 and expression for availability factor of the device will be transformed in to the following 
form: 
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- Find safety factor of the device  
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 At с=1 the safety factor of the device is determined by means of the  following expression: 
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If the two-channel system is inefficient (in extreme case 0 ) the safety factor of the 
device is equal, as one would expect, to its availability factor. 

 
Example 2 
 
In conditions of the example 1 it is required by means of formulas (11), (12), (14), (15) to 

determine time parameters of reliability and functional safety of the two-channel device 
 
Solution 
From the formula (11) follows, that functions of time distribution to system failure at an 

initial state 0 in operational transformations has the following form: 
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In Laplace transformations at exponential distributions of random variables 
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The formula of function of time distribution to system failure in Laplace transformations 

under conditions of the given example has the following form: 
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as conditions 0,1 and 2 are non hazardous and )(~)(~1~

2002 zpzpG
НS   

Hence,  

)2(])2()2(2[
))](2)(1([2

)(~
2

дд

д
0 zzz

zz
zО 







. 

              From here 
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If to take into account, that   д; , with an margin error less than the first 
infinitesimal order then the following expression is true  

д
ОПT

 


)1(2
1 . 

At high efficiency of detection of hazardous failures on the basis of two-channel architecture 
of the device ( 1 ) its safety depends only on the reliability of the built in diagnostics tools and 
the comparator (i.e. on failure rate д ). 

 
The conclusion 
The offered topological semi-Markov method for calculation of reliability and safety 

parameters of technical systems allows determining directly on the states’ graph the strict or 
approximates formula expressions of typical reliability and safety parameters of technical systems 
which behavior is described by both Markov, and semi-Markov random processes. Mathematical 



I. Shubinsky, A. Zamyshlyaev - TOPOLOGICAL SEMI-MARKOV METHOD FOR CALCULATION OF STATIONARY PARAMETERS OF RELIABILITY AND 
FUNCTIONAL SAFETY OF TECHNICAL SYSTEMS 

 
RT&A # 02 (25)  

(Vol.1) 2012, June 
 

 

22 

positions of the method are illustrated by examples which show simplicity and rigor of finding out 
the required reliability and safety parameters. 
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ABSTRACT 
 

In this paper a sequence of parallel-serial connections is considered. In this sequence next 
connection is obtained by parallel or serial linking of new arc to obtained connection. 
Distributions of random numbers of connectivity components are analyzed. These 
distributions are considered intensively now. Central limit theorem is proved for these 
distributions and parameters (mean and variance) of normal limit distribution are calculated. 

 
 
 
1. INTRODUCTION 
 

In the reliability theory parallel-serial connections play important role [1] – [6] etc. These 
connections are widely used in electrotechnics, in computer networks etc. A specific of these 
connections is a possibility to calculate their reliability by algorithms with linear complexity by a 
number of arcs. 

Last years large interest is called to characteristics of networks sparseness. It means that 
powers of nodes (a number of incident arcs) is bounded by some positive number (see [7] and large 
bibliography in this article). Stochastic modeling and statistical processing of internet type networks 
data showed that nodes powers have distribution with heavy tails [8]. Last circumstance makes 
actual to consider parallel-serial connections which are free of this lack. 

Last time a distribution of numbers of connectivity components in different random networks 
are analyzed intensively now [9] – [11]. In this paper numbers of connectivity components in 
recurrent sequence of connections obtained by parallel or serial linking of new arc is considered. 
For this sequence central limit theorem is proved and parameters of limit normal distribution are 
calculated. 

A problem to calculate a mean and mainly a variance of limit normal distribution in this 
model is technically sufficiently complicated. In this paper it is based on central limit theorem for 
discrete Markov chains [12] and on a construction of special and sufficiently fast algorithm of such 
calculations. 
 

2.  MODEL DESCRIPTION 
 

Consider the sequence ࣛ௡ , ݊ ≥ 1, of ports defined recursively by a sequential or parallel 
connection of new arc ܾ௡ to the port ࣛ௡. Denote a type of connection by || or → accordingly. 
Suppose that random variable ߱௡ characterizes a type of the arc ܾ௡ connection to the port ࣛ௡	and 
put  

 
→ߨ = ܲ(߱௡ =→), ||ߨ = ܲ(߱௡ = ||) = 1 − ,→ߨ 0 < →ߨ < 1. 
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Here random variable ߚ௡ characterizes a state of the arc ܾ௡:  
 

௡ߚ)ܲ = 1) = ܲ(ܾ௡		in	working	state) = ௡ߚ)ܲ			,݌ = 0) = 1 − ݌ = 0			,ݍ < ݌ < 1. 
 
The sequences of random variables {߱௡ , ݊ ≥ ௡ߚ} ,{1 , ݊ ≥ 1} are independent and each of them 
consists of independent and identically distributed random variables. 

The port ࣛ௡	with randomly working arcs is characterized by random vector (ߙ௡ ,  ௡) thereߟ
 ௡ is an indicator of a connectivity between initial and final nodes of parallel-sequentialߙ
connection ࣛ௡ and ߟ௡ is a number of connectivity components in  ࣛ௡. Introduce auxiliary 
random variables  
௡ାଵߙ⃗  = ௡ߙ ∧ ௡ߚ , ௡ାଵߟ⃗ = ௡ߟ + 1 − ௡ߚ , (1) 

௡ାଵߙ  = ௡ߙ ∨ ௡ߚ , ௡ାଵߟ = ௡ߟ − ௡ߚ + ௡ߚ௡ߙ , (2) 

then 

,௡ାଵߙ)  (௡ାଵߟ = ௡߱)ܫ ,௡ାଵߙ⃖)(→= (௡ାଵߟ⃖ + ௡߱)ܫ = ,௡ାଵߙ)(||  ௡ାଵ), (3)ߟ

where (ܥ)ܫ is an indicator of an event ܥ. 
 
3. LIMIT THEOREM FOR MARKOV CHAIN CHARACTERIZING CONNECTIVITY 

OF PARALLEL-SERIAL CONNECTIONS 
 

Denote Δ௡ାଵ = ௡ାଵߟ − ௡ߟ , then the sequence ܺ௞ = ,௞ߙ) Δ௞),	 ݇ ≥ 1, is Markov chain with 
the states set ࣲ = {(݅, ݆),	 ݅ = 0, 1, ݆ = −1, 0, 1} as follows  

 
,௡ାଵߙ) Δ௡ାଵ) = ௡߱)ܫ ,௡ߚ௡ߙ)(→= 1 − (௡ߚ + ௡߱)ܫ = ௡ߙ)(|| ∨ ௡ߚ , ௡ߚ− +  .(௡ߚ௡ߙ

 
From the equalities (1) - (3) and the conditions 0 < ݌ < 1, 0 < →ߨ < 1 we see that Markov chain 
ܺ௞ , ݇ ≥ 1, states are interconnected. Consequently from the central limit theorem for discrete 
Markov chains with finite states set [12, chapters V,VI} there are normally distributed random 
vector ܰ(0,ℬ) with the dimension six and with zero mean and with covariance matrix ℬ and real 
numbers (ݔ)ܣ, ݔ ∈ ࣲ, which do not depend on initial state ଵܺ so that for any real (ݔ)ݐ, ݔ ∈ ࣲ, 
 

 ܲ ൬ቀே೙(௫)ି௡஺(௫)
√௡

, ݔ ∈ ࣲቁ > ,(ݔ)ݐ) ݔ ∈ ࣲ)൰ → ܲ(ܰ(0,ℬ) > ,(ݔ)ݐ) ݔ ∈ ࣲ)), ݊ → ∞. (4) 

Here ௡ܰ(ݔ) = ∑ 	௡
௞ୀଵ ௞ܺ)ܫ =   .and the inequalities are defined componentwise (ݔ

Introduce auxiliary numbers ܽ(ݔ), ݔ ∈ ࣲ:  
 

ܽ(݅, 0) = 0, ܽ(݅, 1) = 1, ܽ(݅, −1) = −1, ݅ = 0,1. 
 
From the formula (4) it is simple to obtain that there is normally distributed random variable 
ܤ with zero mean and with the covariance (ܤ,0)ܰ > 0 so that for any real ݐ 

 
 ܲ ቀ ଵ

√௡
∑ 	௫∈ࣲ )(ݔ)ܽ ௡ܰ(ݔ) − ((ݔ)ܣ݊ > ቁݐ → ܲ(ܰ(0, (ܤ > ,(ݐ ݊ → ∞. (5) 

Using obvious equality ∑ 	௫∈ࣲ (ݔ)ܽ ௡ܰ(ݔ) = ∑ 	௡
௞ୀଵ Δ௞ = ௡ߟ , ݊ ≥ 1, rewrite the formula (5) as 

follows 
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 ܲ ቀఎ೙ି௡஺
√௡

> ቁݐ → ܲ(ܰ(0, (ܤ > ,(ݐ ݊ → ∞, ܣ = ∑ 	௫∈ࣲ  (6) .(ݔ)ܣ(ݔ)ܽ

Remark 1. A calculation of the vector ((ݔ)ܣ, ݔ ∈ ࣲ)) and especially of covariance matrix ℬ in 
the formula (4) is sufficiently complicated procedure [12, chapters V, VI}. So to define the mean ܣ 
and the covariance ܤ we use following limit formulas  
ܣ  = lim

௡→ஶ

ெఎ೙
௡
, ܤ = lim

௡→ஶ

஽ఎ೙
௡

 (7) 

which are corollaries of the formula (6) with special initial distribution of ଵܺ. 
 

4. CALCULATION OF LIMIT NORMAL DISTRIBUTION PARAMETERS 
 

Choose random vector (ߙଵ, Δଵ) = ,ଵߙ)  ଵ) which does not depend on random sequencesߟ
{߱௡ , ݊ ≥ ௡ߚ} ,{1 , ݊ ≥ 1} and satisfies the equalities  

 
,ଵߙ))ܲ  (ଵߟ = (1,1)) = ܲ = గ||௣

గ||௣ାగ→௤
, ,ଵߙ))ܲ (ଵߟ = (0,2)) = ܳ = 1 − ܲ  (8) 

with ܲ(ߙ௡ = 1) ≡ ܲ, ௡ߙ)ܲ = 0) ≡ ܳ. Random sequence ߙ௡ ,		 ݊ ≥ 1, is stationary Markov chain. 
Theorem 1. The equalities 
ܣ  =  (9)  ,ݍ→ߨܳ

ܤ  = 1)ܳݍ→ߨ − ܳݍ→ߨ + 2ܲܳ) > 0			 (10) 

are true. 
Proof. To define the constants ܣ,  from (7) we construct recurrent algorithm. Denote ܤ
 
௡ܯ  = ௡ߟܯ , ௡ܣ = ௡ߟ)ܯ ௡ߙ| = 1), ௡ܤ = ௡ߟ)ܯ ௡ߙ| = 0), ௡ܯ = ௡ܲܣ +  ௡ܳ, (11)ܤ

௡ܯ		 
ᇱ = ௡ଶߟܯ , ௡ᇱܣ = ௡ߙ|௡ଶߟ)ܯ = 1), ௡ᇱܤ = ௡ߙ|௡ଶߟ)ܯ = 0), ௡ܯ

ᇱ = ௡ᇱܣ ܲ +  ௡ᇱܳ (12)ܤ
where 
ଵܣ  = 1, ଵܤ = 2, ଵᇱܣ = 1, ଵᇱܤ = 4.  

Using the formulas (1) - (3), (11) obtain for ݊ ≥ 1: 
 

௡ାଵܣ =
݌→ߨ௡ܲܣ + ݌||ߨ௡ܲܣ + ௡ܤ) − ݌||ߨܳ(1 + ݍ||ߨ௡ܲܣ

ܲ , 
 

௡ାଵܤ =
݌→ߨ௡ܳܤ + ௡ܣ) + ݍ→ߨܲ(1 + ௡ܤ) + ݍ→ߨܳ(1 + ݍ||ߨ௡ܳܤ

ܳ , 

 
௡ାଵܯ = ௡ܲܣ + ௡ܳܤ − ݌||ߨܳ + ݍ→ߨܲ + ݍ→ߨܳ = ௡ܯ + ݍ→ߨܳ = ଵܯ + ,ݍ→ߨܳ݊ ଵܯ = 1 + ܳ. 

 
Then from (7) we obtain the equality (9). 

And 
  

௡ାଵܣ																								 − ௡ାଵܤ = ௡ܣ) − ߣ(௡ܤ − ൫2ݍ→ߨ + ,൯݌||ߨ ݊ ≥ ߣ			,1 = ݍ||ߨ + ݌→ߨ < 1.               
(13) 

so 

௡ାଵܣ − ௡ାଵܤ = − ൤ߣ௡ + ൫2ݍ→ߨ + ൯݌||ߨ
1 − ௡ߣ

1 − ߣ ൨ = ௡ܳߣ − 1 − ܳ, ௡ାଵܲܣ + ௡ାଵܳܤ =  ௡ାଵܯ
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consequently 

  
௡ାଵܣ																								 = ௡ାଵܯ ௡ܳߣ]ܳ+ − 1− ܳ], ௡ାଵܤ = ௡ାଵܯ − ௡ܳߣ]ܲ − 1 − ܳ], ݊ ≥ 1. (14) 

Begin now a calculation of 	ܯ௡ାଵ
ᇱ . Using the formulas (1) - (3), (12) obtain for 	݊ ≥ 1: 

 

௡ାଵᇱܣ =
௡ᇱܣ ݌→ߨܲ + ௡ᇱܣ ݌||ߨܲ + ௡ᇱܤ) − ௡ܤ2 + ݌||ߨܳ(1 + ௡ᇱܣ ݍ||ߨܲ

ܲ , 
, 

௡ାଵᇱܤ =
݌→ߨ௡ᇱܳܤ + ௡ᇱܣ) + ௡ܣ2 + ݍ→ߨܲ(1 + ௡ᇱܤ) + ௡ܤ2 + ݍ→ߨܳ(1 + ݍ||ߨ௡ᇱܳܤ

ܳ , 

 
௡ାଵܯ

ᇱ = ௡ܯ
ᇱ + ݌||ߨ௡ܳܣ2 + ݍ→ߨ)௡ܳܤ2 − (݌||ߨ + 1)ݍ→ߨ + ܲ). 

 
So from (14) we obtain 

௡ାଵܯ
ᇱ = ଵܯ

ᇱ + ෍݌||ߨ2ܳ 	
௡ିଵ

௞ୀ଴

௞ାଵܣ + ݍ→ߨ)2ܳ − ෍(݌||ߨ 	
௡ିଵ

௞ୀ଴

௞ାଵܤ + 1)ݍ→ߨ݊ + ܲ) = 

 

= ଵܯ
ᇱ + ෍ݍ→ߨ2ܳ 	

௡ିଵ

௞ୀ଴

௞ାଵܯ − 2݊ܳܲ(1 + ݌||ߨ(ܳ + 1)ݍ→ߨ݊ + ܲ) + ଶܳܲݍ→ߨ2
1 − ௡ߣ

1 − ߣ = 

 
= ଵܯ

ᇱ + 1)݊)ݍ→ߨ2ܳ + ܳ) + ݊)݊ܳݍ→ߨ − 1)/2) − 2݊ܳܲ(1 + ݌||ߨ(ܳ + 
 

1)ݍ→ߨ݊+ + ܲ) + 2ܲଶܳଶ(1 − ,(௡ߣ ଵܯ
ᇱ = 1+ 3ܳ. 

Consequently 
 

௡ାଵߟܦ = ௡ାଵܯ
ᇱ ௡ାଵܯ−

ଶ = 1]ݍ→ߨ݊ + ܲ − ܳଶݍ→ߨ − 2ܲଶ(1 + ܳ)] + 2ܲଶܳଶ(1 − (௡ߣ + ܳܲ. 
 

Then from (7), (13) we have 
ܤ = ൫1ݍ→ߨ + ܲ − ܳଶݍ→ߨ − 2ܲଶ(1 + ܳ)൯ = 1)ܳݍ→ߨ − ܳݍ→ߨ + 2ܲܳ) > 0.			 

Theorem is proved. 
Remark 2. From Remark 1 is possible to replace the condition (8) by more natural suggestion 

  
ܲ൫(ߙଵ, (ଵߟ = (1,1)൯ = ,݌ ܲ൫(ߙଵ, (ଵߟ = (0,2)൯ =  ݍ

  
so that the equalities (6), (9), (10) are true also.  
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1. Introduction 
 
The Method of U-functions, or the Method of the Universal Generating Function (UGF), was 

introduced in [(1986) Ushakov, (1987)  Ushakov] and later developed in [(1988)  Ushakov;  (1995)  
Gnedenkon& Ushakov]. Actually this is a generalization and “algebraic” formalization of the well-
known Kettelle’s Algorithm [(1962) Kettelle].  In turn, Kettelle’s Algorithm, is a form of presentation 
of convolution of  discrete random variables. The method of U-functions is very convenient for 
computerized calculations. 

 Last years, this method was significantly developed by G. Levitin and A. Lisnianski 
 
2. Briefly about Generating Function 
  
Everybody knows that Generating Function (GF) is very convenient mathematical tool for 

finding a convolution of discrete random variables. 
 Consider two non-negative discrete random variables X1 and X2 that are characterized by 

discrete distributions  
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correspondingly where n(1) and n(2) are numbers of discrete realizations of values of each type. 

