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Abstract 
 

Most real life system exhibit bathtub shapes for their failure rate functions. 

Generalized Lindley, Generalized Gamma, Exponentiated Weibull and x-

Exponential distributions are proposed for modeling lifetime data having bathtub 

shaped failure rate model. This paper considered  a simple model but exhibiting 

bathtub shaped failure rate  and discuss the failure rate behavior.  The proposed 

distribution  has only one parameter. A Little works are available in literature with 

one parameter. Computation of moments requires software. Applications in 

reliability study is discussed. 
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I. Introduction 
 

There are many distributions for modeling lifetime data. Among the known parametric models, 

the most popular are the Lindley, Gamma, log-Normal, Exponentiated Exponential and the 

Weibull distributions. These five  distributions are suffer from a number of drawbacks. None of 

them exhibit bathtub shape for their failure rate functions. Most real life system exhibit bathtub 

shapes for their failure rate functions. Generalized Lindley (GL), Generalized Gamma (GG), 

Exponentiated Weibull (EW) and x-Exponential distributions are proposed for modeling lifetime 

data having bathtub shaped failue rate model. In this paper we consider  a simple model but 

exhibiting bathtub shaped failure rate and discuss the failure rate behavior of the distribution.  The 

inference procedure also become simple than GL, GG and EW distributions. 

  

Section II, discussed new distribution and their properties, Maximum likelihood estimator  is 

obtained in section III. Conclusions are given at the final section. 

 

II. New Bathtub shaped failure rate model 

 

In this section we consider failure rate function  

ℎ(𝑥) =
1 + 𝑎𝑥 + 𝑥2

1 + 𝑥 + 𝑥2
 , 𝑥 > 0, 𝑎 > 0. 
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a is considered to be arbitrary 

∫
1 + 𝑎𝑥 + 𝑥2

1 + 𝑎𝑥 + 𝑥2
𝑑𝑥 = ∫(

(𝑎 − 1)𝑥

1 + 𝑥 + 𝑥2
+ 1)𝑑𝑥 

                                                                    = (𝑎 − 1) ∫
𝑥

1+𝑥+𝑥2 𝑑𝑥 + ∫ 1𝑑𝑥 

                                = (𝑎 − 1) ∫
2𝑥+1

2(1+𝑥+𝑥2) 𝑑𝑥 − ∫
1

2(1+𝑥+𝑥2)
𝑑𝑥 + ∫ 1𝑑𝑥 

                                =
(𝑎−1)

2
∫

1

 𝑤
𝑑𝑤 −

2

2√3
∫

1

(1+𝑢2)
𝑑𝑢 + ∫ 1𝑑𝑥,  

by substituting     𝑤 =
1

1+𝑥+𝑥2 , 𝑢 =
1+2𝑥

√3
. 

 

                                     =
(𝑎−1)

2
𝑙𝑛(1 + 𝑥 + 𝑥2) − (𝑎 − 1)

1

√3
𝑎𝑟𝑐𝑡𝑎𝑛

(1+2𝑥)

√3
+ 𝑥 

 

Here, we consider a simplified form of distribution function, 

 

                        𝐹(𝑥) = 1 − 𝑒
−(𝑥+(𝑎−1)(

log(1+𝑥+𝑥2)

2
−

arctan ((1+2𝑥)/√3)

√3
)
, 𝑥 > 0, −∞ < 𝑎 < ∞                  (1) 

 

It is an alternative model GL, GG, EW distributions. Clearly F(0)=0, F(∞) = 1, F is non-decreasing 

and right continuous. More over F is absolutely continuous. The probability density function (pdf) 

is given by  

 

𝑓(𝑥) =
1+𝑎𝑥+𝑥2

1+𝑥+𝑥2  𝑒
−(𝑥+(𝑎−1)(

log(1+𝑥+𝑥2)

2
−

arctan ((1+2𝑥)/√3)

√3
)
, 𝑥 > 0, −∞ < 𝑎 < ∞. 

 

It is positively skewed distribution.  

