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Abstract 
 

In this paper we present a queueing network model for computing average end-to-end delay, and 

maximum throughput that can be attained in random access multi-hop wireless ad hoc networks 

with stationary nodes under two popular contention resolution schemes namely, Binary Exponential 

Back-off (BEB) and Double Increment Double Decrement (DIDD) rules. This model takes into 

consider some realistic features of the system like (i) the generation of different classes of packets at 

nodes, and (ii) the dependence of the transmission time and transmission probability on the distance 

between the transmitter and receiver. Probability distributions and the associated measures of 

characteristics of the time spent by a packet at arbitrary node are analytically derived by using phase 

type random variate theory, which in turn are used for the computation of average end-to-end delay 

and maximum achievable throughput. Theoretical results are numerically illustrated.  
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1  Introduction 
 

A multi-hop wireless ad hoc network is a collection of nodes that communicate with each other 

without any established infrastructure or centralized control. Due to the limited transmission range 

of wireless network interfaces, multiple network hops may be needed for one node to exchange data 

with another across the network. Thus, in this network, the packets may have to be forwarded by 

several intermediate nodes before they reach their destinations and therefore each node operates not 

only as a host but also as a router. Hence, each node may act as a source, destination or relay. For a 

detailed description of some of the situations where ad hoc networks can be used, refer [7]. 

The wireless medium is shared and scarce. Multiple stations may want to transmit data frames 

at the same time over the same channel. So, multiple access protocols are needed to coordinate the 

transmissions. Since ad hoc networks lack infrastructure and centralized control, these protocols 

should be distributed. IEEE 802.11 protocol has been set up for fixing international standards for 

Wireless Local Area Networks (WLAN’s). In the 802.11 protocol, the fundamental mechanism to 

access the medium is known as the distributed co-ordination function (DCF). DCF is a random access 

scheme based on the carrier sense multiple access with collision avoidance (CSMA/CA) protocol.  

According to DCF basic access mechanism, each station with a packet, ready for transmission, 

monitors the channel activity and if the channel is found to be idle for a pre-determined period called 

distributed inter-frame space (DIFS), transmits the packet. Otherwise, if the channel is sensed busy, 

the station initializes its back-off timer and defers transmission for a randomly selected back-off 

period to minimize the collisions. At each time point at which the channel is monitored, the back-off 

counter is decremented when the medium is idle, and is frozen when the medium is sensed busy. 

The timer resumes only after the medium has been idle for a period longer than DIFS. The station 
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whose back-off timer expires first begins transmission and the other stations freeze their timers and 

defer transmission. Once the current transmission gets completed, the back-off process repeats again 

and the remaining stations reactivate their back-off timers. Upon the successful reception of a packet, 

the destination sends back an immediate acknowledgement (ACK) after a time interval equal to 

short inter-frame space (SIFS). In addition to the basic access mechanism, another optional method 

called ready-to-send/clear-to-send (RTS/CTS) mechanism is also adopted under DCF. According to 

this, a node operating in RTS/CTS mode, before transmission, reserves the channel by sending a 

special ready-to-send short frame and the destination node acknowledges the receipt of the same by 

sending back a clear-to send frame. After this, the normal packet transmission and ACK response 

occur. Since collision may occur only on the RTS frame, and it is detected by the lack of CTS response, 

the RTS/CTS mechanism allows to increase the system performance by reducing the duration of a 

collision when lengthy messages are transmitted. More importantly, to some extent, the RTS/CTS 

mechanism adopted in the 802.11 protocol is useful to address the so called hidden terminal 

problem, which was first mentioned by [14]. For more details on hidden node problem, also refer 

[6]. 

DCF employs a contention resolution method namely, binary exponential back-off (BEB) rule, 

to minimize the probability of collisions due to multiple simultaneous transmissions. Under this 

rule, if a packet is ready for transmission from a node for the first time, contention window size is 

chosen as 𝑊 and according to the collision avoidance protocol procedures, a random value for its 

back-off counter is uniformly selected from 0, 1,2, 𝑊 − 1. If the packet meets with a collision in that 

attempt, the contention window size will be set as 𝑊1 = 2𝑊 and a value for back-off counter is 

selected uniformly from 0, 1,2, 𝑊1 − 1 and if it is further included in a collision on its next attempt, 

the contention window size will be doubled again and this will continue up to a maximum of 𝑚 

collisions. After 𝑚 unsuccessful attempts, if it is again met with a collision, the contention window 

size will be fixed as 𝑊𝑚 = 2𝑚𝑊. If an attempt results in successful transmission, the contention 

window size for that node will be reset as 𝑊. Hence the minimum contention window size 𝐶𝑊𝑚𝑖𝑛 =

𝑊 , and the maximum contention window size 𝐶𝑊𝑚𝑎𝑥 = 2𝑚𝑊. 

Apart from the BEB scheme, many researchers have proposed different schemes to fix the 

contention window size in order to enhance the performance of wireless LANs. Of which the DIDD 

(Double Increment Double Decrement) scheme proposed by [8] deserves special mention. Under 

this scheme, if a packet meets with collision while it is being transmitted, the contention window 

size for the next transmission will be doubled as in the case of BEB rule, whereas after a successful 

transmission it will be halved unlike under BEB scheme where the contention window size is reset 

to 𝑊 under the same scenario. For more about other schemes and their detailed performance 

analysis, refer [8] and the references therein. 

Several researchers have attempted to analyse the throughput and packet delay occurring in 

communication networks. [2] proposed analytical models to learn the IEEE 802.11 protocol under 

unsaturated traffic conditions for multihop networks. [4] made an attempt to characterize the 

average end-to-end delay and maximum achievable per-node throughput in random access multi-

hop wireless ad hoc network with stationary nodes. They modelled random access multi-hop 

wireless networks as open 𝐺/𝐺/1 queueing networks and used the diffusion approximation (see 

[10]) to derive closed form expressions for the average end-to-end delay. However, none of these 

aforementioned references has addressed the important problem of finding the probability 

distribution of the end-to-end delay experienced by the packets in the network.  

This article is in the same line with [4]; however, a more detailed and comprehensive delay 

analysis has been carried out for a multi-hop wireless ad hoc network with stationary nodes under 

more general and realistic assumptions. More importantly, probability distributions of the time 

spent by a packet at an arbitrary node from the epoch at which it is ready for transmission till it is 

successfully transmitted have been derived under both BEB and DIDD rules, as discrete Phase-

Type(PH) distributions. Analytical representation of these distributions enable us to compute some 

important statistical measures like variance and coefficient of variation of the packet waiting time at 
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a node, which in turn could be used in computing the mean total time spent by a packet in the system 

before it reaches its destination. For more details on PH distributions and their characteristics, see 

[12] and [11]. Following are some of the highlights of this paper. (i) The analysis aims to capture 

several salient aspects of wireless networks like the relationship between the probability of 

successful transmission between two nodes and the distance between them, interferences caused by 

hidden nodes, generation of different classes of packets at nodes based on the number of hops to be 

visited etc. (ii) PH- representation of single hop delay under both BEB and DIDD back-off schemes 

are derived explicitly and the important statistical measures like mean, variance, and coefficient of 

variation of the single hop delay are computed analytically and are presented in compact form. (iii) 

By using the diffusion approximation, the important measures like average queue size and mean 

waiting time of a packet at an arbitrary node are computed. 