 
If we are interested in the distribution of r.v. X = X1 + X2, we perform product of generating 

functions, perform collecting terms, and get:  
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where Ak is a convolution of two r.v.’s. – )1(

ia and )1(
ia . 

 
Thus, this transform suggests multiplication of polynomial coefficients and summation of 

polynomial powers. The method of U-functions suggests a transparent and convenient method of 
computerized solutions of various enumeration problems where variables are subjects to operations 
beyond multiplication and summation, for instance, finding distribution of minimum, maximum, 
geometrical summation, etc., depending on physical nature of the analyzed problem. 
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Table 1. Examples of object interaction depending on physical nature of unit parameters 
 
Name 

SERIES
),( 21   

PARALLEL
),( 21   

PFFO (for “hot” redundancy) 21    )1()1( 21    
Cost 21    21    
Weight 21    21    
el. Resistance 21    11

2
1

1 ))()((     
el. Capacity 11

2
1

1 ))()((     21    
el. Conductivity 11

2
1

1 ))()((     21    
pipeline capacity ),min( 21   21    
random time to failure ),min( 21   ),max( 21   
. . . . . . . . . 
number of different redundant units ( 21, ) ( 21, ) 

 
Here by symbol ""  we denote interaction of parameters of various physical nature. In 

particular, the method of U-functions can be effectively applied to solving the optimal redundancy 
problem. 

 
3. Method of U-functions 

 
Let us consider GF from another viewpoint. Each k-th discrete distribution one can represented 

as a set of triplets: 
 

 ))(,,(,...),2,,(),1,,( )(
)(

)(
1

)(
1

)(
2

)(
1

)(
1

)( kncpcpcpS k
kn

kkkkkk                                      (3) 

 
where )(k

jp and 
)(k

jc are the probability of failure-free operation (PFFO) of unit k with j-th variant of 

redundancy and the cost of this variant, correspondingly. The third component is the number of 
redundant units of type k (or, in more general case, the ordering number of variant of unit k).  
 

Indeed, product of two GF’s is equivalent to “Descartes interaction” of two sets S(1)
 and S(2) , 

i.e. each triplet of set S(1)
  interacts with all triplets of set sets of S(2). Interaction of two triplets can be 

conditionally written as follows: 
 

),(),,( )2()2()2()1()1()1( jcpicp jjii                                                       (4) 
 
In turn, interaction of triplets consists of interactions of its components that produce a new 

triplet 

 
 

   ),,;; )2(*)2(*)2()2()1()2()1()2()1( jcpjiccpp jiji   

                        (5) 
 

Here interaction 
 means product, operator 

 does summation, and operator 
  does 
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union ( a vector with corresponding components), i.e. 

),(

;

;

)2()1()2()1(*)2(

)2()1()2()1(*)2(

)2()1()2()1(*)2(

jijij

ccccc

ppppp

jiji

jiji











                                             (6) 

One can easily see that Descartes interaction of duplets that belongs sets S(1) and S(2) is 
completely equivalent to product of two generating functions )()1( z and ).()2( z  

Analogously with the  product of GF’s one has to collect terms for getting  the final set  
 

S = S1S2.
 

 
Naturally, operator  possesses commutativity property, i.e. 

  ( a , b )=   (b , a )                                                               (7) 

and associativity property, i.e.  
  (a, b, c) =   (a   ( b , c) )=   ((a b ), c ).                                   (8)  

   
 
4. Using U-function for solving of optimal redundancy problems 
 
Let us consider a series system consisting of n units, each of which has PFFO equals pk and 

costs ck units. For increasing reliability of each unit, one can use redundancy of individual units. 
Each unit k is represented by set of triplets 

 
  ..}.;;{...,},2;;{},1;;{},0;;{ )()()(

2
)(

2
)(

1
)(

1
)(

0
)(

0 sCRCRCRCRS k
s

k
s

kkkkkk
k                   (9) 

 
where s is the number of redundant units ( any natural number);  )(k

sC is the total cost of s redundant 
units (usually, a linear function of the number s); and )(k

sR is the PFFO of unit k with s redundant units. 
It is well-known that for loaded redundancy of group including one main and s  identical redundant 
units: 

;)1(1 1)(  s
k

k
s pR  

and for an unloaded redundant (spare) units: 

);exp(
!
)(

0

)( t
j
t

R k
sj

j
kk

s 


 


 

Now consider a general procedure of optimal redundancy with the use of U-functions.  First 
of all,  take units 1 and 2 and arrange the Descartes interaction procedure between sets S1 and S2. In 
our case  

 
;*)2()2()1()2()1(

Kjiji RRRRR   
;*)2()2()1()2()1(

Kjiji CCCCC   
,),( Kjiji


  
 
i.e. interaction between two numbers produces vector, containing numbers of redundant units of the 1st 
and 2nd types.. 
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Here symbol “*” relating to the number means that this “aggregated” unit  includes all previous 
units. 

At the next step of sets S1 and S2 interaction  one takes “aggregated unit 2* and unit 3: 
  

;)( *)3()3()2()1()3(*)2()3(*)2(
LkjikKkK RRRRRRRR   

;*)3()3()2()1()3(*)2()3(*)2(
LkjikKkK CCCCCCCC   

.),,(),( LkjikKkK


  
 
Vector L


shows that in a series system of 3 units the 1st  unit has i  redundant ones, the 2nd 

unit has j redundant ones and the 3rd units has k redundant ones. 
This procedure continues until necessary final triplets will have been generated. Instead of 

further abstract presentation of the procedure, let us turn to a simple illustrative numerical example. 
The result of interaction is presented in the table below. 
 
Example 1.  Consider a series system of four units with parameters given in the table below. 

Assume that “hot” redundancy is used for the system reliability improvement.  
 

Table 2. System unit parameters 
 
 Unit-1 Unit-2 Unit-3 Unit-4 
PFFO 0.6 0.6 0.7 0.7 
Cost 3 5 3 5 

 
In accordance with the description given above, the block diagram of the using U-functions 

in this particular case can be presented as follows (see Figure 1). 
 

 
 

Figure 1. Block-diagram of the solution procedure for Example 1 
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Let us solve two problems of optimal redundancy: 
(a) Direct problem: Find the optimal allocation of redundant units to reach required PFFO 

level of the system equals to 0.97; 
(b) Inverse problem: Find the optimal allocation of redundant units to reach maximum 

possible PFO level under condition that the total cost of the system does not exceed 70 units of cost.  
In this case, the UGF for each unit is defined by a set of triplets (Cost, PFFO, Number of 

redundant units). Solution for the first step of the solution (interaction of set 1 and set 2) can be 
presented in the form of the table below. 

First of all, restrict ourselves with possible solutions for the Direct Problem: since the 
system PFFO has to be not less than 0.97, it means that PFFO of each of four redundant groups has 
to be not less than 0.97.   

Since cost restriction equals 70 cost units, the total cost of redundant units in each redundant 
group has to be not larger than, say 20-30.  

Keeping this in mind let us construct the table with triplets obtained in the result of 
interaction sets for Unit-1 and Unit -2. 

 
Table 3. Result of interaction of UGF’s for Unit-1 and Unit-2 
 
 S1 

9 
0.936 
3 

12 
0.9744 
4 

15 
0.9898 
5 

18 
0.9959 
6 

21 
0.9984 
7 

24 
0.9993 
8 

 
 
 
 
 
 
 
S2 

15 
0.936 
3 

24 
0.8761 
(3; 3) 

27 
0.912 
(4; 3) 

30 
0.9264 
(5; 3) 

33 
0.9322 
(6; 3) 

36 
0.9345 
(7: 3) 

39 
0.9354 
(7:3) 

20 
0.9744 
4 

29 
0.912 
(3; 4) 

32 
0.9495 
(4; 4) 

35 
0.9644 
(5; 4) 

38 
0.9704 
(6; 4) 

41 
0.9728 
(7; 4) 

44 
0.9738 
(8; 4) 

25 
0.9898 
5 

34 
0.9264 
(3; 5) 

37 
0.9644 
(4; 5) 

40 
0.9796 
(5; 5) 

43 
0.9857 
(6; 5) 

46 
0.9881 
(7; 5) 

49 
0.9891 
(8; 5) 

30 
0.9959 
6 

39 
0.9322 
(3; 6) 

42 
0.9704 
(4; 6) 

45 
0.9857 
(5; 6) 

48 
0.9918 
(6; 6) 

51 
0.9943 
(6; 7) 

54 
0.9953 
(6;8) 

35 
0.9984 
7 

44 
0.9345 
(3; 7) 

47 
0.9728 
(4; 7) 

50 
0.9881 
(5; 7) 

53 
0.9943 
(6; 7) 

56 
0.9967 
(7; 7) 

59 
0.9977 
(7; 8) 

40 
0.9993 
8 

49 
0.9354 
(3; 8) 

52 
0.9738 
(4; 8) 

55 
0.9891 
(5; 8) 

58 
0.9953 
(6; 8) 

61 
0.9977 
(7; 8) 

64 
0.9987 
(8; 8) 

 
In this table triplets that are dominated by others are marked with grey shadowing. One can 

observe that dominating sequence occupies an area around “diagonal of the table. This property can 
be successfully used for minimizing the calculations: as soon as a dominated triplet appears below 
this “diagonal area”, the further calculation in cells located below this cell can be stopped. 
Analogously, if  a dominated triplet appears upper this “diagonal area” , the further calculation in 
cells located to the right from this cell can be also stopped. We will use this property in further 
calculating. 

Thus, the dominating sequence characterizing an “equivalent” Unit-2*is presented in non-
shadowed area of table 1. On the basis of data for Unit-2*, we can construct an analogous table for 
“equivalent Unit-3* (see Table 4). 
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Table 4. Result of interaction of UGF’s for Unit-2* and Unit-3 
 
  S3 

9 
0.973 
3 

12 
0.9919 
4 

15 
0.9976 
5 

18 
0.9993 
6 

21 
0.9998 
7 

24 
0.9999 
8 

 
 
 
 
 
 
 
 
 
 
S2* 

24 
0.8761 
(3; 3) 

33 
0.8524 
(3; 3; 3) 

36 
0.869 
(3; 3; 4) 

 
ххх 
 

 
ххх 

 
ххх 

 
ххх 

27 
0.912 
(4; 3) 

36 
0.8874 
(4; 3; 3) 

39 
0.9046 
(4; 3; 4) 

42 
0.9098 
(4; 3; 5) 

 
ххх 

 
ххх 

 
ххх 

30 
0.9264 
(5; 3) 

39 
0.9014 
(5; 3; 3) 

42 
0.9189 
(5; 3; 4) 

45 
0.9242 
(5; 3; 5) 

ххх ххх ххх 

32 
0.9495 
(4; 4) 

41 
0.9239 
(4; 4; 3) 

44 
0.9418 
(4; 4; 4) 

47 
0.9472 
(4; 4; 5) 

ххх ххх ххх 

35 
0.9644 
(5; 4) 

44 
0.9384 
(5; 4; 3) 

47 
0.9566 
(5; 4; 4) 

50 
0.9621 
(5; 4; 5) 

ххх ххх ххх 

38 
0.9704 
(6; 4) 

0.9442 
(6; 4; 3) 

50 
0.9625 
(6; 4; 4) 

53 
0.9681 
(6; 4; 5) 

ххх ххх ххх 

40 
0.9796 
(5; 5) 

0.9532 
(5; 5; 3) 

52 
0.9717 
(5; 5; 4) 

55 
0.9772 
(5; 5; 5) 

 
ххх 
 

ххх ххх 

43 
0.9857 
(6; 5) 

0.9591 
(6; 5; 3) 

55 
0.9777 
(6; 5; 4) 

58 
0.9833 
(6; 5; 5) 

61 
0.9850 
(6; 5; 6) 

ххх  

46 
0.9881 
(7; 5) 

ххх 58 
0.9801 
(7; 5; 4) 

61 
0.9857 
(7; 5; 5) 

64 
0.9874 
(7; 5; 6) 

67 
0.9879 
(7; 5; 7) 

 
ххх 
 

49 
0.9891 
(8; 5) 

ххх  
ххх 
 

64 
0.9867 
(8; 5; 5) 

67 
0.9884 
(8; 5; 6) 

70 
0.9889 
(8; 5; 7) 

73 
0.9885 
(8; 5; 8) 

 
Table 5. Final result of calculating 
 S4 

15 
0.973 
3 

20 
0.9919 
4 

25 
0.9976 
5 

30 
0.9993 
6 

35 
0.9998 
7 

40 
0.9999 
8 

 
 
 
 
 
 
 
 
 
 
S3* 

41 
0.9239 
(4; 4; 3) 

56 
0.899 
(4; 4; 3; 3) 

61 
0.9164 
(4; 4; 3; 4) 

ххх 
 

 
ххх 

 
ххх 

 
ххх 

44 
0.9418 
(4; 4; 4) 

59 
0.9164 
(4; 4; 4; 3) 

64 
0.9342 
(4; 4; 4; 4) 

69 
0.9395 
(4; 4; 4; 5) 

 
ххх 

 
ххх 

 
ххх 

47 
0.9566 
(5; 4; 4) 

62 
0.9308 
(5; 4; 4; 3) 

67 
0.9489 
(5; 4; 4; 4) 

72 
0.9543 
(5; 4; 4; 5) 

 
ххх 

 
ххх 

 
ххх 

50 
0.9625 

65 
0.9365 

70 
0.9547 

75 
0.9602 

 
ххх 

 
ххх 

 
ххх 
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(6; 4; 4) (6; 4; 4; 3) (6; 4; 4; 4) (6; 4; 4; 5) 
52 
0.9717 
(5; 5; 4) 

67 
0.9455 
(5; 5; 4; 3) 

72 
0.9638 
(5; 5; 4; 4) 

77 
0.9694 
(5; 5; 4; 5) 

ххх 
 

 
ххх 

 
ххх 

55 
0.9777 
(6; 5; 4) 

70 
0.9513 
(6; 5; 4; 3) 

75 
0.9698 
(6; 5; 4; 4) 

80 
0.9754 
(6; 5; 4; 5) 

85 
0.9770 
(6; 5; 4; 6) 

 
ххх 

 
ххх 

58 
0.9833 
(6; 5; 5) 

0.9568 
(6; 5; 5; 3) 

78 
0.9753 
(6; 5; 5; 4) 

83 
0.9809 
(6; 5; 5; 5) 

88 
0.9826 
(6; 5; 5; 6) 

 
ххх 

 
ххх 

61 
0.9857 
(7; 5; 5) 

0.9591 
(7; 5; 5; 3) 

81 
0.9777 
(7; 5; 5; 4) 

86 
0.9833 
(7; 5; 5; 5) 

91 
0.985 
(7; 5; 5; 6) 

 
ххх 

 
ххх 

64 
0.9874 
(7; 5; 6) 

 
ххх 

84 
0.9794 
(7; 5; 6; 4) 

89 
0.985 
(7; 5; 6; 5) 

94 
0.9867 
(7; 5; 6; 6) 

99 
0.9872 
(7; 5; 6; 7) 

 
ххх 

67 
0.9884 
(8; 5; 6) 

 
ххх 87 

0.9804 
(8; 5; 6; 4) 

92 
0.9860 
(8; 5; 6; 5) 

97 
0.9877 
(8; 5; 6; 6) 
 

102 
0.9882 
(8; 5; 6; 7) 

107 
0.9883 
(8; 5; 6; 8) 

 
All calculations have been done with a simple Excel program.  
Solutions of the problems above can be easily found from the last table. First time PFFO 

exceed level of 0.97 when X=(6; 5; 5; 4) and the corresponding system cost is 78 cost units. The 
inverse problem solution for restriction on the cost equals 70 cost units reaches when X=(4,4,5,3) 
and corresponding PFFO is equal to 0.9547. 

Notice that due to associativity property of U-functions it is possible to get the same solution 
using another order of units’ interaction. 

 

 
 

Figure 2. Second type of units’ interaction procedure 
   
 
 
Remark. By the way, this example shows with transparency that one can consider not only 

redundancy as a method of system reliability increase. For instance, one can consider a set of 
variants of the units with various reliability and cost. Actually, Unit-2* and Unit-4* can be 
considered as “black boxes” that are characterized by corresponding dominating sequences of 
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triplets };;{ )()( sCQ k
s

k
s where s is just a number of variants of considered Unit-k. 
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Abstract 
 

The paper considers the characteristics of the functioning and sustainability of the 
structurally complex techno-economic systems (SCTES) in terms of different types of risk. The 
validity of the application to describe the behavior of this class of systems of semi-empirical 
mathematical models, which are based on a vector description of the system states, using the criteria 
approach for assessing the quality of its functioning, is demonstrated. 

Under discussion is conceptual model for the interaction of the object and its environment, 
allowing to estimate the "optimal" allocation ratio between the productive system and its 
development potential.  

