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ABSTRACT 
 

Block and Basu (1974) proposed an absolutely continuous bivariate exponential distribution whose marginals are 
weighted average of exponentials. Chandrasekar and Sajesh (2010) considered location, scale and location-scale 
families arising out of absolutely continuous bivariate exponential (ACBVE) distribution with equal marginals 
and derived the minimum risk equivariant estimators of location, scale and location-scale parameters. In this paper 
we consider a two-component system when failure times follow location-scale ACBVE distribution with equal 
marginals. We obtain the reliability performance measures of two-component parallel, series and standby systems. 
Also we provide the UMVUE, the MLE and the MREE of these reliability performance measures. 
 
Keywords and phrases: Bivariate exponential, location – scale, reliability measures, two-component system. 

 
1 Introduction  

Evaluating performance measures associated with systems having dependent component failure 
times is rare in the literature. In this paper we consider a two-component system when failure times 
follow location – scale absolutely continuous bivariate exponential (ACBVE) distribution with 
equal marginals. Chandrasekar and Sajesh (2010) discussed about the equivariant estimation for 
parameters of location-scale exponential models. We obtain the reliability performance measures of 
the two component systems. Also we discuss the estimation of these reliability performance 
measures. 

The plan of the paper is as follows: Section 2 provides some definitions and notations 
required in this paper. Some distributional results are discussed in Section 3. In Section 4 we obtain 
the reliability performance measures of two-component parallel, series and standby systems when 
the component failure times follow location – scale ACBVE with equal marginals. Section 5 
provides the UMVUE, the MLE and the MREE of the reliability performance measures. 
2     Preliminaries   
Consider a two component system with failure times T1 and T2 respectively. Assume that (T1, T2) 
follows location – scale ACBVE (, , , ) with pdf 

f (t1, t2; , , , ) =  



 

 β)ξ(2α)t(t β)t(t α
τ
1exp

2τ
β)β)(2α(α

21212
, 

                                                          ,  fixed, R,  > 0; t1 t2 > .                                    (1) 
It is assumed that (, ) is known. 
Suppose we observe n identical systems with observations ( t1i, t2i) , i = 1, 2, 3,…, n. Then the joint 
pdf of the sample is 

τξ,p (t1, t2) =  















  

i
i2i1i2i1

n

2 β)ξ(2α)t(t β)t(t α
τ
1exp

2τ
β)β)(2α(α , 

                    )t(tMin i2i1i
 >;  R,  > 0.            (2) 
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It is easy to observe that the maximum likelihood estimator (MLE) of (, ) is given by 






 
τ,ξ , where 



ξ= )t(tMin i2i1i
  and 


τ  = 







 



i
i2i1i2i1 ξβ)(2α)t(t β)t(t α

n
1 . 

3      Distributional results 
Theorem 1:   Let (T1, T2) follow location – scale ACBVE (, , , ) with pdf given in (1).  
Then 

        (T1  T2) ~ E












βα2
 ξ,

2
. Here E (a, b) refers to a random variable with pdf







 






 a)(x

b
1exp 

b
1 , 

x > a; aR, b > 0.  
Proof:    For u > ξ,  

      Pξ [T1  T2> u] = Pξ [T1 > u, T2 > u]  
                                =    21

u u
2 ddβ)ξ(2αy)(x βy)(x α1exp

2
β)β)(2α(α tt  

















  

             (3)
 

 
 

Figure 1 
 

Using Figure 1, equation (3) can be written as, 

Pξ [T1 > u, T2 > u] =    1
u

t

u
21212 tddtβ)ξ(2αt β)tt( α1exp

2
β)β)(2α(α 1

 



































      

                           +   1
u t

22212 tdtdβ)ξ(2αt β)tt( α1exp
2

β)β)(2α(α

1

 
 


































  

                      = 



































1
u

12 dtξ}β)α(2u αtβ){(α 1exp
α2

β)β)(2α(α  

                         1
u

1 tdξ)tβ)(α(2 1exp
α 























+ 




















 


1
u

1 dtξ)β)(t (2α
τ
1exp

β)(α
τ  

                     =  









 ξ)β)(uα(2 exp

β)α(α2
β)β)(2α(α 2

2
 






















 ξ)β)(uα(21 exp

β)α2α(

2

 

                            

























 ξ)β)(uα(21 exp

β)α2β)((α

2

                                                     






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                     = 








































β)β)(2α(αα

α}β)(αβ){(2αξ)β)(uα(2 1exp
2

β)β)(2α(α 2

2

 
 

                     = 

















 ξ)β)(uα(2 1exp . 

Therefore, Pξ [T1  T2> u] = 

















 ξ)β)(uα(21 exp , u > ξ. 

Hence (T1  T2) ~ E 










βα2
 ξ, . 

Theorem 2:  Let (T1, T2) follow location – scale ACBVE (, , , ) with pdf given in (1). Then 

(i) T1 + T2 - 2 
d
  U1 + U2, 

(ii) T1T2 -  
d
  U1 + U3 and 

(iii) T1T2 -  
d
  U3, 

        where U1  E 







 βα
τ0, , U2  E 








βα2
τ0, 2

 and U3  E 







βα2
τ0, . 

Proof:   MGF of (T1 + T2, T1T2) at (u1, u2) is 
           m (u1, u2) = 

        21
ξ ξ

2122112
tddt ξβ)(2α) t (t )τu β() t (t )τu (α

τ
1 exp

2τ
β)(2α β)(α
 






 

  

                         =
τ)}u(βτ)u(α2τ)}{u(β)u{(α

τξ
τ

τ)u(βτ)u2(α ξ
τ

βα2expτ2

τ2
β)αβ)(2(α

2121

212

2 









 




















                       

                         =  ξ)uu2(expτ
βα2
uu21τ

βα
uu1 21

1
21

1
21 

























. 

(i)  m (u1, 0) = ξ)u2exp(τ
βα2

u21τ
βα

u1 1

1
1

1
1























 . 

This implies that T1 + T2 - 2 
d
  U1 + U2, where U1  E 








 βα
τ0, ,                                   

U2  E 







βα2
τ0, 2

 and U1 U2. 

(ii)  m (0, u2) = ξ)exp(uτ
βα2

u
1τ

βα
u

1 2

1
2

1
2























 . 

This implies that T1T2 -  
d
  U1 + U3, where U1  E 








 βα
τ0, , U3  E 








βα2
τ0,  

and U1 U3.  
  (iii) From Theorem 1, we have, 

                  T1T2 -  
d
  U3, where U3  E 








βα2
τ0, . 

 
 




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4     Reliability performance measures 
4.1 Parallel system 
 
MTBF: Consider a two-unit parallel system with component failure times T1 and T2 respectively. 
Then the system failure time is 

T = T1T2. 
Assume that (T1, T2)  location – scale ACBVE (, , , ). Then from Theorem 2, we have 

T -  
d
  U1 + U3. 

Therefore, MTBF = E (T) 
                      = E (U1 + U3) +  

                         = 
βα

τ


 + 
βα2

τ


+  

                         = τ
β)α(2 β)(α

β2α3


  + .                     (4) 

Reliability function: Consider, P (T -  > t), t > 0. 
                                                     = P (U1 + U3 > t), t > 0.  
 

 
 

Figure 2 
 

From figure 2 we have, 

P (T -  > t) = 3131

t

0 ut
2 duduu

τ
βα2u

τ
βαexp

τ
β)αβ)(2(α

3 













 







 




 




 

                  + 3131
t 0

2 duduu
τ

βα2u
τ

βαexp
τ

β)αβ)(2(α














 







 




 
 

 

           = 














 







 


t

0
333 duu

τ
βα2)u(t

τ
βαexp

τ
β)α(2 u1 

                                                       + 
















 




t
33 duu

τ
βα2exp

τ
β)α(2  

           = 














 
































 







  t

τ
βα2expt

τ
αexp1t

τ
βαexp

α
βα2
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            = 














 
























 
















 







  t

τ
βα2expt

τ
βα2expt

τ
βαexp

α
βα2

 

            =














 







 
















 







  t

τ
βα2exp

α
βαt

τ
βαexp

α
β2α2

, t > 0. 

Therefore,  

P (T -  > t - ) =














 







 
















 







  ξ)(t

τ
βα2exp

α
βαξ)(t

τ
βαexp

α
βα2

, t > .      

Then, the reliability function is given by 

R (t) = P(T > t) = 














 







 
















 







  ξ)(t

τ
βα2exp

α
βαξ)(t

τ
βαexp

α
βα2

, t > .                  (5) 

 
4.2   Series system 
 
MTBF: Consider a two unit series system with component failure times T1 and T2 respectively. 
Then the system failure time is 

T = T1T2. 
Assume that (T1, T2)  location – scale ACBVE (, , , ). Then from Theorem 2, we have 

T -  
d
  U3. 

Therefore, MTBF = E (T) 
                      = E (U3) +  

                      = 
βα2

τ


+ .                                                                                                       (6) 

Reliability function: Consider, P (T -  > t), t > 0 
                                                    = P (U3 > t), t > 0. 

                                                    = 33
t

duu
τ

βα2exp
τ

βα2














 







 



 

                                                    =














 

 t
τ

βα2exp , t > 0. 

Therefore,  

         P (T -  > t - ) = 














 

 ξ)(t
τ

βα2exp , t > . 

Then, the reliability function is given by 

          R (t) = P (T > t) =














 

 ξ)(t
τ

βα2exp , t > .                                                          (7) 

 
4.3   Standby system 
 
MTBF: Consider a two unit standby system with component failure times T1 and T2 respectively. 
Then the system failure time is  

T = T1+T2. 
Assume that (T1, T2)  location – scale ACBVE (, , , ). Then from Theorem 3.2, we have  

T - 2 
d
  U1 + U2 

Therefore, MTBF = E (T) 
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                      = E (U1 + U2) + 2 

                      = 
βα

τ


 + 
βα2

τ2


+ 2 

                      = τ
β)αβ)(2(α

β3α4


  + 2.                             (8) 

Reliability function: Consider, P (T - 2 > t), t > 0. 
                                                 = P (U1 + U2 > t), t > 0. 
 

 
 

Figure 3 
 

From figure 3 we have, 

P (T - 2 > t) = 2121

t

0 ut
2 duduu

τ2
βα2u

τ
βαexp

τ2
β)αβ)(2(α

2 













 







 




 




 

                      + 2121
t 0

2 duduu
τ2

βα2u
τ

βαexp
τ2

β)αβ)(2(α














 







 




 
 

 

                      = 














 







 


t

0
222 duu

τ2
βα2)u(t

τ
βαexp

τ2
β)α(2  

                    + 
















 




t
22 duu

τ2
βα2exp

τ2
β)α(2  

               = 













 
































 








  t
τ2

βα2exp1t
τ2

βexpt
τ

βαexp
β

βα2
 

               = 














 
























 
















 








  t
τ2

βα2expt
τ

βαexpt
τ2

βα2exp
β

βα2
 

               =














 








 
















 








  t
τ

βαexp
β

βα2t
τ2

βα2exp
β

β2α2
, t > 0. 

Therefore,  

P (T - 2 > t- 2) = 














 








 















 








  ξ)2(t
τ
βαexp

β
βα2ξ)2(t

τ2
βα2exp

β
β2 α2

, t > 2. 

Then, the reliability function is given by 
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R (t) = P(T > t) = 














 








 















 








  ξ)2(t
τ
βαexp

β
βα2ξ)2(t

τ2
βα2exp

β
β2α2

, t > 2.             (9) 

 
5      Estimation of reliability measures 

 
Sajesh (2007) considered location, scale and location-scale families arising out of ACBVE 

distribution proposed by Block and Basu (1974) with equal marginals and derived MREE, UMVUE 
and MLE of location, scale and location-scale parameters. In this section we discuss optimal 
estimation of reliability measures for parallel, series and standby systems. 
 
5.1 Parallel system 

UMVUE: The MTBF is M = ξ  τ
β)αβ)(2(α

β2α3



 .                                 

From Sajesh [3], the UMVUEs of  and  are 















β) α1)(2nn(2
T

T
*
2*

1
 and 

1)n(2
T*

2


 respectively, 

where 







 β)αn(2

τ ξ,E~T*
1  and 






 1n2 ,

τ
1G~T*

2 .                        

Hence the UMVUE of M is   

M* = 











β) αβ)(2(α
β2 α3












1n2
T*

2 +















β) α1)(2nn(2
T

T
*
2*

1
. 

                                    = **
1 2T

β)  αβ)(21)(αnn(2
β1)n(2α1)n(3T












 .              (10) 

MREE: From Chandrasekar and Sajesh (2010), the MREE of c + d is  

M** = **
1 2T

β)αn(2
cd

n2
1Tc










 . 

Here c =1, d =











β)αβ)(2(α
β2α3

. 

Then    M** = **
1 22 T

β)αβ)(2(αn2
β1)n(2α1)n(3T











 .              (11) 

MLE: The MLE of (, ) is 

ξ  = *

1T  and 

τ  = *

2T
n2

1
. 

Then the MLE of MTBF is 

M = 





 ξτ

β)αβ)(2(α
β2α3 .           (12) 

The MLE of the reliability function is  

(t)R


= 
























 







 


























 







  





 )ξ(t
τ

βα2exp
α

βα)ξ(t
τ

βαexp
α

βα2 , t > 

ξ .        (13) 

 
 
5.2 Series system 

UMVUE: The MTBF is M = ξ 
β)α(2

τ



. 
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From Sajesh (2007), the UMVUEs of  and  are 















β)α1)(2nn(2
T

T
*
2*

1  and 
1)n(2

T*
2


 respectively. 

Hence the UMVUE of M is  

             M* = 








 β)α(2
1












1n2
T*

2 +















β)α1)(2nn(2
T

T
*
2*

1
. 

                                        = *
2

*
1 T

β)α1)(2n(2
1)(nT












 .              (14) 

MREE: From Chandrasekar and Sajesh (2010), the MREE of c + d is  

M** = *
2

*
1 T

β)αn(2
cd

n2
1Tc










 . 

Here c =1, d = 
β)α(2

1


. 

Then M** = *
2

*
1 T

β)α(2n2
1)(nT 2












 .              (15)  

MLE: The MLE of (, ) is 

ξ  = *

1T  and 

τ  = *

2T
n2

1
T2. 

Then the MLE of MTBF is 

M = 







ξ
β)α(2

τ .              (16) 

The MLE of the reliability function is (t)R


=
























 




 )ξ(t
τ

βα2exp , t >

ξ .                     (17) 

 
5.3 Standby system 
 

UMVUE: The MTBF is M = ξ2τ
β)αβ)(2(α

β3α4



 . 

From Sajesh (2007), the UMVUEs of  and  are 















β)α1)(2nn(2
T

T
*
2*

1
 and 

1)n(2
T*

2


 respectively. 

Hence the UMVUE of M is  

         M* = 











β)αβ)(2(α
β3α4


























 β)α1)(2nn(2
T

T2
1n2

T *
2*

1

*
2 . 

                                       = *

`
2

*
1 T

β)αβ)(21)(αnn(2
β)2n3(α)2n4(T2











 .             (18) 

MREE: From Chandrasekar and Sajesh(2010), the MREE of c + d is  

M** = *
2

*
1 T

β)αn(2
cd

n2
1Tc










 . 

Here c =2, d = 
β)αβ)(2(α

β3α4


 .  
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Then    M** = *
2

*
1 T

β)αβ)(2(αn2
β)2n3(α)2n4(T2 2











 .                           (19) 

MLE: The MLE of (, ) is 

ξ  = *

1T  and 

τ  = *

2T
n2

1
. 

Then the MLE of MTBF is 

M = 




 τ

β)αβ)(2(α
β3α4 + 2


ξ .                 (20) 

The MLE of the reliability function is  
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ABSTRACT 
 
The paper considers using renewable wind energy for electricity generating. The system is characterized by high 
reliability and ecological purity. The authors briefly present the main methodological principles of choosing the 
parameters of the considered wind-hydro power system. 
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Introduction 
 
      Nowadays renewable energy sources attract attention because the depletion of conventional 
nonrenewable energy (coal, gas, oil, etc.) is getting increasingly obvious.  Wind energy is 
characterized by a considerable potential among the renewable resources. 
      Human civilizations have been using wind for a long time. In the Ancient times wind was used 
to propel boats. It is known that even 3000 years BC the citizens of Alexadria had used “wind 
wheels”.  In the 16th century the Netherlands had more than ten thousand wind-driven plants that 
were used to dry lakes for cultivation area. In 1888 the USA constructed a large wind power plant 
for electricity production. The multi-blade wind motors invented by the engineer Davydov appeared 
at the Russian Exhibition in Nizhny Novgorod in 1896 [1]. Wind mills found wide application. In 
the USSR the first 100 kV wind power plant was built in the Crimea in 1931 and was in operation 
until World War II. 
      Currently wind energy is widely used in more than 60 countries of the world.  Today 10 leading 
countries account for about 86% of all wind power capacities installed in the world, of which more 
than 38% are situated in China  and the USA. In Europe wind energy is mostly used in Germany, 
Denmark, Spain, Portugal, and France. The total installed capacity in the world reached 194 GW [2] 
in 2011 and continues to soar.  
      When used as distributed generation, modern wind power plants along with advantages (free 
primary energy) have some drawbacks: 
 
- lack of regularity and constancy in electricity generation due to variability of wind parameters; 
- relatively high cost and low reliability; 
- complexity of automated control of wind power plants both in case of their autonomous 

operation  and in case of their operation within a grid; 
- environmental problems (noise and allocation of large territories). 
    
     Elimination of these drawbacks is associated with additional costs of creating storage devices to 
replace generation capacities,  sophisticated distributed automation of control system of parallel 
operation of a large number of wind generators “virtual power plant”;  and removal of wind power 
plants from populated settlements to the uninhabited areas. 
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       In this paper the authors take account of all the above circumstances and consider the 
advantages and disadvantages of a wind-hydro power complex  (WHPC) that consists of wind - 
driven pumps, a storage capacity (water reservoir) and a hydropower plant. 
       An advantage of the system is its principal simplicity versus other designs of wind power 
plants and consists mainly in a simple scheme of converting power generated by the wind power 
plant. 
       The research aims to find out the conditions to make this system more efficient as compared to 
the other types of wind power plants. The authors suggest a technique for feasibility study on the 
efficiency of the wind hydropower system.  Moreover, special attention is paid to reliability of 
power supply to consumers connected to such systems. 
       The main stages of the technique for calculation of parameters and estimation of the WHPC 
efficiency include: 
 
1. Study on electricity consumption, load curves and requirements for electricity supply to the 

existing consumers. 
2. Analysis of database on wind conditions (wind speeds and duration) in the studied area. 
3. In the case of sufficient wind conditions – study and choice of water sources the most 

appropriate for the considered local conditions to be used to fill the hydropower plant reservoir 
with the aid of wind-driven pumps (available nearby water source: sea, lake, river, underground 
sources, etc.). 

4. Determination of a required installed capacity of hydropower plant, characteristics of the main 
equipment and construction of the hydropower plant, taking account of electricity demand, load 
curves and reliability. 

5. Collection of information on nomenclature and parameters of commercially manufactured 
hydropower units. Choice of an effective number of units and their rated capacity for concrete 
conditions. 

6. Determination of a required capacity of reservoir and its main characteristics on the basis of 
local topographic and weather climatic conditions. The reservoir capacity can be increased 
depending on other economic needs of the region. Calculations of structures and hydro 
constructions of the reservoir. 

7. Determination of the required installed capacity of wind-driven pumps and their characteristics, 
on the basis of requirements for reservoir filling within a calculation period determined by the 
wind speeds in this area and reliability requirements. 

8. Acquisition of information about nomenclature and parameters of commercially manufactured 
wind-driven pumps. Choice of an effective number and delivery of the pumps to meet specific 
conditions, reliable and sufficient to fill the reservoir to the required level. A special order can 
be placed to manufacture exclusive pumps. 

9. Preparation of technical and economic data for comparative estimation of the suggested and 
alternative variants, including the case of receiving electricity from power grid, and traditional 
wind power plants with capacities to backup them, etc. 

10. Choice of the final variant of electricity supply in the region on the basis of feasibility study of 
the variants. 

11. Solving the other problems related to the construction of WHPS. For example, consideration of 
possibility  of WHPS operation using the reservoir in the low head of hydropower plant (HPP) 
to pump water from it to the upper reservoir with the aid of wind-driven pumps ( a closed cycle 
scheme), etc. 
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Brief characteristic of the complex 
 
      The flowchart of the WHPC is presented in Figure 1. Its main modules are: 
 

1. Reservoir filling module – wind-driven pumps. 
2. Energy storage module – reservoir (water reservoir).  
3. Generation module – HPP. 

 

 
 

Figure 1. Flowchart of WHPC and its interfaces with the  
system of electricity supply to the area 

 
      As Figure 1 shows the idea of WHPC is not original. However, the reason why we address this 
issue is related to the circumstances that are growing urgent nowadays. 
      The essence of the suggested plant lies in the fact that wind being primary energy resource for 
WHPC operation is harnessed to fill reservoir which represents the energy storage stage in the cycle 
of electricity production. The major advantage of the WHPC is the combination of wind power 
plant advantages and the idea of pumped water storage. This excludes the main flaw of wind power 
generation, i.e. a mismatch between unpredictable variations in wind speed and electricity 
consumption schedule. This distinguishes WPHC from similar plants in which wind energy is used 
directly to generate electricity to meet the demand and to charge storage battery. When there is no 
wind and energy storage systems such plants are backed up by diesel power plants (DPP) or gas-
turbine power plants (GTPP). 
       The wind-hydro power complex is in many parameters similar to the pumped storage power 
plants (PSPP) [3]. However, the main difference is the use of free wind power to fill the reservoir. 
The hydropower plant included in the system covers not only peak loads but the entire local load. 
Moreover, for WHPC the connection (at least a weak one) with power grid is desirable but not 
mandatory. With this connection WHPC can perform the functions imposed on distributed 
generation. 
 Compared to other wind power plants this system has the following advantages: 
 

1. The WHPS  designed according to such a flowchart makes it possible to separate and 
consider individually two random non-correlated processes: 

-  the use of wind power for electricity supply under any wind conditions; 
-  reliable (continuous) high quality electricity supply to consumers, irrespective of wind condi- 
       tions  at any time moment. 

2. The possibility of applying relatively simple (and hence cheap and reliable wind-driven 
plants including wind-driven pumps with mechanical transmission of wind power to hydro 
pump (piston or centrifugal). 

Wind-driven 
pumps 

WHPC 

Reservoir HPP 

Electric power  
system 

Local distribution 
network 

Consumers 
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3. Application of reservoir as an energy storage which is environmentally friendlier and 
simpler than storage batteries of the same capacity, pressed air, hydrogen etc. as well as 
backup diesel units with diesel fuel stocks, or gas turbine plants. 

4. Use of reservoir for the purposes other than storage, i.e. as a reservoir for tap water supply to 
the nearest populated settlements and productions, as a drinking place, for fish breeding, 
poultry farming, irrigation of agricultural lands, recreation needs, etc. 

 
Application of such a system is efficient first of all for remote populated settlements because 

their full and reliable electricity supply from centralized power grid can be difficult or expensive. 
Although for the reasons of reliability and cost effectiveness WHPC can be constructed when 
consumers are supplied with electricity from grid. In this case the connection to the power grid can: 

- increase the electricity supply reliability; 
- decrease the reservoir capacity, particularly, if there are consumers of all categories. Then it 

is sufficient to use hydropower under emergency conditions to meet only the demand of consumers 
of the first category and partially of the second category; 

- considerably improve power quality if transmission lines connected to the grid are very long  
and have a low rated voltage (110 kV and lower, down to 10-6 kV at lengths of 50-150 km and 
longer). Owing to HPP there will be local surplus active and reactive power for continuous 
electricity supply and voltage control; 

- enable transmission of surplus power to the grid. 
An additional advantage of the suggested system is the fact that to fill the reservoir it is not 

necessary to use high-speed wind machines, on the contrary it is more expedient to apply slow-
speed wind-driven pumps. This increases the period of wind use and does not require such high 
aerodynamic characteristics as those necessary to use wind turbines to directly supply an electric 
load. The possibility of using natural relief of an area in order to construct a reservoir should also be 
considered as a benefit of the WHPS. The authors consider the possibility of applying such a system 
for electricity and water supply particularly in the arid regions. 

However, along with the advantages the system has some flaws. First of all this is the impact 
of climatic conditions on water storage in the reservoir. With allocation of the plant in severe 
climatic conditions there appears a danger of reservoir and water supply system freezing and as a 
consequence the impossibility of their further use in the winter period. Elimination of this drawback 
requires additional investment. The relief of the territory may not always be suitable for the 
reservoir construction. Then it can be necessary to create an artificial water reservoir because of flat 
ground or insufficient ground strength which can lead to additional investment. 

 Taking into account the known electricity consumption variability over time electricity 
generation from WHPC should provide a reliable power supply to meet the demand. 

Bearing in mind the advantages and disadvantages of the suggested system to clearly 
understand its efficiency as applied to specific conditions as well as to make a specific design it is 
necessary to develop an efficiency estimation technique as a calculation tool for solving the 
problem of electricity supply in specific conditions on the basis of renewable energy sources. 

Thus, the technique for determining the WHPC parameters in general should include the 
following steps: 

 
1. Calculation of HPP parameters on the basis of electricity consumption forecast and the 

need to provide reliable electricity supply to consumers; 
2. Calculation of reservoir characteristics on the basis of calculated HPP parameters. 
3. Determination of parameters for wind power plants on the basis of calculation results for 

p.2 and, bearing in mind wind characteristics of the area in which the plant is situated and 
reliability of wind-driven pumps. 

4. Solving the other problems related to the construction of WHPC. 
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The HPP parameters, reservoir characteristics and parameters of wind power units are 
calculated using the known techniques but taking into account specific operating features of these 
facilities within the WHPC and estimation of the power supply reliability. Below the authors 
present the specific features of selecting the parameters and characteristics for the indicated 
components of WHPC. 
 
Determination of HPP parameters 
 
        Determination of HPP parameters in fact implies selection of a rated capacity and type of 
hydropower units with respect to selected head, and their number bearing in mind the required level 
of reliability of electricity supply. 