Though the present paper does not consider the routing algorithms, mobility models, and path 

length of source-destination pair that are currently applied in ad hoc scenarios, it renders a concrete 

analytic approach which may be helpful to get approximate solutions to some important measures 

that decide the performance of ad hoc models. Even though it does not take into account all the 

features of a practical ad hoc model, it may be treated as an analytical model which help us to get 

some insight into the performance behavior of a system governed by probabilistic laws. A detailed 

description of our model is as follows. 

 

2  Methods 
 

We consider a wireless ad hoc network with 𝑁 nodes that are assumed to be uniformly distributed 

inside a compact set 𝑊 ⊂ 𝑅3 of unit volume. Each node has an equal transmission range 𝑅. That is, 

if a node transmits a packet, it can reach at another node which is at a distance of maximum 𝑅 units 

from the source node. Let 𝑟𝑖𝑗  be the distance between nodes 𝑖 and 𝑗. Nodes 𝑖 and 𝑗 are called as 

neighbours if they can directly communicate with each other, that is if 𝑟𝑖𝑗 ≤ 𝑅. The set of neighbours 

of node 𝑖 is denoted by 𝑁(𝑖) and it is assumed that all neighbours of a node lie inside a sphere of 

volume 𝑣 =
4

3
𝜋𝑅3(< 1) centered at that node. Since the nodes are distributed uniformly, the number 

of neighbours is binomially distributed with mean (𝑁 − 1)𝑣. Being an ad hoc network, each node in 

the network can be a source, destination, or relay of packets. Depending on the number of hops to 

be traversed by a packet, we classify the packets into 𝑀 categories. A packet is said to be of class 𝑙 , 

1 ≤ 𝑙 ≤ 𝑀, if it has to visit 𝑙 nodes before reaching its destination. A packet generated at an arbitrary 

node is assumed to be class 𝑙, 1 ≤ 𝑙 ≤ 𝑀 with probability 𝑐𝑙, where ∑𝑀
𝑙=1 𝑐𝑙 = 1. Packets are generated 

at nodes in the network as a renewal process with rate 𝜆𝑒 and coefficient of variation 𝐶𝐸 . It is to be 

noted that, as per our assumption, the process by which an arbitrary node generates class 𝑙 packets 

is a renewal process with rate 
𝜆𝑒𝑐𝑙

𝑁
. 

 

Computation of forwarding probability 
 

Let 𝑞𝑖𝑗  be the probability that a packet at node 𝑖 (either generated at 𝑖 or received from some 

other node) is forwarded to node 𝑗. When node 𝑖 transmits a packet, any of its neighbours can receive 

it; however, we assume that the probability that it reaches at a neighbouring node depends on how 

far the receiving node is from node 𝑖. More precisely, the probability that the packet reaches at the 

node which is the 𝑘th neighbour of 𝑖 is assumed to be inversely proportional to the average distance 

between node 𝑖 and its 𝑘th neighbour. 

By equation (13) in [13] , the average distance between a node and its 𝑘th neighbour,  

 𝐸(𝑅𝑘) = 𝑅
Γ(𝑘+1/3)Γ(𝐿+1)

Γ(𝑘)Γ(𝐿+4/3)
, (1) 

 where  

 Γ(𝑚 + 1/3) = Γ(1/3)
(3𝑚−2)!(3)

3𝑚 , 
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𝐿 is the largest integer less than or equal to (𝑁 − 1)𝑣, 𝑛!(𝑙) is the 𝑙th multifactorial of 𝑛, and Γ(1/3) ≈

2.6789385347. 

We have  
 𝑞𝑖𝑗 = 𝑃{𝑖 → 𝑗} = 𝑃{𝑖 → 𝑗|𝑗 ∈ 𝑁(𝑖)} ∗ 𝑃{𝑗 ∈ 𝑁(𝑖)}. 

By conditioning on the number of neighbours of 𝑖, we get  

 𝑞𝑖𝑗 = ∑𝑁−1
𝑝=1 𝑃{𝑖 → 𝑗|𝑗 ∈ 𝑁(𝑖), |𝑁(𝑖)| = 𝑝} ∗ 𝑃{|𝑁(𝑖)| = 𝑝|𝑗 ∈ 𝑁(𝑖)} ∗ 𝑃{𝑗 ∈ 𝑁(𝑖)}. (2) 

 Now  

 𝑃{𝑖 → 𝑗|𝑗 ∈ 𝑁(𝑖), |𝑁(𝑖)| = 𝑝} = ∑𝑝
𝑘=1 𝑃{𝑖 → 𝑗||𝑁(𝑖)| =

𝑝, 𝑗       𝑖𝑠  𝑡ℎ𝑒     𝑘   𝑡ℎ  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  𝑜𝑓  𝑖 } ∗ 

 

 𝑃{𝑗     𝑖𝑠  𝑡ℎ𝑒     𝑘 𝑡ℎ  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  𝑜𝑓  𝑖 ||𝑁(𝑖)| = 𝑝}. (3) 

 We have  
 𝑃{𝑖 → 𝑗||𝑁(𝑖)| = 𝑝, 𝑗     𝑖𝑠  𝑡ℎ𝑒     𝑘 𝑡ℎ  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  𝑜𝑓   𝑖} =

𝑃{ 𝑡ℎ𝑒  𝑝𝑎𝑐𝑘𝑒𝑡  𝑖𝑠  𝑛𝑜𝑡  𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑  𝑎𝑡  𝑖 } ∗ 

 

 
𝐸𝑝

𝐸(𝑅𝑘||𝑁(𝑖)|=𝑝)
, 

where 𝐸(𝑅𝑘||𝑁(𝑖)| = 𝑝) is obtained from eqn(1) by replacing 𝐿 by 𝑝, and  

 𝐸𝑝 = (∑
𝑝
𝑙=1

1

𝐸(𝑅𝑙||𝑁(𝑖)|=𝑝)
)−1 

is the normalization constant. 

Thus  
 𝑃{𝑖 → 𝑗||𝑁(𝑖)| = 𝑝, 𝑗     𝑖𝑠  𝑡ℎ𝑒     𝑘 𝑡ℎ  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  𝑜𝑓   𝑖} = [1 −

𝑃{ 𝑡ℎ𝑒  𝑓𝑖𝑛𝑎𝑙  𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  𝑡ℎ𝑒  𝑝𝑎𝑐𝑘𝑒𝑡  𝑖𝑠     𝑖}] ∗ 𝑈𝑝(𝑘), 

where  

 𝑈𝑝(𝑘) =
𝐸𝑝

𝐸(𝑅𝑘||𝑁(𝑖)|=𝑝)
. 

