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Abstract 
We compare the reliability of two finite networks with the same vertex degree and 

the same number of nodes; a regular 16x16 grid and a Poisson network. Both networks 

are subject to random removal of their nodes, and the network failure is defined as the 

reduction of the maximal component beyond some critical level α. The main tool for 

comparing the network resilience are the marginal cumulative D-spectra (signatures) 

of the net- works. It was demonstrated that the regular grid for small α is less reliable 

than the Poisson network. We study also the situation when multiple hits of the same 

node are allowed. We demonstrate that finite networks behave similar to infinite 

random network with regard to the fraction of nodes to be removed to create 

“similar” giant components containing the same fraction of network nodes. Finally, we 

consider a combined attack on net- work nodes by two-type of “shells” where the 

node fails only if it is hit by “shells” of both types. For this case, we derive a formula 

for determin- ing the minimal number of “shells” which destroy the network with 

given probability. 

 

 

  Key words:finite network, attack on network node, cumulative D-spectra 

(signature); combined attack on nodes. 

 

1.Introduction and Preliminaries. D-spectrum 
 

There are many works that study interaction between networks [1,3,4,5,10,11]. The 

following features are typical for probabilistic models of the network interaction: a) networks are 

assumed to be very large, formally infinite; b) network 𝑁1 affects another network 𝑁2 by creation of 

a random connections between their nodes in such a way that a node 𝑎 ∈ 𝑁1 hits a randomly 

chosen node 𝑏 ∈ 𝑁2 . There are models of interaction in which the choice of node 𝑏 ∈ 𝑁2 is not 

random and "hubs" in 𝑁2 have higher probability of being hit than "regular" nodes. Typically, in all 

these models, the particular structure of network 𝑁2 is not specified, except for the node degree 

distribution. 

In this paper we deal only with finite networks having well-defined structure. In other 

words, network 𝑁 subject to an attack is given as a pair 𝑁 = (𝑉, 𝐸), where 𝑉 is the vertex or node 

set, |𝑉| = 𝑛, and 𝐸 is the edge or link set, |𝐸| = 𝑚. We assume that if a node is attacked, then all 

links adjacent to it are erased, while the node remains untouched. 

As a measure of network state in the process of node failures we consider the size of its 

largest component, i.e. the largest set of connected nodes in the network. It is more convenient to 
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characterize the size of the largest component by the fraction 𝛼 of nodes 𝑛 in the network that 

belong to this component. For example, we will consider a 16x16 grid with 𝑛 = 256. If its largest 

component has 200 nodes, we will say that 𝛼 = 200/256 = 0.78 We will also define several states 

of network degradation measured by these fractions 𝛼9 > 𝛼8 >. . . > 𝛼1. We say that the network is 

in perfect state (State10) if its largest component has size 𝐿 ≥ 𝛼9, Generally, we say that the 

network is in state 𝑠 if its largest component has size 𝐿, 𝛼𝑠 > 𝐿 ≥ 𝛼𝑠−1, 𝑠 = 9,8, . . .2. Finally, network 

state is 1 if 𝛼1 > 𝐿. 

 

Our main goal is to analyze network probabilistic behavior when network nodes are 

subject to random node failures. The main tool for this analysis will be so called D-spectra 

technique. 

  Denote by 𝑒1, 𝑒2, . . . , 𝑒𝑛 network components subject to failure (the nodes), and let 𝜋 be a 

random permutation of components numbers,  
 𝜋 = (𝑒𝑖1

, 𝑒𝑖2
, . . . , 𝑒𝑖𝑛

). 

Suppose that all these components are 𝑢𝑝 and we move along the permutation, from left to right, 

and turn each component from up to down. Suppose that network state is controlled after each step. 

Typically, we will observe exactly 9 occasions when network state has changed: first - from the 

perfect State10 to state 𝑠 = 9, from 𝑠 = 9 to 𝑠 = 8, and so on, until the transition from 𝑠 = 2 to 𝑠 =

1.  