The algorithm for calculation is as follows. After determining a regular annual load peak from 
the forecast of social and economic development of the region L

peak.regN  for the respective time 

period we find an irregular annual peak L
peakirN .   by the expression: 

 
L

peak.regL
L

peak.ir N)(N 3+1= . (1) 
 
In (1) σL is standard deviation of load from a regular value of capacity, per unit. It is known 

[4] that these deviations follow the normal distribution. 
The optimal reliability of HPP is calculated according to the Bernoulli formula [5]. 
The method based on the Bernoulli formula makes it possible to estimate the required reserve 

and probability of shortage-free operation of the facilities consisting of n components according to 
their rated parameters.  In order to assess reliability of HPP these parameters will be represented by 
rated capacity Nr, number of hydropower units n and probability of failure-free operation  р.  With 
the assumed Nr we determine the required number of units which will provide supply of the 
required load with a specified (rated) probability of shortage-free operation under the minimum 
capacity reserve. 

The calculations are made according to the formula of binomial distribution   
 

,10

22221110





][nq...]ri)N[(niqinpi
nC

...]r)N[(nqnpnС]r)Nq[(nnpnC]r[nNnpn]) q[]r(p[N
 (2) 

 
where р – probability of operable state of hydropower unit (taken from the data of manufacturer or 
according to the emergency rate statistics for HPP equipment); q = 1 – р – probability of emergency 
downtime of the hydropower unit; n – the number of units to be installed at HPP; i = n,1 - the 
number of units that  can be in an inoperable state; i

nC  – number of combinations from  n units with 
respect to  i; expressions in square brackets characterize the values of the HPP available capacity in 
respective calculated states. 
     The presented binomial expansion is a full group of events with different possible states of the 
HPP components. In this case this is a combination of operable (n - i) and inoperable i components 
from their total number n. 

From (2) we find the probability of shortage-free load supply: 
 

P  


 
I

i
r

iini
n ]i)N[(nqpC

0

  

for all i,  for which 
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L

peak.irr Ni)N(n ≥ . (3) 
 
In this case we choose n for which  
 

P ≥ Pstnd. (4) 
 
In (4) Pstnd is a standard value of probability of shortage-free electricity supply to consumers. 

In Russia  Pstnd is assumed at the level of  0.996 [4],  in Western Europe  – 0.9996. 
If (4) is not provided then Nr and/or n, at which (4) is met, varies. 
Normally Nr is taken equal to the capacity given in the catalogues of plant manufacturers of 

hydropower equipment and the number of units n of the required rated capacity is specified. 
Thus, from the above calculation we determine the main electric parameters of HPP: rated 

capacity of units 0
rN , number of units n0  and installed capacity of HPP 

 
00
r

inst
HPP NnN   kW.  

 
Calculation of reservoir characteristics  
 

At the second stage of calculation of the WHPC parameters we determine the required 
reservoir capacity. 

Since wind conditions vary water supply to water reservoir varies too. The main objective 
here is to provide such volume and conditions for reservoir filling as to have sufficient water to 
meet the demand for electricity in a required amount and at a required time throughout the entire 
calculation period Т, that depends on the wind conditions. 

The wind conditions are estimated on the basis of data from climatologic reference books on 
wind for the area where the WHPS is going to be constructed. These data are used to determine the 
duration of periods with wind speed insufficient for operation of wind turbines and duration of 
energy inefficient wind speed. The two parameter Weibull distribution [1] is used in calculations to 
determine the repetition of wind speeds. The obtained information is then used to determine the 
duration of period with a wind speed that ensures useful work of wind-driven pumps. 

 In this case the calculation period Т should be considered as 
  

Т=Тw+Тi/w, (5) 
 

where Тw  – time of sufficient wind conditions, day; Тi/w –  time of insufficient wind conditions, day. 
Energy storage is used to solve the following problems: 

- reciprocal matching of energy production and consumption schedules in order to provide 
uninterrupted electricity supply to consumers; 

- increase in the efficiency of wind energy utilization through complete use of the total output of 
wind turbines. 

When resolving the issues related to storage of energy produced by wind power plants we 
should take into account the following characteristics: 

- relative sizes; 
- duration of energy storage; 
- admissible amount of energy to be stored; 
- complexity of energy transformations  (rectification, inversion, frequency transformation, 

etc.); 
- simplicity and safety of maintenance, etc. 
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 The main criterion for determining the reservoir capacity is the need to provide the required 
water flow rate Q by operating hydropower units. Flow rate decreases with an increase in the water 
head H. This condition is taken into account to design the reservoir in terms of the area relief. 

 The calculated water head is assumed according to the possibilities of reservoir construction 
in a specified area. With the assumed calculated head on the basis of manufacturer’s data for the 
chosen type of hydropower unit we determine a specific water flow rate  Q0 (m3/kWh). The 
required available reservoir capacity is determined by the formula 

  
Vavlb = Wreq ∙ Q0  m3, (6) 

 
where Wreq –required HPP output determined by the load curve  for  a respective calculation period 
Т: 

 

∫
0

)(
Т

req dttNW   kWh,  

 
where N(t) –  required power of electricity consumption at hour t  of the load curve. 

Knowing the reservoir surface area Fs (m2), we estimate the depth of water layer of the 
available reservoir capacity: 

 
ΔН =Vavlb/ Fs m.  

 
 
Based on the known Нmin (from manufacturer’s data) we determine the maximum head water 

level: 
 

Нmax. =Нmin + ΔН m.  
 
To estimate the reservoir surface area and depth of the available reservoir capacity we should 

seek to reduce the surface area (which decreases the alienation of land surface for reservoir, 
evaporation surface etc.), and the depth of periodic reservoir drawdown since large variations in the 
water level have a negative impact on the flora and fauna of the reservoir itself and its seashore. 
Generally, the reservoir surface area can be regulated by diking the reservoir of small sizes. The 
regulation of the reservoir surface area makes it possible to choose the depth of drawdown and vice 
versa, depending on the specific circumstances. 

The selection of the hydropower units for WHPC implements the key principle of determining 
the reservoir capacity, i.e. makes it possible to provide the minimum possible flow rate Q in order to 
minimize the reservoir capacity and as a result decrease investment in its construction and 
operation. 

 
Since an HPP supplies electricity to consumers, covering the whole of the load curve, the 

available reservoir capacity should satisfy the water flow rate by hydropower units for the assumed 
calculation period Т of power supply. The calculation period can be taken equal to the time interval 
from a day (daily storage) to a year (yearly storage). The calculation period is chosen based on 
specific wind parameters – the more frequent is the wind, the shorter is the calculation period and 
hence, the smaller is the water reservoir and the lower is the investment in its construction. 

In addition to the available reservoir capacity Vavlb to meet the water flow rate by hydropower 
units, account should be taken of losses caused by water evaporation Vevap from reservoir surface, by 
filtration Vf  through ground and by ice formation Vi for the areas of cold climate [6, 7]. 
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The methods for determination of water flow rate to compensate for these losses are empirical 
and applied depending on every specific case. 

The total storage capacity will be 
 

Vtotal = Vavlb + Vevap + Vf + Vi + Vdead = Vav + Vloss+ Vdead m3, 
 

where Vloss = Vevap + Vf + Vi ; Vdead – dead storage capacity. 
Since construction of a purely man-made lake is an expensive measure, it is more expedient to 

arrange it on the basis of natural relief roughness with minimum involvement of materials and labor 
inputs in construction of a storage reservoir. The possibilities for provision of Vtotal at the site are 
evaluated by calculating the storage capacity of a prospective reservoir through the sequential 
summation of capacities ΔVi of individual layers between two adjacent contour lines on the 
topographic maps. This is done for determination of reservoir surface Fs by way of their 
planimetering based on the knowledge of topographic characteristics of the site. 

In general the storage capacity totalV  can be increased in case of the need to solve other 
economic problems in the area of WHPC construction that were mentioned above. This is, however, 
a separate problem. 

The method of reservoir arrangement and its type by its design features are determined based on 
technical and economic indices of one or another variant for specific conditions. However, 
preference should be given to reservoir arrangement, taking advantage of natural relief as much as 
possible [6, 7]. 

At the initial stage of reservoir filling the wind-driven pumps will have to fill the total storage 
capacity Vtotal, which will require some time. Then after filling of the dead and available capacities, 
the wind-driven pumps will have to fill only the capacity Vavlb + Vloss to be emptied during the 
calculation period Т. And the capacity filled in advance is emptied at the current period and 
simultaneously the new volume  Vavlb + Vloss is stored for HPP operation at the next period. 

Reservoir dislocation can be chosen based on a great number of variants: gorge, ravine, notch, 
depression on the upland. Apart from natural conditions, it is possible to consider creation of a man-
made diked lake, a lake with consolidation of its bed with impermeable materials, etc. 

 
Calculation of wind-driven pump parameters 
 

In operation of any plant using wind energy, including WHPC, the wind parameters are of 
prime importance as a source of energy production.  

Wind depends on many complex geophysical and climatic factors. Its variability, therefore, can 
be predicted only with some probability that is determined as a result of statistical processing of the 
results of wind speed observations in the considered area for a long-term period. 

Wind speed is the most important energy characteristic that estimates its kinetic energy. Under 
the impact of some meteorological factors (atmosphere perturbations, changes in solar activity and 
amount of heat energy arriving from the space to the Earth, etc.), and also the relief of the site, the 
wind speed changes in rate and direction. The powerful winds favorable for operation of wind 
power plants alternate thereby with calms.  

The wind-driven pump capacity depends on the wind speed and the surface area swept by the 
wind wheel and is calculated by the formula: 

7000

23DNw


  kW, (7) 

where υ – wind speed, m/s; D – wind wheel diameter, m. 
The wind-driven pump converts part of this capacity into effective capacity that is estimated by 

the wind energy utilization factor ζ: 
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Nw avlb = ζ ∙ Nw. (8) 
 
In general it is not expedient to use wind power plants for direct covering of electric loads 

without additional expensive smoothing and replacing facilities and also automatic controllers by 
virtue of essential distinctions between the consumer load curve and the curve of wind speed 
variation as random functions of time. 

As was noted, the wind-driven pump (module for reservoir filling) capacity can be determined 
on the basis of the necessary storage capacity Vavlb + Vloss and the reservoir filling time Тr to be 
known, during the calculation period Т. It is apparent that the dead storage capacity is filled once 
before the beginning of WHPS operation, and installation of additional wind-driven pumps for this 
purpose will be inexpedient. 

The total pumping capacity of wind-driven pumps Qw ∑ is calculated by the formula: 

w

lossavlb

Т
VV

Qw
+

=  m3/s,  

where Тw is in seconds. 
The total delivery of wind-driven pumps is determined by the expression: 


H81.9 

 
w

w
QN  kW, (9) 

 
where η – pump efficiency; Н – height of water, m. 

The time of wind-driven pump operation Тw is determined from the formula in [1]:  
 

100
)( 0 TfТw



 , (10) 

 
where )( 0 f  – probability that the initial speed of the wind-driven pump will be exceeded, %; 
υ0 – initial speed of the wind wheel, m/s. In calculations υ0  is taken equal to 3 m/s. The multi-blade 
wind-driven pumps that are targeted for use in WHPS start to operate at this speed. 

The values of )( 0 f as a function of the wind parameters  /0 and с  are determined as 
tabular data in accordance with the Weibull distribution [1]. 

The down time of the wind-driven pumps Тi/w  is determined as: 
 

Тi/w = Т – Тw   h. (11) 
 
The relation between Тw and Тi/w  may be arbitrary, and the time of sufficient wind speed Тw may 

be both longer and shorter than Тi/w. The wind-driven pump capacity depends on the relation 
between Тw and Тi/w. The longer is Тw, the lower is the capacity Nw∑. 

The rated capacity of the wind-driven pump Nw rat is chosen based on the machine industry 
capabilities. It is obvious that for these purposes the choice should be made of maximum possible 
capacity in terms of specific design conditions. 

Then the minimum needed number of wind-driven pumps is calculated as 
 

                                    nw = Nw ∑   / Nw rat.                                                                               (12) 
 
The number  of wind-driven pumps and their rated capacity considering reliability of wind-

driven pumps can be evaluated more accurately on the basis of their emergency rate qw to be 
determined and  formula (2). The standard reliability of all the wind-driven pumps is taken as a 
function of wind conditions in the considered region, however, not lower than the probability of 
shortage-free power supply (for RF – 0.996). 
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The described stages of WHPC calculation are basic for designing the considered plant. 
Technical and economic problems dealing with power supply from WHPC are solved at the next 
stage. 

From the technical standpoint they include: 
  - generation of an electric circuit of hydropower plant, choice of voltages of generator, auxiliaries, 
master switchgear; 
  - generation of an electric circuit of local distribution network; 
  - assurance of reliability of power supply to consumers and required power quality in accordance 
with the standards of electric installation code, maintenance rules, and other documents; 
  - consideration of specific features of natural-climatic and geographical conditions for WHPS 
construction when being designed; 
  - implementation of capabilities for additional utilization of the man-made reservoir in socio-
economic development of the region; 
  - assessment of WHPC security. 

From the economic standpoint it is necessary to carry out a feasibility study on the effectiveness 
of the proposed system in comparison with other alternative options of power supply: 

1) wind power plants in combination with replacing power sources (diesel power plants, 
geothermal power plants, etc.). 

2) wind power plants in combination with storage facilities of other types (thermal, 
chemical, mechanical, etc.). 

In addition one should bear in mind advantages of the suggested complex over the mentioned 
ones: 
  - simplicity of design; 
  - simplicity of meeting the main requirements to reliability and quality of power supply to 
consumers; 
  - wider range of economic usage (not only power generation). 
        Thus, the optimal decision for all these options can be chosen only based on the specific 
feasibility analysis that considers secondary advantages such as environmental. 
 
Assessment of technical and economic effectiveness 
 
       Technical and economic characteristics of the suggested WHPS should be determined to 
compare them with similar characteristics of other alternative power generation sources in the 
considered region and to estimate their dependence on local conditions. 

The technical and economic characteristics of power supply options should be determined on 
the basis of their functional comparability: full satisfaction of demand, power supply reliability and 
power quality. Besides, one should bear in mind such advantages of WHPCs over other options as 
absence of fuel costs, simplicity, low cost and high reliability in comparison with wind power 
plants, substantially simplified control of WHPC, possibility for solving other (in addition to power 
supply) socio-economic problems in the considered region, higher environmental compatibility of 
WHPC, etc.   

Effectiveness can be assessed based on the information about expenditures for both WHPS and 
alternative power supply options such as renewable and non-renewable energy sources, i.e. 
expenditures for construction of replacing diesel or gas-fired power plants, fuel cost, cost of diverse 
storage facilities and their practical limits on capacity. 

For the most general case the expression for the simplified technical and economic evaluation 
of WHPS can be written in the following form: 

aNWP + bVtotal + cNHPP < dNWPP + eNSF + fNDPP + gBfW Т
T w/i n.                                   (13) 

In this expression: 
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а – unit cost of wind-driven pump (WP), RUR/kW; 
NWP – installed capacity of WP, kW; 
b – unit cost of reservoir construction, RUR/m3; 
Vtotal – reservoir storage capacity, m3; 
c – unit cost of hydropower plant (HPP) construction (without reservoir cost), RUR/kW; 
NHPP – installed capacity of HPP, kW; 
d – unit cost of wind power plant (WPP), RUR/kW; 
NWPU – installed capacity of WPP, kW; 
e – unit cost of storage facility (SF), RUR/kW; 
NSU – installed capacity of SF, kW; 
f – unit cost of additional power plant (DPP) construction, RUR/kW; 
NDPP – installed capacity of DPP, kW; 
g – fuel cost for DPP, RUR/kg; 
Bf – specific fuel consumption by DPP, kg/kWh; 
W – required power generation for the calculation period Т, kWh; 
Т – calculation period corresponding to cyclic recurrence of wind activity at the considered site, 

hours; 
Тi/w– duration of calm period at the calculation period, hours; 
n – recurrence number of periods T during the WHPC service life. 
Effectiveness is assessed on the basis of the following simplifications and assumptions. 
The unit cost includes the cost of land allotted for facilities to be constructed. 
Only the costs that differ in the options compared are calculated. Therefore, the proceeds from 

electricity trade that are assumed to be equal and the fixed costs for operation of compared power 
facilities are not taken into account.  

Discounting costs during the service life of power facilities, which can hardly influence the 
basic compared option are not considered. Their service life is taken equal, i.e. 30 years. 

If the cost of plants compared proves to be almost equal, preference should be given to WHPC 
owing to the indicated additional effects of its use. 

The hydropower plant that is considered in this statement differs from the traditional run-of-
river plant in the essential decrease of the probabilistic nature of water inflow to the reservoir. Here 
the necessary water volume is provided to a sufficiently high degree by installation of additional 
wind-driven pumps that deliver the needed volume of water at the periods of sufficient wind speed. 

Expression (13) is of universal character to compare WHPC to any types of alternative options. 
Therefore, in the right-hand side there are zero values for the plants that are not used in the 
corresponding option. 

The financial efficiency can be assessed by calculating the payback period: 
 
                                       Тpayback = S/P = S/((C – Z)Wyear), 

 
where S – expenditures for the corresponding project (the right- or left-hand side of expression 
(13)); 

      P – annual profit from produced electricity sales; 
      C – electricity price in the energy market; 
      Z – electricity production cost; 
      Wyear – volume of annual electricity sales. 
      Preliminary analysis of the field of WHPC use has shown that these systems prove to be 

attractive in the range of power consumption from 30–50 kW to 10–15 MW. In this case at low 
loads it is possible to have small ponds filled by two or three wind-driven pumps that deliver water 
at a height of 20-30 m rather than conventional reservoirs. WHPCs of higher capacity will require 
water heads of 100–150 m and higher (considering employment of diversion schemes). WHPCs of 
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larger capacity become irrational because of vast areas required for allocation of wind-driven 
pumps and a reservoir. 

An example of the comparative technical and economic evaluation of WHPC and an alternative 
power supply option (an additional diesel power plant as the cheapest alternative option) is 
presented below. 

 
Example of comparative assessment of technical and economic effectiveness of WHPC  
and an alternative option 
 
 The authors consider power supply to a coastal area of Lake Baikal [8, 9].The annual regular 
maximum load is 650 kW. In accordance with (1) the irregular maximum load is taken equal to 
1.09*650 = 710 kW with L =0.03. The required power consumption for the calculation period T 
considering losses and auxiliary power supply will make up 1254144 kWh. The required HPP 
capacity considering uninterrupted power supply (P = 0.996) will amount to 800 kW. Lake Baikal is 
the water source. The necessary reservoir capacity is 0.00593 km3. Wind speed in the area allows 
the calculation period T to be taken equal to 3 months and the total time of energy-effective wind 
strength during the calculation period Тw to be taken equal to 1.6 months. 
      Two options are studied: 

1. Wind hydropower system. 
2. Wind power plant with an additional diesel power plant. 

      According to calculations in the first option the wind-driven pump capacity should be 2000 
kW. 
      In the second option the wind power plant capacity equals 1100 kW, the diesel power plant 
capacity –1100 kW (considering power supply reliability). 
      The technical and economic analysis was carried out based on the following averaged economic 
indices (see (13)): 
а = 70000 RUR/kW; 
b= 100 RUR/ m3; 
c = 5000 RUR/ kW; 
d = 51200 RUR/ kW; 
f = 10000 RUR/ kW; 
g = 30 RUR/ kg; 
Bf = 0.4 kg / kWh; 
n = 120 – number of occurrences of periods Т during the power supply system life (30 years). 
      The costs of construction and operation of the considered power supply options are calculated 
based on (13): 
 

1. аNWP + bVtotal + cNHPP = 70000¨2000 + 100¨0.00593¨109 + 5000¨800 = 140000000 +  
 
      + 593000000 + 4000000 = 0.737 billion RUR. 

2. dNWPP+ eNSF + fNDPP + gBfW Т
Т calm n = 51200¨1100 + 0 + 10000¨1100 +  

      + 30¨0.4¨1254144¨
2190

31025
¨120 = 56320000 + 0 + 11000000 + 845258680 = 0.913 billion  

      RUR. 
        The calculations show that the reservoir is the most expensive structure of WHPS (86.7 %). 
Hence, special attention should be paid to decrease of its construction costs. To make the 
calculations more accurate it is necessary first of all to estimate the real value of b because of its 
impact on the cost of the first option. The WHPC competitiveness will increase with the fuel price 
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rise (the costs of fuel delivery to remote areas are not taken into account and they are comparable to 
fuel cost and even exceed it). 
        The main conclusion from the indicated calculations is: effectiveness of the WHPC option 
depends on reservoir parameters.  The smaller is the reservoir capacity, and correspondingly the 
unit costs, the more profitable will be the WHPC option. The indicated reservoir parameters can be 
decreased by increasing the head Н, shortening the calculation period Т and maximum possible 
utilization of natural relief elements for reservoir construction at the specific site. 
 
Conclusion 
 

1. In the context of increasing shortage of fossil fuel resources and topicality of environmental 
problems the necessity of using renewable energy resources rises. 

2. Investigations in the field of the most economical and technologically expedient renewable 
energy sources for specific areas result in designs of different systems, WHPC as an 
example.  

3. The design works and commissioning of such a system can be realized on the basis of the 
technique for determination of its technical and economic effectiveness. The technique is to 
solve a great number of problems: from choice of the primary WHPC link – wind-driven 
pump to the final result – generation of power of the required quality for its reliable supply 
to consumers. 

4. The technique should be applied as a tool for assessment of the efficiency of using the 
suggested system. All sorts of difficulties cannot be overcome successfully without flexible 
consideration of wind energy utilization forms. 

5. Parameters of the required reservoir depend on the electric load, on the one hand, and the 
wind speed in the area of WHPC construction, on the other hand. The calculation period of 
reservoir drawdown is chosen based on the wind speed in the considered area. Therewith Тw 
is always shorter than Т, and the shorter is Т and the longer is Тw, the smaller will be the 
reservoir capacity and hence, the cheaper will be the WHPC construction. 

6. The paper suggests a sequence of the WHPC calculation, choice of its basic parameters 
including power supply reliability and technical and economic effectiveness. The sequence 
of calculation is universal, i.e. it is applicable to any conditions of WHPC operation. 

7. In general, WHPC plays a part of “distributed” generation that is defined as power 
generation at the point of its consumption. In this case the power losses and the costs of its 
transmission by regional power grids are excluded. Power supply reliability improves. 

8. Availability of even a weak tie line with the power grid enhances flexibility, reliability and 
effectiveness of the local power supply system. Power quality in the considered area 
improves considerably. Besides, in this case excess power can be supplied to the common 
system network. 

9. WHPC as distributed generation is of diversification character, allowing the variety of plants 
on renewable energy resources that utilize wind energy to be increased. 
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ABSTRACT 
 

In Accelerated life testing if the accelerated test stress level is not high enough then many of the test items will not 
fail during the available time and one has to be prepared to handle a lot of censured data. To avoid such type of 
problems, a better way is step-stress ALT. In Step-stress ALT all test items are first tested at a specified constant stress 
for a specified period of time and then Items which are not failed will be tested at next higher level of stress for another 
specified time and so on until all items have failed or the test stops for other reasons. In this paper simple step stress 
pattern of ALT assuming that the lifetime of a product at any constant level of stress follow a two parameter Pareto 
distribution is considered. The maximum likelihood and asymptotic confidence interval estimate of the parameters are 
obtained. Optimal step stress ALT plan is proposed by minimizing the asymptotic variance of the MLE of the 100 thP  
percentile of the lifetime distribution at normal stress condition. A simulation study is also performed to analyse the 
performance of parameter estimates. 

KEYWORDS: Cumulative Exposure Model; Maximum Likelihood Estimation Method; Fisher Information Matrix; 
Asymptotic Confidence Intervals; Simulation Study. 
 

1  INTRODUCTION 
 

Accelerated life testing (ALT) is a quick way to obtain information about the life distribution of 
a material, component or product. In Accelerated life testing (ALT) items are subjected to 
conditions that are more severe than the normal ones, which yields shorter life but, hopefully, do 
not change the failure mechanisms. Some assumptions are needed in order to relate the life at high 
stress levels to life at normal stress levels in use. Based on these assumptions, the life distribution 
under normal stress levels can be estimated. Such way of testing reduces both time and cost. 

Three types of stress loadings are usually applied in accelerated life tests: constant stress, step 
stress and Progressive-stress. Constant stress is the most common type of stress loading. Every item 
is tested under a constant level of the stress, which is higher than normal level. In this kind of 
testing, we may have several stress levels, which are applied for different groups of the tested items. 
This means that every item is subjected to only one stress level until the item fails or the test is 
stopped for other reasons. In Step-stress loading, the test items are subjected to successively higher 
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levels of stress at pre-assigned test times. All items are first subjected to a specified constant stress 
for a specified period of time. Items that do not fail will be subjected to a higher level of stress for 
another specified time. The level of stress is increased step by step until all items have failed or the 
test stops for other reasons. Progressive-stress loading is quite like the step stress testing with the 
difference that the stress level increases continuously. 

Failure data obtained from ALT can be divided into two categories: complete (all failure data 
are available) or censored (some of failure data are missing). Complete data consist of the exact 
failure time of test units, which means that the failure time of each sample unit is observed or 
known. In many cases when life data are analysed, all units in the sample may not fail. This type of 
data is called censored or incomplete data. Due to different types of censoring, censored data can be 
divided into time-censored (or type I censored) data and failure-censored (or type II censored) data. 
Time censored (or type I censored) data is usually obtained when censoring time is fixed, and then 
the number of failures in that fixed time is a random variable. Failure censored (or type II censored) 
data is obtained when the test is terminated after a specified number of failures, and then time to 
obtain that fixed number of failures is a random variable. 

Simple step-stress ALT, where only one change of stress occurs, proposed by Nelson (1980) 
has been widely studied and referred as the Cumulative Exposure (CE) model. Many studies 
regarding SSALT planning based on the CE Model, have been performed. Miller and Nelson (1983) 
presented the optimum simple SSALT model. Bai et al. (1989) and Bai and Chun (1991) extended 
this model to the case where a prescribed censoring time is involved. Many authors also have 
provided the studies for statistical inference model for SSALT based on CEM; e.g., see Xiong 
(1998), Watkins (2001), Zhao and Elsayed (2005), Balakrishnan el al. (2009), Yeo and Tang 
(1999), Xiong and Ji (2004) and Xiong and Milliken (1999). Khamis and Higgins (1998) proposed 
a new model for SSALT as an alternative to the CEM, which is based on a time transformation of 
the exponential CEM. Most of works using the K-H model are concentrated on the optimal design 
plan for SSALT. Alhadeed and Yang (2002) provided the optimal plan for a simple SSALT using 
K-H model when the shape parameter is unknown. 

