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• 
Gnedenko-Forum president 

53, Chernishevska str., of.2, 61002, Kharkov, Ukraine 

E-mail: ma_yastreb@mail.ru 

 
 

Abstract 
 

Professor Alexander Dmitrievich Solov’ev (1927-2001), professor of Lomonosov 

Moscow State University, was one of the founders of reliability theory, author the 

classical books, the nearest colleague of academic Boris Gnedenko. Aim of this short 

article- to mark   90-th birth anniversary of Alexander Solov’ev.    

 
Key words: reliability theory, mathematical methods, Solov’ev  

  
 

 

This issue of our journal is devoted to professor 

Alexander Dmitrievich Solov’ev (1927-2001), one of 

the founders of reliability theory. Specialists of 

reliability from   many countries marked Alexander 

Solov’ev’s   90-th birth anniversary by organization of 

International Conference on “Analytical and 

Computational Methods in Probability Theory and its 

Applications”, held by    Lomonosov Moscow State 

University and by RUDN university (information 

support- Gnedenko- Forum). Some participant of this 

Conference were pupils of prof. Solov’ev, and all 

participants   know Solov’ev works very well. Reports 

at this conference are the main subject of this issue. 

 

Alexander Solov’ev (below- AS) studied at the 

Mechanics and Mathematics faculty of Lomonosov 

Moscow State University and completed his studies 

in 1951. All of his creative life was connected with this faculty: the postgraduate education, 

teaching as a teaching assistant, an assistant professor from 1958 and a professor since 1975. His 

supervisor was professor A. O. Gelfond. AS defended his thesis in 1955; the topic of the 

dissertation was “The problem of moments for analytic functions”. He had the outstanding 

analytical technique and phenomenal mastery of mathematical analysis. 

 

Then AS changed the area of his interest – it became   probabilistic theory by influenced by acad. 

Boris Gnedenko. AS was one of the first mathematician who began to create the mathematic basis 

of reliability theory. It was 1965 year when the book Mathematical methods in reliability theory 

(authors- B.Gnedenko, Yu. Belyaev, A.Solov’ev) was published. AS wrote in this book Chapter 2 

“Reliability characteristics”, Chapter 5 “Redundancy without restoration”, Chapter 6 “Redundancy 

with restoration”. This book was translated into many languages, became   a classic for many 

generations of specialists around the all world. I think that every reliability specialist has this book 

mailto:ma_yastreb@mail.ru
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on his shelf.   When I began to read this book for the first time, I thought that all problems in 

reliability theory had been decided and wasn’t   new activity in this science.  But this opinion 

changed very quickly- I understood that this book would be a gate to reliability theory and a 

platform for future works.  

 

AS defended his doctoral dissertation “Queuing systems with fast maintaining” in 1972. In 1979 

AS together with B.V. Gnedenko, Yu.K Beliaev, V.A.Kashtanov et al were awarded  a  State 

Premium for the work  “Elaboration  and implementation of the complex of methods for 

equipment high reliability assurance”. 

 

The book Problems of Mathematical Theory of Reliability, where AS was co-author together with 

B.V. Gnedenko, Yu.K. Beliaev, V.A.Kashtanov at al, was published in 1983. This book evolved the 

principles what were described in the past book Mathematical methods in reliability theory. AS 

wrote in new book part 1 ”Analitical methods of reliability estimation”. This part consisted: 

Chapter 1 “Reliability of elements”, Chapter 2 “Limited theorems”, Chapter 3 “Reliability of 

systems” and included: asymptotic exact double-side estimation creation, convergence to 

exponential distribution in some classes of random values, limited theorems for regenerative 

processes and their applications to different tasks of reliability. 

 

AS’s activity in reliability problems was very high- it was regular consulting for scientists and 

engineers in the Reliability Cabinet of Moscow Politechnic Museum, lectures in this Museum, 

which were published in a set of brochures, participation in seminars on mathematical theory of 

reliability in Lomonosov Moscow State University. The authority of AS was undisputable, people 

from different cities arrived to him. I don’t know any case when someone didn’t receive help from 

AS. 