  Definition 1. (The anchors) 

  The ordinal number in the permutation 𝜋 of the component whose turning down causes 

network state to change from 10 − 𝑘 to 10 − (𝑘 + 1), 𝑘 = 0,1, . . . ,8 is called the (𝑘 + 1)-st anchor and 

is denoted by 𝑟𝑠+1(𝜋). Each permutation has, therefore, 𝑘 anchors. So, the first anchor signifies the 

transition 10 ⇒ 9, the second - 9 ⇒ 8,...,the ninth - 2 ⇒ 1 

 

  Definition 2. (Multidimensional D-spectrum) 

  Assume that all 𝑛! permutations are equally probable. The 𝑘-dimensional discrete density  
 𝑓(𝛿1, 𝛿2, . . . , 𝛿9) = 𝑃(𝑟𝑖(𝜋) = 𝛿𝑖, 𝑖 = 1,2, . . . ,9) = 

 

 
 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠  𝑤𝑖𝑡ℎ     𝑟𝑖(𝜋)=𝛿𝑖,𝑖=1,2,...,9

𝑛!
 (1) 

 for 1 ≤ 𝛿1 < 𝛿2 <⋅⋅⋅≤ 𝛿9 ≤ 𝑛 is called network multidimensional D-spectrum.# 

 A few comments. Letter "D" for the spectrum signifies the process of destruction since we 

turned from up to down network components moving along the permutation. In literature, the 

multidimensional D-spectrum is termed also as a multidimensional signature, see [6,8]. 

Obviously,  
 ∑1≤𝛿1<𝛿2<⋅⋅<𝛿9≤𝑛 𝑓(𝛿1, 𝛿2, . . . , 𝛿9) = 1. 

It is important to stress that the D-spectrum is a combinatorial parameter of the network that 

depends only on network structure and its states definition. It does not depend on probabilistic 

characterization of the real random mechanism governing network component failures.  

  Our main interest will be in the probabilistic description of each particular anchor. 

Formally speaking, our main tool will be the distributions of the positions of each of the 9 anchors. 

  Definition 3. The 𝑗-th marginal D-spectrum 

  The distribution  

 𝑓(𝑗) = (𝑓1
(𝑗)

, 𝑓2
(𝑗)

, . . . , 𝑓𝑛
(𝑗)

) 

of the position of the 𝑗-th anchor is called the 𝑗-th marginal D-spectrum.# 

Here 𝑓𝑖
(𝑗)

= 𝑃( 𝑡ℎ𝑒  𝑗 − 𝑡ℎ  𝑎𝑛𝑐ℎ𝑜𝑟  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑖𝑠     𝑖). 

Obviously,  

 𝑓𝑖
(𝑗)

= 𝑃(𝑟𝑗(𝜋) = 𝑖) = 

 

 ∑1≤𝛿1<𝛿2<...𝛿𝑗=𝑖<...<𝛿9≤𝑛 𝑓(𝛿1, 𝛿2, . . . , 𝛿𝑗 = 𝑖, . . . , 𝛼9) (2) 

  In what follows, it is more convenient is to operate with a so-called cumulative (marginal) D-
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spectra. 

Definition 4. The 𝑗-th cumulative D-spectrum 

The cumulative distribution function (cdf) 𝐹(𝑗)(𝑥) of the position of the 𝑗-th anchor in 

random permutation 𝜋 is called the 𝑗-th cumulative D-spectrum:  

 𝐹(𝑗)(𝑥) = ∑𝑥
𝑖=1 𝑓𝑖

(𝑗)
, 𝑥 = 1,2, . . . , 𝑛. # (3) 

  

  Let us clarify the probabilistic meaning of 𝐹(𝑗)(𝑥). Divide all network states into two sets 

U and 𝐷. Let all states 𝐽 ≥ (10 − 𝑗) belong to 𝑈, and all the remaining states - to 𝐷, 𝑗 = 0,1,2, . . . ,9. 

Denote by 𝑌(𝑗) the random number of components needed to turn down in the course of the 

destruction process to cause the transition from 𝑈 to 𝐷. Note that 𝑓𝑖
(𝑗)

= 𝑃(𝑌(𝑗) = 𝑖). Then  

 𝐹(𝑗)(𝑥) = 𝑃(𝑌(𝑗) ≤ 𝑥). 

