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Abstract 

 
 A service station offers several services of which one is the required and the others 

are harmful (or destructive) for each customer. At the time when selected for service 

customers enter in correct mode of service according to a Bernoulli process with 

parameter 𝑝 which is the probability of being selected in correct mode. Arrival follows 

Markovian arrival process and service time is Phase type distributed in both 

undesired and required phases. An exponentially distributed threshold clock starts 

ticking if a customer enters to incorrect mode and the service is terminated if the clock 

realizes before the customer is transferred to correct service mode. The rate of loss of 

customers, rate of customers leaving with correct service starting with incorrect 

service are computed.  

 

Keywords: desired/undesired service states, random threshold clock, Markovian 

arrival process  

 

1  Introduction 
 

In the analysis of classic queueing models it is assumed that the server is completely aware of the 

exact service requirement of a customer (see Gross and Harris [2]). Quite often only one type of 

service is offered by the system and so conflict does not occur. It is also true that the customer 
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knows the type of service he needs. Thus there is no conflict on the service provided to the 

customer. However, there are several real life situations where the server and/customer are (is) not 

knowledgeable about the exact service requirement. This is especially the case when several types 

of services are available at a service station. As concrete example we have vehicles for repair at 

service stations, patients consulting physicians for diagnosis and medication. If the right service 

required is not identified and instead the diagnosis turned out to be wrong the result could be 

disastrous. A wrong diagnosis and consequent service provided may sometimes turn out to be 

even fatal/ may result in the equipment getting service, rendered totally unusable. It is this type of 

problem that we analyze in this note. 

In real life there are several service providing system offering a multitude of service. 

Neither the server nor the customer may be fully aware of the exact service requirement. This, very 

often, results in irreperable damage to the customer being served. We study such a system in this 

paper with each customer requiring a specific service. However, due to wrong diagnosis service 

does not start necessarily for the required one. 

The article is organized as follows. In section 2, the mathematical model is described. This 

section also provides the steady state analysis and some performance measures. Several cases of 

the above model are considered in Sections 3 and 4. An illustration is given in Section 5. Numerical 

illustrative example is described in Section 6. In Section 7 we extend the above results to the case of 

arbitrarily distributed service time in the undesired and desired stages of service. However, we 

restrict 𝑛1 = 𝑛2 = 1. Further we relabel the undesired service as preliminary and desired as main 

services to suit certain context of application. 

List of notations and abbreviations used: 

𝐶𝑇𝑀𝐶: Continuous time Markov chain  

𝐿𝐼𝑄𝐵𝐷: Level independent quasi-birth and death process  

𝑀𝐴𝑃: Markovian arrival process  

𝐿𝑆𝑇: Laplace Stieltjes Transform  

𝑒: Column vector of 1′s with appropriate order  

  

2  Model Description  
  

The assumptions leading to the formulation of the mathematical model are   

 • An infinite capacity queueing system where a single server is providing both unwanted 

(incorrect) and required (correct) services.  

 • Arrival of customers to the system is according to the 𝑀𝐴𝑃 (Markovian arrival process). 

In a 𝑀𝐴𝑃, the customers arrival is directed by an irreducible 𝐶𝑇𝑀𝐶 (continuous time Markov 

chain) {𝜙𝑡 , 𝑡 ≥ 0} with the state space {1,2, . . . , 𝑚}. The transition intensities of the Markov chain 

{𝜙𝑡 , 𝑡 ≥ 0} which are accompanied by arrival of 𝑘 customers are described by the matrices 𝐷𝑘 , 𝑘 =

0,1. Vector 𝜼 of the stationary distribution of the process {𝜙𝑡 , 𝑡 ≥ 0} is the unique solution to the 

system  

 𝜼(𝐷0 + 𝐷1) = 𝜼𝐷 = 0𝑎𝑛𝑑𝜼𝑒 = 1. (1) 

 Fundamental rate 𝜆 of the 𝑀𝐴𝑃 is given by 𝜆 = 𝜼𝐷1𝑒.  

    • A customer is selected for desired (required) service with probability 𝑝 or to the 

incorrect service with probability 𝑞 = 1 − 𝑝.  

    • ( 𝛽 1, 𝑆1) of order 𝑛1 gives the PH-representation for the duration of the correct service 

time distribution when the service of a customer starts in correct service mode. Let  1
0  be such that 

𝑆1𝑒 +   𝑆1
0  = 0. Let 𝜇′1 =  𝛽 1(−𝑆1)

−1𝑒 be the mean of this PH-representation.  

    • ( 𝛽 2, 𝑆2) of order 𝑛2 gives the PH-representation for the duration of the incorrect 

service time distribution when the service of a customer starts in incorrect service mode. The rate 
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(vector) of loss is given by  2
0  and the rate (vector) of getting into correct service mode is given by 

   𝑆2
0 . Note that 𝑆2𝑒 +   𝑆2

0  +    𝑆2
0  = 0. Let 𝜇′2 =  𝛽 2(−𝑆2)

−1𝑒 be the mean of this PH-representation.  

    • ( 𝛽 3, 𝑆3) of order 𝑛3 gives the PH-representation for the duration of the correct service 

time distribution when the customer has gone through incorrect service initially. Let  3
0  be such 

that 𝑆3𝑒 +   𝑆3
0  = 0. Let 𝜇′3 =  𝛽 3(−𝑆3)

−1𝑒 be the mean of this PH-representation. [NOTE: One can 

take this to be same as ( 𝛽 1, 𝑆1) but it looks more meaningful in most applications that the service 

time after going through incorrect one to be different from the use of directly getting into required 

service. Just something to keep in mind.]  

    • The service time of a customer can be modeled as a PH-distribution with 

representation ( 𝛽 , 𝑆) of order 𝑛 = 𝑛1 + 𝑛2 + 𝑛3, where  

  𝛽 = (𝑝 𝛽1, 𝑞 𝛽2,0)   (2) 

  

 𝑆 = (

𝑆1 0 0

0 𝑆2 𝑆2
0  𝛽3

0 0 𝑆3
) (3) 

 Let   0 be such that 𝑆𝑒 +   𝑆0  = 0 and    𝑆0  is given by  0  = [ 1
0  2

0  3
0 ]𝑇.  

 Let 𝑁(𝑡) be the number of customers in the system, 𝑁∗(𝑡) the mode of service going on 

whether direct admission to required/ undesired or one that came from undesired service 

designated by 1,2 and 3 respectively, 𝑆(𝑡) the phase of service and 𝐴(𝑡) the phase of arrival at time 

𝑡. With these the process {(𝑁(𝑡), 𝑁∗(𝑡), 𝑆(𝑡), 𝐴(𝑡)), 𝑡 ≥ 0} is a continuous time Markov chain with 

state space Ω = {0, 1, 2, . . . }, where  
 0 = {(0, 𝑟); 1 ≤ 𝑟 ≤ 𝑚} 

(in the level zero we need consider only the phase of arrival) and  

 𝑖 = {(𝑖, 𝑗, 𝑘, 𝑟); 𝑖 ≥ 1,1 ≤ 𝑗 ≤ 3,1 ≤ 𝑘 ≤ 𝑛𝑗 , 1 ≤ 𝑟 ≤ 𝑚}. 

Thus the infinitesimal generator of this 𝐶𝑇𝑀𝐶 is a 𝐿𝐼𝑄𝐵𝐷 and is of the form  

 𝑄 =

(

 
 

𝐷0 𝐴01
𝐴10 𝐴1 𝐴0

𝐴2 𝐴1 𝐴0
⋱ ⋱ ⋱

)

 
 

 

where 𝐴01 =  𝛽 ⊗  𝐷1 , 𝐴10 =   𝑆
0⊗    𝐼𝑚  , 𝐴0 =   𝐼𝑛 ⊗  𝐷1 , 𝐴1 =  𝑆 ⊕  𝐷0 , 𝐴2 =   𝑆

0𝛽 ⊗    𝐼𝑚  .  

2.1  Stability Condition 

 Consider 𝐴(= 𝐴0 + 𝐴1 + 𝐴2), the generator matrix of the Markov chain corresponding to 

the phase changes. 

