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Abstract 
 

We establish the convergence of equilibria of finite symmetric closed networks with the FIFO service 

discipline and a general service time with bounded second moment to the unique equilibrium of the 

non-linear Markov process. 

 

1  Introduction 
 

Let us consider a single-class closed network 𝒮𝑁,𝑀 with 𝑀 particles (customers) that live on 

a complete graph with 𝑁 identical nodes (servers). Each node is a server with the FIFO service 

discipline and with a general distribution 𝐹 of service time 𝑠. The evolution of the network goes on 

as follows. 

It is assumed that each particle 𝑗 waits in the queue at the server 𝑖 until all the particles that 

stay ahead of 𝑗 in the same queue complete their service. Then, immediately, the server 𝑖 begins to 

serve the particle 𝑗, and the service time 𝑠 is a random variable distributed as 𝐹 and independent of 

anything else. At the end of the service time the particle 𝑗 jumps to one of the 𝑁 servers (may be, to 

the same one) with equal probability 1/𝑁 and waits for its turn to be served there. This cycle is 

repeated infinitely many times for each particle. 

Under minimal assumptions each network 𝒮𝑁,𝑀 has a unique equilibrium process ℰ𝑁,𝑀 that 

is a universal attractor. Our goal is to prove the convergence of equilibria ℰ𝑁,𝑀 of the Markov 

processes on 𝒮𝑁,𝑀 to a unique equilibrium ℰ of a so-called nonlinear Markov process (NLMP) 𝒮 as 

𝑁 → ∞ and 𝑀/𝑁 → 𝐻. Note that ℰ is a single point in the joint state space 𝑋 of all our processes 

whence ℰ𝑁,𝑀 is a probability measure on 𝑋 for each finite 𝑁, 𝑀. 

The NLMP is, in words, the process on the limit network with 𝑁 = ∞ and 𝑀 = 𝐻𝑁. Its 

behavior is in some aspects simpler than that of finite networks. On bounded time intervals, the 

behavior of 𝒮𝑁,𝑀 converges to that of 𝒮 as 𝑁 → ∞ and 𝑀/𝑁 → 𝐻. The convergence of equilibria, 

nevertheless, is a much harder issue which is the subject of this paper. 

We assume 𝔼𝑠 = 1 and 𝔼𝑠2 < ∞, where the second assumption is necessary for the 

existence of a nontrivial limit process as 𝑁 → ∞ and 𝑀/𝑁 → 𝐻 > 0. Otherwise it is not hard to see 

that we get a small number of very long queues for 𝑁 large and no process at all in the limit. 

The main feature of the networks in consideration is symmetry both in 𝑁 and in 𝑀, that is, 

the system is invariant to all permutations of nodes and of particles. This makes the system a very 

particular case of a  Jackson-type network, see [?]. Namely, this is a single-class queueing network 

with the FIFO service discipline and a general distribution of service time. The specifics of our 

model, namely, its mean-field nature lies in an especially simple structure of the routing matrix: all 

the entries of the 𝑁 × 𝑁-matrix 𝑃𝑁 are equal to 1/𝑁. 

The stochastic dominance technique had been introduced originally by A. Stolyar [?] for 

the deterministic service time. In [?] it was extended to a restricted class of general service times. 

Here we further extended the results to the case of a general service time distribution with the only 

restriction of finite second moment. 

This goal is achieved by means of a new state space that comprises the lengths of queues at 
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𝑁 nodes and the remaining sojourn times of 𝑀 particles. Similar methods can hopefully be used for 

the analysis of other mean-field models. 

 

2  Models and parameters 
 

There are different ways to formalize the evolution of 𝒮𝑁,𝑀 as a Markov process, that is, to 

define a state space and a process generator on this space. We begin with a more natural 

formalization where the current state of the network coincides with the collection of states of its 𝑁 

queues. Then we will give another formalization in terms of 𝑁 queue heights and 𝑀 remaining 

sojourn times. The latter one is more convenient for the proof of our main result though both 

formalizations describe the same dynamics of 𝒮𝑁,𝑀. 

Let us begin with a definition of a state space 𝑄 of a single FIFO queue. Suppose we know 

the exogenous inflow of customers to the queue in the future (𝑡 ≥ 0) as a point process of arrival 

times. Then, in order to know the stochastic queueing process at this server in the future, it suffices 

to know additionally the current elapsed time of service of the oldest customer in the queue plus 

the current number of the remaining customers that are currently waiting their turn to be served. 

Then we may calculate the distribution of future evolution scenarios of the queue. 

However, it would be more convenient for several reasons to represent a queue in a more 

regular way as a finite sequence of  remaining service times ℎ𝑖,𝑗 of all the customers in the queue, in 

order of their arrivals or in order of their prospective services, which is the same due to the FIFO 

service discipline. The values of ℎ𝑖,𝑗 are not observable, of course, but the dynamics of the process 

in terms of ℎ𝑖,𝑗 has more transparent description than in terms of elapsed service time of the first 

customer in the queue and the total number of customers in the queue. 

Now, the current state of the queue 𝑖 can be written as  
 𝑞𝑖(𝑡) = (ℎ𝑖,1, … , ℎ𝑖,𝑘), 

where second indices from 1 up to 𝑘 mark the order of service of 𝑘 customers in the queue. 

Namely, the customer 1 is currently served and the customer 𝑘 is the last one to be served among 

the current customers. If new customers arrive, they are, of course, served after the customer 𝑘, in 

the order of their arrival. 

If 𝑘 = 0 then the queue is empty. Otherwise the value of ℎ𝑖,1 decreases at rate 1 (the first 

customer is currently served) and all the other values ℎ𝑖,𝑗 do not change for a while. 