The concept of non-formalizable threats for the sustainable functioning of this systems class 
was introduced. Expert procedure to account non-formalizable threats in case of risk assessment 
was proposed. For the construction of indicators for assessing the status the methods of quantitative 
analysis based on the theory and multi-criteria utility was used. Multi-criteria utility as an indicator 
of sustainability in the form of dimensionless complex hierarchy of indicators was proposed. 
Computing for through the convolution of the primary indicators.  

The hierarchical model proposed to calculate the integral index of multi-criteria preference 
of one embodiment of the system over the other. Some results of case study are discussed. 

 
Key words: structurally complex techno-economic systems, risk analysis, sustainability, 

multi-criteria method 
 
 
 
SCTES are characterized by distribution in space, big variety and interaction of objects 

types, non-uniform structure of processing chains, unique conditions of influence of risks of the 
various nature on objects of the subsystem and the system as a whole. 

In the idea of situation management of SCTES principles of changeable (adaptive) behavior 
in terms of possible risks and uncertainties are initially put. Presence of such risks generated by 
different circumstances is capable to brake or change this or that way of movement, to force the 
system to live «under another scenario», different from all variety of plans shaped before. 

If as sustainability of SCTES functioning to understand the plan performance of its 
development with admissible variation on volumes and terms of problems performance then 
situation safety management in this system is reduced to minimization of hazardous losses at 
extraordinary situations and to carrying out of actions for their prediction. The success of such 
tactics depends substantially on intuition and talent of management of the company, on its ability to 
expect the possibility of weakly formalized threats outgrowth into notable risks and losses. 

Under weakly formalized threats we understand here the threat for criticality estimation of 
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which the development of original algorithm of the decision depending on a concrete situation is 
required and for which uncertainty and dynamism of the initial data and knowledge can be 
characteristic. 

However, in the absence in enough of adequately estimated information necessary for 
decision-making, tactics of adaptive management quite often turns to a continuous chain of the 
"emergency" scenarios leading to disruption of controllability of all system. Hence, company 
management should be engaged not only the current work bringing quite notable results which 
utility is measured in economic factors, but also to care of creation the company condition 
monitoring system and the world surrounding it, watching dynamics of internal and external threats 
to its growth and development. 

That is optimal control of SCTES aimed at reception of profit on its activity, consists in 
ability to find balance of redistribution of the available resources (material, human, information) by 
proprietor of the company between «productive activity» and «maintenance of development 
potential  ». 

The elementary model illustrating the abovementioned and allowing to estimate "optimal" 
proportions of resources distribution between "useful" (production) system and its development 
potential is the model of interaction of developing object and its environment (Klykov, 1970; 
Zhigirev, etc., 1983). 

Let's present the activity of some SCTES, consisting of two subsystems (fig. 1).    
 

 
 

Figure 1. Activity of productive system 
 
The first, «productive subsystem», brings profit, proportionally to quantity of received 

resources  )t(x)t(   with some positive resources increase speed coefficient 










)t(
)t(1 , 

available in the system.  
The second subsystem - «development potential» plays the role of the accelerator (retarder) 

of resources reproduction speed in the system. 
Herein )t(  is proportion of resources distribution between productive subsystem and its 

development potential, )t(),t( 21  - coefficient of resources exchange intensity between 
investigated system and some external in relation to it system in the process of coexistence. 
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Actually the difference  )t()t()t( 21   is the share of resources deduced from the cycle of 
reproduction in the form of losses of one kind or another, for example, of final consumption, taxes, 
etc. 

In the elementary representation "potential" influence is the value of function 











)t(

)t(1
 

and coefficient )t(  for large-scale systems we consider independent of times in an explicit form as 
constants. In this case system development is described by the homogeneous linear equation on a 
variable )t(x at parameters   and    

)t(x
)t(

)t(1)t(x)t(
dt

)t(dx












     (1) 

The optimum proportion )t(*  between productive system and its development potential is 
defined from the condition 

max1
*

*
* 











      (2) 

At the natural assumption that    is monotone function with saturation (fig. 2) there is a 

simple way of its optimum definition, as 










1

1
. 

 

 
 

Figure 2. 
 
According to fig. 2 it is clear that this optimum is reached in some point * , having quite 

certain sense. So, if resources for development potential are allocated «excessively much»  *  , 
then means  *  are incorrectly withdrawn from the current reproduction and there is a situation 
when efforts to studying and counteraction to numerous risks which the developing system can 
never come across are spent. 

The point  0  corresponds to the situation when all resources are spent exclusively for 
growth of productive system. The potential of similar system is low because of constant losses 
which it is possible to avoid if there is a potential for prediction of arising risks and struggle against 
them. 
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The segment  1,0    shows that if the means allocated for studying and counteraction to 
threats and risks are small, then return from similar researches and done actions less than the 
resources allocated for them. Information gathering, research of internal and external threats on a 
low level doesn't allow to receive an adequate estimation for improvement of decision-making 
quality in most cases anyhow developing circumstances. 

On the segment  *1,  the contribution to development potential starts to give positive 
return, however only in the point 2  the level of "self-support" of expenses for development of 
"potential" of system will be reached     02  . 

Therefore it is expedient to consider this point as the point of "critical" position. 
Decrease of potential     to the level   2  threatens that "in accordance with the 

circumstances" economically expediently there will be «strategy of survival» – strategy of full 
refusal of expenses for the decision of problems of prediction and anticipation of threats and risks 
and reproduction maintenance only at the expense of escalating inefficient capacities in productive 
subsystem 0 . 

In spite of the fact that the conceptual model stated above is schematical, it, nevertheless, 
provides guidance that threats and risks as a matter of fact are "antipotentials" of development, that 
is they are retarders of speed of all system reproduction. 

Since SCTES, as a rule, are non-uniform, they are subject to risks various by the nature and 
on influence levels. The received expert estimations of optimum proportions, certainly, need 
updating if to consider balanced development of the system consisting from many productively and 
territorially connected subsystems. 

The logic of optimum proportional development in this case also remains. Received 
estimations should be considered only as "reference points" for the further researches, otherwise 
struggle for escalating of development potential will be carried out only in those territories and only 
in those productive-technological chains for which it by theoretical estimations is "economically 
expedient" that will lead to destruction of integrity of the system (connectivity loss), withdrawal 
from unified state and branch standards. 

Let's suppose that the exit of investigated system runway from admissible corridor (a 
component of the vector of functioning efficiency indicators) can be caused to four reasons: 

a) owing to increase of importance of the problems put before the system to such level that 
default of these problems at occurrence of extraordinary situation (and furthermore in a normal 
mode of functioning) appears critical for system existence, up to necessity of its re-structuring as a 
whole; 

b) owing to system simplification or destruction at which locally arising extraordinary 
situations are really capable to outgrow in events with large-scale losses under scenarios of cascade 
type; 

c) owing to dramatic or long deterioration of operating conditions of objects and subsystems 
in one or several territorial formations formed, including, as a result of non-formalizable threats 
increase; 

d) owing to decrease in level of industrial and fire safety and (or) physical protection for 
technological blocks and objects of various type. 

It is offered for an estimation of extraordinary situation threat level in SCTES to use the 
following hierarchical multi-criteria model (Russman, 1991). 

Integrated risk of extraordinary situation ),,,( 1 ni rrrR   represents function of risks of 
private extraordinary situations  occurrence ),,1( niri  . The kind of dependence R on the 
arguments gets out proceeding from conditions: 

1),,,,(0 1  ni rrrR  ;                                                                                         (3) 
0)0,,0,,0( R ;                                                                                                 (4) 
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ii rrR )0,,,,0(  ;                                                                                                (5) 
1),,1,,(0 1  nrrR   for  1ir  irrespective of values of other arguments.      (6) 

Continuous function ),,,( 1 ni rrrR  , meeting (3)-(6), has the following general view 

  ),,,(11),,,( 1
1

1 nii

n

i
ni rrrgrrrrR  







 


,                                 (7) 

where 1)0,,,,0(  irg .  
If in special case 1),,,( 1 ni rrrg  , then formula (7) is of the form 

 






 


i

n

i
ni rrrrR 11),,,(

1
1                                                  (8) 

states the underestimated estimation of integrated risk from calculation that the stream of 
extraordinary situations represents a mix of ordinary events taken from homogeneous, but differing 
with values ),,1( niri   samples. 

But for real systems risks, as a rule, are dependent. 
Then we have 

    


 


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                                   (9) 
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ij CC



                                                  (10) 

where ijC  - coefficients of risks connection of i  and j extraordinary situation; ij  and ij  - positive 
coefficients of elasticity of replacement of corresponding risks, allow to consider the facts of risks 
replacement, caused mainly by that simultaneously effective actions for decrease in all risks can't be 
done owing to limitation of time and resources. 

The current risks values ),,1( niri  , entering integral risks factor R are values changed in 
time with various speeds (for example depending on the seasonal factor priorities of solved 
technological problems essentially change).  

Thereof classical calculation of risks equation leads to problems of combinatory complexity 
on the initial data having objectively casual, uncertain, often qualitative (semiquantitative) nature. 

The decision of problems of risks analysis becomes complicated also because non-
formalizable threats can play considerable role. 

For the account of these factors it is offered to form values ir  as product of four 
components: 

)()()()( d
i

c
i

b
i

a
ii rrrrr  .                                                 (11) 

The component )(a
ir in (11) is estimated through categorizing of problems the performance 

of which is cancelled or delayed owing to the arisen extraordinary situation (for example, in gas 
supply systems categorizing can be defined through percentage distribution of categories of power 
users, affected in case of extraordinary situation because of the termination of gas supply). 

The component )(b
ir is estimated through maximum permissible losses (MPL) in 

extraordinary situations at existing technological levels and materials (subjectively established) 
calculations of such losses. 

Before achievement the level of MPL )(b
ir  can be considered as linear function 
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MPL
L)( ib

ir  ,                                                                (12) 

where iL - current level of losses. 

At exceeding of the level of MPL )(b
ir  fixed with value 1. 

The multiplier )(с
ir is estimated as dimensionless value, is calculated under empirically 

picked up statistical data about characteristics of objects in a binding to their territorial placing and 
has the meaning of indicator of absolute vulnerability of object on which the scenario of i  
extraordinary situation is initiated.  

In general )(с
ir can be considered as the indicator of environment aggression in which the 

object functions. 
For each territory owing to geographical factors, features of productive structure, 

sociocultural, ethnic and other differences the construction of unique models of calculation 
significantly found on personal assessment of the experts familiar with this specificity is required. 

And a last, valuation of )(d
ir  is in terms of ranging of objects types. It reflects quality of 

relative "susceptibility" of objects of the set type on a wide range of external changes of the factors 
defining )(c

ir . Values )(d
ir  are used so that to result estimations of risks of extraordinary situations 

initiated by events on objects of various types to a uniform scale. 
The offered scheme of calculation of integrated index R is mainly intended for the 

preliminary analysis of variants of system development on the basis of hierarchy of the indicators 
characterizing all aspects of extraordinary situations including both estimations of consequences 

)(a
ir , )(b

ir , and estimations of causes )(c
ir , )(d

ir . 
Lines of levels of R values  allow to build borders of reaction zones to changes of all 

spectrum of risks: крRR   (a "red" zone demanding change of the existing mode of functioning or 

additional means for decrease of risks )(c
ir and )(d

ir ), оркр RRR  (an «orange» zone demanding 

balancing of contract activity, carrying out of diagnostic and other actions), орRR   (a "green" zone 
in which pertinently to speak about growth and the further development of the system, introduction 
of new capacities and new risks connected with their occurrence). 

It is obvious that between developing object what is any of SCTES and its development 
potential, one of the components of which is the subsystem of safety (risk) management there 
should be a balance. High-yielding system with the underestimated risk is doomed to inefficient 
functioning owing to losses and on the contrary, the excessive safety concern leads to withdrawal of 
resources from a cycle of reproduction. 

Thus, for SCTES, having diversified multiphasic production and difficult space-territorial 
topology of estimations having only economic character are unacceptable. Expediently complex 
development of development potential control system which can be realized, for example, within 
the limits of audit formly occurred crisis and precritical situations, estimation and generalization of 
experience, development of system of indicators of early detection of threats to steady functioning 
of objects (groups of objects). 

Let's notice that during development of such indicators system for realization of situational 
approach to management of the company, it is necessary to accept a number of "reconciliatory 
agreements». 

The first main agreement consists that preservation of integrity of system and knowledge 
(information) about it is more significant, rather than economic success of separately taken 
productive element or productive-territorial formation. 

The second agreement: threats and risks are considered as factors, braking development 
potential and, accordingly, use of the device of an estimation of the analysis and risks management 
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without taking charge for risks corresponding to their competence by regulatory bodies is 
impossible. Concealment of risks or their revaluation’ll become a subject of economic auction, 
inappropriate in the conditions of approaching threats. 

The third agreement: pure «one-criteria» approach when to every disovered risk (social, 
economic, foreign policy) "cost" estimation of consequences of its realizations and (or) prevention 
of scenarios of their expansion is offered, isn't universal. 

Activity of any person separately, groups of people, labor collective of the company as a 
whole many-sided and various, the use of multi-criteria approach with elements of "indistinct" 
logic, with use (as far as data permits) detection device of the latent laws in conjunction with and 
mutual strengthening of numerous factors therefore is the most pertinent. 

The methodological approach taken as a principle offered method has advantage in 
comparison with the cost approaches, expressed that multi-criteria utility "absorbs" in itself in 
"share" participation all factors, but not just having cost expression ones (that, however, doesn't 
allow to remove all uncertainties). 

 
Multi-criteria utility is formed on the indicators having in the basis different dimensions, 

units and scales of measurements which are easily arranged in the presence of computing resources 
to specific features of investigated objects and risks generated by numerous factors at different 
circumstances  of place and time. 

Classical schemes of multi-criteria analysis, based on linear and multiplicative convolutions 
are successfully enough used in design and predesign analysis, at the decision of some problems of 
situational management in marketing, at risks estimation of continuation or termination of research 
and developmental works but as SCTES is dynamic system, it is offered to use more developed 
model of dynamic multi-criteria analysis which will allow to include the situations generated so-
called non-formalizable threats and risks-factors into consideration. 
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Abstract 
 
In this work we interest to study the beam behavior under monotonic loads in four point, to 

improve the mechanical properties of a concrete beam fiber and establish an identification card of 
the new concrete beams were comparing these beams witnesses. 

 
Keywords: matrix materials, reinforcements, fiber characterization, charge arrow 

monotonous beam, ductility. 
 

 
1. Introduction 
 
From earlier the research were based on how to reinforce materials with fiber plantin order 

to increase there mechanical resistance and improve there stability. In the past they used the 
‘’Torchis ‘’ was of clay reinforced with straw put in place by compression. 

(Kriker et al 2005) used the date palm fibers as building blocks in cement matrix 
composites. They showed that the increase in length and percentage of fibers improve the flexural 
strength and post-elastic hardness of the composite, but decrease the compressive strength. 
 The work presented here is an analysis of the behavior of fiber-reinforced beams armed as 
bellow: 

 
 Study  the effect of the incorporation of fibers in a cement matrix 
 Study  the recovery of fibers as reinforcements 
 Determine the increase in flexural strength under monotonic loading increasing 
 Observe the mode of cracking 

The first set of standardized test used to determine the compressive strength and tensile 
strength in bending. 

The second set concerns the 4-points bending beams (15x10x60 cm) that will be subjected 
to a monotonically increasing load until failure. 
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2. Presentation of the materials tested 
 
2.1 Materials in base  
 
For any current use of concrete fiber in the building was used aggregate crushers in the 

region with a dosage of 350 kg/m3 cement 
 
2.1.1 Cement 
The cement used is a type of cement CEMII 42.5 NA 442, physical properties are given in 

the table below 
 
Table 1: The results of standard tests carried out on this cement are given in Table 2 

 
Test   Chatelier expansion  specific surface  

(Blaine)mm2/g 
consistency normal  

start            End  
2h50mn     4h06mn 

 hot              cold  
2.90              1.65 

3891 26.91 

 
Table 2: Mechanical resistance cement (bar) 

 
                   tests                                                           Age 
                                                         2days               7days         28  days  
                   Compression (b)           143.2                  266.4             433.1 
                   Flexion          (b)            35.7                     58.3               77.9 
    
2.1.2 Mixing water 
The water used in mixing is the tap (dam Djorf ettorba), the results of physicochemical 

analysis are as follows:  
 
Table 3: Results of analysis of water-chemical physic 

 
PH Matter in 

suspension 
Chlorides 
Mg/l 

Sulfates 
Mg/l 

Residue sec 
105 C0 

Conductivity 
25 C0 µs/cm 

8,13 Null 234,3 123,02 800,00 0,93 
 
2.1.3 Aggregates 
The gravels are Petro graphically micritic limestone partly dolomitize sandstone, sand 

consists mainly of these proportions: Silica and limestone following rigorous testing of these 
materials are characterized as follows: 

 
Table 4: Particle size analysis has given us the following composition for a dosage of 350Kg/M3       

  
Designation 
Class d/D 

Product 
Sand 0/3                   Gravel 3/8              Gravel 8/15  

Mass volumique  Absolute 
                              Apparent  

2,5 t/m3                                                2,66 t/m3  

1,85 t/m3                              1,53 t/m3                 1,41 t/m3      
Surface properties%                                    1,0 %                 0,80 % 
Equivalent sable % 67 % 
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Coefficient LA                                            21 %≤ 40 % 
Coefficient  M.D.E                                           17 %≤ 35 % 
Nature calcareous silico          Sandy dolomitic limestone 
Fineness modulus 1,95 

 
Table 5 Composition of 1 m3 of concrete     

  
 % Volume 

absolute 
Mass volumique 
absolut [t/m3] 

Mass [Kg] Mass volumique 
Apparent [t/m3]  

Ciment 13,85 112,9 3,1 350 1 
Sand (0/4) 37,15 302,7 2,5 756,7 1,85 
Gravel(3/8) 16 130,4 2,66 346,9 1,53 
Gravel(8/15) 33 268,ç 2,66 715,2 1,41 
Concrete sec 100 815 / 2168,8 / 
Water / 185 1 185 1 

 
According to this composition were obtained concrete firm for a 1cm subsidence ratio (E / C 

= 0.53), the collapse is obtained for a de6cm (E / C = 0.60), for a Mix = 1.5%; Mix in means the 
ratio of fiber relative to the aggregates,. Here is the composition of the concrete practice 

 
Table 6: Composition of Concrete Practice Mix for 1 m3 of 1.5% 

 
 % Volume 

absolute 
Mass volumique 
absolut [t/m3] 

Mass 
[Kg] 

Mass volumique 
Apparent [t/m3]  

Ciment 14,29 112,9 3,1 350 1 
Sand (0/4) 36,71 290 2,5 725 1,85 
Gravel(3/8) 16 126,4 2,66 336,2 1,53 
Gravel(8/15) 33 260,7 2,66 693,46 1,41 
Concrete sec 100 790 / 2104,66 / 
Water / 210 1 210 1 

 
The identifications of the various physical and mechanical aggregates showed conformance 

to specifications of standard NF P18 301 (Georges 1990), Also, aggregates (G1, G2 and S) shows 
no abnormality in their grading curves, and Based on these results in these fractions fall into classes 
0 / 3, 3 / 8 and 8/15selon NF P18 560. 