 

 𝐴 = ( 𝑆 +   𝑆0𝛽 ) ⊕ 𝐷 =

(

 

(𝑝1
0  𝜷1 + 𝑆1) ⊕ 𝐷 𝑞1

0  𝜷2⊗ 𝐼𝑚 0

𝑝2
0  𝜷1⊗ 𝐼𝑚 (𝑞2

0  𝜷2 + 𝑆2) ⊕ 𝐷 𝑆2
0 𝜷3⊗ 𝐼𝑚

𝑝3
0  𝜷1⊗ 𝐼𝑚 𝑞3

0  𝜷2⊗ 𝐼𝑚 𝑆3⊕𝐷
)

  (4) 

 Let  𝜋 = ( 𝜋 1, 𝜋 2, 𝜋 3) be the steady-state probability vector of (𝑆 +   𝑆0  𝛽 ). Then  

  𝜋 (𝑆 +   𝑆0  𝛽 ) = 0𝑎𝑛𝑑 𝜋 𝑒 = 1. (5) 

 From the relation  𝜋 (𝑆 +   𝑆0  𝛽 ) = 0 we have  

  𝜋 1(𝑝 1
0 𝜷1 + 𝑆1) +  𝜋 2𝑝 2

0 𝜷1 +  𝜋 3𝑝 3
0 𝜷1 = 0, (6) 

  𝜋 1𝑞 1
0 𝜷2 +  𝜋 2(𝑞 2

0 𝜷2 + 𝑆2) +  𝜋 3𝑞 3
0 𝜷2 = 0, (7) 

  𝜋 2     𝑆2
0 𝜷3 +  𝜋 3𝑆3 = 0. (8) 

 Multiplying equation (8) by 𝑒 on right hand side we get  

  𝜋 3 3
0  =  𝜋 2     𝑆2

0 . (9) 

 Putting this in equation (6) yields  

  𝜋 1 1
0  = −

𝑝

𝑞
 𝜋 2𝑆2𝑒. (10) 
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 Substituting relations (9) and (10) in equation (7) gives  

  𝜋 2( 2
0 𝜷2 +     𝑆2

0 𝜷2 + 𝑆2) = 0. (11) 

 This implies, for an arbitrary constant 𝑐  

  𝜋 2 = 𝑐𝜷2(−𝑆2)
−1. (12) 

 Substituting for  𝜋 2 in relation (10) we have  

  𝜋 1 =
𝑐𝑝

𝑞
𝜷1(−𝑆1)

−1. (13) 

 Denote by 𝛿 = 𝜷2(−𝑆2)
−1     𝑆2

0  the probability that a customer starting with incorrect service 

leaves the system after getting correct service. Then equation (9) gives  

  𝜋 3 = 𝑐𝛿𝜷3(−𝑆3)
−1. (14) 

 From the normalizing condition  𝜋 𝑒 = 1, the value of 𝑐 is computed as  

 𝑐 = [
𝑝

𝑞
𝜇′1 + 𝜇′2 + 𝛿𝜇′3]

−1

. (15) 

 Now from (1) and (5) we get the steady state probability vector of A as  𝜋̂  =  𝜋 ⊗ 𝜼. 

 

Theorem 2.1 The system is stable if and only if  

 𝜆 < ( 𝜋 ⊗ 𝜼)(   𝑆0  𝛽 ⊗   𝐼𝑚 )𝑒. (16) 

  

  

Proof. The queueing system under study with the 𝐿𝐼𝑄𝐵𝐷 type generator given in (2) is 

stable if and only if rate of left drift is less than the rate of right drift (see Neuts [6]), that is,  

  𝜋̂ 𝐴0𝑒 <  𝜋̂ 𝐴2𝑒. (17) 

 The left drift rate is  𝜋̂ (   𝐼𝑛 ⊗  𝐷1 )𝑒 which when simplified reduces to 𝜆. Now, the right drift rate 

is ( 𝜋 ⊗ 𝜼)(   𝑆0  𝛽 ⊗   𝐼𝑚  )𝑒. 

Let 𝜌 =
𝜆

( 𝜋 ⊗𝜼)(   𝑆0  𝛽 ⊗   𝐼𝑚 )𝑒
. Then from (16), we have 𝜌 < 1.  

  

2.2  Steady-State probability vector 

 A brief outline for the computation of the stationary probability vector of the system is as 

follows. Let 𝐱 denote the steady-state probability vector of the generator 𝑄. Then  

 𝐱𝑄 = 0𝑎𝑛𝑑𝐱𝑒 = 1. (18) 

 Assuming that the stability condition (16) holds and partitioning 𝐱 as 𝐱 = (𝐱0, 𝐱1, 𝐱2, . . . ) we obtain  

 𝐱𝑛 = 𝐱1𝑅
𝑛−1, 𝑛 ≥ 1 (19) 

 where 𝑅 is the minimal non negative solution to the matrix quadratic equation 𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0 =

0. The two boundary equations involving 𝐱0 are  

 𝐱0𝐷0 + 𝐱1𝐴10 = 0, (20) 

  

 𝐱0𝐴01 + 𝐱1[𝐴1 + 𝑅𝐴2] = 0 (21) 

 These together with the normalizing condition in (18) gives  

 𝐱1 = 𝐱0𝑉𝑤ℎ𝑒𝑟𝑒𝑉 = −𝐴01[𝐴1 + 𝑅𝐴2]
−1 (22) 

  

 𝐱0[𝐼 + 𝑉(𝐼 − 𝑅)
−1]𝑒 = 1. (23) 

 To see how the system performs, it is instructive to define 𝐲 = ∑∞𝑖=1 𝐱𝑖. Then 𝐲 = (𝐲1    𝐲2    𝐲3) 

where the 𝐲𝑖 , 𝑖 = 1,2,3 indicates mode of service of the customer in service along with other system 

phases.  

2.3  System Performance Measures 

    1.  Probability that system is idle, 𝑃𝑖𝑑𝑙𝑒 = 𝐱0𝑒 = 1 − 𝜌. 

    2.  Rate of loss of customers, 𝑅𝑙𝑜𝑠𝑠 = y2   𝑆2
0  = 𝜆𝑞(1 − 𝛿). 
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    3.  Probability that a customer is lost, 𝑃𝑙𝑜𝑠𝑠 = 𝑞(1 − 𝛿). 

    4.  Mean number of customers in the system, 𝜇𝑁𝑆 = ∑
∞
𝑖=1 𝑖𝐱𝑖e. 

    5.  Mean number of customers in the queue is given by 𝜇𝑁𝑄 = ∑
∞
𝑖=2 (𝑖 − 1)𝑥𝑖e. 

    6.  Probability that the server is serving in required mode, 𝑃𝐶 = y1e + y3e = 𝜌 − 𝜆𝑞𝜇′2. 

    7.  Probability that the server is serving in unwanted mode, 𝑃𝐼 = y2e = 𝜆𝑞𝜇′2. 

    8.  Rate at which customers leave with required service starting in desired service mode, 𝑅𝐶 =

y1   𝑆1
0  = 𝜆𝑝. 

    9.  Rate at which customers leave with correct service starting with unwanted service, 𝑅𝐼 =

y3   𝑆3
0  = 𝜆𝑞𝛿. 

    10.  Expected waiting time in the system 𝑊𝑆 =
𝜇𝑁𝑆

𝜆
.  

    11.  We define the system reliability at any time as the probability of customers in service is in 

desired mode of service 𝑝𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = (y1 + y3)e.  

  

3  Case of Poisson arrival and phase type service 
 

In this section we consider the system with Poisson arrival process and service times are phase 

type distributed (see Section 2). Then {(𝑁(𝑡), 𝑁∗(𝑡), 𝑆(𝑡)), 𝑡 ≥ 0} is a continuous time Markov chain 

with state space {0, 1, 2, . . . } where  
 𝑖 = {(𝑖, 𝑗, 𝑘),1 ≤ 𝑗 ≤ 3,1 ≤ 𝑘 ≤ 𝑛𝑗}𝑓𝑜𝑟𝑖 ≥ 1. 

Thus the infinitesimal generator is of the form 𝑄′ =

(

 
 

−𝜆 𝜆 𝛽 

   𝑆0 𝑆 − 𝜆𝐼 𝜆𝐼
   𝑆0  𝛽 𝑆 − 𝜆𝐼 𝜆𝐼

⋱ ⋱ ⋱
)

 
 
.  

Theorem 3.1 The system is stable if and only if 𝜌′ < 1 where  

 𝜌′ = 𝜆[𝑝𝜇1′ + 𝑞(𝜇2′ + 𝛿𝜇3′)]. (24) 

  

  

Proof. From the relation (17) we have 𝜆 <  𝜋    𝑆0    𝛽 𝑒 where  𝜋 = ( 𝜋 1, 𝜋 2, 𝜋 3) (with  𝜋 𝑖’s 

as given in (12)-(14)) is the steady state probability vector of 𝑆 +   𝑆0𝛽 . The right drift  𝜋    𝑆0𝛽 𝑒 =

∑3𝑖=1  𝜋𝑖     𝑆𝑖
0 . 

Multiplying (6) by 𝑒 on right hand side we get  

 ∑3𝑖=1  𝜋𝑖     𝑆𝑖
0  =

𝑐

𝑞
−

1

𝑝
 𝜋𝑖  𝑆1𝑒 =

1

𝑝
(
𝑐𝑝

𝑞
) 𝛽1 𝑒    (𝑓𝑟𝑜𝑚(13)) =

𝑐

𝑞
 

where 𝑐 is given in (15). Hence the condition for system stability is given by  

 𝜆 <
1

𝑝𝜇1
′+𝑞(𝜇′2+𝛿𝜇3

′ )
 (25) 

  

 The generator matrix corresponding to the phase changes is 𝑆 +   𝑆0 𝛽 and the stationary 

probability vector is  𝜋 = ( 𝜋 1, 𝜋 2, 𝜋 3). 