Two kinds of event at the queue 𝑖 are possible that make the behavior of the state of queue 

discontinuous. First (exit), as the value of ℎ𝑖,1 hits zero at time 𝑡′, the first customer is released and 

the length of the queue drops from 𝑘 to 𝑘 − 1. We write then  
 ℎ𝑖,1(𝑡′) = ℎ𝑖,2(𝑡′ − 1), … , ℎ𝑖,𝑘−1(𝑡′) = ℎ𝑖,𝑘(𝑡′ − 1). 

The released customer arrives immediately to one of the 𝑁 nodes with equal probability 1/𝑁 and 

occupies the last position in the queue at this node. Note that with probability 1/𝑁 this customer 

returns to the queue 𝑖. 

Second (arrival), if a new customer arrives to the queue 𝑖 at time 𝑡′′, the length of the queue 

rises from 𝑘 to 𝑘 + 1 and we write  
 ℎ𝑖,𝑘+1(𝑡′′) = 𝑠, 

where 𝑠 is a random service time distributed as 𝐹 and independent of anything else. As was 

mentioned, the events of these two kinds happen simultaneously if the released customer returns 

to the same queue. 

The state space of a single queue is, therefore, the union of a countable number of finite-

dimensional orthants:  
 𝑄 = ℝ+

∗ = ∅ ∪ ℝ+ ∪ ℝ+
2 ∪ …. 

The state space of the whole network is the product of 𝑁 copies of 𝑄, that is, the vector space 𝑄𝑁. 

However, due to the symmetry of the network, the order of vector components in 𝑄𝑁 is 

immaterial, that is, the dynamics of the system is invariant to permutations of servers. Therefore, 

we may consider a current configuration of the network as an atomic measure on the space 𝑄, 
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where each atom has weight 1/𝑁 and corresponds to one of 𝑁 single queues. Clearly, 𝑄 is a Polish 

space in the induced topology. 

Denote  

 ℎ𝑖 = ∑𝑘
𝑗=1 ℎ𝑖,𝑘, 

that is, ℎ𝑖(𝑡) is the total remaining service time of all the customers in the queue. We say that ℎ𝑖(𝑡) 

is the current  queue height. 

The dynamics of a single queue height within the network consists of the deterministic 

(decreasing) part given by the differential equation with discontinuous right-hand side  

 ℎ̇(𝑡) = {
−1 if ℎ(𝑡) > 0,
0 if ℎ(𝑡) = 0.

 

and the stochastic (increasing) part that consist of instant bursts ℎ(𝑡) = ℎ(𝑡 − 0) + 𝑠 with random 

i.i.d. increments 𝑠 that happen at random times of arrival of new particles. 

 

3  Alternative description 
 

In what follows we will also use another description of the state space in terms of, again, 

the queue heights ℎ𝑖 at the 𝑁 nodes and, additionally, the  remaining sojourn times 𝑔𝑗 of the 𝑀 

particles. The remaining sojourn time of the particle 𝑗 is defined as the remaining time till the exit 

of customer 𝑗 from its current queue 𝑖, that is,  
 𝑔𝑗 = ∑𝑚≤𝑘 ℎ𝑖,𝑚, 

where 𝑘 is the current position of particle 𝑗 in the queue 𝑖. Note that, because of the FIFO 

discipline, the value of 𝑔𝑗 decreases at rate 1 until the service of particle 𝑗 at node 𝑖 is completed 

and does not change as new particles arrive to this node. 

Thus the current state of the process 𝒮𝑁,𝑀 is an (𝑁 + 𝑀)-vector 𝑓 = (ℎ, 𝑔) with non-

negative components ℎ𝑖 and 𝑔𝑗. Because of the symmetry, we can reduce the state of the process to 

a couple of atomic measures 𝜇 and 𝜈, both on ℝ+. Namely, 𝜇 has 𝑁 atoms of equal weight 1/𝑁 and 

𝜈 has 𝑀 atoms of equal weight 1/𝑀. Note that the value of 𝑔𝑗 does not associate uniquely the 

particle 𝑗 with some server 𝑖 apart from special cases where, for instance, 𝑔𝑗 = ℎ𝑖 and there is no 

other ℎ𝑖′ = ℎ𝑖  and no other 𝑔𝑗′ = 𝑔𝑗. 

Of course, the pair of measures 𝜇 and 𝜈 cannot be arbitrary pair of atomic measures, that 

is, 𝜇 and 𝜈 should be consistent. For instance, the upper customer in each queue has the remaining 

sojourn time equal to the height of the queue. Note, moreover, that the information contained in 

measures 𝜇 and 𝜈 is not sufficient to reconstruct the distribution of remaining service times among 

the customers nor the distribution of population among the queues. Let us regard the following 

example. 

Let 𝑁 = 2, 𝑀 = 4. Let us arrange the components of measures 𝜇 and 𝜈 in ascending order. 

Let ℎ1 = ℎ2 = 3 and let 𝑔1 = 1, 𝑔2 = 2, and 𝑔3 = 𝑔4 = 3. Then either both queues hold two 

customers and their remaining service times are 1 and 2 but in different order, or one queue holds 

a single customer with remaining service time 3 and the other queue holds three customers with 

remaining service time 1 for each customer. 

However, the continuous-time Markov process on measures 𝜇 and 𝜈 is well defined as we 

will see immediately. Moreover, if we watch the process for some finite time, we get all the 

information on the distribution of lengths of queues (number of customers in the queue) and on 

the distribution of remaining service times. 

