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CHI-SQUARED GOODNESS OF FIT TEST  
FOR GENERALIZED BIRNBAUM-SAUNDERS MODELS FOR RIGHT CENSORED 

DATA AND ITS RELIABILITY APPLICATIONS 

M. S. Nikulin1 and X. Q. Tran1 

 
1Bordeaux University, IMB, UMR 5251, F-33400 Talence, France 

 E-mail:  mikhail.nikouline@u-bordeaux2.fr, 
                      xuanquang.tran@math.u-bordeaux1.fr 

ABSTRACT 

Generalized Birnbaum-Saunders (GBS) distributions are proposed by Díaz-García et al. 
([15], [16]) based on the family of elliptically contoured univariate distributions. This model 
is well-known as the highly flexible lifetime model by the difference in the degrees of 
kurtosis and asymmetry and processes uni-modality and bimodality. In this paper, a 
modifier Chi-squared goodness-of-fit test based on Nikulin-Rao-Robson statistics ࢅ௡ଶ  is 
developed for the family of GBS distributions for the right censored data with unknown 
parameters by using the maximum likelihood estimation (MLE). Some applications of this 
model in survival analysis discuss also in the section of real study. 

Keywords and phrases: Birnbaum-Saunders distribution, Breast cancer, Carcinoma data, 
Chi-squared test, Censoring sample, GBS distributions, Goodness-of fit test, NRR test, 
Survival analysis. 

1    Introduction 

In 1969, Birnbaum and Saunders [9] have been proposed a model with two shape and scale 
parameters that is well known as Birnbaum-Saunders (BS) distribution. After their work, there was 
a lot of research work on this model and its applications in reliability and survival analysis. It must 
be mentioned as the work of Desmond [14] who strengthened the physical justification for the use 
of this distribution by relaxing some assumptions early bade Birnbaum-Saunders. Based on this 
distribution, Leiva et al. [23] has worked to model survival times of patients with multiple myeloma 
by using prognostic variables with censored data. A chi-squared test for this model is analyzed by 
Tahir [37] in 2012. In addition, in the recent research of Nikulin et al. ([30], [2], [29]) considered 
these applications of this model in the accelerated lifetimes (AFT) models and redundant systems. 
Nowadays, the BS distribution has known as cumulative damage distributions and it is a very useful 
in fatigue, reliability and survival analysis. However, its field of application has been extending 
beyond the original context of material fatigue and reliability analysis. 

Therefore, studies to expand of the BS distribution have been looking for researchers in recent 
years, such as: Owen ([32], [33], [31]) proposed a three parameter Birnbaum-Saunders distribution, 
in 2000. Later, Volodin and Dzhungurova [38] developed a general family of fatigue life 
distributions denominated the crack distribution, which includes the Birnbaum-Saunders 
distribution as a particular case. In particular, we should be mention a generalized family of life 
distribution which is suggested by Díaz-García et al. [15] in their technical report in 2002, is called 
as the Generalized Birnbaum-Saunders (GBS) distributions. In his works, Díaz-García was obtained 
a distribution of the Birnbaum-Saunders type with different degrees of kurtosis, uni-modality, 
bimodality and absence of moments by basing on the family of elliptically contoured univariate 
distributions (which known as standard symmetrical distributions in	ܴ. A complete review about the 
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GBS distributions can be found in Sanhueza, Leiva, and Balakrishnan [36]. The purpose of this 
paper, we analyze a Nikulin-Rao-Robson ࢅ௡ଶ  goodness-of-fit tests for these distributions in the case 
of right censoring observations. We also demonstrate the applications of this model by applying it 
to reliability and survival data. 

2   Generalized Birnbaum-Saunders distributions 

As is already known, a random variable ܶ following the BS distribution allows the stochastic 
representation 

ܶ = ߚ	 ቎ߙ
ܼ
4 	+	

ඨߙଶ
ܼ
2 	+ 	1቏

ଶ

≈ ,ߙ)ܵܤ ,(ߚ ߙ > 0, ߚ > 0, (1) 

where, ܼ ≈ ܰ(0, 1). Then the random variable ܼ may be stochastically represented in the form 

ܼ = 	 ଵ
ఈ
ቈට்

ఉ
	− 	ටఉ

்
቉ 	≈ ܰ(0, 1). (2) 

In 2002, Díaz-García et al. [15] were developed the BS distribution becomes GBS 
distributions which are related to standard symmetrical distributions in ܴ, also known as elliptically 
contoured or simple Elliptic distribution ([1], [8], [21], [19], [12]).  

If a random variable ܼ follows an Elliptic distributions which correspond to all the symmetric 
distribution in	ܴ, denoted by ܼ	 ≈ ,ߤ)ܥܧ	 ;ଶߪ 		݃), the probability density function ௓݂(ݖ) and 
cumulative distribution function ܨ௓(ݖ) of ܼ given by,  

௓݂(ݖ; ,ߤ	 (ଶߪ = ܿ݃ ቆ
ݖ) − ଶ(ߤ

ଶߪ ቇ , ;ݖ)௓ܨ ,ߤ	 (ଶߪ = 	 න ௓݂(ݑ; ,ߤ	 ݑ݀(ଶߪ
௭

ିஶ

, ݖ ∈ 	ܴ, |ߤ| < 	∞, 	ߪ > 0	. 

respectively, where, ݃(∙) is the kernel of the probability density function of ܼ, ܿ is the positive 
normalization constant, such that భ೎ 	= 	∫ ାஶݑ݀(ଶݑ)݃

ିஶ . The families Elliptic distributions include 
three sub-models: Kotz Type (KT), Pearson type VII (PVII) and type-III generalized logistic (LIII) 
distributions, for more details on these distributions is given by Anderson [1] Balakrishnan [8], 
Fang [19], Gupta [21], Cambanis [12] and others. The Normal, Cauchy, Laplace, Logistic, Power 
Exponential and (ߥ)ݐ-Student distributions are particular cases of these symmetric sub-classes in ܴ. 
In table 1 below, we recall some results for kernel function	݃(∙), the constant ܿ corresponding with 
standard symmetric distribution 0)ܥܧ, 1; 	݃) in ܴ. 

Distribution Notation ܿ  ݃(ݖଶ), ݖ ∈ ܴ  
Normal ܰ(0, 1) భ

√మഏ
൫−೥మ݌ݔ݁  

మ ൯  

୻൛ഌశభమ  (ߥ)ݐ Student-(ߥ)ݐ ൟ

୻(ఔାଶ)√ఔగ
  ቄ1 + ௭మ

ఔ
ቅ
ିഌశభమ

  

Laplace 0)ܮ, 1) 0.5 ݁ି|௭|  

Logistic 0)݃݋ܮ, 1) 1 ௘ష೥

(ଵା௘ష೥)మ
  

Cauchy 0)ܥ, 1) భ
ഏ  ଵ

ଵା௭మ
  

Power exponential ܲ(ߥ)ܧ 
ఔ

(ଶఔ)
భ
మഌ୻൫ భమഌ൯

−൫݌ݔ݁   భ
మഌ|௭|

మഌ൯  

LIII (ݍ)ܫܫܫܮ ୻(ଶ௦)
୻మ(௤)

  ௘೜೥

(ଵା௘೥)మ೜
, ݍ > 0  
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Distribution Notation ܿ  ݃(ݖଶ), ݖ ∈ ܴ  

Pearson VII ܸܲݍ)ܫܫ,  (ݎ
୻(௤)

୻൫೜షభమ ൯√୰஠
  ቂ1 + ௭మ

௥
ቃ
ି௤
, ݍ > ଵ

ଶ
, ߥ > 0  

Kotz type ݍ)ܶܭ, ,ݎ ௦௥(మ೜షభ) (ݏ మೞ⁄

୻൫మ೜షభమೞ ൯
ଶ(௤ିଵ)݁ି௥௭మೞݖ   , ݍ > భ

మ, ݎ > 0, ݏ > 0  

Table 1: Kernel ࢍ(∙) and normalization constants c for some indicated distributions. 
Following Díaz-García et al. the random variable ܶ in (1) allows the GBS distributions, 

denoted by ܶ	 ≈ ,ߙ)ܵܤܩ	 ;	ߚ 	݃), 

ܶ = ߚ	 ቈߙ
ݖ
4 	+	

ටߙଶ
ݖ
2	+ 	1቉

ଶ

≈ ,ߙ)ܵܤܩ ,ߚ ݃), ߙ > 0, ߚ > 0, 

iff the random variable ܼ  which is given by the expression 

ܼ =	 ଵ
ఈ
ቈට்

ఉ
	− 	ටఉ

்
቉ 	≈ ,0)ܥܧ 1; 	݃). 

So, the probability density function of  ܶ can be written as  

்݂ ,ݐ) ,ߙ (ߚ = 	 ௖
ଶఈఉ

ቊቀఉ
௧
ቁ
భ
మ +	ቀఉ

௧
ቁ
భ
మቋ݃൭ ଵ

ఈమ
ቈට௧

ఉ
−	ටఉ

௧
቉
ଶ

൱ , 	ݐ > 0, 	ߙ > 0, 	ߚ > 0, (3) 

the cumulative distribution function of  ܶ	 ≈ 	GBS(α, β	; 	g) is expressed by  
,ݐ)்ܨ ,ߙ (ߚ = ௓ܨ	 ቄ

ଵ
ఈ
ቈට

೟
ഁ
	ି	ටഁ

೟
቉ቅ , 	ݐ > 0, 	ߙ > 0, 	ߚ > 0,	 (4) 

the GBS hazard rate, survival and cumulative hazard functions are 

,ݐ)்ߣ ,ߙ (ߚ = 	
௓݂൫ܽ௧(ߙ, ,ߙ)௧ܣ൯(ߚ (ߚ
1 ,ߙ)௓൫ܽ௧ܨ	− ൯(ߚ

, 

,ݐ)்ܵ ,ߙ (ߚ = 1 ,ߙ)௓൫ܽ௧ܨ	− ,	൯(ߚ and		ݐ)்߉, ,ߙ (ߚ = ,ݐ)்ܵ}݈݊−	 ,ߙ 	,{(ߚ
(5) 

respectively, where  

ܽ௧(ߙ, (ߚ = 	
ଵ
ఈ
ቈቀ௧

ఉ
ቁ
భ
మ −	ቀఉ

௧
ቁ
భ
మ቉ ,ߙ)௧ܣ		; (ߚ = 	

ଵ
ଶఈఉ

ቈቀఉ
௧
ቁ
భ
మ +	ቀఉ

௧
ቁ
య
మ቉ . 

It is clear that the properties of GBS distributions depends on the kernel function ݃(∙) and the 
unknown parameter ࣂ = ,ߙ)  ,The statistical theory and methodology of the GBS distributions .்(ߚ
also some results for this flexible family of distributions mainly related to transformations, the 
hazard failure and censored data type II which can be found in the works of Sanhueza, Leiva et 
al.[36].  

Table 2 below shown some probability density function of ܶ	 ≈ ,ߙ)ܵܤܩ	 ;	ߚ 	݃), 
corresponding the specific symmetric distribution 0)ܥܧ, 1; 	݃) in Table 1.  

The Figure 1, 2, 3 and 4 below illustrates some curve of the probability densities and hazard 
rate functions of  ܶ	 ≈ ,ߙ)ܵܤܩ	 ;	ߚ 	݃), allows with the kernel indicative. 

Kernel ݃(∙) Distribution Probability density function of  ܶ	 ≈ ,ߙ)ܵܤܩ	 ;	ߚ 	݃), 
,ݐ)݂ ,ߙ ;ߚ ݃), ݐ) > 0, ߙ > 0, ߚ > 0)	 

N(0, 1) GBS-Normal 
(BS) 

1 3
2 2

2

1 1exp 2
2 2

t
t t t
  

  

                           
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Kernel  Distribution Probability density function of  , 
 

  GBS-Student 
( 1)1 3

22 2

2

1
12 1 2

2  ( 2)
t

t t t


  

   

                                  

 

L(0, 1) GBS-Laplace 

1 3
2 21 1exp

4
t

t t t
  

  

                 
         

 

Log(0, 1) GBS-Logistic 

1 3
2 2

2

1exp
1

2 11 exp

t
t

t t t
t


  

 
 

                   
                 

     

 

C(0, 1) GBS-Cauchy 
1 3 1
2 2

2

1 11 2
2

t
t t t
  

  

                         

 

KT(q, r, s) GBS-KT 

1 3
2 22 1

2 32

1 2exp 2
2 12 22

q
sqs

q s
sr r tt t

q tt
s t

 
 

 







                                

 

PVII(q, r) GBS-PVII 

11 3
22 2

2
( ) 11 2

2 ( 1/ 2)
q t

t t tr q



  
  


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                   
           

 

Table 2: The p.d.f of   for some indicated distributions. 

 
Figure 1: Plots of   densities for given kernel . 
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Figure 2: Plots of  densities for given kernel . 

 
Figure 3: Plots of  failures rates for given kernel . 

 
Figure 4: Plots of  failures rates for given kernel .  

 

3   Chi-squared type tests for right censored data 

Following Bagdonavičius and Nikulin ([3], [4]), we describe a chi-squared test for testing 
composite parametric hypothesis when data are right censored.  

Suppose that   are failures time non-negative and independent and the probability 
density function of the random variable  belong to a parametric family . 
The censoring variables  are also non-negative and assumed to be random sample. Let 
us  and  are independent. We observed 

 (6) 
where, 
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௜ܺ = ௜ܶ 	∧ ,௜ܥ ௜ߜ = 1{்೔	ஸ	஼೔}, ݅ = 1, 2,⋯ , ݊.	 
 
Defined that 

,ݐ)ܵ (ࣂ = 	ܶ)ࣂࡼ	 > ;(ݐ	 ,ݐ)ߣ			 (ࣂ =
,ݐ)݂ (ࣂ
,ݐ)ܵ (ࣂ , Λ(ݐ, (ࣂ = 	− ln{ܵ(ݐ, {(ࣂ , 	ࣂ ∈ 	Θ	 ⊆ ܴ௠ , 

be the survival, hazard rate and cumulative hazard functions, respectively. Denote by ܩ௜ and ݃௜ are 
the survival and the density function of the censoring time ܥ௜, respectively. Supposing that the right 
censoring is non-informative which means that the function ܩ௜ does not depend on ࣂ. So in this 
case, we obtain the following expressions for the likelihood function (ࣂ)ܮ 

(ࣂ)ܮ = 	ෑ݂ఋ೔( ௜ܺ , )ఋ೔	ି	ଵܵ(ࣂ ௜ܺ, (௜ܥ)ఋ೔ܩ(௜ܥ)ఋ೔	ି	ଵ݃(ࣂ
௡

௜ୀଵ

. 

So the members with ܩ௜ and ݃௜ do not contain ࣂ, so they can be rejected. The likelihood 
function is obtained 

(ࣂ)ܮ = 	ෑ݂ఋ೔( ௜ܺ , )ఋ೔	ି	ଵܵ(ࣂ ௜ܺ, (ࣂ
௡

௜ୀଵ

=	ෑߣఋ೔( ௜ܺ, )ܵ(ࣂ ௜ܺ, (ࣂ
௡

௜ୀଵ

. (7) 

The estimator ࣂ෡௡ maximizing the likelihood function	(ࣂ)ܮ. The log-likelihood function is 

ℓ(ࣂ) = 	෍{ߜ௜ ln )ߣ ௜ܺ, (ࣂ +	 lnܵ( ௜ܺ, {(ࣂ
௡

௜ୀଵ

	= 	෍{ߜ௜ ln )ߣ ௜ܺ , (ࣂ − 	Λ( ௜ܺ, .{(ࣂ
௡

௜ୀଵ

 (8) 

The maximum likelihood estimator ࣂ෡௡ satisfies the system equations 
ℓ̇൫ࣂ෡௡൯ = 	૙௠ , 

where ℓ̇(ࣂ) are the score vectors  

ℓ̇(ࣂ) = డ
డఏ
ℓ(ࣂ) = 	 ቀడℓ(ࣂ)

డఏభ
, డℓ(ࣂ)
డఏమ

, ⋯ , డℓ(ࣂ)
డఏ೘

	ቁ
்
. 

The Fisher information matrix is defined as  
(ࣂ)ࡵ 	=  ,(ࣂ)ఏℓ̈ܧ−	

where 

ℓ̈(ࣂ) = 	෍ߜ௜
߲ଶ

ଶࣂ߲ ln ߣ
( ௜ܺ , (ࣂ

௡

௜ୀଵ

	− 	෍
߲ଶ

ଶࣂ߲ Λ
( ௜ܺ, (ࣂ

௡

௜ୀଵ

. 

Supposing that ࣂ଴ is the true value of ࣂ, under some regularity conditions, we have 

෡௡ࣂ 	
௉
;଴ࣂ		→ 		√݊	൫ࣂ෡௡ 	− ଴൯ࣂ		 = 		 ݅ିଵ(ࣂ଴)

1
√݊

ℓ̇(ࣂ଴) +	ܱ௉(1)	,
−1
√݊

	ℓ̈൫ࣂ෡௡൯ 	
௉
→  		,(଴ࣂ)݅	

෡௡ࣂ)݊√ (଴ࣂ		−
ௗ
→		ܰ௠(0, ݅ିଵ(ࣂ଴));		

1
√݊

ℓ̇(ࣂ଴)
ௗ
→ܰ௠(0,  		,((଴ࣂ)݅

where, ࣂ෡௡ are the maximum likelihood estimation of ࣂ and the matrix 

(଴ࣂ)݅ = 	 lim௡	→	ஶ

(଴ࣂ)ࡵ
݊ . 