 

One of the new directions of AS’s activity was history of mathematics (together with his wife 

Svetlana Petrova who was a professional historian of mathematics).  

 

   I’d like to add some personal information about my meetings with AS. I remember very well the 

day and place of my first acquaintance with him- 1970, October 2, Dilijan resort in the mountain 

part of Caucasia republic Armenia, rest home for composers. On this day School of queening 

theory under the leadership of academic Boris Gnedenko began.  The School was organized by the 

Department of Probability Theory of Moscow State Lomonosov University by. Music was heard 

from open windows of composer cottages, it was wonderful harmony of mountains, mathematics 

and music.  AS was one of the key people at this School. 

 

Many young specialists in reliability and queues theory participated in this School: Alexander 

Andronov, Illia Gertsbah, Bojan Dimitrov, Victor Kashtanov, Mikhail Fedotkin, Volodymir Rykov, 

whose names   are well- known now. Two weeks of this School was the start of future contacts 

between us for many years.  

 

I had the good luck to sit in the restaurant during this School at the same table with AS: it wasn’t 

only eating of very tasty national Armenian food, but   it was feast of joy.  AS was the center of 

attention- he told interesting stories, jokes; it was a theatre of one actor.  We left AS only during the 

lessons and reports and playing football- our main type of rest.  

 

My contacts with AS continued after Dilijan School. He reviewed my articles in the Journal 

“Proceedings of the USSR Academy of Sciences. Technical Cybernetics”, we discussed different 

problems and stay in his hospitable home was a big pleasure for me.  When I ended my doctoral 

dissertation “Operation Reliability of Industrial Control Systems” in 1974, academic Gnedenko 
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gave proposers   me about the choose of opponents. He proposed AS, prof. Igor Ushakov and as 

necessary- a member of  the Scientific Council at the place of defense (it was Kharkov Polytechnic 

University).  

 

 

When I met AS and Ushakov at Kharkov Railway station, it was hard to recognize AS: instead of 

the long artistic hair he had simple short haircut. AS explained to me that he was afraid of a 

negative reaction of the conservative provincial scientific council to the bohemian   appearance of a 

Moscow professor. I don’t know he could repeat the same action. After defense around of friendly 

table at my home, AS of course was in the center of attraction to everyone, and especially the 

women. 

 

I was very glad to see AS in my native city- Kharkov. AS twice reported at my seminars on 

reliability problems. First his report was devoted to asymptotic methods in reliability theory, 

second- optimal discipline of renewal systems maintenance. His reports collected full auditorium 

in Kharkov Technique House and there were a lot of questions and long discussion after his 

reports. 

 

 AS liked to go to Kharkov market, talked with saleswomen, chose the most tasty and fresh. After 

that we would go to my home and to the horror of my family AS came to the kitchen, dressed an 

apron and prepared the food himself according his own recipes. It was very tasty!  

 

During one of my visit to AS, he in my presence received   the letter from Riga from our colleague   

Ilia Gertsbakh. He wrote that soon he would leave USSR with his family and migrate to Israel.  

Immigration from USSR was an unusual decision for that time, connected with a lot of different 

and difficult troubles. AS read the letter with full understanding.  I remembered very well one 

sentence from Gertsbakh’s letter: “You are a good mensch, Alexander Dmitrievich”. I think that all 

my colleagues who knew Alexander Dmitrievich Solov’ev   agree with this statement. 
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Abstract 

 
 A service station offers several services of which one is the required and the others 

are harmful (or destructive) for each customer. At the time when selected for service 

customers enter in correct mode of service according to a Bernoulli process with 

parameter 𝑝 which is the probability of being selected in correct mode. Arrival follows 

Markovian arrival process and service time is Phase type distributed in both 

undesired and required phases. An exponentially distributed threshold clock starts 

ticking if a customer enters to incorrect mode and the service is terminated if the clock 

realizes before the customer is transferred to correct service mode. The rate of loss of 

customers, rate of customers leaving with correct service starting with incorrect 

service are computed.  