Let us see how the (continuous-time) Markov process on pairs (𝜇, 𝜈) evolves. Recall that 

we consider the system 𝒮𝑁,𝑀. All the values ℎ𝑖(𝑡) and 𝑔𝑗(𝑡) are decreasing at rate 1 as long as they 

are positive. The service events in the network happen exactly as some 𝑔𝑗(𝑡) vanishes. Suppose 

this is 𝑘th service of particle 𝑗. Then we denote this time by 𝑡𝑘
𝑗 . 

Instantly, the particle 𝑗 is routed to a random queue. Denote the height of its new queue by 

ℎ ≥ 0. The particle is allotted an 𝐹-distributed service time 𝑠 there. The values of ℎ and 𝑠 are 
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random and independent. The distribution of ℎ is given by the current value of 𝑁-atomic measure 

𝜇. The values of ℎ𝑖 = ℎ and of 𝑔𝑗 both are updated to ℎ + 𝑠 

Then the next jump time for particle 𝑗 is  

 𝑡𝑘+1
𝑗

= 𝑡𝑘
𝑗

+ ℎ + 𝑠 

and the evolution of 𝑔𝑗(𝑡) and of ℎ𝑖(𝑡) goes on deterministically on the time interval (𝑡𝑘
𝑗
, 𝑡𝑘+1

𝑗
] as 

usual:  

 𝑔̇𝑗(𝑡) = −1,    ℎ̇𝑖(𝑡) = −1 

The linear decrease of 𝑔𝑗(𝑡) is completely deterministic while the evolution of ℎ𝑖(𝑡) may have 

positive bursts if new particles arrive. 

We denote the space of pairs of atomic measures 𝜇 = 𝜇𝑁 and 𝜈 = 𝜈𝑀 by 𝑋𝑁,𝑀. We embed all 

𝑋𝑁,𝑀 into the space 𝑋 of all pairs of probability measures on ℝ+. As we will see soon, 𝑋 is the 

configuration space of the NLMP. For the NLMP (that is, for 𝑁 = ∞), we have a limit dynamics of 

general probability measures 𝜇(𝑡) and 𝜈(𝑡) on ℝ+. Again, these measures should be consistent, see 

below. 

Formally, a series of continuous-time Markov processes 𝒮𝑁,𝑀 is defined on 𝑋 and it can be 

proved that their generators converge to that of the NLMP 𝒮 ensuring the convergence of 

processes on bounded time intervals. We will, however, use other tools for justification of this fact, 

that is, stochastic dominance methods. We will also see that the NLMP conserves single-point 

measures (it is a deterministic dynamical system on 𝑋) while finite processes 𝒮𝑁,𝑀, obviously, do 

not. 

 

4  The NLMP 
 

As we have mentioned above, the NLMP 𝒮 is the limit process for 𝒮𝑁,𝑀 as 𝑁 → ∞ and 

𝑀/𝑁 → 𝐻. Formally we will define two limit dynamical systems for each form of Markov process 

(with two different state spaces) that were used for the description of the evolution of finite 

systems 𝒮𝑁,𝑀 and demonstrate that they are equivalent, that is, they describe the evolution of the 

same limit process 𝒮 (the NLMP). 

To begin with, let us use the more intuitive state space based on 𝑄 for the primary 

description of the NLMP. The current state of the process is now a probability measure 𝜂 on 𝑄. 

Clearly, the weak limit points of atomic measures on 𝑄 cover the space ℳ(𝑄) of all probability 

measures on 𝑄, hence, 𝜂 is an arbitrary point of ℳ(𝑄). 

In order to get an intuitive notion of the NLMP, one may imagine the situation where there 

are infinitely many queues in the system, that is, 𝑁 = ∞ and the distribution of states of these 

queues is 𝜂. Note, however, that we cannot formally define a mean-field routing process on a 

countable number of servers since there is no uniformly distributed probability measure on such a 

set. One may think of the queues of the NLMP as of elements of a continuous measurable space, 

say, of the interval [0,1] with Borel measure but, in fact, we do not need such a specialization. 

The non-linear Markov process goes on as follows. Let 𝜂(0) be given. Let us distinguish a 

single queue 𝑞 = 𝑞𝜔 which is in the state 𝑞(0) at 𝑡 = 0. Its evolution within the NLMP is a 

stochastic process which can be described completely if we know the evolution of the measure 𝜂(𝑡) 

for 𝑡 ≥ 0. The evolution of different queues are independent. 

It would be easier to begin with a definition of the NLMP for a given time-dependent 

Poisson inflow 𝜆(𝑡), that is, without feedback. Let us assume that the inflows to all the nodes are 

independent Poisson flows of rate 𝜆(𝑡) (all the inflows in the closed NLMP are Poisson ones 

because they have infinitely many additive sources). Then we will have a deterministic dynamics 

of 𝜂(𝑡) since the evolution of each particular queue is a Markov process and these processes are 

independent for different queues. 

In turn, if we know 𝜂(𝑡) for 𝑡 ≥ 0, we can find the resulting mean outflow rate  

 𝑏(𝑡) = lim
Δ→0

𝑃(Δ)

Δ
, 
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where 𝑃(Δ) is the probability of service event at a random queue during the time interval [0, Δ). 

The value of 𝑏(𝑡) must be equal to 𝜆(𝑡) for all 𝑡 since the network is closed.  

Definition 4.1 The pair (𝜆(𝑡), 𝜂(𝑡)) is a solution of the NLMP if 𝜆(𝑡) is the outflow generated by 

𝜂(𝑡) and 𝜂(𝑡) is the evolution of the measure on queue states generated by the inflow of rate 𝜆(𝑡).  