So  
 𝑃{𝑖 → 𝑗||𝑁(𝑖)| = 𝑝, 𝑗     𝑖𝑠  𝑡ℎ𝑒     𝑘 𝑡ℎ  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  𝑜𝑓   𝑖} 

 

 = [1 − ∑𝑀
𝑙=1 𝑃{ 𝑡ℎ𝑒  𝑝𝑎𝑐𝑘𝑒𝑡  𝑖𝑠  𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑  𝑎𝑡     𝑖| 𝑡ℎ𝑒  𝑝𝑎𝑐𝑘𝑒𝑡  𝑖𝑠  𝑜𝑓  𝑐𝑙𝑎𝑠𝑠     𝑙} ∗

𝑃{ 𝑡ℎ𝑒  𝑝𝑎𝑐𝑘𝑒𝑡  𝑖𝑠  𝑜𝑓  𝑐𝑙𝑎𝑠𝑠     𝑙}]𝑈𝑝(𝑘) 

 

 = [1 − ∑𝑀
𝑙=1 𝑃{ 𝑡ℎ𝑒  𝑝𝑎𝑐𝑘𝑒𝑡  ℎ𝑎𝑠  𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑  𝑒𝑥𝑎𝑐𝑡𝑙𝑦     𝑙     ℎ𝑜𝑝𝑠 } ∗ 𝑐𝑙]𝑈𝑝(𝑘). 

Now 𝑞𝑖𝑗 , the forwarding probability from node 𝑖 to node 𝑗 is independent of the particular choice 

for 𝑖 and 𝑗 so that we can remove the suffix to write 𝑞 instead of 𝑞𝑖𝑗 . 

Hence we get  

 𝑃{𝑖 → 𝑗||𝑁(𝑖)| = 𝑝, 𝑗     𝑖𝑠  𝑡ℎ𝑒     𝑘 𝑡ℎ  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  𝑜𝑓   𝑖} = (1 − ∑𝑀
𝑙=1 𝑞𝑙𝑐𝑙)𝑈𝑝(𝑘). (4) 

 Substituting eqn (4) in (3) we get  
 𝑃{𝑖 → 𝑗|𝑗 ∈ 𝑁(𝑖), |𝑁(𝑖)| = 𝑝} = (1 −

∑𝑀
𝑙=1 𝑞𝑙𝑐𝑙) ∑𝑝

𝑘=1 𝑃{𝑗     𝑖𝑠  𝑡ℎ𝑒     𝑘 𝑡ℎ  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  𝑜𝑓   𝑖||𝑁(𝑖)| = 𝑝}𝑈𝑝(𝑘). (5) 

 Now from [9], the average distance between two random points uniformly distributed inside a 

sphere of radius 𝑟 is 
72𝑟2

35
. 

Therefore  
 𝑃{𝑗     𝑖𝑠  𝑡ℎ𝑒     𝑘 𝑡ℎ  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  𝑜𝑓   𝑖||𝑁(𝑖)| = 𝑝} 

 
 = 𝑃{     𝑎𝑚𝑜𝑛𝑔   𝑝 − 1     𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠  (𝑜𝑡ℎ𝑒𝑟  𝑡ℎ𝑎𝑛   𝑗)     𝑜𝑓   𝑖     𝑒𝑥𝑎𝑐𝑡𝑙𝑦   𝑘 −

1     𝑙𝑖𝑒  𝑖𝑛𝑠𝑖𝑑𝑒  𝑎  𝑠𝑝ℎ𝑒𝑟𝑒  𝑜𝑓  𝑟𝑎𝑑𝑖𝑢𝑠     
72𝑅2

35
} 

 

 = 𝑝 − 1
𝑘 − 1

(𝑣′)𝑘−1(1 − 𝑣′)𝑝−𝑘 ,     𝑤ℎ𝑒𝑟𝑒   𝑣′ = (
72𝑅

35
)3. 

Hence eqn (5) becomes  

 𝑃{𝑖 → 𝑗|𝑗 ∈ 𝑁(𝑖), |𝑁(𝑖)| = 𝑝} = (1 − ∑𝑀
𝑙=1 𝑞𝑙𝑐𝑙)∑𝑝

𝑘=1 𝑝 − 1
𝑘 − 1

(𝑣′)𝑘−1(1 − 𝑣′)𝑝−𝑘𝑈𝑝(𝑘).

 (6) 
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 Also  

 𝑃{|𝑁(𝑖)| = 𝑝|𝑗 ∈ 𝑁(𝑖)} = 𝑁 − 2
𝑝 − 1

𝑣𝑝−1(1 − 𝑣)𝑁−𝑝−1, (7) 

 and  

 𝑃{𝑗 ∈ 𝑁(𝑖)} = 𝑣. (8) 

 By substituting eqns (6), (7), and (8) in eqn (2) we get  

 𝑞 = (1 − ∑𝑀
𝑙=1 𝑞𝑙𝑐𝑙) ∑𝑁−1

𝑝=1 ∑𝑝
𝑘=1 𝑁 − 2

𝑝 − 1
𝑝 − 1

𝑘 − 1
𝑣𝑝(1 − 𝑣)𝑁−𝑝−1(𝑣′)𝑘−1(1 − 𝑣′)𝑝−𝑘𝑈𝑝(𝑘).

 (9) 

A recursive algorithm to compute 𝒒 
 

From eqn (9) we get  

 𝑞 =
𝐺(1−∑𝑀

𝑙=2𝑞𝑙𝑐𝑙)

1+𝑐1𝐺
, (10) 

 where  

 𝐺 = ∑𝑁−1
𝑝=1 ∑𝑝

𝑘=1 𝑁 − 2
𝑝 − 1

𝑝 − 1
𝑘 − 1

𝑣𝑝(1 − 𝑣)𝑁−𝑝−1(𝑣′)𝑘−1(1 − 𝑣′)𝑝−𝑘𝑈𝑝(𝑘). 

As a particular case, if 𝑐𝑙 is assumed as uniform (that is, if 𝑐𝑙 = 1/𝑀, 𝑙 = 1,2… ,𝑀), then we can write  

 𝑞 =
𝑀𝐺+𝑞2𝑀+𝑞𝑀+1𝐺

𝑀+𝐺+𝑀𝐺
, 

which in turn gives the recursive algorithm  

 𝑞[𝑘+1] =
𝑀𝐺+(𝑞[𝑘])2𝑀+(𝑞[𝑘])𝑀+1𝐺

𝑀+𝐺+𝑀𝐺
. (11) 

 Lemma: The effective arrival rate at an arbitrary node, denoted by 𝜆, is  

 𝜆 =
𝜆𝑒

𝑁(1−(𝑁−1)𝑣𝑞)
. (12) 

 Proof: Since the effective arrival rate at a node is the sum of the external arrival rate at that node and 

the average inflow rate to that node from its neighbouring nodes, we have  

 𝜆 =
𝜆𝑒

𝑁
+ (𝑁 − 1)𝜆𝑣𝑞. 