More recently Lu and Rudy (2002) have dealt with the Weibull CE model under the inverse 
power law in the simple SSALT. McSorley, Lu and Li (2002) have shown the properties of the 
maximum likelihood (ML) estimators of parameters in the Weibull CE model with a log-linear 
function of stress on three-step SSALT data. Gounu, Sen and Balakrishnan (2004) tackled the 
optimal stress change points for multiple-step SSALT based on minimizing the asymptotic 
confidence interval of MLE of the mean life at design stress. Wu, Lin and Chen (2006) discussed 
the ALT with progressively Type-I group-censored exponential data. Balakrishnan and Han (2008) 
considered modification for censoring scheme in small sample sizes. Fan, Wang and Balakrishnan 
(2008) discussed the maximum likelihood (ML) estimation and Bayesian inference in group data 
ALT models under the relationship between the failure rate and the stress variables is linear under 
Box-Cox transformation. Al-Masri and Al-Haj Ebrahem (2009) derived the optimum times of 
changing stress level for simple step-stress plans under a cumulative exposure model assuming that 
the life time of a test unit follows a log-logistic distribution with known scale parameter by 
minimizing the asymptotic variance of the maximum likelihood estimator of the model parameters 
at the design stress with respect to the change time. Hassan and Al-Ghamdi (2009) obtained the 
optimal times of changing stress level for simple stress plans under a cumulative exposure model 
using the Lomax distribution for a wide range of values of the model parameters. Xu and Fei (2012) 
introduced and compared the four basic models for step-stress accelerated life testing: cumulative 
exposure model (CEM), linear cumulative exposure model (LCEM), tampered random variable 
model (TRVM), and tampered failure rate model (TFRM). Limitations of the four models are also 
introduced for better use of the models. 

In this paper the two-parameter Pareto distribution as a lifetime model under simple-step-stress 
ALT is considered.  Maximum likelihood estimates of parameters and their asymptotic confidence 
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intervals are obtained. The performance of the estimates is evaluated by a simulation study with 
different pre-fixed values of parameters. 

 

2 THE MODEL 
 
2.1 The Pareto Distribution 
 

The concept of this distribution was first introduced by Vilfredo Pareto (1897) in his well-
known economics text “Cours d’Economie Politique”. 

The two parameter forms of Pareto probability density function (pdf), cumulative distribution 
function (CDF), the reliability function (RF) and the hazard rate (HR) with shape parameter   and 
scale parameter    given respectively by 
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The hazard rate (HR) is a decreasing function as 0t  and an increasing function as 0t . 
 
 
2.2 Assumptions and Test Procedure 
 

1. There two stress levels 1x  and 2x  )( 21 xx  . 
2. The failure time of a test unit follows a two-parameter Pareto distribution at every stress 

level. 
3. A random sample of n  identical products is placed on test under initial stress level 1x  and 

run until time , and then the stress is changed to 2x  and the test is continued until all 
products fail.  

4. The lifetimes of the products at each stress level are i.i.d. 
5. The scale parameter is a log-linear function of stress. That is, ii bxax )(log , 2,1i  

where a and b are unknown parameters depending on the nature of the product and the 
test method. Therefore, the lifetime of a test product at lower stress 1x  is longer than at 
higher stress 2x .  

6. The Pareto shape parameter   is constant, i.e. independent of stress. 
7. A cumulative exposure model holds, that is, the remaining life of test items depends only 

on the current cumulative fraction failed and current stress regardless of how the fraction 
accumulated. Moreover, if held at the current stress, items will fail according to the CDF 
of stress, but starting at the previously accumulated fraction failed, for more detail on CE 
Model see Nelson (1990). According to cumulative exposure model the CDF in step-stress 
ALT are given by 
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where the equivalent starting time, ' , is a solution of )'()( 21  FF   solving for ' ,  then 
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and corresponding pdf is obtained as as 
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From the assumptions of cumulative exposure model and the equation (2.2), the CDF of a test 

product failing according to Pareto distribution under simple step-stress test is given by 
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The PDF corresponding to (2.6) becomes 
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2.3 Objective of Study 
 

For pre-fixed sample size n  and the testing stress levels 1x  and 2x , the first objective is 
estimating the parameters ba , and  in a simple step-stress accelerated life test. The second 
objective is to obtain the optimal stress changing time   which minimizes the asymptotic variance 
of the MLE of the thP  percentile of the lifetime distribution at normal stress condition )( 0xt p . 
 
3 ESTIMATION PROCEDURE 
 
3.1 Point Estimates 
 

Here the maximum likelihood method of estimation is used because ML method is very robust 
and gives the estimates of parameter with good statistical properties. In this method, the estimates 
of parameters are those values which maximize the sampling distribution of data. However, ML 
estimation method is very simple for one parameter distributions but its implementation in ALT is 
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mathematically more intense and, generally, estimates of parameters do not exist in closed form, 
therefore, numerical techniques such as Newton Method, Some computer programs are used to 
compute them. 

For obtaining the MLE of the model parameters, let ijt , inj ,2,1 , 2,1i  be the observed 
failure times of a test unit j  under stress level i , where 1n  denotes the number of units failed at the 
low stress 1x  and 2n denotes the number of units failed at higher stress level 2x . Therefore, the 
likelihood function for two-parameter Pareto distribution for simple step stress pattern can be 
written in the following form 
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The log-likelihood function )log( Ll   corresponding to equation (3.1) can be rewritten as 
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where 21 nnn  . 

 
Now by using the relation ibxax )(log ,  2,1i  for the scale parameter , in (3.2), the likelihood 
function becomes,  
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Differentiating (3.3) partially with respect to ba , and , we get 
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From (3.6) the maximum likelihood estimates of   is given by the following equation: 
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By substituting for  into (3.4) and (3.5), the system equations are reduced into the following 
two non-linear equations: 
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Since (3.8) and (3.9) are non linear equations, their solutions are numerically obtained by using 

Newton Raphson method. They are solved simultaneously to obtain a  and b . Then by substitution 
in (3.7) an estimate of   is easily obtained. 
 
 
3.2 Interval Estimates 
 

According to large sample theory, the maximum likelihood estimators, under some appropriate 
regularity conditions, are consistent and normally distributed. Since ML estimates of parameters are 
not in closed form, therefore, it is impossible to obtain the exact confidence intervals, so asymptotic 
confidence intervals based on the asymptotic normal distribution of ML estimators instead of exact 
confidence intervals are obtained here. 

The Fisher-information matrix composed of the negative second partial derivatives of log 
likelihood function can be written as 
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The elements of information matrix F are: 
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The asymptotic variance-covariance matrix of ba

, and   is obtained by inverting the Fisher-
information matrix that is 
 

1

1

2

222

2

2

22

22

2

2








































































 F

l
b
l

a
l

b
l

b
l

ab
l

a
l

ba
l

a
l







 

 



Mustafa Kamal, Shazia Zarrin, Arif-Ul-Islam - STEP STRESS ACCELERATED LIFE TESTING PLAN FOR TWO PARAMETER PARETO DISTRIBUTION 

 
RT&A # 01 (28)  

(Vol.8) 2013, March  
 

 

37 

 

















)()()(
)()()(
)()()(










AVarbACovaACov
bACovbAVarabACov
aACovbaACovaAVar

 

Now, the two-sided approximate %100  confidence limits for population parameters ba
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4 OPTIMAL TEST PLAN 

 
The optimum criterion here is to find the optimum stress change time . Since the accuracy of 

ML method is measured by the asymptotic variance of the MLE of the 100 thP  percentile of the 
lifetime distribution at normal stress condition )( 0xt p , therefore the optimum value of the stress 
change time will the value which minimizes the asymptotic variance of the MLE of )( 0xt p . 

The 100 thP  percentile of a distribution )(F is the age pt  by which a proportion of population 
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The optimum stress change time   will be the value which minimizes ))(( 0xtAVar p

 . 

5 SIMULATION STUDY 
 
To evaluate the performance of the method of inference described in present study, several data 

sets with sample sizes n = 0200,...,50 100,  are generated for from two-parameter Pareto distribution. 
The values for true parameters and stress combinations are chosen to be 2.0,5.0  ba  5.1  and 

)5,3(),4,2(),( 21 xx . The estimates and the corresponding summary statistics are obtained by the 
present Step Stress ALT model and the Newton iteration method. For different given samples and 
stresses combinations with 2.0,5.0  ba  and 5.1 , the ML estimates , asymptotic variance, the 
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asymptotic standard error )(SE , the mean squared error )(MSE and the coverage rate of the 95% 
confidence interval for ,a b  and  are obtained.  Table-1 and 2 summarize the results of the 
estimates for  ,a b  and . The numerical results presented in Table-1 and 2 are based on 1000 
simulation replications. 
 
Table1:  Simulations results based on Step stress with 2.0,5.0  ba 5.1 and )4,2(),( 21 xx  
 

Sample 
Size n Parameter MLE Variance SE MSE 

95% 
Asymptotic 

CI 
Coverage 

 a  0.51069 0.01349 0.01368 0.01360 0.94282 
100 b  0.20353 0.00084 0.00083 0.00085 0.95030 

   1.52507 0.04789 0.04737 0.04851 0.94984 
 a  0.50734 0.00614 0.00653 0.00619 0.95866 

200 b  0.20098 0.00038 0.00040 0.00038 0.95766 
   1.50620 0.02194 0.02290 0.02198 0.95595 
 a  0.50339 0.00425 0.00428 0.00426 0.94789 

300 b  0.20132 0.00027 0.00027 0.00027 0.95075 
   1.50997 0.01561 0.01527 0.01571 0.95090 
 a  0.50258 0.00302 0.00318 0.00303 0.95290 

400 b  0.20096 0.00019 0.00020 0.00019 0.96192 
   1.50735 0.01095 0.01141 0.01100 0.96200 
 a  0.50323 0.00239 0.00255 0.00241 0.95795 

500 b  0.20059 0.00015 0.00016 0.00015 0.95595 
   1.50444 0.00895 0.00908 0.00897 0.95595 

 

Table2:  Simulations results based on Step stress with 2.0,5.0  ba 5.1 and )5,3(),( 21 xx  

Sample 
Size n Parameter MLE Variance SE MSE 

95% 
Asymptotic 

CI 
Coverage 

 a  0.51740 0.01333 0.01404 0.01363 0.94964 
100 b  0.20057 0.00040 0.00040 0.00040 0.95066 

   1.50444 0.02299 0.02258 0.02301 0.95159 
 a  0.50652 0.00793 0.00888 0.00797 0.94478 

200 b  0.20171 0.00027 0.00027 0.00028 0.94979 
   1.51273 0.01582 0.01521 0.01598 0.94887 
 a  0.50692 0.00578 0.00633 0.00583 0.95030 

300 b  0.20072 0.00020 0.00020 0.00020 0.94726 
   1.50522 0.01152 0.01133 0.01155 0.94736 
 a  0.50487 0.00443 0.00501 0.00446 0.96146 

400 b  0.20067 0.00015 0.00015 0.00015 0.95740 
   1.50506 0.00872 0.00900 0.00874 0.95740 
 a  0.50257 0.00279 0.00298 0.00279 0.95595 

500 b  0.20084 0.00011 0.00011 0.00011 0.95682 
   1.50453 0.00555 0.00568 0.00557 0.95095 
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6 SUMMARY AND CONCLUDING REMARKS 

 
This paper deals with parameter estimation of Pareto distribution under simple step stress ALT 

plan. The MLEs of the model parameters were obtained. The MLEs, the asymptotic variance and 
covariance of model parameters were obtained. Based on the asymptotic normality, the coverage 
rate of 95% confidence intervals of the model parameters are obtained. Optimal plan for step stress 
ALT is also determined by minimizing the asymptotic variance of the MLE of the 100 thP  
percentile of the lifetime distribution at normal stress condition. 

From results in Table 1 and 2, it is observed that ba
, and  estimates the true parameters ,a b  

and   quite well respectively with relatively small mean squared errors. The estimated standard 
error also approximates well the sample standard deviation. For a fixed ,a b  and   we find that as 
n  increases, variance, standard error and the mean squared errors of ba

, and  get smaller. This is 
because that a larger sample size results in a better large sample approximation. It is also noticed 
that the coverage probabilities of the asymptotic confidence interval are close to the nominal level 
and do not change much across the five different sample sizes. In short, it is reasonable to say that 
the present step stress ALT plan works well and has a promising potential in the analysis of 
accelerated life testing. 
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OPTIMAL REDUNDANCY IN SYSTEMS WITH MULTI-LEVEL UNITS 
 

Igor Ushakov 
 

 
ABSTRACT 

 
Method of Universal Generating Function (UGF) was introduced in [1]-[5] and got further 
fundamental developing in [7]-[8]. Here we give an example how method of UGF can be 
implemented to solution problems of optimal redundancy for systems consisting of multi-level units. 

 
 
 The Method of Universal Generating Functions (U-functions) was introduced in [1]-[5].  
Before detailed consideration of this method, let us remark that applying to the optimal redundancy 
problem this method represents a modification of the Kettelle’s Algorithm [1] conveniently arranged 
for calculations with the use of computer. 
 Detailed description of the UGF method can be found in [1]-[5] and [5]. 
 For the Reader’s convenience, we begin with a numerical example that can explain the idea of 
the problem solution more transparently than general arguing. The final description of the algorithm is 
given at the end. 
 Example. Consider a simplest series system of two units (see figure below).  

 
Figure 1. Series system consisting of two units. 

 
However, each unit itself is not a simple binary element but multistate element that is 

characterized by several levels of performance.  Performance may be measured various physical 
values. Effectiveness of such system operation depends on levels of performance of Unit-1 and 
Unit-2.  
 Let units are characterized by the following parameters: 
 
Unit-1 

Level of performance (W1) 
Probability p1 

 
 

Cost of a single unit 
100% p11=Pr{ W1=100%}=0.9  

c1=1 
70% p12=Pr{ W1=100%}=0.05 
40% p13=Pr{ W1=100%}=0.04 
0% p14=Pr{ W1=100%}=0.01 

   
Unit-2 

Level of performance (W1) 
Probability p2 

 
 

Cost of a single unit 
100% P21=Pr{ W2=100%}=0.8  

c2=2 
80% P22=Pr{ W2=80%}=0.18 
20% P23=Pr{ W2=20%}=0.01 
0% P24=Pr{ W2=0%}=0.01 

   
 Assume that performance effectiveness of each unit can be improved by using simple 
redundancy and that each moment of time unit performance is equal to the performance of the best 
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component of the redundant group. Thus, behavior of Unit-1, consisting of the main component and 
single redundant element, can be depicted as in Figure 2. 
 

 
Figure 2. A realization of stochastic behavior of Unit-1, consisting of two elements, main and 

redundant. The shadowed  area denotes the behavior of the Unit-1. 
 
For Unit-2 analogous process is presented in Figure 3. 
  

 
Figure 3. A realization of stochastic behavior of Unit-2, consisting of two elements, main and 

redundant. The shadowed  area denotes the behavior of the Unit-2. 
 
  Further, assume that the entire system (series connection of  Unit-1 and Unit-2) is 
characterized by the worst level of effectiveness of its units at each moment of time. In Figure 4, 
one can see the system behavior for the case when both units consist of a single main element. 
 

 
Figure 4. A realization of stochastic behavior of the entire system when both its units consist of a 

single main element. The shadowed  area denotes the behavior of the system. 
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Let the problem is to find optimal redundant elements allocation for solving two optimal 
redundancy problems: 

(1) Direct problem: Find such an allocation of redundant elements than delivers average level of 
the system performance not less than W0 with minimum possible cost of redundant 
elements; 

(2) Inverse problem: Find such an allocation of redundant elements than delivers maximum 
possible level of system performance under condition that the total expenses on redundant 
elements do not exceed C0 units of cost.  

Now consider construction of dominating sequence during the optimization process. (For details 
about dominating sequence, see [1] or [2].) In principle, one has to construct a table of type that 
presented below and choose members of dominating sequence. 
 
Table 1. Construction of dominating sequence. 

 

Number of redundant elements for  Unit-1 
0 1 2 … 

Number of redundant  
elements for  Unit-2 
 
 
 
 

 
0 

X=(0, 0) 
P(0, 0) 
W(0,0) 
C(0, 0) 

X=(1, 0) 
P(1,  0) 
W(1, 0) 
C(1, 0) 

X=(2, 0) 
P(2, 0) 
W(2, 0) 
C(2, 0) 

… 

 
1 

X=(0, 1) 
P(0, 1) 
W(0,1) 
C(0, 1) 

X=(1, 1) 
P(1,  1) 
W(1, 1) 
C(1, 1) 

X=(2, 1) 
P(2, 1) 
W(2, 1) 
C(2,  1) 

… 

 
2 

X=(0, 2) 
P(0, 2) 
W(0, 2) 
C(0, 2) 

X=(1, 2) 
P(1,  2) 
W(1, 2) 
C(1, 2) 

X=(2, 2) 
P(2, 1) 
W(2, 2) 
C(2, 2) 

… 

… … … … … 
 

     
 Further discussion will be provided in terms of Universal Generating Functions. As one 
sees, in this case we deal with quadruplets of type: 
 
{Vector of units’ variants; Discrete distribution of performance levels; System cost}. 
 

The problem complicates due to necessity of calculations because Probabilities of 
performance levels and Performance levels are not numbers but vectors that needed special 
calculations. This aspect will be demonstrated below. Here we would like to note that there is no 
necessity to calculate quadruplets for all cells of Table 1. Fortunately, we can use the property of 
Kettelle Algorithm:  members of dominating sequences are located around table’s diagonal and 
corresponding cells form simply connected area. It allows to use “dichotomy tree” procedure, i.e. 
avoid unnecessary calculations by cutting non-perspective branches (see Figure 5).  

Indeed, consider bordering cells around simple connected area (they marked with sign “x”.). 
There is no dominating cells in area located upper the right border, and there is no dominating cells  
in area located lower the left border. 
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Figure 5. Example of excluding non-perspective branches. Black arrows are members of 

dominating sequence, Grey arrows are trial test that led to non-perspective variants marked by  “x”. 
All cells marked with dark grey cannot contain dominating quadruplets. 

 
Thus, in this case calculations occur to be sufficiently compact. However, as we mentioned 

above some special calculations for each redundant group have to be done. 
Let us consider a numerical example. 

 In accordance with described above calculating procedure, one has to consider first variant 
(0, 0), i.e just Unit-1 and Unit-2 with no redundancy at all, and find quadruple, In this case resulting  
solution will be: 
 
{0;  [(p11, W11), (p12, W12),  (p13, W13), (p14, W14)]; c1} {0;  [(p21, W21), (p22, W22),  (p23, W23), 

(p24, W24)]; c2} =  {0

  0;  [(p11, W11), (p12, W12), (p13, W13), (p14, W14)]

UGF
 {0;  [(p21,W21), (p22, 

W22), (p23, W23), (p24, W24)];  c1

 c2 }. 

Here we use the following operators: 


   is an operator of forming a vector, i.e. ),( kjkj 


; 

UGF
  is an operator equivalent to the U-function, i.e. 

























kj

WW

kj
Bk

W
kUGFAj

W
j

kjkj zppzpzp
,

min , 

where, in turn,  Wj min
Wk = min(Wj, Wk); c1


 c2 is operator of summation, i.e. c1


 c2 = c1+ c2. 

Numerical results are presented in Table  2. 
 
This leads to the following final result: 
P(0.0)(Wsyst=100%) =0.72; 
P(0.0)(Wsyst=80%) =0.171; 
P(0.0)(Wsyst=70%) =0.04+0.0095=0.0495; 
P(0.0)(Wsyst=40% =0.032+0.0076=0.0396; 
P(0.0)(Wsyst=20%) =0.009+0.0005+0.004=0.0099; 
P(0.0)(Wsyst=0%) =0.008+0.0019+0.0001+0.0001+0.0009+0.0005+0.0004= 0.0201. 
 
Cost of additional units in this case equals 0. As one can easily calculate, the average level of the 
system performance is equal to 

.9092.02.00095.05.00396.07.00497.08.0171.072.0)0,0( systW  
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Table 2. Step 1 of the process of optimization 
 

 
(0, 0) 

Unit-2 
p21=0.8 

)0(
21W =100% 

p22=0.18 
)0(

22W =80% 
  

p23=0.01 
)0(

23W =20% 
p24=0.01 

)0(
24W =0% 

 
 
 
 

Unit-1 

p11=0.9 
)0(

11W
=100% 

p21· p11= 0.72 
),min( )0(

11
)0(

21 WW
=100% 

p22· p11= 0.171 
),min( )0(

11
)0(

22 WW
=80% 

  

p23· p14= 0.009 
),min( )0(

11
)0(

23 WW
 

=20% 

p24· p14= 0.009 
),min( )0(

11
)0(

21 WW
 

=0% 

p12=0.05 
)0(

12W
=70% 

p21·p12= 0.04 
),min( )0(

12
)0(

21 WW  
=70% 

p22·p12=0.0095 
),min( )0(

12
)0(

22 WW
=70% 

  

p23· p14= 0.0005 
),min( )0(

12
)0(

23 WW
 

=20% 

p24· p14= 0.0005 
),min( )0(

11
)0(

21 WW
 

=0% 

     
· · 

p13=0.04 
)0(

13W
=40% 

p21· p13= 0.032 
),min( )0(

13
)0(

21 WW =40% 

p22·p13=0.0076 
),min( )0(

13
)0(

22 WW
=40% 

  

p23· p14= 0.0004 
),min( )0(

13
)0(

23 WW
 

=20% 

p24· p14= 0.0004 
),min( )0(

11
)0(

21 WW
 

=0% 

       

p14=0.01 
)0(

14W
=0% 

p21· p14= 0.008 
),min( )0(

14
)0(

21 WW  
=0% 

p22· p14= 0.0019 
),min( )0(

14
)0(

22 WW  
=0% 

  

p23· p14= 0.0001 

%0
),min( )0(

14
)0(

23


WW

 

p24· p14= 0.0001 

%0
),min( )0(

14
)0(

23


WW

 
 
 
Now let’s make trial steps to the neighbor cells: check cells (1, 0) and (0, 1). Let us start with cell 
(1, 0) in accordance with Figure 4. First find performance levels distribution for Unit-1 consisting 
of two elements, main and redundant.  
 
 
Table 3. Forehand calculation of performance levels distribution for Unit-1, consisting of two 
elements, main and redundant. 

 Element-1 
 
 

 
 
 
Element-

1 

 

p11=0.9 
)0(

11W =100% 
p12=0.05 

)0(
12W =70% 

p13=0.04 
)0(

13W )=40% 
p14=0.01 

)0(
14W =0% 

p11=0.9 
)0(

11W
=100% 

(p11)2=0.81 
)0(

11W =100% 
p12 ·p11=0.045 

),max( )0(
11

)0(
12 WW

=100% 

p13 ·p11=0.036 

max ( )0(
13W , )0(

11W ) 
=100% 

p14 ·p11=0.009 
max ( )0(

14W , )0(
11W ) 

=100% 
p12=0.05 

)0(
12W

=70% 

p11·p12=0.045 
max ( )0(

11W , )0(
12W ) 

=100% 

(p12)2=0.025 
max( ,)0(

12W ))0(
12W

=70% 

p13· p12=0.002 

max ( )0(
13W , ))0(

12W  
=70% 

p14 ·p12=0.0005 

max ( )0(
14W , ))0(

12W ) 
=70% 

p13=0.04 
)0(

32W
=40% 

p11·p13=0.036 

max ( )0(
11W , )0(

32W ) 
=100% 

p12·p13=0.002 

max ( )0(
12W , )0(

32W ) 
=70% 

(p13 )2=0.0016 
)0(

32W =40% 

p14· p13=0.0004 

max ( )0(
14W , )0(

32W ) 
=40% 

p14=0.01 
)0(

14W =0% 

p11·p14=0.009 

max ( )0(
11W , )0(

14W ) 
=100% 

p12·p14=0.0005 

max ( )0(
12W , )0(

14W ) 
=70% 

p13 ·p14=0.0004 
max ( )0(

13W , )0(
14W ) 

=40% 

(p14)2=0.0001 
)0(

14W =0% 
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On the basis of this table, one gets for Unit-1 the following distribution 
%}100Pr{ )1(

1 W = ଵܲଵ
(ଵ)= (p11)2+2p11·( p12+ p13+ p14) = 0.81+2· (0.045+0.036+0.009)=0.99; 

 %}70Pr{ )1(
1W  ଵܲଶ

(ଵ)=(p12)2+2 ·p12 · (p13+ p14)=0.025+2·0.025 (0.002+0.0005)=0.0075; 
 %}40{Pr )1(

1W   ଵܲଷ
(ଵ)=(p13 )2+2p13· p14=0.0016+2·0.0016·0.0004≈0.0016: 

 %}0{Pr )1(
1W ଵܲସ

(ଵ) =  .ଶ=0.0001(ଵସ݌)
Using these results, one can  compile Table 4 that gives performance levels distribution for 

the system characterized by vector of redundant elements X = (1, 0).  
  

 
Table 4. Step 3 of the optimization process. 
 