 

 

 
 

Figure 1. Failure rate function for a=0.9 
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Figure 2. Failure rate function for a=0.001 

 
 

Figure 3. Failure rate function for a=0.001 

 

From Figure 1 and 2, the shape of the hazard rate function appears monotonically decreasing or to 

initially decrease and then increase, a bathtub shape. The proposed distribution allows only  

bathtub shapes for its hazard rate function.  Fig. 3 shows Upside down bathtub shape in its failure 

rate function, for a=1.2. When a=1, it becomes constant failure rate model.   

 

Proposition 1: The proposed distribution is a generalization of Exponential distribution. 

When a=1, it becomes exponential distribution 𝑓(𝑥) =   𝑒−𝑥 , 𝑥 > 0. 

 

A generalization to Two parameter distribution 

  

Here, we consider a simplified form of distribution function, 

                        𝐹(𝑥) = 1 − 𝑒
−𝜆(𝑥+(𝑎−1)(

log(1+𝑥+𝑥2)

2
−

arctan ((1+2𝑥)/√3)

√3
)
, 𝑥 > 0, 𝜆 > 0 − ∞ < 𝑎 < ∞                  (1) 

 

It is an alternative model GL, GG, EW distributions. Clearly F(0)=0, F(∞) = 1, F is non-decreasing 

and right continuous. More over F is absolutely continuous. The probability density function (pdf) 

with scale parameter λ  is given by  
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𝑓(𝑥) =
𝜆(1+𝑎𝑥+𝑥2)

1+𝑥+𝑥2  𝑒
−𝜆(𝑥+(𝑎−1)(

log(1+𝑥+𝑥2)

2
−

arctan ((1+2𝑥)/√3)

√3
)
, 𝑥 > 0, 𝜆 > 0, −∞ < 𝑎 < ∞. 

 

It is positively skewed distribution.  

 

The failure rate function is 

ℎ(𝑥) =
𝜆(1 + 𝑎𝑥 + 𝑥2)

1 + 𝑥 + 𝑥2
 , 𝑥 > 0 , 𝜆 > 0. 

Moments 

 

All the raw and central moments, moment generating functions etc exist, since the function f(x) is 

having countable number of discontinuities, and integrable but the resulting function require more 

mathematical treatment. It can be done by softwares like Matlab. It left to reader. 

 

Estimation 

 

Here, we consider estimation by the method maximum likelihood.  
 

𝐿(𝑎, 𝑥1, 𝑥2, … , 𝑥𝑛) = ∏ 𝑓(𝑥𝑖)
𝑛

𝑖=1
 

𝐿(𝑎, 𝑥1, 𝑥2, … , 𝑥𝑛) = ∏
1 + 𝑎𝑥𝑖 + 𝑥𝑖

2

1 + 𝑥𝑖 + 𝑥𝑖
2  𝑒

−(𝑥𝑖+(𝑎−1)(
log(1+𝑥𝑖+𝑥𝑖

2)
2

−
arctan ((1+2𝑥𝑖)/√3)

√3
)𝑛

𝑖=1
 

 

𝑙𝑜𝑔𝐿 = ∑[ log(1 + 𝑎𝑥𝑖 + 𝑥𝑖
2) −  log (1 + 𝑥𝑖 + 𝑥𝑖

2)]

𝑛

𝑖=1

−  ∑[𝑥𝑖 + (𝑎 − 1)( 
log(1 + 𝑥𝑖 + 𝑥𝑖

2)

2
− 

𝑎𝑟𝑐𝑡𝑎𝑛 ( 
1 + 2𝑥𝑖

√3
)

√3
)]

𝑛

𝑖=1

 

    = ∑ log(1 + 𝑎𝑥𝑖 + 𝑥𝑖
2) −  ∑ log(1 + 𝑥𝑖 + 𝑥𝑖

2)

n

i=1

𝑛

𝑖=1

− 

              − ∑ 𝑥𝑖 + (𝑎 − 1) ∑( 
log(1 + 𝑥𝑖 + 𝑥𝑖

2)

2
−  

𝑎𝑟𝑐𝑡𝑎𝑛 ( 
1 + 2𝑥𝑖

√3
)

√3
)