  

Theorem 4.2 For each 𝜂0 there exists a unique solution (𝜆(𝑡), 𝜂(𝑡)) of the NLMP such that 

𝜂(0) = 𝜂0.  

  

Proof. We are going to construct a series of processes 𝒫𝑛, 𝑛 = 0,1, …, whose solutions 

converge to the required solution of 𝒮. In the process 𝒫0, there is no feedback, that is, the customers 

that are served do not return to the system. The evolution of the corresponding measure 𝜂0(𝑡) is 

simple: each queue drains out and it is empty forever since time 𝑡 = ℎ(0). 

The resulting outflow normalized by the number of queues has rate 𝜆0(𝑡), 𝑡 ≥ 0. Let us 

now construct the next process 𝒫1 as follows: we only allow particles to return to the system once. 

Formally, we consider a random queue that is distributed as 𝜂(0) initially and then receives the 

inflow of rate 𝜆0(𝑡) (these inflows to different queues are mutually independent). Clearly, it 

becomes empty eventually with probability 1. We denote the corresponding outflow rate by 𝜆1(𝑡). 

Now, we make an important remark: under an appropriate coupling, all the exit events in 

the process 𝒫0 happen at the same queues at the same time in the process 𝒫1 (because of the FIFO 

service discipline). Additionally, there are secondary exit events as the secondary particles that 

have returned to the system after the first service are served the second time in their lives and 

leave the system forever. Hence, 𝜆1(⋅) ≥ 𝜆0(⋅) in the following sense:  

 ∫
𝑡

0
𝜆1(s)𝑑𝑠 ≥ ∫

𝑡

0
𝜆0(𝑠)𝑑𝑠    forall    𝑡 ≥ 0. 

Next we recall a simple monotonicity property of a FIFO server.  

Lemma 4.3  Suppose we have two identical FIFO servers 1 and 2 with the same initial states at 

𝑡 = 0. Let 𝑢1 and 𝑢2 be point processes on ℝ+ and let 𝑢1 dominates 𝑢2 stochastically (denoted 𝑢1 ± 𝑢2). 

Denote by 𝑤1 and 𝑤2 the departure point processes of servers 1 and 2, respectively, where the server 𝑖 

receives the inflow 𝑢𝑖, 𝑖 = 1,2. Then 𝑤1 ± 𝑤2.  

 Recall that 𝑢1 dominates 𝑢2 stochastically if there is a coupling between the two processes 

such that 𝑡1
𝑘 ≥ 𝑡2

𝑘 for all coupled pairs of configurations (𝑡𝑖
1, 𝑡𝑖

2, … ) and all 𝑘 = 1,2, …. 

Then we iterate the construction of 𝜆𝑛 for 𝑛 = 2,3, …. From Lemma 4.3, we get inequalities  
 𝜆𝑛(⋅) ≥ 𝜆𝑛−1(⋅)    forall    𝑛 = 1,2, …. 

On the other hand, there is a finite upper bound 𝜆̅(𝑡) for all 𝜆𝑛(𝑡) in the integral sense. Indeed, the 

maximum of service rate at each queue is 1. Hence there is a convergence and the limit is a 

solution (𝜆(𝑡), 𝜂(𝑡)) of 𝒮. 

Suppose there exists another solution (𝜆′(𝑡), 𝜂′(𝑡)). Then, by construction, 𝜆′(𝑡) ≥ 𝜆(𝑡) for 

all 𝑡 and the inequality is strict for some 𝑡 < ∞. We come to a contradiction easily since the mean 

mass of queues at this time 𝑡 must be different for the inflows 𝜆(⋅) and 𝜆′(⋅).  

 

Moreover, we can construct Markov processes on finite networks 𝒮𝑁,𝑀 by the same 

monotone iteration procedure as in 𝒮. As a result, we also conclude that a finite-time convergence 

of 𝒮𝑁,𝑀 to 𝒮 takes place. 

Namely, it is not hard to prove that the dynamics of 𝜇𝑁(𝑡) and 𝜈𝑀(𝑡) in the process 𝒮𝑁,𝑀 is 

close to that of 𝜇(𝑡) and 𝜈(𝑡) in the NLMP on finite time intervals if 𝑁 and 𝑀 are large and if 

respective initial values of measures are close to each other. Analogous results can be found, for 

instance, in [?] under stronger assumptions on the service time distribution 𝐹. 

 

Theorem 4.4  Suppose that the sequence of probability measures 𝜑𝑁,𝑀(0) on 𝑋𝑁,𝑀 ⊆ 𝑋 converges 

weakly to a probability measure 𝜑(0) on 𝑋 as 𝑁 → ∞ and 𝑀/𝑁 → 𝐻. Then the solutions of 𝒮𝑁,𝑀 from the 

initial states 𝜑𝑁,𝑀(0) converge to the solution of the NLMP 𝒮 from the initial state 𝜑(0) on any bounded 

time interval [0, 𝑇].  
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 Here we do not prove the theorem and do not specify the notion of convergence of 

processes since these are rather technical issues. 

In the same framework as for the finite systems, we may give a description of the NLMP as 

evolution of two probability measures on ℝ+. They are the measure 𝜇(𝑡) on queue heights and the 

measure 𝜈(𝑡) on remaining sojourn times. Clearly, the resulting flow rate 𝜆(𝑡) in the (ℎ, 𝑔)-

representation is the same as in (𝜆, 𝜂)-representation. 

Again, there exist some constraints on possible pairs (𝜇, 𝜈) caused by the fact that the 

remaining sojourn time of a particle at the top of the queue coincides with the height of this queue. 

Let us write down this constraint explicitly. 

