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Abstract 

 

Although the concept of statistical tolerance limits has been well recognized for long time, 

surprisingly, it seems that their applications remain still limited. Analytic formulas for the 

tolerance limits are available in only simple cases. Thus it becomes necessary to use new or 

innovative approaches which will allow one to construct tolerance limits on future order statistics 

for many populations. In this paper, a new approach to constructing lower and upper tolerance 

limits on order statistics in future samples is proposed. Attention is restricted to location-scale 

distributions under parametric uncertainty. The approach used here emphasizes pivotal quantities 

relevant for obtaining tolerance factors and is applicable whenever the statistical problem is 

invariant under a group of transformations that acts transitively on the parameter space. It does 

not require the construction of any tables and is applicable whether the past data are complete or 

Type II censored. The proposed approach requires a quantile of the F distribution and is 

conceptually simple and easy to use. For illustration, the normal and log-normal distributions are 

considered. The discussion is restricted to one-sided tolerance limits.  A practical example is 

given. 
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1. Introduction 
 

Statistical tolerance limits are an important tool often utilized in areas such as engineering, 

manufacturing, and quality control for making statistical inference on an unknown population. As 

opposed to a confidence limit that provides information concerning an unknown population 
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parameter, a tolerance limit provides information on the entire population; to be specific, one-

sided tolerance limit is expected to capture a certain proportion or more of the population, with a 

given confidence level. For example, an upper tolerance limit for a univariate population is such 

that with a given confidence level, a specified proportion or more of the population will fall below 

the limit. A lower tolerance limit satisfies similar conditions. It is often desirable to have statistical 

tolerance limits available for the distributions used to describe time-to-failure data in reliability 

problems. For example, one might wish to know if at least a certain proportion, say , of a 

manufactured product will operate at least T hours. This question can not usually be answered 

exactly, but it may be possible to determine a lower tolerance limit L(X1, …, Xn), based on a 

preliminary random sample (X1, …, Xn), such that one can say with a certain confidence  that at 

least 100 % of the product will operate longer than L(X1, …, Xn). Then reliability statements can be 

made based on L(X1, …, Xn), or, decisions can be reached by comparing L(X1, …, Xn) to T. Tolerance 

limits of the type mentioned above are considered in this paper. That is, if f (x) denotes the density 

function of the parent population under consideration and if S is any statistic obtained from the 

preliminary random sample (X1, …, Xn) of that population, then L(S) is a lower  probability 

tolerance limit for proportion  if 

  
( )

Pr ( ) ,
L S

f x dx  (1) 

and U(S) is an upper  probability tolerance limit for proportion   if  

   

( )

Pr ( ) ,
U S

f x dx  (2) 

where  is the parameter (in general, vector). 

The common distributions used in life testing problems are the normal, log-normal, 

exponential, Weibull, and gamma distributions [1]. Tolerance limits for the normal distribution 

have been considered in [2], [3], [4], and others.  

Tolerance limits enjoy a fairly rich history in the literature and have a very important role in 

engineering and manufacturing applications. Patel [5] provides a review (which was fairly 

comprehensive at the time of publication) of tolerance limits for many distributions as well as a 

discussion of their relation with confidence intervals for percentiles and prediction intervals. 

Dunsmore [6] and Guenther, Patil, and Uppuluri [7] both discuss 2-parameter exponential 

tolerance intervals and the estimation procedure in greater detail. Engelhardt and Bain [8] discuss 

how to modify the formulas when dealing with type II censored data. Guenther [9] and Hahn and 

Meeker [10] discuss how one-sided tolerance limits can be used to obtain approximate two-sided 

tolerance intervals by applying Bonferroni's inequality. Tolerance limits on order statistics in 

future samples coming from a two-parameter exponential distribution have been considered in 

[11]. 

In contrast to other statistical limits commonly used for statistical inference, the tolerance 

limits (especially on order statistics) are used relatively rarely. One reason is that the theoretical 

concept and computational complexity of the tolerance limits is significantly more difficult than 

that of the standard confidence and prediction limits. Thus it becomes necessary to use new or 

innovative approaches which will allow one to construct tolerance limits on future order statistics 

for many populations. 

In this paper, a new approach to constructing lower and upper tolerance limits on order 

statistics in future samples is proposed. For illustration, the normal and log-normal distributions 
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that are commonly used in reliability and risk theory are considered.  Although the concept of 

statistical tolerance limits has been well recognized for long time, surprisingly, it seems that their 

applications remain still limited. 