 

Keywords: desired/undesired service states, random threshold clock, Markovian 

arrival process  

 

1  Introduction 
 

In the analysis of classic queueing models it is assumed that the server is completely aware of the 

exact service requirement of a customer (see Gross and Harris [2]). Quite often only one type of 

service is offered by the system and so conflict does not occur. It is also true that the customer 
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knows the type of service he needs. Thus there is no conflict on the service provided to the 

customer. However, there are several real life situations where the server and/customer are (is) not 

knowledgeable about the exact service requirement. This is especially the case when several types 

of services are available at a service station. As concrete example we have vehicles for repair at 

service stations, patients consulting physicians for diagnosis and medication. If the right service 

required is not identified and instead the diagnosis turned out to be wrong the result could be 

disastrous. A wrong diagnosis and consequent service provided may sometimes turn out to be 

even fatal/ may result in the equipment getting service, rendered totally unusable. It is this type of 

problem that we analyze in this note. 

In real life there are several service providing system offering a multitude of service. 

Neither the server nor the customer may be fully aware of the exact service requirement. This, very 

often, results in irreperable damage to the customer being served. We study such a system in this 

paper with each customer requiring a specific service. However, due to wrong diagnosis service 

does not start necessarily for the required one. 

The article is organized as follows. In section 2, the mathematical model is described. This 

section also provides the steady state analysis and some performance measures. Several cases of 

the above model are considered in Sections 3 and 4. An illustration is given in Section 5. Numerical 

illustrative example is described in Section 6. In Section 7 we extend the above results to the case of 

arbitrarily distributed service time in the undesired and desired stages of service. However, we 

restrict 𝑛1 = 𝑛2 = 1. Further we relabel the undesired service as preliminary and desired as main 

services to suit certain context of application. 

List of notations and abbreviations used: 

𝐶𝑇𝑀𝐶: Continuous time Markov chain  

𝐿𝐼𝑄𝐵𝐷: Level independent quasi-birth and death process  

𝑀𝐴𝑃: Markovian arrival process  

𝐿𝑆𝑇: Laplace Stieltjes Transform  

𝑒: Column vector of 1′s with appropriate order  

  

2  Model Description  
  

The assumptions leading to the formulation of the mathematical model are   

 • An infinite capacity queueing system where a single server is providing both unwanted 

(incorrect) and required (correct) services.  

 • Arrival of customers to the system is according to the 𝑀𝐴𝑃 (Markovian arrival process). 

In a 𝑀𝐴𝑃, the customers arrival is directed by an irreducible 𝐶𝑇𝑀𝐶 (continuous time Markov 

chain) {𝜙𝑡 , 𝑡 ≥ 0} with the state space {1,2, . . . , 𝑚}. The transition intensities of the Markov chain 

{𝜙𝑡 , 𝑡 ≥ 0} which are accompanied by arrival of 𝑘 customers are described by the matrices 𝐷𝑘 , 𝑘 =

0,1. Vector 𝜼 of the stationary distribution of the process {𝜙𝑡 , 𝑡 ≥ 0} is the unique solution to the 

system  

 𝜼(𝐷0 + 𝐷1) = 𝜼𝐷 = 0𝑎𝑛𝑑𝜼𝑒 = 1. (1) 

 Fundamental rate 𝜆 of the 𝑀𝐴𝑃 is given by 𝜆 = 𝜼𝐷1𝑒.  

    • A customer is selected for desired (required) service with probability 𝑝 or to the 

incorrect service with probability 𝑞 = 1 − 𝑝.  