In words: 𝐹(𝑗)(𝑥) is the cdf of the number of components to be destroyed to cause the transition 

from 𝑈 to 𝐷 

 

  Remark 1 

  Suppose that the network has only two states: the 𝑈𝑃 state, if its largest component has 

size 𝐿 ≥ 𝛼 = 0.7, and the complementary state 𝐷. There will be only one anchor designating the 

position of the component whose destruction leads to the transition 𝑈 ⇒ 𝐷. The corresponding D-

spectrum is nothing but so-called signature introduced by Samaniego [15] and the cumulative D-

spectrum is the so-called cumulative signature, see [15,16].# 

 

  Remark 2 

  Consider a star network with central node 𝑎 and three peripheral nodes 𝑏, 𝑐, 𝑑 that are 

connected to 𝑎 by links (𝑎, 𝑏), (𝑎, 𝑐), (𝑎, 𝑑). If node 𝑎 fails, the network disintegrates into four 

isolated components. If network state is defined according to the size of its largest component, we 

observe a jump from state 4 to state 1. 

  Formally speaking, it may happen that in the process of component destruction we may 

observe a transition from state 𝐽 − 𝐴 to state 𝐽 − 𝐴 − 𝐵, 𝐵 > 1. Suppose it happens after destructing 

component standing on the 𝑖-th position. Then we put 𝑟𝐴+1(𝜋) =. . . = 𝑟𝐴+𝐵(𝜋) = 𝑖 and therefore 

formally provide that all permutations have the same number of anchors.# 

 

 
Figure  1:  Random graph with 𝑛 = 252 nodes and average node degree 𝑑 = 3.75 



 
Gertsbakh I., Vaisman R. 
RESILIENCE OF FINITE NETWORKS  

RT&A, No4 (43) 
Volume 11, December 2016  

11 

 2. Resilience of a Regular Grid vs Random Graph 
  

In this section we compare the resilience of two finite networks having approximately the 

same number of nodes and the same average node degree. The first network (call it ’Grid’) is a 

16x16 regular grid with 𝑛 = 256 nodes and 480 edges, see Figure 3. The average node degree is 

960/256=3.75. 

 
 

Figure  2: 16x16 Grid. Failed nodes are shown by red 

  

The second network is a random Poisson graph (call it "Map") with 252 nodes and 473 

edges thus having the same average node degree 3.75. Each of these networks was subject to 

random node removal. For Grid and Map we introduced several states according to the fraction 𝐿 

of all nodes in the maximal (connected) component. This component is an analogue of the giant 

component in an infinite network:  
 𝑆𝑡𝑎𝑡𝑒10: 𝐿 ≥ 0.9; 𝑆𝑡𝑎𝑡𝑒9: 0.8 ≤ 𝐿 < 0.9; . . . ; 𝑆𝑡𝑎𝑡𝑒2: 0.1 ≤ 𝐿 < 0.2; 𝑆𝑡𝑎𝑡𝑒1: 𝐿 < 0.1. 

 

   
Figure  3:  Cumulative D-spectra for Grid vs Map networks. Upper pair is for transition 2 ⇒ 1; left 

lower - for transition 3 ⇒ 2, right - for transition 4 ⇒ 3. In each pair, the right curve (blue) is for 

Map, the left - for Grid 
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Figure  4:  Cumulative D-spectra for Grid vs Map networks. Upper pair is for transition 5 ⇒ 4 (left) 

and 6 ⇒ 5 (right). The red curve is for Grid, blue - for Map. Here again Map is more resilient. 

Situation changes for the transitions 7 ⇒ 6,8 ⇒ 7,9 ⇒ 8 and 10 ⇒ 9, see the graphs in the middle 

and the bottom 

.  

  Random permutation 𝜋 has therefore nine anchors 𝑟1(𝜋), 𝑟2(𝜋),..., 𝑟9(𝜋) signifying the 

transition from State10 to State9, from State9 to State8, etc.   The cumulative marginal D-spectra are 

shown on Figures 3 and 4. Figure 3 shows Grid vs Map marginal spectra for the transitions 2 ⇒

1,3 ⇒ 2,4 ⇒ 3. 

  The spectrum for Grid is in red, for Map -in blue. The most surprising and not expected 

phenomenon is that the Grid marginal spectra are shifted to the left from the Map spectra. It means 

that Map is more resilient than the Grid! Let us examine the graph FMapGrid30. If about 110 nodes 

are destroyed, the largest component of Grid with probability about 0.5 has 0.3 ⋅ 256 nodes while 

Map has not suffered at all. To cause the transition 3 ⇒ 2 with probability 0.5 for Map, one has to 
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destroy about 140 nodes ! 