Denote by 𝛼 = 𝛼(𝜇) the fraction of empty queues, that is, 𝛼 = 𝜇({0}). Denote by ù = ù(𝜇) 

the measure (1 − 𝛼)
𝑁

𝑀
𝜇 which is not a probability measure, of course. The constraint on the 

measure 𝜈 can be then written as  
 𝜈 ≥ ù,    thatis,    𝜈([𝑎, 𝑏]) ≥ ù([𝑎, 𝑏])    whenever    0 ≤ 𝑎 ≤ 𝑏 < ∞. 

The dynamics of the pair (𝜇(𝑡), 𝜈(𝑡)) for 𝑡 ≥ 0 is completely defined by the value (𝜇(0), 𝜈(0)) as 

follows. Recall that the mean number of particles per node in the NLMP is exactly 𝐻. By the 

current value of 𝜈(𝑡) we can find the current service rate 𝛾(𝑡) per particle:  

 𝛾(𝑡) = lim
𝐷𝑒𝑙𝑡𝑎→+0

𝜈[0,Δ)

Δ
. 

The current service rate per node is then equal to 𝜆(𝑡) = 𝛾(𝑡)/𝐻. Note that the parameter 𝐻 is 

already included in the constitutive relations for the process. As soon as we know 𝜆(𝑡) and the 

current distribution of queue heights, we can write evolution equations for 𝜇(𝑡) and 𝜈(𝑡). 

A rigorous way to prove the existence and uniqueness of a solution from any pair 

(𝜇(0), 𝜈(0)) is, again, to realize a recursive construction where we allow 1, 2,, 𝑘 lumps to each 

particle. The same method demonstrates the equivalence of two forms of the NLMP. 

Note that an essential difference exists with the dynamics of a pair (𝜇𝑁, 𝜈𝑀) in the finite 

network 𝒮𝑁,𝑀. Namely, the evolution of (𝜇𝑁, 𝜈𝑀) is stochastic for each pair 𝑁, 𝑀 and the evolution 

of (𝜇(𝑡), 𝜈(𝑡)) is deterministic. 

Now let us lift the consistency restrictions for the pair (𝜇, 𝜈). We will define a solution of 

the NLMP that starts from an arbitrary pair 𝜇, 𝜈 ∈ ℝ+ in the same manner as before. Actually, such 

a solution has the following physical sense. 

We do not suppose any longer that the system contains 𝐻 particles per node straightaway. 

Instead we assume that these particles are elsewhere at 𝑡 = 0 and that, initially, each particle has its 

delay 𝑔 distributed as 𝜈 and each queue has its height ℎ distributed as 𝜇. Then the process is 

started. The queue heights decrease at rate 1 while positive and the particles enter the system at 

times 𝑔. 

Then the process goes on exactly by the rules of closed system, that is, the particles, as they 

jump, are given the new value of g equal to ℎ + 𝑠 and the value of ℎ is replaced by ℎ + 𝑠 as well. 

Clear enough, the dynamics of such a system approaches that of the closed system as the number 

of particles per node in the system approaches 𝐻 and the remaining initial height of queues 

vanishes. 

 

5  Stationary solutions and ergodicity 
 

Note that continuous-time Markov processes 𝒮𝑁,𝑀 are ergodic (if 𝐹 is a non-lattice 

distribution) since there is a renewal event where all the particles get in the same queue and the 

oldest one begins its service, see [?, ?]. This event obviously happens with a positive frequency. 

In the case of a lattice distribution 𝐹, we may consider a discrete-time process and repeat 

the argument. The discrete-time version of the process is, again, ergodic. For definiteness, in what 

follows we assume that 𝐹 is a non-lattice distribution. 

Our goal is to study the asymptotic behavior of unique equilibrium solutions ℰ𝑁,𝑀 as the 

size 𝑁 tends to infinity and as 𝑀/𝑁 → 𝐻 for some 𝐻 > 0 (mean population of a node or, in other 
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words, mean length of a queue). Namely, we ask if the sequence ℰ𝑁,𝑀 converges to the unique 

equilibrium ℰ of the NLMP with the same parameter 𝐻. The two parameters of this problem is the 

service time distribution 𝐹 and the mean length 𝐻 of a queue which is time-independent since the 

networks are closed. 

The process ℰ𝑁,𝑀 can be written in (ℎ, 𝑔)-notation. Then the unique equilibrium 

distribution 𝜑𝑁,𝑀 is defined on the configuration space 𝑋𝑁. Since all 𝑋𝑁 are embedded into  
 𝑋 = ℳ(ℝ+) × ℳ(ℝ+), 

we write 𝜑𝑁,𝑀 ∈ ℳ(𝑋). 

The convergence of equilibria ℰ𝑁,𝑀 to ℰ can be understood in different senses. In particular, 

one may expect that the stationary measures 𝜑𝑁,𝑀 converge weakly to the 𝛿-measure on a unique 

stationary point (𝜇∗, 𝜈∗) of 𝒮 as 𝑁 → ∞ (in (ℎ, 𝑔)-notation). The rest of the paper is concerned with 

the proof of this fact. 

Note that, in general, there is no explicit information on the invariant value of 𝐻 in a 

solution (𝜇(⋅), 𝜈(⋅)) of the NLMP. In equilibrium, however, it is not hard to calculate 𝐻 from the 

stationary measure (𝜇∗, 𝜈∗) as follows. Denote the jump rate per node by 𝜆. Then the jump rate per 

customer is 𝜆/𝐻. Next, we compare the rates of continuous decrease of ℎ and 𝑔. The first one is 

equal to 1 − 𝛼 and the second one is 1. 