    • ( 𝛽 1, 𝑆1) of order 𝑛1 gives the PH-representation for the duration of the correct service 

time distribution when the service of a customer starts in correct service mode. Let  1
0  be such that 

𝑆1𝑒 +   𝑆1
0  = 0. Let 𝜇′1 =  𝛽 1(−𝑆1)

−1𝑒 be the mean of this PH-representation.  

    • ( 𝛽 2, 𝑆2) of order 𝑛2 gives the PH-representation for the duration of the incorrect 

service time distribution when the service of a customer starts in incorrect service mode. The rate 
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(vector) of loss is given by  2
0  and the rate (vector) of getting into correct service mode is given by 

   𝑆2
0 . Note that 𝑆2𝑒 +   𝑆2

0  +    𝑆2
0  = 0. Let 𝜇′2 =  𝛽 2(−𝑆2)

−1𝑒 be the mean of this PH-representation.  

    • ( 𝛽 3, 𝑆3) of order 𝑛3 gives the PH-representation for the duration of the correct service 

time distribution when the customer has gone through incorrect service initially. Let  3
0  be such 

that 𝑆3𝑒 +   𝑆3
0  = 0. Let 𝜇′3 =  𝛽 3(−𝑆3)

−1𝑒 be the mean of this PH-representation. [NOTE: One can 

take this to be same as ( 𝛽 1, 𝑆1) but it looks more meaningful in most applications that the service 

time after going through incorrect one to be different from the use of directly getting into required 

service. Just something to keep in mind.]  

    • The service time of a customer can be modeled as a PH-distribution with 

representation ( 𝛽 , 𝑆) of order 𝑛 = 𝑛1 + 𝑛2 + 𝑛3, where  

  𝛽 = (𝑝 𝛽1, 𝑞 𝛽2,0)   (2) 

  

 𝑆 = (

𝑆1 0 0

0 𝑆2 𝑆2
0  𝛽3

0 0 𝑆3
) (3) 

 Let   0 be such that 𝑆𝑒 +   𝑆0  = 0 and    𝑆0  is given by  0  = [ 1
0  2

0  3
0 ]𝑇.  

 Let 𝑁(𝑡) be the number of customers in the system, 𝑁∗(𝑡) the mode of service going on 

whether direct admission to required/ undesired or one that came from undesired service 

designated by 1,2 and 3 respectively, 𝑆(𝑡) the phase of service and 𝐴(𝑡) the phase of arrival at time 

𝑡. With these the process {(𝑁(𝑡), 𝑁∗(𝑡), 𝑆(𝑡), 𝐴(𝑡)), 𝑡 ≥ 0} is a continuous time Markov chain with 

state space Ω = {0, 1, 2, . . . }, where  
 0 = {(0, 𝑟); 1 ≤ 𝑟 ≤ 𝑚} 

(in the level zero we need consider only the phase of arrival) and  

 𝑖 = {(𝑖, 𝑗, 𝑘, 𝑟); 𝑖 ≥ 1,1 ≤ 𝑗 ≤ 3,1 ≤ 𝑘 ≤ 𝑛𝑗 , 1 ≤ 𝑟 ≤ 𝑚}. 

Thus the infinitesimal generator of this 𝐶𝑇𝑀𝐶 is a 𝐿𝐼𝑄𝐵𝐷 and is of the form  

 𝑄 =

(

 
 

𝐷0 𝐴01
𝐴10 𝐴1 𝐴0

𝐴2 𝐴1 𝐴0
⋱ ⋱ ⋱

)

 
 

 

where 𝐴01 =  𝛽 ⊗  𝐷1 , 𝐴10 =   𝑆
0⊗    𝐼𝑚  , 𝐴0 =   𝐼𝑛 ⊗  𝐷1 , 𝐴1 =  𝑆 ⊕  𝐷0 , 𝐴2 =   𝑆

0𝛽 ⊗    𝐼𝑚  .  

2.1  Stability Condition 

 Consider 𝐴(= 𝐴0 + 𝐴1 + 𝐴2), the generator matrix of the Markov chain corresponding to 

the phase changes. 