 

Theorem 3.2 The steady-state probability vector 𝑥 = (𝑥0, 𝑥1, 𝑥2, ⋯ ) of 𝑄′ is given by  

 
𝑥0 = 1 − 𝜌′, x𝑖 = (1 − 𝜌′) 𝛽 𝑅𝑖 , 𝑖 ≥ 1,

 (26) 

 where 𝑅 is given by  

 𝑅 = 𝜆 [

𝜆𝐼 − 𝜆𝑝e 𝛽1 − 𝑆1 −𝜆𝑞e 𝛽2 0

−𝜆𝑝e 𝛽1 𝜆𝐼 − 𝜆𝑞e 𝛽2 − 𝑆2 −     𝑆2
0  𝛽3

−𝜆𝑝e 𝛽1 −𝜆𝑞e 𝛽2 𝜆𝐼 − 𝑆3

]

−1

. (27) 

  

  

Proof. Let 𝑥 be the steady-state probability vector of 𝑄′. Then 𝑥𝑄′ = 0 and 𝑥𝑒 = 1. 

The steady-state equations are given by  

 −𝜆𝑥0 + 𝑥1S
0 = 0, (28) 
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 𝜆𝑥0𝜷 + 𝑥1(𝑆 − 𝜆𝐼) + 𝑥2S
0𝜷 = 0, (29) 

  

 𝜆𝑥𝑖−1 + 𝑥𝑖(𝑆 − 𝜆𝐼) + 𝑥𝑖+1S
0𝜷 = 0, 𝑓𝑜𝑟𝑖 ≥ 2. (30) 

 From (28) we have  

 𝑥1S
0 = 𝜆𝑥0. (31) 

 Multiplying equations (29) and (30) by the column vector 𝑒 on the right hand side leads to  

 𝑥𝑖+1S
0 = 𝜆𝑥𝑖𝑒𝑓𝑜𝑟𝑖 ≥ 1. (32) 

 Since 𝑥𝑖+1S
0𝜷 = 𝜆𝑥𝑖ℬ𝑓𝑜𝑟𝑖 ≥ 1 where ℬ = 𝑒. 𝜷, from (29) and (30) we obtain  

 𝑥1(𝜆𝐼 − 𝜆ℬ − 𝑆) = 𝜆𝑥0𝜷 (33) 

 and  

 𝑥𝑖(𝜆𝐼 − 𝜆ℬ − 𝑆) = 𝜆𝑥𝑖−1, 𝑓𝑜𝑟𝑖 ≥ 2. (34) 

 Denoting (𝜆𝐼 − 𝜆ℬ − 𝑆) by 𝒦, relation (33) takes the form 𝑥1 = 𝜆𝑥0𝜷𝒦
−1, provided 𝒦 is invertible. 

We now prove the nonsingularity of 𝒦. 

Let the vector 𝑢 be in the left kernal of 𝒦. Then  

 𝜆𝑢 − 𝑢𝑆 − 𝜆(𝑢𝑒)𝜷 = 0. (35) 

 Suppose 𝑢𝑒 = 0. Then (35) reduces to 𝑢(𝜆𝐼 − 𝑆) = 0. But (𝜆𝐼 − 𝑆) is nonsingular and hence 𝑢 = 0. 

If 𝑢𝑒 ≠ 0, normalize 𝑢 by setting 𝑢𝑒 = 1. Post multiplying (35) by 𝑒 gives  

 𝑢S0 = 0. (36) 

 Substituting for 𝑢𝑒, (35) reduces to 𝑢 = 𝜆𝜷(𝜆𝐼 − 𝑆)−1. 

From (36) we have  

 𝜆𝜷(𝜆𝐼 − 𝑆)−1S0 = 0. (37) 

 In (37) 𝜷(𝜆𝐼 − 𝑆)−1S0 is the Laplace-Stieltjes transform at 𝑠 = 𝜆(> 0), of the probability distribution 

𝐹(𝑡) = 1 − 𝜷exp(𝑆𝑡)𝑒 for 𝑡 ≥ 0. Therefore (37) cannot hold and hence 𝑢 = 0. Thus 𝒦 is 

nonsingular. 

The irreducibility of the representation (𝜷, 𝑆) leads to the irreducibility of 𝒦, so that the 

matrix 𝑅 in (27) is positive. 

We have 𝑠𝑝(𝑅) < 1, if 𝜌′ < 1. Therefore the quantity 𝑥0 is given by the normalizing 

equation  
 𝑥0 + 𝑥0𝜷𝑅(𝐼 − 𝑅)

−1𝑒 = 1. 

Substitution for 𝑅 leads to  

 𝑥0 − 𝜆𝑥0𝜷(𝜆ℬ + 𝑆)
−1𝑒 = 1. (38) 

 The inverse of (𝜆ℬ + 𝑆) is calculated as 

 

(𝜆ℬ + 𝑆)−1 = 𝑆−1(𝐼 + 𝜆ℬ𝑆−1)−1 = 𝑆−1∑∞𝑛=0 (−1)
𝑛𝜆𝑛(ℬ𝑆−1)𝑛

= 𝑆−1[𝐼 − 𝜆[∑∞𝑛=0 (−1)
𝑛𝜆𝑛(ℬ𝑆−1)𝑛]ℬ𝑆−1] = 𝑆−1[𝐼 − 𝜆∑∞𝑛=0 𝜌

′𝑛ℬ𝑆−1]

= 𝑆−1[𝐼 − 𝜆(1 − 𝜌′)−1ℬ𝑆−1].

 

From (38) we have  

 

𝑥0 − 𝜆𝑥0𝜷(𝜆ℬ + 𝑆)
−1𝑒 = 𝑥0 − 𝜆𝑥0𝜷[𝑆

−1(𝐼 − 𝜆(1 − 𝜌′)−1ℬ𝑆−1)]𝑒

= 𝑥0 − 𝜆𝑥0𝜷𝑆
−1𝑒 + 𝜆2𝑥0(1 − 𝜌)

−1𝜷𝑆−1ℬ𝑆−1𝑒

= 𝑥0 + 𝜌′𝑥0 + 𝜌
′2(1 − 𝜌′)𝑥0 = (1 − 𝜌′)𝑥0 = 1,

 

so that 𝑥0 = (1 − 𝜌′).  

 Letting y = ∑∞𝑖=1 𝑥𝑖, it is obtained that y = 𝜌′ 𝜋 . In the sequel partition y = (y1, y2, y3), so 

that y𝑖 = 𝜌′ 𝜋 𝑖 , 1 ≤ 𝑖 ≤ 3.  

 

4  Poisson arrival with exponential service 
 

In this section we consider customers arrive according to the Poisson process with rate 𝜆 and 

desired (correct) service time follows exponential distribution but the undesired (incorrect) service 

follows phase type distribution. Let 𝑁(𝑡) be the number of customers in the system 𝑁∗(𝑡) the type 

of service and 𝑆(𝑡) the phase of service at time 𝑡. Then {(𝑁(𝑡), 𝑁∗(𝑡), 𝑆(𝑡)), 𝑡 ≥ 0} is a continuous 

time Markov chain with state space {0, 1, 2, . . . } where  
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 𝑖 = {(𝑖, 1,0), (𝑖, 3, 𝑟 + 1)}⋃ {(𝑖, 2, 𝑗),1 ≤ 𝑗 ≤ 𝑟}𝑓𝑜𝑟𝑖 ≥ 1. 

Thus the infinitesimal generator is of the form 

𝑄 =

0 1 2 3 . . . .

0
1

2

⋮

(

−𝜆 𝑏0
𝑐0 𝐴1 𝐴0

𝐴2 𝐴1 𝐴0
⋱ ⋱ ⋱

)
  

𝑤ℎ𝑒𝑟𝑒 𝑏0 = 𝜆(𝑝, 𝑞𝜷, 0),    𝑐0 = (

𝜇

𝑆̃1
0

𝜇
) , 𝐴0 = 𝜆𝐼  

 𝐴1 = (

−𝜆 − 𝜇 0 0

0    𝑆̃  − 𝜆𝐼    𝑆̃2
0

0 0 −𝜆 − 𝜇
) , 𝐴2 = (

𝜇𝑝 𝜇𝑞𝜷 0

𝑝   𝑆̃1
0 𝑞   𝑆̃1

0𝜷 0
𝜇𝑝 𝜇𝑞𝜷 0

)𝑤𝑖𝑡ℎ 𝑆̃𝑒 + 𝑆̃1
0 + 𝑆̃2

0 = 0. 