For any ݐ	 ≥ 	0, set 

	 ௜ܰ(ݐ) = 1{௧	ஹ௑೔,ఋ೔ୀଵ} = ൜1, if	ݐ	 ≥ X௜ 	and	ߜ௜ = 1,
0, if	0	 ≤ 	ݐ	 ≤ X௜	.										

; 	 	 ௜ܻ(ݐ) = 1{௧	ஸ௑೔} = ൜1, if	ݐ	 ≤ X௜ 	,
0,									if	ݐ	 > X௜ .		

 

(ݐ)ܰ 	= 	෍ ௜ܰ(ݐ)
௡

௜	ୀ	ଵ

	 , (ݐ)ܻ 	= 	෍ ௜ܻ(ݐ)
௡

௜	ୀଵ

. 

The process ܰ(ݐ) shows the number of observed failures in the interval [0,  and the process [ݐ
 The sample (6) is .ݐ shows the number of objects which are "at risk" just prior to time (ݐ)ܻ
equivalent to the sample 
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( ଵܰ(ݐ), ଵܻ(ݐ), 	ݐ ≥ 0), ( ଶܰ(ݐ), ଶܻ(ݐ), 	ݐ ≥ 0),⋯ , ( ௡ܰ(ݐ), ௡ܻ(ݐ), 	ݐ ≥ 0). (9) 
For the sample (9), the parametric log-likelihood function can be written by expression follows 

ℓ(ࣂ) = 	∫ {ln ,ݑ)ߣ (ࣂ (ݑ)ܰ݀ − ,ݑ)ߣ(ݑ)ܻ ାஶݑ݀{(ࣂ
଴ . 

The score function is 

ℓ̇(ࣂ) 	= 	න
߲
ࣂ߲ ln ,ݑ)ߣ (ࣂ

(ݑ)ܰ݀} − ,ݑ)ߣ(ݑ)ܻ {ݑ݀(ࣂ
ஶ

଴

= 	න
߲
ߠ߲ lnߣ

,ݑ) (ࣂ ,ݑ)ܯ݀ (ࣂ
ஶ

଴

, 

and  

ℓ̈(ࣂ) = 	෍න
߲ଶ

ଶࣂ߲

ஶ

଴

௡

௜ୀଵ

ln ,ݑ)ߣ ,ݑ)௜ܯ݀(ࣂ (ࣂ −෍න ൬
߲
ࣂ߲ ln ߣ

,ݑ) ൰(ࣂ ൬
߲
ࣂ߲ ln ߣ

,ݑ) ൰(ࣂ
்

,ݑ)ߣ (ࣂ ௜ܻ(ݑ)݀ݑ
ஶ

଴

,
௡

௜ୀଵ

 

where, ܯ௜(ݐ, (ࣂ = ௜ܰ(ݐ) −	∫ ௜ܻ(ݑ)ݑ)ߣ, ݑ݀(ࣂ
௧
଴ , 	ࣂ) ∈ 	Θ) is the zero mean martingale with respect 

to the filtration generated by the data. 
Suppose that the processes ௜ܰ and ௜ܻ are observed for finite time ߬	 > 0, which means that at 

time ߬, observation on all surviving objects are censored, and so instead of using censoring time ܥ௜.  
In this case, the matrix Fisher information can be written as 

(ࣂ)ࡵ 	= (ࣂ)ℓ̈ࣂܧ−	 	= ఏ෍නܧ	 ൬
߲
ࣂ߲ ln ߣ

,ݑ) ൰(ࣂ ൬
߲
ࣂ߲ ln ߣ

,ݑ) ൰(ࣂ
்

,ݑ)ߣ (ࣂ ௜ܻ(ݑ)݀ݑ
ஶ

଴

௡

௜ୀଵ

. 

Let be consider next the hypothesis 
଴ܪ ∶ (ݔ)ܨ		 	∈ 	ℱ଴ 	= 	 ,ݔ)଴ܨ} ,(ࣂ ࣂ ∈ Θ ⊆ ܴ௠	}, 

here, ࣂ	 = 	 ,ଵߠ) ,ଶߠ ⋯ ,  ଴ is a knownܨ )் are an unknown ݉-dimensional parameters and	௠ߠ
distribution function. 

Subdividing the interval [0, ߬] into ݇	 > 	݉ smaller intervals ܫ௝ = 	 ൫ ௝ܽିଵ, ௝ܽ൧, with ܽ଴ = 0, 
ܽ௞ = 	߬, and denote by 

௝ܷ = 	ܰ൫ ௝ܽ൯ 	− 	ܰ൫ ௝ܽିଵ൯,	
the number of observed failures in the ݆௧௛  interval ܫ௝, ( ݆	 = 	1, 2, ⋯ , ݇ ). Let 

௝݁ 	= 	 න ,ݑ൫ߣ ݑ݀(ݑ)෡௡൯ܻࣂ

௔ೕ

௔ೕషభ

. 

A chi-squared test which was proposed by Bagdonavičius and Nikulin [21], based on the vector 

ࣴ		 = 		 (ܼଵ, ܼଵ,⋯ , ܼଵ)் ,			with		 ௝ܼ 	= 	
1
√݊

൫ ௝ܷ 	− 	 ௝݁൯, ݆	 = 	1, 2,⋯ ,			݇. (10) 

 
Under the conditions 

1) There exists a neighborhood Θ଴ of ࣂ଴ such that for all ݊ and ࣂ ∈ 	Θ଴, and almost all 
	ݐ ∈ 	 [0, ߬], the partial derivatives of ݐ)ߣ,  ࣂ of the first, second and third order with respect to (ࣂ
exist and are continuous in ࣂ for ࣂ ∈ 	Θ଴. Moreover, they are bound in [0, ߬] ×	Θ଴ and the log-
likelihood function may be differentiated three times with respect to ࣂ ∈ 	Θ଴, by interchanging the 
order of integration and differentiation. 

,ݐ)ߣ (2 ,is bound away from zero in [0 (ࣂ ߬] ×	Θ଴.  
3) A positive deterministic function (ݐ)ݕ exists such that sup௧	∈[଴,ఛ] ቚ

௒(௧)
௡
− ቚ(ݐ)ݕ 	

௉
→ 0. 

4) Under condition 1) - 3), the matrix ݅(ࣂ଴) = 	 lim௡	→	ஶ
ூ(ࣂబ)
௡

  is positive definite. 

The statistic of Bagdonavičius and Nikulin given as 
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(෡௡ࣂ)௡ଶࢅ 	= ்ࣴΣ෠ିࣴ, (11) 

where, Σ෠ି is the general inverse matrix of the covariance matrix Σ෠,  
෠ߑ = 	 መࣛ − መ்ࣝࡵ෠ିଵ መࣝ , 

Σ෠ି =	 መࣛିଵ + መࣛିଵ መ்ࣝ መ࣡ିଵ መࣝ መࣛିଵ, መ࣡ = 	 ෠ࡵ −	 መࣝ መࣛିଵ መ்ࣝ , 
(12) 

መࣛ  is the diagonal ݇ × 	݇ matrix with the elements ܣ௝ 	= 	
௎ೕ
௡

 on the diagonal, መࣛିଵ is inverse matrix 
of መࣛ , and 
 መࣝ 	 = 	 ,	௠×௞[መ௟௝ܥ] with	ܥመ௟௝ 	= 		

ଵ
௡
∑ ௜ߜ

డ ୪୬ ఒ(௑೔,ఏ)
డఏ೗௜:௑೔	∈ூೕ , ݈ = 	1, 2,⋯ , ݉, ݆	 = 	1, 2,⋯ , ݇,  (13) 

෠ࡵ = 	 [ଓ̂௟௟ᇲ]௠×௠	, with	ଓ̂௟௟ᇲ 	= 		
1
݊෍ߜ௜

߲ ln )ߣ ௜ܺ, (ߠ
௟ߠ߲

߲ ln )ߣ ௜ܺ, (ߠ
௟ᇲߠ߲

௡

௜ୀଵ

, ݈, ݈ᇱ = 	1, 2,⋯ , ݉. (14) 

 
From the definition of ࣴ in (10), the test statistic ௡ܻ

ଶ(ߠ෠௡)	 should be written as 
෡௡൯ࣂ௡ଶ൫ࢅ = ௡ଶࢄ +छ, (15) 

where,  

௡ଶࢄ =	෍
( ௝ܷ − ௝݁)ଶ

௝ܷ

௞

௝ୀଵ

	 , छ = ෡ࣱ ் መ࣡ି ෡ࣱ , ෡ࣱ = 	 መࣝ መࣛିଵࣴ, መ࣡ = 	 ෠ࡵ −	 መࣝ መࣛିଵ መ்ࣝ .	 

Under the hypothesis ܪ଴, the limiting distribution of the statistics ࢅ௡ଶ൫ࣂ෡௡൯ is chi-squared with 
	ݎ =  ,degrees of freedom that is (ିߑ)݇݊ܽݎ	

lim
௡	→	ஶ

ܲ൛ࢅ௡ଶ൫ࣂ෡௡൯ > ଴ൟܪ	|	ݔ = ܲ{߯௥ଶ > ,{ݔ for	any	ݔ > 0. 

Statistical inference for the hypothesis	ࡴ૙: The null hypothesis ܪ଴ is rejected with approximate 
significance level ߙ if ࢅ௡ଶ൫ࣂ෡௡൯ > 	߯ఈଶ(ݎ) or ࢅ௡ଶ൫ࣂ෡௡൯ < 	߯ଵିఈଶ  depending on an alternative, where (ݎ)
߯ఈଶ(ݎ) and ߯ଵିఈଶ  percentage points of the ߯௥ଶ ߙ corresponding are the upper and lower (ݎ)
distribution, respectively. 

Using the method of interval selection which is proposed by Bagdonavičius, and Nikulin [20], 
we used ௝ܽ as the random data function. Define  

௞ܧ = ∑ Λ( ௜ܺ , ෡௡)௡ࣂ
௜ୀଵ , ௝ܧ = 	

௝
௞
௞ܧ ,			݆	 = 	1, 2,⋯ , ݇. 

Denote by (ܺଵ), (ܺଶ), ⋯ , (ܺ௡) the ordered sample from ଵܺ, 	ܺଶ, ⋯ , ܺ௡. Set  

௜ܾ = (݊ − ݅)Λ൫ (ܺ௜), ෡௡൯ࣂ 	+෍Λ൫ (ܺ௟), ෡௡൯ࣂ
௜

௟ୀଵ

	 , ݅	 = 	1, 2,⋯ , ݊,	

if ݅ is the smallest natural number verifying ௜ܾିଵ ≤ 			 ௝ܧ 	≤ 			 ௜ܾ then ොܽ௝ verifying the equality 

(݊ − ݅ + 1)Λ൫ ොܽ௝ , ൯	෡௡ࣂ +෍Λ൫ (ܺ௟) , ෡௡൯ࣂ
௜ିଵ

௟ୀଵ

=  ௝ܧ

So 

ොܽ௝ = 	Λିଵ ቆ
௝ܧ −	∑ Λ( (ܺ௟), ෡௡)௜ିଵࣂ

௟ୀଵ

݊ − ݅ + 1 , ෡௡ቇࣂ ;	 ොܽ௞ = max൛ (ܺ௡), ߬ൟ , (݆ = 1, 2,⋯ , ݇ − 1). (16) 

where Λିଵ is the inverse of the function Λ. We have: 0	 < 	 ොܽଵ < 	 ොܽଶ <		⋯ 	< 	 ොܽ௞ , with this choice 
of intervals, then ௝݁ =	

ாೖ
௞
, for	all	݆. 

Application for GBS distributions: In particular, we shall give chi-squared tests NRR for 
the hypothesis ܪ଴ that the data ௜ܺ are coming from the GBS distributions with the probability 



M. S. Nikulin and X. Q. Tran – CHI-SQUARED GOODNESS-OF-FIT TETS FOR GENERALIZED BIRNBAUM-SAUNDERS MODELS FOR 
RIGHT CENSORED DATA AND ITS RELIABILITY APPLICATIONS 

 
RT&A # 02 (29)  

(Vol.8) 2013, June  
 

 

15 

density, cumulative distribution, hazard rate, survival and cumulative hazard functions give in 
formulas (3), (4) and (5), respectively. 

The GBS log-likelihood functions ℓ(ࣂ), ࣂ) = ,ߙ)  is (்(ߚ

ℓ(ࣂ) = ߜ−	 lnߙ − ߜ	 ln ߚ +	෍ߜ௜ ln ൝൬
ߚ
௜ܺ
൰
భ
మ
+	൬

ߚ
௜ܺ
൰
య
మ
ൡ

௡

௜ୀଵ

+	෍ߜ௜ ln൛݃൫ܭ௜(ߙ, ൯ൟ(ߚ
௡

௜ୀଵ

+		෍ߜ௜ ln{1 − ,ߙ)௓(ܽ௜ܨ {((ߚ
௡

௜ୀଵ

 

Let ࣂ෡௡ = ൫ߙො, መ൯ߚ
்

 be maximum likelihood estimations which are solutions of the non-linear 
system equations  

ቀℓ̇ఈ(ࣂ), ℓ̇ఉ(ࣂ)ቁ = ૙ଶ. 
Using the formula (13) – (14), the elements ଓ̂௟௟ᇲ , (݈, ݈ᇱ = 	1, 2) of the Fisher information matrix 

෠ࡵ = 	 [ଓ̂௟௟ᇲ]ଶ	×ଶ are 

ଓଵ̂ଵ =	
1
௜ߜොଶ෍ߙ݊ ቈ−1 + ,ොߙ෡௜൫ܭ ݒመ൯ߚ ቀܭ෡௜൫ߙො, መ൯ቁߚ −	

(መߚ,ොߙ)መ௜ܣ ௓݂(ܣመ௜(ߙො,ߚመ))
1 ,ොߙ)መ௜ܣ)௓ܨ	− ((መߚ

቉
ଶ௡

௜ୀଵ

, 

ଓ̂ଶଶ = 	
1
መଶߚ݊

෍ߜ௜ ቎−1 +
1
2
1 + 3ఉ෡௑೔
1 + ఉ෡

௑೔

+
1
ܣ2
መ௜൫ߙො, ,ොߙ෠௜൫ܤመ൯ߚ ݒመ൯ߚ ቀܭ෡௜൫ߙො, መ൯ቁߚ −

1
2	
,ොߙ)෠௜ܤ (መߚ ௓݂(ܣመ௜(ߙො, ((መߚ
1 ,ොߙ)መ௜ܣ)௓ܨ	− ((መߚ

቏

ଶ௡

௜ୀଵ

, 

ଓଵ̂ଶ =	
1

መߚොߙ݊
෍ߜ௜ ቈ−1 + ,ොߙ෡௜൫ܭ ݒመ൯ߚ ቀܭ෡௜൫ߙො, መ൯ቁߚ −	

,ොߙ)መ௜ܣ (መߚ ௓݂(ܣመ௜(ߙො, ((መߚ
1 ((መߚ,ොߙ)መ௜ܣ)௓ܨ	−

቉ 	×
௡

௜ୀଵ

×	቎−1 +
1
2
1 + 3ఉ෡௑೔
1 + ఉ෡

௑೔

+
1
ܣ2
መ௜൫ߙො, ,ොߙ෠௜൫ܤመ൯ߚ ݒመ൯ߚ ቀܭ෡௜൫ߙො, መ൯ቁߚ −

1
2	
,ොߙ)෠௜ܤ (መߚ ௓݂(ܣመ௜(ߙො, ((መߚ
1 ,ොߙ)መ௜ܣ)௓ܨ	− ((መߚ

቏	, 

and the matrix መࣝ = 	   given by	×௞	መ௟௝൧ଶܥൣ

መଵ௝ܥ =	
1
ොߙ݊ ෍ ௜ߜ ቈ−1 + ,ොߙ෡௜൫ܭ ݒመ൯ߚ ቀܭ෡௜൫ߙො, መ൯ቁߚ −	

(መߚ,ොߙ)መ௜ܣ ௓݂(ܣመ௜(ߙො,ߚመ))
1 ,ොߙ)መ௜ܣ)௓ܨ	− ((መߚ

቉
௜∶௑೔	∈ூೕ

, 

መଶ௝ܥ =	
1
መߚ݊

෍ ௜ߜ ቎−1 +
1
2
1 + 3ఉ෡௑೔
1 + ఉ෡

௑೔

+
1
ܣ2
መ௜൫ߙො, ,ොߙ෠௜൫ܤመ൯ߚ ݒመ൯ߚ ቀܭ෡௜൫ߙො, መ൯ቁߚ −

1
2	
,ොߙ)෠௜ܤ (መߚ ௓݂(ܣመ௜(ߙො, ((መߚ
1 ((መߚ,ොߙ)መ௜ܣ)௓ܨ	−

቏
௜∶௑೔	∈ூೕ

. 