 

 𝐴 = ( 𝑆 +   𝑆0𝛽 ) ⊕ 𝐷 =

(

 

(𝑝1
0  𝜷1 + 𝑆1) ⊕ 𝐷 𝑞1

0  𝜷2⊗ 𝐼𝑚 0

𝑝2
0  𝜷1⊗ 𝐼𝑚 (𝑞2

0  𝜷2 + 𝑆2) ⊕ 𝐷 𝑆2
0 𝜷3⊗ 𝐼𝑚

𝑝3
0  𝜷1⊗ 𝐼𝑚 𝑞3

0  𝜷2⊗ 𝐼𝑚 𝑆3⊕𝐷
)

  (4) 

 Let  𝜋 = ( 𝜋 1, 𝜋 2, 𝜋 3) be the steady-state probability vector of (𝑆 +   𝑆0  𝛽 ). Then  

  𝜋 (𝑆 +   𝑆0  𝛽 ) = 0𝑎𝑛𝑑 𝜋 𝑒 = 1. (5) 

 From the relation  𝜋 (𝑆 +   𝑆0  𝛽 ) = 0 we have  

  𝜋 1(𝑝 1
0 𝜷1 + 𝑆1) +  𝜋 2𝑝 2

0 𝜷1 +  𝜋 3𝑝 3
0 𝜷1 = 0, (6) 

  𝜋 1𝑞 1
0 𝜷2 +  𝜋 2(𝑞 2

0 𝜷2 + 𝑆2) +  𝜋 3𝑞 3
0 𝜷2 = 0, (7) 

  𝜋 2     𝑆2
0 𝜷3 +  𝜋 3𝑆3 = 0. (8) 

 Multiplying equation (8) by 𝑒 on right hand side we get  

  𝜋 3 3
0  =  𝜋 2     𝑆2

0 . (9) 

 Putting this in equation (6) yields  

  𝜋 1 1
0  = −

𝑝

𝑞
 𝜋 2𝑆2𝑒. (10) 
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 Substituting relations (9) and (10) in equation (7) gives  

  𝜋 2( 2
0 𝜷2 +     𝑆2

0 𝜷2 + 𝑆2) = 0. (11) 

 This implies, for an arbitrary constant 𝑐  

  𝜋 2 = 𝑐𝜷2(−𝑆2)
−1. (12) 

 Substituting for  𝜋 2 in relation (10) we have  

  𝜋 1 =
𝑐𝑝

𝑞
𝜷1(−𝑆1)

−1. (13) 

 Denote by 𝛿 = 𝜷2(−𝑆2)
−1     𝑆2

0  the probability that a customer starting with incorrect service 

leaves the system after getting correct service. Then equation (9) gives  

  𝜋 3 = 𝑐𝛿𝜷3(−𝑆3)
−1. (14) 

 From the normalizing condition  𝜋 𝑒 = 1, the value of 𝑐 is computed as  

 𝑐 = [
𝑝

𝑞
𝜇′1 + 𝜇′2 + 𝛿𝜇′3]

−1

. (15) 

 Now from (1) and (5) we get the steady state probability vector of A as  𝜋̂  =  𝜋 ⊗ 𝜼. 

 

Theorem 2.1 The system is stable if and only if  

 𝜆 < ( 𝜋 ⊗ 𝜼)(   𝑆0  𝛽 ⊗   𝐼𝑚 )𝑒. (16) 

  

  

Proof. The queueing system under study with the 𝐿𝐼𝑄𝐵𝐷 type generator given in (2) is 

stable if and only if rate of left drift is less than the rate of right drift (see Neuts [6]), that is,  

  𝜋̂ 𝐴0𝑒 <  𝜋̂ 𝐴2𝑒. (17) 

 The left drift rate is  𝜋̂ (   𝐼𝑛 ⊗  𝐷1 )𝑒 which when simplified reduces to 𝜆. Now, the right drift rate 

is ( 𝜋 ⊗ 𝜼)(   𝑆0  𝛽 ⊗   𝐼𝑚  )𝑒. 