Hence the lemma. 

 

Finding the interfering nodes 
 

 
Figure  1: Illustration of hidden-terminal area 

   

  While a packet is being transmitted from a node to another, all the nodes that are lying in the 

neighbourhood of the source node can hear the details regarding the transmission by sensing the 

medium , whereas the ones which are not the neighbours can not. So the nodes which are located 

within the sensing region of the intended destination and off-range of the source node may make 

transmission to destination node simultaneously with source node, which may result in collision at 

the destination node. This is the well known hidden terminal problem and the corresponding nodes 
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are termed as hidden nodes. These hidden nodes together with the neighbouring nodes of the source 

node constitute the set of interfering nodes of the source node. In order to conduct the waiting time 

analysis for a packet in the whole network, we need to get a measure of the average number of 

interfering neighbours an arbitrary node has. For this, we proceed as follows. 

Distribution function of the distance 𝑋 between source and destination nodes is given by 

 

 𝐹(𝑥) = (
𝑥

𝑅
)3, 0 < 𝑥 ≤ 𝑅. 

The volume of the solid inside which the hidden nodes lie is a random variable. For a given value of 

X, this volume ( two-dimensional analogue of this case is shown as shaded portion in Figure 1, the 

details of which are given in [1]) can be computed as  

 𝑉(𝑥) = 𝑣 −
1

12
𝜋(4𝑅 + 𝑥)(2𝑅 − 𝑥)2. 

So the average volume of the solid inside which the hidden nodes lie,  

 𝑣ℎ = ∫
𝑅

0
𝑉(𝑥)𝑑𝐹(𝑥) =

17

24
𝜋𝑅3. 

Hence the average volume of the solid inside which the interfering nodes lie,  

 𝑣𝐼 = 𝑣ℎ + 𝑣 =
49

24
𝜋𝑅3. 

Now it is easy to see that the probability distribution of the interfering neighbours of a node is 

binomial with mean (𝑁 − 1)𝑣𝐼 . Hence the average number of interfering neighbours of an arbitrary 

node,  

 𝑁𝐼 = (𝑁 − 1)𝑣𝐼 . (13) 

 

Waiting time analysis 
 

In this section, we derive the probability distribution and some important measures of 

characteristics of waiting time for a packet at an arbitrary node under both BEB and DIDD schemes. 

Here, by waiting time at a node we actually mean the time spent by a packet at that node from the 

instant at which it is ready for transmission till it s successfully transmitted. This does not include 

the time spent by the packet at the buffer before its transmission turn occurs. The objective of this 

paper is not to compare the efficiency among BEB or DIDD or any other scheme proposed by 

researchers, rather our focus here is to derive the waiting time distribution of a packet at an arbitrary 

node analytically, for which BEB and DIDD rules are being used just for theoretical illustration. 

 

Under the DIDD scheme 
 

[3] analysed the performance of IEEE 802.11 distributed coordination function, where BEB 

rule is used as contention resolution method, by means of a two dimensional Markov chain and 

computed the conditional collision probability (that is, the probability of collision seen by a packet 

while it is being transmitted). By the same approach, in this case, we can compute the conditional 

collision probability say, 𝑝𝐷 by means of the formula  

 𝑝𝐷 = 1 − (1 − 𝜏𝐷)𝑁2 , (14) 

 where 𝜏𝐷, the transmission probability of a node in a random time slot under DIDD rule, is derived 

as (proof is shown below)  

 𝜏𝐷 =
2(1−2𝑎)(1−𝑎𝑚+1)

(1−(2𝑎)𝑚+1)(1−𝑎)𝑊+(1−2𝑎)(1−𝑎𝑚+1)
 (15) 

 with 𝑎 =
𝑝𝐷

1−𝑝𝐷
, and 𝑁2 represents the largest integer less than or equal to 𝑁𝐼. 

Eqns (14) and (15) represent a nonlinear system in unknowns 𝜏𝐷 and 𝑝𝐷, which can be solved 

numerically (by using fixed point iteration scheme) to get 𝑝𝐷. 

 

Now, we derive the probability distribution of the number of time slots spent by an arbitrary 

packet at a node from the time instant at which it is ready for transmission till it is successfully 

transmitted, by using the embedded Markov chain technique. For this, consider the system at the 
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end of a time slot at which either the channel is sensed idle by the node or transmission of a packet 

(which may or may not be successful) from that node is over. More precisely, let 𝑡𝑖 be the beginning 

of a time slot such that the previous slot [𝑡𝑖−1, 𝑡𝑖) ends either with transmission of a packet from the 

node, or the channel is sensed idle by the node. Then the embedded stochastic process 

{(𝑠(𝑡𝑖), 𝑏(𝑡𝑖); 𝑖 ∈ 𝑁}, where 𝑠(𝑡𝑖) and 𝑏(𝑡𝑖) respectively denote the backoff stage and backoff time 

counter of the node at 𝑡𝑖, is a Markov chain. Note that whenever 𝑠(𝑡𝑖) = 𝑗, then 𝑏(𝑡𝑖) can take one of 

the values uniformly from {0,1,2, … ,𝑊𝑗 − 1}, where 𝑊𝑗 = 2𝑗𝑊, 𝑗 = 0,1,2, … ,𝑚. 

The transition probabilities of the Markov chain are denoted by  
 𝑃{(𝑖1, 𝑘1)|(𝑖0, 𝑘0)} = 𝑃{(𝑠(𝑡𝑖+1), 𝑏(𝑡𝑖+1)) = (𝑖1, 𝑘1)|(𝑠(𝑡𝑖), 𝑏(𝑡𝑖)) = (𝑖0, 𝑘0)}. 

Under the DIDD scheme, it can be seen that  
 𝑃{(𝑖, 𝑘)|(𝑖, 𝑘 + 1)} = 1,     𝑓𝑜𝑟     𝑘 = 0,1, … ,𝑊𝑖 − 2;     𝑖 = 0,1, … ,𝑚 

 

 𝑃{(𝑖 − 1, 𝑘)|(𝑖, 0)} =
1−𝑝𝐷

𝑊𝑖−1
,     𝑓𝑜𝑟     𝑘 = 0,1, … ,𝑊𝑖−1 − 1;     𝑖 = 1, … ,𝑚 

 

 𝑃{(𝑖 + 1, 𝑘)|(𝑖, 0)} =
𝑝𝐷

𝑊𝑖+1
,     𝑓𝑜𝑟     𝑘 = 0,1, … ,𝑊𝑖+1 − 1;     𝑖 = 0,1, … ,𝑚 − 1 

 

 𝑃{(𝑚, 𝑘)|(𝑚, 0)} =
𝑝𝐷

𝑊𝑚
,     𝑓𝑜𝑟     𝑘 = 0,1, … ,𝑊𝑚 − 1 

and  

 𝑃{(0, 𝑘)|(0,0)} =
1−𝑝𝐷

𝑊
,     𝑓𝑜𝑟     𝑘 = 0,1, … ,𝑊 − 1. 