 

4.1  Stability condition 

 Consider 𝐴 = 𝐴0 + 𝐴1 + 𝐴2  

 = (

−𝜇𝑞 𝜇𝑞𝜷 0

𝑝   𝑆̃1
0    𝑆̃  + 𝑞   𝑆̃1

0𝜷    𝑆̃2
0

𝜇𝑝 𝜇𝑞𝜷 −𝜇
) (39) 

 the generator matrix of the Markov chain corresponding to the phase changes. Let  

Π = (𝜋0, 𝝅̂, 𝜋𝑟+1) be the steady state probability matrix of 𝐴. Solving the relations  

 Π𝐴 = 0,    Π𝑒 = 1 (40) 

 we obtain  

 −𝜇𝑞  𝜋0 + 𝑝𝝅̂     𝑆̃ 1
0 + 𝜇𝑝  𝜋𝑟+1 = 0 (41) 

 𝜇𝑞𝜋0𝜷 + 𝝅̂(   𝑆̃  + 𝑞   𝑆̃ 1
0  𝜷) + 𝜇𝑞  𝜋𝑟+1𝜷 = 0 (42) 

 𝝅̂     𝑆 2
0 − 𝜇𝜋𝑟+1 = 0 (43) 

 Equation (43) gives  

 𝜇𝜋𝑟+1 = 𝝅̂     𝑆̃ 2
0 (44) 

 Putting this in equation(41),  

 𝜇𝑞  𝜋0 = 𝑝(𝝅̂     𝑆̃ 1
0 + 𝝅̂     𝑆̃ 2

0) (45) 

 Substituting these in equation(42) and simplifying we get  

 𝝅̂(𝑆 + 𝑞   𝑆̃ 1
0  𝜷) + 𝑝𝝅̂  (   𝑆̃ 1

0𝛽 +     𝑆̃ 2
0  𝜷) + 𝑞𝝅̂     𝑆̃ 2

0  𝜷 = 0 

 ⇒ 𝝅̂  (   𝑆̃  +    𝑆̃ 1
0  𝜷 +     𝑆̃ 2

0  𝜷) = 0 

 so that  

 𝝅̂ = 𝑐  𝜷(−   𝑆̃ )−1 (46) 

 𝑐 being a constant and is computed from the normalizing condition. Let 𝛿 be the probability that a 

customer getting correct service from incorrect services and 𝜂 the probability of staying back in 

incorrect services. Then  

 𝛿 = 𝜷  (−   𝑆̃ )−1     𝑆̃ 2
0 (47) 

 and  

 𝜂 = (𝜷(−   𝑆̃ )
−1
𝑒)

−1

 (48) 

 Then the probability that a customer leaves the system without getting required service is  

 1 − 𝛿 = 𝜷  (−   𝑆̃ )−1     𝑆̃ 1
0 (49) 

 and the mean time a customer stay back in incorrect services is  

 
1

𝜂
= (𝜷(−   𝑆̃ )

−1
𝑒) (50) 

 The normalizing equation is 𝜋0 + 𝝅̂  𝑒 + 𝜋𝑟+1 = 1. Substituting for the components of Π which are 

now computed as  
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 𝜋0 =
𝑝𝑐

𝜇𝑞
, 𝝅̂  𝑒 =

𝑐

𝜂
, 𝜋𝑟+1 =

𝑐𝛿

𝜇
 (51) 

 we get 
𝑝𝑐

𝜇𝑞
+

𝑐

𝜂
+

𝑐𝛿

𝜇
= 1 which shows  

 𝑐 =
𝜇𝑞𝜂

𝑝𝜂+𝜇𝑞+𝛿𝑞𝜂
. (52) 

 

 

Theorem 4.1 The system is stable if and only if 𝜆 <
1

𝑞
  𝑐.  

  

Proof. The condition for the stability of the system is Π𝐴0𝑒 < Π𝐴2𝑒. Simplification gives 

Π𝐴0𝑒 = 𝜆. Now 𝐴2𝑒 = (
𝜇  𝑆1

0 𝜇
)
𝑇

. Therefore Π𝐴2𝑒 = 𝜇𝜋0 + 𝝅̂(   𝑆̃ 1
0 +   𝑆̃ 2

0) Substituting for 𝜇𝜋0, 

right hand side becomes 
1

𝑞
𝝅̂(   𝑆̃ 1

0 +   𝑆̃ 2
0). Using equation(46) and the fact that (   𝑆̃ )−1(   𝑆̃ 1

0 +

   𝑆̃ 2
0) = 𝑒, the result follows. Hence the system is stable if 𝜌 < 1 where 𝜌 = 𝜆  

𝑞

𝑐
.  

  

4.2  Steady-State probability Vector 

 Let the steady state probability vector 𝑥 of 𝑄 be 𝑥 = (𝑥∗, 𝐱(1), 𝐱(2), . . . ) be such that 𝑥𝑄 =

0, 𝑥𝑒 = 1. Partitioning gives 𝐱(𝑖) = (𝑥0(𝑖),⌢  𝑥(𝑖), 𝑥𝑟+1(𝑖)). The relation 𝑥𝑄 = 0 gives the following 

system of equations.  

 −𝜆𝑥∗ + 𝐱(1)𝑐0 = 0 (53) 

 𝑥∗𝑏0 + 𝐱(1)𝐴1 + 𝐱(2)𝐴2 = 0 (54) 

 For𝑖 ≥ 1, 𝐱(𝑖 − 1)𝐴0 + 𝐱(𝑖)𝐴1 + 𝐱(𝑖 + 1)𝐴2 = 0 (55) 

 

From the matrix geometric structure we obtain  

 𝐱(𝑖) = 𝐱(1)𝑅𝑖−1, 𝑖 ≥ 1 (56) 

 where 𝑅 is the minimal non negative solution to the matrix quadratic equation 𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0 =

𝑂. Equation (53) shows  

 𝑥∗ =
1

𝜆
𝐱(1)𝑐0. (57) 

 Equation (54) together with normalizing condition gives  

 𝑥∗𝑏0 + 𝐱(1)(𝐴1 + 𝑅𝐴2) = 0 (58) 

  

 subjectto𝑥∗𝑒 + 𝐱(1)(𝐼 − 𝑅)−1𝑒 = 1. (59) 

 Substituting for 𝑥∗,  

 𝐱(1) (𝐴1 + 𝑅𝐴2 +
1

𝜆
𝑐0𝑏0) = 0 (60) 

  

 subjectto𝐱(1) (
1

𝜆
𝑐0 + (𝐼 − 𝑅)

−1𝑒) = 1. (61) 

 But 𝑐0𝑏0 = 𝜆𝐴2 which implies  

 𝐱(1)(𝐴1 + 𝑅𝐴2 + 𝐴2) = 0 (62) 

  

 subjectto𝐱(1) (
1

𝜆
𝑐0 + (𝐼 − 𝑅)

−1𝑒) = 1. (63) 

  

4.2.1  Computation of 𝑹 
 𝑅 can computed explicitly along the following lines. 

We have  

 𝐴2 = (

𝜇𝑝 𝜇𝑞𝜷 0

𝑝 𝑆̃1
0 𝑞 𝑆̃1

0𝜷 0
𝜇𝑝 𝜇𝑞𝜷 0

) = [

𝜇

𝑆̃1
0

𝜇
] [
𝑝 𝑞𝜷 0

] (64) 
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 so that  

 𝐴2𝑒 = [

𝜇

𝑆̃1
0

𝜇
] = 𝑐0 (65) 

 Also from the relation 𝑅𝐴2𝑒 = 𝐴0𝑒, we obtain  

 𝑅𝐴2𝑒 = 𝜆𝑒. (66) 

 Now, 𝑅2𝐴2 = 𝑅
2 (

𝜇

𝑆̃1
0

𝜇
) (𝑝 𝑞𝜷 0) = 𝑅2𝐴2𝑒(𝑝 𝑞𝜷 0). 

Substituting for 𝑅𝐴2 from (66), we get  

 𝑅2𝐴2 = 𝑅𝜆𝑒(𝑝 𝑞𝜷 0) (67) 

 Therefore  

 𝜆𝑅𝑒 (𝑝 𝑞𝜷 0) + 𝑅𝐴1 + 𝜆𝐼 = 0. (68) 

 This gives  

 𝑅 = 𝜆(

𝜇 + 𝜆𝑞 −𝜆𝑞𝜷 0

−𝜆𝑝𝑒 𝜆𝐼 − 𝜆𝑞𝑒𝜷 −   𝑆̃ −   𝑆̃2
0

−𝜆𝑝 −𝜆𝑞𝜷 𝜆 + 𝜇

)

−1

. (69) 

  

Lemma 4.2 𝑥∗ = 1 − 𝜌 so that 𝒙(1)(𝐼 − 𝑅)−1𝑒 = 𝜌.  