(1, 0) 
 Csystem=ܿଵ = 1 

Unit-2 
p21=0.8 

)0(
21W )=100% 

p22=0.19 
)0(

22W )=80% 
p23=0.01 

)0(
23W )=20% 

p24=0.01 
)0(

24W )=0% 
 
 
 
 

Unit
-1 

ଵܲଵ
(ଵ)=0.99 

)1(`
11W

=100% 

ଶଵ݌ ∙ ଵܲଵ
(ଵ)= 0.792 

min ( )0(
21W , )1(`

11W
) 

=100% 

ଶଶ݌ ∙ ଵܲଵ
(ଵ)= 0.188 

min( )0(
22W , )1(`

11W
) 

=80% 

ଶଷ݌ ∙ ଵܲଵ
(ଵ)≈0.01 

min( )0(
23W , )1(`

11W
) 

=20% 

ଶସ݌ ∙ ଵܲଵ
(ଵ)≈0.01 

min( )0(
24W , )1(`

11W
)) 

=0% 

ଵܲଶ
(ଵ)=0.0075 

)1(`
12W =70% 

ଶଵ݌ ∙ ଵܲଶ
(ଵ)= 0.006 

min( )0(
21W , )1(`

12W ) 
=70% 

ଶଶ݌ ∙
ଵܲଶ
(ଵ)≈0.0014 

min( )0(
22W , )1(`

12W
) 

=70% 

ଶଷ݌ ∙ ଵܲଶ
(ଵ)≈0.0001 

min( )0(
23W , )1(`

12W ) 
=20% 

ଶସ݌ ∙ ଵܲଶ
(ଵ)=0.0001 

min( )0(
24W , )1(`

12W ) 
=0% 

ଵܲଷ
(ଵ)=0.0016 

)1(`
13W =40% 

ଶଵ݌ ∙ ଵܲଷ
(ଵ)0.0013 

min( )0(
21W , )1(`

13W ) 
=40% 

ଶଶ݌ ∙
ଵܲଷ
(ଵ)≈0.0003 

min( )0(
22W , )1(`

13W
) 

=40% 

ଶଷ݌ ∙ ଵܲଷ
(ଵ)≈0 

min( )0(
23W , )1(`

13W ) 
=20% 

ଶସ݌ ∙ ଵܲଷ
(ଵ) ≈ 0 

min( )0(
24W , )1(`

13W ) 
=0% 

ଵܲସ
(ଵ)=0.0001 

)1(`
14W =0% 

ଶଵ݌ ∙ ଵܲସ
(ଵ)≈0.0001 

min( )0(
21W , )1(`

14W ) 
=0% 

ଶଶ݌ ∙ ଵܲସ
(ଵ)≈0 

min( )0(
22W , )1(`

14W
) 

=0% 

ଶଷ݌ ∙ ଵܲସ
(ଵ)≈0 

min( )0(
23W , )1(`

14W ) 
=0% 

ଶସ݌ ∙ ଵܲସ
(ଵ)≈0 

min( )0(
24W , )1(`

14W ) 
=0% 

 
This leads to the following final result: 
P(1.0)(Wsyst=100%) =0.792; 
P(0.0)(Wsyst=80%) =0.188; 
P(0.0)(Wsyst=70%) =0.006+0.0014=0.0074; 
P(0.0)(Wsyst=40% =0.0013+0.0003=0.0016; 
P(0.0)(Wsyst=20%) =0.01+0.0001=0.0101; 
P(0.0)(Wsyst=0%) =0.008+0.0019+0.0001+0.0001+0.0009+0.0005+0.0004= 0.0201. 
 
Cost of additional units in this case equals 1. Average system’s performance level equals 

.9502.02.00095.04.00396.07.00497.08.0188.0792.0)0,1( systW  
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Then try another neighbor cell, namely (0, 1). Beforehand, one has to perform an additional 
calculation of performance levels distribution for Unit-2 consisting of two elements, main and 
redundant. 
  
Table 5. Forehand calculation of performance levels distribution for Unit-2, consisting of two 
elements, main and redundant. 

 Element-2 
 
 

 
 
 
Element-2 

 

p21=0.8 
)0(

21W =100% 
p22=0.19 

)0(
22W =80% 

p23=0.01 
)0(

23W =20% 
p24=0.01 

)0(
24W =0% 

p21=0.8 
)0(

21W =100% 

(p21)2=0.64 
)0(

21W =100% 
p22   p21=0.045 

max ( )0(
22W , )0(

21W ) 
=100% 

p23   p21=0.036 

max ( )0(
23W , )0(

21W ) 
=100% 

p24   p21=0.008 
max ( )0(

24W , )0(
21W ) =100% 

p22=0.19 
)0(

21W =80% 

p21   p22=0.152 
max ( )0(

21W , )0(
21W ) 

=100% 

(p22)2=0.0361 
)0(

22W =80% 
p23   p22=0.0002 

max ( )0(
23W , )0(

21W ) 
=80% 

p24  p22=0.0002 

max ( )0(
24W , )0(

21W ) 
=80% 

p23=0.01 
)0(

23W =20% 

p21   p23=0.008 

max ( )0(
21W , )0(

23W ) 
=100% 

p22   p23=0.0002 

max ( )0(
22W , )0(

23W ) 
=80% 

(p23 )2=0.0001 
)0(

23W =20% 

p24   p23=0.0001 

max ( )0(
24W , )0(

23W ) 
=20% 

p24=0.01 
)0(

24W =0% 

p21  p24=0.008 
max ( )0(

21W , )0(
24W ) 

=100% 

p222   p24=0.0002 

max ( )0(
22W , )0(

24W ) 
=70% 

p p23   p24=0.0001 

max ( )0(
23W , )0(

24W ) 
=20% 

(p24)2=0.0001 
)0(

24W =0% 

 
On the basis of this table, one gets for Unit-2, consisting of two elements, the following 

distribution 
%}100Pr{ )1(

2 W = ଶܲଵ
(ଵ)= (p21)2+2p21· (p22+ p23+ p34) = 0.64+2· 0.8· (0.045+0.036+0.008) ≈0.7709; 

 %}80Pr{ )1(
2W  ଶܲଶ

(ଵ)=(p22)2+2 ·p22 · (p23+ p24)=0.0361+2·0.0361 (0.0002+0.0002) ≈ 0.0361; 
 %}20{Pr )1(

2W   ଶܲଷ
(ଵ)=(p13 )2+2p13· p14=0.0001+0.0001+0.0001=0,0003: 

 %}0{Pr )1(
2W ଶܲସ

(ଵ) =  .ଶ=0.0001(ଵସ݌)
After  such preparations, one can construct a table with system’s performance levels 

distribution for the system configuration characterized by vector of redundant elements X = (0, 1). 
This leads to the following final result: 
P(1.0)(Wsyst=100%) =0.6038; 
P(0.0)(Wsyst=80%) =0.0325; 
P(0.0)(Wsyst=70%) =0.0386+0.0018=0.0404; 
P(0.0)(Wsyst=40% =0.0308+0.0014=0.0322; 
P(0.0)(Wsyst=20%) ≈0.0003; 
P(0.0)(Wsyst=0%) =0.0077+0.0004+0.0001≈0.0082. 
 
Cost of additional units in this case equals 2 units of cost. Average system’s performance level 
equals 

.671.02.00003.04.00322.07.00404.08.00325.0.06038.0)1,0( systW  
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Table 6. Step 4 of the optimization process. 
 

(0, 1) 
 Csystem=ܿଶ = 2 

Unit-2 

ଶܲଵ
(ଵ)=0.7709 

)1(
21W =100% 

ଶܲଶ
(ଵ)=0.0361 

)1(
22W =80% 

  

ଶܲଷ
(ଵ)=0.0003 

)1(
23W =20% 

ଶܲସ
(ଵ)=0.0001 

)1(
24W =0% 

 
 
 
 

Unit-1 

p11=0.9 
)0(

11W =100% 

ଶܲଵ
(ଵ) ∙ ଵଵ݌ ≈ 0.6038 

min ( )1(
21W , )0(`

11W ) 
=100% 

ଶܲଶ
(ଵ) ∙ ଵଵ݌ ≈ 0.0325 

min( )0(
22W , )1(`

11W ) 
=80% 

  

ଶܲଷ
(ଵ) ∙  ଵଵ≈0.0003݌

min( )0(
23W , )1(`

11W ) 
=20% 

ଶܲସ
(ଵ) ∙  ଵଵ≈0.0001݌

min( )0(
24W , )1(`

11W )) 
=0% 

p12=0.05 
)0(

12W =70% 

ଶܲଵ
(ଵ) ∙ ଵଶ݌ ଵଶ݌ଵଶ݌ ≈0.0386 

min( )0(
21W , )1(`

12W ) 
=70% 

ଶܲଶ
(ଵ) ∙ ଵଶ݌ ≈0.0018 

min( )0(
22W , )1(`

12W ) 
=70% 

  

ଶܲଷ
(ଵ) ∙ ଵଶ݌ ≈0 

min( )0(
23W , )1(`

12W ) 
=20% 

ଶܲସ
(ଵ) ∙  ≈ 0	ଵଶ݌

min( )0(
24W , )1(`

12W ) 
=0% 

       
p13=0.04 

)0(
32W =40% 

ଶܲଵ
(ଵ) ∙ ଵଶ݌ଵଷ݌ ≈0.0308 

min( )0(
21W , )1(`

13W ) 
=40% 

ଶܲଶ
(ଵ) ∙  ଵଷ≈0.0014݌

min( )0(
22W , )1(`

13W ) 
=40% 

  

ଶܲଷ
(ଵ) ∙  ଵଷ≈0݌

min( )0(
23W , )1(`

13W ) 
=20% 

ଶܲସ
(ଵ) ∙ ଵଷ݌ ≈ 0 

min( )0(
24W , )1(`

13W ) 
=0% 

       

p14=0.01 
)0(

14W =0% 

ଶܲଵ
(ଵ) ∙  ଵସ≈0.00771݌

min( )0(
21W , )1(`

14W ) 
=0% 

ଶܲଶ
(ଵ) ∙  ଵସ≈0.0004݌

min( )0(
22W , )1(`

14W ) 
=0% 

  

ଶܲଷ
(ଵ) ∙  ଵସ≈0݌

min( )0(
23W , )1(`

14W ) 
=0% 

ଶܲସ
(ଵ) ∙  ଵସ≈0݌

min( )0(
24W , )1(`

14W ) 
=0% 

 
 

Thus, for vector (1, 0) one has additional cost equal 1 and 9502001 .W ),(
syst   and for vector (0, 1) 

corresponding values equal to 2 and 0.671, so system configuration (1, 0) is dominating over 
configuration (0, 1), since higher average performance level delivers with less expenses. It means that 
all vectors of type (0, k) are excluded from further analysis. 

 
The next cells, for which current trials have to be done, are cells (1, 1) and (2, 0) in accordance 

with self-explanatory Figure 6. 
 

 
 

Figure 6. Directions of further analysis of cells 
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The next cells under investigation are (2, 0) and (1, 1), one can see from Figure 7. 
 

 
 

Figure 7. Further development of checking cells 
 
  Avoiding simple, however cumbersome calculations, let us present only final results (see 
Table 5). 
 
Table 7. Costs and levels of performance  for different vectors of redundant elements. 

 Unit-1:  Number of redundant elements 
0 1 2 3 4 5 6 

 
 
 
 

Unit-2: 
 

Number 
of 

redundant 
elements 

0 C=0 
W= 
90.16 

C=1 
W= 
94.26 

C=2 
W= 
94.57 

   … 

1 C=2 
W= 
94.68 

C=3 
W= 
99.16 

C=4 
W= 
99.50 

C=5 
W= 
99.53 

  … 

2 C=4 
W= 
95.03 

C=5 
W= 
99.54 

C=6 
W= 
99.89 

C=7 
W= 

99.92 

 
? 

 …
 

3  C=7 
W= 

99.61 

C=8 
W= 

99.95 

 
? 

  … 
.
 

4       … 
.
 

… … … 
.
 …

 
…

 
…

 
…

 
…

 

Legend: light grey color – dominated cells, dark grey color – non-prospective variants. 
 

Probably, the last table needs some explanations. System without redundant elements initially 
has average level of performance (W) equals 90.16%. Next phase of calculation is checking neighbor 
cells to cell (0, 0), i.e. (1, 0) and (0, 1). After adding a redundant element of the 1st type, one gets W= 
94.26% and after adding a redundant element of the 2nd  type, one gets W= 94.68%. Both cells contain 
dominating vectors of redundant elements. Next phase of trials are vectors (2, 0), (1, 1) and (0, 2). 
Vectors (1, 1) gives W=94.57 with total cost of redundant elements C=3. Vector (2, 0) is dominated by 
vector (0, 1) since possesses lower value with the same expenses for redundant elements. Therefore all 
vectors of type (3, 0), (4, 0) and so on, are excluded from further trials. Vector (1, 1) is dominating. 
 Next phase is trial of neighbor cells to the currently existing cells with dominating vectors, 
These cells are (2, 1), (1, 2) and (0, 3) (Remind that vector (3, 0) is excluded as dominated one.) As one 



V M Chacko and M. Manoharan  – MEAN RESIDUAL LIFE CRITERIA OF FIRST PASSAGE TIME OFSEMI-MARKOV PROCESS 

 
RT&A # 01 (28)  

(Vol.8) 2013, March  
 

 

50 

can see from Table 5, vector (2, 1) dominates over vector (0, 2), so all vectors of type (0, 3), (0, 4) and 
soon are excluded from further trials. Vectors (1, 2) and (2, 1) belong to the dominating sequence of 
vectors.  

Such trials and selection of dominating vectors continued until appearance of first vector with 
the average level of performance higher than required value of Wo  for the direct problem of optimal 
redundancy, or until total expense of all redundant elements are nor exceed given value  Co for the 
inverse problem. These comments become absolutely transparent if one take a look on Figure 8. 

 
Figure 8. Depiction of the process of compiling the dominating sequence 

 
From Table 5, one can see that optimal solution for requirement  that the average level of  

system performance is not less than Wo =0.999 is delivered by vector (3,2), and the total expenses of 
redundant elements is 7  cost units. For the total expenses on redundant elements limited by Co ≤4 cost 
units, one gets maximum possible solution as vector (1, 2) that characterizes by W=99.54%. 

It is interesting what happens with the optimal solution if one changes costs of elements> Let 
us assume that for the same system cost of a single redundant element of the 1st type is c1=2 and the 
cost am element of the 2nd type c2=1.  
 
Table 8. Costs and levels of performance  for different vectors of redundant elements for new 
elements’ costs. 
 Unit-1:  Number of redundant elements 

0 1 2 3 4 5 6 
 
 
 
 

Unit-2: 
 

Number 
of 

redundant 
elements 

0 C=0 
W=90.156 

C=2 
W= 
94.26456 

    … 

1 C=1 
W= 
94.68072 

C=3 
W= 
99.16318 

C=5 
W= 
99.50462 

   … 

2 C=2 
W= 
95.02683 

C=4 
W= 
99.54058 

C=6 
W= 
99.88507 

C=8 
W= 

99.9156 

 
 

 …
 

3 C=3 
W= 
95.08558 

C=5 
W= 

99.60514 

C=7 
W= 

99.9502 

 
? 

  … 
.
 

4  C=6 
W= 
99.61784 

 
? 

   … 
.
 

… … … 
.
 …

 
…

 
…

 
…

 
…

 

Legend: light grey color – dominated cells, dark grey color – non-prospective variants. 
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In this case optimal solutions found from Table 6 are: For the direct problem vector (2, 3), for 
which W=99.95% and total expenses on redundant elements are equal to 7 cost units, and for inverse 
problem the solution is (1, 2), for which W=99.54% and total expenses C=4. For inverse problem, the 
solutions coincide with each other in both cases. 

Solution of optimal redundancy problems for system consisting of several multilevel units 
seems a bit cumbersome. However, let us note that all enumerative methods like dynamic 
programming practically unsolvable without computerizing calculations. Numerical example above 
was solved with the help of a simple programs using Microsoft Excel. 

For complex systems consisting of n multiple multistate units, one can compile a simple 
program for a mainframe computer. The algorithm should include the following steps. 

 

i. FIRST STEP 

1. Take an n-dimensional vector of redundant elements )0...,,0,0( )0()0(
2

)0(
1

)0(  nxxxX . 
2. Perform calculations to get initial pair of values ),( )0()0(

systsyst CW  (see Table.2).
 

3. Put calculated pair ),( )0()0(
systsyst CW

into list of dominating  solutions,
  

ii. SECOND STEP 
4. Generate vectors

 
)1(

iX such that each of them distinguishes from
 

)0(X  by changing number 

of elements of Unit-i on one, i.e. 
 )0...,,1...,,0,0( )0()0()0(

2
)0(

1
)1(  nii xxxxX .

 

iii. THIRD STEP 
5. For each ,,1,)1( niX i 

calculate new values of ௜ܲ௞೔
(ଵ),  for all ki where ki is the number of 

performance levels of Uniy-I (see Tables  3 and 5). 
6. Perform corresponding calculations for getting  n pairs 

),,(,....),,(),,( )1()1()1(
2

)1(
2

)1(
1

)1(
1 nn CWCWCW

for all vectors (see Tables 4 and 6).
 

7. Analyze all pairs obtained in previous point to form a set G(1) that includes only dominating 
vectors )1(

iX .
 

8. 
Return to the 3rd step, using vectors  belonging to set 

G(1) 

 
Stopping rules: 
(a)

 For direct optimization problem, choose such a vector 
)(k

iX
among  G(k) that was obtained 

at the k-th step of the optimization process that delivers 
)1(

)(
min iGi

C
k for all 

0)( WW k
i  . 

(b)
 For inverse optimization problem, choose such a vector 

)(k
iX

among  G(k) that was obtained 

at the k-th step of the optimization process that delivers 
)1(

)(
max iGi

W
k for all 

0)( CC k
i  .. 
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ABSTRACT 

 
Mean residual life criteria of first passage time of semi-Markov process is considered. Properties of 
transition probability functions when using scaled Total Time on Test (TTT) transform for some criteria 
of mean residual life are discussed. Application to Multistate reliability system is also addressed. 

 
 
1  INTRODUCTION 

 
First passage times of appropriate stochastic process have often been used to represent times to 

failure of devices or systems which are subject to shocks and wear, random repair time and random 
interruptions during their operations. The life distribution properties of these processes have 
therefore been widely investigated in Multistate system reliability and maintenance literature. The 
life distributions involved in devices or systems have several interesting properties such as 
increasing mean residual life (IMRL), decreasing mean residual life (DMRL), etc. The total time on 
test (TTT) transform is used as a tool for identification of failure distribution model in binary 
system. Marshell and Shaked (1983), (1986) and Shantikumar (1984) considered processes with 
new better than used (NBU) first passage times. Belzunce et al. (2002) derived, for the 
uniformizible, continuous time Markov process, conditions in terms of discrete uniformized 
Markov chain for the second order NBU and NBU based on laplace transformation classes. 

Karasu and Ozekici (1989) studied NBUE and new worse than used in expectation (NWUE) 
properties of increasing Markov processes and Markov Chains. Lam (1992) considered the NBUE 
and NWUE properties of Markov renewal processes. 

Use of TTT transform for the identification of failure rate models is discussed by Barlow and 
Campo (1975). Later, Klefsjo (1982) presented some relationship between the TTT transform and 
other ageing properties (with their duals) of random variable, eg. decreasing mean residual life 
(DMRL), NBU, NBUE, harmonically new better than used in expectation (HNBUE) and heavy 
tailedness. Abouammoh and Khalique (1987) further discussed properties of scaled TTT transform 
for some criteria of the mean residual life such as decreasing mean residual life average (DMRLA), 
decreasing harmonic mean residual life average (DHMRLA), new better than used harmonic mean 
residual life average (NBUHMRLA), and new better than used mean residual life average 
(NBUMRLA). 

But when we consider a complex system whose performance process is Markov or semi-
Markov, we need the knowledge of DMRLA properties or other relevant ageing properties for 
applying suitable maintenance and repair/replacement policies. The identification of failure rate 
model of a system whose performance process is Markov/semi-Markov will be helpful to the 
engineers and designers for applying suitable maintenance and repair or replacement policies, since 
identification of failure rate model using TTT describes new methods for analyzing nonnegative 
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observations. Chacko et.al (2010) discussed use of TTT transform in identifying failure rate model 
of semi-Markov reliability system. 

In this paper, we consider a semi-Markov process whose first passage time distribution is 
DMRL or DMRLA or NBUHMRL or NBUMRL (with their duals). We consider the reliability 
function based on the transition probability function in the upstates. 

This paper is arranged as follows. Section 2 describes various ageing properties of a lifetime 
random variable. Section 3 recall the existing results for identification of failure rate model of 
random variables based on TTT. In Section 4, we introduce some sufficient conditions for the MRL 
criteria of the semi-Markov process based on TTT built from transition probability function. An 
illustrative example for multistate system is given in section 5. Conclusions are given at the last 
section. 
 
 
 2. AGEING OF A LIFETIME RANDOM VARIABLE 

 
The concept of ageing is very important in reliability theory. ’No ageing’ means the age of a 

component has no effect on the distribution of residual life time. ’Positive ageing’ describes the 
situation where residual lifetime tends to decrease, in some probabilistic sense, with increasing age 
of the component. On the other hand, ’Negative ageing’ has an opposite effect on the residual 
lifetime. 
 

Let R(t) = 1 − F(t) be the survival or reliability function of a lifetime random variable. Let Xt 
be the random variable representing the residual life time of a unit which has attained the age t. 
Then the respective distribution function and survival function are Fx(t) and Rx(t). Next it is seen 
that Rx(t) = R(t+x) /R(t) . This is the conditional probability that the unit survived up to time t, will 
not fail before additional x units of time. Further R0(t) = R(t). 

By positive ageing we mean the phenomenon where by an older system has shorter 
remaining life time in some statistical sense than a newer or younger one.  

 
That is Rx(t) = R(t+x)/ R(t) <R0(t) or 

 Rx(t) = R(t+x)/R(t) is decreasing in t.  
Similarly, for negative ageing, Rx(t) = R(t+x)/R(t) is increasing in t. 
Obliviously, any study of the phenomenon of ageing is to be based on Rx(t) and functions related. 
 
2.1 Failure Rate Function 

 
The conditional failure rate or failure rate  at time t is defined as 

)(
)()(

0lim)( txR
tFxtF

xt 
 , 

so that,

 

)(
)()( tR

tft 

 

when F is absolutely continuous and f(t) is the probability density function of 
F(t). The failure rate function has been extensively studied in literature since it is very important 
parameter in reliability theory. 

Another important order is mean residual life order. The definition of mean residual life is 
given below. 

 
2.2 Mean Residual Life 

 
Let TD be the lite time. The mean residual life is defined as 

μ(t) = E(TD − t|TD > t) = )(

)(

tR

dxxR
t


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if  t      and zero otherwise. 
The failure rate function )(t will be continuous and twice differentiable for all t > 0 with 

the exception of the exponential distribution.  
 
3. TOTAL TIME ON TEST TRANSFORM 

 
Total time on test (TTT) transform is a fundamental tool in reliability investigation. 
Let X has distribution F. Given a sample of size n from the non-negative random variables 

X, let )()()2()1( ...... nk XXXX    be the sample. TTT to the rth failure from distributions F 

and is, 


 
r

i
rirrr XrnXXXrnXXnnXXT

1
)()()1()()1()2()1()( )())(1(....))(1()(  

Define   

)(1)/( )(
1

rn XTnnrH   and  


 )/(

0

1
1

))(1()/(
nrF

nn
n duuFnrH

, 

where 














 

uX
XuXni

Xu
uF

n

ii

i

n

)(

)1()(

)(

1

/

0

)(

, 

})(:inf{)(1 uxFxxF nn    

The fact that  )()( xFuFn  a.s. implies, by Glivenko Cantelli Theorem, 








)(

0

)/(

0/,

1
1

0 ))(1())(1(lim
tF

n

nrF

tnrn duuFduuF   ].1,0[t  

We define TTT transform of F as 



)(

0

1

1

))(1()(
tF

F duuFtH ].1,0[t
 

 
3.1. Model Identification 

 
TTT is a very important index in reliability for the model identification of lifetime data. TTT 

test plots are useful for analyzing non-negative data. Using these plots incomplete data can be 
analyzed and there is a theoretical basis for such an analysis. We can define ageing properties in 
terms of TTT transforms. TTT transforms permits us to classify distributions according to their 
failure rate. Total time on test plots also permits the comparison of distribution functions with 
respect to their failure rate and they can be used to find a model for the data under study. Thus in 
many aspects TTT is very important part in the study of reliability. But the existing results are 
limited to the case of random variables. We extend the study to the case of semi-Markov process in 
the next section, for the first passage time random variable. 
 

Let 0,),/exp(1)(   xxxG be the exponential distribution with mean µ. Then 




  )(

0

)(

0

/1
11

)()(
tGtG x

G txdGdxetH  and scaled TTT, 

                                       ].1,0[,
)1(
)()( 1

1

 



tt
H

tHt
G

G                                                    (3.1) 

  
The scaled TTT of the Exponential distribution is a 045   line on [0,1]. The normalized total 

time on test is the boundary between the corresponding transforms of IFR and DFR distributions. 
TTT that permits to classify distributions according to their failure rate is that its slope evaluated at t 
= F(x) is the reciprocal of the failure rate at X.  
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                                   ,
)(

1
)(

)(1|
)]([

)1(|)( )(1)(
1

xxf
xF

tFf
ttH

dt
d

xFtxFtF 






 

                           (3.2) 

where  λ is the failure rate of F. 
 

Now we consider the following results in Barlow and Campo (1975). 

Proposition 3.1 F IFR(DFR) ) 
)1(
)(

1

1






F

F

H
tH is concave or (convex) in ].1,0[t  

Proposition 3.2 F IFRA(DFRA) implies )(
)1(
)(

1

1





F

F

tH
tH  in ].1,0[t  

Proposition 3.3 F NBU(NWU) )   slope of 
)1(
)(

1

1





F

F

H
tH is larger(smaller) at the origin than at any 

other t, 0 < t <1. 
 

For F NWU reverse the direction of inequalities. Now we consider a characterization for 
NBUE (NWUE) and DMRL (IMRL), see Klefsjo (1982). 

 
Theorem 3.1 A life distribution F is NBUE(NWUE) if and only if tt )()(  for .10  t  
Theorem 3.2 A life distribution F is DMRL(IMRL) if and only if )1/())(1()( tttQ    is 
decreasing (increasing) for .10  t  

The following are some important results in model identification of a univariate lifetime 
random variable. 
Theorem 3.3 (Abouammoh and Khalique (1987)) Let F and )(tF  be as in above theorem, then 
we have the following 

1. F is DMRL (IMRL) if and only if 10,0)()()1()(1  ttttF   
2. F is NBUMRL(NWUMRL) if and only if .10,)()(  tttF   

3. F is DMRLA (IMRLA) if and only if dxxxt F

t

)1/())(1(/1
0

   

is decreasing (increasing) for 0 < t < 1. 
4. F is NBAMRL (NWAMRL) if and only if 

  tdxxxF

t

)()1/())(1(
0

   for   .10  t . 