 
2.1.4 Fibre Plant 
We use the leaves of palms date palms of the type of Taghit Oisis "Fegousse" to the 

saturated state antecedent research have shown a clear difference between concrete and full of dry 
fiber Fiber identification: 

 
A) Property-mechanical: test is used for axial tractions a sample of 20 fiber 

dimensions 0.35 mm thick, with a length of 30mm and a width of 6 mm, 
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Figure 1: Tensile force in function of the elongation 
 
The results are given in the following table: 

 
Table 7: characteristics Mechanical of the fiber 

 
Resistance to 
traction (Mpa) 

The longer % Coeff of absorption % Modulus of elasticity 
(Mpa) 

114 6,5 132 17,58 
   
B) Adhesion Fibre – Concrete 
 
The Essay adhesion pull-out test To evaluate the bond stress fiber matrix, we use the direct 

test method (pull-out), so we anchor the fiber in a cement matrix and then applying a tearing force 
on the fiber during the test is fixed fiber dimensions (length 150mm, width 7 mm, thickness 
0.55mm), the only variable is the anchorage length we take the length and 3 cm respectively 
1.5,2,2.5 are used specimens 

 

 
 

Figure 2: Breakout force versus slip 
 
Analysis of the pull-out curve: 
 
Pcr: the end of the elastic behavior, it is a critical shift Δcr (elastic zone)  
Pmax is the maximum force before detachment, which corresponds to a shift Δmax  
Δ0: the shift corresponding to the total detachment 
After several direct axial pullout tests in the following figure summarizes the adhesion  
Force based on the anchorage length 
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Figure 3-curve of the maximum force based on the anchorage length 
 

3. Experimental Method 
 
3.1 Compression test: Compression tests are carried out on cubes of 10x10x10 cm 3 after 

28 days 
 

 
 

Figure 4: test on cubes of 10x10x10 cm 3 after 28 days 
 
 

3.2 Tensile test 4-point bending  
They summers 7X7X28 performed on samples after 28 days   
                                    

 
 

Figure 5: 7X7X28 performed on samples after 28 days 

Co
nt

 d
e 

co
m

pr
es

si
on

 (M
pa

)

Mix %

Compression Test (Mpa)

Ряд2

Ряд3

Co
nt

 T
ra

ct
io

n 
(M

pa
)

Mix %

Tensille Test (Mpa)

Ряд2

Ряд3



Fedol Ghazi, Hamouine Abdelmadjid, Zouaoui Chikr el Mezouar  –BEAM BEHAVIOUR UNDER MONOTONIC LOADS 

 
RT&A # 02 (25)  

(Vol.1) 2012, June 
 

 

48 

After compression tests and tensile Note that there is a considerable drop constraint (over 
50%) are increasing the fiber content (Mix) as is consistent with studies Similar [2] 

 
Reinforcement 
For the longitudinal reinforcement is used under the terms of 4T10 non fragile (Section 

A.4.2 of BAEL) 
For transverse reinforcement conditions of shear imposes Φ6 spacing of 7 cm at the 

supports.  
We chose the minimum percentage to see the behavior of concrete in tension and 

compression. 
 
4. Results of static tests: 
 
4.1 Charge-arrow diagram  
Analysis by the Mix 
The results obtained can be classified our sample into 2 categories, the first consisting of the 

control concrete, and those of Mix 0.5%, 1.0%, the second category that of1, 5%, 2.0% and 3.0%. 
In the first category we find that the curves of the three components are combined in a first zone 
(zone without degradation) is the elastic zone and an area with a slight shift of the beginning of 
cracking (phase elasto-plstique) and finally a plastic phase that ends in failure. The tensile strength 
in bending of fiber-reinforced beams is 1.21% times more than the control concrete, for against the 
influence of fiber length appears in the arrow registered; it to an arrow of 2.46 mm for a fiber length 
of 6 cm and 2.54 mm for the fiber to 4cm Mix 0.5% in the second category there is clearly brought 
on beam ductility (an arrow of 3.8 mm for the Mix 3% to 6 cm fiber) against it by a break for a load 
of 55 KN of course this is a break due to compression 

 
4.2 Module of elasticity 
The modulus of elasticity is a constant mechanical stress of materials, is given by the slope 

of the first part of the diagram (σ, ε%) is an instantaneous modulus calculated first threshold. We 
note that for Mix 0.5% fiber is 4 cm in the same behavior materials by the cons there is a drop in 
module for the other  

 

 
 

Figure 6 : Module of elasticity 
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4.3 Ductility Index  
Among the important advantages of fiber concretes that improve the ductility of materials, 

which plays an important role in seismic areas (avoids sudden destruction of a building) is an 
important research in the future, so we see that the contribution of fibers to dramatically improve its 
ductility than the control concrete (Mix for 0.5%, 1% and 1.5%) 

 

 
 

Figure 7 : Ductility Index 
 

5. Conclusion 
 
The incorporation of the fibers of date palms wet brings a significant improvement in the 

behavior of beams in four point bending ductility and its bearing capacity, noting that actual 
performance summers were obtained without requiring a particular choice of cement (CPJ 45) 
commonly used with a dosage of 350 kg/m3 or natural aggregates after the crusher, recalling that 
the compressive stress of the control concrete was 21.5 MPa, our goal was to explore the possibility 
of using fiber in the current building, after analyzing the different steps it is clear that the Mix 0.5% 
of the fibers of 4 cm gives the best results, the tensile strength was 1.21% higher than the control 
concrete by cons ductility was lower than the control concrete, the increase in fiber actually 
increased its plastic deformation for the Mix 0.5% (4 cm) is the strain at break is greater than that of 
control concrete by 50% but in a sharp decrease its compressive stress and tensile 
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ABSTRACT 
 
Accuracy asymptotics for differences between prelimit and limit distributions of nodes 

powers in models of random growing networks are constructed. A rate of a convergence in these 
relations is power. Obtained formulas allow to ground the continuum approximations for considered 
models. 

  
 
 
1. INTRODUCTION 
 
Main aim of this paper is to estimate a rate of a convergence to limit distributions in models 

of growing random networks [1]. One of the most convenient methods to define limit distribution of 
node exponent is the continuum approximation [2], [3]. It is based on asymptotic behavior of 
considered distribution when a number of steps tends to the infinity. In [4, p. 124] it is marked that 
``a problem of strict formal description of statistical ensemble of random networks with fixed 
distribution of nodes exponents is not yet solved``. An absence of correct mathematical base of the 
continuum approximation makes susceptible results obtained using this approximation in spite of its 
calculation convenience. 

In this paper a ground of the continuum approximation in a calculation of limit distributions 
for main models of growing random networks is made. Here the model of growing exponential 
network, the model of Barabasi and the model of Dorogovtsev are analyzed. Exact asymptotic of a 
difference between prelimit and limit distributions when a number of steps tends to the infinity is 
obtained and this asymptotic is power. Such results are based on a construction of recurrent 
relations for prelimit distributions of nodes exponents distributions and on asymptotic series in 
these relations. 

 
2. EXPONENTIAL NETWORKS 
 
Consider a model of growing exponential network in which new node is connected with 

each existing node with equal probabilities. Denote  p k,s, t  the probability that on the step t 1  
the node s,1 s t,   is connected with k  arcs of non oriented graph of exponential network. Then 
k  is called the power of the node s . In [2] the following relations are obtained (here ij  is the 
Kroneker index): 

  k1p k, t, t ,          p k 1,s, t t 1 p k,s, t
p k,s, t 1 =

t
  

 , k 1 . 

Designate 

    
t

s 1

1P k, t p k,s, t
t 

   (1) 
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then the recurrent relation 
          k1t 1 P k, t 1 P k 1, t t 1 P k, t        , k 1 , t 1 , 

is true and  P 1,1 1 ,  P k, t 0 , k t 1  . So for k 1  

     
 

      
 

t t t 1 P 1, t t t 1 t 1 t 2 P 1, t 1
P 1, t 1 ...

t 1 t t 1 t
       

    
 

 

 
 
1 ... t 1

t 1 t 2
 

 


, t 1 , (2) 

and for k 2  

       
 

t P k 1, t t t 1 P k, t
P k, t 1

t 1 t
  

  


 

          
 

t P k 1, t t 1 P k 1, t 1 t 1 t 2 P k, t 1
...

t 1 t
        

  


 

 
   

t

j 1

1 jP k 1, j
t 1 t 

 


. (3) 

From the last formula 

    
1 ... t 1P 2, t 1 ,
2t t 1 4
 

  


t 1 , (4) 

      
2 ... t 1 1P 3, t 1
4t t 1 8 4t t 1
 

   
 

, t 1 . (5) 

Denote     k
kf t P k, t 1 2   , k 1 , then from the formulas (2) – (5) we have 

    1 2f t f t 0  ,  3 2
1f t ~

4t
 , t  . (6) 

Theorem 1. For t   the relations 

  
k 3

k
k 2

C ln tf t ~
t



 , 
 k

1C
4 k 3 !




, k 3 ,                                                  (7) 

take place.  
Proof. For k 3 the formula (7) is a corollary of the formula (6) then by an induction we 

obtain from (3) that 

       
t

k 1 k 1 k 1j 1

1 1 1f t P k 1, t 1 jP k, j
t t 12 2  


      


 

       
 

k 2t t
k

k kk k 1 2
j 1 j 1

C ln t1 1 1 1j f j 1 jf j 1 ~
t t 1 t t 12 2 k 2 t




 

            
, t  . 

The formula (7) is proved. 
 
Remark 1. In all sections of this paper the continuum approximation is based on the limit 
 

          k kt P k 1, t P k, t t f t f t 1 0      , t  . (8) 
 
In this section the formula (8) is a corollary of the formula (7). 
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3. MODEL OF BARABASI-ALBERT 
 
Consider Barabasi-Albert model of growing network [1] in which new node is connected 

with each existing node with probability proportional to a power of existing node. Denote  p k,s, t  
the probability that on the step t 1  the node s, 1 s t,   is connected with k  arcs of non oriented 
graph of Barabasi-Albert network. In [2] the following relations are obtained 

  k1p k, t, t   ,      k 1 kp k,s, t 1 = p k 1,s, t 1 p k,s, t
2t 2t
      

 
, k 1 . 

From the formula (1) we have 

        k1
k 1 kt 1 P k, t 1 P k 1, t t P k, t

2 2
          

 
, k 1 , t 1 , 

 P 1,1 1 ,  P k, t 0 , k t 1  ,  P 0, t 0 , t 1 . 
Analogously with (2), (3) it is not difficult to obtain 

  
tt

j 1s j

1 1P 1, t 1 1 1
t 1 2s 

           
, t 1 , (9) 

      
tt

j 1 s j 1

k 1 kP k, t 1 P k 1, j 1
2 t 1 2s  

          
, k 2 , t 1 ,

t

t 1
1


 . (10) 

Lemma 1. For A 0  the equalities 

  
   

tt

2
j 1s j

tA t A1
s 1 A 1 A 1 A 

            
,    

 
1 A t

t
t 1

  
 

 
, (11) 

  
   

tt

j 1s j 1

tA t 11
s 1 A 1 A 1 A  

           
 (12) 

are true. Here  z  is the gamma function. 

Proof. Denote  
tt

j 1s j

AS t 1
s 

     
 

 then 

   
   2

11 AS 1 1 A
1 A 1 A 1 A


   

    
, 

consequently the formula (11) for t 1  is proved. Suppose that this formula is true for t and prove 
it for t 1  

    
t 1t 1

j 1 s j

A t 1 AS t 1 1 S t 1
s t 1



 

           
 

 
   

 
   2 2

t t 1t 1 A t A t 1 A
t 1 1 A t 11 A 1 A 1 A 1 A

           
           

. 

The relation (11) is proved for all natural t . The formula (12) may be proved similar. 
 
Remark 2. In left sides of the formulas (11), (12) we have functions defined for A 0 , 

t 0  and on right sides - the gamma functions which may be non defined for some A 0 , t 0 . 
But ratios of these gamma functions in such points may be redefined using limit transition to these 
points. 
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Designate 

      kf t P k, t 1 k   ,      
4k

k k 1 k 2
 

 
, k 1 . (13) 

Theorem 2. For t  and k 1 the following relations are true 

  
3/ 2

k
tf t ~
3




. (14) 

Proof. It is known [5, subsection 1.18] that for A 0  

    
 

A1 A t
t ~ t

t 1
  

 
 

, t  . (15) 

Assume that k 1  then the relation (14) is a corollary of the formulas (9), (10), (15) for 
A 1/ 2  

       
   1 2

t1 t 1/ 2 2f t P 1, t 1 1 1 ~
t 1 3/ 2 33/ 2 3/ 2

        
    

 

 
1/ 2 3/ 24t t~

9 3 / 2 t 3

 


  

, t  . 

Suppose that the formula (14) is true for k 1  and prove it for k , k 1 . Represent  kf t  in 

the form      k k kf t a t b t   where 

       
tt

k
j 1 s j 1

k 1 ka t k 1 1 k
2 t 1 2s  

           
, 

     
tt

k k 1
j 1 s j 1

k 1 kb t f j 1 1
2 t 1 2s

  

         
. 

Consequently from the formulas (12), (13) for A k / 2  we have 

     
tt

k
j 1s j 1

4 1 k 1a t 1
k k 1 2 t 1 2s k 2  

            
 

   
 

   
t4 1 t 1 1

k k 1 2 t 1 1 k / 2 1 k / 2 1 k / 2 k 2
  

               
 

 
      

 
 

1 k / 24 t k t
~

2 t 1 k k 1 1 k / 2 1 k / 2 1 k / 2

  


      
, t  . 

From the induction assumption  
3/ 2

k 1
tf t ~
3



 
, t  , and from the gamma function 

properties and from the formula (15) for A k / 2 we obtain 

       
   

k / 2 3/ 2tt
k k 1 3/ 2 k / 2j 1 1

tk 1 k 1 j tb t f j 1 ~ d j ~ ,
2 t 1 j 2 t 1 3 j t 3






 
  

    
 t  . 

Then asymptotic relation (14) is true for arbitrary natural k . 
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4. MODEL OF DOROGOVTSEV 
 
Consider Dorogovtsev model of growing network in which new node is connected with each 

existing node with the probability proportional to a sum of its power (a number of arcs incoming to 
existing node) and some constant a 0 . Here a 0  is model parameter. Denote  p k,s, t  the 
probability that on the step t 1  the node s, 1 s t,   has the power k . In [2] we obtain the 
relations  

         k 1 k ap k,s, t 1 p k 1,s, t 1 p k,s, t ,
t 1 a t 1 a

  
        

   k0p k, t, t ,   k 0 . 

Designate 

   
t

s 1

1P k, t p k,s, t
t 

   

then 

                k0
1P k, t 1 P k, t a 1 t 1 k a P k 1, t k 1 a 1 a

t a 1
              

, 

 P 0,1 1 ,  P k, t 0 , k t ,  P 1, t 0  , t 0 . 
Analogously with the formulas (9), (10) it is not difficult to obtain 

      
t 1 t 1t 1

s 1j 1 j s

1 a a aP 0, t 1 1 1 1
t a 1 j a 1 j a 1

 

 

    
                    

, (16) 

        
t 1t

s 1 j s

k 1 a k aP k, t 1 P k 1,s 1
t a 1 a 1 j



 

   
         

, k 0 . (17) 

Denote    kA k a / a 1   , k 0 , 

       
   
1 2a k a

k 1 a
a k 2 2a

   
  

   
,      kf t P k, t 1 k   , k 0.  