Define state vector  
 𝑖̅ = ((𝑖, 0), (𝑖, 1), (𝑖, 2), … , (𝑖,𝑊𝑖 − 1)),     𝑓𝑜𝑟     𝑖 = 0,1, … ,𝑚. 

Then the transition probability matrix of the Markov chain is given by  

 𝑃 =

[
 
 
 
 
 
 
𝐷0 + 𝐶0′ 𝐵1 0 … … … … 0

𝐶0 𝐷1 𝐵2 ⋱ ⋮

0 𝐶1 𝐷2 𝐵3 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 𝐶𝑚−2 𝐷𝑚−1 𝐵𝑚

0 ⋯ ⋯ ⋯ ⋯ 0 𝐶𝑚−1 𝐷𝑚 + 𝐵𝑚′]
 
 
 
 
 
 

 

where 𝐵𝑖 , 𝑖 = 1,2, … ,𝑚 of dimension 𝑊𝑖−1×𝑊𝑖  , given by 

 

 𝐵𝑖 =

[
 
 
 
 
 
𝑝𝐷

𝑊𝑖

𝑝𝐷

𝑊𝑖
…

𝑝𝐷

𝑊𝑖

0 0 … 0
⋮ ⋮ ⋮ ⋮
0 … … 0

]
 
 
 
 
 

; 

𝐶𝑖 , 𝑖 = 0,1, … ,𝑚 − 1, 𝑊𝑖+1×𝑊𝑖  matrix, given by 

 

 𝐶𝑖 =

[
 
 
 
 
 
1−𝑝𝐷

𝑊𝑖

1−𝑝𝐷

𝑊𝑖
…

1−𝑝𝐷

𝑊𝑖

0 0 … 0
⋮ ⋮ ⋮ ⋮
0 … … 0

]
 
 
 
 
 

; 

𝐷𝑖 , 𝑖 = 0,1, … ,𝑚, of dimension 𝑊𝑖×𝑊𝑖 , given by 

 

 𝐷𝑖 = [

0 0
𝐼𝑊𝑖−1 0 ] 

with 𝐼𝑊𝑖−1 as the identity matrix of order 𝑊𝑖 − 1 and 0 is row(column) vector of appropriate 

dimension. 

𝐶0′ has the same structure as 𝐶0 with the only distinction that it is a square matrix of order 

𝑊. Similarly 𝐵𝑚′, a square matrix of order 𝑊𝑚, differs from 𝐵𝑚 only in dimension. 



 
Deepak, T.G. 
A QUEUEING NETWORK MODEL 

RT&A, No 2 (45) 
Volume 12, June 2017  

75 

If we define Π = (Π0, Π1, … , Π𝑚), where Π𝑖 = (𝜋𝑖0, 𝜋𝑖1, … , 𝜋𝑖𝑊𝑖−1), 𝑖 = 0,1, … ,𝑚, as the 

stationary distribution of the above Markov chain, it can be seen that  

 𝜋𝑖𝑘 = (
𝑝𝐷

1−𝑝𝐷
)𝑖(

𝑊𝑖−𝑘

𝑊𝑖
)𝜋00,     𝑓𝑜𝑟     𝑖 = 0,1, … ,𝑚;     𝑘 = 0,1, … ,𝑊𝑖 − 1 

and  

 𝜋00 = 2[𝑊(
1−𝑝𝐷

1−3𝑝𝐷
)(1 − (

2𝑝𝐷

1−𝑝𝐷
)𝑚+1) + (

1−𝑝𝐷

1−2𝑝𝐷
)(1 − (

𝑝𝐷

1−𝑝𝐷
)𝑚+1)]−1. 

Hence 𝜏𝐷, the probability that a node transmits in a random slot time is given by 

 

 𝜏𝐷 = ∑𝑚
𝑖=0 𝜋𝑖0 =

2(1−2𝑎)(1−𝑎𝑚+1)

(1−(2𝑎)𝑚+1)(1−𝑎)𝑊+(1−2𝑎)(1−𝑎𝑚+1)
, 

which is eqn (15). 

Now, let 𝛼𝑖 , 𝑖 = 0,1,2, … ,𝑚 − 1 be the probability that a packet at the head of the waiting line 

at a node starts with backoff stage 𝑖. Then  
 𝛼𝑖 =

𝑃{     𝑡ℎ𝑒  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  𝑝𝑎𝑐𝑘𝑒𝑡  𝑤ℎ𝑖𝑐ℎ  𝑤𝑎𝑠  𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦  𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑  𝑓𝑟𝑜𝑚  𝑡ℎ𝑒  𝑛𝑜𝑑𝑒  𝑙𝑒𝑓𝑡  𝑡ℎ𝑒  𝑠𝑦𝑠𝑡𝑒𝑚  

 
  𝑎𝑡  𝑠𝑡𝑎𝑔𝑒  𝑖 + 1 } 

so that  

 𝛼𝑖 = ∑𝑖+1
𝑙=0 𝛼𝑙(1 − 𝑝𝐷)𝑝𝐷

𝑖−𝑙+1,     𝑓𝑜𝑟     𝑖 = 1, … ,𝑚 − 2 

with  

 𝛼𝑚−1 = ∑𝑚−1
𝑙=0 𝛼𝑙𝑝𝐷

𝑚−𝑙 , 

and  
 𝛼0 = 𝛼1(1 − 𝑝𝐷) + 𝛼0(1 − 𝑝𝐷

2). 

From this, by recursion we get  

 𝛼𝑖 =
𝑝𝐷

𝑖+1

(1−𝑝𝐷)𝑖
𝛼0,     𝑓𝑜𝑟     𝑖 = 1,2, … ,𝑚 − 1 

so that  

 𝛼0 =
(1−2𝑝𝐷)(1−𝑝𝐷)𝑚−1

(1−𝑝𝐷)𝑚+1−𝑝𝐷
𝑚+1  (16) 

 by using the normalizing condition ∑𝑚−1
𝑖=0 𝛼𝑖 = 1. Thus we have  

 𝛼𝑖 =
(1−2𝑝𝐷)𝑝𝐷

𝑖+1

((1−𝑝𝐷)𝑚+1−𝑝𝐷
𝑚+1)(1−𝑝𝐷)𝑖−𝑚+1 ,     𝑓𝑜𝑟     𝑖 = 1, … ,𝑚 − 1 (17) 

 with 𝛼0, given by eqn (16). 

Now the definition of a discrete PH random variable (see [12] and [11]) for details on PH 

distribution and PH renewal theory) leads to the following theorem. 