  Two upper graphs on Figure 3 present the Map vs Grid spectra for the transitions 5 ⇒ 4 

and 6 ⇒ 5. Here again we see that blue curves (Map spectra) are on the right of the Grid 

spectra.The advantage in resilience of Map vs Grid vanishes when the fraction of nodes in the 

maximal component becomes ≥ 0.6, see the graphs in the middle row and in the bottom of Figure 

4. When the maximal component has 0.9-0.7 faction of all nodes, Grid is slightly more resilient. For 

𝛼 = 0.6 both spectra practically coincide, see middle graphs, on the left. 

  In [7], comparison was made of the resilience for small random networks (𝑛 ≤ 40) vs 

regular networks, for node degrees 𝑑 = 3,4 and 5. Network failure was defined as the decrease of 

component becomes below 0.3𝑛. It was observed that for 𝑑 = 5, the regular network is more 

resilient, but its advantage over random network became very small when 𝑑 was 4 or 3. 

 

3. Multiple Hits 
 

When an external source produces a hit on a randomly chosen node of a network that has 

𝑁 nodes, 𝑁 → ∞, the probability of multiple hits of the same node can be neglected. The situation 

changes drastically when the network subject to an external attack has a finite number of nodes 𝑛. 

Formally, we are in a situation well-studied in classical probability theory. Suppose that 𝑏 balls are 

randomly placed into 𝑛 boxes. We need to find the probability 𝑝(𝑘|𝑏) that there will be exactly 𝑘 

boxes that will contain at least one ball. This problem is known is combinatorics as occupancy 

problem and its solution is given by the famous DeMoivre’s formula [2], p 242:  

 𝑝(𝑘|𝑏) =
𝑛!

𝑘!(𝑛−𝑘)!
∑𝑘

𝑡=0 (−1)𝑡 𝑘!

𝑡!(𝑘−𝑡)!

(𝑘−𝑡)𝑏

𝑛𝑏 , 𝑘 = 1, . . . , 𝑚𝑖𝑛(𝑛, 𝑏). (4) 

 

We are interested now in finding network 𝐷𝑂𝑊𝑁 probability 𝑃(𝐷𝑂𝑊𝑁; 𝑏) when it is hit by 

𝑏 "balls". (A node that receives more than one hit remains down). Suppose that the network 

entrance into the DOWN state is described by 𝑗-th marginal cumulative D-spectrum 𝐹(𝑗)(𝑥). Using 

the Total Probability formula, we obtain that  

 𝑃(𝐷𝑂𝑊𝑁; 𝑏) = ∑min(𝑛,𝑏)
𝑘=0 𝑝(𝑘|𝑏) ⋅ 𝐹(𝑗)(𝑘), (5) 

 where 𝑝(𝑘|𝑏) is given by (4). 

 

 
Figure  5: Comparison of 𝑃(𝐷𝑂𝑊𝑁; 𝑏) (right curve in each pair) with 𝐹(𝑗)(𝑏) (left curve in each 

pair), for GRID. Left pair is for 𝑗 = 2; right pair - for 𝑗 = 5 
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Figure  6: Comparison of 𝑃(𝐷𝑂𝑊𝑁; 𝑏) (right curve in each pair) with 𝐹(𝑗)(𝑏) (left curve in each 

pair) for Map. Left pair is for 𝑗 = 2; right pair - for𝑗 = 5  

  

Examine, for example, the right pair of curves on Figure 5. The left one (in blue) is the 

cumulative marginal spectrum of GRID, for which the DOWN state is defined as the drop of 

largest component below 0.5𝑛. The red curve is 𝑃(𝐷𝑂𝑊𝑁; 𝑏) as a function of the number of "balls" 

thrown on the nodes of GRID. We see that, e.g., for probability 0.8, the horizontal distance between 

the curves is about 25, which means that about 25 nodes (out of approximately 125) are hit more 

than once. The comparison of the green and yellow curve on this figure shows that here the 

number of nodes with multiple hits is much smaller because the transition 9 ⇒ 8 takes place after 

considerably smaller number of damaged nodes (50-60). Figure 6 presents a similar picture for 

Map network. 