where,  

,ොߙመ௜൫ܣ መ൯ߚ = 	
1
ොߙ
ቐቆ ௜ܺ

መߚ
ቇ

భ
మ

−	ቆ
መߚ

௜ܺ
ቇ

భ
మ

ቑ , ,ොߙ෠௜൫ܤ መ൯ߚ = 	
1
ොߙ
ቐቆ ௜ܺ

መߚ
ቇ

భ
మ

+	ቆ
መߚ

௜ܺ
ቇ

భ
మ

ቑ, 

,ොߙ෡௜൫ܭ መ൯ߚ = 	
1
ොଶߙ ቊ

௜ܺ

መߚ
+	

መߚ

௜ܺ
− 2ቋ , ݅ = 1, 2,⋯ , ݊. 

and ௓݂(ݑ) =  ௓(∙) are the probability density function and cumulative function of theܨ ,(ଶݑ)݃	ܿ	
random variable ܼ	 ≈ ,0)ܥܧ	 1; 		݃) which follows a standard symmetrical distribution in ܴ with the 
kernel ݃(∙), respectively, and  

(ݑ)ݒ = ;(ݑ)ݓ2− (ݑ)ݓ		 	=
	݃ᇱ(ݑ)
(ݑ)݃ 	ݑ				, > 0, 

are the transformations functions of kernel function ݃(ݑ), and ݓᇱ(ݑ) is the derivative of (ݑ)ݓ 
([15], [16]). Table 3 below shown some transformations functions (ݑ)ݓ and its derivative 
,(ݑ)ᇱݓ ݑ) > 0) corresponding with kernel ݃(ݑ) of indicated Elliptic distributions 0)ܥܧ, 1; 		݃). 
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 ܰ(0, ,0)ܮ (ߥ)ݐ (1  (ߥ)ܧܲ (0,1)݃݋ܮ (1
1− (ݑ)ݓ

2  −
ߥ + 1

ߥ)2 +  (ݑ
−

1
ݑ√2

 −
1
ݑ√2

tanh ቆ
ݑ√
2 ቇ −

ߥ
ݑ2

ఔିଵ 

 (ݑ)ᇱݓ
0 

ߥ + 1
ߥ)2 +  ଶ(ݑ

1
ݑ√ݑ4

 
sinh√ݑ ݑ√	−

1]ݑ√ݑ4 + cosh√ݑ]
 −

ߥ]ߥ − 1]
2  ఔିଶݑ

Table 3: Transformations functions w(u) and its derivative w’(u), (u > 0) for kernel g(u) of the 
indicated Elliptic distributions ࡯ࡱ(૙, ૚;  .(ࢍ	

Chi-squared test for GBS distributions: Under the hypothesis ܪ଴, the matrix መ࣡ is non-
degenerate. So, the hypothesis ܪ଴ is rejected with approximate significance level ߙ if 

෡௡൯ࣂ௡ଶ൫ࢅ > 	߯௞ଶ(ߙ).	

It is necessary to note that: ܲ(ߥ)ܧ 	≅ ,1)ܶܭ	 0.5, ,0)ܰ,(ߥ 1) ≅ ,1)ܶܭ	 0.5, 1), ,0)ܮ 1) ≅
,(0.5)ܧܲ (ߥ)ݐ ≅ ߥ])ܫܫܸܲ + 1] 2⁄ , ,(ߥ ,0)݃݋ܮ 1) ≅  .(1)ܫܫܫܮ

Thus, the next section, we consider goodness of fit test for following five distributions: GBS-
ܰ(0, 1) which known as BS distribution, GBS-Laplace, GBS-Logistic, GBS-(ߥ)ݐ and GBS-
Cauchy distributions.  

4 Real study 

All distributions presented in the next two examples by using R statistics software, we 
analyze the goodness of fit test for the parametric generalized BS distributions in two studies to a 
data of breast cancer which set from research of Boag (1949) and the data from a laboratory 
investigation in which the vaginas of rats were painted with the carcinogen DMBA of Pike (1966). 

4.1 Analysis of breast cancer data 

Boag [10] was presented the survival times for 121 patients treated for cancer of the breast in 
one particular hospital during the years 1929-1938 which given in table below. The times are in 
months, and asterisks denote censoring times. This data included 66 observations and 55 censoring 
times. 

0.3 7.4∗ 13.5  16.8 21.0 29.1 37∗ 41 45∗ 52 60∗  78 105∗ 
129∗ 0.3∗ 7.5 14.4 17.2 21.1 30 38 41 46∗ 54 61∗ 80 
109∗ 129∗ 4.0∗ 8.4 14.4 17.3  23.0 31 38∗ 41∗ 46∗ 55∗ 62∗  
83∗ 109∗ 139∗    4.0∗ 8.4 14.4 17.3  23.0 31 38∗ 41∗ 46∗ 55∗  62∗
 83∗ 109∗ 139∗ 5.0 8.4 14.8 17.5 23.4∗ 31  38∗ 42 47∗  56
 65∗ 88∗ 111∗ 154∗ 5.6 10.3 15.5∗ 17.9 23.6 32 39∗ 43∗  48
 57∗ 65∗ 89 115∗  6.2 11.0 15.7 19.8 24.0 35 39∗ 43∗  49∗
 58∗ 67∗ 90 117∗ 6.3 11.8 16.2 20.4 24.0 35 40 43∗  51
 59∗ 67∗ 93∗ 125∗ 6.6 12.2 16.3 20.9 27.9 37∗ 40∗ 44  51
 60 68∗ 96∗ 126 6.8 12.3 16.5 21.0 28.2 37∗ 40∗ 45∗  51∗
 60∗ 69∗ 103∗ 127∗ 

Firstly, we consider the hypothesis ܪ଴ that the survival times for 121 breast cancer patients 
belongs the Birnbaum-Saunders distribution. In this case, MLE’s of the parameters ࣂ =  of ்(ߚ			,ߙ)
the BS distribution are ࣂ෡௡ =	 (2.04798, 47.11415)்.  

Choosing the sub-intervals	݇	 = 	6. The values of ௝ܽ, the frequency vector ࣴ and the elements 
of the matrix  መࣝ 	give in table follows. 
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݆ 1 2 3 4 5 6 
௝ܽ  5.312384 9.476277 15.352179 24.889209 41.374625 154.000010 
௝ܷ  2 8 9 19 15 13 
௝݁  12.40306 12.40306 12.40306 12.40306 12.40306 12.40306 
௝ܼ  -0.945732 -0.400278 -0.309368 0.599721 0.236085 0.054267 
 መଵ௝  0.149316 0.015361 -0.008443 -0.042270 -0.052283 -0.058149ܥ
 መଶ௝  -0.003347 -0.000867 -0.000594 -0.001079 -0.000913 -0.001021ܥ

The matrix information of Fisher ࡵ෠ = 	 [ଓ̂௟௟ᇲ]ଶ	×ଶ and the matrix መ࣡ are 
෠ࡵ = 	 ቂ 2.62227 −0.055142

−0.055142 0.001280 ቃ , 	
෡࣡ = 	 ቂ 1.203914 	−0.025996

−0.025996 0.000562 ቃ. 

We continued this data for GBS distributions for another kernel ݃: Logistic, Laplace, Cauchy 
and (ߥ)ݐ distribution with the same sub-intervals. The results give in table 4 follow. 

Distribution ࣂ෡௡ = ,ොߙ) ௡ଶࢄ ்(መߚ   छ ࢅ௡ଶ  ଴.଴ହ-valueݒ݌ 

GBS-Cauchy (0.95391, 47.25487)் 148.2783 3.593348 151.8717 0 

BGS-0)ܮ, 1) (1.36965, 51.99999)் 9.916332 0.772807 10.68914 0.0984723 

GBS-0)݃݋ܮ, 1) (0.95750, 54.63219)் 6.586821 1.861331 8.448152 0.2070737 

GBS-1.89550) (100)ݐ, 50.25370)் 20.70194 8.548100 29.25004 5.4553.10ିହ 

GBS-1.33215) (5)ݐ, 55.86467)் 5.652789 0.897494 6.550284 0.3644431 

Table 4: MLE’s of ࣂ = ૛࢔ࢅ values of ,ࢀ(ࢼ,ࢻ)  and p-values with indicated kernel distributions, 
data of Boag (1949).  

In this example, we suggest that GBS with kernel ݃: Normal, t(100) and Cauchy are strongly 
rejected and GBS with Logistic, Laplace and (5)ݐ kernels are very well in concordance with the 
survival times for breast cancer patients treated of Boag. Figure 5 below illustrates the curve of 
Kaplan-Meier estimate of survival function, with the curve of GBS survival functions 
corresponding with the kernel indicatives. 

4.2 Analysis of the times until a carcinoma appeared 

Pike [34] gave some data from a laboratory investigation in which the vaginas of rats were 
painted with the carcinogen DMBA, and the number of days ܶ until a carcinoma appeared was 
recorded. The data below are for a group of 19 rats (Group 1 in Pike's paper). The two observations 
with asterisks are censoring times. 

143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220, 227, 230, 234, 246, 265, 304,	216∗, 244∗. 
This data analyzed by Lawless [25], pp.188 where he suggested that probability plots for two 

parameters Weibull distribution. By using the NRR statistics for two parameters Weibull 
distribution, we obtain the value of NRR statistics ࢅ௡ଶ = 	6.658669 with ݌-value at level 
significance ߙ	 = 	0.05 is ݒ݌଴.଴ହ = 	0.08361068.  
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Figure 5: GBS with indicated kernel, Weibull 
and  Kaplan-Meier estimate of  for data 

of Boag (1949). 

 Figure 6: GBS with indicated kernel and 
Kaplan-Meier estimate of  for the data 

of Pike (1966). 
 

We consider next the hypotheses that the data above follows the GBS distributions in the 
cases of kernel : Standard Normal distribution , Standard Logistic distribution , 
Standard Cauchy distribution . Choosing grouping intervals , the results given in table 
5 below. 

Distribution         -value 

GBS-    3.125849 16.35656 19.48241 0.0006316 

GBS-    1.000369 2.885825 3.886194 0.4216269 

GBS-    0.749583 0.325662 1.075246 0.8981795 

GBS-    0.745397 0.3637746 1.109172 0.8928143 

Table 5: MLE’s of , values of  and p-values with indicated kernel distributions, 
data of Pike (1966). 

We plot the estimated GBS survivor functions  correspond indicated kernel  
and the Kaplan-Meier estimate for the data of Pike (1966) in Figure 6. 

In this example, it is clear that the data are the best in concord with GBS-Logistic, GBS-
Cauchy and GBS-  distributions, it also acceptes for two parameters Weibull distribution. 
However, these data contradict the BS distribution much very strongly. 

5 Summary and conclusion 

In this paper, we have presented a modifier Chi-squared goodness-of-fit test for generalized 
Birnbaum-Saunders distributions. The results obtained in our examples show that the considered 
families are in accordance with lifetimes data. In addition, its hazard rate functions can be uni-
modal or bimodal by adjusting the values of its parameters and its kernel . So, it is necessary to 
use it as a baseline hazard rate functions in the parametric survival model. We would like to thank 
our colleagues, PhD. R. Tahir and N. Saaidia for valuable comments, which helped us improve the 
presentation.   
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ABSTRACT 
 
In this paper new algorithm of interval images recognition is suggested. This algorithm gives 

accuracy solution of considered problem but demands not linear but square complexity by a number 
of objects. Main motive of such construction is to analyze practically interesting case when there is 
preliminary silence before predicted events. 

 
1. PRELIMINARIES 
 

In [1] the algorithm of interval images recognition is described. In a case of a single index 
which characterizes objects of first and second classes a minimal interval contained objects of the 
first class was constructed. Then an object with an index contained in this interval is considered as 
the first class object. In a case when each object is characterized by several indexes a one 
dimensional interval in a recognition procedure is replaced by a multidimensional interval 
constructed as a direct product of one dimensional intervals. An advantage of the interval images 
recognition before known algorithms is a linear (by a number of all objects and by a number of all 
indexes) calculation complexity. This algorithm is successfully used in manifold problems of 
medical geography and ecology, meteorology and fishing [2] – [9]. 

The algorithm is sufficiently satisfactory when a number of all objects in a sample is about 
20-30 and a number of indexes is larger than 3. But in a problem arisen in a mining an emergence 
of a rock pressure cannot be predicted using a single interval. It means that there are first class 
objects which have predecessors and there are first class objects which have not predecessors. In 
this situation the single interval cannot characterize all first class objects because it goes past first 
class objects which may be described by a preliminary silence. 

In this paper the method of interval recognition is developed in a direction of a consideration 
of such situation. It is based on a construction of few nonintersecting intervals which contain points 
characterized different first class objects. So first class objects are divided into some subclasses and 
their recognitions are realized separately. This algorithm is more complicated and has not linear but 
square complexity by a number of all objects. 

 

2. MAIN RESULTS 
 

Assume that first class objects are characterized by the set 












 mjbB j 1,   and second 

class objects are characterized by the set 












 niaA i 1, , A , A , of real numbers. Suppose 

that m is much smaller than n . For real numbers dcdc ,, , define the interval  dc,  by the 
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condition     dcifdfcfdc  :,  .  If dc   then the interval ( dc, ) consists of the single point 
dc  . Construct the following rule of a recognition of the object  Bb . For each number Bb  

contrast two 
numbers: 

   baAabk  :max ,    baAabr  :min . 
As a result we construct for each number Bb  the interval     brbk , . 

 
Theorem 1. If  Bbb ji , , then the intervals     ii brbk ,  ,     jj brbk ,  coincide or not intersect . 
Proof. Assume that between the points ji bb ,  there are not points of the set A . Then by a 
construction the intervals     ii brbk , ,     ii brbk ,  coincide. Vice versa if between the points ji bb ,

there are points of the set A  then by a construction the intervals     ii brbk , ,     ii brbk ,  not 
intersect. So the points of the set B  are divided into classes of an equivalence by their belonging to 
coincide intervals. 

Suppose now that the set A consists of n  objects and its each object i  is characterized by l  - 
dimensional vector   l

iii aaa ,...,1 . Analogously assume that the set B  consists of m objects and its 
each object j  is characterized by l - dimensional vector  l

jji bbb ,...,1 . Define the interval     t
j

t
j brbk ,

by the equality  
 

 












 nibaabk t
j

t
i

t
i

t
j 1,:max ,  













 nibaabr t
j

t
i

t
i

t
j 1,:min . 

Using these intervals construct l - dimensional interval which is its direct product. 
    t

i
t
i

l
t brbk ,1 . 

Theorem 2. If    mji 1 ,  then l -dimensional  intervals     t
i

t
i

l
t brbk ,1 ,     t

j
t
j

l
t brbk ,1  coincide 

or not intersect. 
Proof. Indeed, by a construction for any ltt 1, , one dimensional intervals     t

i
t
i brbk ,  ,     t

j
t
j brbk ,  

coincide or not intersect.  If these one dimensional intervals for all ltt 1,  coincide then their 
direct products     t

i
t
i

l
t brbk ,1 ,     t

j
t
j

l
t brbk ,1   coincide also. In opposite case there is t  so that 

appropriate intervals not intersect and consequently their direct products not intersect also. 
Consequently vectors from the set B are divided on subsets (equivalence classes) by their belonging 
to coincide l -dimension intervals. 

Suppose that  ( 1l ) - dimensional vectors arrive in recognition system. The first component 
equals zero if this vector belongs to the set A and equals one if this vector belongs to the set B . 
Assume that on the step 0 two ( 1l ) - dimensional vectors  ,...,,0 ,  ,...,,0  are introduced 
into the system. Further on the step  0n single vector ( lnnn cc ,1, ,...,, ) arrives. Denote 0n the first 
vector for which 1n . Then the first multidimensional interval containing the vector  lnn cc ,1, 00

,...,  
is constructed.  

Further assume that on the step 0nn   the vector ( lnnn cc ,1, ,...,, )  arrives in recognition system. 
Suppose that 0n . Then if the vector  lnn cc ,1, ,...,  does not belong to constructed intervals then the 
system of these intervals conserves. If   lnn cc ,1, ,...,  belongs to one of constructed intervals then this 
interval is divided onto subintervals by described rule. 

Assume that 1n  then if the vector  lnn cc ,1, ,...,   does not belong to constructed intervals then 
new interval containing this vector is constructed. If  lnn cc ,1, ,...,  belongs to one of constructed 
intervals then the system of intervals does not change. 
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ABSTRACT 
  
Parameter estimates, constructed by the minimum distance method, are briefly called the 

MD-estimates. The minimum distance method has been proposed by Wolfowitz (1957). An 
extensive bibliography was compiled and published by Parr (1981). In this paper the 
effectiveness of the shift parameter estimation based on the use of Cramer - von Mises weighted 
distance is discussed. The robustness of this kind of MD-estimates under various supermodels 
describing deviations from the Gaussian model is considered. Numerical results are given for 
the case of contaminated normal distributions.   

 
 
Statement of the problem 
 
 Let us consider first a case when the statistical model ),(   is given in parametric form. 

}{x  denotes the sample space, the elements of which are realizations ),...,( 1 nxxx 
 of a random 

vector ),...,( 1 nXXX 


; }),,(:{  xFF   is a parametric set of admissible probability 
distributions for the experiment considered; nXX ,...,1  is a sequence of i.i.d. random variables with 
the distribution function ),( xF  and the density ),( xf , 1Rx  ,  . 
The functional form of the distribution is defined up to an unknown parameter (scalar or vector), 
which belongs to a given parameter set  . It is required to construct the estimate of an unknown 
parameter  based on a sample nXX ,...,1  from a distribution ),( xF . 