Since we consider an equilibrium, these rates must be equal to the the rates of increase of ℎ 

and 𝑔 at jump events. They are, respectively, 𝜆 (since the mean service time is 1) and 𝜆(𝔼ℎ + 1)/𝐻 

(since the mean value of new 𝑔 after the jump equals the mean height of a queue plus the mean 

service time). Therefore,  
 𝐻 = (1 − 𝛼)(𝔼ℎ + 1). 

 

Lemma 5.1 The NLMP has a unique equilibrium and all other solutions approach this equilibrium.  

  

Proof. For the proof we will use a fundamental result on “smoothing effect" of the FIFO 

server. It was proved under some additional restrictions on 𝐹 in [?] and will be proved in the 

general case in a subsequent paper by the author. 

The main idea is the monotonicity argument. Suppose there is no convergence and come 

to a contradiction. Indeed, in this case the mean population of a queue cannot be constant. 

In more details, suppose there is a non-converging solution of the NLMP. Then 𝜆(𝑡) does 

not converge as 𝑡 → ∞. By limit transition we can construct a non-constant solution 𝜆′(𝑡) on the 

whole time axis ℝ such that  

 ∫
1

0
𝜆′(𝑠)𝑑𝑠 ≥ ∫

𝑡+1

𝑡
𝜆(𝑠)𝑑𝑠,    𝑡 ∈ ℝ. 

By monotonicity, there is a coupling between the inflows 𝜆′(𝑡) and 𝜆′′(𝑡) = 𝜆′(𝑡 − 1) on (−∞, 0] 

such that all the particles arrive not earlier in the first case and some of them arrive strictly later. 

Then the mean mass of a queue at 𝑡 = 0 is strictly larger than that at 𝑡 = −1, which is a 

contradiction.  

 

Now, since there is a unique equilibrium measure on solutions of the NLMP (actually, this 

is a 𝛿-measure on the unique equilibrium solution), it suffices to prove tightness of the family 

(𝜇𝑁
∗ , 𝜈𝑀

∗ ), 𝑁 = 1,2, … in order to derive convergence. 

There exists a well-known criterion of tightness for random measures on 𝑌 = ℳ(𝑋), that 

is, on the space of probability measures on a Polish space 𝑋, where the topology of weak 

convergence of measures generates the measurable structure on 𝑌. Recall that 𝑋 itself is the space 

of pairs of probability measures on ℝ+. 

 

Proposition 5.2 The family (𝜇𝑁
∗ , 𝜈𝑀

∗ ) is tight if and only if two following conditions hold. The 

probability of ℎ𝑖
𝑁 > 𝐾 tends to zero as 𝐾 → ∞ uniformly on 𝑁. The probability of 𝑔𝑗

𝑀 > 𝐾 tends to zero as 

𝐾 → ∞ uniformly on 𝑀.  

 We will see that it suffices to get a “stable" upper bound on the inflow that does not 
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depend on the parameters in order to prove the required tightness. 

 

6  Dominance 
 

We use Baccelli–Foss theorems [?] for Jackson-type networks with implications for closed 

networks. The following theorem is an extension of Lemma 4.3 from a single FIFO node to a finite 

open Jackson-type network.  

Theorem 6.1 In a finite open FIFO network, if all the arrivals happen earlier and all the services 

happen faster, then all the events happen earlier.  

 Here the notions “earlier" and “faster" should be understood in the sense of stochastic 

dominance. For closed networks, we may assume that the particles arrive once from the outside 

and then circulate within the network. 

 

Theorem 6.2  Suppose there is an infinite program at each node of the network 𝐺, that is, an 

infinite sequence of pairs (𝑥𝑘 , 𝑖𝑘), where 𝑥𝑘 is the service time of 𝑘th particle and 𝑖𝑘 is its address after the 

service. Suppose there is another instance 𝐺′ of the same network with a program (𝑥𝑘′, 𝑖𝑘′) that dominates 

the first one in the following sense: 𝑥𝑘′ ≥ 𝑥𝑘 and 𝑖𝑘′ = 𝑖𝑘 for each 𝑘 and each node of the network. Suppose 

the initial positions of particles coincide in both cases. Then all the events in 𝐺′ happen not earlier than their 

counterparts in 𝐺.  

 In particular, if the programs are identical but the exogenous particles arrive later to the 

same nodes in the second case, then, again, all the events in the primed case happen later. This 

assertion can be reduced to Theorem 6.2 by introduction of additional virtual nodes where the 

exogenous particles reside initially. 

Theorem 6.2 can be proved by the following argument. Suppose the contrary. We make a 

coupling that preserves the order of initial events. Then there exists the first pair of events with the 

reverse order. And this, clearly, cannot happen. 

Our next goal is to find a universal stochastic upper bound on the number of arrivals to a 

single node of a finite network 𝒮𝑁,𝑀 during the time interval [0, 𝑇], that is, a bound that does not 

depend on 𝑁 (if 𝑁 is lrge enough) and on the initial state of the network. Suppose this upper 

bound 𝐵 satisfies the  stability condition 𝔼𝐵 < 𝑇. Then the required tightness would follow. 

Let us study processes 𝒮𝑁,𝑀 and 𝒮 on a bounded time interval [0, 𝑇] and count the number 

of services per node that happen within this interval. By coupling and monotonicity, there is the 

“worst" initial configuration that entails more services than any other initial configuration (either 

in the sense of stochastic dominance or for any fixed sequence of service times at each node). This 

is the zero configuration where ℎ𝑖 = 0 and 𝑔𝑗 = 0 for all 𝑖 and 𝑗. In words, all the 𝑀 particles are 

jumping immediately (at 𝑡 = 0). Then the process goes on by standard rules. 