 

4. Comparing Giant Component in Infinite Poisson Network With 

Maximal Component in a Finite Network 
 

  Let us consider first a Poisson random infinite network in which a fraction 𝛽 of its nodes 

is randomly chosen and removed. Then the size of the giant component 𝐺 can be found from the 

following equation, see [12] page 597:  

 𝐺 = (1 − 𝛽)(1 − 𝑒−𝑑⋅𝐺), (6) 

 where 𝑑 is the average node degree. Take 𝑑 = 3.75. Let us take 𝐺 = 0.9(0.1)0.1 fraction of all 

nodes and find out from (6) the corresponding values of 𝛽. These values are presented in the 

second row of Table 1. 

  

Table  1: Giant component vs maximal component in the Map 

.  

𝐺  0.9  0.8  0.7  0.6  0.5 0.4 0.3 0.2 0.1  

𝛽 0.068 0.203  0.245  0.329  0.409  0.485 0.556  0.621  .680 

𝑞0.5 0.079  0.0171  0.258 0.341  0.420  0.496  0.559  0.614  0.680  
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Now let us compare the 𝛽-values with the number of nodes hit in the Map in order to 

provide with probability 0.5 that the maximal component is reduced to 0.9(0.1)0.1 fraction of 252 

nodes. For this purpose we have to look at the values of 𝑞0.5, the 0.5-quantiles, of the marginal 

cumulative D-spectra,  

 𝐹(𝑗)(𝑞0.5) ≈ 0.5. 

The values of 𝑞0.5 are given in the third row of Table 1. We can say that the average fraction of 

nodes to be removed to create a giant component in an infinite Poisson network is very close to the 

median fraction of nodes to be removed in finite Map network.  

 

  5. Network Attacked by Interacting "Shells" 
 

This title means that the network nodes are hit ("bombarded" or "contaminated") by two 

different kind of substances ("shells"). The "substances" (it might be infection, computer viruses, 

explosives, etc.) have the property that they interact between themselves and make damage to a 

node only if this node is hit by both substances . 

Using the neutral combinatorial language, 𝑀 white balls and 𝑁 black balls are randomly 

located in 𝑛 boxes (representing the nodes) The node is hit (fails) if in the corresponding box are 

balls of different colors. For example, there are 5 boxes numbered 1, 2, 3, 4, 5, boxes 1 and 2 contain 

one white ball, box 5 has 2 white balls. Also, each box contains one black ball. So, boxes 1,2 and 5 

contain balls of different colors and represent the nodes that are hit. Our task is to find out the 

number 𝐵 of boxes containing balls of both colors. 

 

  Lemma 1. 

 The mean value of 𝐵 equals  

 𝐸(𝐵) = 𝑛2(1 − (1 −
1

𝑛
)𝑀)(1 − (1 −

1

𝑛
)𝑁). # (7) 

  

  Lemma 2.  
 𝐸(𝐵2) = 𝑛(1 − (1 − 1/𝑛)𝑀(1 − (1 − 1/𝑛)𝑁) + 𝑛(𝑛 − 1)(1 − 2(1 − 1/𝑛)𝑀 + (1 − 2/𝑛)𝑀) + 

 

 𝑛(𝑛 − 1)(1 − 2(1 − 1/𝑛)𝑁 + (1 − 2/𝑛)𝑁). # (8) 

  The proof of Lemma 1 and 2 are given in the Appendix [18]. 

 

The following theorem follows from Lemmas 1 and 2: 

  Theorem 1 

If 𝑀 = 𝛼𝑛, 𝑁 = 𝛽𝑛, 𝑛 → ∞ then  

 𝐸(𝐵) = 𝑛(1 − 𝑒−𝛼)(1 − 𝑒−𝛽), (9) 

 and  

 𝑉𝑎𝑟(𝐵) = 𝑛(1 − 𝑒−𝛼)(1 − 𝑒−𝛽)(1 − (1 − 𝑒−𝛼)(1 − 𝑒−𝛽)). # (10) 

 

The following theorem was established by [14], see also [13], Section 3:  