  

Proof. Multiplying by 𝑒 on the right side of equation (54) and simplifying we get the 

relation  

 𝜆𝑥∗ + 𝐱(1) (

−𝜆 − 𝜇

 𝑆̃ − 𝜆𝐼 +   𝑆̃2
0

−𝜆 − 𝜇

) + 𝐱(2) (

𝜇

𝑆̃1
0

𝜇
) = 0. (70) 

 Equation (53) gives  

 𝜆𝑥∗ = 𝐱(1) (

𝜇

𝑆̃1
0

𝜇
). (71) 

 Putting this in (70) the following relation is obtained.  

 𝐱(2) (

𝜇

𝑆̃1
0

𝜇
) = 𝜆𝐱(1)𝑒. (72) 

  

 Multiplying equation(55) on right side by e and recursive use of the relation results in  

 𝐱(𝑖) (

𝜇

𝑆̃1
0

𝜇
) = 𝜆𝐱(𝑖 − 1)𝑒    for  𝑖 ≥ 3. (73) 

 Adding (71), (72) and (73)  

 ∑ 𝐱(𝑖)∞
𝑖=1 (

𝜇

𝑆̃1
0

𝜇
) = 𝜆. (74) 

 Adding the system of equations (55) with equation (54) and using the fact that  

𝑥∗𝑏0 = 𝐱(1)𝐴2 we get  

 ∑∞𝑖=1 𝐱(𝑖)  𝐴 = 0. (75) 

 But the relation (40) says  

 ∑∞𝑖=1 𝐱(𝑖)   = 𝑑  Π    forsomeconstant  𝑐 (76) 

 which in turn gives  

 ∑∞𝑖=1 𝐱(𝑖)   = (1 − 𝑥∗)  Π (77) 

 Multiplying on the right side by (

𝜇

𝑆̃1
0

𝜇
) and using the relation in (??) 

 ∑ 𝐱(𝑖)∞
𝑖=1  (

𝜇

𝑆̃1
0

𝜇
) = (1 − 𝑥∗) 

𝜆

𝜌
 (78) 

 The result follows from (74) and (78).  
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4.3  System Performance measures 

   

    1.  Probability that the system is idle = 𝑥∗  

    2.  Rate of loss = ∑∞𝑖=1  ⌢  𝑥(𝑖)   𝑆̃ 1
0 = 𝜆𝑞(1 − 𝛿)  

    3.  Probability of loss = 𝑞(1 − 𝛿)  

    4.  Mean number of customers in the system = ∑∞𝑖=1 𝑖𝐱(𝑖)𝑒 = 𝐱(1)(𝐼 − 𝑅)−2𝑒  

    5.  Mean number of customers in the queue = ∑∞𝑖=1 (𝑖 − 1)𝐱(𝑖)𝑒 = 𝐱(1)(𝐼 − 𝑅)
−2𝑒 − 𝐱(1)(𝐼 − 𝑅)−1𝑒  

    6.  Probability that the server is busy serving in correct mode  

 ∑ 𝐱(𝑖)∞
𝑖=1  (

1
0
1
) = 𝐱(1)(𝐼 − 𝑅)−1 (

1
0
1
) = 𝜌(𝜋0 + 𝜋𝑟+1) = 𝜌 −

𝜆𝑞

𝜂
 

 

    7.  Probability that the server is busy serving in correct mode  

 ∑ 𝐱(𝑖)∞
𝑖=1   (

0
𝑒
0
) = 𝜌 ⌢  𝜋𝑒 =

𝜆𝑞

𝜂
 

  

5  An illustration 
  

 
In this section we consider a queueing model consisting of two service stations - preliminary 

service and main service. Customers arrive to this system according to a MAP (Markovian Arrival 

Process) with representation (𝐷0, 𝐷1) of order 𝑚. A customer, which taken for service is directly 

selected for main service with probability 𝑝 or to the preliminary service with probability 𝑞(= 1 −

𝑝). A threshold clock starts ticking if a customer enters to preliminary service. When the duration 

of preliminary service exceeds the threshold clock, the customer move out of the system, else he 

goes to main service. The threshold clock follows exponential distribution with parameter 𝜁. 

Service times of the customers at these stations follow phase type distributions with representation 

(𝜶, 𝑆𝑃), (𝜸, 𝑆𝑀) and of order 𝑎, 𝑏 respectively. Write 𝑆𝑃
0 + 𝜁𝑒 = −𝑆𝑃𝑒 and 𝑆𝑀

0 = −𝑆𝑀𝑒 where 𝑒 is a 

column vector of 1’s of appropriate order. Hence service time of a customer can be modeled as a 

phase type distribution with representation (𝝃, 𝑈) of order 𝑎 + 2𝑏 such that 𝑈𝑒 + 𝑈0 = 0 where  
 𝝃 = (𝑝𝜸 𝑞𝜶 0) 

 

 𝑈 = (

𝑆𝑀 0 0

0 𝑆𝑃 𝑆𝑃
0𝜸

0 0 𝑆𝑀
) ,𝑈0 = (

𝑆𝑀
0

𝜁𝑒

𝑆𝑀
0
). 

Let 𝑁(𝑡), 𝑁∗(𝑡), 𝑆(𝑡), 𝐴(𝑡) denote respectively the number of customers in the system, nature of 

service, phase of service and phase of arrival at time 𝑡.  
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 𝑁∗(𝑡) = {

1 𝑚𝑎𝑖𝑛𝑠𝑒𝑟𝑣𝑖𝑐𝑒
2 𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦𝑠𝑒𝑟𝑣𝑖𝑐𝑒
3 𝑜𝑛𝑒𝑡ℎ𝑎𝑡𝑐𝑜𝑚𝑒𝑓𝑟𝑜𝑚𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦𝑠𝑒𝑟𝑣𝑖𝑐𝑒

 

The process Ω = {(𝑁(𝑇), 𝑁∗(𝑡), 𝑆(𝑡), 𝐴(𝑡)), 𝑡 ≥ 0} is a continuous time Markov chain with state 

space {(𝑛, 𝑖, 𝑗, 𝑘); 𝑖 = 1,3,1 ≤ 𝑗 ≤ 𝑏, 1 ≤ 𝑘 ≤ 𝑚}⋃ {(𝑛, 2, 𝑗, 𝑘); 1 ≤ 𝑗 ≤ 𝑎, 1 ≤ 𝑘 ≤ 𝑚} for 𝑛 ≥ 1. Note 

that when 𝑁(𝑡) = 0, the only other component in the state vector is 𝐴(𝑡). Thus the infinitesimal 

generator of Ω is of the form  

 𝑄∗ =

(

 
 

𝐷0 𝐴01
𝐴10 𝐴1 𝐴0

𝐴2 𝐴1 𝐴0
⋱ ⋱ ⋱

)

 
 

 (79) 

 where 𝐴01 = 𝝃⊗ 𝐷1, 𝐴10 = 𝑈
0⊗ 𝐼𝑚 , 𝐴0 = 𝐼𝑎+2𝑏⊗𝐷1, 𝐴1 = 𝑈⊕ 𝐷0, 𝐴2 = 𝑈

0𝝃⊗ 𝐼𝑚. 

The infinitesimal generator 𝑄∗ given by (79) is of the same form as 𝑄 of the model 

described initially. Thus the analysis of the Markov chain with infinitesimal generator 𝑄∗ can be 

done in the same way as for 𝑄. 

The significance of this model is as follows: customer arriving to a single server belong to 

two categories, though they join the same. Only while taken for service the category will be 

revealed. Call them category 1 and category 2, respectively. Category 1 are qualified for the main 

service without undergoing preliminary service. However, category 2 have to be given the 

preliminary service before admitted to mean service. However, if such customers do not get 

service in preliminary before realization of the timer (random clock), they get disqualified and so 

leave the system forever. On the other those among category 2, completing service successfully in 

preliminary are immediately admitted to main service. On completion of that service such 

customers leave the system. 

 

Remark 5.1 In telecommunication it is this type of situation that is often encountered. Packages 

have to identify the server in idle state; then wait for a while. But in the mean time another message may get 

through, making the server busy. Then the customer (packet) under consideration has to go through a series 

of contention windows. These passages could be regarded as unwanted service. In case the process of going 

through contention windows exceeds a threshold time limit, the message will not get served.  

  

Remark 5.2 The problem discussed in Madan [3] and Medhi [5] could be arrived at from our model 

as follows. Suppose that we reverse the order of preliminary and main service, that is, main service first and 

preliminary (hereafter we call it optional) service next. Then after completion of main service, the customer 

asks for an optional service with probability 1 − 𝑞 (this optional service time has exponential distribution in 

Madan [3]). With probability 𝑞, the customer leaves the system immediately after main service completion. 

This model is also the same as a queue with instantaneous feedback after a service and immediate 

commencement of his service (feedback restricted to one). This feedback policy is referred to as queues with 

instantaneous feedback as head of the queue.  

  

6  Numerical illustration 
 

The following numerical illustration is based on the description in Section 2. 