Let 𝜌 =
𝜆

( 𝜋 ⊗𝜼)(   𝑆0  𝛽 ⊗   𝐼𝑚 )𝑒
. Then from (16), we have 𝜌 < 1.  

  

2.2  Steady-State probability vector 

 A brief outline for the computation of the stationary probability vector of the system is as 

follows. Let 𝐱 denote the steady-state probability vector of the generator 𝑄. Then  

 𝐱𝑄 = 0𝑎𝑛𝑑𝐱𝑒 = 1. (18) 

 Assuming that the stability condition (16) holds and partitioning 𝐱 as 𝐱 = (𝐱0, 𝐱1, 𝐱2, . . . ) we obtain  

 𝐱𝑛 = 𝐱1𝑅
𝑛−1, 𝑛 ≥ 1 (19) 

 where 𝑅 is the minimal non negative solution to the matrix quadratic equation 𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0 =

0. The two boundary equations involving 𝐱0 are  

 𝐱0𝐷0 + 𝐱1𝐴10 = 0, (20) 

  

 𝐱0𝐴01 + 𝐱1[𝐴1 + 𝑅𝐴2] = 0 (21) 

 These together with the normalizing condition in (18) gives  

 𝐱1 = 𝐱0𝑉𝑤ℎ𝑒𝑟𝑒𝑉 = −𝐴01[𝐴1 + 𝑅𝐴2]
−1 (22) 

  

 𝐱0[𝐼 + 𝑉(𝐼 − 𝑅)
−1]𝑒 = 1. (23) 

 To see how the system performs, it is instructive to define 𝐲 = ∑∞𝑖=1 𝐱𝑖. Then 𝐲 = (𝐲1    𝐲2    𝐲3) 

where the 𝐲𝑖 , 𝑖 = 1,2,3 indicates mode of service of the customer in service along with other system 

phases.  

2.3  System Performance Measures 

    1.  Probability that system is idle, 𝑃𝑖𝑑𝑙𝑒 = 𝐱0𝑒 = 1 − 𝜌. 

    2.  Rate of loss of customers, 𝑅𝑙𝑜𝑠𝑠 = y2   𝑆2
0  = 𝜆𝑞(1 − 𝛿). 
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    3.  Probability that a customer is lost, 𝑃𝑙𝑜𝑠𝑠 = 𝑞(1 − 𝛿). 

    4.  Mean number of customers in the system, 𝜇𝑁𝑆 = ∑
∞
𝑖=1 𝑖𝐱𝑖e. 

    5.  Mean number of customers in the queue is given by 𝜇𝑁𝑄 = ∑
∞
𝑖=2 (𝑖 − 1)𝑥𝑖e. 

    6.  Probability that the server is serving in required mode, 𝑃𝐶 = y1e + y3e = 𝜌 − 𝜆𝑞𝜇′2. 

    7.  Probability that the server is serving in unwanted mode, 𝑃𝐼 = y2e = 𝜆𝑞𝜇′2. 

    8.  Rate at which customers leave with required service starting in desired service mode, 𝑅𝐶 =

y1   𝑆1
0  = 𝜆𝑝. 

    9.  Rate at which customers leave with correct service starting with unwanted service, 𝑅𝐼 =

y3   𝑆3
0  = 𝜆𝑞𝛿. 

    10.  Expected waiting time in the system 𝑊𝑆 =
𝜇𝑁𝑆

𝜆
.  

    11.  We define the system reliability at any time as the probability of customers in service is in 

desired mode of service 𝑝𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = (y1 + y3)e.  