. 
 

The essence of the minimum distance method 
 

  If a distance ),( GF  between any two distributions, GF , , is given, then  parameter   may 
be estimated by minimization of the distance between the empirical distribution function )(xFn , 
constructed from a sample nXX ,...,1 , and the distribution function ),()(  xFxF X  adopted in the 
model ),(  . Thus, for a chosen distance ),( GF  MD -estimator for   is defined as 

)},({minargˆ


 FFn . Various distances could be used for constructing MD -estimates (see Parr, 

and  Schucany (1980)). For instance, the maximum likelihood method is based on a distance 
    )(),(ln),( xdFxfFF nn . 
In this paper, we consider the estimates that are based on the weighted Cramer - von Mises 

distance  
    )(),()]()([),( 2 xdFFxWxFxFFF nnW                                                                (1) 

where ),(   FxWW  is a certain weight function, which may depend on d.f. F  (or on density f ). 
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Assuming that ),(  FFnW  a differentiable function of the parameter  , its derivative is 

  /),()(~ FFnWFn
. With this notations, the estimation n  for parameter    based on the use 

of weighted Cramer-von Mises distance  (1) is a solution of the equation 

  


 






 dxxfWxFxFxdFxWxFxFxF nnFn

)]([)]()([)()(
)(

)]()([2)(~ 2              (2) 

 In this paper we consider the MD -estimation of the location parameter; in this case 
)()(  xFxF . Let a family of reference distributions be designated as 

},)()(:{ 1
00 RxFxFF   , where 0F is a distribution with density 0f . Rewrite (1) as 

   dxxWxFxFW nFFn
)()]()([),( 2

0, 0
.                                                                  (3)                                                    

       Note that the choice of the weight function W  in the form of the density of  reference 
distribution, i.e., in the form )()( 0 xfxW  , corresponds to the Cramer-von Mises distance; the 
choice of the weighting function ))(1)((/)()( 000 xFxFxfxW   gives the distance of Anderson-
Darling (see for example, Boos (1981), Shulenin (1993a)). Assuming that ),(

0, WFFn
  is a 

differentiable function of the parameter  , its derivative is  /),()(
0, WFFF nn

. Then the 
equation 0)( 

nF  for the obtaining the MD -estimation, may be written in the form 

 0)()(
2

122
1

)()(0 



 




n

i
ii XWXF

n
i

n
,                                                                         (4) 

where )()1( ,..., nXX  the ordered statistics of the sample nXX ,...,1 . 
 
 Asymptotic normality of the MD -estimators 
 
 The asymptotic properties of MD -estimators were studied by several authors (see, for example, 
Boos (1981), Wiens (1987), Shulenin (1992)). In this paper, we discuss the asymptotic properties of 
estimators n of the parameter of location  , which, for a given reference d.f. 0F , and given weight 
function W , is a solution of equation (4). There are two variants of parameter estimating:  
        Version 1. The distribution function F  of the observations nXX ,...,1 is known and it coincides 
with the reference distribution function 0F , that is 0FF   (or 0F ). 
         Version 2. The distribution function of the observations is not known and it is not necessarily 
the same as the reference distribution function, that is 0FF   (or 0F ). 
         Note that the MD -estimator n  of the location parameter  , which is the solution of 
equation (4), can be written as a functional of the empirical distribution function, in the form of 

)( nn F . Here the functional )(F  is defined either by relation 
                                           )),((),(min

00 ,, WFW FFFF 


,  

or may be given implicitly (as functional )()( FFT  ) by expression  

   0)()]())(([)()()]())(([2 /2
000 dxxWxFFTxFdxxWxfxFFTxF .                 (5) 

For studying the asymptotic properties of the MD -estimators )( nn F  for the location  
parameter  , we use the approach of Mises (see Serfling, R. J. (1980), Shulenin (2012)). Let us  
consider the expansion of the form 

nnn RVFF 11)()(  ,                                                                 (6) 
where nV1 is approximation statistics, and nnn VFFR 11 )()(  is the remainder of the expansion 
(6). Let us start from defining approximation statistics nV1  and the remainder nR1 . It is necessary to 
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compute the Gateaux differential of the first order );(1 FGFTd   for functional )(FT  defined by 
(5).  Let )( FGFF  , 10  . Replacing the distribution function F  in (5) by the d.f. F , 
we obtain the expression 
                   dxxWxfxFFTxFFTxGFTxF )()()}())](())(([))(({2 00  

                0)()()}())](())(([))(({ /
0

2
0 dxxWxfxFFTxFFTxGFTxF . 

Differentiating the expression on  , setting 0 , and taking into account that 
01 |/)();(   FTFGFTd ,  )(|)( 0 FTFT , we get 

               
 







dxxWxfxFxFdxxWxfxf

dxxWxfxWxFxFxFxG
FGFTd

)()()]()([)()()(

)}()()()]()()]{[()([
);(

/
00

0
/

0
1

 

From this expression, after replacing G  by the empirical d.f. nF  , we get an approximation for 
statistics nV1  : 

                          ),,;();( 0
1

11 WFFXIFnFFFTdV inn   . 
Here );(),,;( 10 FFTdWFFuIF u  ,  u0 , is the Hampel influence function for the 

MD -estimator )( nn F  of the location parameter  , which for a given reference d.f. 0F  and 
given weight function W  is a solution of equation (4). Note that the expression for the influence 
function also follows from the above formula by replacing d.f. G  by degenerated at the point u  
distribution function  u . The resulting formulas, together with the expansion (6), are the basis for 
the proof of asymptotic normality of the MD -estimators, which are solutions of the equation (4).  

Note that the general conditions of regularity (which impose restrictions on the behavior of 
the tails of d.f. F  and the weight function W ) under which the expression 01

p
nRn  , n , 

and for which MD - estimator is consistent and asymptotically normal, given in Boos (1981). In 
addition, the considered here MD - estimates belong to the family of MD - estimates whose 
asymptotic properties are described in Shulenin (1992).  

To facilitate formulating further results, let us denote by S  a family of absolutely 
continuous symmetric distributions. Let the class of weight functions SW consists of differentiable 
and even functions, that is )()( xWxW   and 

    dxcxWxFxF p )())}(1)(({ , 0p , ),( c . 

Theorem.  Let SFF ),( 0 , SWW  . Then, under fulfillment of the inequalities 

  )(),,;(),;(0 0
2

0
2 xdFWFFxIFWFF  , 

 the asymptotic expression can be written in the form of 
 )1,0()},;(/)]()([{ 0 NWFFFFnL n  , n . 
The asymptotic variance of MD -estimate with the reference d.f. 0F  and the weight function W  
under the distribution F of observations nXX ,...,1 , is equal to nWFFWFFD /),;(),;( 0

2
0  ; the 

Hampel influence function ),,;(),,;( 00 WFFuIFWFFuIF   for the MD -estimates is calculated 
by formulas 
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  )(/);(),,;(
00 ,,0 WBWuAWFFuIF FFFF ,  u0 ,                                                       (7)  

 
u

FF uFuFuWxdFxWWuA
0

0, )]()()[()()();(
0

,                             (8) 

  








 )()()]()([)()()()( /
00, 0

xdFxWxFxFxdFxWxfWB FF .                                          (9) 

The proof can be found in Boos (1981), Wiens (1987), Parr and de Wet (1981).    
          Note that for the first version of parameter estimation  , when 0F  the influence function 

),;( WFuIF ,  u0  is given by 

  





















)()()(

)()(

)()(

)()(]}[)({
),;( 0

2 xdFxWxf

xdFxW

dxxWxf

xdFxWxuIxF
WFuIF

u

 

   
u

dxxWxfWFJ
0

1 )()(),(   ,  u0  ,                                                                            (10) 

and the asymptotic variance of MDn -estimate is given by 














 





 












2

2

2

)()()(

)()()(]}[)({
),(

xdFxWxf

udFydFyWyuIyF
WF 2

2

2

0

)()(

)()()(

















 








dxxWxf

xdFydFyW
x

.          (11) 

 
Efficient  MD - estimators 
 
For the first version of parameter   estimation (when the distribution function F  of the 
observations nXX ,...,1 is known and coincides with the reference function of a symmetric 
distribution 0F ) there is an effective parameter estimate in the class of MD - estimators. Its 
asymptotic variance is equal to the inverse of the Fisher information )( 0fI  about   in   distribution 

)(0 xF  with the density 0f . This score is determined by the effective weight function of the form 

              
)(

1)}(ln{
)(

0
2

0
2

xfdx
xfdaxW 


 .                                                        (12)                                           

This effect was observed earlier in Boos (1981), Parr, De Wet (1981). Correctness of this fact can 
be seen from the following. Let us denote )(/)()( / xfxfx  ; then 22/ /)}(ln{)( dxxfdx  , 
and the expression (12) can be rewritten, taking into account that 0FF  , as )(/)()( / xfxaxW  . 
Substituting this weight function SWW   in (11), and taking into account that SF  , 0)0(  , 
we obtain 

 2
2

2

02

)()(

)()()(
),(



















 








dxxWxf

xdFydFyW
WF

x

)(
1

)(
)(

)()(

)()(
22

/2

22

fIfI
fI

xdFxa

xdFxa







 













 . 

 Example 1. Note that the use of (12) allows to find the distribution function 0F , under which 
the Cramer - von Mises MD -estimator with the weighting function )()( 0 xfxW   produces 
asymptotically efficient parameter estimates. In fact, solving the differential equation 

)(/)}(ln{ 2
0

2
0

2 xfadxxfd   under )()( 0 xfxW  , we obtain the density of the form 
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                                           )(sec)/1()](/[2)(0 xheexf xx   , 1Rx , 
with the distribution function 
                                          )()/2()(0

xearctgxF  , 1Rx , 
which is called the hyperbolic secant. Note that the Fisher information for the parameter   in the 
density )(sec)/1()(0 xhxf   is hyperbolic secant as for the Cauchy distribution, and is equal

2/1)( 0 fI . Hence 2),( 00
2  fWF . Note, in addition, that the influence function for MD - 

estimation  with the weighting function 1W , with 0FF   is limited and defined as 

 )4/()(
)/2(

)2/1()()/2(

))((

)2/1(
)1,;( 2

21

0

1
00

0
0 








 

x
x

earctgearctg

dttFf

FWFxIF  , 1Rx . 

The asymptotic variance of the MD - estimate with weight function 1W   and  0FF   is  the same 
as the asymptotic variance of Hodges - Lehmann estimate HL , and for distribution 

)()/2()(0
xearctgxF   is given by 

 









 
21

0

1
00

0
2

))((12

1)1,(
dttFf

WF

 ),(029,2
48)2/cos()2/sin()/2(12

1
0

2
4

21

0

HLF
dttt










 




  . 

           Example 2. Let the supermodel },,,,{ )5()4()3()2()1( FFFFFS   be a finite set of distributions, 
where )1(F  is the standard normal distribution, Fisher information 1)( )1( fI ; )2(F  is logistic, 

3/1)( )2( fI ; )3(F  is Laplace, 1)( )3( fI ; )4(F is Cauchy , 2/1)( )2( fI ; )5(F is hyperbolic secant, 
2/1)( )5( fI . Optimal weight functions of the form (12) for these distributions are given in Table 1 

and in Figure 1. 
Table 1. Optimal weight functions of the form )(/)()( / xfxaxW   

)1(F  )2(F  )3(F  )4(F  )5(F  
)(/1)()1( xxW 

 
1)()2(  xW

 
)0(2)( ||

)3(  xexW x 

 
)1/()1()( 22

)4( xxxW 

 

1
)5( ))(/2()(   xx eexW 

 
 

                              
 

Fig.1. Optimal weight functions-estimates for  SF  
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  Note that the asymptotic variance of MD - estimate with the reference distribution 

)()(0 xFxF   and the weight function )(/1)( xfxW   coincides with the asymptotic variance of the 
sample mean X , and is calculated by the formula 




 



  
















































 )(
))(/1)((

)()())(/1(

)()(

)()()(
)/1,( 2

2
2

2

0
2

2

2

02 xdFx
dxxfxf

xdFdyyfyf

dxxWxf

xdFydFyW
fWF

xx

. 

For the weight function )(/1)( xxW  , where )(x  is the standard normal density, MD - 
estimator is an efficient estimate of the location parameter   of the normal distribution, but it has,  
like the sample mean X , the unlimited influence function xWxIF  )/1,;( , 1Rx  and its 
sensitivity to gross errors is not limited, that is  )/1,( W . Note also that the choice of the 
weighting function 1)( xW  leads to asymptotically efficient MD - estimator for the logistic cdf 

)2(F  (the variance in this case coincides with the variance of HL - estimator), and the absolute 
efficiency of the MD - estimator  with weight function )()( )2( xfxW   is equal to

988,0)]3/1(036,3[),( 1
)2()2(  fWFАE . Recall that for the logistic distribution )2(F  with density 

)2(f , the equality )1( )2()2()2( FFf   holds, and therefore, the choice of the weighting function in 
the form inherent in MD - estimation based on the use of the Anderson-Darling distance, 

)1(/)( 000 FFfxW  , also leads to an effective MD -estimation for the logistic distribution. For 
the Laplace distribution with density )||exp()2/1()()3( xxf  , 1Rx  function 

)()(/)()( )3(
/
)3( xsignxfxfx   and, therefore, the optimal weight function 

)(/)()( / xfxaxW   defined by (12), takes the form 
)0(2)(/)0()(/)}({)( ||

)3()3(
/

)3(  xexfxxfxsignxW x . Using this expression for the optimal 
weight function, and (11), one may see that the asymptotic variance of MD - estimate coincides 
with the asymptotic variance of the sample median 2/1X , which is asymptotically efficient estimate 
of parameter   for the Laplace distribution. In fact, from (11) with the weighting function 

)(/)0()( xfxxW  , we obtain: 
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Note that for the Cauchy distribution the optimal weight function 
)1/()1()( 22

)4( xxaxW   is negative outside the interval ]1,1[ . This fact can be explained as 
follows. From (10) it follows that the weight function W  is expressed through the derivative of the 
influence function in the form )(/),;(),()( / ufWFuIFWFJuW  ,  u0 . So, to "reduce" the 
influence outliers on the MD -estimation, it is necessary its influence function to decrease for large 
values of the argument and, consequently, the weight function should be negative, as is observed 
for the optimal weight function )1/()1()( 22

)4( xxaxW   for the Cauchy distribution. 
 
      Example 3. Consider the family of t-distributions Sr  , for which the density distribution 

)(xfr  with degrees of freedom r  can be written as  
               2/)1(2 ))/(1)(()(  r

r rxrAxf , 1Rx , )2/(/)2/)1(()( rrrrA  . 
Using (11), we can see that the optimal weight function for this family of distributions is calculated 
by the formula 

 2/)3(2212/)1( ))()(()1()(   rr
r xrxrrArraxW  . 

 Hence, under 1r  we obtain the optimal weight function for Cauchy distributions as 
)()1/()1(2|)( )4(

22
1 xWxxaxW rr




  . The case of r  corresponds to the normal 

distribution. Given that under r , the expressions  2/1)(rA  and 
2/2/)1(2 2

))/(1( xr erx    are hold, from the general formula, we obtain: 
                 )()(/1)2/(exp2)(lim )1(

2 xWxaxaxWrr


  . 
 

Robustness of the MD-estimators  
 

 To study the properties of robustness, we consider two types of supermodels that describe 
deviations from the Gaussian model of observations. The first supermodel S , which was used in 
Example 2, is defined as a finite set of given distributions, that is, 
                                             },,,,{ )5()4()3()2()1( FFFFFS  . 
  Second supermodel )(,    called Gaussian model with scale contamination, is determined as 
                        )}/()()1()(:{)( ,,   xxxFF  , 10  , 1 , 
where )(x is the standard normal distribution function with density )(x ,   - the proportion of 
sample contamination, and   is a parameter of the scale contamination. 
  
 Example 4. The first option. First, we consider the properties of MD -estimators within a 
supermodel under different types of reference cdf 0F  and weighting functions W . For the first 
version of parameter   estimation (when the distribution function F  is known and equals the 
reference distribution function  0F , that is 0F ), the influence function of MD -estimation and 
its asymptotic variance are given by (10) and (11). Let us consider various types of the weighting 
function SWW  .  
 A) Let 1)( xW , )()( 0 xFxF  . Under these conditions the MD -estimators with the weight 
function 1)( xW  are B -robust, that is, they have limited influence functions, which are defined as 

 dxxfxFWFxIF )(2/}1)(2{)1,;( 2 . In the Gaussian case F , the influence function is 

given by ]1)(2[)1,;(  xWxIF . The sensitivity to gross errors 
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|),;(|sup),( TFxIFTF
x

 of MD -estimators with the weighting function 1)( xW  is equal to 

77,1)1,(  W . 
                