5. F is DHMRLA (IHMRLA) if and only if dxxxt F

t

))(1/()1(/1
0

   

is increasing (decreasing) in t for 0 < t < 1. 
6. F is NBUHMRL(NWUHMRL) if and only if 

  tdxxx F

t

)())(1/()1(
0

   for   .10  t  

But the existing results are limited to the case of random variables. We extend the study to 
the case of semi-Markov process in the next section, for the first passage time random variable. 
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4. MEAN RESIDUAL LIFE CRITERIA  OF A SEMI-MARKOV SYSTEM  
 
We are concerned with a multistate system (MSS) having M + 1 states 0,1,…,M where '0' is 

the best state and 'M' is the worst state, see Barlow and Wu (1978) for details of MSSs. At time zero 
the system begins at its best state and as time passes the system begins to deteriorate. It is assumed 
that the time spent by the system in each state is random with arbitrary sojourn time distribution. 
The system stays in some acceptable states for some time and then it moves to unacceptable (down) 
state. The first time at which the MSS enters the down state after spending a random amount of time 
in acceptable states is termed as the first passage time (failure time) to the down state of the MSS. 
We study the aging properties of the first passage time distribution of the MSS modeled by the 
semi-Markov process }0,{ tYt . In the MSS with states {0,1,…,k,k+1,…,M} where {0,1,…,k} is the 
acceptable states, the sojourn time between state 'i' to state 'j' is assumed to be distributed with 
arbitrary distribution ijF . 
 
4.1 First Passage time and Reliability Function 

 
Let E = {0,1,…,M} be a set representing the state of the MSS and probability space with 

probability function P, on which we define a bivariate time homogeneous Markov chain  
nnn XnTXTX ,...}},2,1,0{,,{),(   takes values of E and  nT on the half real line ),0[ R , 

with ......0 21  nTTT  Put 1 nnn TTU   for all .1n  This Markov process is called a 
Markov renewal process (MRP) with transition function, the semi-Markov kernel, Q = [ ijQ ], where 

0,,],|,[)( 1   tEjiiXtUjXPtQ nnnij  and 0,,0)(  tEitQii . 
Now we consider the semi-Markov process (SMP), as defined in Pyke (1961). It is the 

generalization of Markov process with countable state space. SMP is a stochastic process which 
moves from one state to another of a countable number of states with successive states visiting form 
a Markov chain, and that the process stays in a given state a random length of time, the distribution 
of which may depend on this state as well as on the one to be visited in the next. Define

},...,sup{, 21 tUUUTnNXZ nntNt t
 it is the semi-Markov process associated with the 

MRP defined above. In terms of Z, the times  ,..., 21 TT  are successive times of transitions for Z, and  
,..., 10 XX are successive states visited.  
If Q has the form ,0,,],1][|[)( )(

1  
 tEjieiXjXPtQ ti

nnij
  for some function λ(i),  

Ej then the process  tZ  is a Markov process. That is, in a Markov process, the distributions of 
the sojourn times are all exponential independent of the next state. The word semi-Markov comes 
from the somewhat limited Markov property which Z enjoys, namely, that the future of Z is 
independent of its past given the present state provided the "present" is the time of jump. Let ijI  
=indicator function of }{ ji  . Define the transition probability that system occupied state Ej  at 
time t > 0, given that it is started at state i at time zero, as,  0,,  tEji  

),,)((*)(]|[]|[)( 00 jitPQIthiXjXPiZjZPtp ijiNtij t
  

 where )]([)(,)(1)( tptPtQth ij
k

iki   and 



Ek

t

kjik xtpdxQjitPQ
0

)()(),)((*  

To obtain the reliability function of the semi-Markov system described above, we must 
define a new process, Y with state space  U , where U denotes set of all up states {0; 1; :::; k} 
and   is the absorbing state in which all the states {k + 1, …;M} of the system is united. Let  DT  
denote the time of first entry to the down states of Z process. 

That is, )(tt ZY   if  )(DTt    and tY  if ).(DTt   
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Let 1)1,...,1,1(1 , a unit row vector with appropriate dimension. The process tY is a semi-Markov 
process with semi-Markov kernel 















00
)()( 1211

 DownUp

tQtQ  

We denote  ))(),...,1(,)(),...,0((
21 ,,    


DownUp

Mkk    where ).()( 0 iYPi   
The reliability function is 

).()(

],[

][][]],,0[[)(

0

itp

iYjYP

jYPUYPUZtuPtR

Ui Uj
ij

Ui Uj
t

Uj
ttu







 

 









 

4.2. Model Identification 
 
In order to identify the failure rate behavior of a semi-Markov system based on the transition 

probability function, we define the TTT based on transition probability function in up states as 
follows. Let F be the first passage time distribution of a semi-Markov system, define 

                         ]1,0[,,,)()(
)(

0

1
1

 


 tUjiduuptH
tF

ijpij
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Chacko and Manoharan (2009) proved the following if  )(xpij  is monotonic increasing or 
decreasing. 

Proposition 4.1 The first passage time distribution of a semi-Markov system F is IFR if t
H

tH

F

F 



)1(
)(

1

1

 

and concave in .,],1,0[ Ujit   
Proposition 4.2 The first passage time distribution of a semi-Markov system F is DFR if 

t
H

tH

F

F 



)1(
)(

1

1

 and 
)1(

)(
1

1





ij

ij

p

p

H
tH

convex in .,],1,0[ Ujit   

Remark 4.1 The constant failure rate model arises when it is both IFR and DFR. Therefore we 

must have Ujit
H

tH

ij

ij

p

p




,,
)1(

)(
1

1

.  

Proposition 4.3 The first passage time distribution of a semi-Markov system F IFRA implies 

].1,0[,1)(1 

 
 ttH

dt
d

ijp
Ui Uj

 

Proposition 4.4 The first passage time distribution of a semi-Markov system F DFRA implies 

].1,0[,1)(1 

 
 ttH

dt
d

ijp
Ui Uj

 

Proposition 4.5 F NBU(NWU) ) implies 

.,],1,0[,0)()(|)( 1
0

1 UjittH
dt
dtH

dt
d

ijij p
Ui Uj
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Ui Uj
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 
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Proposition 4.6 The first passage time distribution of a semi-Markov system F is NBUE 

].1,0[,,,
)1(

)(
1

1





tUjit
H

tH

ij

ij

p
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Proposition 4.7 The first passage time distribution of a semi-Markov system F is NWUE if 

].1,0[,,,
)1(

)(
1

1
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tUjit
H

tH
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ij

p
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Proposition 4.8 The first passage time distribution of a semi-Markov system F is  DMRL(IMRL) if 

                                             ].1,0[,,,1)(
)(1




tUji
dt

tdH
ijp                              

 
We prove the following. 
 
Theorem 4.1. Let F and  )(tF be as in above theorem, then we have the following 

1. F is DMRL (IMRL) if  
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It implies, for  
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By theorem (3.3), we proved the result. 

2. F is NBUMRL (NWUMRL) if ]1,0[,,,)(
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By theorem (3.3) we proved the result. 
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By theorem (3.3) we proved the result. 
4. F is NBAMRL (NWAMRL) if  
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By theorem (3.3) we proved result. 

5. F is DHMRLA (IHMRLA) if ]1,0[,
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Hence by theorem (3.3), we proved the result. 
 
 
5 APPLICATION AND ILLUSTRATIVE EXAMPLE 

 
We are concerned with a multistate system (MSS) having M+1 states 0, 1, ...,M where ’0’ is 

the best state and ’M’ is the worst state, see Chacko and Manoharan (2009) for details of MSSs. At 
time zero the system begins at its best state and as time passes the system begins to deteriorate. It is 
assumed that the time spent by the system in each state is random with arbitrary sojourn time 
distribution. The system stays in some acceptable states for some time and then it moves to 
unacceptable (down) state. The first time at which the MSS enters the down state after spending a 
random amount of time in acceptable states is termed as the first passage time (failure time) to the 
down state of the MSS. Major application of the above results is in maintenance and repair of 
complex systems such as age and block replacement policies. A variety of applications in 
maintenance and replacement policies of a binary system can be seen in Barlow and Proschan 
(1996). 
 
Example 5.1 Consider a Markov process in continuous time and discrete state space {1,2,…,M} 
given in Doob (1953), p.241. The system starts in state '1' at time zero and as it enters 'M', it remains 
there. Consider the intensity matrix, ][ ijqQ  with entries  
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.0,,1},1,...,2,1{,0 1   iMiiij qqqijMiq  
The Kolmogorov's system of differential equation becomes, 

for tuiYjYPutp utij  0],|[)(  and we take u = 0, 
0)(,),()()( 1

1   tpMitqptqptp Mkkiikik  
with initial conditions,  ,)0( ikikp   the indicator of {i=k}. Then,  

1)(,,0)(  tpMktp MMMk  
and it is easily verified that the solution is 
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Here the process is of monotone paths. Now consider }1,...,1,0{,  Mji  
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This is an increasing function of t and bounded by 1. Therefore 
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6. CONCLUSIONS 

 
The identification of the failure rate model of first passage time distribution of a semi-

Markov process is discussed. The results are applicable to systems like power generation system 
whose performance is measured in terms of productivity or capacity and having more than two 
levels of performance. Preventive or corrective maintenance can be applied to the MSS if we have 
the knowledge regarding its failure behavior, since type of the failure rate is an important parameter 
for the maintenance and replacement policies. 
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ABSTRACT 
 

Smagin V.A. the brief review of a history of introduction of delta - function on a complex plane. The 
proof of the mathematical form of complex delta - function is given. The example of application of 
complex delta - function for a presence of stationary value alternation casual process of accumulation 
with the information income and the charge is given. 

 
 
Introduction 
From a history of mathematics, V.M.Kalinin, professor SPBSU in his book “ my formulas ” [1] 

 1996, referring to N.A.Lebedev, the professor of academy him A.F.Mozhajskiy, the outstanding 
expert in the theory of a complex variable, writes the following (so-called citations and formulas of 
the author of the book further are resulted):  

« Delta - function )(x  is invented not by mathematics. Her has opened for the first time, 
probably, Oliver Heaviside, but wide and almost at  physics and engineering she has received a 
general recognition after her has entered into practice Pol Dirak, without the reference to compatriot 
Heaviside. Mathematics have recognized its right on existence only as functional, making  functions 
its value in zero. The big and deep theory of the generalized functions has appeared. At a statement 
of the classical mathematical analysis delta - function (equal to zero everywhere except for a point 
the area under the diagram of this function is considered zero where she is equal  , and to equal 
unit), - is usually ignored. The antipathy which « functions » had to similar classical mathematics is 
quite clear. For example, my generation mathematics and physics has grown on V.I.Smirnov's 
textbooks and G.M.Fihtengol'ts where delta - function is not mentioned at all ». 

Now delta - function in the modern analysis is used widely. She is defined on a material axis 
and connected to concepts of function of distribution of probabilities and characteristic function. By 
the way, function of distribution to present [2]: 

),()()()( 321 xFxFxFxF                                                   (1) 
where )(1 xF the function of jumps growing only in points of accounting set of points of breaks of 
function )(),( 2 xFxF continuous function, possible which points of growth form set of zero 
measure Lebeg, and its increment on this set is equal to an increment )(xF on it. )(2 xF is not 
absolutely continuous, the derivative of her is equal all points or to zero, or infinity. )(3 xF  
absolutely continuous function, with usual derivative - density of probability )(xf . For absolutely 
continuous functions characteristic function is used: 

dxxfexdFet itxitx )()()( 








 .                                       (2) 

 
Let step Heaviside, a constant a  with probability 1 is given. Its characteristic function  

iatet )( .                                                      (3) 
 

To it corresponds derivative - delta - function )( at  . 
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Whether there is an analogue of function Heaviside and delta - function on a complex plane? 
The given question can seem inappropriate, but the answer to him appears positive [1]. 
    « As all of us know, frequently, while remain in material area, the true mathematical nature of 
any phenomenon remains latent. As a classical example similarity of properties of trigonometrical 
and hyperbolic functions serves. On a complex plane all at once becomes simple and clear: actually 
it is the same functions which have been written down in a little bit changed system of coordinates». 
      « The similar phenomenon is found out and with delta - function. If her to define on a complex 
plane for analytical function )(xf  by the formula  

 
S

Dzdzfzf ,)()()(  .                                      (4) 

For a contour S  laying in the field of D  analyticity of function )(zf  and bypassing a point z , that, 

obviously 
zi

z



2

1)(  , and any mystery or a paradoxically in it is not present. The unnatural kind 

she gets at attempt to drive her from a complex plane on a material axis, thus there are all well-
known approximations of delta – function as narrow language or the extended bell. In material area 
it is possible to enter delta – function axiomatic. Advantage of such approach that logically is not 
required to define this concept, having attributed it to initial, initial, indefinable. Its properties, for 

example, )()( x
dx
dx    for individual step Heaviside are set only.  

Its decomposition in a number and in integral Fourier will give 

dtexkxx tx

k










1 2

1)(),cos
2
1(1)(





 .                             (5) 

Divergence of a lines and integral does not interfere with their use as divergence асимптотических 
numbers does not prevent their applications. Introduction thus deltas - functions in the mathematical 
analysis transforms a class piece smooth functions into a class of differentiable functions, and for 
them the formula of integration in parts takes place». 
«The first consequence from such approach for me was rather unexpected. All of us have got used 
to that numbers Fourier explosive piece smooth functions badly converge, and they cannot be 
differentiated term by term. It appeared incorrect. Numbers Fourier at term by term differentiation 
automatically allocate deltas - functions as their numbers in points of break, and after their 
reduction true formulas turn out. It is the easiest to illustrate it the simple example frequently 
included in textbooks for an interval ),(  : 
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22
1 na

nxn
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n
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
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n


 




 .                                     (6) 

The second formula turns out from the first differentiation on x . But also the first turns out 
differentiation from the second if to take into account, that from jumps in points )12( k appears at 
the left composed  

 
 

 








xnxkx
n

n

k
),cos)1(

2
1())12((

1
 .                (7) 

It is necessary to reduce superfluous composed. 
     Accurate application of delta - function also allows to remove (take off) vain, erected on 
Heaviside: it is considered, that a source of many mistakes at formal application of operational 
method Heaviside for the decision of the linear differential equations with constant factors is that 
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fact, that operators of differentiation р and p-1 do not switch integration. The authorship of this 
statement takes up G.Dzheffris. It repeats and in R.Kurant's well-known textbook and D.Gil'bert " 
Methods of mathematical physics " from which I shall bring the citation: " the Basis of a method is 
made with introduction of operators of differentiation and integration, p  and 1p , as mutual - 
return operations. We shall enter into consideration for functions of time t  at 0t  operators of 
integration 1p  and differentiation p  by equality  

dt
dgtftpg

dftgtfp
t



 

)()(

,)()()(
0

1 
 .                                               (8) 

      For construction of calculation with the rules appropriate to rules of algebra, importance 
represents that fact, that operators p  and 1p  are mutual - are return or, symbolically, that 

111   pppp .                                                     (9) 
To provide this parity, we should enter the following restriction: the operator p  can be applied only 
to such functions )(tg , for which 0)0( g . Otherwise we would have: 

)()(

),0()()(

0

1

0

1

tgdg
dt
dgpp

gtg
d

dgpgp

t

t


















,                                      (10)                                            

hence                                           .                                                     (11) 
      Actually Heaviside all has made that operators p  and 1p  switched: it has invented delta - 
function which I write down in the designations accepted now, with properties 

, 
Also has defined a class of so-called originals, considering, that for all elements )(tg  of this class 

0)0( g  at 0t . Thus for switching operators p  also 1p  are not present necessity to demand, 
that 0)0( g : switching takes place and without this condition. Only it is necessary to take into 
account, that because of gallop in zero of function )(tg  at differentiation appears delta - function: 

)()0()()( tgtgtpg  ,  

где                                            









,0,0

,0,)(
t

t
dt
dg

tg  

therefore                    gpptgdggpgp
t

1

0

1 )()]()0()(̀[     ».                      (12)  

However, use of the complex delta - function offered by V.M.Kalinin in the applied analysis 
inconveniently enough.  

Function Heavisaide and delta - function on a complex plane. It is proved, that delta - 
function is equal to a derivative from individual function. Thus, function Heavisaide is integrated 
for delta - function Dirak:  
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



t

dzztU )()(  .                                             (13) 

In the book [2] constant with probability unit equal a , is submitted as characteristic function 
iatet )( . Hence, the appropriate delta - function will be equal )( at  . 

Characteristic function of a normal amount with average m  and a deviation   is equal: 
timt

et 1

22
1

2
1 )(






 .                                                  (14) 
Function (14) is submitted depending on a material variable t  that is marked at it   by an index 1. 
We shall present similar function depending on an imaginary variable. Sizes of a population mean 
will become 2im , a deviation – 2i , and characteristic function- 

mtt

et


 2
2

22
2

)(


 .                                                  (15) 
The sum of two independent normal amounts has normal distribution with average, equal to the sum 
of average, and a dispersion equal to the sum of dispersions. Really,  

timmitmt
t
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t

eee
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2

2
2

2
1

22
2

1

22
1 







.                                   (16) 

Now let absolute values 21   then the right part (16) will be equal to size  
timmie )( 21 ,                                                     (17) 

which represents characteristic function of individual angular step Heaviside on a complex plane 
with indexes of axes ),1( i . Hence, the appropriate delta - function on a complex plane in a point 

),( 00 yx can be submitted as 

 )()( 00 iyxzz CC   .                                        (18) 
The sum of casual deviations from this point ),( 00 yx represents a casual vector with the 

specified distribution (16) and characteristic function (17) under condition of 0, 21  . Private 
acknowledgement of it is that fact, that the density of one-dimensional normal distribution at it 

0  represents delta - function in one-dimensional material distribution to axes.  
 
Example. We shall consider an example 2 of [3] with elimination of discrepancies and in more 

detail. On a plane 1),,1( ii  it is observed alternating process of restoration with incomes and 
charges. Duration of serviceability and restoration of full serviceability we shall define in density of 
probabilities )(),( tftf YX , and density of probabilities of sizes of the income and the charge- 

)(),( tgtg KR , all of them are concentrated on )0[  t . All random variables are in pairs 
independent.  

Realization of process has the following interpretation. From the beginning of coordinates the 
object starts to function, after the expiration of time it(he) refuses and instantly acts on restoration. 
During casual time of serviceability it accumulates a random variable of the income. This income 
can represent quantity of the advanced, saved up information, cost etc. During casual time of 
restoration the object can accumulate a random variable of the charge, alternating measuring the 
same dimension, as dimension of the income. Thus the income can be both positive, and negative. 
After end of the first cycle of functioning, process renews in the second cycle and so on can proceed 
indefinitely. So, we deal with process of restoration together with process of accumulation [6]. In 
figure 1 provisional realization of considered processes submitted.  
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Figure 1. Realization alternating process with accumulation and the charge 
 

Our problem is to find the stationary decision for complex alternating casual process with 
accumulation.  

Let two density of probabilities of material variables )(),( ybxa YX , with yx, , concentrated are 
given on ),0[ t . Using them and (18) we shall construct the following expression (3): 

   
 


0 0

/

0 0

))(()()()()()()()(
iz z

YXYXYXZ dxzxibxaidyybiyxadxdyybxaiyxzz  . (21) 

Under the semantic contents (21) it is density of probability of a vector iyx  on planes )1,1(  , 
analogue « complex density ». Having applied to her transformation Laplace, we shall receive: 

),()()()(
0

issduuez YXZ
us

Z



                                           (22) 

where  s, a symbol and a variable of transformation Laplace. Expression (22) can be received, 
using as well characteristic functions.  

In conditions of our example we shall have: 
)()()(),()()( isfsfsisfsfs KYYRXX

   .                          (23) 
For a presence of the stationary decision it is applicable known expression from the theory of 
restoration for alternating process [6]:  
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
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





 .                                                (24) 

This decision of known integrated equation Voltera for function of readiness of the theory of 
reliability in transformation Laplace.  

The stationary decision (24), at t  we shall find, having applied one of theorems Taubere 
type:  

)(lim)(lim Г0ГГ ssKtKK
st




 .                                      (25) 

As a result of the decision we shall receive:  

)()(Г
KRYX

RX

i
iK







 .                                                (26) 

Where X average time of non-failure operation of object, Y average time of restoration of 
object after his refusal, R average size of target accumulation by object during his efficient 
condition in a cycle, K average size of the charge of the received accumulation in a cycle.  

For an illustration of the numerical decision we shall accept the following initial sizes: 
ormationunitsormationunitshh KRYX inf10,inf20.,10.,100   . From (26) it is 

received ;062,0)Im(;892,0)Re( ГГ  KK  size of the module 

894,0))(Im())(Re( 2
Г

2
Г  KKM . We shall find value of a phase 

deg945,3.069,0)
29
2tan(,

)()(
)( 




 radatg
KRRRXX

KXRY 



 . 

Under condition of when the income and the charge are absent 0 KR  , value 909,0Г K . 
The relative mistake of calculation will make 2  %. If to put ,0,0  YX   then 

667,0)/(Г  KRRK  . It means, that the share of the income under the attitude to the sum of 
the income and the charge will make 67 %. Thus, alongside with an estimation of readiness of 
object on an axis 1, it is possible to receive an estimation of profitability of use of object. It justifies 
application of the complex approach in research of more complex model in comparison with models 
[ 6 ].  

Let's make one remark concerning the given example. At the decision of the practical problems 
connected to information processes, it is natural to believe, that the size of information work should 
be directly connected to time of serviceability and restoration of object. In our example it is possible 
to confirm this statement the following. If average time before refusal of object equally X , the 
average size of the income can be expressed as XRR I   , and average size of the charge- 

YKK I   , where KR II ,  sizes of the income and the charge of object in unit of time. We shall put, 
for example, 5RI  units of the information in one hour, and 2KI  unit of the information in one 
hour. Then sizes of average values of the income and the charge will be equal: 

.20102.,5001005 unun KR   , and relative private  receptions of the net profit – 
962,0)/(  KRR  . Thus, dependence of a share of the general profit of object can be taken into 

account due to communication of an operating time and restoration with information productivity of 
both processes. This remark does not exclude an opportunity of application and other, more 
complex models "income - charge".  
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Conclusion 
 
In given article acknowledgement of expression for delta - function on the complex density, 

entered by the author [3] is given. Examples of her use in the analysis in the same place are given. 
Also it is necessary to note, that for the first time the term « the complex probability » was entered 
by D.R. Cox for the decision not Markov problems of the theory of reliability [4]. However, 
problem to remain a question on introduction complex probabilistic measures in the analysis and a 
graphic representation of the complex functions determined on a complex variable. Expansion of 
complex numbers is the field quaternion’s Hamilton, forming not to switch algebra with division 
above a field of real numbers. Thus everyone quaternion can be submitted as 

 jiaaiaakajaiaaa )()( 32103210  ,                        (19) 
Where 3210 ,,, aaaa real numbers, and kji ,,  special quaternions, forming together with the valid 
unit basis of four-dimensional space and satisfying the following system of equality:  

  







kjiijjikkiikjjk
kji

,,
,1222

.                                       (20) 

Use of complex numbers and quaternions in probability theory for the description of casual 
multivariate processes and decisions of the appropriate scientific and technical problems, in our 
opinion, has the big prospects and demands deeper studying. By the way, now opportunities of 
performance of mathematical operations even with complex numbers on a computer, unfortunately, 
are extremely limited [5]. The example of the decision of a problem given in article by definition of 
stationary value of function of readiness of object with accumulation of quantity of the information 
evidently enough shows advantages of application of the complex analysis in probability theory.  
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ABSTRACT 

 
The paper discusses the processes of inertial reacting and self-regulation of the environment 
impacted by hazards of railway accidents involving dangerous goods and the queuing system 
Markovian model is proposed to determine the probable consequences of such accidents 
development. 
Key words: railway transport, dangerous goods, accidents, ecosystem self-regulation, combustion, 
explosion, system inertia, queuing system, Markovian process, mathematical model. 
 
 
1  INTRODUCTION 
 
Rail transport carries a large number of dangerous goods with different properties, which in 

case of accidents may affect the environment. Therefore, it is clear that at all levels of dangerous 
goods transportation due attention should be given to environmental protection, thus ensuring the 
human life protection. Implementing appropriate measures should provide balance, stability and 
flexibility of natural systems, the violation of which can lead to serious negative consequences and 
environmental disasters. 

The problems of stability, equilibrium, homeostasis of ecosystems and the biosphere are 
central to modern environmental science [1]. 

According to the laws of the biosphere, the basic principles and laws of human and 
biosphere evolution, their interdependence, the main causes of the ecological crisis are ill-conceived 
and erroneous human actions, which result not only dying species, but also destroys the ability of 
natural systems and components for the restoration and self-regulation. 

The main feature of the biosphere and ecosystems is the ability of  the environment to adapt 
to intense anthropogenic influence that reflects the concept of “environmental capacity” of natural 
systems. 

In the recent literature on ecology there is a very large number of interpretations and 
definitions of the term, each of which reveals only part of attributes and properties that reflect the 
ability of ecosystems, and hence the biosphere as a whole to self-preservation, self-regulation and 
self-healing. 

The environmental capacity of the ecosystem is understood as the maximum amount of 
energy or matter that may be involved in the circulation per unit of time without significant 
violations of its structure and stable operation [1]. 

The definition of ecosystem capacity is based on “substance-energy” approach, in which the 
functioning of ecosystems is considered as a process of transformation of energy and substance that 
are coming from the environment and returning to the same environment. In the process of 
transformation of energy and substance they turn into forms that provide a continuous circulation 
flow of substances in the ecosystem, its poise and balance in the biosphere, which is necessary to 
maintain stable operation of the structures and relationships that were formed in the ecosystem. 
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Thus, the ecological capacity characterizes the capability of the ecosystem to transform 
energy and matter that come into it, into the forms that carry on the ecosystem biological cycle, 
passing in historically determined path [1]. 

The ecosystem ability to cleanse itself is associated with the ability of ecosystems to involve 
in circulation slightly more matter than that which they pulled in before anthropogenic influences. 

If using ecological capacity to characterize the potential ability of ecosystems to adapt and 
sustain stability during human impacts, the self cleaning ability is likely to consist of several stages, 
such as the inertia of the system towards the external negative influences, opposition to the 
transformation of its physical and chemical properties to the extent that can lead to catastrophic 
state, or attenuation of negative processes in the environment and preservation of the original 
ecosystem status, are all consequences of this ability, and describe the results of operation of the 
system in certain specific circumstances. 