  Theorem 2 

  If 𝑛 → ∞, and 0 < 𝑐1 < 𝛽 < 𝑐2 < ∞, and 0 < 𝑐1 < 𝛼 < 𝑐2 < ∞, the random variable 𝑌 =
𝐵−𝐸(𝐵)

(𝑉𝑎𝑟(𝐵))0.5 is asymptotically normal 𝑁(0,1).# 

 

Denote by 𝑞𝜀 the 𝜀-quantile of 𝑁(0,1). Then we arrive at the following 

  Corollary 

Suppose 𝑀 = 𝑁.To guarantee that with probability 1 − 𝜀 that the number of nodes hit by 

balls of both colors is at least 𝐵𝑚𝑖𝑛, we have to take 𝑁 = 𝛾 ⋅ 𝑛0 where 𝑛0 is the number of nodes in 

the network and 𝛾 is the root of the following equation:  

 𝑞𝜀𝑛0
0.5((1 − 𝑒−𝛾)(1 − (1 − 𝑒−𝛾)2)0.5 + 𝑛0(1 − 𝑒−𝛾)2 = 𝐵𝑚𝑖𝑛 . # (11) 
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  Example 

  Suppose that we want to guarantee with probability 0.9987 that the maximal component 

of Grid network will be less or equal 128 nodes, i.e. 𝛼 = 0.5. We see from Figure 4 that this will be 

provided if the number of failed nodes is at least 120 = 𝐵𝑚𝑖𝑛.We find that 𝑞0.0013 = −3 and solve 

the equation (11):  
 −3(2560.5)(1 − 𝑒−𝛾)(1 − (1 − 𝑒−𝛾)2)0.5 + 𝑛(1 − 𝑒−𝛾)2 = 120, 

Using Mathematica "FindRoot" operator [17], we find that the root equals 𝛾 = 1.384, which means 

that 𝑀 = 𝑁 = 1.385 ⋅ 256 = 354.  

   

6. Concluding remarks 
 

  We demonstrated that the resilience and survivability of finite networks under random 

attack on their nodes can be efficiently studied using marginal D-spectra techniques. Let us note 

without going into technical detail that the spectra can be efficiently estimated by well-developed 

Monte Carlo algorithms, with sufficient accuracy and in short CPU times, see [9]. 

Comparison between a regular grid and random graph having the same number of nodes 

and the same node degree reveals that the regular graphs are considerably less resilient for 𝛼 ≤ 0.5 

and that their inferiority in reliability vanishes when the networks’s largest components contain 

large fraction of the nodes (𝛼 ≥ 0.6) 

We demonstrated how to compute network reliability by taking into consideration 

multiple hits of their nodes. 

Our simulation revealed that there are certain similarities between creation of a giant 

component in infinite random network and the largest component in a finite random network. 

Finally, we investigated the case of combined attack on a network nodes with two 

interacting "substances". In this attack, a node fails only if it is hit by two types of "shells". We 

showed how one can obtain an estimate of the number of "shells" of both types that guarantee 

network destruction with given probability. 

 

Appendix [18] 
  1. Let 𝑛 be the number of boxes (bins) and 𝑀 be the number of red balls. Each ball is 

randomly allocated to one of the boxes. Let  
 𝑅𝑖 = { 𝑏𝑜𝑥   𝑖   𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠  𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑜𝑛𝑒  𝑟𝑒𝑑  𝑏𝑎𝑙𝑙 } 

Denote by 1𝑅𝑖
 the 1/0 indicator variable of the event 𝑅𝑖. Obviously,  

 𝑃(𝑅𝑖) = 𝐸[1𝑅𝑖
] = 1 − (((𝑛 − 1)/𝑛))𝑀. (12) 

 Let 𝑋 = ∑𝑛
1 1𝑅𝑖

. Obviously,  

 𝐸[𝑋] = ∑𝑛
1 𝐸[1𝑅𝑖

] = 𝑛𝐸[1𝑅𝑖
] = 𝑛(((𝑛 − 1)/𝑛))𝑀 . (13) 

 

If 𝑛, 𝑀 → ∞ and 𝑀 = 𝛾𝑛, then  
 𝐸[𝑋] = 𝑛(1 − 𝑒−𝛾) 

 