                

Fig. 2. Influence function of MD -estimators                 Fig. 3. Influence function of MD -                                                           
              for the normal distribution                            estimators  for the Cauchy distribution 
 
 B) Let the weight function  coincides with the reference density, )()( 0 xfxW  , and 

)()( 0 xFxF  . Under these assumptions the asymptotic variance of the MD - estimation is given by 

  2
3

2

0

2

2

)(

)()(
),(



















 








dxxf

xdFdyyf
fWF

x

. 

Note that for a Gaussian distribution )()( xxF   and the weight function 
}2/exp{)2/1()()( 2xxxW   we obtain from (10) the limited influence function  

 ]1)2(2[)2/3()(~)2/3(),;(  xxWxIF , 1Rx , 
where )(~ x  is the  Laplace function given by 

 
x

dxxx
0

2 }exp{)/2()(~ , 1)2(2)(~  xx , 0x ,   


x
dxxx }2/exp{)2/1()( 2 . 

Sensitivity to gross errors ),( TF  of MD - estimation, with the weighting function )()( xxW  , 
is equal to 53,12/3),(  W . In this case, the asymptotic variance of MDn -
estimation is 

 





 





0

2/2

0

22 2

)(~
2
1

2
3)(),;(2),( dxexxdWxIFW x  

095,1)5/2()2/3(  arctg . 
         The asymptotic variance of the MD - estimators for the cases (A) and (B) were calculated for 
the following distributions: )1(F - normal, )2(F - logistic, )3(F - Laplace, )4(F - Cauchy, )5(F -hyperbolic 
secant. Numerical calculations derived from formulas for )(0 iFF  , 5,...,1i   and with different 
weight functions are shown in Table 2. 
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Table 2. The asymptotic variance of MDn -estimators for the supermodel S  at )(0 iFF  , 
5,...,1i  

 
     The weight function )1(F  )2(F  )3(F  )4(F  )5(F  

1W  
)()( )()( xfxW ii   

)1(/)(~
)()()()( iiii FFfxW   

)(/1)( )()( xfxW ii   
)1/()1()( 22

)4( xxxW   

   1,047  (0,96) 
 

1,095  (0,91) 
 

1,035 (0,97) 
 

   1,000  (1,00) 
 

1,109  (0,90) 

3,000  (1,00) 
 

3,036  (0,99) 
 

3,000  (1,00) 
 

   3,290  (0,91) 
 

4,204  (0,71) 

1,333  (0,75) 
 

1,200  (0,83) 
 

1,262  (0,79) 
 

2,000  (0,50) 
 

1,230  (0,81) 

3,287  (0,61) 
 

2,573  (0,78) 
 

  2,317 (0,86) 
 

         (0,00) 
 

2,000  (1,00) 

2,029 (0,98) 
 

2,000 (1,00) 
 
2,020 (0,99) 
 

2,467  (0,81) 
 

2,103  (0,95) 

 
         The absolute values of efficiency of MD -estimates are given in parentheses, they were 
calculated according to the formula 12 )](),([),(  fIWFWFАE  . Note that for distributions with 
"heavy tails" (Cauchy and Laplace), the absolute efficiency of MD -estimators depends mainly on 
the choice of the weighting function W . For  normal distribution, the optimal weight function is 

)(/1)( )1()1( xfxW  . Weight functions  1W  and )1(/)( )2()2()2()2( FFfxW   are optimal for the 

logistic distribution  )2(F . Weight function )1/()1()( 22
)4( xxxW   is optimal for the Cauchy 

distribution. Weight function )()( )5()5( xfxW   is optimal for distribution )5(F - hyperbolic secant. 
 Example 5. The second option. Consider the case when 0FF  , and  the supermodel 

},,,,{ )5()4()3()2()1( FFFFFS  is the finite set of distributions,  SF . In this case, the asymptotic 

variance of MDn -estimators under the weight function 1W  is given by 

                              )1,,( 0
2 WFF  20

0

2
0

)()(

)()]2/1()([2








dxxfxf

udFuF
,  SF .                                         (13) 

The numerical values of the asymptotic variance of MDn -estimators for  SF  and the weight 
function 1W , calculated using the formula (13). are shown in Table 3. 
 
Table 3. Asymptotic variance of MDn -estimators, for )1,(ˆˆ

)(0)(  WFF ii , 5,...,1i ,  SF  

F\̂  )1(F  )2(F  )3(F  )4(F  )5(F  ),ˆ( Sd   

)1(̂  1,047   (0,96) 3,051   
(0,98) 

1,383   
(0,72) 

2,911   
(0,69) 

2,008   
(0,99) 

0,42 

)2(̂  1,016   (0,98) 3,000   
(1,00) 

1,524   
(0,66) 

3,679   
(0,54) 

2,069   
(0,97) 

0,57 

)3(̂  1,059   (0,94) 3,048   
(0,98) 

1,333   
(0,75) 

2,957   
(0,68) 

2,006   
(0,99) 

0,41 

)4(̂  1,046   (0,96) 3,025   
(0,99) 

1,385   
(0,72) 

3,290   
(0,61) 

2,017   
(0,99) 

0,48 

)5(̂  1,031   (0,97) 3,011   
(0,99) 

1,439   
(0,70) 

3,276   
(0,61) 

2,029   
(0,98) 

0,49 

 
Note that in the table (3) in parentheses the absolute efficiency estimates are presented,  calculated 
by the formula 1

0
2 )}()1,,({)ˆ,(  fIWFFFAE  . In the last column of the table, the defects of 

the estimates in the supermodel S , calculated from (19), are given. 
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 Note 1. One of convenient means for comparing qualities of estimates k ˆ,...,ˆ
1  of a given 

parameter   of a symmetric distribution F  is a concept of defect of the estimator (see, for 
example, Andrews at al1. (972), Shulenin (2012)). Let k ˆ,...,ˆ

1  be a finite set of asymptotically 
normal and unbiased estimates  of the location parameter , based on a sample nXX ,...,1  from the 
distribution F , obeying the expression 

                                    )1,0(
)ˆ(

)ˆ(
N

n
L

iF

i 










 



 ,  n ,   ki ,...,1 . 

Defect of estimator i̂ , ki ,...,1  among the compared parameter estimates k ˆ,...,ˆ
1  for a 

symmetrical distribution F  is defined as 
 )ˆ(/)}ˆ(),...,ˆ(min{1)ˆ( 22

1
2

iFkFFiFDE  , ki ,...,1 .                                        (14) 

Note that if among the estimators k ˆ,...,ˆ
1  there is an effective estimate, for which 

)(/1)ˆ(2 fIF    and, therefore, )(/1)}ˆ(),...,ˆ(min{ 2
1

2 fIkFF  , then the absolute defect of the 

estimator i̂  is equal to one minus its absolute efficiency, i.e., 

                            )ˆ(1)ˆ( iFiF AЭADE  , ki ,...,1 .                                                       (15) 
  
 Note 2. Studying robustness of compared estimates  k ˆ,...,ˆ

1  of the location parameter   in the 
supermodel   consisting of a finite set of symmetric distributions, },...,{ 1 rFF , usually is made 
by observing the disposition of estimates’ defects  on the plane of two distributions. The defect for 
basic (ideal, usually a Gaussian) model is laid along the horizontal axis, and along vertical axis the 
defects for an alternative model, which is a part of a supermodel },...,{ 1 rFF , is laid. With this 
visual representation of the defects count on the plane of the two distributions, the preference is 
given to the estimate, which is closest to the origin. As examples, the absolute defects of estimates 
are presented on the plane of distributions "Gauss-Laplace" and "Gauss-Cauchy", see Figures (4) 
and (5). 
 

         
       Fig. 4. Defects estimates in the                                    Fig. 5. Defects estimates in the plane                    
                plane "Gauss-Cauchy"                                                           "Gauss-Laplace" 
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The advantages of the MD -estimates ),(ˆˆ
)()(0)( iii fWFF  , 5,...,1i  for  SF  before the 

family X~ - Winzor-means   and family HL -estimates Hodges-Lehmann 2/10  . 
are clearly seen in these figures (they are placed closer to the origin).  

 
Note 3. If we want to draw a conclusion on the preferenced estimator  among compared 

estimates  k ˆ,...,ˆ
1   of the parameter   within the entire supermodel },...,{ 1 rFF , we can use 

the Euclidean metric using the above notations: 

                                     
2/1

1

2)]ˆ([);ˆ(








 


r

j
iFi j

DEd ,                                                        (16) 

or 
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r

j
iFi j

ADEAd   , ki ,...,1 .                                                     

(17) 
The preference is given to the estimator i̂  with the minimal value of );ˆ(  id , that is 

                                    )};ˆ(,...,);ˆ(min{);ˆ( 1  ki ddd .                                            (18) 
      For the supermodel },,,,{ )5()4()3()2()1( FFFFFS  , the formula (16) can be written as 

2/1
5

1

2
)()(

2/1
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21
)()()(

2
)( )]~,(1[])}()~,({1[),~( 








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j
ij

j
jijSi FAЭfIFd , 5,...,1i . (19) 

According to the criterion (18), the preference among estimators )5()1(
~,...,~
  in the supermodel S , 

should be given to the MD - estimator for )3(0 FF  with reference Laplace distribution, and with  
weight function 1W , since this estimator has the minimum value of  
                                        41,0}5,...,1),,ˆ(min{),ˆ( )()3(   idd SiS  

(see the last column of Table 3). Compare it with  that  of Hodges-Lehmann 47,0),( 
SHLd , of 

X~ - Winzor-mean   41,0),~( 45,0 
SXd ;  of the sample median 51,0),( 2/1 

SXd ;  of the sample 

mean 14,1),( 
SXd , Shulenin (2012, p.256). 

  Example 6. The second option. Consider the Gaussian model with a scale contamination 
)(,   . Let the reference distribution be a normal distribution 0F , and the distribution of the 

observations is characterized by normal distribution with a scale contamination, )(,  F . 
Under these assumptions, the  asymptotic variance of MDn -estimation for 1W  is calculated by 
the formula 
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 For the weight function )()()( 0 xxfxW   the asymptotic variance of MDn -estimator is 
given by 
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                                       
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
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22
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),(~4

1
i

iA
B

, 

where ),(~ B  and ),( iA , 20,...,1i  are certain functions of the parameters  and  . The 
numerical values of the asymptotic variance of MDn -estimators for )(,  F  at different 
weight functions are given in the Table. 5. 
 
Table 5. The asymptotic variance of MDn -estimators for 0F ,  ,FF  , 0F  
W ,  \  0,00 0,01 0,05 0,10 0,15 0,20 0,25 0,30 
      3                                        

1W ,  5 
1,047(0,95) 
1,047(0,95) 

1,071(0,96) 
1,078(0,95) 

1,171(0,97) 
1,210(0,93) 

1,307(0,97) 
1,395(0,90) 

1,458(0,95) 
1,607(0,86) 

1,625(0,94) 
1,851(0,83) 

1,811(0,93) 
2,132(0,80) 

2,019(0,93) 
2,459(0,78) 

       3       
W  , 5 

1,095(0,91) 
1,095(0,91) 

1,117(0,92) 
1,122(0,92) 

1,209(0,93) 
1,237(0,91) 

1,333(0,94) 
1,393(0,90) 

1,470(0,95) 
1,562(0,89) 

1,620(0,95) 
1,749(0,88) 

1,786(0,95) 
1,956(0,87) 

1,972(0,96) 
2,187(0,87) 

 
       The absolute efficiency of MD -estimates calculated using the formula 

1
,,

2
, )}(),({)ˆ,(    fIWFFAE , where )( ,fI is the Fisher information about the location 

parameter of distributions from the supermodel )(,   , are given in the table in parentheses. 
          Fig. (6) shows the absolute efficiency of estimates for )(,  F . It is clearly seen that 
MD -estimates with the reference function 0F  and the weight function )()( xxW  , as well as 
the weight function 1)( xW , provide high absolute efficiency when 3,00  . The absolute 
efficiency of the sample mean X  decreases sharply, and the median for the sample 2/1X  is slowly 
growing, remaining at low levels. 
 
  
    
 
 
 
 

 
 
 
                                             
                                          
 

                         
 
 

Fig. 6. Absolute efficiency estimates for  )(,  F , 3  
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        Example 7. Adaptive version. Properties of the MD - estimates depend strongly on the choice 
of the weighting function W  for distributions with "heavy tails". Therefore, the study of the 
properties of the efficiency and robustness of MD -estimates (for the case 0F ) opens the 
possibility of an adaptive approach to the choice of the reference distribution 0F  and weighting 
function W  within the given supermodel, based on the sample estimates of functionals that 
determine the "degree of heaviness of tails" of distributions (see Shulenin (1993a)). Adaptive 
selection of the weighting function can provide the required quality of MD -estimates for a given 
supermodel. 
       Let us consider an example of the supermodel })()(:{)( ,, xxFF   . We assume that 
the proportion of contamination   may vary in limits 3,00  , and the scale parameter   is 

3 . For this supermodel with the reference function 0F , let us  define an adaptive weighting 

function Ŵ  as 

                              













91,1)(86,1,)(
86,1)(76,1,1
76,1)(71,1,)(/1

),...,;(ˆ
1

n

n

n

n

FQx
FQ
FQx

XXxW



,                                          (20) 

where )( nFQ  is the sample estimate of the functional ),;( FQ  which characterizes the "degree 
of heaviness of the distribution tails" and is defined in Shulenin (1993a). Sample estimate of )( nFQ
is based on a sample nXX ,...,1  and may be written as 

 
















   

  

n

mni

m

i
ii

n

kni

k

i
iin XXXX

k
mFQ

1 1
)()(

1 1
)()( /),;( , ][ nk  , ][ nm  .    (21) 

          Here the parameters    and   satisfy inequalities 5,00  , 2,0 ,  5,0  and 
)()1( ,..., nXX  are the order statistics of the sample nXX ,...,1 . 

          Note that the choice of the weighting function in the form of (20), the absolute efficiency of 
adaptive MD - estimates do not fall below the level of 0.95 when the proportion   of contamination 
is 3,00  . It means that within a given supermodel the absolute efficiency satisfies inequalities 

1)ˆ,(95,0 ,  WAЭ  if  3 , 3,00   , 40n  (see Figure 6). If we choose not to adapt the 
weighting function, and use, for example, the Anderson - Darling weight function in form of 

))(1)((/)(),(~ xxxxW   , then the absolute efficiency of MD - estimates with such a weight 
function in the framework of the supermodel )(,    could fall to the level of  0.47. 
 
           Conclusion 
 We studied the asymptotic properties of the MD - estimators of the location parameter  , 
based on the use of a weighted Cramer - Mises distance. It is shown that these estimates are B - 
robust, that is, their influence functions are limited, and therefore, they are "protected" against 
outliers in the sample. For the case 0F , the optimal weight functions are given that make MD -
estimates asymptotically efficient. For the Gaussian model with a scale contamination (for 

)(,  F , 3 ) the absolute efficiency of MD - estimates with the weight function 1W  does 
not fall below 0.93 at 3,00  , and it increases from 0.91 to 0.96 for the weight function W . 
 Summarizing, we note that there is a close connection of MD -estimators of parameter   
with the other robust M -, L -,and R - estimators (see Shulenin and  Tarasenko (1994), Shulenin and 
Serykh (1993), Shulenin(1995)). Properties of MD - estimators in some cases coincide with those 
of many well-known estimates of the location parameter  ; for example, with the properties of the 
Hodges - Lehmann estimates, the sample mean and median. Note also that the abovementioned 
asymptotic results is quite good approximation for properties of MD-estimators for sample sizes 
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20n . This is confirmed by the numerous computer simulation results. Studied properties of the 
efficiency and robustness of MD -estimates open (for the case 0F ) the possibility to use an 
adaptive approach to the choice of the reference distribution function 0F  and the weighting function 
W  within the given supermodel, based on sample estimates of functionals that determine the 
"degree of heaviness of tails" of distributions (see Example 7 and Shulenin (2010), 
Shulenin(2010a)). 
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ABSTRACT 
 

In this paper multilevel approach to the issue of road safety level on the road network of 
European regions, classified as NUTS 2 in statistical databases of the European Union, has been 
presented. Following the pattern of many publications on road safety it has been assumed that the 
risk calculated as the number of death casualties in road accidents per 100,000 inhabitants of a 
given region has Poisson distribution. Therefore, generalized Poisson model has been assumed in 
the modelling process. Multilevel stochastic analysis was performed for the studied factor. Then a 
model was created that took into account the impact of different characteristics available on 
different level of aggregation, which may be helpful in the actions aimed at improvement of road 
safety in respective regions.  
 