 

Theorem 1: The number of transitions undergone (time slots spent) by a packet say, 𝑆𝐷 from 

the instant at which it is ready for transmission till it is successfully transmitted, is a discrete PH 

random variable having representation (𝛼̅𝐷 , 𝑇𝐷) with 𝛼̅𝐷 = (
𝛼̅0

𝑊
,
𝛼̅1

𝑊1
,
𝛼̅2

𝑊2
, … ,

𝛼̅𝑚−1

𝑊𝑚−1
, 0𝑊𝑚

, 0), where 

𝛼̅𝑖 ,    𝑖 = 0,1,2… ,𝑚 − 1 is the vector having 𝑊𝑖 components with each component 𝛼𝑖, 0𝑊𝑚
 is the vector 

of zeroes having 𝑊𝑚 components, and 𝑇𝐷 is the matrix given by  

 𝑇𝐷 =

[
 
 
 
 
 
 
𝐷0 𝐵1 0 … … … … 0

0 𝐷1 𝐵2 ⋱ ⋮

⋮ ⋱ 𝐷2 𝐵3 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 𝐷𝑚−1 𝐵𝑚

0 ⋯ ⋯ ⋯ ⋯ ⋯ 0 𝐷𝑚 + 𝐵𝑚′]
 
 
 
 
 
 

. 

Also, its pmf, 𝑃(𝑆𝐷 = 𝑘) = 𝛼̅𝐷𝑇𝐷
𝑘−1(−𝑇𝐷𝑒), 𝑘 > 0, where 𝑒 is a column vector, having components 1, 

of appropriate dimension. 

 

Corollary 1: Average number of transitions undergone(time slots spent) by a packet at an 

arbitrary node from the instant at which it is ready for transmission till it is successfully transmitted, 

is given by  
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 𝐸(𝑆𝐷) = 𝛼̅𝐷(𝐼 − 𝑇𝐷)−1𝑒 =
𝛼0

𝑊
(𝑊𝑥0 +

𝑊(𝑊−1)

2
) + ∑𝑚−1

𝑖=1
𝛼𝑖

𝑊𝑖
(𝑊𝑖𝑥𝑖 +

𝑊𝑖(𝑊𝑖−1)

2
), (18) 

 where  

 𝑥𝑖 =
2−𝑝𝐷

2(1−𝑝𝐷)
+

𝑊𝑖𝑝𝐷(1−(2𝑝𝐷)𝑚−𝑖−1)

1−2𝑝𝐷
+

𝑝𝐷
𝑚−𝑖𝑊𝑚−1

1−𝑝𝐷
,     𝑓𝑜𝑟     𝑖 = 0,1,2, … ,𝑚 − 1. (19) 

 

Under the standard BEB scheme 
 

Following the same lines as in the case of DIDD scheme, we have 

 

Theorem 2: Under the standard BEB scheme, 𝑆𝐵, the number of time slots spent by a packet 

at a node from the instant at which it is ready for transmission till it is successfully transmitted, is a 

discrete PH variate having representation (𝛼̅𝐵, 𝑇𝐵) with 𝛼̅𝐵 = (
𝑒𝑊

𝑇

𝑊
, 0,0, … ,0), and 𝑇𝐵 is the matrix 

having the same structure as 𝑇𝐷 with the only exception that 𝑝𝐷 in 𝑇𝐷 is replaced by 𝑝𝐵 in 𝑇𝐵, where 

the conditional collision probability 𝑝𝐵 under BEB scheme is computed by solving the nonlinear 

system of equations (see [3])  

 𝑝𝐵 = 1 − (1 − 𝜏𝐵)𝑁2 , (20) 

 and  

 𝜏𝐵 =
2(1−2𝑝𝐵)

(1−2𝑝𝐵)(𝑊+1)+𝑝𝐵𝑊(1−(2𝑝𝐵)𝑚)
. (21) 

 Also, pmf of 𝑆𝐵 is given by  

 𝑃(𝑆𝐵 = 𝑘) = 𝛼̅𝐵𝑇𝐵
𝑘−1(−𝑇𝐵𝑒), 𝑘 > 0. 

Corollary 2: Under the standard BEB scheme, average number of time slots spent by a packet at an 

arbitrary node from the instant at which it is ready for transmission till it is successfully transmitted, 

is given by  

 𝐸(𝑆𝐵) = 𝛼̅𝐵(𝐼 − 𝑇𝐵)−1𝑒 =
1

𝑊
(𝑊𝑦0 +

𝑊(𝑊−1)

2
), (22) 

 where 𝑦0 has the same expression as 𝑥0 (given by eqn (19)), in which 𝑝𝐷 is replaced by 𝑝𝐵. 

 

Probability distribution of slot length 

 

We start with this section by summarizing the important steps (with minor changes 

pertaining to our model) in the derivation of probability distribution of length of an arbitrary slot, 

as detailed in [3]. A slot is called active if at least one transmission takes place in that slot. Let 𝑃𝑎 be 

the probability that the slot is active. Since, on the average 𝑁2 + 1 nodes are contending on the 

channel (we have seen that on the average, a node will have 𝑁2 interfering nodes), and each transmits 

with probability 𝜏  

 𝑃𝑎 = 1 − (1 − 𝜏)𝑁2+1, (23) 

 where 𝜏=𝜏𝐷 or 𝜏𝐵 depending on whether DIDD or BEB scheme is used. Transmission of a packet 

may result either in success or in collision.  

Let  
 𝑃𝑠 = 𝑃(   𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛  𝑖𝑛  𝑎  𝑠𝑙𝑜𝑡  𝑖𝑠  𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙|𝑠𝑙𝑜𝑡  𝑖𝑠  𝑎𝑐𝑡𝑖𝑣𝑒 ). 

Then  

 𝑃𝑠 =
(𝑁2+1)𝜏(1−𝜏)𝑁2

𝑃𝑎
=

(𝑁2+1)𝜏(1−𝜏)𝑁2

1−(1−𝜏)𝑁2+1 . (24) 

 At this juncture it may be remembered that a time slot may be (i) a back off time slot 𝜎 if no 

transmission takes place in that slot (ii) 𝑇𝑠, the average time the channel is sensed busy because of a 

successful transmission, or (iii) 𝑇𝑐, the average time the channel is sensed busy because of a collision. 