For given 𝑁 and 𝑀 and for the “worst" initial distribution, there is a distribution 𝐵𝑁,𝑀,𝑇 of 

the number of arrivals to a given node 𝑖 during [0, 𝑇]. This distribution does not depend on 𝑖 but if 

we assume the sequence of service times at node 𝑖 to be known, then the number of arrivals to 𝑖 

has a different distribution, that is, there is a correlation between the service times at node 𝑖 and 

the number of arrivals to 𝑖. 

In order to cope with this inconvenience we consider the “fastest" program at a given node 

𝑖, that is we assume that all the particles at this node are served immediately. Then the new 

distribution 𝐵′𝑁,𝑀,𝑇 of the number of arrivals certainly dominates the distribution 𝐵𝑁,𝑀,𝑇 since it 

dominates the distribution 𝐵′′𝑁,𝑀,𝑇  for any other service time sequence at the node 𝑖. 

Now, in order to find a uniform “stable" upper bound on the inflow to a given node, we 

need to find such 𝑇 that distributions 𝐵′𝑁,𝑀,𝑇 are dominated by some 𝐵𝑇  for all relevant pairs 𝑁, 𝑀 

(if 𝑁 is large enough) and that 𝐵𝑇  is “𝑇-stable" (its mean total service time is strictly less than 𝑇). 

Note that the queueing process with a special node 𝑖 whose service time is always zero 

coincides in certain sense with the process 𝒮𝑁−1,𝑀. Namely, on the nodes different from 𝑖, the 
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process does not differ from 𝒮𝑁−1,𝑀. As 𝑁 → ∞ and 𝑀/𝑁 → 𝐻, the difference between 𝒮𝑁−1,𝑀 and 

𝒮𝑁,𝑀 vanishes. Hence, we will use upper bounds on 𝐵𝑁,𝑀,𝑇 instead of 𝐵′𝑁,𝑀,𝑇 and prove that they are 

all uniformly 𝑇-stable for some 𝑇 > 0 and all 𝑁 large enough. 

Then we break the time half-axis ℝ+ in intervals of length 𝑇 and study the discrete-time 

process that dominates all equilibria ℰ𝑁,𝑀 in certain sense. First of all, we look at the NLMP and the 

corresponding arrival process.  

Theorem 6.3  For the NLMP 𝒮, there is a 𝑇 > 0 and 𝜀 > 0 such that the mean number of arrivals 

to a node from any initial state is less than 𝑇 − 𝜀.  

  

Proof. We omit detailed proof and give just a bare idea. The mean number of arrivals to a 

node on the time interval [0, 𝑇] is  

 Λ(𝑡) = ∫
𝑇

0
𝜆(𝑡)𝑑𝑡. 

Let us fix a 𝜆∗ < 1 such that the stationary Poisson arrival of rate 𝜆∗ leads to the stationary mean 

length 𝐻′ > 𝐻 of a single queue with service time distribution 𝐹. Then, eventually, we have  
 Λ(𝑡) < 𝑡𝜆∗. 

Otherwise, by monotonicity argument, we can find 𝑡 > 0 such that the mean length of the queue 

under the Poisson inflow with rate 𝜆(𝑡) exceeds 𝐻. This proves the lemma.  

 

Denote by 𝐵𝑇
∗  the corresponding distribution of arrival events at a given node. By 

approximation argument, any finite part of this distribution is close to the corresponding part of 

𝐵𝑁,𝑀,𝑇. Then we handle the remaining part by dominance argument again and use some 

combinatorics to handle the tails. 

 

7  Uniform upper bound for the inflow 
 

The uniform dominance for all 𝑁 ≥ 𝑁 follows from the finite-time convergence Theorem 

4.4 and the NLMP stability Theorem 6.3. For the proof, let us prove the dominance separately for 

medium flows and for large flows. 

If the size of flows (number of particles in the flow) in consideration is bounded from 

above by the same constant 𝐷, then we deal with a compact part of the state space. The probability 

of a single server to receive an inflow of 𝑘 particles within the time interval [0, 𝑇] satisfies the 

relation  
 lim

𝑁→∞
𝑃𝑘

𝑁 = 𝑃𝑘 , 

which implies immediately the required dominance. 

Next we assume that all the initial queues are infinite and prove the second-moment 

bounds on the inflows in 𝒮𝑁,𝑀, 𝑁 ≥ 𝑁0. These bounds dominate the inflows from any initial 

distribution of 𝑀 particles among 𝑁 nodes. 

We have 𝑁 independent identically distributed integer-valued variables 𝑚𝑖
𝑁 (numbers of 

services at individual queues) whose mean values are 𝑇 + 1 (to be sure) and variances are 

bounded. Their sum  

 𝑀𝑁 = ∑𝑁
𝑖=1 𝑚𝑖

𝑁 

is then distributed uniformly among 𝑁 queues, producing the number of arrival 𝑛𝑖
𝑁. 

The mean value of 𝑛𝑖
𝑁 for any 𝑖 is equal to 𝑇 + 1, and we are going to find upper bounds 

for the probabilities of large values of 𝑛𝑖
𝑁. To this end let us first choose a special service time 

distribution 𝐹′ that is stochastically dominated by 𝐹 and then find upper bounds on the 

probabilities of 𝑘 arrivals to a single node during the time interval [0, 𝑇]. 

The distribution 𝐹′ has two atoms, at 0 and at 1. The probability 𝑝 of 1 is strictly positive. 