Key words: road safety, factors, modelling, Europe, regions 
 

1  INTRODUCTION 
 

In 1771 the first accident involving motor vehicle, a steam powered one, was reported. Since 
then several hundred million accidents have occurred, in which over 60 million people have died. 
Despite the activities being carried out with an aim to improve safety, over 1.2m people die on 
roads each year, and even up to 50 million are injured [1]. This is then a global issue of an 
epidemiologic nature. Scientists in Western Europe and United States for quite a long time have 
been searching for the cause of this situation. The issue is complex enough to be addressed by 
scientists from different fields: economy, mathematics, transport or medicine. However, so far they 
have focused on researches covering data for respective countries, without going deeper into 
differences between respective regions of a given country. Most frequently analysed were the 
figures of changes in number of casualties over time, by means of time series [2]. In researches 
aimed at finding factors that could influence fatality on roads national product per capita [3] and 
transport activity [4] have been indicated. Unfortunately, transport activity is unavailable in regional 
databases. Therefore, the scientists often point to population density as a good substitute index, 
which may replace transport activity [5]. Literature studies showed that the researchers focus either 
on national characteristics or on regional characteristics alone, and do not combine both. In this 
paper the combination of national and regional characteristics in one model has been presented.  
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2  MULTILEVEL MODEL – METHODOLOGY OF THE APPROACH 
 
 In order to create model that combines national and regional characteristics, data concerning 
the number of death casualties in a given region have been collected as well as additional 
characteristics that describe regions and countries. The reason for this approach was the fact that 
there were characteristics available on national level that could effectively differentiate safety levels 
in the regions of respective countries, though unfortunately they were unavailable on regional level 
of aggregation. On the other hand, respective regions of a given country differ among each other in 
terms of population density or road network concentration and these elements are worth considering 
in the model. Since significant dispersion of fatality rate has been observed, it was decided to model 
demographic index of fatalities on roads (FATALR) calculated as the number of killed per 100,000 
inhabitants. The assumption was that the model should have the following formula: 
 

ܴܮܣܶܣܨ = ߙ ∙ ே஺்ூைே஺௅ܮܧܦܱܯ
ఉభ ∙ ோாீூைேܮܧܦܱܯ

ఉమ ∙ ே஺்ூைே஺௅ܥܲܲܰ
ఉయ                           (1) 

 
where: 
FATALR – demographic rate of fatalities in road accidents in a given region [fat./100 thou. inhab.] 
MODELNATIONAL  - model for national data 
MODELREGION - model for regional data 
NPPCNATIONAL   - model describing changes of average national product per capita 
α, β1,β2,β3  - estimated parameters 
 
FATALR estimation is based on the assumption that this parameter has Poisson distribution. 
National models were created on the basis of data from 11 European countries, whereas in the case 
of regional models in this paper the focus has been on two European countries that substantially 
differ in terms of road safety level: Great Britain, where the actions for improvement of road safety 
had a long tradition, and Poland, where the average fatality rate is more than double British figure, 
likely attributed to cultural, political and economic differences. Histograms of FATALR value in 
regions of comparable countries in the analysed period of 1999-2008 presented on Fig.1 show that 
there are no grounds for rejecting the hypothesis of Poisson distribution, frequently assumed in the 
analyses of safety level [6]. In further analyses, according to this assumption, FATALR index will 
be alternatively referred to as λ. 
 

Histogram FATALR
Great Britain

FATALR= 341*2*poisson(x; 6,8532)
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Histogram FATALR
Poland

FATALR= 176*2*poisson(x; 15,6738)
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Figure 1. Histograms of analysed FATALR indices in the regions of Great Britain and Poland. 
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3      NATIONAL MODEL 
 

 Taking into account the assumptions, λ parameter has been evaluated with 95% probability 
for the set of data from comparable countries. Then the set of independent variables, available only 
on national level of aggregation, which characterize the country, used for development of 
descriptive models for evaluated λ parameters (MODELNATIONAL), has been created. In this paper 
the impact of such factors were analysed as: corruption index - COR (the higher the value, the better 
a country is perceived, i.e. as less corrupted), percentage of passenger cars older than 10 years –
OLD in the total fleet of the country, calculated as average from 10 years. 
 

 
 

Figure 2. Graph of dependence of λ on the value of corruption index in a given country 
 

 
 

 Figure 3. Graph of dependence of λ on the percentage of passenger cars older than 10-years old 
 
 

As Figures 2 and 3 show these indices may impact the studied parameter. The tendency of falling λ 
parameter with the increase of corruption index has been observed, whereas the reverse correlation 
has been seen in the case of the percentage of old passenger cars. The developed model has a shape 
of linear model:  
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Figure 4. Illustration of linear model that takes into account corruption index and the percentage of 
cars older than 10 years old in the total fleet 

 
Q factor for the model equals 0.87. Together with the increase of corruption index – COR, λ 
parameter is falling, however if there is a large percentage of old cars in total fleet of passenger 
cars, then λ parameter will be higher. 
 

4      REGIONAL MODEL 
 

 The next step was development of models describing the impact of regional characteristics 
in respective countries on FATALR values in these regions. For this purpose, separated base of 
regional data was created for each country and the attempts were made to develop a model of 
impact of respective variables on modelled dependent variable. In the case of all countries one type 
of the model was checked, which was initially prepared based on joined database from all European 
regions. General shape of this model has been presented below (3), whereas in table 1, calculated 
indices in the model in analysed countries have been listed. Cluster analysis allowed specification 
of classes of correlated variables. In individual models the impact of respective classes have been 
taken into account through selection of their representatives.  

 
ோாீூைேܮܧܦܱܯ = ߙ ∙ ఉ(ܥ݈ܲܲܰ݊) ∙ ఊలܥܲܲܰ ∙ ఊభܱܲܲܦ ∙ ఊమܦܪܧܸ ∙ ݁(ఊయ∙஼஺ோ௉ାఊర∙ோை஺஽஼ାఊఱ∙௎ோெ௉)   (3) 

where: 
MODELREGION - model for regional data 
NPPC  - average national product per capita in a given region, in a given year [thou. EUR] 
DPOP -  population density [no. of people/km2] 
VEHD – total vehicle density [veh./km2] 
CARP – percentage of passenger cars in total fleet of cars [%] 
ROADC – intensity of the total number of roads per one inhabitant [km/person] 
UNEMP – unemployment index 
α, β,γ1,γ2,γ3,γ4, γ5, γ6  - estimated parameters 
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Table 1.  List of parameters of regional models for selected countries  
Model R2 α β γ1 γ2 γ3 γ4 γ5 γ6 
Great 
Britain 

0,7
1 

0,012 32,3
18 

-
0,41
3 

0,26
6 

 0,36
4 

-
0,03
9 

-
9,50
1 

Poland 0,5
4 

154,3
61 

-
0,17
9 

0,12
3 

-
0,14
9 

-
0,03
1 

0,35
8 

  

 
On Figures 5 and 6 the regional model has been shown  
 

 
 

 Figure 5. Graph of prepared regional FATALR model in relation to population density DPOP 
against the actual data for Poland - remaining variables from the model assumed as average. 

 
 

 
 

Figure 6. Graph of prepared regional FATALR model in relation to population density DPOP 
against the actual data for Great Britain - remaining variables from the model assumed as average. 
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5      MODEL FOR TREND OF NATIONAL PRODUCT PER CAPITA VARIATION IN 
TIME 

 
 Global national and local regional models are the ones, in which the majority of independent 
variables are characterized by slight variability in time. The only variable dynamically changing in 
time, and at the same time occurring in almost all models, is national product per capita. Analysis of 
variations of average national product per capita NPPC over time proved that analysed countries are 
characterized by two types of NPPC change trends in time.  
 

 
 

Figure 7. Graph of dependence of NPPC changes in Great Britain in the analysed years 
 

 
  

Figure 8. Graph of dependence of NPPC changes in Poland in the analysed years 
 

First one is a linear, which characterizes mainly the countries of the “Old Europe”, where the 
economic situation is stabilized and standard of living is improving. The second one, however, is 
nonlinear trend, probably resulting from dynamic changes occurring in these countries after their 
access to the European Union, Fig. 7 and Fig. 8. 
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6      Aggregated model 
 
 After preparation of partial models, the model comprising all partial models has been created 
and it has the following formula: 
 

ܴܮܣܶܣ	 = 5,353 ∙ ே஺்ூைே஺௅ܮܧܦܱܯ
ି଴,ଶ଼ହ ∙ ோாீூைேܮܧܦܱܯ

଴,଼ଵ଼ ∙ ே஺்ூைே஺௅ܤܭܲܬ
ି଴,ଶଵଶ                                (4) 

 
It is a multiplicative model, elements of which have Q factors ranging between 0.89 and 0.54, while 
resultant model has Q factor equal to 0.76. This is a result of using average annual data as input 
data, in order to eliminate momentary fluctuations that could obscure the character of effects of 
respective influences. Received results may be considered satisfactory and visualisation of model 
adjustment to the actual data has been presented in Fig. 9 and 10.   
 

 
 

Figure 9. Graph of the actual and modelled data in relation to NPPC in a given region for regions in 
Great Britain. 

 
 

 
 

Figure 10. Graph of the actual and modelled data in relation to NPPC in a given region for regions 
of Poland. 
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7   ANALYSIS OF THE IMPACT OF RESPECTIVE VARIABLES ON FATALR MODEL  
 
 Analysis of the model’s sensitivity is based on analysing changes in FATALR occurring as a 
result of changes in the values of variables being the arguments of model function, based on the 
observation of this function’s derivatives against respective variables.  
Furthermore, significant information on the way of potential impact on FATALR are obtained from 
the information on the values of sensitivity coefficients and the direction as well as size of 
variations of these coefficients caused by the changes of function’s arguments. Sensitivity analysis 
is one of the basic instruments of risk assessment in decision-making process. Sensitivity analysis 
allows defining accuracy level, which is necessary at estimation of respective parameters for the 
model to be precise enough.   
 Since hierarchic model of FATALR is a multiplicative model, in which respective factors 
are raised to different powers, then the impact of each factor, estimated by elasticity function, is 
constant and equal to exponent of the power [7]. Hence performing sensitivity analysis for 
ModelREGION is particularly important, especially that it takes into account local specificity as 
concerns variables existing in the model. Depending on the number of changed factors, the impact 
of which is taken into consideration, univariate and multivariate analysis is distinguished. In the 
case of univariate sensitivity analysis, the reaction of the model to a change of one of the factors is 
studied, while assuming constant level of the other ones. 
 Most frequently used sensitivity measures of gain include measures based on the concept of 
point elasticity of function towards respective variables. This approach yields correct results, when 
we consider slight change of a given factor. 
Similarly to referenced article [7], by calculation of elasticity of regional model for respective 
variables we receive: 
 
(ܴܲܣܥ)ெܧ = ଷߛ ∙ (ܥܦܣܱܴ)ெܧ,ܴܲܣܥ = ସߛ ∙ (ܲܯܧܷܰ)ெܧ,ܥܦܣܱܴ = ହߛ ∙  ܲܯܧܷܰ
(ܱܲܲܦ)ெܧ = (ܦܪܧܸ)ெܧ,ଵߛ =  ଶߛ
(ܥܲܲܰ)ெܧ =

ఉା௟௡ே௉௉஼∙ఊల
௟௡ே௉௉஼

= ఉ
௟௡ே௉௉஼

 .଺ߛ+
 
 
Set of independent variables may then be divided into three groups of variables: 

 fixed level of elasticity, DPOP and VEHD variables; 
 linearly dependent elasticity level, CARP, ROADC, UNEMP variables; 
 inversely proportional elasticity level, NPPC variable. 

Variables of the first two groups are characterized by relatively small dynamics of change, as in a 
period of about 10 years it is difficult to observe significant changes in demography of a given 
region, and similarly in the total vehicle fleet or total length of roads. It is different in case of 
unemployment index, although this variable is present only in one of the models prepared and 
turned out to be useful in the case of British regions. The most interesting proved the impact of 
national product per capita in respective regions. Its changes turned out to have the biggest impact 
on the modelled FATALR values in the regions.  
When building the model special attention must be paid to separable homogenous groups of 
elements, especially in respect of their variability. 
The purpose of sensitivity analysis of FATALR models is checking how the value of the model 
changes as a result of combined changes of factors that impact the model. In multivariate sensitivity 
analysis the impact of combined changes of several factors is taken into account. Therefore, it is 
necessary to apply differential for the assessment of the total change of the model’s value. By 
calculating partial derivatives for respective variables, we receive 
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ோ௘௚௜௢௡݈݁݀݋ܯ߲

ܴܲܣܥ߲ = ଷߛ ∙ ߙ ∙ ఉ(ܥ݈ܲܲܰ݊) ∙ ఊలܥܲܲܰ ∙ ఊభܱܲܲܦ ∙  ఊమ݁(ఊయ∙஼஺ோ௉ାఊర∙ோை஺஽஼ାఊఱ∙௎ோெ௉)ܦܪܧܸ
ோ௘௚௜௢௡݈݁݀݋ܯ߲
ܥܦܣܱܴ߲ = ସߛ ∙ ߙ ∙ ఉ(ܥ݈ܲܲܰ݊) ∙ ఊలܥܲܲܰ ∙ ఊభܱܲܲܦ ∙  ఊమ݁(ఊయ∙஼஺ோ௉ାఊర∙ோை஺஽஼ାఊఱ∙௎ோெ௉)ܦܪܧܸ

ோ௘௚௜௢௡݈݁݀݋ܯ߲
ܲܯܧܷ߲ܰ = ହߛ ∙ ߙ ∙ ఉ(ܥ݈ܲܲܰ݊) ∙ ఊలܥܲܲܰ ∙ ఊభܱܲܲܦ ∙  ఊమ݁(ఊయ∙஼஺ோ௉ାఊర∙ோை஺஽஼ାఊఱ∙௎ோெ௉)ܦܪܧܸ

ோ௘௚௜௢௡݈݁݀݋ܯ߲
ܱܲܲܦ߲ = ଵߛ ∙ ߙ ∙ ఉ(ܥ݈ܲܲܰ݊) ∙ ఊలܥܲܲܰ ∙ ఊభିଵܱܲܲܦ ∙  ఊమ݁(ఊయ∙஼஺ோ௉ାఊర∙ோை஺஽஼ାఊఱ∙௎ோெ௉)ܦܪܧܸ

ோ௘௚௜௢௡݈݁݀݋ܯ߲
ܦܪܧܸ߲ = ଶߛ ∙ ߙ ∙ ఉ(ܥ݈ܲܲܰ݊) ∙ ఊలܥܲܲܰ ∙ ఊభܱܲܲܦ ∙  ఊమିଵ݁(ఊయ∙஼஺ோ௉ାఊర∙ோை஺஽஼ାఊఱ∙௎ோெ௉)ܦܪܧܸ

 
ோ௘௚௜௢௡݈݁݀݋ܯ߲

ܥ߲ܲܲܰ = ߚ] + ܥ݈ܲܲܰ݊ ∙ ఉିଵ(ܥ݈ܲܲܰ݊)[଺ߛ ∙ ఊలିଵܥܲܲܰ ∙ ߙ ∙ ఊభܱܲܲܦ

∙  ఊమ݁(ఊయ∙஼஺ோ௉ାఊర∙ோை஺஽஼ାఊఱ∙௎ோெ௉)ܦܪܧܸ
 
By calculating differential we receive a formula, which describes joined impact of independent 
variables on the value of ݑ݈݁݀݋ܯோ௘௚௜௢௡: 
 

ோ௘௚௜௢௡݈݁݀݋ܯ݀ = ߚ]}ߙ + ܥ݈ܲܲܰ݊ ∙ ܱܲܲܦ[଺ߛ ∙ ܥܲܲܰ݀ܦܪܧܸ + ܥ݈ܲܲܰ݊ ∙ ܥܲܲܰ
∙ ܴܲܣܥଷ݀ߛ)ܦܪܧܸܱܲܲܦ] + ܥܦܣସܴܱ݀ߛ + (ܲܯܧହܷ݀ܰߛ + ܱܲܲܦଵ݀ߛܦܪܧܸ
+ {[ܦܪܧଶܸ݀ߛܱܲܲܦ ∙ 

∙ ఉିଵ(ܥ݈ܲܲܰ݊) ∙ ఊలିଵܥܲܲܰ ∙ ఊభିଵܱܲܲܦ ∙  ఊమିଵ݁(ఊయ∙஼஺ோ௉ାఊర∙ோை஺஽஼ାఊఱ∙௎ோெ௉)ܦܪܧܸ
 
 
8        SUMMARY 
 
Presented heuristic and statistical analysis points to advisability of using local characteristics for the 
assessment of safety in road transport. Due to differences in availability of registered data, classes 
of “close”, in terms of cluster analysis, variables and their representatives for specified groups of 
effects (impacts) have been distinguished.  
λ parameter in national model is inversely proportional to corruption index and directly proportional 
to percentage of old passenger cars. These mutually competing effects (impacts) may be used to 
specify a strategy of actions aimed at reducing road accident fatalities index.  
Models describing the impact of regional characteristics in respective countries on the FATALR 
values in such regions, and analysis of sensitivity, point to NPPC variable as dynamic and 
controlled element that drives FATALR changes. 
In multivariate analysis of sensitivity the impact of concurrent change of several independent 
factors is analysed. That is why it is necessary to check correlation of variables used in aggregated 
model as well as in partial models. It will allow development of more effective mechanisms of 
influencing FATALR index. 
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ABSTRACT 

 
The new method of modeling of continuous random variables on empirical distributions offered. It 
shown, that discrepancy of accuracy of methods to shown requirements is shown at small number of 
realizations of random variables, reduced to not casual divergence of estimations of averages and 
average quadratic values empirical given and modeled samples. 
 
 

STATEMENT OF THE PROBLEM. 
  