We fix parameters 𝑛1 = 2, 𝑛2 = 3, 𝑛3 = 4, 𝜷1 = (0.4    0.6), 𝜷2 = (0.3    0.5    0.2), 𝜷3 =

(0.2    0.3    0.3    0.2),  

 𝑆1 = [
∗ 6
8 ∗ ] , 𝑆1

0 = [
7
8 ]  𝑤𝑖𝑡ℎ 𝑆1𝑒 + 𝑆1

0 = 0, 
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𝑆2 = [

∗ 5 5
6 ∗ 6
5 7 ∗

] , 𝑆2
0 = [

3
3
2
] , 𝑆2

0 = [

4
5
6
]𝑤𝑖𝑡ℎ  𝑆_2 𝑒 + 𝑆_2^0 + 𝑆_2^0 = 0, 

 

𝑆3 =

[
 
 
 
 
∗ 7 8 9
6 ∗ 7 7
6 6 ∗ 6
8 7 6 ∗

]
 
 
 
 

, 𝑆3
0 =

[
 
 
 
 
6
7
8
9
]
 
 
 
 

  𝑤𝑖𝑡ℎ  𝑆3𝑒 + 𝑆3
0 = 0. 

For the arrival process, we consider the following two sets of values for 𝐷0 and 𝐷1 as follows. The 

arrival processes labeled 𝑀𝑁𝐶𝐴 and 𝑀𝑃𝐶𝐴 respectively, have negative and positive correlation for 

two successive inter-arrival times with values -0.48891 and 0.48891. The standard deviation of the 

inter-arrival times of these two arrival processes are, respectively, 0.2819 and 0.2819. 

 1. 𝑴𝑨𝑷 with negative correlation (𝑴𝑵𝑪𝑨):  

 𝐷0 = (

−5.0111 5.0111 0
0 −5.0111 0
0 0 −1128.75

) , 𝐷1 = (

0 0 0
0.05011 0 4.96099
1117.4625 0 11.2875

)  

   

 𝑝   𝑃𝑙𝑜𝑠𝑠   𝜇𝑁𝑆   𝑃𝐶    𝑃𝐼    𝑅𝐶 𝑅𝐼  𝑊𝑆  

.4   0.2136   7.5229   0.5242   0.3921   2  1.9320   1.5046 

.5  0.1780  4.9744   0.5483  0.3267   2.5  1.6100  0.9949 

.6  0.1424  3.6690  0.5724  0.2614   3  1.2880   0.7338 

.7  0.1068  2.8654  0.5965  0.1960  3.5  0.9660  0.5731 

.8  0.0712  2.3138  0.6206  0.1307   4  0.6440   0.4628 

.9   0.0356  1.9069   0.6447   0.0653   4.5  0.3220   0.3814 

  

Table  1: Effect of 𝑝 for 𝑀𝑁𝐶𝐴 

   

 2. 𝑴𝑨𝑷 with positive correlation (𝑴𝑷𝑪𝑨):  

 𝐷0 = (

−5.0111 5.0111 0
0 −5.0111 0
0 0 −1128.75

) , 𝐷1 = (

0 0 0
4.96099 0 0.05011
11.2875 0 1117.4625

)  

   

 𝑝   𝑃𝑙𝑜𝑠𝑠   𝜇𝑁𝑆   𝑃𝐶    𝑃𝐼    𝑅𝐶 𝑅𝐼  𝑊𝑆  

.4   0.2136  546.8179   0.5242  0.3921  2  1.9320   109.3646 

.5   0.1780   349.9587  0.5483  0.3267   2.5  1.6100   69.9924 

.6   0.1424   250.7699  0.5724  0.2614  3  1.2880   50.1545 

.7   0.1068  191.0008  0.5965  0.1960   3.5  0.9660   38.2005 

.8   0.0712   151.0402   0.6206  0.1307   4  0.6440   30.2083 

.9   0.0356   122.4351  0.6446  0.0653   4.5  0.3220   24.4873 

 

Table  2: Effect of 𝑝 for 𝑀𝑃𝐶𝐴 

  

The output in Tables 1 and 2 are on expected lines. Note that 𝑃𝑙𝑜𝑠𝑠 decreases with 

increasing value of 𝑝. The value of 𝑃𝐶(𝑅𝐶) steadily increases with 𝑝 and values of 𝑃𝐼(𝑅𝐼) and 𝑊𝑆 

decrease with increase in value of 𝑝, as expected. 

The main comparison in Tables 1 and 2 is between values of 𝜇𝑁𝑆 in 𝑀𝑁𝐶𝐴 and 𝑀𝑃𝐶𝐴. Both 

decrease with increase in value of 𝑝. However, 𝑀𝑁𝐶𝐴 has much smaller values compared to their 

𝑀𝑃𝐶𝐴 counter parts. This indicates that positive correlation in the arrival process results in 

accumulation of large number of customers in the system. 
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7  𝑴/𝑮/𝟏 Model 
 

In this section we consider an 𝑀/𝐺/1 system with two service stations – preliminary service and 

main service. Customers arrive to this system according to a Poisson process with rate 𝜆. A 

customer, when taken for service, is directly selected for main service with probability 𝑝 or to the 

preliminary service with probability 𝑞  (= 1 − 𝑝). A threshold clock starts ticking if a customer 

enters to preliminary service. When the duration of preliminary service exceeds the threshold 

clock, the customer moves out of the system, else he goes to main service. The threshold clock 

follows exponential distribution with parameter 𝜁. Here the service times, 𝑉𝑝, 𝑉𝑚 of the preliminary 

and main services are independent having general distributions with distribution function 

𝐺1(. ), 𝐺2(. ), LST 𝐺1
∗(. ), 𝐺2

∗(. ) respectively. 

The (total) service time 𝑉 of a unit is  

 𝑉 =

{
 

 
𝑉𝑓 𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑞 • 𝑃(𝐺1(. ) > exp(𝜁))

𝑉𝑝 𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑞 • 𝑃(𝐺1(. ) < exp(𝜁))

𝑉𝑚 𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑝
 

where 𝑉𝑓 is the duration of threshold clock realization. 

Thus  

 𝐺(𝑡) = 𝑃(𝑉 ≤ 𝑡) = 𝑞 [∫
𝑡

0
𝜁𝑒−𝜁𝑢(1 − 𝐺1(𝑢))𝑑𝑢 + ∫

𝑡

0
𝑒−𝜁𝑢𝐺1(𝑢)𝑑𝐺2(𝑡 − 𝑢)] + 𝑝 ∫

𝑡

0
𝑑𝐺2(𝑢) 

and LST 𝐺∗(𝑠) of 𝑉 is given by 𝐺∗(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑑𝐺(𝑡). 

 

Remark 7.1 This modelling closely resembles the protocol IEEE 802.11. This is so because of a 

message generated has to wait before checking for idle server; if server is busy it has to go through a series of 

contention windows and then look for idle server. In case this process takes longer duration than the life of 

message (before its significance is lost), then the message does not serve any purpose. In the opposite case it is 

transmitted before its expiry time.  

  

Remark 7.2 Assume the random clock to be of infinite duration (ie., its rate of realization goes to 

zero). Now interchange the roles of preliminary and main services (in this case, we call the preliminary 

service, which is the second one now, as optional service). Invariably main service is given for all customers. 

Thus the main service is followed by an optional service to which customers, on completion of main service, 

proceed with probability 𝑞. Then our model reduces to Madan [3] with exponentially distributed optional 

service and to Medhi [5] in the case of arbitrarily distributed optional service time.  

Transient solution 

 The supplementary variable technique (see Cox [1], Medhi [4]) could be used to get the 

transient solution. Denote by ℎ(𝑥) =
𝑑𝐺(𝑥)

1−𝐺(𝑥)
, the hazard function of the service time distribution 

𝐺(. ) and the probability density function of 𝑉 is given by  
 𝑔(𝑥) = ℎ(𝑥)exp{−𝑁(𝑥)} 

where  

 𝑁(𝑥) = ∫
𝑥

0
ℎ(𝑢)𝑑𝑢        (𝑁(0) = 0𝑎𝑛𝑑

𝑑

𝑑𝑥
𝑁(𝑥) = ℎ(𝑥)). 

If 𝑉 is the total service time, then ℎ(𝑥)𝑑𝑥 = 𝑃(service will be completed in (𝑥, 𝑥 + 𝑑𝑥) given that 

service time exceeds 𝑥) and 𝐸(𝑉) = ∫ 𝑥𝑔(𝑥)𝑑𝑥 = −𝐺∗(1)(0). 