 

2. Mathematical Preliminaries 

 

2.1. Probability Distribution Function of Order Statistic 

 

Theorem 1. If there is a random sample of m ordered observations Y1…Ym from a known 

distribution (continuous or discrete) with density function f (y), distribution function F (y), then 

the probability distribution function of the kth order statistic Yk, k{1, 2, …, m}, is given by 

 

2( 1),2

1 ( ) 2

( ) 2( 1)

( ) ( ) ,

k

k

k k m k k

F y k

F y m k

P Y y f x dx









 



 

  

 

(3) 

where 

2( 1)/2 1

2( 1),2

2( 1) 2( 1)1
( )

2 22( 1) 2
,

2 2

m k

m k k

m k m k
f x x

k km k k  

 

 [2( 1) 2 ]/2
2( 1)

 1 ,    0,
2

m k k
m k

x x
k

  (4) 

is the probability density function of an F distribution with 2(mk+1) and 2k degrees of freedom. 

Proof. Suppose an event occurs with probability p per trial. It is well-known that the 

probability P of its occurring k or more times in m trials is termed a cumulative binomial 

probability, and is related to the incomplete beta function Ix(a, b) as follows: 

  (1 ) ( , 1).
m

j m j
p

j k

m
P p p I k m k

j
 (5) 

It follows from (5) that  

( )
{ } [ ( )] [1 ( )] ( , 1)
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m
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( ) 2( 1)
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where 

  
1 2

.
2( 1)

u k
x

u m k
 (7) 

This ends the proof. 

Corollary 1.1. 
1 ( ) 2

( ) 2( 1)

2( 1),2

0

( ) 1 { } ( ) .

k

k

F y k

F y m k

k k k k m k k
P Y y P Y y f x dx

 

(8) 

Corollary 1.2. If yk,m; is the quantile of order  for the distribution of Yk, we have from (8) that 

yk,m; is the solution of 

, ; 2( 1),2 ;1
( ) [ ( 1) ],
k m m k k

F y k k m k q  (9) 

where 
2( 1),2 ;1m k kq   

is the quantile of order 1 for the F distribution with 2(mk+1) and 2k degrees of 

freedom.   

 

2.2. Normal and Log-Normal Distributions 

 

The normal and log-normal distributions are commonly used to model certain types of data that 

arise in several fields of engineering as, for example, different types of lifetime data (see, e.g., [12]). 

The goal of  modeling certain types of data is to provide quantitative forecasts of various system 

performance measures such as service level, expected waiting time, agent's occupancy, schedule 

efficiency, cost etc. Evaluation of these performance measures is important to making optimal 

decisions about overall cost, system performance, which has to be within the allowable budget and 

other performance based constraints. 

Particular properties of the log-normal random variable (as the non-negativeness and the 

skewness) and of the log-normal hazard function (which increases initially and then decreases) 

make log-normal distribution a suitable fit for some engineering data sets. The log-normal 

distribution is used to model the lives of units whose failure modes are of a fatigue-stress nature. 

Since this includes most, if not all, mechanical systems, the log-normal distribution can have 

widespread application. Consequently, the log-normal distribution is a good companion to the 

Weibull distribution when attempting to model these types of units. As may be surmised by the 

name, the log-normal distribution has certain similarities to the normal distribution. A random 

variable is log-normally distributed if the logarithm of the random variable is normally 

distributed. Because of this, there are many mathematical similarities between the two 

distributions. For example, the mathematical reasoning for the construction of the probability 

plotting scales and the bias of parameter estimators is very similar for these two distributions. 



 
Nicholas A. Nechval, Konstantin N. Nechval, Vladimir F. Strelchonok 
CONSTRUCTING TOLERANCE LIMITS ON ORDER STATISTICS  

RT&A, No3 (42) 
Volume 11, September 2016  

37 

Nevertheless, the log-normal distribution differs from the normal distribution in several ways. A 

major difference is in its shape: where the normal distribution is symmetrical, a lognormal one is 

not. Because the values in a lognormal distribution are positive, they create a right skewed curve 

(Figure 1).  

                                 ( )f x   

x  

Figure 1. Log-normal probability density functions with =0 for selected values of  2. 

 

The log-normal distribution has played major roles in diverse areas of science. Royston [13] 

modeled survival time in cancer with an emphasis on prognostic factors using the log-normal 

distribution. Log-normal distributions gave appropriate description of the overall service times 

and the service times of administrative, e-mail, miscellaneous and network jobs.  