Theorem 3. The formulas 
  01 A

k kf t ~ C t  , t  , k 0 , 

 
     

0
0 2

00 0
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1 A1 A 1 A

 
    

,  
   

k 1
k

k 0

C k 1 a
C ,

a 1 A A
  


 

 k 0 , (18) 

are true. 
Proof. From the formulas (11), (15), (16) for 0A A  we have 

       
 

   
   
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        

       
 

 
01 A0

0
t 1 C1 a ~ C t

1 2a t
  

 


, t  . 

For k 0  we seek      kf t P k, t 1 k    in the form      k k kf t a t b t  , 

       
t 1t

k
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s 1 j s
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t a 1 j



 
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        
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     
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Ak 1 ab t f s 1 1
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


 
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       

. 
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Then from the formula (15) for t   and kA A  we have 

   
   

t 1t 1 k
k

s 1 j s

(k 1 a) k 1 Aa t 1 1 k
t a 1 j



 

      
          

 

     
    

   
     

kA 1

2 2
k k k k

k 1 a k 1 t 1 k 1 a k 1 t
~

t a 1 1 A 1 A 1 A a 1 1 A

          


         
. 

From the induction assumption   01 A
k 1 k 1f t ~ C t 
   and from the formula k 0A A  and 

from the formula (15) for kA A  we obtain 

           
 

t 1t t
k

k k 1 k 1
s 1 s 1j s
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
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 

     
          

 

 
  

0

0

1 Ak 1
k1 A

k 0

C k 1 a
~ C t

t a 1 A A
 



 


 
, t  . 

Consequently asymptotic relation (18) is proved for arbitrary natural k . 
 
Remark 3. A consideration of Dorogovtsev model [2] is connected with its wide application 

to modern models of growing random networks. For small a this model gives sufficiently simple 
and convenient description of the Internet network with power distribution network nodes 
exponents 

  2 ak ~ Dk  ,    
 

1 a 1 2a
D

a
  




, k   

with the parameter close to two [6].  
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ABSTRACT 
 
The Motorways of the Sea is rather a new concept and, thus, is still in the process of 

development by the European Commission and in the Baltic Sea Region. The Baltic Sea Region is 
one of the most dynamic growth areas. Due to this fact the new ideas and technologies are needed 
to optimize the sea transport system. In the paper the simulation model for the system safety state 
evaluation is presented. The simulation program can constitute a base for decision-support tool, on 
the level of safety management, especially to optimally plan the safety transport system.  

 
 
1  INTRODUCTION 
 
The Motorways of the Sea is (MoS) still in the process of development by the European 

Commission in the Baltic Sea Region. Cargo transported in containers and trailers have increased 
rapidly, also oil tanker traffic has seen a noticeable increase in the Baltic. In the Motorways of the 
Sea the focus should be put on the safety of shipping. Sea motorways main elements can be point 
out as a part of the European transport corridors network, see Paulauskas & Bentzen (2007). 

The safety of MoS routes and quality assurance of the main fairway system is the most 
important problem. Traditional risk analysis approach calculates the possibility of ship collision 
with historical data, mathematical models and opinions of experts, which evaluates the present risk 
level. However, there are not any historical data of MoS crossing that can be used for the analyses 
to describe the future of the studied area. 

 

 
 

Figure 1. Proposals from the joint Baltic Call for MoS, www.pisil.pl 
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So it is necessary to do a risk analysis based on a mathematical model, with a combination 
of forecasting and simulating system, which should be verified by a concrete example. 

 
2 STOCHASTIC MODEL 
 
The model can be used to protect safety of navigation in the congested areas. This model 

presents an approach for modeling both spatial interactions and detailed succession dynamics in the 
MoS crossing by placing the semi-Markov processes within a class of stochastic process called 
piecewise deterministic Markov (PDM) processes. 

A piecewise-deterministic Markov process is a stochastic process that evolves 
deterministically until a random time when the process jumps to a new (random) state. PDM 
processes were introduced by Davis (1984). These processes are readily amenable to computer 
simulations. PDM processes have been used in a variety of settings, including storage processes, 
capacity expansion problems, and financial investment models. 

To define a PDM process we have to define four basic components such as: 
 the state space, 
 a description of the deterministic motion between jumps, 
 the rate at which jumps occur, 
 the distribution of the state after a jump has occurred. 
Each of these components is described below within the context of ships dynamics. The 

deterministic motion of the PDM processes given here is only used to keep track of the times that 
ships have been in their current states. In fact, the processes used here are piece-wise linear. A MoS 
intersection is divided into several cells (Fig. 2). The area within a cell is assumed to be 
environmentally homogeneous – belongs to only one MoS or crossing place. 
 

 

 
 
 

Figure 2. An example of a MoS intersections’ grid of three types of cells 
 
 
The state of a MoS intersection is determined by the distribution of ships within it and the 

respective functional roles of those ships. This paper focuses on modeling the dynamics of cells. 
Assume that a cell may be in any of 5 states and denote the set of possible states by S. The Table 1 
specifies five status types or states defined by a ship appearance. 
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Table 1. Status types and state numbers 
 

State Number  Status Type 
1 Gap 
2 A ship entering a cell 
3 A ship in a cell 
4 A ship living a cell 
5 Collision alert 
 
The state space of the MoS crossing is defined to be, (Monticino et al. 2002) 
 

.)),0[( NSE                                                                (1) 
 
The state of the MoS crossing at time t is 
 

)))(),((,)),(),((( 11 ttsttsX NNt    
 

where N = number of cells; si(t) = is the state of cell i at time t; i(t) = is the time that the plot has 
been in state si(t) since the last time it changed states. 

The deterministic portion of the PDM processes is used here only to keep track of how long 
cells have been in their current states. Thus, between jump times, the state of the each cell remains 
constant, while the time in that state evolves at unit rate. 

 
3 COLLISION FREQUENCY MODELS 
 
There is one major difference between two collision types  (Fig. 3). At X-shaped 

intersection the traces of two ships always intersect, whereas they on average only intersect in one 
out of two cases at Y-shaped intersection. This means that the geometrical collision probability 
needs to be corrected by a factor of 0.5 in case of a Y-shaped intersection. 

 
 

 
 
 

Figure 3. The two collision type,  www.sofartsstyrelsen.dk/SiteCollectionDocuments/CMR/ 
Sejladssikkerhed,%20GMDSS%20og%20SAR/Bassy/BASSY%20Evaluation.pdf 

 
 
The Pedersen’s model considers the crossing of two waterways, (Pedersen 1995). Ships are 

grouped by their type and length in order to utilize the different characteristics of vessel groups like 
the average speed or manoeuvrability which varies significantly from one ship group to another.  
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Model of Fowler and Sørgård suggest that the frequency of critical situations is calculated 
assuming that traffic movements are uncorrelated, (Jutta 2010). A critical situation denotes that two 
ships are crossing within half a nautical mile from each other. Encounter frequency is estimated by 
a pair-wise summation across all shipping lanes at the considered location. They do not present a 
practical procedure to calculate the number of critical situations.  

Macduff’s Model is build on molecular collision theory, (MacDuff 1974). Ships on a 
shipping lane are regarded as a homogenous group: they are navigating at the same speed and they 
have similar dimensions.  

Cowi Crossing Collision Model  defines crossing collision as a collision that includes ships 
sailing along different waterways. Two ships can theoretically collide if their traces intersect. The 
possibility of a collision between two ships navigating at intersecting routes can be expressed by 
critical time interval. 

 
4 SIMULATION APPROACH 
 
The necessary time to make a decision by navigator usually amounts 3 to 6 min and this 

decision time can be also considered in the collision checking range (Xue et al. 2009). However as 
we consider only the crossing situation, in which may be involved more than two ships in close 
proximity, the average checking range on the waterway should be smaller. For example, nowadays, 
for security reasons it is recommended that Automatic Identification System AIS, thereby 
controlling system, allows for transmitting minimum 2000 messages per minute. 

First we have to find the cell size, as we will determine the simulation time step with the use 
of it. We assume, similarly as in the Nagel-Schreckenberg model presented in (Nagel & 
Schreckenberg 1992, Wahle et al. 2001), that the waterway is divided into cells with a length of 

.1 crossCS   We determine the total crossing density cross  according to the following formula: 
 

},,max{ 1312  cross  where ,2
2

2
112    2

3
2

113                              (2) 

and ,
111

1
1 LOAVT

LOA


  ,
222

2
2 LOAVT

LOA


 ,
333

3
3 LOAVT

LOA


  

 
LOA1 = a length of a ship on the main waterway; LOA2, LOA3 = a length of ships on the 

lateral waterways 2 and 3; T1, T2, T3 = mean times between ships’ starting for waterways no 1, 2 
and 3. 

The article deals with different levels of risk depending on the mutual distance of vessels 
that are on collision courses. Distance is measured in taxicab metric, according to the sequence of 
grid cells. We denote a size of a cell by CS. To determine the threshold values of safety distances 
defining the states of collision risk we have to consider following results. A ship domain is the area 
around the vessel that should be avoided by other vessels and an overlap of two vessels’ domains is 
concerned with a very high risk of collision. A length of a ship domain is assumed to be equal 
4LOA (Fujii & Tanaka 1971) and we consider this values as a critical distance of high risk of 
collision to define the first risk level. To define the second risk level we assume from references a 
distance of passing clear CPA (Closest Point of Approach) equal to 1 nm (1852m). This distance of 
passing clear will be considered in the simulation as a critical value between high and low risk of 
collision. Further we take a distance of  2 nm as a safety distance corresponding to the low risk of 
collision. 

Then we define following risk levels: 
high risk of collision – both ships are entering a cell and number blank cells between two 

ships is equal at least d1-2, one ship is entering a cell and second ship is in a cell or leaving a cell 
and number blank cells between two ships is equal at least d1-1, both ships are in a cell or leaving a 
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cell and number blank cells between two ships is equal at least d1; if none of these conditions if 
fulfilled we define this situation as a collision alert; the distance d1 is determined from the equation:  

 

;
44 max1

1 






 


CS
LOALOA

d                                                         (3) 

 
where  d  denotes the integer part of number d plus 1; LOA1 = a length of a ship on the main 
waterway; LOA2, LOA3 = a length of ships on the lateral waterways 2 and 3; LOAmax = max{LOA2, 
LOA3}; CS = size of a cell; 

 
low risk of collision – both ships are entering a cell and number blank cells between two 

ships is equal at least d2-2, one ship is entering a cell and second ship is in a cell or leaving a cell 
and number blank cells between two ships is equal at least d2-1, both ships are in a cell or leaving a 
cell and number blank cells between two ships is equal at least d2, were distance d2 is determined 
from the equation:  

 

;1852
2 





CS
d                                                                   (4) 

 
negligible risk of collision – both ships are entering a cell and number blank cells between 

two ships is equal at least d3-2, one ship is entering a cell and second ship is in a cell or leaving a 
cell and number blank cells between two ships is equal at least d3-1, both ships are in a cell or 
leaving a cell and number blank cells between two ships is equal at least d3, were distance d3 is 
determined from the equation: 

 

.18522
3 



 


CS

d                                                                 (5) 

 
We assume that the simulation time step corresponds to time of vessel moving with the 

largest velocity from one cell to the next. Thus the simulation step time, denoted by t , is 
determined from the formula: 

 

,
maxV

CSt   where },,max{ 321max VVVV                                               (6) 

 
and size of a cell CS was described with use of crossing density given in (2). Velocities of vessels 
on each waterway 321 ,, VVV  in knots in the program corresponds to the speed measured in cells per 
time step. 

 
4.1 Simulation language and environment 
 
The computer program is written in Java language using SSJ V2.1.3 library with support of 

stochastic simulations. The documentation of SSJ can be found in Simard (2012). The Java platform 
is the object-oriented programming language that provide several standard packages. To perform 
the simulation we use a javaSimulation package that is devoted to process-based discrete event 
simulation. The package is a Java implementation of the simulation facilities provided by the 
programming language SIMULA. The javaSimulation package provides three different approaches 
to discrete event simulation: event-based, activity-based and process-based. The description in 
details along with appendices containing Java source code and documentation are given in the 
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report (McNab 1996). 
Java-based simulation tools are very popular because it is the only object-oriented 

programming environment that effectively supports standardized components (Kilgore et al. 1998). 
For example the book (Garrido 2001) concentrates on object-oriented modeling of simulation using 
Java and practical simulation techniques. 

 
4.2 Simulation model 
 
Discrete-event system is a system completely determined by random event times and by the 

changes in state taking place at these moments. Basic approaches for constructing a discrete-event 
simulation model are event scheduling, activity scanning and process interaction approach. The 
event scheduling approach focuses on event, i.e. the moment in time when state changes occur, 
while process interaction focuses on processes, i.e. the flow of each entity through the system. In 
the activity scanning approach in each cycle of simulation there are independently checked 
conditions of all events occurring. For a comprehensive description of basic methods and 
techniques related to computer simulation of discrete event systems, a reader is referred to Tyszner 
(1990). In the paper we will concentrate on simulation of discrete-event systems by event 
scheduling approach.  

The event oriented simulation concentrates on handling and sending events. The activity 
following each event is implemented as an event routine and the event routine may schedule new 
events and re-schedule existing event. In this approach we have to define states, events, rules telling 
what will happen when an event occurs and some parameters.  

In the simulation model there are considered three sea motorways with four points of 
collision marked at the scheme (Fig. 4). Collision points number 1 and 3 are X-shaped intersection 
while collision points number 2 and 4 are the type of Y-shaped intersection. These two types of 
collision are described in Section 3. The main flow is on the sea motorway 1. The collision problem 
includes the characteristics of the ships and their motion before, during and after collision. 

 

 
 

Figure 4. The scheme of the collision problem 
 
 
4.3 Computer program 
 
We consider following major ship types: a tanker, a container carrier, a passenger ship, a 

RoPax, a general cargo ship and fast ferry. The mean velocity and length for different types of 
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vessels at each waterway is given by default from empirical data for maritime traffic in Gulf of 
Finland presented in (Montewka et a. 2010). The user can change manually, given by default while 
computer starting, values of the vessels’ velocity and length (Fig. 5). 

 

 
 

Figure 5. The starting window of the simulation program 
 

In the simulation the ships’ starting times can follow different distribution. We can choose 
these distribution on the main and lateral waterways from the following list: deterministic, uniform, 
exponential, Erlang, normal, log-normal, Beta, gamma and triangular. Thus using the program there 
is possible to simulate also non Poisson streams. In Fig. 6 there is presented a program window that 
is showing the moment of reading data and choosing the distributions of ships’ starting times. The 
mean waiting time between ships’ departing for each sea motorway is given by the user. Given by 
default the percentage of the starboard ships at each waterway can be modified by the user. In the 
simulation the user can also change the distances to collision points. In the case the flow of vessels 
into waterway is uniform there is also necessary the minimal accepted distance between vessels, 
that is given by default in the computer program depending on the vessels length. It is assumed by 
default that the intervals times between successive notifications at the sea motorways 2 and 3 have 
exponential distribution and at the sea motorway 1 an uniform distribution. 

  

 
 

Figure 6. The program window for reading parameters concerned with vessels’ move 
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The scheme of the computer program used for simulation is presented in Fig. 7 and the rules 

applied in the computer simulation can be described as follows: 
 

object – ship 

event list for 
waterway 1 

event list for 
waterway 2 

event list for 
waterway 3 

object – ship 
object – ship SIMULATION MODEL 

starboard headway 

event list to 
collision 
point 1 

event list to 
collision 
point 2 

event list to 
collision 
point 3 

event list to 
collision 
point 4 

headway 
 

headway 
 

time 
scaning 

RUN 

START 

initial data 

run 
simulation 

control 
command 

 

event 
scheduler 

execute and  
re-schedule current 

events list  
– check risk of  
ships collision 

 

end 
simulation 

statistical 
results 

END 

starboard starboard 

according to the selected 
distributions 

DATA 
BASE 

main waterway 
lateral waterways 
 

 
 

Figure 7. The scheme of the simulation program 
 
 the system saves data and gives results from the point of view vessels being on the main 

waterway 1; we assume that vessels on the main waterway 1 are stand-on vessels, while vessels on 
the waterways 2 and 3 are give-way vessels, 

 at each time step the system examines the ship closest to the crossing on each waterway 
and if the safety state of a ship on the waterway 1 has changed the system saves this transition and 
the time during which the ship was in the previous safety state, 



A. Blokus-Roszkowska, L. Smolarek - COLLISION RISK ESTIMATION FOR MOTORWAYS OF THE SEA 

 
RT&A # 02 (25)  

(Vol.1) 2012, June 
 

 

66 

 if the ship on the main waterway 1 is not fully safe the system also examines the next ships 
on this waterway, 

 in the considered crossing situation the starboard ships on the waterway 3 are safe as they 
do not cross any other waterway, 

 in the vessel on the waterway 3 follows headway this waterway then the system checks 
situation at the collision point 1 and 2 and the safety state of the vessel, if there is on the main 
waterway 1; after passing the collision point 1 if there is a ship on the waterway 1 going starboard 
the system checks the situation at the collision point 2, if there is no starboard ship on the waterway 
1 the vessel on the waterway 3 is safe and it is not controlled by the system, 

 the starboard ships on waterway 1 are examined at the collision point 2, while the headway 
ships are first checking at the collision point 1, next at the collision point 3 and 4; after passing the 
collision point 4, there is assumed the negligible risk of collision, 

 the starboard ships on the waterway 2 are examined at the collision point 4, while the 
headway ships are examined at the collision point 3, 

 the process is repeated throughout the entire simulation time. 
 