The sad history of railway accidents and disasters draws one’s attention to one of their 
features – sometimes with inscrutable reasons they occur, although seemingly nothing led to them, 
while in other cases – on the contrary. Why so? Let’s try to look for analogies with the processes 
occurring in living ecosystems. 

 
 
2   FEATURES OF TYPICAL RAILWAY ACCIDENTS WITH DANGEROUS 

GOODS 
 
Consideration of typical rail rolling stock accidents involving dangerous goods showed that 

the initial conditions of such accidents, in particular, are a leak, spill or release of gaseous and liquid 
hazardous substances caused by depressurization of rail tank cars or containers, destruction of 
pipelines, valve failures, emergency damage holes, etc. [2]. 

The formation of explosive concentrations zones in accidents involving dangerous 
substances is affected by two types of parameters: the parameters of the leakage source and 
meteorological and topographical parameters [1,3]. 

The intensity of the leakage of gas, vapor and liquid properties are due to such sources 
characteristics as leakage geometric size, velocity of a combustible substance, its concentration, 
temperature and pressure in the middle of the container or tank, the density and quantity of the 
liquid phase, evaporation and others. 

Dimensions of clouds that are formed at leakage of combustible gas or vapor depend on the 
velocity of runoff and dispersion. 

The intensity of leakage increases with the speed of leakage of combustible material and 
with increasing concentration of flammable gas or vapor in the combustible material, which is 
released. 

At high velocity of outflow gas and steam can form a conical jet, which is pulling the air 
inside causing the ability to “self-dilution”. The level of explosiveness of gas mixture that is formed 
in this way does not depend on wind speed. 

At low outflow speeds, or when jet speed decreases or any interference occurs, that causes 
the “self-dilution” of gas mixture explosiveness level and it is dependent on the speed of air [3]. 

Evaporation of combustible liquid depends mainly on vapor pressure and specific 
vaporization heat of combustible material. 

If the vapor pressure is unknown, to determine the mixture explosiveness, its boiling point 
and flash temperatures are used. Explosive mixture can not exist if the flash point exceeds the 
maximum temperature of combustible substances. The lower is the flash point, the larger is 
explosive zone. 

It should be noted that the temperature of the flash is not an exact physical quantity. Some 
fluids are not characterized by parameters such as flash point, although they may form an explosive 
gas mixture. In such cases, the established value of liquid temperature corresponding to the 
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concentration of vapor at the lower concentration limit the outbreak (ie with a minimum content of 
combustible material in a homogeneous mixture with an oxidant at which flame propagation is 
possible at any distance from the source of ignition) is compared with maximum temperature of the 
liquid. 

For a certain amount of leakage of combustible material, the lower the minimum 
concentration limit of flame propagation, the larger explosive area [3]. 

Research on air pollution and formation of zones of explosive concentrations have shown 
that such processes are greatly influenced by meteorological and topographical characteristics of the 
area, namely, air speed, real air density, volumetric concentration of gas (vapor), wind direction, 
humidity, precipitation, pressure, terrain, etc., which can either increase the size of explosive 
concentration zones or slow down the process of their formation and reduction of such zones size to 
the minimum [4]. 

 
 
3 FUNDAMENTALS OF PHYSICAL AND CHEMICAL PROCESSES OF 

COMBUSTION AND EXPLOSION OF DANGEROUS GOODS 
 
Experience of eradication of railway failures and accidents shows that the greatest threat to 

people, rolling stock, railway infrastructure and the environment are those that are accompanied by 
fire of dangerous goods [2]. 

Let us consider the basic physical and chemical processes of combustion and explosion of 
hazardous materials in different aggregate states. First of all, it should be noted that combustion is a 
complex, rapidly leaking chemical transformations, which is accompanied by a significant amount 
of heat and bright glow. In most cases, burning is a result of exothermic oxidation of substances 
capable of burning (fuel) by oxidant (oxygen, chlorine, etc.). Some other processes are also 
considered as burning and are associated with the rapid transformation and thermal or chain 
acceleration of the processes: the decomposition of explosives, ozone, interaction of barium oxide 
with carbon dioxide; decomposition of acetylene, etc. [5]. 

Combustion is a complex of interrelated chemical and physical processes, the most 
important of which are heat and mass transfer [6]. The most common feature is the ability of fire 
burning flame that arose to move throughout the mixture by heat transfer or diffusion of active 
particles from the combustion zone into a new mix. 

In the first case the heat transfer is realized, and in the second case the diffusion mechanism 
of flame propagation takes place. Typically, combustion occurs in combined thermal diffusion 
mechanism. It is important that combustion is characterized by critical conditions (mixture 
composition, pressure, temperature and geometric size of the system) for the emergence and spread 
of flame. In all cases, the combustion is characteristic of three typical stages: emergence, spread and 
flame extinction [7,8]. 

Depending on the physical state of fuel and oxidizer there are three types of combustion: 
- Homogeneous combustion of gases and vapor flammable substances in the medium of 

gaseous oxidizer; 
- Heterogeneous combustion of liquid and solid combustibles in medium of gaseous oxidizer 

(kind of heterogeneous combustion is the combustion of liquid fuels in liquid oxidizer); 
- Combustion of explosives and powder. 
Depending on the speed of flame propagation combustion is divided into deflagration that 

flows at subsonic velocities and detonation, which is distributed with supersonic velocities. 
In its turn, subsonic combustion is divided into laminar and turbulent. Laminar burning 

speed depends on the mixture composition, initial values of pressure and temperature, as well as the 
kinetics of chemical reactions in the flame. Speed of propagation of turbulent flames, in addition to 
these factors, also depends on the flow velocity, the degree and scale of turbulence [6]. 
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The explosion is a process of rapid discharge of large amounts of energy. The blast 
explosive (or explosive) mixture fills the volume where energy discharge occurred, the mixture is 
converted into highly heated gas at the high pressure. This gas affects the environment with great 
force, causing the formation of a blast wave. Destruction caused by an explosion is due to the action 
of such a wave. As the distance from the explosion mechanical action of the blast wave weakens. 

Consider basic processes of combustion gases. 
The first stage of combustion – ignition – is the initiation of the initial fire burning in the 

fuel mixture. Found that ignition of flammable gas mixture may be in their contact with hot surfaces 
(eg., gas exit from tank hole that is in the fire zone), or the appearance of sparks or flames in the 
middle of the mixture, as it may happen in a situation of liquefied hydrocarbon gases leakage, 
followed by leakage source fire. 

Ignition of a combustible gas mixture resulting from the collision with the red-hot surface of 
the container is provided if the surface temperature exceeds the value of the temperature of ignition 
( infT ). The nature of the process is such that when the surface temperature ( surT ) is not sufficient for 
the process of progressive fuel mixture heating and self accelerating reaction, then the exothermic 
heat of transformation is given back to the cold mixture. If surTT inf , then progressive self-heating 
occurs in the fuel mixture and at some distance from the heated surface the combustible mixture 
temperature becomes greater than surT that leads to the formation of a primary combustion chamber. 

In addition, the ignition temperature depends on the nature of the container surface material 
faced by gas mixture for at red-hot surface ignition of gases, the catalytic properties of the surface 
are activated. Thus, if the catalytic effect found in branched chain reaction, the critical ignition 
temperature decreases, and vice versa, when the interaction of the gas with the surface leads to 
breaking the chain reaction, the greater ignition temperature surT is needed. 

Ignition temperature changes also depending on the initial values of the mixture pressure – 
pressure reduction leads to an increase of infT  [6, 7]. 

A great threat to the rolling stock, railway transport infrastructure and the environment is a 
situation where an electrical discharge occurs in a leakage zone of dangerous goods in gaseous 
aggregate state. 

The emergence of electric discharge in combustible gas leads to ionization of the gas and 
transforms it into a plasma. This process is accompanied by a strong heating of ionized zone. In the 
discharge channel, the temperature exceeds 10000 K [7]. 

However, not any electrical discharge results in the emergence of fire flame in combustible 
environment. Flames arises only when the energy released during the discharge exceeds the value 
of the minimum ignition energy. In other cases, the fireplace flame does not occur. 

Heating by electric discharge of an initial volume of combustible gas mixture causes 
additional heat by chemical conversion. Redistribution of heat pulse energy in a combustible 
mixture makes the energy of chemical reactions added together with the energy of the initial pulse. 
Increasing the size of the heating sector is accompanied by increasing the total amount of heat 
produced, and share of chemical reaction energy in it. 

If the effect of an electric spark to combustible mixture led to involvement in chemical 
transformation enough of combustible material and temperature of the process of volume increasing 
of the heated mixture is committed to the combustion temperature, the system is set stationary. 

The heat that is given from the reaction zone into fresh mix is offset by the heat produced 
during the reaction and there is a steady flame front. 

If the distance from the flame front to the place of spark increases, the influence of initial 
momentum to the process that develops becomes less significant. 
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Thus, stable flame front is formed in the case when the energy level is sufficient to heat up 
to the temperature of combustion a spherical volume of combustible mixture, the critical radius CRr
should be several times larger than the characteristic width of the laminar flame zone FL  [9]: 

FLCRr 7,3 .       (1) 
In this condition the mix layers surrounding the area that is burning, have enough time to 

catch fire before the volume around hot spark gets cooled. 
If equation (1) is not satisfied, then the stationary regime is not established for the heat 

output from the reaction zone exceeds the heat produced inside the zone, the combustible mixture is 
cooled, and the reaction that occurred in the area of discharge stops. 

Another common phenomenon that accompanies accidents involving dangerous goods 
during their transportation by rail is spontaneous ignition. 

The essence of ignition is a sharp increase in the rate of exothermic reactions, resulting in 
the burning of substances in the absence of a source of ignition. 

It should be noted that in many theoretical studies, investigations of combustion processes 
often do not distinguish between the terms “ignition” and “spontaneous ignition”. In papers devoted 
to fire and explosion hazard the term “ignition” is used for the process of forced ignition, i.e. 
initiating combustion by highly heated source of ignition, and the concept of “spontaneous 
combustion” for the processes of flame burning in the absence of such sources [7]. 

The condition of thermal ignition is to ensure that the initial self heating of a fuel mixture 
resulting from the oxidation reaction must exceed a certain critical value [10]: 

 ERTT /0 ,      (2) 
where R is the universal gas constant; 0T  is the temperature of the cooled mixture, K; E  is 

the activation energy. 
The time during which the reacting system is getting a heating which is defined by (2), is 

called the spontaneous combustion induction time. Induction period depends on the composition of 
the mixture, its initial temperature and pressure. Induction period is of practical importance when 
combustible gas-air mixture is exposed to low-power source of ignition (spark). Spark, getting into 
this mixture heats a mixture of volume and at the same time the spark is cooled. Thus, if the 
induction time is longer than cooling time, the ignition will not occur. 

It is found that thermal ignition occurs more easily, the higher are the reaction rate and 
temperature of combustion, and the less are the heat transfer speed and pre-explosion heating [6, 7]. 

Particular attention is given to the temperature dependence of the spontaneous combustion 
on the fuel mixture composition. If the mixture has a small amount of combustible material and 
there is an excess of air, the ignition of the mixture is not possible. Also, the presence in the mixture 
of excess fuel and shortness of air, too, making impossible the ignition of the mixture. 

The spread of flame is worth special attention. Combustion initiation of gas mixture at one 
point leads to heating the neighboring layers of mixture, which starts the chemical conversion. 
Combustion of these layers entails initiating combustion of further layers and so on, until the 
complete burnout of combustible mixture. Thus, after the ignition, the flammable mixture burns by 
layers. Combustion zone moves across the mixture, providing flame propagation. 

The area in which the chemical transformation occurs and there is intense warming of gas 
that burns, is called the flame front. 

Before the flame front that is moving, there is a mixture of fresh mixture (not yet burned), 
and behind the front there are the products of combustion. 

If fresh mixture moves toward the flame front at a speed equal to the speed of flame 
propagation, the flame will be fixed [11, 12]. 

Since the chemical transformation is highly dependent on temperature, bulk gas combustion 
is carried out in the area where the temperature is close to fresh mixture combustion temperature (

BT ), so the length of time ( ) of the mixture stay in the combustion zone [12] is: 
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   BRTEe /
0        (3) 

And flame propagation velocity [12] is given by: 
BRTEeBU /

0 ,       (4) 
where 0B is the value which depends on the properties of the mixture. 
Redistribution of flame heat released by the reaction takes place, for heating of fresh 

mixture and partially coming into the surrounding environment. If the heat loss will be higher than a 
certain critical value, the progressive decrease in temperature and its attenuation will take place. 

Taking into account the mutual influence of heat losses from the combustion zone, the 
combustion temperature and flame propagation velocity, the basic theory tenets can be formulated 
that limit the spread of flame. From this theory it follows that the condition for the possibility of 
flame propagation through combustible mixture is predicted by the relation [12]: 

)/( 2 ERTTT THTHCR  ,      (5) 
where CRT is the threshold value of BT ; THT is the theoretical combustion temperature. 
The limit flame propagation speed U is given by [12]: 

 eUU MAXCR / .       (6) 
Equation (5) indicates that the flame can not spread through the fuel mixture when the 

temperature is lower than the theoretical value that exaggerates )/( 2 ERTTH . 
During the combustion of gases in open space the reaction products freely expand and 

pressure remains almost constant. Combustion in a closed volume is accompanied by increased 
pressure. The maximum pressure of the explosion in a closed volume is defined by thermodynamic 
properties of the combustible mixture and heat losses from the combustion zone. 

Based on the above, it can be assumed that the nature of the phenomena that accompany the 
combustion of gases, tends to lag the ability to respond to external factors, and in some 
circumstances can completely prevent these factors to keep the development of the combustion 
process, until its termination. 

The largest quantity of dangerous goods carried by rail is goods that are flammable liquids. 
Consider basic processes that accompany the burning of liquids. 
Burning of liquids is a complex physico-chemical process that takes place when mutual 

influence of kinetic, thermal and hydrodynamic phenomena occurs. Burning of liquids occurs in the 
gas phase. As a result of evaporation of the liquid surface a steam jet is formed and mixed with the 
air oxygen and chemical interaction ensures the formation of the combustion zone. 

Burning zone is a thin layer of glowing gases, which come from the surface of the liquid 
flammable vapors and oxygen diffused from the air. Stoichiometric mixture is formed (i.e. such that 
has no excess of either fuel or oxidizer) which is burned in a split of second. 

Shape and size of flame of burning liquids depend on the diameter of the tank (hole in the 
unit), which is burning. Flame height increases with the diameter of the reservoir holes [13]. 

The flame above the surface of the combustible liquid is stable, if there is a defined speed of 
coming fuel and oxygen. 

Rate of fuel input depends on its vapor pressure above the liquid, and hence on its 
temperature. The lowest temperature of the liquid ( BT ) in which the flame arose, and will not go 
out, is called flashpoint temperature. 

Established that the ignition temperature is determined by formula [13]: 
)/( 0 BB TDAP  ,       (7) 

Where BP  is saturated vapor pressure at the temperature of liquid ignition; A   is a fixed 
device value; 0D  is diffusion coefficient of vapor in air;   is oxygen stoichiometric coefficient. 



Mykhailo D. Katsman, Viktor K. Myronenko, Nikolaj I. Adamenko. - PROBABILISTIC MODEL OF ECOLOGICAL CONSEQUENCES OF RAILROAD 
ACCIDENTS 

 
RT&A # 01 (28)  

(Vol.8) 2013, March  
 

 

78 

The process of liquid burning is also characterized by burnout speed. Burnout speed is not a 
physical or a chemical constant; it depends on the properties of flammable liquids, tank (holes) 
diameter and the conditions of heat and mass transfer in the fire zone. 

Like the processes of gases combustion, during combustion of flammable liquids a tendency 
is observed when the combustion processes slowdown response time to external factors that cause 
their burning despite burning process. Under certain conditions, untill a significant slowdown or 
even, to a complete termination. 

A significant proportion of goods transported by rail are solid combustible materials. 
Combustion of solids differs from combustion of gases by the presence of stage of 

decomposition and gasification. 
Combustion among gaseous oxidizer often comes as a result of ignition of volatile pyrolysis 

products. Converting solid combustible material into products of combustion is not concentrated 
only in the area of the flame. 

Combustion of solids has a multistage nature. Under the influence of external heat the solid 
phase is heating, which is accompanied by decomposition and release of gaseous products. Then 
these products are ignited and burned. Heat from the torch that is formed affects the solid surface, 
causing revenues to the combustion zone of new portions of combustible gases. 

Model of solid substance burning presupposes such zones [14]: 
- Heating of the condensed phase. Thermoplastic materials are melting in this zone. The 

thickness of this zone is defined by the coefficients of thermal conductivity and burning rate and is 
about 3 mm; 

- Pyrolysis or reaction zone in the condensed phase, where gaseous combustible substances 
are formed; 

- Pre-flame zone in the gas phase, where a combustible mixture is formed; 
- Flame zone or reaction zone in the gas phase, where the pyrolysis products are conversed 

into the gaseous products of combustion; 
- Combustion products zone. 
The intensity of the reactions that occur in the surface layer of the solid and heat exchange 

conditions of gaseous decomposition products with the environment define the processes of 
combustion – spontaneous ignition or ignition. 

In case of spontaneous ignition, the warmth that comes to the surface of the solid from the 
heat source is uniformly distributed throughout the thickness at the surface layer, which corresponds 
to the characteristic size of the material. With ignition from an external source which is the warmed 
external layer, where the heterogeneous reaction is occuring the layer thickness is substantially less 
than characteristic size of the material. 

Thus, as in the process of combustion gases and liquids, the combustion of solids 
phenomenon of inertia of combustion processes is also observed. Under certain conditions, the 
system “solid material that burns – environment”, tends to inhibition of combustion processes, until 
their termination. 

Some classes of dangerous goods transported by rail can form powders in accidents. 
The powder mixture burning process is determined by the heat transfer mechanism in the 

flame front. There are several theories that explain the pattern of flame spread by means of 
conductive, radiative and conductive-radiative heat transfer from the combustion zone into the fresh 
mixture. 

For organic systems, heat transfer is mostly carried out by conductivity and convection. 
Because of low fuel gasification temperature, and narrow zones of combustion the predominant 
mechanism of heat transfer is thermal conductivity of the gas. Effect of gravity on powder-gas 
mixture combustion is found in particles settling down under gravity, which leads to a relative 
velocity of phases in the fresh mixture, as heated products of combustion are affected by 
Archimedean force. 
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Model of the flame front in this case we can apply in some way like this. Under the 
influence of heat flow from high temperature zone where powder cloud burns, particles have time to 
evaporate before ignition. Flame front spreads in homogeneous gaseous mixture of fuel vapor and 
air. Reaction of fuel with oxidizer flows in the kinetic region, obeying certain thermal theory laws. 

The movement of the flame front leads to partial scattering of fresh mixture near the leading 
points of flame. This gas phase (oxidizer) is dissipated to a greater extent than condensed phase 
(fuel), resulting in phases having relative velocity and thus changing the fuel and oxidizer ratio in 
the flame front. 

Increasing the fuel concentration is accompanied by the growth of the flame velocity  in 
these areas, causing further growth of convex parts of the flame front and lagging concave regions. 

This effect leads to the fact that the flames can spread throughout suspension mixture with 
average fuel concentration below the concentration limits of flat flame front propagation in the gas 
mixture. Approximate estimates show that the minimum content of fuel in homogeneous mixtures 
with an oxidizing agent, which may spread the flames to mixture at any distance from the source of 
ignition is about two times less than the same minimum content of fuel gas mixtures of the same 
substances. This property of organic substances suspension mixture is detected since the particles 
diameter of 10 microns [15]. 

Particularly noteworthy are combustion processes of natural fuels suspension mixture, 
which account for a substantial proportion of goods transported by rail (coal, peat, some fertilizers). 

Solid fossil fuels differ from most chemicals the presence of three components: the flying 
particles, coke and ash. The processes of ignition and flame propagation of each of these 
components have certain features. 

Flying share of solid fuel is a gaseous component released from the fuel during heating 
without oxidant. Coke in its composition is similar to carbon. Speed of coke burning is much lower 
than burning rate of volatile particles. 

In this regard, participation of coke in powder explosions of natural fuels is negligible. In 
the ash, which is part of the mineral fuels, a number of components are contained that can 
participate in combustion (alkali metals, Pirita and pyrite). But ash, in general, plays the role of an 
inert material. 

Explosions of solid fuels suspension mixtures are typical thermal explosions. Flame 
propagation in mixtures is a result of heat transfer from combustion products into the fresh mixture. 
Heat can be transmitted by different mechanisms depending on the particle size, concentration, 
composition and parameters of gas medium and other factors [15,16]. 

Unlike combustion processes in gas mixtures suspension mixtures of  natural fuels are 
constrained by the duration of particles heating and the possibility of fuel oxidation reaction to 
occur in kinetic as well as in the diffuse field. In general, the temperature of the particles differs 
from the temperature of the ambient gas both in the area of chemical interaction and in the area of 
heating [16]. 

Mostly recognized is the model of flame propagation in suspension mixtures of fossil fuels 
particles, which was proposed in [16]. 

According to this model, the maximum speed of flame propagation FLU at sufficiently large 
thickness of the front is: 

     
)( 0

4

TTc
TU
S

E
FL 



 ,      (8) 

where ET is effective radiation temperature of the flame front;    is constant Stefan - 
Boltzmann; c ,  ,   are respectively, volumetric heat capacity, density and concentration of the 
solid phase; ST is the temperature of spontaneous combustion; 0T is initial temperature of the 
mixture. 
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The initial period of flame propagation in suspension mixtures is characterized by hopping 
rate, due to the size of initially inflamed area, duration of heating to a temperature of spontaneous 
combustion, which depends on the thickness of the flame front radiating, and dust particles burning. 

Based on the above, it is natural to assume that the phenomenon of dust burning is 
accompanied by inertia, that is able, under certain conditions, to slow down combustion process, or 
stop it completely. 

 
4   MATHEMATICAL MODEL OF THE ECOLOGICAL SYSTEM 
 
In order to forecast the state of the environment a large number of mathematical and 

simulation models is used. To build such models, differential equations are used that describe the 
various physical and chemical processes of pollution spread in soil, rivers and reservoirs under 
various boundary conditions, taking into account the spread of contamination, given weather 
conditions, power of pollution sources and physical properties of the underlying surface (its relief, 
development, forest areas, etc.). Methods of linear regression analysis, pattern recognition, image 
sequential regression and others [17, 18] are also widely used. 

In our view, next to the above models, to predict the consequences of accidents involving 
rail transport of dangerous goods, models of queuing theory are also quite useful. Having examined 
in this paper the processes of accidents development with dangerous goods of different physical 
state, we can conclude that the environment has some lag of response to an external hazardous 
accident factors. That prevents the environment to change its condition and behavior due to the 
properties of self-support and self-regulation that, under certain conditions, may lead to inhibition 
of catastrophic processes until their termination. 

Let us consider the ecological system of “emergency rolling stock – the environment” as a 
Markovian queuing system (QS). In Markovian queuing system all flows of events (arrival of 
customers) that lead the QS from one  state to another are stationary Poisson flows. This means that 
the time intervals between adjacent events in the flow have exponential distribution with parameter 
  equal to the intensity of the corresponding flow (or reciprocal value of time interval between 
events). 

In this QS an arrival flow of “customers” enters the system – subsequent portions of 
hazardous accident factors (HAF) that impact the QS in with intensity  . As such “portions” can be 
seen, for example, some smallest quantities of hazardous liquid or gas escaping under great pressure 
from the holes in the tank, creating (or not creating) an explosive gas-air mixture, etc. Then, the 
arrival flow rate   can be defined as the reciprocal expected time to reach an explosive 
concentration of the mixture. 

Inertial action time of “emergency rolling stock – environment” system has exponential 
distribution with intensity , and the time of self-healing (recovery ability of the system to return to 
the original safe state) has a parameter of intensity . In this sense   is the reciprocal average time 
of system self-healing, while   is the reciprocal average time lag (delay of system responses to 
HAF). Service of a portion customer in that QS consists of two phases. 

The essence of the service is that a portion arriving to the first phase reach a critical 
concentration value and after that servicing the next portion customer is refused and the portion is 
moved into the second phase of service (QS-2). 

The first phase of the HAF portion service is a single-channel queuing system with queue 
and a service channel “heating-up”, which is considered in [19]. In this case, the “heating-up” type 
of service channel is the realization of the inertial properties of the system. The graph of this QS-1 
is shown in Figure 1. 
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Figure 1. Graph of QS-1 states with queue and “heating-up” service channel 
The states of QS-1 (Fig. 1) are as follows: 
 00S  - Channel free, not heated; 
 01S - One portion of HAF arrived and is waiting till the channel is heated; system inertia is 

in action; 
 11S - The channel is heated, one portion of HAF is being serviced, no queues; 
 02S - The channel is being heated up; there are two portions of HAF in a queue; 
................................................................................. 
 kS0 - The channel is being heated up; there are k  portions of HAF in a queue; 
 kS1 - One portion of HAF is being served in a channel; there are )1( k portions of HAF in a 

queue, etc. 
The system of equations for the final probabilities lkP is as follows: 
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     (9)     

In the second phase of the service when the next )1( l -st portion of HAF is rejected, 
because the number of customers in the QS-1 exceeds the limit (one portion), it comes for the 
service in the QS-2. 

QS-2 is a single-channel queuing system with failure (Fig. 2).              
 

1



20P 21P

 
 

Figure 2. Graph of QS-2 states 
 

 
The equations for the final probabilities will be the following: 
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Hence the probability of catastrophic consequences of the accident is: 
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
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


  .                                              (11) 

Figures 3a, 3b and 3c show dependences of probability of catastrophic consequences of 
accidents against the intensity of the recovery processes of the system   at different values of 
inertia   and arrival flow 1 . These figures with upper and lower indices in the intensity or inertia 
values, for example IV

3 , mean the relevant series of computational experiments. 
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Figure 3a.  Probability of catastrophic consequences of accident 21P  against the system self-
recovery intensity   for large rate of HAF arrival flow 1  and small values  

of inertia of the system . 
 
Figure 3a shows that for large values of HAF portions flow intensity at QS-2 entry, that 

were rejected in the QS-1, significantly higher than the intensity of response on the violation of its 
equilibrium   (for large values of the average inertia time of the system) and with increasing 
intensity of recovery processes   (reducing the value of the mean recovery time), the probability of 
the catastrophic consequences of the accident for example, considered is somewhat reduced, but 
still remains quite high. 