One of the basic stages of imitating modeling is formation of random variables and casual 
events with the set law of distribution. In conditions of electro power systems (EPS) examples of 
random variables are: duration of emergency repair of the equipment and devices, intervals of time 
between non-working conditions of power units, the maintenance of soluble gases in transformer 
oil, etc. Casual events: short circuits on transmission lines, refusal in switching-off of the switch, 
false work of relay protection or automatics, etc. the Analytical form of laws of distribution here is 
in most cases unknown. Laws of change of a continuous random variable set by statistical 
(empirical) function of distribution (s.f.d.), and a discrete random variable – proceeding from those 
or other assumptions of probability of occurrence of casual event. This feature brings the certain 
interrelation between number of intervals s.f.d. F*(X), and number of intervals m at discrete 
representation of continuous empirical function of distribution F(X). If for F(X) the number of 
intervals m gets out equal (1020), for F*(X) m=n. 
 Objectivity of imitating modeling in many respects depends on that, how much realizations 
of modeled random variables (events) will appear casual and will reflect the set laws of distribution. 
It is necessary to note also, that in practice often aspire to present set of statistical data one of 
known laws of distribution. Actually, the law of distribution of the statistical data concerning a class 
multivariate represents an uncertain composition of many distributions. In other words, difficulties 
of representation observable s.f.d. objective analytical law in many respects increase. 
 

Methods of statistical modeling. By development of these methods, the greatest attention 
given a condition when the type of function of distribution of continuous random variable X known. 
Statistical modeling on empirical distribution is carried out by two methods. According [1] s.f.d. 
represented the following equations: 
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where i=0,(n-1) 
 If to designate realization of a random variable with uniform distribution in an interval [0,1] 
through , that according to (1) calculation corresponding  realizations of random variable X it is 
carried out under the formula: 
    )in()XX(XX i1ii       (2) 
where i=0,(n-1) 
 Intuitively clearly, that if the divergence (Xn-X1) is commensurable with Х1, modeling s.f.d. 

)X(F **
1  under the formula (2) leads to regular distinction )X(F*

1  and )X(F **
1 . This distinction 

shown in following parities of averages (accordingly )X(M*
1  and )X(M **

1 ) and average quadratic 
(accordingly )X(G*

1  and )X(G **
1 ) values of random variable X: 

    
)X(G)X(G

)X(M)X(M
**

1
*
1
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1

*
1




      (3) 

 Graphic illustration of this method is resulted on fig.1а. 
 In the second method [2] s.f.d. represented the following equation: 
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Calculation of realization of random variable X spent under the formula: 
)]1i()1n([)XX(XX i1ii      (5) 

where i=1,(n-1) 
 In [2] it is marked, that obvious lack of this method is modeling random variable X in 
interval Х1<X<Хn, in other words, size X never can be less Х1 and more Хn, that the brings the 
certain error of an estimation )X(M **

2 . Graphic illustration )X(F*
2  and components of the formula 

(5) is resulted on fig.1в. 
 Features of calculation under formulas (2) and (5) have caused expediency of specification 
of these methods of modeling. S.f.d. recommends presenting the following the equation [4]: 
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where i=1,(n+1) 
 Thus, calculation of realization of random variable X carried out under the formula: 

)]1i()1n([)XX(XX i1ii       (7) 
where i=1,(n+1) 

The graphic illustration of components )X(F*
3  is resulted on fig.1с 
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  a)    b)     c) 

Fig.1. Illustration methods of modeling continuous random variables on empirical distribution. a - 
method [1]; b – method [2]; c – method of authors 
 

Algorithm of comparison of methods of statistical modeling. The basic requirement shown to 
methods of statistical modeling, accuracy of conformity of distribution )X(F **

j  to initial distribution 
F*(X), where j=1,3. Most simple way of the control of a degree of such conformity at small values 
n is comparison of estimations of average values )X(M*

E  and )X(M **
j , and also average quadratic 

values )(G* XE  and )X(G **
j .  

The block scheme of modeling algorithm is resulted on fug.2. 
1 8 

 
 
 

2 7 
3  

 
 
 
3         6 
 
 
 
 
  4         5 
 
 

 

 
Fig 2. The integrated block diagram of algorithm of comparison of methods of modeling of 
continuous random numbers 

 
Let's consider features of this algorithm by way of numbering blocks of its block diagram 

(fig.2.) 
1. Initial data are: 
 set of pseudo-random numbers {} with uniform distribution in an interval [0,1]; 

Initial data 
{}, n, , N 

Comparison of methods  
of modeling 

Modeling of sample  
from n random numbers  

Formation  
s.f.d.  

Definition 
 and  

Formation s.f.d. 
 and  

Definition 
 and  

Modeling of random number Xi, j, 
i=1,3; j=1, n;  =1, N 
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 n – number of random numbers  in sample from {}. Change n allows to establish its influence 
on result of comparison of methods of modeling of random variables X; 

  - significance value. Allows to estimate influence of a degree of conformity s.f.d. F*() to the 
uniform law on result of comparison of methods of modeling of random variables X; 

 N – number of imitations of modeled sample {X}n 

2. Under program RAND, () is formed n pseudo-random numbers , corresponding the uniform 
law of distribution in an interval [0,1]; 

3. Considering, that X=, average M*(X) and an average quadratic G*(X) values on sample is 
calculated .  

4. Under formulas (1), (4) both of (6) and sample {}n are formed s.f.d. )X(F*
1 , )X(F*

2  and )X(F*
3 ; 

5. Sample from n pseudo-random numbers with an opportunity of the control of conformity of 
distribution F*() is formed to the uniform law with the set significance value . The method of 
the general random numbers forms three samples from n random numbers X on distributions 

)X(F*
1 , )X(F*

2  and )X(F*
3 . Calculations are spent for significance values (a errors I type) , and 

number of realizations of sample N=1000; 
6. Estimations of an average )X(M*

,i   and average quadratic )X(G*
,i   values of modeled random 

variables on i- th to a method are calculated for - th samples with i=1,3 and =1,N; 
7. Are formed s.f.d.  )X(MF **

i  and  )X(GF **
i  for each of three methods i=1,3; 

8. Comparison of methods is carried out by comparison M*(X) and G*(X) with similar parameters 
of distributions  )X(MF **

i  and  )X(GF **
i , i.e. with )]X(M[M)X(M *

,i
*
i

**
i   and 

)]X(G[M)X(G *
,i

*
i

**
i   i=1,3. Advantage is given a method for which the deviation from 

)(* XM E  and )(* XGE  is minimal 
 
RESULTS OF CALCULATIONS 
 
 It is established: 

1. Influence of a method of modeling on accuracy of reproduction of distribution F*() it is 
shown only for small n. Already at n20 divergence between M*(X) and )X(M **

i , as well as 
G*(X) and )X(G **

i  with i=1,3 does not exceed 1%. Notice, that at n=4 the divergence 
between M*(X) and )X(M **

i  makes 12%, and between G*(X) and )X(G **
i  makes 28.5%; 

2. The size of a divergence including the greatest, between F*(Xj) and )X(F j
**

i (designate this 

size as Stj) does not depend on law of change F*(Xj) and )X(F j
**

i , and depends on random 
variables of sample {}n, their numbers n and a way of modeling i=1,3. As an example on 
fig.3 the graphic illustration of independence Stj with j=1,n from type F*(X) is resulted. In it 
finds reflection known nonparametric character of criterion of the greatest divergence [3] 

3. Comparison of methods of modeling shows, that 
)X(M)X(M)X(M)Х(M **

1
**

3
**

2
*   

)]X(G[M)]X(G[M)X(G)]X(G[M *
1

**
3
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2
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Fig. 3. Graphic illustration of independence Stj with j=1, n from type F*(X) 

 
In other words, the first method does not meet shown requirements to accuracy of 

calculation both on size )X(M*
i , and on value )X(G*

i . Average values )X(M **
2  and )X(M **

3 , 
calculated at modeling samples random variables, accordingly, the second (i=2) and the third (i=3) 
methods, are practically indiscernible and equal to M*(X). However, average quadratic values 
modeled samples for the second method of modeling {X}n essentially differ from a reference value 

)X(G*  while the size )]X(G[M *
3

*  practically does not differ from )X(G* . 
Graphic illustration of distinction s.f.d.  )X(MF1)]X(M[R *

i
**

i
*   and 

 )X(GF1)]X(G[(R *
i

**
i

*
i   for various methods (i=13) and =0 it is resulted on fig.4. 

      
  a)        b) 
Fig.4. Illustration of distinction s.f.d. averages (a) and averages quadratic (b) values of realizations 
выборок modeled i=1,2 и3 methods 
 

4. With increase : 
- Average value )]X(M[M *

i
*
i  with i=1,3 i.e. for each method of modeling aspires to the true value 

and allows to compare with methods more full. At =0.8 following values are received: 
629.0)]X(M[M *

1
*
1  , 751.0)]X(M[M *

2
*
2   and 738.0)]X(M[M *

3
*
3   at 0.739)X(M*  ; 

- The disorder of realizations )X(M*
i  with i=1,3 decreases. If for =0 for )X(M*

1  it made 
143.0)]X(M[G *

1
*
1  , at =0.8 size 066.0)]X(M[G *

1
*
1  , i.e. disorder of realization )X(M*

1  
decreases in 2,2 times. The same reduction of disorder observed for the second and third methods; 
- Distinction value of realizations )X(G*

1 , on the average, practically invariable also does not 
exceed 10% for n=4 and 3% for n=16. In the illustrative purposes on fig. 5 distributions )]X(M[F *

i
*  
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and )]X(G[F *
i

*  are resulted at =0.8, parities of considered methods confirming independence from 
 
- Consequences from increase  are similar to consequences of artificial increase in number of 
modeled random variables n on size (1-)-1. 

 
Fig.5. Graphic illustration s.f.d. )]X(M[F *

i
*  and )]X(G[F *

i
*  at =0.8 

 
 
 
CONCLUSION 
 
The lead complex analysis has allowed establishing: 
 
1. Discrepancy of accuracy of methods of modeling of continuous random variables on empirical 

distributions to shown requirements is shown only at small number of realizations of sample of 
random variables (n<20) 

2. Comparison of methods of modeling can be lead by comparison of modeled estimations of 
averages and average quadratic values of random variables to empirical values of estimations of 
these parameters 

3. Modeling of continuous random variables on the empirical distribution calculated under the 
formula (1), at small n leads to essential distinction of averages and average quadratic values of 
random variables of sample from empirical values, and under the formula (4) – average 
quadratic values of sample 

4. Increase in a significance value  conformity of sample from n pseudo-random numbers to the 
uniform law on the consequences to similarly artificial increase in number n on size (1-)-1 

5.  Statistical modeling of random variables on empirical distributions is expedient for spending 
under the formula (7). 
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ABSTRACT 
 
Objective estimation of parameters of individual reliability is an indispensable condition of an 
opportunity of decrease in operational expenses for maintenance service and repair of the 
equipment and devices of electro power systems. The method of decrease in risk of erroneous 
classification of multivariate statistical data offered. The method based on imitating modeling and 
the theory of check of statistical hypotheses. 

 
I. INSTRUCTION 

 
 Estimation parameters of individual reliability of the equipment of power supply systems 
provides classification of final population of multivariate statistical data of operation, tests and 
restoration of deterioration on the set versions of attributes (VA) [1]. 

VA reflects features of a design, a condition of operation, feature of occurrence of refusals 
and carrying out of repairs of the equipment. Expediency of classification on each of population VA 
is established by comparison of statistical functions of distribution (s.f.d.) final population of 
statistical data )X(F*

  and s.f.d. samples n random variables from this population on i versions of V 
attribute )X(F*

i,V , where v=1, k; k-number of attributes of random variable X (for example, 

durations of emergency repair); i=1, rk; rk- number of versions k an attribute. If s.f.d. )X(F*
  and 

)X(F*
V  differ not casually, in other words, sample {X}n where n-number of random variables of 

sample, it is not representative classification of data at an estimation of parameters of individual 
reliability is expedient and on the contrary. It is necessary to note, that unlike sample of a general 
data population (analogue: infinite set of random variables with uniform distribution in an interval 
[0,1]), which imposing appearance is set by some significance value , sample of final population 
of multivariate data on set VA is not casual, as a matter of fact, and it can appear only 
representative. In particular, sample can appear representative, if for considered data set VA not 
significant. 

 
II. RECOMMEND METHOD 

 
In a basis of comparison )X(F*

  and )X(F*
V  there is a statistical modeling (by means of 

computer program RAND) n pseudo-random numbers , random variables of sample equal to 
number, with uniform distribution in an interval [0,1]. 

Indispensable condition thus is consistency s.f.d. )(F*
V   to the uniform law of distribution

)(F  , in other words, casual character of distinction F() and )(F*
V  . It is obvious, that from the 

uniform law of change of random numbers  at all consistency does not follow the uniform law 
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s.f.d. )(F*
V   with the set significance value . Use at modeling statistical analogue )X(F*

V  s.f.d. 
)(F*

V  , essentially differing from F(), leads to erroneous increase in value of the greatest 
divergence of distribution of this analogue )X(F **

V  from )X(F*
  and by that to growth of probability 

of the erroneous decision at classification of data. 
Representative character of sample {}n at the decision of a problem of an estimation of 

expediency of classification of multivariate data it was supervised Kolmogorov's by criterion [2]. 
According to this criterion sample {}n it is unpresentable, if 

)1(,nn dD        (1) 

where:     )D,Dmax(D nnn
      (2) 

     ni1};Dmax{D in       (3) 

     





 

ii n
iD       (4) 

     ni1};Dmax{D in       (5) 

     





 



n
1iD ii      (6) 

dn,(1-) – critical value of statistics Dn provided that F() and )(F*
V   differ casually 

 In [3] it is marked, that estimation Dn under the formula  
       ni1;DmaxD i

/
n       (7) 

leads to incorrect decisions on a parity )(F   and )(F*
V  .  

The similar remark can be found and in [4]. The reason of such discrepancy does not 
stipulate. At uncertain in advance n, decrease in time of calculation, according to [3], is reached by 
application of exact approach Stephens, which tabulated critical values dn,(1-), depending from n 
and , reduces to dependence only from . Sample {}n it is unpresentable, if  

      1n CDA       (8) 

where:     





 

n
11.012.0nA      (9) 

For example, at n=4 size А=2,175 and for =0,1 critical value С1-=1,224, and at =0,05 
size С1-=1,358. 
 Application of a method of the decision of «a return problem» when it is in advance known, 
that sample {}n it is unpresentable, has shown, that criteria (1) and (8) for values most often used 
in practice =0,05 and =0,1 not casual character of divergence F() and )(F*

V   at small n 
establish only for those cases when it does not raise the doubts. For acknowledgement of this 
statement, we shall consider a following example. Let random numbers  have uniform distribution 
F() in an interval [0.5; 1]. Casual sample is set {}n with n=4: {0,86346; 0,50672; 0,91424 and 
0,67210}. Check up the assumption of imposing appearance of this sample for the uniform law of 
distribution of a random variable  in an interval [0,1]. 

Results of calculations are resulted in table 1. 
Table 1 

Example of an estimation of imposing appearance of sample 
i )(F i  ni  

iD  
iD  The note 

1 
2 
3 
4 

0.507 
0.672 
0.863 
0.914 

0.25 
0.5 

0.75 
1.00 

-0.257 
-0.172 
-0.113 
+0.086 

+0.506 
+0.422 
+0.363 
+0.164 

086.0D i  ; 506.0D i   
Dn=0.506; Dn<d4; 0.9=0.565 
ADn=1.101; 
ADn<C0.9=1.224 
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 As sample follows from table 1 {}4 does not contradict the assumption of imposing 
appearance rather )(F   at =0,1.  
 These features and some assumptions of the reasons of their occurrence [5] have demanded 
to pass from the analysis of absolute values of the greatest divergence of distributions F() and 

)(F*
V  , to the analysis of the valid values of the greatest divergence (Stn). Thus under «the greatest 

divergence F() and )(F*
V  » we shall understand the greatest on the module vertical distance 

between F() and )(F*
V   with i=1, n.  

Calculations Stn were spent according to the algorithm, integrated which block diagram is 
resulted in figure 1. 
   1       6       8 

      0 
 
 
   2       5       7 
 
                1 
 
   3       4 
 
 
 
 
Fig.1. Block diagram of algorithm of calculation of the greatest divergence of distributions F() 
and )(F*

V   
 

Application of formulas of type 

     ni1
n
imaxSt in 





     (10) 

calculation on the computer leads to erroneous results. For example, according to table 1 the 
maximal value among four realizations of size 

iD  will, 086.0D i  , and the greatest vertical 
divergence between F() and )(F*

V   it is equal 256.0D1   
Results of ordering of given realizations Stn presented in table 2 and allow concluding: 

1. Quintile distributions F*(Stn)= and n2 are equal on size and are opposite on a sign 
(distinction in a sign is caused by distinction of formulas 4 and 10) quintiles distributions 
F(Dn)=2 {see tabl.16 [2]}; 

2. Distribution )St(F n
*  is asymmetrical. In the illustrative purposes on fig. 2 are resulted s.f.d. 

F*(Stn) for of some n. The assumption of symmetry of distribution F(Stn) it is possible to 
explain discrepancy of probability practically equal quintile distributions F*(Stn) and )D(F n ; 

3. Than n it is less, that negative value on sign Stn on size will be more, since Stn=(n-1). On 
experimental data the least value Stn for n=2 has appeared equal Stn=-0,992, and the greatest 
Stn=+0,489 at sup equal, accordingly, 1 and 0,5.  