In the computer program, according to the accepted before risk levels and their critical 

distances defined by (3)-(5), there are assumed following states: 
state 0 – collision alert;  
state 1 – high risk of collision; 
state 2 – low risk of collision; 
state 3 – negligible risk of collision. 
We denote by p(i), i = 0,1,2,3, probability of system being in the safety state i. 
 
4.4 Results of the program 
 
As a result of the program we obtain following data: the matrix of the system transitions’ 

number between the states and the realizations of the conditional sojourn times at the state until the 
transition to the other state. From these results there are also determined the matrix of probabilities 
of the system’s transitions between the states and the vector of probabilities of the system’s being in 
the particular states during the simulation time. The obtained from the simulation results can be 
used for further identification and safety analysis of the system (Blokus-Roszkowska et al. 2011). 

The proposed simulation model is sensitive to its changing parameters, that is depicted at the 
graph (Fig. 8). For this reason the input data of the program must be properly selected. The obtain 
from the simulation results show the dependency of probabilities of system being in the safety states 
during the simulation time on the mean time between vessels’ departure i.e. on the intensity, at the 
sea motorway 1. In the presented example we assume that the departure time of a ship on the main 
waterway follows an uniform distribution and the interval times between ships’ departure on the 
crossing waterways are log-normal. We assume that the mean time between ships’ departure on the 
sea motorway 2 equals 1.2 h with standard deviation 0.9 h and on the sea motorway 3 equals 1.3 h 
with standard deviation 1 h, equivalently.  
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Figure 8. Probability of being in the safety states depending on the mean time between vessels’ 
departure at the sea motorway 1 

 
 
5 CONCLUSIONS 
 
Java can expose the benefit of computer simulation to a larger audience of problem-solvers, 

decision-makers and trainers. Java-based simulation components could be easily distributed, 
executed and modified throughout the word over the internet. The main advantage of Java is cross-
platform compatibility that can eliminate the need to maintain different versions of the software. 
Considering this Java-based programs can provide solutions or assistance in safety transportation 
system planning and support cooperation or exchange of information between ships, ports and 
terminals. The presented program can serve a base to create a new service that supports the 
development of the concept of sea motorways. The simulation programs can optimize the logistical 
transportation system with integration of sea motorways. 

The idea of the paper was to develop the simulation environment to test the features of 
computer-controlled sea motorways. The proposed simulation model for safety state evaluation can 
be helpful on the level of safety management. The model allows to predict safety state depending on 
changing traffic strength at sea motorways. With the concept of safety management such simulation 
models could face the problem of sea transportation development and provide new solutions for 
operational optimization and safety transportation system planning. 
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ABSTRACT 
 
In flow networks, from the quality and service management point of view, measurement of 

the transmission ability of a network to meet the customers demand is very important.  To meet the 
ultra high reliable requirements of such networks, a heuristic method for reliability redundancy 
optimization of flow networks using composite performance measure (CPM) integrating reliability 
and capacity has been proposed. The method is based upon the selection of main flow paths and 
backup paths and then optimizing main paths on priority basis. Thus, the reduced computation work 
makes the proposed algorithm suitable for designing of large, reliable telecommunications 
networks.  

 
Keywords: flow networks; capacity related reliability; constrained redundancy 

optimization; heuristic algorithm.  
 

1 INTRODUCTION  
 
Constrained reliability redundancy optimization of networks has generally been studied with 

reliability as connectivity measure. The practical systems such as computer networks, 
telecommunication networks, transportation systems, electrical power transmission networks, 
internet etc. can only transport limited amount of flow therefore these are termed as flow limited 
networks. To meet the ultra high reliability requirements of such networks, a heuristic method for 
reliability redundancy optimization of flow networks has been proposed.   

Literature is enriched with reliability redundancy optimization of networks with connectivity 
only as a measure of performance (Sharma & Venkateswaran 1971, Aggarwal 1976, Golden & 
Magnanti 1977, Gopal et al. 1978, Lee  1980, Bodin et al. 1982, Xue 1985, Dinghua 1987, Fredman 
& Tarjan 1987, Kim & Yum 1993, Shen 1995, Martins & Santos 1997, Schrijver 1998, Ahuja 1998, 
Kuo & Prasad 2000, Kuo et al. 2001, Park et al. 2004, Pascoal et al. 2005, Kumar et al. 2009, 
2010a, b, 2011).  However, reliability redundancy optimization of flow networks has rarely been 
studied.  In present days context existing methods do not fulfil the requirements of management of 
quality of service. The reliability redundancy optimization techniques discussed in Gopal et al. 
(1978), Dinghua (1987), Kim & Yum (1993), Shen (1995), Park et al. (2004), Kumar et al. (2009, 
2010a, b, 2011) are not suited to flow networks. This paper presents a technique for reliability 
redundancy optimization of flow networks using combined performance measure named capacity 
related reliability (CRR).   
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A path is a sequence of arcs and nodes connecting a source to a sink.  All the arcs and nodes 
of network have its own attributes like delay, reliability and capacity etc..  From the quality and 
service management point of view, measurement of the transmission ability of a network to meet 
the customers demand is very important (Lin 2006).  When a given amount of flow is required to be 
transmitted through a flow network, it is desirable to optimize the network reliability to carry the 
desired flow.  In such cases, the system reliability is the measure of quality of the system capability 
to transmit desired flow.  The capacity of each arc (the maximum flow passing the arc per unit time) 
has two levels, 0 and/or a positive integer. The system reliability is the probability that the 
maximum flow through the network between the source and the sink is not less than the demand 
(Golden & Magnanti 1977, Lee  1980, Bodin et al. 1982, Fredman & Tarjan 1987, Ahuja 1998, Lin 
2003, 2004, Pahuja 2004, Lin 2006, 2007a, b).  For determining the reliability it is generally 
assumed that network is capable of transmitting any required amount of flow between source (s) 
and terminal (t) nodes of the network.  This presumption is neither valid nor justifiable for real life 
systems as links and nodes can carry only limited amount of flow.  In 1980 Lee did the pioneer 
work of integrated both capacity and reliability & named it combined performance measure as 
capacity related reliability (CRR) and also termed such networks as flow networks.  Max-Flow-
Min-Cut theorem has been used to determine the capacity of the network (Sharma & 
Venkateswaran 1971, Xue 1985, Shen 1995, Martins & Santos 1997, Schrijver 1998, Lin 2003, 
2004, Park et al. 2004, Lin 2006, 2007a, b). 

 
2 COMPOSITE PERFORMANCE MEASURE  
 
Reliability under flow constraint is a more realistic performance measure for flow networks. 

The concept of weighted reliability introduced by Aggarwal (1976) requires that all the successful 
states qualifying connectivity measure of the network be enumerated. The probability of each 
success state is evaluated and is multiplied by the normalized weight (Aggarwal 1985). Rushdi 
(1988) evaluated the same performance index as evaluated by Aggarwal 1985 using decomposition 
approach. Methods given by Aggarwal (1985), Rushdi (1988), and Shakti (1995) generate both 
cancelling (failed) and non-cancelling (success) terms.  

The following section presents a heuristic algorithm for reliability redundancy optimization 
of flow networks using composite performance measure (CPM) and the method has been utilized to 
determine the capacity related reliability performance index.  

 
2.1 Notation  
 
al(X) Sensitivity factor of  lth minimal path set 
bi(xi) Subsystem selection factor for ith subsystem with ix components 
Cj Total amount of resource j available 

)(
/)(

iji

i
j

i

xc
xg

 Amount of resources-j consumed in subsystem-i with ix components / Cost of 

subsystem i for jth constraint. 
h(.) Function yielding system reliability; dependent on number of subsystems (n) and 

configuration of subsystems 
k   Number of constraints, j = 1, 2,…, k 

)(xL  ),...,,(
21 nxxx LLL , Lower limit of each subsystem i, 

m   Number of main minimal path sets, l = 1, 2,., m   
n  Number of subsystems, i = 1, 2,…, n 

lP  lth minimal path set of the system 
Ps (l1,l2,…,lmin): priority vector s.t. l1 and  lmin are the number of minimal path sets arranged 
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in decreasing order of path selection parameter al(X). 
)( ii xQ  Unreliability of subsystem i with xi components.  

ir  Reliability of a component at subsystem i. 
)( ii xR  Reliability of subsystem i with xi components. 

Rr  Residual resources [total resource available (Cj) - resources consumed (∑gi 
j xi)] 

)(XRs  System reliability 
)( xS  Set of variables that have been used as key-elements in a given decomposed 

expressions 
)(xU  ),...,,(

21 nxxx UUU , Upper limit of each of subsystem i, 
*x  Optimal solution 
ix  Number of components in subsystem i; i = 1,2,….n 

X A vector (x1,………xn) 
iR  Increment in ith stage reliability when a unit is added in parallel to the ith stage 

 
2.2 Assumptions  
 
Following are the assumptions for the rest of the sections: 
 
1. The system and all its subsystems are coherent.  
2. Subsystem structures (other than coherence) are not restricted. 
3. The networks are modelled with the help of graphs, the paths (ordered pair of arcs 

and the members of the ordered pair are reliability and capacity respectively) where in are assigned 
as the weight of each link. 

4. Each link can have only two stages up and down. 
5. The network nodes are perfect. If the nodes are not perfect, the method needs to be 

modified to deal with nodes failures. 
6. All component states are mutually and statistically independent. 
7. All constraints are separable and additive among components.  
8. Each constraint is an increasing function of xi for each subsystem.    
9. Redundant components cannot cross subsystem boundaries.  
 
2.3 Composite Performance Measure (CPM)  
 
The weighted reliability measure i.e. composite performance measure (CPM), integrating 

both capacity and reliability may be stated as by [27, 28]: 
                      





)(

CPM
xSi

ii Rt
 

(1) 

Where ωti is the normalized weight and is defined as: 
 

ti = Capi / Capmax 
 

i.e. the ratio of capacity in the ith state to the maximum capacity (Capmax) of the system and Ri 
probability of the system being in state Si and is computed as: 

                         
 


1/ 0/ij ikSj Sk

kjiri qpSPR
 

(2) 
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2.4 Capacity Functions of Networks  
 
The capacity function of different arcs connected in parallel is [25]:                        




xi
iPar CapXC  (3) 

and the capacity function of different arcs connected in series is: 
                        iSer CapXC min  (4) 

 
The rules for connecting series and parallel arcs to integrate capacity and reliability to give 

composite performance measure are expressed as: 

                    
   




n

i
i

xi
iSer rCapXCR

1
min

 (5) 

                   
  

 


n

i

n

i
iiPar rCapXCR

1 1
. 

 (6) 

CPM for series and parallel networks can be defined as: 
                    CPMPar  = CR(X)Par / Capmax (7) 
and              CPMSer  = CR(X)Ser / Capmax (8) 

 
3 PROBLEM FORMULATION AND HEURISTIC METHOD 
 
3.1 Problem Formulation 
 
The general constrained redundancy optimization problem in complex systems can be 

reduced to the following integer programming problem (Kuo et al. 2001): 
Maximise 

                )),(...,),(()( 11 nns xRxRhXR     (9) 

subject to ,)(
1

j

n

i
i

j
i Cxg 



     j = 1, 2, …, k  
(10) 

and           ixi Ux 1 ,                 i = 1, 2, …, n. 
 
3.2 Proposed Heuristic Method 
 
In real life systems all the arcs are not simultaneously connected to carry flow from source 

to sink.  Hence a flow path set is the arcs and nodes that actually carry traffic. In these practical 
systems all the path sets are not utilized for transfer of information (Hayashi & Abe 2008).  The 
flow is transmitted through the main path(s) and in case of failure of this path(s), a backup path 
completes the task of main path.   The backup path(s) come in operation only when the main paths 
fail thus, enhancing the reliability of the network, it is presumed that the main path(s) and backup 
path(s) for the network are known. The proposed algorithm first optimizes the main path(s) and then 
back up path(s) using redundancy optimization technique.  This leads to more efficient use of 
resources which are generally limited.  Unlike existing heuristics, a stopping criterion has been 
applied to switch from reliability redundancy optimization of main path(s) to reliability redundancy 
optimization of backup paths. The algorithm considers sensitivity factor as the criteria for selecting 
the main path from the list of given main paths and then a subsystem for applying redundancy 
within the chosen flow path. 

 
3.3 Steps of the Proposed Method  
 
Step1: Firstly select the main path sets m and back up flow paths of the flow Network.  
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Step2: Let ix = 1 for all i; i = 1, 2,…, n. 

Step3: Calculate )(Xal , l = 1, 2,…, m for each minimal path set and find l* such that 

)(* Xal = max [ )(Xal ]  and  
  

          

,
)/)((

)(
)(

1 ji
j

i

k

jPi

iiPi
l

Ckxg

xR
Xa

l

l










ml .........3,2,1 . 
 

Step4: For the chosen minimal path set – l* find *i  such that )( ** ii
xb = max [ )( ii xb ] and  

 

              

,
)/)((

)(

1 ji
j

i

k

j

i
ii

Ckxg

Rxb




   for each lPi   

       where    )()(1 2
iiiii xRxQR   

Step5: Check, by adding one redundant subsystem to unsaturated subsystem *i : 

i) if no constraints are violated, add one redundant subsystem to unsaturated subsystem *i
by replacing *i

x with 1* i
x , and go to step 3. 

ii) if at least one constraint is exactly satisfied and others are not violated, then add one 

redundant subsystem to unsaturated subsystem *i by replacing *i
x with 1* i

x . The *x = X is the 
optimal solution. Go to step 6. 

iii) if at least one constraint is violated, then remove minimal path set  l* from further 
consideration and consider the next path having maximum  )(* Xal value and go to step  4. 

iv) if all minimal path sets are now excluded from further consideration, then *x = X is the 
optimal solution; else go to step 3  

Step6: In case any resources are still available optimize the backup paths as discussed in 
Step2. 

Step4: Evaluate the composite performance measure (CPM) for each subsystem of the 
network.  

Step5: Evaluate the system reliability using the CPM of the each subsystem.    
 
4 COMPUTATION AND RESULTS 
 
To illustrate the performance of the proposed algorithm a network having six arcs {x1, x2, x3, 

x4, x5, x6} and five minimal path sets {y1, y2, y3, y4, y5} as shown in the Figure 1 is considered and 
solved for capacity related redundancy reliability optimization using CPM (7 and 8).  System 
reliability is determined using Bayes method.   The network shown in Figure 1 is a bench mark 
problem, considered by Hayashi & Abe (2008). 

 
Using Baye’s method, the Reliability of the above system can be expressed as: 
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Rs(X) = R3 [1- Q6 {1-(1-Q1Q2)(1-Q4Q5)}] 
        + Q3[1-(1-R2R5)(1-R1R4)]*Q6 

(11) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1 Illustration Network 
 
The simple minimal path sets of the Network are 
 
P1 = {1, 3, 5}, P2 = {2, 3, 4}, P3 = {1, 4}, P4 = {6}, P5 = {2, 5} 
 
The problem is solved for data given in Table 1. Using this initial data the general problem 

of constrained reliability redundancy allocation has been solved using the steps discussed in Section 
3.3 above.  The problem is solved by considering the flow path sets P1, P2, P3 and P4 as main path 
sets and P5 as backup path. The proposed algorithm gives the optimal solution (3, 1, 1, 2, 1, 4) with 
system reliability Rs = 0.999998458, the optimized subsystem reliability probability Ri and 
unreliability probabilities Qi are shown in Table 2.   
 
Table 1   Data for Fig. 1 
 
i 1 2 3 4 5 6 
ri 0.70 0.75 0.8 0.85 0.7 0.9 
gi

1 / c1i 2 3 2 3 1 3 
C1 30 
 
Table 2   Optimized subsystem reliability/unreliability for Fig. 1 
 
i x1 x2 x3 x4 x5 x6 
X* 3 1 1 2 1 4 
Ri 0.973 0.75 0.8 0.9775 0.7 0.9999 
Qi 0.027 0.25 0.2 0.0225 0.3 0.0001 

 
The capacity of each subsystem of the flow path is taken as 100 and the capacity of flow 

paths of the network is determined using proposed approach as:  
 
 
 
 

y4 

y3 

y5 

y2 y1 

x6 

x5 

x4 

x3 x2 

x1 
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P1 =min {3*100, 100, 100} =100 
P2 =min {100, 100, 100} =100 
P3 =min {3*100, 2*100} =200 
P4 =min {4*100} =400 

(12) 

 
Next the composite performance measure CPM expression (13) is derived using (7 and 8) 

and the value for CPM for an assumed flow of 200 is suppose to pass through the flow path and it 
comes out to be 1.0000 . 