Finally, log-normal distributions are self-replicating under multiplication and division, i.e., 

products and quotients of log-normal random variables are themselves log-normal distributions 

(Crow and Shimizu [14]; Aitchison and Brown [15]), a result often exploited in back-of-the-

envelope calculations. 

A positive random variable X is said to be log-normally distributed with two parameters  

and  2 if lnX X is normally distributed with mean  and variance  2. The two-parameter log-

normal distribution is denoted by (, 2); the corresponding normal distribution is denoted by 

N(, 2). The probability density function (pdf) of X having (, 2) is  

    

2

2

1 [ln ]
( ) exp ,    0,     < ,    0,

22

x
f x x

x



 

 

 
      

   

(10) 

where =(, 2). The cumulative distribution function (cdf)) of X   is given by  

  

ln
( ) Pr( ) .

x
F x Z x





 
   

   

(11) 

It follows from (10) that 

       

2

2

( )1
~ ( ) exp ,   ,

22

x
X f x x  (12) 

that is, X ln X ~ N(, 2), where  = (, 2),  <  <  is the location parameter and  > 0 is the 

scale parameter. The cdf of the normal distribution is given by  



 
Nicholas A. Nechval, Konstantin N. Nechval, Vladimir F. Strelchonok 
CONSTRUCTING TOLERANCE LIMITS ON ORDER STATISTICS  

RT&A, No3 (42) 
Volume 11, September 2016  

38 

   
2

2

( )1
( ) exp .

22

y
x

F x dx  (13) 

It is known (Nechval and Vasermanis [16]) that the complete sufficient statistic for the parametric 

vector , based on observations in a random sample (X1, ..., Xn) of size n from the normal 

distribution (13) is given by 

  
2 2
1

1 1

/ ,  ( ) / ( 1) .
n n

i i
i i

S X X n S X X n  (14) 

Here the following theorem takes place. 

Theorem 2. Let (X1, ..., Xn) be a preliminary random sample from the normal distribution (13) , 

where it is assumed that the parametric vector  = (, 2) is unknown. Then the joint probability 

density function of the pivotal quantities, 

   
1

( )
,

n X
V






    

2

1
2 2

( 1)
,

n S
V




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(15) 

is given by 

      1 1 2 2( ) ( ) ( ),f v f v f v  (16) 
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     1 2( , ),V V V  (17) 
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

 
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n

n
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
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(19) 

Proof. The joint density of X1, ..., Xn is given by 

2 1/2 2
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1
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(20) 

Using the invariant embedding technique (Nechval et al. [17], [18], [19]), we transform (20) to 
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Normalizing (21), we obtain (16). This ends the proof. 

Thus,  

      
2

1 2 1~ (0,1),    ~ ,nV N V     (22) 

where V2 is statistically independent of V1. 

Theorem 3. If V1 is a normally distributed random variable with unit variance and zero mean, 

and V2 is a chi-squared distributed random variable with n-1 degrees of freedom that is statistically 

independent of V1, then 
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is a non-central t-distributed random variable with n-1 degrees of freedom and non-centrality 

parameter , where  
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(25) 

is the probability density function of T, 
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(27) 

is the cumulative distribution function of T. (x) is the standard normal distribution function. Note 

that the non-centrality parameter  may be negative.  

Proof. It follows from (23) that 

https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Noncentrality_parameter
https://en.wikipedia.org/wiki/Noncentrality_parameter
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Since it follows from (24) and (28) that 
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(29) 

we get the cumulative distribution function 
1, ( )nF t 

 of the non-central t-distribution given in (27). 

It is easy to show that the probability density function of T defined in (25) is given by 

   1, 1,( ) ( ).n nf t F t   


 
(30) 

This completes the proof. 

 

3. Tolerance Limits on Order Statistic 

 

3.1. Lower Tolerance Limit 

 

Theorem 4. Let X1, …, Xn be observations from a preliminary sample of size n from a normal 

distribution defined by the probability density function (12). Then a lower one-sided -content 

tolerance limit at a confidence level , Lk Lk (S) (on the kth order statistic Yk, k{1, …, m},  from a set 

of m future ordered observations Y1  …  Ym  also from the distribution (12) ), which satisfies  

    Pr ( ) ,
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P Y L  (31) 
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2( 1),2 ;m k kq    is the quantile of order  for the F distribution with 2(mk+1) and 2k degrees of 

freedom. 