  2. Suppose we have 𝑁 white balls which, independently of the red balls,are located 

randomly into the same 𝑛 boxes (bins). Denote by 𝐵 the random number of boxes containing balls 

of both colors. Obviously,  

 𝐵 = ∑𝑛
𝑖=1 1𝑅𝑖

1𝑊𝑖
. (14) 

 From linearity of expectation and independence of events 𝑅𝑖 and 𝑊𝑖,  

 𝐸[𝐵] = ∑𝑛
𝑖−1 𝐸[1𝑅𝑖

]𝐸[1𝑊𝑖
] = 𝑛(((𝑛 − 1)/𝑛))𝑀 ⋅ (((𝑛 − 1)/𝑛))𝑁 . (15) 

 

 

  3. For deriving the expression for 𝑉𝑎𝑟[𝐵] we need the following formula:  

 𝐸[1𝑅1
⋅ 1𝑅2

] = 1 − 2(
𝑛−1

𝑛
)𝑀 + (

𝑛−2

𝑛
)𝑀. (16) 
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 Note that  

 𝐸[1𝑅1
⋅ 1𝑅2

] = 𝑃(𝑅1 ∧ 𝑅2) = 1 − 𝑃(𝑅1 ∨ 𝑅2) = 

 

 𝑃( 𝑏𝑜𝑥  1  𝑜𝑟  𝑏𝑜𝑥  2  𝑖𝑠  𝑒𝑚𝑝𝑡𝑦 ) = 𝑃(𝑅1) + 𝑃(𝑅2) − 𝑃(𝑅1 ∧ 𝑅2) = 

 

 2(
𝑛−1

𝑛
)𝑀 + (

𝑛−2

𝑛
)𝑀, 

and (16) follows. 

 

  4.Now we are ready to obtain the expression for 𝐸[𝐵2].  
 𝐸[𝐵2] = 𝐸(∑𝑛

1 1𝑅𝑖
⋅ 1𝑊𝑖

)2 = 𝐸(∑𝑛
1 1𝑅𝑖

2 ⋅ 1𝑊𝑖

2 + ∑𝑖≠𝑗 1𝑅𝑖
1𝑅𝑗

1𝑊𝑖
1𝑊𝑗

) = 

 

 𝑛𝐸[1𝑅1
1𝑊1

] + 𝑛(𝑛 − 1)𝐸[1𝑅1
1𝑊1

1𝑅2
1𝑊2

= 𝑛(
𝑛−1

𝑛
)𝑀(

𝑛−2

𝑛
)𝑁 +, 

 

 𝑛(𝑛 − 1)(1 − 2(
𝑛−1

𝑛
)𝑀 + 2(

𝑛−2

𝑛
))𝑀 ⋅ 𝑛(𝑛 − 1)(1 − 2(

𝑛−1

𝑛
)𝑁 + 2(

𝑛−2

𝑛
))𝑁 . 

Now 𝑉𝑎𝑟[𝐵] = 𝐸[𝐵2] − (𝐸[𝐵])2. Substituting the expressions for 𝐸[𝐵2] and 𝐸[𝐵] we obtain that  
 𝑉𝑎𝑟[𝐵] = 𝑛(1 − 𝑥𝑀)(1 − 𝑥𝑁) + 𝑛(𝑛 − 1)(1 − 2𝑥𝑀 + 𝑦𝑀)(1 − 2𝑥𝑁 + 𝑦𝑁) − (𝑛(1 − 𝑥𝑀)(1 −

𝑥𝑁)))2, (17) 

 where 𝑥 = (𝑛 − 1)/𝑛 and 𝑦 = (𝑛 − 2)/𝑛. 

Now assume that 𝑀 = 𝑁 → ∞. Then 𝑥 → 𝑒−𝛾 and 𝑦 → 𝑒−2𝛾. After simple algebra we obtain 

that  

 𝐸[𝐵] = 𝑛(1 − 𝑒−𝛾)2. (18) 

 and  

 𝑉𝑎𝑟[𝐵] = 𝑛(1 − 𝑒−𝛾)2 ⋅ (1 − (1 − 𝑒−𝛾)2). (19) 

 It is remarkable that the variance of 𝐵 is asymptotically of order 𝑛, i.e. the st.deviation of 𝐵 is of 

order √𝑛.# 
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