Figure 3b presents dependence of probability 21P  on intensity of recovery processes   at 
moderate 1  and small   values. 
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Figure 3b. Probability of catastrophic consequences of accident 21P  against the system self-
recovery intensity   for moderate intensity of HAF arrival 1  and small values of system inertia  . 

 
Examination of the graphs in Figure 3b shows that at moderate values of arrival flow rate 1 , 

the low intensity of the system inertia   and increase the intensity of recovery , the probability 21P  
tends to decrease. The largest decrease of the probability of catastrophic consequences is having 
place with decreasing HAF arrival intensity to QS-2. For example, given IV

1 = 1, IV
3 = 0.001 and at 

 = 0.5 the value of 21P = 0.545. Meanwhile, the probability of catastrophic consequences of 
accidents for example in question is still considerable. 

With increasing   values (reducing the average time of the system inertia) and decreasing 
the average time recovery (increase of ), the probability 21P is significantly reduced and becomes 
insignificant as 1  decreases (Fig. 3c).  

The calculations show that at VII
1 = 20, VIII

1 = 50 and  = 1, 2, 3 with an increase, the 
probability 21P is from 0.005 at  = 0.1 to 0.004 at  = 0.5, ie catastrophic consequence is 
practically impossible. 

Similar conclusions can be drawn and at IX
1 = 20, X

1 = 50 and  = 10, 20, 30, when at 
certain   changes the probability 21P in the highest value does not exceed 0.4, and the lowest is 
0.01. 

Note that in the examples of this mathematical model application (graphs in Fig. 3), 
somewhat “abstract”, dimensionless (relative) values of HAF arrival flow and service rate are used. 
This enabled us to focus on the demonstration of a new theoretical approach proposed by the 
authors for this class of problems. In certain practical applications of this theoretical approach and 
mathematical model one should apply appropriate values and their parameters. Features of the 
practical application of the model for different conditions that occur during transportation of 
dangerous goods by rail and other transport modes obviously require some specific research and 
scientific analysis. 
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Figure 3c. Probability of catastrophic consequences of accident 21P  against the system self-
recovery intensity   for moderate intensity of HAF arrival flow 1  and system inertia . 

 
 
 
 
5   CONCLUSIONS 
 
1. Natural processes and anthropogenic factors of hazards in rail rolling stock accidents as 

having properties similar to natural ecosystems against hazards of accidents, such as inertia and 
self-recovery are considered in this study on the basis of general theoretical provisions of 
ecosystems, combustion and explosion theories, probability and queuing theory. 

2. Formal description of hazards development process in rail accidents is done on the basis 
of mathematical tools of queuing theory, which is used in other applications (communications, 
transportation, etc.), to simulate conditions and quantify the factors that characterize accidents 
involving dangerous goods carried by rail. 

3. Specific numerical examples are proposed and examined, based on the mathematical 
model of a two-phase queuing system and the conditions of disastrous effects are analyzed 
depending on the intensity of hazardous accident factors, inertia and self-recovery properties of 
systems “emergency rolling stock – the environment”. 
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ABSTRACT 

 
Inliers in a data set are subset of observations not necessarily all zeroes, which appears to be 
inconsistent with the remaining data set. They are either the resultant of instantaneous or early failures 
usually encountered in life testing, financial, clinical trial and many other studies. We study the 
estimation of inliers in Normal distribution. The masking effect problem for correctly identifying the 
inliers is also discussed. An illustration and a real life example is presented with detailed discussions.                                                                                                                              
  
Key Words: inliers; optimal estimating equations; mixture distribution; MLEs; asymptotic distribution; 
early failures; Schwarz’s Information criterion; modified likelihood test.  

 
 
1.  Introduction 
 

The normal distribution is a very important statistical model occurring in many natural 
phenomena, such as measurement of height, blood pressure, lengths of objects produced by 
machines, etc. Usually normal distributions are symmetrical with a single central peak at the mean 
(average) of the data. But many times we may get normal distribution as mixture of two groups. For 
example the life time of an electronic item will have two sets of observations, where one set of data 
may have zero or small life times due to instantaneous or early failures (together called inliers) and 
the other set contains positive life times called target life times. This may create two symmetrical 
curved graphs, where the mean of inliers group is much less than the mean of target group. Such 
failures usually discard the assumption of a unimodal distribution and hence the usual method of 
modeling and inference procedures may not be accurate in practice. Usually, these situations are 
handled by modifying commonly used parametric models suitably incorporating inconsistent 
observations. The modified model is then a non-standard distribution and we call such models as 
inliers prone models.   

Normal mixture distributions are arguably the most important mixture models, and also the 
most technically challenging. The likelihood function of the normal mixture model is unbounded 
based on a set of random samples, unless an artificial bound is placed on its component variance 
parameter. There has been extensive research on finite normal mixture models, but much of it 
addresses merely consistency of the point estimation or useful practical procedures, and many 
results require undesirable restrictions on the parameter space. 

The first formal treatment for inliers is discussed in Muralidharan and Lathika (2004). Some 
recent studies on inlier model related problems in exponential distribution   are by Kale and 
Muralidharan (2000), Muralidharan and Kale (2007, 2008) and Muralidharan and Arti (2008) and 
the references contained therein.   
   The object of this paper is to consider the problems associated with the inliers detection in 
normal distribution as given in (1.1) as the distribution has many potential applications in life 
testing experiments with instantaneous and early failures. A two parameter normal family has the 
probability density  
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 
            (1.1) 

 
In section 2, we present various inlier prone models and their estimation belonging to (1.1). 

Section 3 deals with an illustrative example, where the estimates of the parameters under various 
models are discussed. The inliers detection using information criterion is presented in Section 4. In 
section 5 we list down two statistical tests useful to detect whether all observation belong to single 
normal population or  they belong to mixture of two normal populations. The masking effect of the 
inliers is presented in the last section.   
 
2.   Inlier(s) prone models and estimation 
 
2.1   Normal with instantaneous failures 
 
   In a parametric model for Failure time distribution (FTD) we start with a family of FTD  = 
{F(x, ), x  0,    } where the form of the distribution function (df) is known except for 
labeling parameter, m dimensional   and F is absolutely continuous function with probability 
density function (pdf),  ,f x   with respect to Lebesgue measure. The basic problem is to infer 

about unknown   or a suitable functions thereof say    ,  on the basis of a random sample of 
size n on the observable random variable say . The occurrence of instantaneous 
failures when some items put on test giving = 0 is quite common in electronic component and 
life testing situations. Note that because of the limited accuracy of measuring failure time it is 
possible that we record = 0 for some units although  0 | 0iP X   . To accommodate such 

instantaneous failures, the model  is modified to model G   , , , 0, ,0 1G x p x p      , 
where  

   

   
1 , 0

, ,
1 , , 0

p x
G x p

p pF x x



     

                                                            (2.1) 

  
where  ,F x   is according to normal distribution and p  is the mixing proportion. The estimation 
of parameters in the above model is straight forward and depends on only the positive observations 
in the model.   
 
2.2 Normal with early failures  
 

If early failures are nominally reported as X =  then the distribution function of the 
modified model G  is given by    

 

 1

0,
( , , ) 1 ( , ),

1 ( , ),

x
G x p p pF x

p pF x x


   

 


   
   

        (2.2) 

 
The corresponding probability density function is given by 

mR

nXXX ,...,, 21

iX

iX

1
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1

0,
( , , ) 1 ( , ),

( , ),

x
g x p p pF x

pf x x


   

 


   
 

    (2.3) 

 
The likelihood of this model can be written as 

 

     ( , )( , , ) 1 ( , ) 1 ( , )
1 ( , )

    
 





   


i

n rr i

x

f xL x p p pF p F
F

                     (2.4) 

 
That is, the likelihood of the sample under  G  is the product of the likelihoods of  r  

and the conditional likelihood of the sample given r  which is same as the likelihood of  n r  
observations coming from the truncated version of  f   (or 1g  G ) restricted to (, ).  Since r  
is binomial with probability of success given by  1 ,p pF    , the distribution is complete for 

fixed  and  0,1p . Therefore, the optimal estimating equation for   ignoring p  is the 

conditional score function given r  or ln 0






rL  , where

 
 
,

1 ,


 




i

i
r

x

f x
L

F
 . Maximum 

likelihood (ML) equations corresponds to two parameter normal models are given as 
  

       2

1 2
1

1ln ln 1 , ( )[ln ln ]
2

i

xi

x
L r pF n r p




  




                                 (2.5) 

   
 

 1

1

, ,ln 0 0
1 , ,

  
  

 
   

 
rF n rL

p pF p
                                                                    (2.6)     

         

 
 

1

2
11 1

, ,ln 0 0
1 , ,

n
i

r

rp F xL
pF

   
    


          

                                                       (2.7) 

and 

      

 

 
 21

1
3

11 1 1 1

, ,
ln 0 0

1 , ,

n
i

r

rp F
xL n r

pF

  


     




  
        

                                 (2.8) 

 
Here equations (2.7) and (2.8) may be solved simultaneously. The above equations give 

reasonably good estimates of the parameters for δ fixed.  
 

 
2.3    Normal with nearly instantaneous failures 
 
 Let  F x and    R x = 1- F x denote the cumulative distribution function and the survival 
function of the mixture, respectively. The component distribution functions and their Survival 
functions are  iF x and    i iR x = 1- F x  respectively, i =1,2. The failure rate of a lifetime 

distribution is defined as    
 

f x
h x  = 

R x
  provided the density exists. Instead of assuming an instant 

1g 1

1



K. Muralidharan and Arti  Khabia - INLIER PRONESS IN NORMAL DISTRIBUTION 

 
RT&A # 01 (28)  

(Vol.8) 2013, March  
 

 

89 

or an early failures to occur at a particular point, as in the original model of Lai et.al. (2007), we 
now represent this model as a mixture of the generalized Dirac delta function and the 2-parameter 
normal as opposed to a mixture of a singular distribution with normal. Thus the resulting 
modification gives rise to a density function: 

   
2

11

1 1exp , 1, 0 1
22d 0

xf x = pδ x - x q p q p


            
            (2.9) 

                                                                           0 ,1        

Where 

 
1

0 0
0

,

0 , . .


     


x x x d
dx xd o w

       ,                                         (2.10) 

for sufficiently small d. Here p is the mixing proportion and 0p  .  Also note that  
 

   


0 0δ x - x = δ x - xlim dd 0
                                                       (2.11) 

 
where (.)  is the Dirac delta function. We may view the Dirac delta function as approximately 
normal distribution having a zero mean and standard deviation that tends to 1 (see Strichartz (1994) 
and Li and Wong (2008) for details). For fixed value of d, (2.10) denotes a uniform distribution 
over an interval  0 0,x x d  so the modified model is now effectively a mixture of a normal with a 
uniform distribution. Instead of including a possible instantaneous failure in the model (2.10) allows 
for a possible “near instantaneous” failure to occur uniformly over a very small time interval. Note 
that the case x0 = 0 corresponds to instantaneous failures, whereas x0 ≠ 0 (but small) corresponds to 
the case with early failures. The survival function and failure rate functions can be obtained as 
follows: Since      1 2f x p f x q f x   and      1 2F x p F x q F x  . We have,      
   

           1 2 1 2R x =1- F x = p+q – pF x +q F x = pR x +qR x                         (2.12) 
 

and the corresponding failure rate function as 
 

     
   

1 2

1 2

pf x qf x
h x

pR x qR x





                                                                     (2.13) 

where  
 

       



















dxx

dxxx
d

xxd
xx

xR

0

00
0

0

1

,0

,

0,1

)(      (2.14) 

 
and            2 2 0( ) 1R x F x x x d                     (2.15) 
 

Similarly, the failure rates for each component is given by 
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

















dxx

dxxx
xxd

xx

xh

0

00
0

0

1

,

,1
0,0

)(      (2.16) 

 
and 

   

2

11
2

2

1 1exp
22

1

x

h x
F x




        


                                                     (2.17) 

 
Consider the special case of model (2.9) whereby 0 0.x  The model may be called the 

normal with “nearly instantaneous failure” model. In this case, (2.16) can be  simplified as   
 

 











dx

dx
xdxh

,

0,1
)(1       (2.18) 

 
and (2.14) simplifies to 

 

 1

, 0

0,

d x x ddR x
x d

   
 

                                                                            (2.19) 

 
Thus the normal model with “nearly instantaneous failure” occurring uniformly over [0, d] has 

 
   

 
2

2

1 , 0

1 ,

p d x
q F x x ddR x

q F x x d


       

    

                                        (2.20) 

and 

           
 
 

 
 

2

22

2

2

1 ,
11 2

,

f xdpp o x d
R xp d x dq F xp d x dq F x

h x
qf x

x d
R x

  
     

         





       (2.21) 

 
respectively.  The plots for reliability and failure functions are presented in figures 1 to 3 below. 
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         Figure 1. Density function                                           Figure 2. Reliability function  

 
 
 

 
 

Figure 3. Failure distribution for µ = 4 and σ = 2 
 
 

3. An illustrative example 
 

This example is due to Vannman (1991). A batch of wooden boards is dried by a particular 
chemical process and the object of the experiment is to compare two processes as regards the extent 
of deformation of boards due to checking. The measure of damage to the board is the checking area 

x defined as 100
0hl

dlx  , where l is the length of the check, d  is the mean depth of the check, h is 

the thickness of the board area and 0l  is the length of the board. Thus x is the check area measured 
as percentage of the board area. The boards are dried at the same time under different schedule and 
under some climatic conditions. When drying boards not all of them will get the checks and a 
typical sample of wood contain several observations with ix = 0 or ix  > 0 but relatively small 
compared to the rest of the checks. These observations will correspond to instantaneous failures or 
early failures. Note that the larger the number of instantaneous failures better is the process. We 

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0 5 10

p=0.2

p=0.5
p=0.8

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 5 10

R
(t)

x

p=0.8
p=0.2
p=0.5

-1

0

1

2

3

4

5

6

-2 0 2 4 6 8 10

h(
t)

x

p=0.2

p=0.5



K. Muralidharan and Arti  Khabia - INLIER PRONESS IN NORMAL DISTRIBUTION 

 
RT&A # 01 (28)  

(Vol.8) 2013, March  
 

 

92 

below reproduce the data of Schedule 1 and 2 of Experiment 3. The estimates are presented in Table 
1.   

 
E-3, S-1: 0ix , i=1,2,…,13 and the other positive observations arranged in increasing order are 
0.08, 0.32, 0.38, 0.46, 0.71, 0.82, 1.15,1.23, 1.40, 3.00, 3.23, 4.03, 4.20, 5.04, 5.36, 6.12, 6.79, 7.90, 
8.27, 8.62, 9.50, 10.15, 10.58 and 17.49. 

 
E-3, S-2: 0ix , i=1,2,…,17 and the other 20 positive observations arranged in increasing are 0.02, 
0.02, 0.02 0.04, 0.09, 0.23, 0.26, 0.37, 0.93, 0.94, 1.02, 2.23, 2.79, 3.93, 4.47, 5.12, 5.19, 5.39, 6.83 
and 8.22. 
  

Table 1: Estimation for instantaneous failure, early failures and nearly instantaneous 
 

Schedule Instantaneous Early failures Nearly  instantaneous 
 

1 (δ=1.5) 
€  4.867917 7.352 5.076087 

1€  4.398309 3.745867 4.374601 

 
2 (δ=0.9) 

€  2.43900 3.919167 3.042500 

1€  2.606334 2.390099 2.581076 

 
 

4. Inliers detection using Information criterion 
 
        Denoting the parameter of X by , 1,2,......i i n   . We consider the following model of no 
inliers in the Model as    
 

                                 Model(0): , 1,2,......i i n                                                        (4.1) 
 
and the model with r inliers as                         

  , 1
Model r :     

, 1i

i r
r i n





 

    
                                                 (4.2) 

 
where r, 1≤ r ≤ n-1, is the unknown index of the inliers. Model(0) may also be interpreted as having 
all observations from the target distribution F with common parameter  θ.    
 
 Suppose that the life times of      1 2, ,..., nX X X  is sequence of independent random variables 
with normal distribution having unknown mean  . According to the procedure, the model(0) is 
selected with no inliers if    

1 1
0 min

r n
SIC SIC r

  
 . And the model(r) is selected if 

   
1 1

0 min .
r n

SIC SIC r
  

  Here SIC is the Schwartz Information criterion.  Thus we have 

 

   
2

1
1 1

0 2 log log
n

i

i

x
SIC n p n






 
    

 
                                                (4.3) 

and 
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       
2 2

0 1
1 10 1

2 log 2 log log
r n

i i

i i r

x x
SIC r r n r p n

 
 

   

    
           

   
       (4.4) 

 
 
The estimate of inliers say r is such that    

1
min
 


k n

SIC r SIC k . The above procedure is 

implemented through other information criteria’s like the Bayesian Information criterion:

   0.5pln
ln

n
BIC L

n
     and the Hannan-Quinn criterion given by:

    HQ= ln  p ln lnL n      , where  L   the maximum likelihood function and p is the 
number of free parameters that need to be estimated under the model. The method is illustrated 
through numerical examples in the later sections. 
 
5.  Testing of hypothesis  
 
 Here we are interested to test the hypothesis that, whether sample observations belong to 
inliers population from  2

0,N     against the hypothesis that it belongs to target population from 

 2
1, ,N    assuming 0 1.      Equivalently, the hypothesis can be written as H0: μ = ϕ versus 

H1: μ = θ. Below we discuss two computationally simple test procedures to detect inliers in a 
model.  
 
5.1   Modified likelihood ratio test 
 

The study of the modified likelihood approach to finite normal mixture models with a 
common and unknown variance in the mixing components and a test of the hypothesis of a 
homogeneous model versus a mixture on two or more components were done by Chen and 
Kalbfleisch (2005).   

 
We define  ),(~/)(: 2

1 NxxFM , That is, all observations come from target population 
and  )()()1()(: 212 xpFxFpxFM  , That is, the observations comes from a mixture of two 
normal distributions, with  1F x and  2F x  are distribution functions of inliers and target 
populations respectively, as defined in previous sections. 

 
We want to test null hypothesis 0 : 1H p  against  0 : 1H p   or in other words a test of the 

hypothesis 1X M  versus 2X M  then ordinary LRT statistics is given by  
 

   
2 1, ,

ln 2 sup ln , , sup ln ,
X M X M

X X
 

   
 

 
                                                          (5.1) 

 
Due to non-regularity of the finite mixture models ln λ does not have usual chi-squared distribution.  
Therefore, we modify the likelihood as 
 

      ln , , ln , , ln 4 1m X X C p p                                          (5.2) 
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where C is a positive constant. The purpose of the penalty term   ln 4 1C p p  is to restore 

regularity to the problem by avoiding estimates of  p on or near the boundary. Let  





 X,ln

^
  

maximizes  Xm ,ln   for 1X M and 





 X,,ln

^^
  maximizes  ln , ,m X  for 2X M . Then the 

modified likelihood ratio statistic is 
 

  


















 XX ,ln,,ln2ln

^^^^
      (5.3) 

 
The null hypothesis is rejected for large values of €ln , where €ln   follows  

2
2  distribution. 

 
 
5.3. Most powerful test 
 
          The most powerful test for testing 0 : H  against 0 : H  where    is the mean of 
normal population and p known is given by 
 

                      

 
 
 
 

1

0

1

0

1,

0,

P x
C

P x
x

P x
C

P x










 
 

                                                                        (5.4) 

 
where )(1 xP  and )(0 xP are likelihood functions under distribution of target population  and inlier 
population G respectively, and C  is such that    )(

0
xPH , where  α is the level of significance. 

We reject H0 for large values of the ratio  
 

1

0

P x
P x

. Also, the value of C  is obtained as 

  zC  , after some numerical computation.  
 
 
 
6. Simulation Study 
 
           To illustrate the method of identifying inliers model we have generated 15  independent 
random samples, where  5 of them are from normal distribution with mean  = 4 and 22

0  , and 
remaining ten observations from normal distribution with parameter  mean θ = 20 and 32

1  . The 
observations are 1.44852, 3.667636, 3.949972, 5.548854, 6.017887, 17.61194, 19.26654, 20.09814, 
20.23482, 20.36071, 20.64048, 21.08915, 21.26954, 22.53701 and 24.23439.  
 
 The identification is done as follows: Evaluate for each fixed r the maximum likelihood 
equation €

rL , and then consider €r  being that value of r for which likelihood is maximum. The 
estimates are presented in table 2. It is interesting to note that the likelihood is maximum 
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corresponds to r=5, which is expected. The corresponding estimates of the parameters are  €  = 
4.126574, 0 =1.80372 and €  =20.73427, 1 = 1.783219.  

 
Table 2: The Likelihood and Information criterions 

 
r L SIC BIC HQ 
2 -38.1951 69.8294 -3.4621 -2.6464 
3 -34.5019 62.4430 -3.3604 -2.5447 
4 -31.2064 55.8519 -3.2600 -2.4443 
5 -20.7104 34.8599 -2.8501 -2.0344 
6 -26.0540 45.5470 -3.0796 -2.2639 
7 -28.5460 50.5312 -3.1709 -2.3552 
8 -30.9970 55.4332 -3.2533 -2.4376 
9 -33.0941 59.6274 -3.3188 -2.5031 
10 -34.9391 63.3174 -3.3730 -2.5573 
11 -36.6837 66.8065 -3.4218 -2.6061 
12 -38.4748 70.3887 -3.4694 -2.6537 
13 -39.6796 72.7984 -3.5003 -2.6846 

   
 
 Clearly SIC(0) = 58.4562 >    

1
5 min 34.85999

r n
SIC SIC r

 
  . A similar conclusion can be 

drawn in the case of BIC and HQ. Next, we carried out an experiment with 1000 samples each of 
size 15 and number of inliers as 3, 4, 5 and 6 each with 3   and 6,9,12,15  . The table 3 
entitled power of SIC procedure presents the number of times the SIC procedure correctly identified 
the number of inliers as proportion to total number of samples. The values clearly indicate the 
effectiveness of the method in detecting the inliers.  
 

Table 3. Power of SIC procedure 
 

/   
r 

2 3 4 5 

3 0.570 0.720 0.700 0.550 
4 0.460 0.480 0.490 0.440 
5 0.460 0.460 0.460 0.462 
6 0.410 0.420 0.430 0.410 

 
 
6.1. Numerical Example 
 
 We recall the Vannman (1991) data example discussed in section 3 to illustrate the 
identification of inliers using information criterions. The computed value SIC(0) = 99.45467 and 
below in Table 4, the value of likelihood,  SIC(r) and modified likelihood ratio for different values 
of  r are given for different information criterions.  
 
             Clearly, SIC(0) = 99.45467  > SIC(9) =  min SIC(r) = 53.87482. Also the likelihood is 
maximum for r = 9.  The corresponding estimates of the parameter are €  = 0.727778,    0  = 
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0.456858 and €  =7.352, 1 = 3.745867.  For modified likelihood ratio test also the maximum €ln  
is attained at r = 9. 
   
 One of the important problems while detecting the inliers is the masking effect, where 
masking effect is defined as the loss of power due to wrong detection of more than one inliers. This 
is discussed in the next section. 
 
 Table 4. Estimates of parameters for various values of r. 

r Likelihood SIC BIC HQ €ln   
2 -39.7964 85.94886 -3.55136 -2.52751 13.50582 
3 -36.1743 78.70478 -3.45593 -2.43208 20.74989 
4 -32.7564 71.86888 -3.35668 -2.33283 27.5858 
5 -30.8971 68.15026 -3.29824 -2.27439 31.30442 
6 -28.6342 63.62454 -3.22218 -2.19833 35.83014 
7 -27.5317 61.41942 -3.18292 -2.15907 38.03526 
8 -25.6430 57.64209 -3.11185 -2.08800 41.81259 
9 -23.7594 53.87482 -3.03556 -2.01171 45.57985 
10 -27.4743 61.30473 -3.18083 -2.15698 38.14995 
11 -28.1648 62.68569 -3.20565 -2.18180 36.76899 
12 -29.3104 64.97688 -3.24552 -2.22167 34.47779 
13 -29.6057 65.56758 -3.25555 -2.23170 33.88709 
14 -30.5163 67.38864 -3.28584 -2.26199 32.06603 
15 -31.1017 68.55955 -3.30484 -2.28099 30.89513 
16 -32.0722 70.50050 -3.33557 -2.31172 28.95417 
17 -33.2247 72.80552 -3.37087 -2.34702 26.64915 
18 -35.0261 76.40824 -3.42367 -2.39982 23.04643 
19 -36.5309 79.41796 -3.46574 -2.44189 20.03672 
20 -37.8073 81.97070 -3.50008 -2.47623 17.48397 
21 -39.3469 85.04991 -3.54000 -2.51615 14.40476 
22 -40.8648 88.08568 -3.57785 -2.55400 11.369 

 
 
7.   Masking effect on tests for inlier(s) 
 
         Suppose 1 2, .... nX X X  be sequence of n independent random variables with some known 
FTD. Under the null hypothesis 0H  these random variables are identically distributed with df F 
whereas under alternative hypothesis 1H , discordant observations (inliers) arise from population df 
G. The df of G is assumed to be of same form as that of F with a change in location or scale 
parameter by an unknown quantity λ. This parameter is called discordancy parameter, measuring 
the degree of discordancy. Under H1 it is assumed one of the observations follows df G. Let T(x) be 
a test statistics to detect a single discordant observation with critical region A(n,α).  Due to lack of 
information about the number of discordant observations present in the sample, however, the true 
situation may not be specified by H1 and more than one discordant observation may be present in 
the sample. In such cases a test statistics T(x) suggested for detection of a single discordant, may 
fail to detect a single inlier as discordant even when additional discordant observations are present 
in the sample. Such a phenomenon is called masking effect.  
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 All tests for detecting a single inlier, Ho against H1 are based on symmetric functions of 
observations or on functions of order statistics. In the k-inlier model,  the joint distribution of order 
statistics      1 2, ,.... nX X X  is same as that  under the exchangeable model introduced by Kale (1975) 
where it is assumed that any set 

1 2
, ,....

ki i iX X X has priori equal probability of being independent and 
identically distributed asG  and the remaining (n-k) observation are distributed as F, the 
distribution function of target population.  
 