  

3  Case of Poisson arrival and phase type service 
 

In this section we consider the system with Poisson arrival process and service times are phase 

type distributed (see Section 2). Then {(𝑁(𝑡), 𝑁∗(𝑡), 𝑆(𝑡)), 𝑡 ≥ 0} is a continuous time Markov chain 

with state space {0, 1, 2, . . . } where  
 𝑖 = {(𝑖, 𝑗, 𝑘),1 ≤ 𝑗 ≤ 3,1 ≤ 𝑘 ≤ 𝑛𝑗}𝑓𝑜𝑟𝑖 ≥ 1. 

Thus the infinitesimal generator is of the form 𝑄′ =

(

 
 

−𝜆 𝜆 𝛽 

   𝑆0 𝑆 − 𝜆𝐼 𝜆𝐼
   𝑆0  𝛽 𝑆 − 𝜆𝐼 𝜆𝐼

⋱ ⋱ ⋱
)

 
 
.  

Theorem 3.1 The system is stable if and only if 𝜌′ < 1 where  

 𝜌′ = 𝜆[𝑝𝜇1′ + 𝑞(𝜇2′ + 𝛿𝜇3′)]. (24) 

  

  

Proof. From the relation (17) we have 𝜆 <  𝜋    𝑆0    𝛽 𝑒 where  𝜋 = ( 𝜋 1, 𝜋 2, 𝜋 3) (with  𝜋 𝑖’s 

as given in (12)-(14)) is the steady state probability vector of 𝑆 +   𝑆0𝛽 . The right drift  𝜋    𝑆0𝛽 𝑒 =

∑3𝑖=1  𝜋𝑖     𝑆𝑖
0 . 

Multiplying (6) by 𝑒 on right hand side we get  

 ∑3𝑖=1  𝜋𝑖     𝑆𝑖
0  =

𝑐

𝑞
−

1

𝑝
 𝜋𝑖  𝑆1𝑒 =

1

𝑝
(
𝑐𝑝

𝑞
) 𝛽1 𝑒    (𝑓𝑟𝑜𝑚(13)) =

𝑐

𝑞
 

where 𝑐 is given in (15). Hence the condition for system stability is given by  

 𝜆 <
1

𝑝𝜇1
′+𝑞(𝜇′2+𝛿𝜇3

′ )
 (25) 

  

 The generator matrix corresponding to the phase changes is 𝑆 +   𝑆0 𝛽 and the stationary 

probability vector is  𝜋 = ( 𝜋 1, 𝜋 2, 𝜋 3). 

 

Theorem 3.2 The steady-state probability vector 𝑥 = (𝑥0, 𝑥1, 𝑥2, ⋯ ) of 𝑄′ is given by  

 
𝑥0 = 1 − 𝜌′, x𝑖 = (1 − 𝜌′) 𝛽 𝑅𝑖 , 𝑖 ≥ 1,

 (26) 

 where 𝑅 is given by  

 𝑅 = 𝜆 [

𝜆𝐼 − 𝜆𝑝e 𝛽1 − 𝑆1 −𝜆𝑞e 𝛽2 0

−𝜆𝑝e 𝛽1 𝜆𝐼 − 𝜆𝑞e 𝛽2 − 𝑆2 −     𝑆2
0  𝛽3

−𝜆𝑝e 𝛽1 −𝜆𝑞e 𝛽2 𝜆𝐼 − 𝑆3

]

−1

. (27) 

  

  

Proof. Let 𝑥 be the steady-state probability vector of 𝑄′. Then 𝑥𝑄′ = 0 and 𝑥𝑒 = 1. 

The steady-state equations are given by  

 −𝜆𝑥0 + 𝑥1S
0 = 0, (28) 
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 𝜆𝑥0𝜷 + 𝑥1(𝑆 − 𝜆𝐼) + 𝑥2S
0𝜷 = 0, (29) 

  

 𝜆𝑥𝑖−1 + 𝑥𝑖(𝑆 − 𝜆𝐼) + 𝑥𝑖+1S
0𝜷 = 0, 𝑓𝑜𝑟𝑖 ≥ 2. (30) 

 From (28) we have  

 𝑥1S
0 = 𝜆𝑥0. (31) 