 

][minCPM 531
max

P1 RRR
Cap

Cap i

                = (100/200) x 0.973 x 0.8 x 0.7 = 0.27244

(13) 

][minCPM 432
max

P2 RRR
Cap

Cap i

     = (100/200) x 0.75 x 0.8 x 0.9775 = 0.29325

(14) 

][minCPM 41
max

P3 RR
Cap

Cap i

                = (200/200) x 0.973 x 0.9775 = 0.9511075

(15) 

][minCPM 6
max

P4 R
Cap

Cap i

 
                = (400/200) x 0.9999 
     = (2) x 0.9999   as 0 ≤ (min Capi / Capmax ) ≤ 1 
so     = 1x 0.9999 = 0.9999 

(16) 

   
Composite performance measure integrating the reliability with capacity is calculated as: 
 
CPMNetwork  = 1- (1-CPMP1) (1-CPMP2) (1-CPMP3) (1-CPMP4) 
   = 1- (1-0.27244) x (1-0.29325) x (1- 0.9511) x (1- 0.9999) 
                   = 1.0000 
 
The above result shows that proposed method is capable of optimizing the flow network to 

transport the desired capacity through the network with highest reliability.  However, the selection 
of main paths and backup paths will affect the quality of composite performance measure. Hence 
the proper choice of these paths may be done using cardinality criteria (Kumar et al. 2010b) or any 
other hierarchical measures of importance. 

 
5 CONCLUSIONS 
 
This paper has presented a new model for designing reliable flow networks capable of 

transmitting required flow. The proposed algorithm utilizes the concept of main and backup flow 
paths. The choice of backup and flow paths is application specific and paths with minimum 
cardinality may be selected as main path and disjoint paths can be the backup paths. The numerical 
example demonstrates that the proposed algorithm is fast for designing large, reliable 
telecommunications networks because the task of optimization is reduced, as only few paths are 
selected as main paths.  
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Abstract 
 

  This paper presents estimation of reliability R P(X Y)   of a system, for the cases when 
its strength (X) and stress (Y) follow exponential, normal or gamma distributions, using Monte 
Carlo simulation (MCS). First the parameters of strength and / stress are estimated and substituting 
them in the reliability expressions, in different cases, the estimates of reliability are obtained. 

Normal distribution is fitted to various sets of estimated reliability 


R , generated by MCS. The 
goodness of fit is tested using Kolmogorov-Smirnov one sample test.   
   
Keywords: Stress-Strength; Monte-Carlo Simulation; Kolmogorov-Smirnov one sample test. 
 
 
 
 
1. Introduction 
  In interference theory of reliability, reliability and other reliability characteristics of a system 
can be expressed as some functions of the parameters of the distributions of the random variables 
(r.v.’s), strength (X) and stress (Y) associated with the functioning of the system. We estimate these 
parameters and substitute these values in the expressions for reliability and other characteristics to 
get their estimates. The estimates of parameters used here are maximum likelihood estimators and 
as such from the invariance property of MLE’s, the corresponding estimators of reliability are also 
MLE’s. In absence of hard data the numerical values of the estimators can be obtained from 
simulation. There exists extensive literature for estimation of reliability analytically for single 
component systems e.g. Mazumder [12], Church and Harris [4] etc.  But the reliability expressions 
for multi-component systems are not simple enough to facilitate analytical estimation of reliability 
and its other characteristics. Also due to lack of hard data, one way out is simulation, in particular 
Monte Carlo simulation. 

With simulation technique it is possible to estimate reliability (or probability of failure) or 
other reliability characteristics without going into the analytical techniques. The availability of 
personal computer and software makes the process comparatively simple. In fact, to evaluate the 
accuracy of the sophisticated analytical techniques or to verify a new technique, simulation is 
routinely used to independently evaluate the underlying probability distributions. 

 
1.1 Monte Carlo Simulation:  

 The Monte Carlo Simulation method is an artificial sampling method which may be used 
for solving complicated problems in analytic formulation and for simulating purely statistical 
problems. In the simplest form of simulation, each r.v. in a problem is sampled several times to 
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represent its real distribution. Each realization of r.v.’s in the problem produces a set of numbers 
that indicates one realization of the problem itself. Solving the problem deterministically for each 
realization is known as a simulation cycle, a trial or a run. Using many simulation cycles we get the 
overall probabilistic characteristics of the problem, particularly when the number of cycles N is 
sufficiently large. Simulation, using a computer, is an inexpensive way (compared to laboratory 
testing) to study the uncertainty in a problem.  
  The primary components of a Monte Carlo Simulation include the followings: 
(i) Probability distribution function (or probability density function): The physical (or 
mathematical) system must be described by a set of probability distribution functions. 
(ii) Random number generator: A source of random numbers uniformly distributed on the unit 
interval must be available. 
(iii) Sampling rule: A prescription of sampling from specified distribution function, assuming the 
availability of random numbers on the unit interval. 
(iv)  Scoring (or tallying): The outcome must be accumulated into overall tallies or scores for the 
quantities of input. 
             In this paper except exponential distribution we have not used uniformly distributed random 
numbers, rather obtained random numbers following particular distribution directly from 
MATLAB.  
  In Section 2, we have estimated reliability of an n-standby system (n=1, 2, 3), through 
Monte Carlo Simulation technique. Simulation is performed for exponential stress-strength, normal 
stress-strength and gamma stress-strength. In Section-3 we have considered fitting of normal 
distribution to estimated reliability in each case, for different true values of the parameters. The 
goodness of fit is tested by K-S one sample test (Seigel [18]). Since we have taken a small sample, 
20, only, when using 2 test, the number of classes becomes too few, due to pooling. We have 
considered the fitting of normal distribution to check whether normal approximation is good enough 
for a small of 20.   
   Some literatures on the topic which we have come across are: 
   Kamat and Riley [8] presented MCS for a complex system for time to failure (TTF) models. 

Some of the others studies of reliability estimation using MCS for TTF models includes 
Pulido et.al. [15], Goel [5], Hong and Lind [6], Landis et.al. [10], Tunak et.al. [23], Naess et.al. 
[13], Wu et.al. [24] etc. 

Stancampiano [21] applied simulation to interference models. Manders et.al. [11], Aldrisi 
[1], Stumpf and Schwartz [22], Zhang et.al. [25] have simulated stress-strength. Paul and 
Borhanuddin [14], Rezaei et.al. [17] estimated reliability of stress-strength model, using MCS. 
Ahmad et.al.[2] obtain Bayes estimates of P (Y< X) using MCS. Borhanuddin et.al. [3] estimated 
reliability for multicomponent system using MCS. Rao et al [14] compared reliability estimates for 
multicomponent systems evaluated by different methods such as method of moments, modified ML 
method and Best Linear Unbiased Estimator through MCS technique. 

Kakati and Sriwastav [7] and Sriwastav [20], used simple simulation by taking random 
exponential numbers to represent stress-strength. They considered very small samples. From these 
samples they first estimate the parameters and substituting these in the expressions of reliability 
they get estimated reliability. 

 
2 Reliability Estimation through Monte Carlo Simulation: 
  Let us consider an n-standby system. Let X1, X2,…,Xn be the strengths of the n components 
in the system arranged in the order of activation. Let Y1, Y2,…,Yn be the stresses faced, 
respectively, by 1st, 2nd,…,nth component, when they are activated; Xi’s and Yi’s are all 
independent. For a detailed description of such a system one may refer (Sriwastav and Kakati, [19]).    
  The reliability Rn of an n-standby system for a single impact of stress is given by,  

   Rn = R(1) + R(2) +    …   + R(n),                                                                       (2.1) 
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  where R(i) is the increment in the system reliability due to the ith component, defined as  
   ii1i1i2211 YX,YX,...,YX,YXPiR                                                  (2.2) 

  Here, we have assumed that all the components are having the same strength distributions 
and are working under the same environment (stress), i.e. all Xi’s and Yi’s are i.i.d. with probability 
density functions (pdf’s) f(x) and g(y), respectively. 
  In this section, we use MCS to estimate reliability. The programs are developed in 
MATLAB, separately for exponential, normal and gamma. First a set of 5000 values of the 
particular r.v. viz. (exponential, normal or gamma) are generated for a particular value of the 
parameter(s). Using these values an estimate of the parameters involved is obtained. Substituting 
this estimate(s) in the expression of reliability we get an estimate of the reliability. This process is 
repeated j times to give j estimates of the parameter(s) and subsequently j estimates of reliability. 
The whole process is repeated for different true values of the parameters; for a particular true value 
of the parameter(s) j is the sample size. 
 
2.1 (a) Exponential Stress-Strength:  
  Let us assume that the component’s strength follows exponential distribution with mean   
and the stress on it follows exponential distribution with mean strength unity, without loss of 
generality. Then the marginal reliability expression due to the n th component is, (ibid) 

R(n) = R(n) = 
n 11

1 1

  
                                                              

            (2.3)  
                                 

So,
                   

R1 = 
1

 

                                                                                      (2.4)                       

R2 = R1 + (1 – R1) R1,                                                                             (2.5)                                      
R3 = R1 + (1 – R1) R1+ (1 – R1)2 R1.                                                       (2.6) 

  For MCS, let U be the uniform r.v. over (0, 1). Then by following inverse transformation we 
can generate exponential random variable with mean as: 
                                             Let        U = F(x) = 1 – exp (–x / ) 

            X = –  log (1 – U) 
  Now if U is uniform over (0, 1), (1 – U) is also uniform over (0, 1). So 

X = –  log (U)                                                        (2.7)  
 From uniform r.v. U we can generate exponential r.v. with parameter  using the above 

transformation (2.7). We generate 5000 of U. Then from (2.7), for each U, – log U gives a value of 
the exponential r.v. X with mean unity. Thus we get 5000 values of X. Multiplying each of these 
5000 values of X by ( 0.5,2,3)  we get 5000 values of exponential r.v. (say X1) with mean  . The 
mean of these 5000 values give an estimate of   for a particular true value of  . Substituting these 
estimates in (2.4), (2.5) and (2.6) we get an estimate of R1, R2 and R3, respectively. For each true 
value of  the whole process is repeated j times there by giving j estimates of   and R’s for a 
particular true value of . Here, we have taken j = 20.   
 
(b) Normal Stress-Strength: In case of normal stress-strength let X  2σμ,N and stress   Y ~N (0, 
1) by without loss of generality. The reliability expressions are (ibid) 

R (n) = [1 – 
21

 
 

  
] n – 1

21
    

.                                             (2.8) 

R1= 21
    

,                                                                                        (2.9) 

and R2 and R3 are given by (2.5) and (2.6), respectively. 
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  For generating normal random numbers for particular true values of   and 2 , we first 
generate standardized normal numbers (Z) by the MATLAB. Next by the following transformation 
we generate normal random numbers particular true values of  and 2 . 

X =  + Z   where Z ~ N (0, 1). 

  We estimate 


μ  and 


2  from the sample of X of size 5,000. Substituting these estimates in 
R1, R2 and R3, given above, we get estimates of the system reliabilities R’s. This process is repeated 
j times for a particular set of set of true values of  and 2 . We have taken (  , ) = (-1, .5), (0, .5),  
(1, .5),  (2, .5), (-1,1), (0, 1), (1, 1), (2, 1), (-1, 2), (0, 2), (1, 2), (2, 2) and j = 20. 
  
(c)  Gamma Stress-Strength: We assume that the strength X   m,1 and stress Y  k,1 . 
Then if m and/ or k is an integer (ibid) 

R(n) =
n 1m 1

m k i 1
i 0

(m k i 1)1
k(m i 1)!2



  


    
     


 

m 1

m k i 1
i 0

(m k i 1)
k(m i 1)!2



  


   

  
                              (2.10) 

So,             R1 = 
m 1

m k i 1
i 0

(m k i 1)
k(m i 1)!2



  


   

  
                                                                                 (2.11) 

    Here also R2 and R3 are given by (2.5) and (2.6).  
    If m and k are not necessarily integers (Kapur and Lamberson, [9]) 

R(n) =  n 1
1/ 2 1/ 21 Beta(m, k)Beta (m, k) Beta(m, k)Beta (m,k)                    (2.12) 

  where Beta (. , .) is Beta function and Beta1/2(. , .) is incomplete beta function, with 
parameters m and k. 

So,   R1 = 1/ 2Beta(m, k)Beta (m,k)                                                                           (2.13) 
and then R2 and R3 are given by (2.5) and (2.6).  
  Here also, by MATLAB, we directly generate gamma random numbers X for strength 
population and Y for stress population, of sizes 5000 each with different true values of the 
parameters m and k.  Substituting these estimates in the above expressions of R’s we get a 
reliability estimate of the systems. This process is repeated j times for a particular set of true values 
of m and k. Then for each set of true values of m and k the above process is repeated. We have 
taken (m, k) = (1,1), (1,2), (2,1), (2,2) and j = 20. 
 
3. Fitting of Normal Distribution to Systems Reliability:  
   From different expressions of reliability in Section-2 we have obtained the estimates of 
reliability substituting the estimated values of the parameters in respective cases. To these estimated 
values of reliability for different cases we have fitted normal distribution and tested the goodness of 
fit by one sample K-S test. The tabulated value of D for sample size 20 at 5% level of significance 
is 0.294 (see Seigel [18]).   
  Let us first consider the case of exponential stress-strength. For each ( 0.5,2,3)   j =20, the 

values of 1R


, 2R


 and 3R


 are obtained by substituting the corresponding values of 


λ  obtained in 
Section-2, in the expressions (2.4), (2.5) and (2.6). Then for each value of true , mean and s.d. of 

1R


, 2R


 and 3R


 are calculated. In each case normal distribution is fitted and the goodness of fit is 
tested by K-S test. The values are tabulated in Table-3.1. True values of R1, R2, and R3 are also 
given in the same table for comparison. 
  For K-S test, if calculated value is of D < 0.294, the fit is good. From Table- 3.1, columns 5, 

9, 13 it is clear that normal distribution gives good fit to the values of 1R


, 2R


 and 3R


.  



A.N.  Patowary, J. Hazarika AND G. L. Sriwastav. - ESTIMATION OF RELIABILITY IN INTERFERENCE MODELS USING MONTE CARLO SIMULATION 

 
RT&A # 02 (25)  

(Vol.1) 2012, June 
 

 

82 

Table -3.1: Exponential Stress-Strength 
 

True 
                   

True 
R1 

Mean 

1R


 

SD 

1R


 

D 
for 

1R


 

True 
R2 

Mean 

2R


 

SD 

2R


 

D 
for 

2R


 
 

True 
R3 

Mean 

3R


 

SD 

3R


 

D 
for 

3R


 
 

.5 .333 .333 .003 .090 .555 .556 .004 .067 .704 .704 .004 .116 
1 .500 .500 .003 .072 .750 .750 .003 .072 .875 .875 .002 .075 
2 .667 .667 .003 .076 .889 .889 .002 .063 .926 .963 .001 .063 
3 .750 .750 .003 .071 .938 .948 .001 .088 .953 .984 .000 .023 

 
N.B.: The entry .000 in the SD column indicates that the SD is very small. This is the situation for 
all the tables.     
  Next let us consider the case of normal stress-strength. The above procedure is repeated for 
different set of ( 2,  ) and their corresponding estimated values from Section-2 are used in 
expressions (2.9), (2.5) and (2.6). The results are tabulated in Table- 3.2. From values of D (see 
Seigel [18]) in column 6, 10, 14 we see that normal distribution gives good fits to the distributions 

of 1R


, 2R


 and 3R


. 
                                              

Table -3.2: Normal Stress-Strength 
  

 
  Here we would like to point out that for   = 0 and  = 0.5, the fit is not good.    
  Similarly for gamma stress-strength, for different sets of true values of stress-strength 
parameters (m, k) and taking their corresponding estimates from Section-2 and using this in 
expressions (2.11), (2.5) and (2.6) we obtain estimates of R1, R2, and R3 in different situations and 
calculate D statistics in each case. All these values are tabulated in Table- 3.3. Comparing the 
values of D in columns 6, 10 and 14 with the tabulated values (ibid) we see that normal distribution 
gives good fit to reliabilities of systems for gamma stress-strength also. 
 
  

True
  

True   
  

True 
R1 

Mean 

1R


 

SD 

1R


 

D 
for 

1R


 

True 
R2 

Mean 

2R


 

SD 

2R


 

D 
for 

2R


 
 

True 
R3 

Mean 

3R


 

SD 

3R


 

D 
for 

3R


 
 

.5 -1 .212 .186 .001 .073 .379 .337 .002 .117 .510 .460 .003 .119 
 0 .500 .500 .003 .800 .750 .750 .003 .080 .875 .875 .002 .091 
 1 .788 .814 .002 .083 .955 .966 .000 .073 .991 .994 .000 .149 
 2 .945 .963 .001 .037 .997 .999 .000 .021 .999 .999 .000 .058 
1 -1 .308 .240 .003 .141 .522 .424 .004 .115 .669 .561 .004 .205 
 0 .500 .501 .005 .064 .750 .751 .005 .064 .875 .876 .003 .077 
 1 .692 .760 .004 .047 .905 .942 .002 .043 .971 .986 .000 .026 
 2 .841 .922 .002 .123 .975 .994 .000 .105 .996 .999 .000 .129 
2 -1 .421 .327 .004 .077 .665 .547 .006 .044 .805 .695 .006 .088 
 0 .500 .501 .005 .061 .750 .751 .005 .039 .875 .876 .004 .055 
 1 .579 .672 .004 .107 .823 .892 .003 .078 .926 .965 .001 .129 
 2 .655 .813 .005 .075 .899 .965 .002 .082 .977 .993 .001 .097 
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Table-3.3: Gamma Stress-Strength (m and/ or k are Integer) 
 

                
  When neither m nor k is an integer then the corresponding estimates of R1, R2, and R3 are 

obtained by substituting the values of 


m and 


k  from Section-2 in the expressions (2.13) etc. and the 
corresponding values are tabulated in Table-3.4. 
 