The supplementary variable 𝑋(𝑡) considered is defined below. Let  

 

𝑁(𝑡) = 𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑖𝑧𝑒𝑎𝑡𝑡𝑖𝑚𝑒𝑡

𝑋(𝑡) = 𝑡𝑖𝑚𝑒𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑠𝑝𝑒𝑛𝑡𝑖𝑛𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑢𝑝𝑡𝑜𝑡𝑜𝑓𝑎𝑢𝑛𝑖𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑝𝑛(𝑡) = 𝑃(𝑁(𝑡) = 𝑛)𝑤𝑖𝑡ℎ𝑝0(0) = 1

𝑝𝑛(𝑡, 𝑥)𝑑𝑥 = 𝑃(𝑁(𝑡) = 𝑛, 𝑥 ≤ 𝑋(𝑡) < 𝑥 + 𝑑𝑥), 𝑛 ≥ 1

 

 

 𝑝𝑛(𝑡) = ∫
∞

0
𝑝𝑛(𝑡, 𝑥)𝑑𝑥,    𝑄(𝑡, 𝑧) = ∑

∞
𝑛=0 𝑝𝑛(𝑡)𝑧

𝑛, 𝑄(𝑡, 𝑥, 𝑧) = ∑∞𝑛=1 𝑝𝑛(𝑡, 𝑥)𝑧
𝑛 
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Now we have  

 𝑝0(𝑡 + 𝛿𝑡) = [1 − 𝜆𝛿𝑡 + 𝑜(𝛿𝑡)]𝑝0(𝑡) + ∫
∞

0
𝑝1(𝑡, 𝑥)ℎ(𝑥)𝑑𝑥𝛿𝑡. 

 

 𝐴𝑠𝛿𝑡 → 0,    
∂

∂𝑡
𝑝0(𝑡) = −𝜆𝑝0(𝑡) + ∫

∞

0
𝑝1(𝑡, 𝑥)ℎ(𝑥)𝑑𝑥. (80) 

  
 𝐹𝑜𝑟𝛿𝑥 > 0, 𝑝1(𝑡 + 𝛿𝑡, 𝑥 + 𝛿𝑥) = [1 − 𝜆𝛿𝑡 + 𝑜(𝛿𝑡)][1 − ℎ(𝑥)𝛿𝑥 + 𝑜(𝛿𝑥)]𝑝1(𝑡, 𝑥). 

Subtracting and adding a term 𝑝1(𝑡, 𝑥 + 𝛿𝑥) to the LHS, then dividing by 𝛿𝑡(𝛿𝑥) and taking as 𝛿𝑡 →

0(𝛿𝑥 → 0), we get  

 (
∂

∂𝑡
+

∂

∂𝑥
) 𝑝1(𝑡, 𝑥) = −(𝜆 + ℎ(𝑥))𝑝1(𝑡, 𝑥). (81) 

  

 𝐹𝑜𝑟𝑛 ≥ 0, (
∂

∂𝑡
+

∂

∂𝑥
) 𝑝𝑛(𝑡, 𝑥) = −(𝜆 + ℎ(𝑥))𝑝𝑛(𝑡, 𝑥) + 𝜆𝑝𝑛−1(𝑡, 𝑥). (82) 

 We have the following boundary conditions:  

 𝑝1(𝑡, 0) = ∫
∞

0
𝑝2(𝑡, 𝑥)ℎ(𝑥)𝑑𝑥 + 𝜆𝑝0(𝑡) (83) 

 and  

 𝑝𝑛(𝑡, 0) = ∫
∞

0
𝑝𝑛+1(𝑡, 𝑥)ℎ(𝑥)𝑑𝑥,        𝑛 ≥ 2. (84) 

 Multiplying (82) by 𝑧𝑛 , 𝑛 = 2,3, . .. and (81) by z, then adding all the terms we get  

 (
∂

∂𝑡
+

∂

∂𝑥
)∑∞𝑛=1 𝑝𝑛(𝑡, 𝑥)𝑧

𝑛 = −(𝜆 + ℎ(𝑥)) ∑∞𝑛=1 𝑝𝑛(𝑡, 𝑥) + 𝜆 ∑
∞
𝑛=2 𝑝𝑛−1(𝑡, 𝑥) (85) 

  

 (
∂

∂𝑡
+

∂

∂𝑥
)𝑄(𝑡, 𝑥, 𝑧) = −(𝜆 − 𝜆𝑧 + ℎ(𝑥))𝑄(𝑡, 𝑥, 𝑧). (86) 

 Now multiplying (84) by 𝑧𝑛 , 𝑛 = 2,3, . .. and (83) by z, then adding the terms we have  

 𝑄(𝑡, 0, 𝑧) = ∫
∞

0
(∑∞𝑛=1 𝑝𝑛+1(𝑡, 𝑥)𝑧

𝑛)ℎ(𝑥)𝑑𝑥 + 𝜆𝑧𝑝0(𝑡). (87) 

 Now  

 

∫
∞

0
(∑∞𝑛=1 𝑝𝑛+1(𝑡, 𝑥)𝑧

𝑛)ℎ(𝑥)𝑑𝑥 = ∫
∞

0
(
1

𝑧
)∑∞𝑛=1 𝑝𝑛+1(𝑡, 𝑥)𝑧

𝑛+1ℎ(𝑥)𝑑𝑥

= ∫
∞

0
(
1

𝑧
) [∑∞𝑛=1 𝑝𝑛(𝑡, 𝑥)𝑧

𝑛 − 𝑝1(𝑡, 𝑥)𝑧]ℎ(𝑥)𝑑𝑥

= (
1

𝑧
) ∫

∞

0
[𝑄(𝑡, 𝑥, 𝑧) − 𝑝1(𝑡, 𝑥)𝑧]ℎ(𝑥)𝑑𝑥

= (
1

𝑧
) [∫

∞

0
𝑄(𝑡, 𝑥, 𝑧)ℎ(𝑥)𝑑𝑥 − 𝑧(𝑝′0(𝑡) + 𝜆𝑝0(𝑡))]𝑏𝑦(80)

 

Thus (87) reduces to 

 

𝑄(𝑡, 0, 𝑧) = (
1

𝑧
) [∫

∞

0
𝑄(𝑡, 𝑥, 𝑧)ℎ(𝑥)𝑑𝑥 − 𝑧(𝑝′0(𝑡) + 𝜆𝑝0(𝑡))] + 𝜆𝑧𝑝0(𝑡)

= (
1

𝑧
) [∫

∞

0
𝑄(𝑡, 𝑥, 𝑧)ℎ(𝑥)𝑑𝑥 − 𝑧(𝑝′0(𝑡) + 𝜆𝑝0(𝑡)) + 𝜆𝑧

2𝑝0(𝑡)]
 

 

 𝑧𝑄(𝑡, 0, 𝑧) = ∫
∞

0
𝑄(𝑡, 𝑥, 𝑧)ℎ(𝑥)𝑑𝑥 − 𝑧𝑝′0(𝑡) + 𝜆𝑧(𝑧 − 1)𝑝0(𝑡). (88) 

 

 The partial differential equation (86) can be solved using the boundary condition (88) and the 

normalizing condition ∑∞𝑛=0 𝑝𝑛(𝑡) = 1. 

 

7.1  Steady state distribution 

Let  
 𝑙𝑖𝑚𝑡→∞𝑝𝑛(𝑡) = 𝑝𝑛, 𝑛 ≥ 0 

and  

 
lim
𝑡→∞

𝑝𝑛(𝑡, 𝑥) = 𝑝𝑛(𝑥), 𝑥 > 0, 𝑛 ≥ 1

= 𝑝0(𝑥) = 0, 𝑥 > 0.
 

Then {𝑝𝑛 , 𝑛 ≥ 0} gives the distribution of the general time system size. 
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Let  

𝑄(𝑥, 𝑧) = ∑𝑝𝑛(𝑥)𝑧
𝑛

∞

𝑛=1

 = ∑ [lim
𝑡→∞

𝑝𝑛(𝑡, 𝑥)] 𝑧
𝑛

∞

𝑛=1

 

= lim
𝑡→∞

[∑𝑝𝑛(𝑡, 𝑥)𝑧
𝑛

∞

𝑛=1

 ] = lim
𝑡→∞

𝑄(𝑡, 𝑥, 𝑧)
 

and  

 𝑄(𝑧) = ∫
∞

0
𝑄(𝑥, 𝑧)𝑑𝑥. 