 

 

 

Modeling 
i with i=1, n 

 
i=1, n 

Formation s.f.d. 
 

Stn=Stn,max 

 Stn=Stn, min 
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Table 2 

Some results of an estimation s.f.d. F*(Stn) 

   

F*(Stn) 

n 

 

0,025 

 

0,05 

 

0,1 

 

0,2 

 

0,3 

 

0,4 

 

0,5 

 

0,6 

 

0,7 

 

0,8 

 

0,9 

 

0,95 

 

0,975 

2 
3 
4 
5 
6 
7 
11 
16 
22 
29 
40 
60 
90 

120 
150 

-0.842 
-0.709 
-0.623 
-0.567 
-0.523 
-0.481 
-0.389 
-0.33 
-0.280 
-0.246 
-0.208 
-0.173 
-0.142 
-0.122 
-0.110 

-0.775 
-0.635 
-0.567 
-0.511 
-0.469 
-0.438 
-0.353 
-0.295 
-0.253 
-0.219 
-0.187 
-0.156 
-0.127 
-0.110 
-0.099 

-0.684 
-0.566 
-0.494 
-0.449 
-0.411 
-0.384 
-0.309 
-0.258 
-0.221 
-0.193 
-0.164 
-0.137 
-0.111 
-0.096 
-0.086 

-0.551 
-0.471 
-0.414 
-0.370 
-0.338 
-0.318 
-0.255 
-0.215 
-0.183 
-0.160 
-0.136 
-0.114 
-0.092 
-0.080 
-0.071 

-0.473 
-0.400 
-0.355 
-0.318 
-0.292 
-0.274 
-0.219 
-0.184 
-0.157 
-0.138 
-0.119 
-0.097 
-0.079 
-0.068 
-0.062 

-0.149 
-0.335 
-0.302 
-0.274 
-0.252 
-0.235 
-0.189 
-0.158 
-0.135 
-0.119 
-0.102 
-0.083 
-0.068 
-0.059 
-0.053 

-0.363 
-0.296 
-0.253 
-0.232 
-0.215 
-0.201 
-0.110 
-0.134 
-0.113 
-0.099 
-0.084 
-0.069 
-0.055 
-0.047 
-0.042 

-0.304 
-0.252 
-0.217 
-0.190 
-0.173 
-0.162 
-0.129 
-0.103 
-0.083 
-0.068 
-0.050 
0.054 
0.051 
0.047 
0.041 

-0.239 
-0.200 
-0.173 
-0.147 
-0.127 
-0.113 
-0.097 
0.107 
0.105 
0.098 
0.089 
0.077 
0.067 
0.060 
0.053 

-0.060 
-0.145 
0.155 
0.164 
0.171 
0.165 
0.160 
0.150 
0.137 
0.126 
0.112 
0.096 
0.081 
0.072 
0.065 

0.184 
0.231 
0.240 
0.246 
0.244 
0.235 
0.216 
0.194 
0.176 
0.158 
0.140 
0.118 
0.100 
0.089 
0.079 

0.285 
0.299 
0.319 
0.309 
0.303 
0.290 
0.260 
0.232 
0.210 
0.186 
0.164 
0.138 
0.116 
0.102 
0.092 

0.343 
0.372 
0.377 
0.360 
0.358 
0.342 
0.302 
0.264 
0.235 
0.212 
0.185 
0.155 
0.130 
0.114 
0.104 

 
Fig.2. S.f.d. F*(Stn) for of some n 

 
 
4. In distribution F*(Stn) distinguish the bottom nSt  and top nSt  boundary values with a 

significance value , i.e. 
 
  









)21(StF

2StF

n
*

n
*

      (11) 

5. It is established, that if 0,25F*(Stn)0,75, i.e. if 0,5 







  nn St

n
1St       (12) 

For example, for n=4 and =0.10 according to distribution F*(Stn) (see tabl.2) size 567.0St 4  , 

and 319.0St 4  . At the same time under the formula (12) 
-(0,25-0,567=0,317= 4St  

 If n=29 and =0,2, that 193.0St n   and 158.0St n  . The size nSt  under the formula (12) 
is equal - (0,034-0,193)=0,159 
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On fig. 3 histograms of distribution of negative and positive values Stn for n=4 and n=29 are 
resulted. 

    
Fig.3. Histograms of distribution of the greatest divergence of distributions F() and )(F*

V   
 
As follows from fig. 3, negative values Stn essentially exceed positive values Stn on relative 

number and an interval of change. Proceeding from i. 3 it is clear, that it not casually and does not 
testify about unpresentable samples. With growth n the parity of negative and positive values Stn 
decreases and aspires to unit. For n=2 negative values Stn make 87,5%, and for n=29 - 61%, and for 
n=150 – 55%. Thus, even at n=150 quintile distributions F*(Stn) at =0,05 and ==0,95 are not 
equal [-0.099; +0.092]. Histograms also explain laws of distribution F*(Stn) resulted on fig.2. 

On fig. 4 curve changes of boundary values of statistics Stn for of some values s.f.d. are 
resulted, F*(Stn). Criterion of the control of imposing appearance of sample {}n with a significance 
value  thus looks like: 
      nSt <Stn < nSt      (13) 

 
Fig.4. Laws of change of boundary values of the greatest divergence of distributions F() and 

)(F*
V   

 
Let's designate positive values Stn through 

nSt , and negative values- 
nSt  

In view of i.1. and the equations (12), sample {}n with a significance value 0,5 can be 
accepted representative, if 















 







)21(,nn

)21(,nn

dSt

n
1dSt

     (14) 

 As 

      





  nn St

n
1St  
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criterion (13) for a significance value  can be presented, as 

    )21(,nnn dSt
n
1St 

 





      (15) 

Here it is necessary to pay attention to discrepancy of the equations of importance Stn and dn,(1-2). 
If again to address to data of table 1 it is easy to notice, that the interval criterion (13), 

allowing to consider a sign on the greatest divergence Stn, also is unable to establish unpresentable 
character of sample {}n. 

It is known, that decrease in risk of the erroneous decision at classification of data can be 
reached by the account not only errors I type, but also the II types [4]. 
 The most simple decision of this problem would be comparison Stn between F() and 

)(F*
V   with boundary values of the interval  nn St;St  corresponding a significance value =0,5. It 

is that limiting case of values  when Stn=0. Thus a errors II type =(1-), i.e. also it is equal 0,5. If 
 to accept it is less, than 0,5 the errors II type increases .  

In real conditions: 
- configurations F() also )(F*

V   are various, i.e. Stn0; 
- for the same value Stn size (+) less or it is equal to unit; 
- in process of increase Stn size (+) decreases, reaches the minimum (Stn,opt) and then 

increases; 
- if Stn<Stn,opt,  then >, if Stn> Stn,opt, then <; 
- distinction between  and  increases in process of increase in a divergence between Stn and 

Stn,opt.  
 Comparison of realizations Stn to boundary values nSt  and nSt , calculated accordingly, for 

25.0)St(F n
*   and 75.0)St(F n

*  , allows to not calculate s.f.d., which defines a errors II type , 
that it is possible to carry to advantages of this way. Its lacks are necessity of increase twice 
numbers of modeled realizations of distribution )(F*

V  , unjustified decrease in disorder Stn, the 
heuristic approach. 
 Algorithm of calculation s.f.d., describing the greatest deviation F() and )(F*

V  , provided 
that )(F*

V   it is unpresentable, consists of following sequence of calculations: 
1. It is modeled next (from necessary N realizations) their sample n random numbers; 
2. It is formed s.f.d. )(F*

V  ; 
3. The greatest divergence between F is defined F() and )(F*

V  . Designate this size as Stn,e 
where the index «e» corresponds to empirical character of sample. 
Having defined statistical characteristics of this sample { )(F*

V   and Stn,e}, start formation s.f.d. 
)St(F *

n
*  on realizations of the greatest divergence between functions of distribution F() and 

set (N) s.f.d. )(F*
V  , modeled on s.f.d. )(F*

V  . For what: 
4. On s.f.d. )(F*

V   distribution is formed  































1n

1n1
i1i

i

1

*
V

if1

if
)1n)((

)(
1n
1i

if0

)(F    (16) 

5. Under standard program RAND the random number is modeled  with uniform distribution in 
an interval [0,1]; 
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6. On distribution (16) calculated corresponding probability  random number . Calculations are 
spent under the formula 

)]1i()1n()[( i1ii       (17) 
with i=1, (n+1) 

7. Items 5 and 6 repeat n time; 
8. On sample {}n is under construction s.f.d. )(F*

V  ; 
9. The greatest divergence between F() and )(F*

V   is defined. Designate it through *
nSt ; 

10. Items (59) will repeat N time; 
11. Average value of a random variable *

nSt  defined. Designate it through )St(M *
n

* ; 
12. On N to values, *

nSt  it is formed s.f.d. )St(F *
n

* .  
If to assume, that distribution )St(F *

n
*  corresponds to the normal law of distribution, 

average value )St(M *
n

*  is equal Stn,e and corresponds 5,0)St(F *
n

*  , for all realizations Stn,e, 
which probability 0.1<<0.5, the preference should be given to assumption Н2. However, the 
assumption of the normal law of distribution of function )St(F *

n
*  mismatches the validity. As an 

example on fig.5 the histogram of distribution of realizations *
nSt  for s.f.d. is resulted. )(F*

V  , 
resulted in table 1. 

 
Fig.5. Histogram of realizations *

nSt  
 
Let's enter into consideration two assumptions: 

Н1 - sample {}n reflects laws of distribution F();  
Н2 - sample {}n does not reflect law of distribution F(). 

The recommended algorithm of decision-making depends on a parity of average values of 
realizations Stn and *

nSt . In this connection the distribution describing risk of the erroneous decision 
in function Stn designate Sh1(Stn), and in function *

nSt  – Sh2(Stn). 
At )St(M)St(M *

n
*

n
*   

     










)St(F)St(2Sh

)St(F1)St(1Sh
*
nn

n
*

n               (18) 

 Algorithm of decision-making looks like: 
  If nэ,n StSt  , then Н2, else 

If *
nэ.n StSt  , then Н1, else 

If )St(2Sh)St(1Sh nn  , then Н2,                                                 (19)
 Otherwise Н1 
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At )St(M)St(M *
n

*
n

*   

  










)St(F)St(2Sh

)St(F1)St(1Sh

n
*

n

*
n

*
n        (20) 

 Algorithm of decision-making looks like: 
   If *

nn StSt  , then Н1, else 

If nэ,n StSt  , then Н2, else 

If )St(2Sh)St(1Sh n
*
n  , then Н2,        (21) 

Otherwise Н1 
In the illustrative purposes on fig. 6 functions of distribution Sh1(Stn) and Sh2(Stn) are 

resulted. calculated according to table 1.  

 
Fig. 6. Laws of change s.f.d. F*(Stn) and )St(F *

n
*  for n=4: a – s.f.d. F*(Stn); b - )St(F *

n
*

 

 
As M*(Stn) it has appeared less than )St(M *

n
*  functions of distribution Sh1(Stn). and 

Sh2(Stn). were calculated accordingly under the formula (18).  
In table 3 numerical values of the parameters defining result of the decision are 

systematized. As follows from tab. 3 as Sh1(Stn,e)<<Sh2(Stn,e)., the preference, according to (19) is 
given assumption Н2. In other words, attraction to the statistical analysis of size of a errors I type 
and errors II types, allows distinguish unpresentable samples. 

Table 3 
The basic parameters of calculation 

Parameter Conditional 
designation 

Estimation 

1. Number casual sample 
2. Average value of the greatest divergence of distributions F() 

and )(F*
V   

3. Average value of the greatest divergence of distributions 
)(F*

V   and )(F*
V   

4. Empirical value of the greatest divergence of distributions F() 
and )(F*

V   
5. Boundary values of an interval of change Stn c =0.1  
       top 
       bottom 
6. Boundary values of an interval of change *

nSt  with =0,01  
       top 

n 
)St(M n

*  
 

)St(M *
n

*  
 
 

Stn,e 
 
 

nSt  

nSt  
 

4 
-0,207 

 
 

0,292 
 
 
 

0,257 
 
 
 

0,319 
-0,567 



Farhadzadeh E.M., Farzaliyev Y.Z., Muradaliyev A.Z. - DECREASE IN RISK ERRONEOUS CLASSIFICATION THE MULTIVARIATE STATISTICAL DATA 
DESCRIBING THE TECHNICAL CONDITION OF THE EQUIPMENT OF POWER SUPPLY SYSTEMS 

 
RT&A # 01 (28)  

(Vol.8) 2013, March  
 

 

63 

      bottom 
7. Probability Stn,e on s.f.d. )]St(F1[ n

*  
                                on s.f.d. )St(F *

n
*  

8. The assumption is accepted 

*
nSt  
*
nSt  

Sh1(Stn,e) 
Sh2(Stn,e) 

Н 

 
0,544 

 
0,292 
0,09 
0,42 
Н2 

 
It is necessary to note, that attraction to an estimation of character of a divergence of 

distributions F() and )(F*
V   distributions )St(F *

n
*  for all realizations samples it is unjustified, as 

for of some from them, for example at Sh1(Stn).0,5 sample {}n it is most truly representative, 
and at Sh1(Stn)0,1 – it is unpresentable. 

There fore calculations s.f.d. )St(F *
n

*  offered to spend for following conditions: 
 

1. )St(M)St(M *
n

*
n

*   

95.0.nэ,n
*

05.0,n StStSt   

75.0.nэ,n
*

25.0,n StStSt         (22) 

2. )St(M)St(M *
n

*
n

*   
*

95.0,nэ,n05.0,n StStSt   
*

75.0,nэ,n25.0,n StStSt         (23) 

Critical values of statistics Stn for F*(Stn)=0,25 and average values M*(Stn) for N=25000 
realizations Stn and of some n are resulted in table 4. 

Table 4 
Bottom boundary  nSt  and average )St(M n

*  values of statistics Stn  
N n Stn 

(F*(Stn)=0.25) 
M*(Stn) N n Stn  

(F*(Stn) =0.25) 
M*(Stn) 

1 
2 
3 
4 
5 
6 
7 
8 

2 
3 
4 
5 
6 
7 

11 
16 

-0.498 
-0.435 
-0.385 
-0.343 
-0.312 
--0.294 
-0.235 
-0.198 

-0.33 
-0.254 
-0.207 
-0.173 
-0.146 
-0.133 
-0.87 
-0.063 

9 
10 
11 
12 
13 
14 
15 

22 
29 
40 
60 
90 
120 
150 

-0.17 
-0.149 
-0.127 
-0.105 
-0.086 
-0.074 
-0.067 

-0.047 
-0.037 
-0.027 
-0.019 
-0.012 
-0.00- 
-0.008 

 
The computer technology of an estimation of parameters of individual reliability assumes 

automation of process of classification of multivariate data. For what, as initial data boundary 
values of statistics Stn should entered. In this connection, by analogy to formulas (8) and (9), the 
opportunity of an estimation of dependence of boundary values Stn from n was of interest.  

The equations of regress received under the standard program of sedate transformation, are 
characterized by factor of determination R2: (R2> 0.999) and for of some Sh1(Stn).=/2 look like: 
- for   025,0St1Sh n    n)1nB(n)1n23.1(St 52.0

1
52.0

n    (24) 
and   975,0St1Sh n    48.0

1
48.0

n nBn23.1St      (25) 

- for   05,0St1Sh n    n)1nB(n)1n12.1(St 52.0
2

52.0
n    (26) 
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and   95,0St1Sh n    48.0
2

48.0
n nBn12.1St      (27) 

- for   1,0St1Sh n     n)1nB(n)1n98.0(St 52.0
3

52.0
n    (28) 

and   9,0St1Sh n    48.0
3

48.0
n nBn98.0St      (29) 

- for   25,0St1Sh n    n)1nB(n)1n75.0(St 52.0
4

52.0
n    (30) 

and   75,0St1Sh n    48.0
4

48.0
n nBn75.0St      (31) 

The equation of dependence of constant factors B from  with factor of determination R2: 
(R2> 0.993) looks like: 

   175.0

nSt1Sh652.0B


     (32) 
 Thus, the bottom and top boundary values of statistics Stn in view of the equation (12) 
calculated under following formulas: 

  





 

 

n
1StSt

nSt1Sh652.0St

nn

048.175.0

nn

   (33) 

 For practical calculations nSt  and nSt  more often formulas (27) and (12) used. 
 
CONCLUSIONS 
 

1. The interval nonparametric criterion of the control of conformity samples from n pseudo-
random numbers is offered to the uniform law in an interval [0,1]; 

2. In a basis of criterion there is a distinction of distributions of positive and negative values of 
the greatest divergence of distributions F() and )(F*

V  ; 
3. Transition from statistics Dn to statistics Stn allows not only to simplify algorithm of 

calculation greatest divergences F() and )(F*
V  , but also to estimate an opportunity of use 

of statistics Stn at an estimation of the greatest divergence s.f.d. )X(F*
  and )X(F*

V , to 
estimate risk of the erroneous decision Sh1(Stn); 

4. Increase of accuracy of the control of conformity of distribution *
nSt  to the uniform law 

reached by practical realization of recommended algorithm of the decision-making 
considering not only a errors I type, but also the errors II type. 
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