𝑛

𝑖=1

]

𝑛

𝑖=1

 

 

∂

∂𝑎
 𝑙𝑜𝑔 𝐿 = 0 ⇒ ∑  

𝑥𝑖

(1 + 𝑎𝑥𝑖 + 𝑥𝑖
2)

−  ∑ [
log(1 + 𝑥𝑖 + 𝑥𝑖

2)

2
−  

𝑎𝑟𝑐𝑡𝑎𝑛 ( 
1 + 2𝑥𝑖

√3
)

√3
] = 0

𝑛

𝑖=1

𝑛

𝑖=1

 

                               

 

⇒  
∑ 𝑥𝑖

𝑛
𝑖=1

(𝑛 + 𝑎 ∑ 𝑥𝑖
𝑛
𝑖=1 + ∑ 𝑥𝑖

2𝑛
𝑖=1 )

=  ∑ [
log(1 + 𝑥𝑖 + 𝑥𝑖

2)

2
−  

𝑎𝑟𝑐𝑡𝑎𝑛 ( 
1 + 2𝑥𝑖

√3
)

√3
]

𝑛

𝑖=1

 

 

⟹  
(𝑛 + 𝑎 ∑ 𝑥𝑖

𝑛
𝑖=1 + ∑ 𝑥𝑖

2𝑛
𝑖=1 )

∑ 𝑥𝑖
𝑛
𝑖=1

=  
1

∑ [
log(1 + 𝑥𝑖 + 𝑥𝑖

2)
2

−  
𝑡𝑎𝑛−1 ( 

1 + 2𝑥𝑖

√3
)

√3
]𝑛

𝑖=1
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⇒  (𝑛 + 𝑎 ∑ 𝑥𝑖

𝑛

𝑖=1

+ ∑ 𝑥𝑖
2

𝑛

𝑖=1

) =
∑ 𝑥𝑖

𝑛
𝑖=1

∑ [
log(1 + 𝑥𝑖 + 𝑥𝑖

2)
2

−  
𝑡𝑎𝑛−1 ( 

1 + 2𝑥𝑖

√3
)

√3
]𝑛

𝑖=1

  

 

⇒ 𝑎 ∑ 𝑥𝑖

𝑛

𝑖=1

=  
∑ 𝑥𝑖

𝑛
𝑖=1

∑ [
log(1 + 𝑥𝑖 + 𝑥𝑖

2)
2

−  
𝑡𝑎𝑛−1 ( 

1 + 2𝑥𝑖

√3
)

√3
]𝑛

𝑖=1

−  𝑛 − ∑ 𝑥𝑖
2

𝑛

𝑖=1

 

 

⇒  𝑎̂ =  
1

∑ [
log(1 + 𝑥𝑖 + 𝑥𝑖

2)
2

−  
𝑡𝑎𝑛−1 ( 

1 + 2𝑥𝑖

√3
)

√3
]𝑛

𝑖=1

−  
(𝑛 −  ∑ 𝑥𝑖

2𝑛
𝑖=1 )

∑ 𝑥𝑖
𝑛
𝑖=1

 

Thus we obtained Maximum likelihood estimator for the parameter. 
 

 

III. Applications and Conclusions 

 
Identifying the failure rate model is crucial to the maintenance and replacement policies. The 

optimal burn in time can be computed for the Bathtub shaped failure rate models. The model 

suggested here provide  Bathtub shaped failure rate distributions which is more flexible and 

simple than many existing distributions, in the sense of estimation. We considered Arset data [5] 

parameter is a=0.813225 

 
Table 1. Aarset Data 

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 18 21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67 72 
75 79 82 82 83 84 84 84 85 85 85 85 85 86 86 

 

 
Figure 4. Failure rate function a=0.813225  

 
We obtained bathtub shaped curve for the Aarset data as in figure 4. 
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IV. Discussion 
 

There are many distributions in reliability which exhibit Bathtub shaped failure rate model, but 

most of them are complicated in finding estimators. The complication in using GL,GG,GE 

distributions is reduced in the proposed model.  Any way the problem of computing Moments, 

characteristic functions etc still remains.  
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