Proof. It follows from (8), (13) and (31) that 
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https://en.wikipedia.org/wiki/Noncentrality_parameter
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where   

    1
( ) ,

L k
L X S  (36) 

is the lower tolerance factor,  
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

        (37) 

It follows from (31), (35) and (37) that the lower tolerance factor 
L should be chosen such that 

 , , , , ;( ) ( ) ( ) ,r r L r rF t F n F t          (38) 

where , ;rt  is the quantile of order  for the non-central t-distribution with r degrees of freedom 

and non-centrality parameter . It follows from (38) that 

     , ; .L rt n    (39) 

It follows from (36) that 1.k LL X S   This completes the proof. 
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where 
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Then it follows from (31) and (40) that t has to be found such that 
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where 
, ;rt 

 is the quantile of order  for the non-central t-distribution with r=n1 degrees of 

freedom and non-centrality parameter , 
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is the probability density function of T, where 

   
2( ).W W t r  

 (45) 

Corollary 4.2. If  

    
2( ) 2,W W t r    (46) 

then 

 

/2 2
( 1)/2 1/2

, , 2 ( 1)/2 2
0

exp( / 2) 2
( ) ( ) exp

/ 2 ( )

r
r

r r r

r t
f t F t w w w dw

r t r t r





     

   
          

  

   
 

/2 2

2 ( 1)/2 2
0

exp( / 2) (( 1) / 2) 2
,    .

!/ 2 ( )

j
r

r
j

r r j t
t

jr t r t r






     
        


 

(47) 

This form of the density function is derived in Rao [20] and appears in Searle [21]. In both Rao and 

Searle,   is incorrectly omitted from the denominator. It should also be noted that the central t-

distribution is just a special case of the non-central t with  = 0.  

Corollary 4.3. If k=m=1, then 

   1,    .z n      
 

(48) 

Corollary 4.4. Let 1X   …  nX  be ordered observations from a preliminary sample of size n 

from a log-normal distribution defined by the probability density function (10). Then a lower one-

sided -content tolerance limit at confidence level , ( )k kL L S  (on the kth order statistic ,kY  
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k{1, …, m}, from a set of m future ordered observations 1Y   …  kY  also from the distribution 

(10) ), which satisfies 

     Pr ( ) ,
k k

P Y L  (49) 

is given by 

      1exp exp ,k k LL L X S    (50) 

where  

ln ,  {1,  ...,  },i iX X i n    2 2

1
1 1

/ ,  ( ) / ( 1),
n n

i i
i i

X X n S X X n  

1 ,z n


     2( 1),2 ; 2( 1),2 ;
( 1) [( 1) ],

m k k m k k
m k q m k q k  

   , ; , , ;arg ( ) ,    1,    .r r L rt F t r n t n    
         

(51)  

3.2. Upper Tolerance Limit 
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where   
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is the upper tolerance factor,  
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It follows from (49), (56) and (58) that the upper tolerance factor 
U should be chosen such that 

  , , , , ;1( ) ( ) ( ) 1 ,r r U r rF t F n F t            (59) 

where , ;1rt   is the quantile of order 1 for the non-central t-distribution with r degrees of freedom 

and non-centrality parameter . It follows from (59) that 

  , ;1 .U rt n     (60) 

It follows from (57) that 1.k UU X S  This completes the proof. 

Corollary 5.1. Let 1,X  …  nX  be observations from a preliminary sample of size n from a log-

normal distribution defined by the probability density function (10). Then an upper one-sided -

content tolerance limit at confidence level , ( )k kU U S  (on the kth order statistic ,kY  k{1, …, m}, 

from a set of m future ordered observations 1Y   …  kY  also from the distribution (10) ), which 

satisfies 
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Remark 1. It will be noted that an upper tolerance limit may be obtained from a lower 

tolerance limit by replacing    by 1,   by 1.  

 

4. Practical Example 
 

A manufacturer of semiconductor lasers has the data on lifetimes (in terms of hours) obtained 

from testing n=10 semiconductor lasers. These data are given in Table 1. 
  

Table 1.  The data on lifetimes obtained from testing n=10 semiconductor lasers 
 

Observations (in terms of hours) 

1X  
1X  

1X  
1X  

1X  
1X  

1X  
1X  

1X  
1X  

18657 18960 19771 21015 21183 21960 22881 24642 25373 27373 

 

A buyer tells the laser manufacturer that he wants to place two orders for the same type of 

semiconductor lasers to be shipped to two different destinations. The buyer wants to select a 

random sample of m=5 semiconductor lasers from each shipment to be tested. An order is accepted 

only if all of 5 semiconductor lasers in each selected sample meet the warranty lifetime (in terms of 

hours). What warranty lifetime (in terms of hours) should the manufacturer offer so that all of 5 

semiconductor lasers in each selected sample meet the warranty with probability of 0.95?  