Table- 3.4: Gamma Stress-Strength (m and K are not necessarily Integer) 
 
True 
m 

True 
k 

True 
R1 

Mean 

1R


 

SD 

1R


 

D 
for 

1R


 

True 
R2 

Mean 

2R


 

SD 

2R


 

D 
for 

2R


 
 

True 
R3 

Mean 

3R


 

SD 

3R


 

D 
for 

3R


 
 

1 1 .500 .499 .007 .090 .750 .749 .007 .090 .875 .874 .006 .076 
 2 .250 .250 .005 .092 .438 .438 .007 .005 .579 .579 .008 .065 
2 1 .750 .750 .005 .069 .938 .938 .002 .060 .984 .984 .001 .071 
 2 .500 .500 .006 .095 .750 .750 .006 .070 .875 .875 .004 .096 
 
   
  Conclusion: In this paper, we have estimated the reliability through MCS. We have seen that 
normal distribution is fitted to the data sets of estimated reliability obtained by MCS. Once we 
know the distribution it is easy for us to obtain the other characteristics of the reliability data sets. 
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Abstract 
A key requirement in defining a multistate coherent system (MCS) is the relevance 

condition of its components. A new class of MCSs is introduced with a new component relevance 
condition. Also we introduce a more general relevance condition. They are compared with some 
existing component relevance conditions. Based on the two new relevance conditions, two 
component importance measures for MCSs are defined. They are most appropriate for comparing 
components when certain type of system improvement is sought. We introduce new joint 
importance measures for two or more components with respect to the proposed relevance 
conditions. The new MCS classes include several existing MCSs as special case. An illustrative 
example of the proposed MCSs is also provided. 

 
Keywords: Reliability, MCS, relevance condition, component importance, joint importance. 
 
 
 
1.   Introduction 

 
Let us consider a coherent system with n components C={1,2,…,n}. Furthermore, suppose 

that each component can be  in one of M+1 states, {0,1,2,…,M},  where ‘0’ is the failed state and 
‘M’ is the maximal or “perfect” state.   To describe such a multistate system (MSS), a general 
theory has been developed in the literature. 11,9,5  A binary state system (BSS) of n components can 
be described by a structure function },1,0{}1,0{: n  which presents the state of system as a function 

of states of its n components. 4  A binary system is statistically coherent if it satisfies the following 
conditions; 4  

                       (i) )(x is non-decreasing in  each  argument, where ),...,,( 21 nxxxx       

                        with   },1,0{ix  and 

                       (ii) for each i, there exist  a vector ),(. xi
, such that ),,0(),1( xx ii     

                       where ).,...,,,.,...,,(),(. 1121 niiii xxxxxx   

Note that the condition (i) and (ii) gives, 1,0,)(  jjj   where ),...,,( jjjj  . 

In practice, a system and its components often have more than two states of performance. 5  
The structure function of the MSS is },...,1,0{,: MSSS n  , which relates the level of performance 
of system to level of performance of each of its components. There are various approaches which 
extends the structure function from the binary case to the multistate case. 11,10,9,5  The effort resulted 
in, extension of the requirement of non-decreasing binary structure function to MSS structure 
function.  Also note the condition 1,0,)(  jjj   of the binary coherent system (BCS) is extended to 
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the MSS requiring },...,1,0{,)( Mjjj  . 11  The condition (ii) of relevancy in BCS is extended in 
various different ways. Some extensions can be seen in Refs. 1, 2 and 12. 

 In this paper, we extend the relevance condition to the MSS case in a general way, which 
includes several existing relevance conditions as special cases. Section 2 introduces the new class of 
multistate coherent system(MCS)s and its generalization by introducing a reasonable component 
relevance condition. The two new classes are compared with the some existing classes. Section 3 
introduces two new component importance and joint importance measures for the proposed MCSs. 
Section 4 provides an example of an offshore electrical power generation system. Discussion and 
conclusion are given in section 5.   

 
2.   Component relevancy and the new classes of MCSs 

 
In this section we discuss the new relevance condition and its generalization on which two 

new classes of MCSs are defined. Consider the following component relevance conditions.  
NAT 13 :  For every component i and level j>0, there exist ),(. xi

 such that  

jxji ),(  and .),)1(( jxj i   

GRI.1 11 : For every component i and level j>0, there exist  ),(. xi
 such that ).,)1((),( xjxj ii     

GRI.2 11 :  For every component i, there exist ),(. xi
 such that ).,(),0( xMx ii       

and         EP 9 :  For every component i and level j≥1, there exist ),(. xi
 such that   

              ).,0(),( xxj ii      

NAT and GRI.1 indicate degree of relevance of each component to every level of 
performance; while GRI.2 merely states that    is not a constant in any of its arguments. 

Now consider a situation in which some component is not relevant to every level of 
performances, i.e., the system degrades from state j to j-1 or j-2 etc when the component degrades  
only  from state j to j-2 or j-3 etc.  In order to degrade the system, component must degrade more 
than one level of performance. For example,14   let },4,3,2,1,0{S   and the component can take 0, 2, 
and 4 when the system can take 0, 1, 2, 3 and 4. Consider the structure function 

2  having 5 
components in Ref.14. From the minimal path vectors of 

2 , we have, 

3)2,2,2,4,4(4)2,4,2,4,4( 543212543212   , when the 4th component degrades from state 4 to state 2, the 

system degrades from state 4 to state 3. Now consider the structure function 
1  with three 

components in Ref.14. We have, ,2)2,0,4(4)4,0,4( 32113211    when the third component degrades 

from state 4 to state 2, the system degrades from state 4 to state 2. Here fourth component must 
degrade from state 4 to state 2 for the system to degrade from state 4 to state 3 with respect to .2  
The third component must degrade from state 4 to state 2 for the system to degrade from state 4 
with respect to 

1 . 
We define a new component relevance condition as, degrading a component from state j to 

state j-2 can cause system failure or degradation while degradation of the component from state  j  
to j-1 cannot cause system failure or degradation. 

Now the new class of MCSs can be defined as follows. 
 
Definition.1.:  A multistate system of n components with structure function   belonging to 

class CM.1 if    is non-decreasing, ,)( jj   and for each component, there exist ),(. xi
 such that  

).,)2((),( xjxj ii   

Now consider the generalization of the new relevance condition, one or more than one level 
of degradation of the component can cause the system degradation, i.e., when the component ‘i’ 
degrades from state j to state j’ {j-1, j-2, j-3,…., 1, 0}, the system  degrades from state j to any 
lower state. Thus we define the generalized class of MCSs with this relevance condition. 
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Definition 2.: A multistate system of n components with structure function   belonging to 

class CM.2 if    is non-decreasing, ,)( jj   and for each component, there exist ),(. xi
 such that  

),'(),( xjxj ii   where  j’ {j-1, j-2,j-3,….,1,0}. 

In the following section we introduce the component importance and joint importance 
measures to the new classes of MCSs.      

 
3.   Component importance and Joint importance measures  

 
We consider the problem of measuring the reliability importance and structural importance 

of individual components, and the joint reliability importance and joint structural importance of two 
or more components in the new classes of the MCSs. The main advantage of defining a new 
relevance condition is to obtain the importance measures. 6   At the reliability design phase, the joint 
importance can improve system designer’s understanding of the relationship between the 
components and the system, and among the components, 3  which is quite desirable. Birnubaum 
measure provides the importance of a component in the BSS. 6  It is further extended to the MSS. 15,7  
Now we consider ),...,,( 21 nXXXX    as a random vector with component states 

iX  as random 

variables and }Pr{ jXp iij   where }.,...,1,0{ MSj   For the BSS with structure function  ,  the 

Birnubaum reliability importance 6  of component  i  is  
 

).,0(),1()1),0(),1(()( phphxxPBI iiiii    

where )( ph , ),...,,( 21 npppp   and )1(  ii xpi , is the reliability function of the BCS,   
).,0()(),0()1(),1()( phBIpphpphpph iiiiiii   

Therefore, 

).(
)(

BI
p

ph
i

i




  

We propose the following  component importance measures for the two classes of new 
MCSs.  

1.  )).,)2((),(()1.( xjxjPCMI iii    

2. }.0,1,...,2,1{')),,'(),(()2.(  jjjxjxjPCMI iii   

Let the distribution of 
iX be described by ).,...,,( 10 iMiii pppp   The reliability function of the 

MCS with minimum satisfactory system level j , is 



Sj

i jxjPjxP ),),(())((   since 

1...210  iMiii pppp . Now we prove the following theorems. 

 
Theorem 1. For the CM.1 class, )1.(CMIi

 is the rate of improvement of ))(( jxP    with 

respect to .ijp  

 
Proof. Clearly,    





}2{\

),),)2((()]),)2(((),(([))((
jS

iiiij jxjPjxjPjxjPpjxP                                                        

since .......1 13102 iMijijiiij pppppp  
 Differentiating ))(( jxP   partially with respect 

to 
ijp , we get 

)).,(),)2((()),)2((()),((
))((

)1.( xjxjPjxjPjxjP
p

jxP
CMI iiii

ij
i 





   
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Theorem 2. For the CM.2 class, )2.(CMIi
is the rate of improvement of ))(( jxP   with 

respect to .ijp  

 
 Proof. Clearly,    

),),'(()]),'(()),(([))((
}{\ '

jxjPjxjPjxjPpjxP iii
jS

ij     

where  
iMijijiiij pppppp   ......1 1'1'10'

and differentiating the ))(( jxP   partially with 

respect to 
ijp  

we get, 

             }.0,1,...,2,1{')),,(),'((
))((

)2.( 



 jjjxjxjP

p

jxP
CMI ii

ij
i    

Now define the structural definition of the component importance (when reliabilities of 
components are not given) with respect to the new relevance conditions.  

Consider jxifx  )(1)(   and 0 otherwise. We define the structural importance of a 
component as follows. 

 
Definition.3.: Let SS n :  be the MCS structure function in CM.1 class. Then   is said to 

have the following measures of structural importance for the level j of component  i: 




 



}:{

1 )}.,)2((),(,0{
)1(

1
)1.(

jxx
iinij

i

xjxjMax
M

CMI             

 
Definition.4.: Let SS n :  be the MCS structure function in CM.2 class. Then   is said to 

have the following measures of structural importance for the level j of component i:  




 



}:{

1 }.0,1,...,2,1{')},,'(),(,0{
)1(

1
)2.(

jxx
iinij

i

jjjxjxjMax
M

CMI   

     
In order to define the joint importance measures for two or more components in the new 

classes of MCSs, we recall the joint structural importance measure(JSIM)s 8  and  joint reliability 
importance measure(JRIM)s 8  for the MSS with relevance condition in GRI.1. The JSIM (i,j) for 
two components i and j with the new relevance conditions can be obtained by replacing m€  with m-2  
or }0,1,2,...,2,1{'  mmm in,  

                             
 


M

m

M

k

)}k€,m;l,i(SIM)k,m;l,i(SIM{)l,i(JSIM
1 1

                                  

where ),;,( kmliSIM =
2

1

)1(

)),,€(,),,((







n

X

j

q

illiilli

M

qjxkmjxkm
il


.  

Here χ(true)=1 and  χ(false)=0, and qjxkmjxkm illiilli  ),,€(,),,(   where ),...,,...,,...,( 1 nliij xkmxx   

determines the critical path vector to the level  j with state m of component i. The JSIM (i,j,k) for 
three components can be obtained as, for 2€  nn or }0,1,2,...,2,1{€  nnn , 

,)}€,,;,,(),,;,,({),,(
1 1 1

  


M

k

M

n

M

m

nkmrliJSIMnkmrliJSIMrliJSIM  

where )n,k,m;r,l,i(JSIM = ).n,k€,m;r,l,i(JSIM)n,k,m;r,l,i(JSIM    
Thus we can find JSIM of any number of components w. r. t. both relevance conditions in 

the MCS classes CM.1 and CM.2.  Thus JSIM 8  holds with new relevance conditions by replacing  
m€  with suitable m-2 or }0,1,2,...,2,1{'  mmm . 

Now we consider the JRIM for k components in  the MSS. 8   The JRIM of state 
1b of 

component 
1a , state  

2b  of component 
2a ,..., state 

kb  of the component  
ka  )( nk   of the MSS is  
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,,...,2,
...

),...,;,...,(
21

1,1

21

nk
bRbRbR

E
bbaaJRIM

kaaa

s
k

kk

k





  

where 



M

j
s jxPE

0

))(( is the expected system performance and 
ia bR

i
 is the reliability function with 

respect to level ib of component ia . 

Here m€ =m-1 in the expansion of 
sE . 8  The results also holds true with the other values of 

m€ =m’, m’{m-1,m-2,m-3,…,0}. Hence the JRIM with the new MCSs can be obtained with 
appropriate m’ values for m€ , i.e., m’=m-2 or }0,1,2,...,2,1{'  mmm .    

Now consider some implications based on the new relevancy definitions. In fact one can 
easily prove the following implications.  

 
Theorem 3. CM.1=>EP, CM.2=>NAT=>GRI.1=>GRI.2=>EP,    CM.2=>GRI.1, 

CM.2=>GRI.2 and CM.2=>EP.   
It is clear that all the existing relevance conditions are special cases of CM.2 (or CM.1) 

relevance condition. Hence the existing MCSs are special cases of the proposed MCSs. 
 
4.   Example 

 
Ref.14 considered an offshore electrical power generation system, which supply two nearby 

oilrings with electrical power. Both oilrings have their own main generation, represented by 
equivalent generators 

1A   and 
3A  each having capacity of 50MW. In addition the oilrings has  a 

standby generator  
2A  that is switched into the network in case of outage of 

1A  or 
3A , or may be used 

in extreme load situations in either of the oilrings. The 
2A  also has capacity 50MW. The control 

unit, ,U  continuously supervises the supply from each of the generators with automatic control of 
the switches. If for instance the supply from 

3A  to oilring 2 is not sufficient, whereas the supply 

from 
1A to oilring 1 is sufficient, U can activate 

2A  to supply oilring 2 with electrical power through 
the subsea cables  L . The components have states  {0, 2, 4} and the system have  states {0, 1, 2, 3, 
4},   where 0, 1, 2, 3 and 4 represents the states of the system at capacities  0MW, 12.5MW,  
25MW,   37.5MW,    and   50MW  respectively.  

 
Table I .Minimal path vectors of  

 
Levels U  

1A  2A  
2 2 2 0 
2 4 0 2 
4 2 4 0 
4 4 0 4 
4 4 2 2 

 
Table II .Minimal path vectors of 2  

 
Levels U  

1A  L  
2A  3A  

1 4 4 2 2 0 
1,2 2 0 0 0 2 
2 4 4 2 4 0 
2 4 4 4 2 0 
3 4 4 2 2 2 

3,4 2 0 0 0 4 
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4 4 4 2 4 2 
4 4 4 4 2 2 
4 4 4 4 4 0 
 
The minimal path vectors to the levels are given in table 1 and table II, of the structure 

functions,     
),4),4(min()0(),,( 21211  UIAAUIAAU  the amount of power that can be supplied to  

platform 1, and 
),4,4/)4()4(min()0(),,,,( 1233212 LAIUIAAUIAALAU     the amount of power that can be 

supplied to platform 2, when (.)I  is the indicator function. One may easily verify from the tables 
that the new relevance condition of CM.1 and CM.2 are found to be holding good w. r. t. the 
structure functions considered in the example. As done for JSIM and JRIM for two components11  
and JSIM for three components, 8  we can compute the concerned joint importance measures for any 
number of components in the power generation system.  

 
5.   Discussion and Conclusion 
 
The theory of MSS reliability models has been developed to cope with many real-life 

situations. The present paper introduced two classes of MCSs with a new relevance condition and 
its generalization. It is shown that many MCSs introduced earlier in the literature are included in the 
new classes. Structural definitions of importance and joint structural importance measures are 
given, and new reliability importance and joint reliability importance measures are introduced. In 
system engineering, a practical and difficult problem is the identification of those groups of 
components that mostly influence the system behavior with respect to safety and reliability. In this 
respect, the main advantage of our importance and joint importance measure with respect to the new 
MCS models is the information provided by them for the reliability theoreticians and design 
analysts. It gives useful information for safe and efficient operation of the system, where existing 
importance measures gives information about individual component importance and joint 
importance of  components with some limited number of relevance conditions.  
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