Thus the probability distribution of the slot length 𝑆𝐿 is given by  

 𝑆𝐿 = {

𝜎  𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏 1 − 𝑃𝑎

𝑇𝑠  𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏 𝑃𝑎𝑃𝑠

𝑇𝑐  𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏 𝑃𝑎(1 − 𝑃𝑠)

 (25) 

 If we assume that the system is completely managed by the basic access mechanism, then  
 𝑇𝑠 = 𝑆𝐼𝐹𝑆 + 𝑇(𝐸(𝑃)) + 𝐷𝐼𝐹𝑆 + 𝑇(𝐴𝐶𝐾) 
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and  
 𝑇𝑐 = 𝐷𝐼𝐹𝑆 + 𝑇(𝐸(𝑃∗)), 

where 𝐸(𝑃) denotes the expected packet size and 𝑇(𝐸(𝑃)) represents the average time required for 

a node to transmit a packet of size 𝐸(𝑃) to its neighbouring node. Similarly, 𝐸(𝑃∗) stands for the 

expected value of the largest packet size included in a collision and 𝑇(𝐸(𝑃∗)) for the corresponding 

mean transmission time . Also, 𝑇(𝐴𝐶𝐾) represents the mean time required to transmit an 

acknowledgement message from destination to source node. Just in the lines of eqn (15) in [3] it can 

be seen that  

 𝐸(𝑃∗) =
∑

𝑁𝐼+1
𝑘=2 𝑁𝐼+1

𝑘
𝜏𝑘(1−𝜏)𝑁𝐼+1−𝑘 ∫

𝑃𝑚𝑎𝑥
0 (1−(𝐹(𝑥))𝑘)𝑑𝑥

1−(1−𝜏)(𝑁𝐼+1)−(𝑁𝐼+1)𝜏(1−𝜏)𝑁𝐼
, (26) 

 where 𝐹(. ) is the packet size distribution function and 𝑃𝑚𝑎𝑥  is the maximum value of the packet 

size. It is to be noted that  

 𝐸(𝑃) = ∫
𝑃𝑚𝑎𝑥

0
(1 − 𝐹(𝑥))𝑑𝑥. 

Now, for the computation of 𝑇(𝐸(𝑃)), 𝑇(𝐸(𝑃∗)), and 𝑇(𝐴𝐶𝐾), we assume that the transmission time 

for a packet from a node to another depends on how far the latter is from the former. Earlier we have 

seen that if a packet is transmitted from node 𝑖,  

 𝑃{ 𝑖𝑡  𝑟𝑒𝑎𝑐ℎ𝑒𝑠  𝑎𝑡  𝑛𝑜𝑑𝑒  𝑗 | 𝑗  𝑖𝑠  𝑡ℎ𝑒  𝑘𝑡ℎ  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  𝑜𝑓  𝑖 } =
𝐸𝐿

𝐸(𝑅𝑘)
, 

where  

 𝐸𝐿 = (∑𝐿
𝑙=1

1

𝐸(𝑅𝑙)
)−1, 

and 𝐸(𝑅𝑘) is given by eqn (1). So, if 𝑍 represents the transmission time (in 𝜇𝑠) for a bit to reach the 

receiving node, which lies at a unit distance from the source node, then the transmission time for a 

packet to reach the receiver, which is the 𝑘th neighbour of the source node is 𝑍𝐸(𝑃)𝐸(𝑅𝑘) so that  

 𝑇(𝐸(𝑃)) = ∑𝐿
𝑙=𝑘 𝑍𝐸(𝑃)𝐸(𝑅𝑘)

𝑊𝐿

𝐸(𝑅𝑘)
= 𝐿𝑍𝑊𝐿𝐸(𝑃). (27) 

 Similar results hold for 𝑇(𝐸(𝑃∗)), and 𝑇(𝐴𝐶𝐾). 

Now the expected slot length,  

 𝐸(𝑆𝐿) = (1 − 𝑃𝑎)𝜎 + 𝑃𝑎𝑃𝑠𝑇𝑠 + 𝑃𝑎(1 − 𝑃𝑠)𝑇𝑐. (28) 

 If 𝑇𝑆 denotes the time spent by a packet at a node from the instant at which it is ready for 

transmission till its successful transmission, then  

 𝐸(𝑇𝑆) = 𝐸(𝑆)𝐸(𝑆𝐿), (29) 

 where 𝑆 = 𝑆𝐷 𝑜𝑟 𝑆𝐵 depending on whether the system is under DIDD or BEB scheme, and 𝐸(𝑆) is 

given by eqn (18) or (22) as the case may be. Note that since 𝑇𝑆 is the actual time taken for a node to 

complete a packet transmission since the epoch at which it is ready for transmission, as per the 

queueing terminology, 𝑇𝑆 is equivalent to the  effective service time rendered for a packet at a node in 

the network. Now, let us compute the variance of 𝑇𝑆.  
 𝐸(𝑇𝑆2) = 𝐸(𝐸(𝑇𝑆2|𝑆 = 𝑘)). 

Now 

 𝐸(𝑇𝑆2|𝑆 = 𝑘) = 𝐸((∑𝑘
𝑗=1 𝑆𝐿𝑗)(∑

𝑘
ℎ=1 𝑆𝐿ℎ)), 

where 𝑆𝐿𝑗  denotes the length of 𝑗th time slot. Since 𝑆𝐿𝑗 are 𝑖𝑖𝑑 variates with mean 𝐸(𝑆𝐿), we have  

 𝐸(𝑇𝑆2|𝑆 = 𝑘) = ∑𝑘
𝑗=1 ∑𝑘

ℎ=1 (𝐸(𝑆𝐿))2 + ∑𝑘
𝑗=1 𝐸(𝑆𝐿2). 

Thus  
 𝑉𝑎𝑟(𝑇𝑆) = [(1 − 𝑃𝑎)𝜎 + 𝑃𝑎𝑃𝑠𝑇𝑠 + 𝑃𝑎(1 − 𝑃𝑠)𝑇𝑐]

2[2𝛼̅(𝐼 − 𝑇)−2𝑇𝑒 

 

 +𝛼̅(𝐼 − 𝑇)−1𝑒 − (𝛼̅(𝐼 − 𝑇)−1𝑒)2] + 𝛼̅(𝐼 − 𝑇)−1𝑒[(1 − 𝑃𝑎)𝜎2 + 𝑃𝑎𝑃𝑠𝑇𝑠
2 + 𝑃𝑎(1 − 𝑃𝑠)𝑇𝑐

2], (30) 

 where 𝛼̅ = 𝛼̅𝐷 or 𝛼̅𝐵, and 𝑇=𝑇𝐷 or 𝑇𝐵 depending on whether the system is under DIDD or BEB 

scheme. Moreover 𝐶𝑇𝑆, the coefficient of variation of 𝑇𝑆, given by  

 𝐶𝑇𝑆
2 =

𝑉𝑎𝑟(𝑇𝑆)

(𝐸(𝑇𝑆))2
       𝑐𝑎𝑛  𝑏𝑒  𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑  𝑏𝑦  𝑢𝑠𝑖𝑛𝑔  𝑡ℎ𝑒  𝑒𝑞𝑛𝑠  (29)  𝑎𝑛𝑑  (30).  

These results can be used to get approximate solution to queue size distribution at each node as done 

in [4]. [10] introduced a vector-valued normal process and its diffusion equation in order to obtain 

an approximate solution to the joint distribution of queue lengths in a general network of queues. 