 In exchangeable model      1 2, ,.... nX X X  has minimum posterior probability of coming from 

G  such that 
G
F



 is the decreasing function in X. The limiting masking effect (Bendre and Kale 

1987) can be studied by assuming      1 2, ,.... kX X X   correspond to observation coming from 

 2,N     and then taking limit as . In the above condition, the joint probability is 
defined as 
 

   
        

     1 2

1 1

! !
, ....

1,2,3.......n

k n
i i

i i k

k n k
h x x x g x f x

k 
   


     ,                    (7.1) 

                                                                           1 2 .... nx x x     
 

 
Also f and g  are probability density functions of  2,N   and  2,N     respectively. Thus 
masking effect on any test statistics T(x) with critical region A(n,α), we have 
             

            

 
 11 2, ,......

,
lim , / lim .......n nsk

A n
P T x A n L h x x x dx dx

  


 
              (7.2) 

 
Thus under the labeled slippage model, Lsk as      1 2, , ,.....n k n k nx x x      behave as order 

statistics of a sample of size (n-k) from  2,N    and      1 2, ,..... kx x x  diverge to zero. However if 

      1 2, ,.... kT x x x  is a function whose distribution does not depend on λ then T converges in 

distribution to a proper random variable as  . 
 
 
7.1   Limiting masking effect 
 
 In line with Grubb’s test, for a single inlier, we propose the test 
 

  

  
   

2

2 2 1
2

1

1

n n n
ni i i

i i i
nn

i
i

x x x x
G where x and x

n n
x x

  





  




  



                           (7.3) 

 
and the maximum studentized residual T as  
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 

    
    

 
1

2 2

2

1

1

1i n

n

n
nT

x x n
nx x




      


                                                             (7.4) 

 
Since under 1sL  corresponds to the inlier observation coming from   2,N     and 

    
    

2

2

1

0i n

n

x x

x x





 in probability as   for i =2,3,4……..n and therefore 

1
21nT

n
    

 in 

probability as  . Hence as  ,   1lim 1GP   , where  1
GP   is the power function of 

Grubb’s test. To study     2 ,lim lim |G
n skP P T t L as        we write 

 

  

 
 

1

1
22

2
1 2 i

kY
nT
Y kY k
n n



 

  
  



                                                                    (7.5) 

where  

 

    
    1

1,2,......
i k

i

n k k

x x
Y i n

x x 


 

 
                                          (7.6) 

With  1n kx     is the mean of       1 2, ,.....k k nx x x   and kx  is the mean of      1 2, ,..... kx x x .  Therefore 

  0iY   in probability for i =1,2…..k because the numerator of   iY  is a proper random variable, 

while denominator diverges to infinity. For i =1,2,……k,  we observe that  
    
    

1

1

1
i n k

i
n k k

x x
Y

x x
 

 


 


 is 

such that the numerator has a distribution independent of λ and therefore converges to a proper 
random variable, but denominator diverges to infinity and hence    1iY 

 
in probability as  

. 
   

 

 Therefore under Lsk    as  ,   
1
2n k

T
nk
 

  
 

 and      

         
 

1
2

,
2

1,lim

0 . .

G n

n k
tP nk

o w



       


                                                               (7.7) 

Thus Grubb’s test is free from the limiting masking effect for 
 

1
2

,n

n k
t

nk 

 
 

 
 and the performance 

of the test depends on the sample size n and the number of inliers. In general ,nt   is a decreasing 
function of the sample size and hence for large n with moderate k the test is free from the limiting 
masking effect. Table 5, presents the maximum number of inliers in a sample of size n up to which 
Grubb’s test is free from the limiting masking effect. 



K. Muralidharan and Arti  Khabia - INLIER PRONESS IN NORMAL DISTRIBUTION 

 
RT&A # 01 (28)  

(Vol.8) 2013, March  
 

 

99 

 
Table. 5 Maximum inliers accommodated by Grubb’s test 

α n =10 n = 15 n = 20 n = 25 
0.01 1 1 1 2 
0.05 1 2 2 2 
0.10 1 2 2 3 

 
From the table, it is observed that for large sample size more number of inliers may be 
accommodated.  
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ABSTRACT 
 

This paper aims at bringing out the usefulness of Chebyshev- and Markov- type inequalities in 
structural engineering design decision making.  By examining whether the bounds arising from 
Chebyshev - type inequality (associated with these are weak upper bound probabilities) enclose the 
respective experimental values for deflections of six ferrocement I-beams and web shear fatigue life of a 
steel plate girder it is inferred that the bounds and the associated probabilities estimated are realistic and 
hence can be used in structural engineering design decision making. The paper also presents some 
recent developments in application of Markov type inequalities (which are due to Steliga and Szynal 
(2010)) for estimation of bounds on probability of an event sought.  The importance of such bounds in 
structural engineering applications is brought out.  It is shown from the results of Monte Carlo 
simulation that the bounds on probability of an event, estimated using the method presented by Steliga 
and Szynal, are sharp.  One of the important advantages of the bounds presented by Steliga and Szynal 
(2010) is that the original (hidden/internal) random variable need not have well defined moments. 
Possible engineering applications are also pointed out. 
 
Keywords: Chebyshev inequality, Markov inequality, deflection, fatigue life 
 

 
1  CHEBYSHEV INEQUALITY- SOME PRELIMINARIES 
 

Let X be a random variable representing an action or response quantity.  Example of action 
quantity can be load (or loading intensity), external bending moment or external traction force.  The 
response quantity can be deflection, rotation, warping, strain, crack width.  In most engineering 
applications we may not be knowing the actual probability density function (pdf) of X; yet, we will 
be asked to answer questions like P[g(x) ≥ r]=?.  It may be noted that g(X) is a function of random 
variable and r is a specified value.  Such decision making probabilities are required in limit state 
design of structural components (viz. Bolotin, 1969). 

In the face of non-availability of pdf of X can we make probabilistic inferences about P[g(X) 
≥ r].  It can be shown that (viz. Gnedenko, 1976) 
 

     
r

XgErXgP       (1)

 

 
 

Let   222 σz =r  ; µ]-[x =  g(x)  where µ and  are mean and standard deviation of X.  According 
to Chebyschev’s inequality this probability computed from (Gnedenko, 1976) 
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



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 (or)
    (2)

 

 
Therefore, Chebyshev’s inequality gives weak upper bound on the desired probability. We 

note from Eq.(2) that z should be greater than or equal to 1  since if z < 1 (though positive) the 
interpretation as the value of probability will not be proper.  Also, since we are not having any 
information on type of pdf of X the bounds will be weak.  Efforts have been made in the literature to 
sharpen the bounds and to determine two-sided bounds and also, to determine bounds for 
multivariate case (with- and without- correlation effect).   

While Eq. (2) gives the one-sided bound, let us consider two-sided case.   When the 
distribution is symmetrical about the mean, the symmetrical bounds around the mean are given by 
(Steliga and Szynal, 2010), 

 
   (3) 

 
When the pdf of the random variable is not symmetrical about the mean, the bounds are given 

by, 
 

    (4) 
 
 
Where 2

2121 )k)(k(;kk    
 
 

2  APPLICATIONS  
 
In this section two example problems demonstrating the use of Chebyshev inequalities in 

determining the weak upper bound probabilities, those required for engineering decision making, 
are presented.  One of the highlights of these examples is, to infuse confidence in engineering 
applications, to compare the results with the respective experimental values. 

Example 1: In this example an attempt has been made to estimate the weak upper bound 
probabilities on random central deflection of ferrocement I-beams used for roofing in low-cost 
housing.  This example is considered since the test data on central deflection, at different stages of 
loading, was available for six specimens.  These specimens were tested at the structural engineering 
laboratory of Indian Institute of Science, Bangalore, in 1980s.  The details of tests and the test 
results are available in (Prakash Desayi and Balaji Rao (1988), Prakash Desayi and Balaji Rao 
(1993), Balaji Rao (1990)).  Also, an effort was made to determine statistical properties of 
deflections using Monte Carlo simulation technique.  More details about basic random variables 
considered and details of simulation are presented in Balaji Rao (1990).  The final results of 
simulation (viz. mean and standard deviations of deflection) for six specimens considered here, at 
different stages of loading, are presented in Table 1.  Also presented in this table are experimental 
values of central deflections.  The weak upper bound probabilities associated with bounds of 
lengths 2.25, 2.5, 2.75 and 3  are computed using Chebyshev inequalities.  These probabilities 
are computed for two conditions : (a) assuming that the pdf of deflection, at different stages of 
loading, are symmetrical about the mean, and, (b) assuming that the pdf of deflection is unknown or 
unsymmetrical about the mean.  The values of the bounds and their corresponding probabilities are 
presented in Table 1 typically for first two interval lengths.  Since a bound of length 3  is very 
often used in engineering decision making, the same are compared for the cases (a) and (b) in Figs. 
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1 – 6 for the specimens considered.  Also shown in these figures are the experimentally observed 
deflections.  From these figures it is observed that at almost all stages of loading, the estimated 
bounds contain the observed deflection suggesting that the estimated weak upper bound 
probabilities are acceptable and can be used in engineering decision making.  If it is felt that the 
length of interval of 3  is high, from Table 1 it is noted that, at higher stages of loading, even 
though the lengths of interval are small, the bounds enclose the experimentally observed 
deflections.  It may be noted that the weak upper bound probabilities for the two intervals presented 
in Table 1 vary between 20 to 21% (which is small though).  These observations suggest that the 
Chebyshev’s inequalities can be used for engineering decision making. 
 
Table 1. Bounds of different interval lengths and their comparison with experimental results 
 
Specimen 
designation 

Applied 
load 
(kN) 

Exp. 
deflection 
(mm) 

Results of Monte Carlo 
simulation, Balaji Rao 
(1990) 

Bounds – symmetrical 
(length of interval =2.25 

)1 

Bounds – 
unsymmetrical (length 
of interval = 2.25)2 

Mean, 
 (mm) 

Standard 
deviation,   
(mm) 

Lower 
bound (  – 

1.125) 
(mm) 

Upper 
bound ( + 

1.125) 
(mm) 

Lower 
bound (  

–  ) 
(mm) 

Upper 
bound ( 
+ 1.25) 

(mm) 

 
 
MI1 

2 0.038 0.015 0.004 0.011 0.019 0.012 0.019 
4 0.069 0.033 0.020 0.010 0.056 0.012 0.058 
8 0.216 0.317 0.157 0.140 0.493 0.160 0.513 

10 0.407 0.555 0.184 0.348 0.762 0.371 0.785 
15 0.9 1.154 0.246 0.878 1.431 0.908 1.462 

 
 
MI2 

1 0.035 0.024 0.005 0.018 0.030 0.018 0.035 
1.5 0.075 0.036 0.009 0.026 0.046 0.027 0.054 
8 1.273 1.542 0.378 1.117 1.967 1.164 2.297 

10.41 1.965 2.336 0.460 1.818 2.854 1.876 3.257 
13 2.809 3.190 0.549 2.370 4.013 2.641 4.287 

 
 
MI3 

2 0.021 0.015 0.003 0.011 0.019 0.011 0.020 
4.5 0.065 0.035 0.018 0.015 0.055 0.018 0.058 
10 0.261 0.422 0.204 0.192 0.651 0.217 0.677 
15 0.728 1.047 0.270 0.743 1.350 0.777 1.384 

17.62 1.02 1.375 0.304 1.033 1.717 1.071 1.755 
 
 
MI4 

1 0.036 0.020 0.005 0.015 0.025 0.015 0.026 
1.5 0.05 0.030 0.007 0.023 0.038 0.023 0.039 
8 1.4 1.083 0.363 0.675 1.491 0.720 1.536 

9.9 1.45 1.645 0.419 1.173 2.116 1.225 2.169 
10 1.63 1.673 0.423 1.196 2.148 1.249 2.201 

 
 
MI5 

3 0.04 0.020 0.005 0.015 0.025 0.016 0.026 
4 0.062 0.027 0.007 0.012 0.034 0.020 0.035 

15 0.645 0.699 0.286 0.378 1.021 0.413 1.057 
16 0.701 0.820 0.299 0.483 1.156 0.520 1.193 

17.79 0.825 1.035 0.321 0.674 1.396 0.714 1.436 
 
 
MI6 

2 0.077 0.035 0.008 0.026 0.045 0.027 0.045 
3 0.12 0.053 0.013 0.038 0.068 0.040 0.070 
9 0.73 0.731 0.478 0.193 1.268 0.253 1.328 

9.6 0.932 0.915 0.516 0.334 1.496 0.399 1.560 
14 2.8 2.356 0.678 1.593 3.119 1.677 3.204 

 
Note: 1,2 – associated weak upper bound probabilities are 0.21 and 0.20, respectively 
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Figure 1. Load versus deflection plot for specimen MI1 with ( -1.5,  +1.5 ) symmetrical 
bounds (associated minimum probability 0.56) and ( - ,   + 2.0 ) for unsymmetrical bounds 

(associated minimum probability 0.44) with experimental values 
 
 

 
 

Figure 2. Load versus deflection plot for specimen MI2 with ( -1.5,  +1.5 ) symmetrical 
bounds (associated minimum probability 0.56) and ( - ,   + 2.0 ) for unsymmetrical bounds 

(associated minimum probability 0.44) with experimental values 
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Figure 3. Load versus deflection plot for specimen MI3 with ( -1.5,  +1.5 ) symmetrical 
bounds (associated minimum probability 0.56) and ( - ,   + 2.0 ) for unsymmetrical bounds 

(associated minimum probability 0.44) with experimental values 
 
 

 
 
 

Figure 4. Load versus deflection plot for specimen MI4 with ( -1.5,  +1.5 ) symmetrical 
bounds (associated minimum probability 0.56) and ( - ,   + 2.0 ) for unsymmetrical bounds 

(associated minimum probability 0.44) with experimental values 
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Figure 5. Load versus deflection plot for specimen MI5 with ( -1.5,  +1.5 ) symmetrical 
bounds (associated minimum probability 0.56) and ( - ,   + 2.0 ) for unsymmetrical bounds 

(associated minimum probability 0.44) with experimental values 
 
 

 
 
 

Figure 6. Load versus deflection plot for specimen MI6 with ( -1.5,  +1.5 ) symmetrical 
bounds (associated minimum probability 0.56) and ( - ,   + 2.0 ) for unsymmetrical bounds 

(associated minimum probability 0.44) with experimental values 
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Example 2: This example shows how Chebyshev’s inequality will help in fatigue resistant 
design of steel plate girders of a plate girder bridge.  More details of this problem can be found in 
Balaji Rao and Anoop (2013). 

The basic equation used in predicting the fatigue life using S – N approach is given by, 
 

  b
f CN         (5) 

where Nf is the number of load cycles to the fatigue limit and  is the applied stress range, C and b 
are the material parameters, known as the fatigue strength coefficient and the fatigue strength 
exponent, respectively. 

It is known that the number of cycles to failure (i.e. fatigue life, Nf), at a given applied stress 
range is a random variable.  A typical plot showing the same is presented in Fig. 7.  It may be noted 
that the nature of pdf and the statistical properties of Nf may depend on stress range.  While it is 
desirable to establish the nature of these probability distributions using fatigue tests, it is expensive 
and time consuming.   The median and the 5% and 95% fractiles of fatigue life computed using the 
transformation of variable technique, at different applied stress ranges are shown in the figure.  
More details of the probabilistic analysis of the fatigue life of the plate girder are presented in Balaji 
Rao et.al. (2013).  Also shown in this figure are experimental fatigue lives reported in literature.  
Except in few cases, experimental scatter is enclosed by the estimated bounds.  Let us apply the 
Chebyshev’s inequality to determine the bounds on fatigue life. At the applied stress range of 270 
MPa the mean (µ) and standard deviation () of Nf are respectively 7.471E+05 and 3.447E+05.  
Assuming the bounds to be symmetrical and (k2-k1) = 3, the probability that the fatigue life will be 
between (2.3005E+05, 12.6415E+05) is equal to or greater than 0.556.  On the other hand if the 
distribution is unsymmetrical about the mean, even though we may keep (k2-k1) = 3, assuming the 
bounds to be (4.024E+05, 14.365E+05), that satisfies the conditions associated with Eq. (4), then 
the probability that the bound will contain actual life will be equal to greater than 0.444.  This value 
of probability is less than the case when the bounds are symmetrical for the reason that in order to 
assume that the bounds are symmetrical we should have had more justification/confidence and this 
gets embedded in our predictions. 
 

 

 
 

Figure 7. Comparison of results of probabilistic analysis with experimentally observed values of 
fatigue life for plate girders reported in literature 
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2  SOME RECENT DEVELOPMENTS  
 
Extension of Markov-type inequalities to a class of random variables without moment 

condition requirement was proposed by Steliga and Szynal (2010).  This is a flexible formulation 
that enables the computation of bounds on probabilities for the random variable which does not 
have well defined moments.  Some of the examples of random variables that belong to this category 
are alpha stable random variables.  These random variables have fractional moments and the 
existence of the order of moments depends on the value of the exponent.  Recent R&D at CSIR-
SERC has revealed that for describing the variations in some of the engineering quantities, alpha-
stable distributions are more appropriate (Balaji Rao and Anoop, 2012).  Hence, the results of 
Steliga and Szynal (2010) are important and the same are considered further. 

 
Steliga and Szynal (2010) assumed the following conditions: (1) X is a positive random 

variables (X   0 a.s.), (2) G is a class of all positive, strictly increasing functions g with g(0) = 0.  
Let N be set of integers.  Making use of Markov inequalities, the following inequality has been 
proved by them. 

For a given  > 0 and k in N  
 







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
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












)X)1k((g)kX(g
)kX(gE2

]X[I
)X)1k((g)kX(g

)kX(gE2]X[P]X[I
)X)1k((g)kX(g

)kX(gE









   (6) 

 
Where I[.] denotes the indicator function.  The above bounds are valid only when X is a 

positive random variable.  The computation of bounds does not require moments of X.  However, 
we should know the functional form (strictly increasing) of g(.) and an idea about the realizations of 
X.  We should also be in a position to determine the expected values of g(.).  The strictly increasing 
function g(.) can be formulated based on phenomenological modeling involving X.   

Possible structural engineering application: For example, the average (smoothed) roof load-
displacement curve of a moment resisting frame subjected to lateral loads, obtained using pushover 
analysis, over the range of engineering design interest, can be considered as strictly increasing 
function of load.  In a gravity controlled experiment, the variations observed in roof displacements 
of nominally similar frames can be attributed to the variations in dimensions and strengths of 
materials.  These variations can be aggregated into overall rigidity/compliance of the frame (X, 
which is always positive, and thus satisfying the condition required to estimate the bounds using the 
above equation).  We can always assign an acceptable probability distribution to the deflection, 
generate random values of deflection following the assigned pdf and indirectly estimate the rigidity 
and examine the indicator function.  This exercise would circumvent us from directly generating 
random realizations of X (as already indicated this random variable may not have well defined 
moments).  Still we will be able to compute the bounds on the required probability with regard to X.  
This also suggests that the formulations presented by Steliga and Szynal (2010) can be used in an 
inverse problem to characterize, probabilistically, the internal variable.  However, the condition 
kN may perhaps need to relaxed through proper formulations.     

Computation of bounds on probability of required event using Eq. (6) requires X to be 
positive.  Let X be the random variable which is real valued.  Then, the bounds presented above for 
positive random variables can be used by substituting │X│ in the place of X.  Let us consider some 
special cases wherein does X take on negative values whose moments may or may not exist and a 
strictly increasing function of X, g(X), is observable and whose distribution is known (in such a case 
X can be considered as a hidden/internal variable whose value is inferred based on a physical 
relationship g(.) and X).   
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The following functional form is assumed for  >0. We will now consider special cases and 
provide necessary bounds for P(X  ). 





r0,x)x(g)b(

Nm,x)x(g)a(
r

m

 

In order to compute denominator in Eq. (6), we need the following bounds (Gut, 2005), whenever x 
> 0 and y > 0, 
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r      (7) 

The following are the bounds derived by Steliga and Szynal (2010).  These would be useful in 
engineering applications some of which are pointed out in the next section. 
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The predictive power of the above equations, characterised by sharpness of bounds, for g(x) = 
│x│r, when the underlying random variable is following normal and lognormal distributions are 
presented in Tables 1 and 2, respectively, for different values of k and r. To estimate the lower and 
upper bounds, Monte Carlo simulation technique involving 105 simulation cycles are used.  The 
actual probabilities whose bounds are being estimated are presented in foot note of these tables.  
From the results presented in these tables it is inferred that the bounds developed by Steliga and 
Szynal are tight and can be used in the engineering applications for making probability statements 
about the internal variable which is responsible for generating the random observable g(X).  
However, it should be noted that the assumptions made in deriving the bounds should be satisfied.  
As stated earlier, one of the limitations, perhaps, in engineering application would be the need 
imposed by kN. 

Possible structural engineering application: In many engineering problems, X may take 
negative values and also moments of X may not exist.  For example, recent studies by Balaji Rao 
and Anoop (2012), at CSIR-SERC, have shown that the description of evolution of surface strain 
field of a reinforced concrete flexural member follows a Levy process.  Accordingly, at any stage of 
loading, the fluctuations in surface strains may be described using an alpha-stable distribution.  It is 
known that handling such random variables can be difficult and may be desirable to make 
probabilistic inferences of these variables based on the probabilistic variations in observables such 
as deflections and/or crackwidths which are functions of internal variables such as strains.  This 
study is being furthered at CSIR-SERC. 
 
 
 
Table 2. Results of simulation (N = 105 cycles) for the bounds on P[X≥2]* for X being normally 
distributed with mean = 0.0 and standard deviation = 1.0; g(x) = xr 
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k            r ¾ ½ ¼ 1/9 1/16 
1 LBI(k;r;) 

MBI(k;r; ) 
0.04852617 
0.05764368 

0.04759212 
0.067207573 

0.04665248 
0.078375767 

0.04612905 
0.085371748 

0.04594573 
0.087966528 

2 LBI(k;r; ) 
MBI(k;r; ) 

0.04702721 
0.05591246 

0.04658857 
0.065866515 

0.04614941 
0.077596523 

0.04590531 
0.08499524 

0.04581986 
0.087748455 

4 LBI(k;r;) 
MBI(k;r; ) 

0.04634894 
0.05511564 

0.04613601 
0.0652417 

0.04592302 
0.077229053 

0.04580468 
0.084816504 

0.04576326 
0.087644691 

9 LBI(k;r; ) 
MBI(k;r; ) 

0.04598943 
0.05469043 

0.04589629 
0.064906321 

0.04580315 
0.07703066 

0.0457514 
0.084719696 

0.04573329 
0.087588427 

16 LBI(k;r; ) 
UBI(k;r; ) 

0.04586632 
0.05454438 

0.04581421 
0.064790817 

0.04576211 
0.076962149 

0.04573316 
0.084686215 

0.04572303 
0.087568958 

25 LBI(k;r; ) 
MBI(k;r; ) 

0.04580979 
0.05447725 

0.04577653 
0.064737677 

0.04574326 
0.076930597 

0.04572478 
0.084670787 

0.04571832 
0.087559985 

36 LBI(k;r; ) 
MBI(k;r; ) 

0.0457792 
0.05444092 

0.04575613 
0.064708895 

0.04573307 
0.076913499 

0.04572025 
0.084662424 

0.04571577 
0.08755512 

 
Note: * Actual probability value = 0.0455 
 
Table 3. Results of simulation (N = 105 cycles) for the bounds on P[X≥3]* for X being lognormally 
distributed with mean = 2.0 and standard deviation = 0.50**; g(x) = xr 
 

k            r ¾ ½ ¼ 1/9 1/16 
1 LBI(k;r; ) 

MBI(k;r; ) 
0.03954956 
0.04701278 

0.0390874 
0.055247321 

0.03862401 
0.064931017 

0.03836626 
0.071029536 

0.03827603 
0.07329724 

2 LBI(k;r; ) 
MBI(k;r; ) 

0.03882517 
0.04616696 

0.03860355 
0.054587084 

0.03838181 
0.064544453 

0.03825858 
0.070841976 

0.03821545 
0.073188447 

4 LBI(k;r; ) 
MBI(k;r; ) 

0.03848589 
0.04576672 

0.03837727 
0.054272124 

0.03826864 
0.064358563 

0.03820829 
0.070751383 

0.03818716 
0.073135818 

9 LBI(k;r; ) 
MBI(k;r; ) 

0.03830327 
0.04555033 

0.03825551 
0.054101171 

0.03820776 
0.06425727 

0.03818123 
0.070701911 

0.03817194 
0.073107056 

16 LBI(k;r; ) 
MBI(k;r; ) 

0.03824028 
0.04547556 

0.03821352 
0.054041991 

0.03818676 
0.06422214 

0.03817189 
0.070684736 

0.03816669 
0.073097067 

25 LBI(k;r; ) 
MBI(k;r; ) 

0.03821129 
0.04544111 

0.0381942 
0.054014712 

0.0381771 
0.064205936 

0.0381676 
0.07067681 

0.03816427 
0.073092457 

36 LBI(k;r; ) 
MBI(k;r; ) 

0.03819559 
0.04542245 

0.03818372 
0.053999923 

0.03817186 
0.064197148 

0.03816527 
0.070672511 

0.03816297 
0.073089956 

Note : *Actual probability value = 0.0382;  **parameters of lognormal: - lamda = 0.66261654; 
exi = 0.246068276;  

 
 
3  SUMMARY  

 
This paper aims at bringing out the usefulness of Chebyshev- and Markov- type inequalities in 

structural engineering design decision making.  By examining whether the bounds arising from 
Chebyshev - type inequality (associated with these are weak upper bound probabilities) encloses the 
respective experimental values for: (a) prediction of central deflection of six ferrocement I-beams, 
and, (b) fatigue life of a steel plate girder of a plate-girder bridge, against the limit state of web 
shear buckling, it is inferred that the bounds and the associated probabilities estimated are realistic 
and hence can be used in structural engineering design decision making. The paper also presents 
recent developments in determination of inequalities of the type of Markov, which are due to 
Steliga and Szynal (2010).  The importance of such bounds in structural engineering applications is 
brought out.  It is shown from the results of Monte Carlo simulation that the bounds on probability 
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of an event sought, estimated using the method presented by Steliga and Szynal, are sharp.  One of 
the important advantages of the bounds presented by Steliga and Szynal (2010) is that the original 
(hidden/internal) random variable need not have well defined moments. Possible engineering 
applications are also pointed out. 
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