In order to find this warranty lifetime, the manufacturer wishes to use a random sample of 

size n=10 given in Table 1 and to calculate the lower one-sided simultaneous tolerance limit Lk=1(S) 

(warranty lifetime) which is expected to capture a certain proportion, say, =0.95 or more of the 

population of selected items (m=5), with the given confidence level =0.95. This tolerance limit is 

such that one can say with a certain confidence   that at least 100 % of the semiconductor lasers in 

each sample selected by the buyer for testing will operate longer than L1(S). 

Goodness-of-fittesting. It is assumed that the data of Table 1 follow the log-normal probability 

distribution (10), where the parameters  and  are unknown. Thus, for the above example, we 

have that n =10, m =5, k = 1,  = 0.95,  = 0.95, 

 
2 2
1

1 1

/ 10,  ( ) / ( 1) 0.016302 .
n n

i i
i i

S X X n S X X n  (64) 

We assess the statistical significance of departures from the model (10) by performing the 

Anderson–Darling goodness-of-fit test. The Anderson–Darling test statistic value is determined by 
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(65) 

where F ( ) is the cumulative distribution function of ln ,X X  

    1( , ),x s      (66) 

n is the number of observations. 

The result from (65) needs to be modified for small sampling values. For the normal 

distribution the modification of A2 is 

   
2 2 2

mod (1 0.75 / 2.25 / ).A A n n  
 (67) 

The 
2

modA  value must then be compared with critical values, 
2 ,A  which depend on the significance 

level  and the distribution type. As an example, for the normal distribution the determined 
2

modA  

value has to be less than the following critical values for acceptance of goodness-of-fit (see Table 2): 

 

Table 2.  Critical values for 
2

modA  
 

 0.1 0.05 0.025 0.01 
2A  0.631 0.752 0.873 1.035 

 

For this example, =0.05, 
2

0.05 0.752,A 
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(68) 

  
2 2 2 2

mod 0.05(1 0.75 /10 2.25 /10 ) 0.212 0.752.A A A     
 (69) 

Thus, there is not evidence to rule out the log-normal model (10). 

Finding lower tolerance limit (warranty lifetime for semiconductor laser). Now the lower one-sided 

simultaneous -content tolerance limit at the confidence level , L1  L1 (S) (on the order statistic Y1 

from a set of m = 5 future ordered observations Y1  … Ym ) can be obtained from (50).   

Since m=5, k=1, =0.95, it follows from (51) that: 

  2( 1),2 ; 2( 1),2 ;
0.989796( 1) [( 1) ,]

m k k m k k
m k q m k q k  (70) 

  
11 9,    =7.3325,   =0.95,r n z n


     

 
(71) 

the quantile of order  for the non-central t-distribution with r degrees of freedom and non-

centrality parameter  is given by  

    
 , ; ,arg ( ) 12.5512,r rt F t    

 
(72) 

the lower tolerance factor is given by 

    , ; 3.969.L rt n    
 

(73) 
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Now it follows from (50), (64) and (73) that 

 1 1exp 13270.k LL X S   
 

(74)  

Statistical inference. Thus, the manufacturer has 95% assurance that at least 100 % of the 

semiconductor lasers in each sample (m=5) selected by the buyer for testing will operate (in terms 

of hours) no less than L1=13270 hours. 

 

5. Conclusion 
 

This paper introduces a methodology to construct the one-sided tolerance limits on order statistics 

in future samples coming from location-scale distributions under parametric uncertainty. For 

illustration, the normal and log-normal distributions are considered. These distributions play a 

vital role in many applied problems of biology, economics, engineering, financial risk 

management, genetics, hydrology, mechanics, medicine, number theory, statistics, physics, 

psychology, reliability, etc., and have been extensively studied, both from theoretical and 

applications point of view, by many researchers, since its inception. 

It will be noted that the theoretical concept and computational complexity of the tolerance 

limits is significantly more difficult than that of the standard confidence and prediction limits. 

Thus it becomes necessary to use new or innovative approaches which will allow one to construct 

tolerance limits on future order statistics for many populations. The concept proposed in this paper 

can be extended to two-sided tolerance limits too.  
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