By this approximation, the queue size distribution at node 𝑖 say, 𝑝𝑖  is obtained as  
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 𝑝𝑖(𝑛) = {

1 − 𝜌𝑖 , 𝑛 = 0

𝜌𝑖(1 − 𝜌̂𝑖)𝜌̂𝑖
𝑛−1, 𝑛 > 0 (31) 

 where 𝜌𝑖 = 𝜆𝑖𝐸(𝑆𝑖); 𝜆𝑖 is the effective arrival rate at node 𝑖 , and 𝐸(𝑆𝑖) is the mean service time 

required for a packet at node 𝑖. Also,  

 𝜌̂𝑖 =  𝑒𝑥𝑝 (−
2(1−𝜌𝑖)

𝐶𝐴𝑖
2 𝜌𝑖+𝐶𝑆𝑖

2 ), (32) 

 where 𝐶𝐴𝑖

2  and 𝐶𝑆𝑖

2  are the squares of coefficients of variation of inter-arrival times and service times 

respectively, of packets at node 𝑖. As shown in [5] , 𝐶𝐴𝑖

2  is approximated by using the relation  

 𝐶𝐴𝑖

2 = 1 + ∑𝑁
𝑗=0 (𝐶𝑆𝑗

2 − 1)𝑞𝑗𝑖
2 𝑒𝑗𝑒𝑖

−1, (33) 

 where 𝐶𝑆0
2 = 𝐶𝐸

2, and 𝑒𝑗 is the average number of visits that a packet makes to node 𝑗 during its stay 

in the network. Since all the nodes are considered identical in our model, the eqn, analogues to the 

one given by(33), associated with our model assumes the form  

 𝐶𝐴
2 ≈ 1 +

(𝐶𝐸
2−1)

𝑁2 + (𝑁 − 1)(𝐶𝑇𝑆
2 − 1)𝑞2, (34) 

 where 𝑞 is given by eqn (11). 

Also, mean number of packets at an arbitrary node  

 𝐾 =
𝜌

1−𝜌̂
. (35) 

 By Little’s law, average waiting time of a packet at an arbitrary node  

 𝑊̅ =
𝐾

𝜆
=

𝜌

𝜆(1−𝜌̂)
, (36) 

 where 𝜆, the effective arrival rate at a node is given by eqn (12). 

Since a packet generated at an arbitrary node is of class 𝑙, 𝑙 = 1,2, … ,𝑀 with probability 𝑐𝑙 

and a class 𝑙 packet visits exactly 𝑙 hopes before absorption, average number of hops traversed by a 

packet before absorption  

 𝐻 = ∑𝑀
𝑙=1 𝑙𝑐𝑙 =

𝑀+1

2
,     𝑖𝑓     𝑐𝑙        𝑖𝑠  𝑢𝑛𝑖𝑓𝑜𝑟𝑚.  

Hence, the average end to end delay experienced by a packet in the whole network  

 𝐷 = 𝐻𝑊̅ =
(𝑀+1)𝜌

2𝜆(1−𝜌̂)
,     𝑖𝑓     𝑐𝑙        𝑖𝑠  𝑢𝑛𝑖𝑓𝑜𝑟𝑚.  (37) 

 Since 𝜆, given by eqn (12), is the effective arrival rate at an arbitrary node, and 𝐸(𝑇𝑆), given by 

eqn(29), is the actual mean time required for a packet to be successfully transmitted from a node, for 

the stability of the system  
 𝜆𝐸(𝑇𝑆) < 1. 

Hence the maximum achievable throughput can be attained when 𝜆𝑒 is enhanced to the values near 

its upper bound, governed by the rule  

 𝜆𝑒 < 𝑁(1 − (𝑁 − 1)𝑣𝑞)𝐸(𝑇𝑆) (38) 

 for a selected set of parameters. 

 

3  Results 
 

In order to illustrate the performance of the system, we present some numerical results. The values 

of the system parameters used in this analysis are summarized in Table 1 and Table 2. Most of these 

parameters are set to comply with the 802.11 MAC specifications. The wireless nodes are assumed 

to be distributed uniformly inside a compact subset in 𝑅3 of volume 106 𝑚3, which is taken as 1 

𝑐𝑢𝑏𝑖𝑐 𝑢𝑛𝑖𝑡. All nodes are considered as identical. Packets are generated independently at nodes as 

per a renewal process with rate 𝜆𝑒 and coefficient of variation 𝐶𝐸 = 0.95. types of packets generated 

at each node are assumed as uniform with mean 1/𝑀, where 𝑀 = 15. Packet size are assumed to be 

uniformly distributed over an interval [64,1518], measured in bytes, so that the average packet size 

is 791 bytes. In all numerical illustrations, we have included both BEB and DIDD schemes in order 

to get a complete picture of the system performance.  
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Table  1: Physical Parameters 

   

 Parameter   Value  

𝐶𝑊𝑚𝑖𝑛    32  

𝐶𝑊𝑚𝑎𝑥   1024  

No. of classes of packets(M)   15  

Propagation speed   3×108𝑚/𝑠  

Channel bit rate   1 Mbps  

Slot time (𝜎)   50 𝜇𝑠  

SIFS   28 𝜇𝑠  

DIFS   128 𝜇𝑠  

 

 

Table  2: Packet Parameters 

   

 Parameter   Value  

Average Packet size   6328 bits  

COV of the packet arrival process 𝐶𝐸   0.95  

PHY header   128 bits  

ACK   112 bits + PHY header  

 

 

   

 
Figure  2: Average Delay versus Transmission Range (𝑁 = 300, 𝜆𝑒 = 2   𝑝𝑎𝑐𝑘𝑒𝑡𝑠/𝑠𝑒𝑐 ) 
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Figure  3: Average Delay versus Number of Nodes (𝑅 = 25𝑚, 𝜆𝑒 = 2𝑝𝑎𝑐𝑘𝑒𝑡𝑠/𝑠𝑒𝑐) 

  

 

4  Discussion 
 

Figure 2 shows how the average end to end delay 𝐷 experienced by a packet in the whole network 

varies with different values of the transmission range 𝑅. When 𝑅 increases, average number of 

interfering neighbours of nodes increases so that the conditional collision probability also increases, 

which results in more delay for packets at each node. Also, since the conditional collision probability 

is more for the system under standard BEB scheme than under the DIDD scheme, the average end 

to end delay for the former is much higher than the latter, as obvious from Figure 2. 

In Figure 3, the variation in average end to end delay corresponding to change in values of 

the the number of nodes 𝑁, by keeping 𝑅 = 25𝑚, and 𝜆𝑒 = 2𝑝𝑎𝑐𝑘𝑒𝑡𝑠/𝑠𝑒𝑐, is exhibited. As in the 

previous case, here also it is seen that 𝐷 moves in the same direction with 𝑁, under both schemes. 
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