Then  

 (80) ⇒ 𝜆𝑝0 = ∫
∞

0
𝑝1(𝑥)ℎ(𝑥)𝑑𝑥 (89) 

  

 (81)𝑎𝑛𝑑(8182) ⇒
∂

∂𝑥
𝑝𝑛(𝑥) = −(𝜆 + ℎ(𝑥))𝑝𝑛(𝑥) + 𝜆𝑝𝑛−1(𝑥), 𝑛 ≥ 1 (90) 

  

 (83) ⇒ 𝑝1(0) = ∫
∞

0
𝑝2(𝑥)ℎ(𝑥)𝑑𝑥 + 𝜆𝑝0 (91) 

  

 (84) ⇒ 𝑝𝑛(0) = ∫
∞

0
𝑝𝑛+1(𝑥)ℎ(𝑥)𝑑𝑥, 𝑛 ≥ 2. (92) 

 The partial differential equation (86) and the boundary condition (88) reduces to  

 
𝑑

𝑑𝑥
𝑄(𝑥, 𝑧) = −(𝜆 − 𝜆𝑧 + ℎ(𝑥))𝑄(𝑥, 𝑧) (93) 

  

 𝑧𝑄(0, 𝑧) = ∫
∞

0
𝑄(𝑥, 𝑧)ℎ(𝑥)𝑑𝑥 + 𝜆𝑧(𝑧 − 1)𝑝0 (94) 

 and  

 𝑝0 + 𝑄(1) = 1. (95) 

 From relation (93)  

 

∫
𝑑𝑄(𝑥,𝑧)

𝑄(𝑥,𝑧)
 = ∫−(𝜆 − 𝜆𝑧 + ℎ(𝑥))𝑑𝑥

log(𝑄(𝑥, 𝑧)) = 𝑙𝑜𝑔𝑐(−𝜆(1 − 𝑧)𝑥 − 𝑁(𝑥))

𝑄(𝑥, 𝑧) = 𝑐exp(−𝜆(1 − 𝑧)𝑥 − 𝑁(𝑥))

𝑄(0, 𝑧) = 𝑐

 

 

 𝑄(𝑥, 𝑧) = 𝑄(0, 𝑧)exp(−𝜆(1 − 𝑧)𝑥 − 𝑁(𝑥)) (96) 

 Substituting (96) in (94) we get  

 

𝑧𝑄(0, 𝑧) = ∫
∞

0
𝑄(0, 𝑧)𝑒(−𝜆(1−𝑧)𝑥−𝑁(𝑥))ℎ(𝑥)𝑑𝑥 + 𝜆𝑧(𝑧 − 1)𝑝0

= 𝑄(0, 𝑧) ∫
∞

0
𝑒−𝜆(1−𝑧)𝑥[𝑒−𝑁(𝑥)ℎ(𝑥)]𝑑𝑥 + 𝜆𝑧(𝑧 − 1)𝑝0

= 𝑄(0, 𝑧)𝐺∗(𝜆(1 − 𝑧)) + 𝜆𝑧(𝑧 − 1)𝑝0.
 

Thus  

 𝑄(0, 𝑧) =
𝜆𝑧(𝑧−1)𝑝0

𝑧−𝐺∗(𝜆−𝜆𝑧)
. (97) 

 Now from (96) we have  

 

𝑄(𝑧) = ∫
∞

0
𝑄(𝑥, 𝑧)𝑑𝑥

= ∫
∞

0
𝑄(0, 𝑧)𝑒(−𝜆(1−𝑧)𝑥−𝑁(𝑥))𝑑𝑥

= 𝑄(0, 𝑧) ∫
∞

0
𝑒(−𝜆(1−𝑧)𝑥𝑒−𝑁(𝑥)𝑑𝑥

=
𝑄(0,𝑧)

𝜆(1−𝑧)
[1 − ∫

∞

0
𝑒−𝜆(1−𝑧)𝑥(𝑒−𝑁(𝑥)ℎ(𝑥))𝑑𝑥]

 

 

 𝑄(𝑧) =
𝑄(0,𝑧)

𝜆(1−𝑧)
[1 − 𝐺∗(𝜆 − 𝜆𝑧)] (98) 

 From (97) and (98) we get  
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 𝑄(𝑧) =
𝑧[𝐺∗(𝜆−𝜆𝑧)−1]𝑝0

𝑧−𝐺∗(𝜆−𝜆𝑧)
 (99) 

 Using L’Hospital rule, we get  

 

𝑄(1) = lim
𝑧→1

𝑄(𝑧)

= 𝑝0
[𝐺∗(𝜆−𝜆𝑧)−1]+𝑧𝜆𝐺∗(1)(𝜆−𝜆𝑧)

1+𝜆𝐺∗(1)(𝜆−𝜆𝑧)

= 𝑝0
𝜆𝐸(𝑉)

1−𝜆𝐸(𝑉)

 

From (95) we obtain  
 𝑝0 = 1 − 𝜆𝐸(𝑉). 

Hence  

 𝑄(𝑧) =
𝑧[𝐺∗(𝜆−𝜆𝑧)−1][1−𝜆𝐸(𝑉)]

𝑧−𝐺∗(𝜆−𝜆𝑧)
. (100) 

  

7.2  Busy period 

 Let 𝑇 be the length of a busy period (starting with a customer arrival to an idle server, 

until the becomes idle again). Define 𝐵(𝑡) = 𝑃(𝑇 ≤ 𝑡). Then 𝐵(𝑡) satisfies the relation  

 𝐵(𝑡) = ∫
𝑡

0
∑∞𝑘=0

(𝜆𝑢)𝑘

𝑘!
𝑒−𝜆𝑢𝐵∗𝑘(𝑡 − 𝑢)𝑑𝐺(𝑢) (101) 

 The Laplace Stieltjes Transform (LST) of busy period 𝐵(𝑡) be denoted by 𝐵∗(𝑠). That is,  

 

𝐵∗(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑑𝐵(𝑡)        (𝑓𝑜𝑟𝑅𝑒(𝑠) > 0)

= ∫
∞

0
𝑒−𝑠𝑡 ∫

𝑡

0
∑∞𝑘=0

(𝜆𝑢)𝑘

𝑘!
𝑒−𝜆𝑢𝐵∗𝑘(𝑡 − 𝑢)𝑑𝐺(𝑢)𝑑𝑡

= ∫
∞

0
∑∞𝑘=0

(𝜆𝑢)𝑘

𝑘!
𝑒−𝜆𝑢𝑒−𝑠𝑢 ∫

∞

𝑢
𝑒−𝑠(𝑡−𝑢)𝐵∗𝑘(𝑡 − 𝑢)𝑑𝑡𝑑𝐺(𝑢)

= ∫
∞

0
∑∞𝑘=0

(𝜆𝑢)𝑘

𝑘!
𝑒−𝜆𝑢𝑒−𝑠𝑢(𝐵∗(𝑠))𝑘𝑑𝐺(𝑢)

= ∫
∞

0
∑∞𝑘=0

(𝜆𝐵∗(𝑠)𝑢)𝑘

𝑘!
𝑒−(𝜆+𝑠)𝑢𝑑𝐺(𝑢)

= ∫
∞

0
𝑒−(𝜆+𝑠−𝜆𝐵

∗(𝑠))𝑢𝑑𝐺(𝑢)

 

Therefore  

 𝐵∗(𝑠) = 𝐺∗(𝜆 + 𝑠 − 𝜆𝐵∗(𝑠)). (102) 

 From this the mean and higher moments of the number of customers in the system can be 

computed.  

Conclusion: 

We examined a queueing model offering 𝑛 distinct services to which arrival is according to a 𝑀𝐴𝑃 

forming a single line. Service time has phase type distribution. A single server serves the 

customers. The service station provides two types of services - one is desirable and other is 

unwanted for each customer. If the service starts in an undesirable state then a clock also 

simultaneously starts ticking. In case this clock realizes before the exact requirement of the server 

is realized, then that customer leaves the system forever without being eligible for the service that 

he actually requires. On the other extreme, in case the correct identification of required service 

occurs before realization of clock, then the customer is served in that state and then leaves the 

system. In case right at the beginning of service the exact requirement of service is identified, then 

the customer starts getting that service right at the time when taken for service. Several system 

performance measures are evaluated. Applications of the model in hospital, telecommunication etc 

are indicated. Stochastic decomposition of the system state is analyzed. Some particular cases are 

indicated. 

In a future work we propose to extend the model to multi server case.  

 



 
Krishnamoorthy A., Vishnevsky V., Manjunath A., Shajin D. 
SINGLE SERVER QUEUES WITH SEVERAL SERVICES 

RT&A, No 4 (47) 
Volume 12, December 2017  

30 

References  
 

[1]   Cox, D. R. (1955): The analysis of non-Markovian stochastic processes by the inclusion 

of supplementary variables. Proc. Cambridge Phil. Soc. 51, 433-441. 

[2]   Gross, D. and Harris, C. M. (1988): Fundamentals of Queueing Theory, John Wiley and 

Sons, New York. 

[3]   Madan, K. C. (2000): An M/G/1 queue with second optional service. Queueing systems 

34, 37-46. 

[4]   Medhi, J. (1994): Stochastic Processes. 2𝑛𝑑 ed. Wiley, New York and Wiley Eastern, 

New Delhi. 

[5]   Medhi, J. (2002): A Single Server Poisson Input Queue with a Second Optional 

Channel. Queueing systems 42, 239-242. 

[6]   Neuts, M.F. (1981): Matrix-Geometric Solutions in Stochastic Models, Johns Hopkins 

University Press, Baltimore 