Now note that the probability of 𝑘 arrivals from 𝑁 infinite queues with service time distribution 𝐹′ 

equals the probability of drawing 𝑘 ones in a series of [𝑇 + 1]𝑁 independent draws, where the 

chance to draw 1 equals 𝑝/𝑁. 
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Next, we find the asymptotic bounds on the probability of massive arrival. We study a 

discrete-time random walk on the positive orthant ℕ+
2 . Namely, we start at the origin and make 

one of the three steps: (1,0) with probability 𝑢, (0,1) with probability 𝑣, and (1,1) with probability 

𝑤 = 1 − 𝑢 − 𝑣. 

The values of 𝑢, 𝑣, 𝑤 depend on the parameter 𝑁 = 1,2, …. We also have a an integer 

constant 𝑇 > 0 (the length of interval) and a real constant 𝛼 > 0 (probability of service time 1). The 

process is defined as follows. 

Let us make a vertical step with probability 𝛼, otherwise we make a horizontal step. Each 

step is then marked with probability 1/𝑁, independently. We count the number of marked steps 

(axis 𝑥) and the number of vertical steps (axis 𝑦). As a result we draw a path on the lattice ℤ2 from 

(0,0) to infinity. 

We are interested in the measure on paths that is induced by the 𝑢𝑣𝑤-rules of random 

walk. Our goal is to assess the slope of the path and the probability that this slope is below certain 

value as the path reaches some vertical bound. This is a model of the inflow at a given node of the 

mean field closed FIFO network. 

The next step is to draw required upper bounds. Since we need an upper bound, we can 

use another scheme of path construction: let us replace marked vertical edges by marked 

horizontal ones. This will be performed for 𝑁 > 1. Then we have the following probability of a 

horizontal step:  

 𝛼′𝑁 =
(𝑁−1)𝛼+1

𝑁
,    1 − 𝛼′𝑁 =

(𝑁−1)(1−𝛼)

𝑁
. (7.1) 

 We look for an upper bound on 𝑝(𝑘, 𝑛), that is, on the probability that the path from the origin 

passes through the point (𝑘, 𝑛). 

The event of passing through (𝑘, 𝑛) is equivalent to the following one. The first 𝑘 + 𝑛 steps 

contain exactly 𝑛 vertical and 𝑘 horizontal steps. The number of paths from (0,0) to (𝑘, 𝑛), hence, 

equals to  

 𝑆(𝑘, 𝑛) =
(𝑘+𝑛)!

𝑘!𝑛!
. 

All these paths have the same probability (𝛼𝑁′)𝑛(1 − 𝛼𝑁′)𝑘, therefore  

 𝑝(𝑘, 𝑛) =
(𝑘+𝑛)!

𝑘!𝑛!
(𝛼𝑁′)𝑛(1 − 𝛼𝑁′)𝑘 . 

Here  

 𝛼𝑁′ =
𝛼(𝑁−1)

𝛼(𝑁−1)+1
,    1 − 𝛼𝑁′ =

1

𝛼(𝑁−1)+1
 

For simplicity we may assume 𝛼𝑁′ = (𝑁 − 1)/𝑁 and 1 − 𝛼𝑁′ = 1/𝑁 (this will not change the 

asymptotics). Next, we substitute 𝑛 = T𝑁 and get  

 𝑝(𝑘, 𝑇𝑁) =
(𝑘+𝑇𝑁)!

𝑘!(𝑇𝑁)!
(

𝑁−1

𝑁
)

𝑇𝑁

(
1

𝑁
)

𝑘

. 

Actually, we are interested in an upper bound on the sum  
 𝑃(𝑘, 𝑛) = ∑∞

𝑚=𝑘 𝑝(𝑚, 𝑛) 

or another sum  

 𝑄(𝑘, 𝑛) = ∑𝑘
𝑚=0 𝑝(𝑚, 𝑘 + 𝑛 − 𝑚). 

The second sum is more efficient since no two points on the diagonal  
 𝐷𝑘+𝑛 = {(𝑎, 𝑏) ∈ ℤ+

2 : 𝑎 + 𝑏 = 𝑘 + 𝑛} 

can lie on the same path from the origin, that is, each path hits 𝐷𝑘+𝑛 exactly once. 

Our goal is to find an appropriate upper bound that is uniform for all 𝑁 ≥ 𝑁0 for some 

finite 𝑁0. Again, for simplicity, let 𝑇 = 1 (for a while). Then we have  

 𝑝(𝑘, 𝑁) =
(𝑘+𝑁)!

𝑘!𝑁!
(

𝑁−1

𝑁
)

𝑁

(
1

𝑁
)

𝑘

. 

By means of the Stirling formula, we reduce the bound to  

 𝑝(𝑘, 𝑁) ≃
√𝑘+𝑁(𝑘+𝑁)𝑘+𝑁

√𝑘𝑁𝑘𝑘𝑁𝑘+𝑁  (7.2) 

 (up to a multiplicative constant). We need the maximum of (7.2) over 𝑁 ≥ 𝑁0. For the main part of 

(7.2), let us write  

 
(𝑘+𝑁)𝑘+𝑁

𝑘𝑘𝑁𝑘+𝑁 =
(1+

𝑘

𝑁
)

𝑘+𝑁

𝑘𝑘 = 
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 = (1 +
𝑘

𝑁
)

𝑁

(
1

𝑘
+

1

𝑁
)

𝑘

≤ 𝑒𝑘 (
1

𝑘
+

1

𝑁0
)

𝑘

≤
𝑒𝑘𝑒𝑁0

𝑁0
𝑘 . 

For 𝑁0 > 𝑒 this bound vanishes exponentially as 𝑘 → ∞. The required dominance follows. 
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