 Multiplying equations (29) and (30) by the column vector 𝑒 on the right hand side leads to  

 𝑥𝑖+1S
0 = 𝜆𝑥𝑖𝑒𝑓𝑜𝑟𝑖 ≥ 1. (32) 

 Since 𝑥𝑖+1S
0𝜷 = 𝜆𝑥𝑖ℬ𝑓𝑜𝑟𝑖 ≥ 1 where ℬ = 𝑒. 𝜷, from (29) and (30) we obtain  

 𝑥1(𝜆𝐼 − 𝜆ℬ − 𝑆) = 𝜆𝑥0𝜷 (33) 

 and  

 𝑥𝑖(𝜆𝐼 − 𝜆ℬ − 𝑆) = 𝜆𝑥𝑖−1, 𝑓𝑜𝑟𝑖 ≥ 2. (34) 

 Denoting (𝜆𝐼 − 𝜆ℬ − 𝑆) by 𝒦, relation (33) takes the form 𝑥1 = 𝜆𝑥0𝜷𝒦
−1, provided 𝒦 is invertible. 

We now prove the nonsingularity of 𝒦. 

Let the vector 𝑢 be in the left kernal of 𝒦. Then  

 𝜆𝑢 − 𝑢𝑆 − 𝜆(𝑢𝑒)𝜷 = 0. (35) 

 Suppose 𝑢𝑒 = 0. Then (35) reduces to 𝑢(𝜆𝐼 − 𝑆) = 0. But (𝜆𝐼 − 𝑆) is nonsingular and hence 𝑢 = 0. 

If 𝑢𝑒 ≠ 0, normalize 𝑢 by setting 𝑢𝑒 = 1. Post multiplying (35) by 𝑒 gives  

 𝑢S0 = 0. (36) 

 Substituting for 𝑢𝑒, (35) reduces to 𝑢 = 𝜆𝜷(𝜆𝐼 − 𝑆)−1. 

From (36) we have  

 𝜆𝜷(𝜆𝐼 − 𝑆)−1S0 = 0. (37) 

 In (37) 𝜷(𝜆𝐼 − 𝑆)−1S0 is the Laplace-Stieltjes transform at 𝑠 = 𝜆(> 0), of the probability distribution 

𝐹(𝑡) = 1 − 𝜷exp(𝑆𝑡)𝑒 for 𝑡 ≥ 0. Therefore (37) cannot hold and hence 𝑢 = 0. Thus 𝒦 is 

nonsingular. 

The irreducibility of the representation (𝜷, 𝑆) leads to the irreducibility of 𝒦, so that the 

matrix 𝑅 in (27) is positive. 

We have 𝑠𝑝(𝑅) < 1, if 𝜌′ < 1. Therefore the quantity 𝑥0 is given by the normalizing 

equation  
 𝑥0 + 𝑥0𝜷𝑅(𝐼 − 𝑅)

−1𝑒 = 1. 

Substitution for 𝑅 leads to  

 𝑥0 − 𝜆𝑥0𝜷(𝜆ℬ + 𝑆)
−1𝑒 = 1. (38) 

 The inverse of (𝜆ℬ + 𝑆) is calculated as 

 

(𝜆ℬ + 𝑆)−1 = 𝑆−1(𝐼 + 𝜆ℬ𝑆−1)−1 = 𝑆−1∑∞𝑛=0 (−1)
𝑛𝜆𝑛(ℬ𝑆−1)𝑛

= 𝑆−1[𝐼 − 𝜆[∑∞𝑛=0 (−1)
𝑛𝜆𝑛(ℬ𝑆−1)𝑛]ℬ𝑆−1] = 𝑆−1[𝐼 − 𝜆∑∞𝑛=0 𝜌

′𝑛ℬ𝑆−1]

= 𝑆−1[𝐼 − 𝜆(1 − 𝜌′)−1ℬ𝑆−1].

 

From (38) we have  

 

𝑥0 − 𝜆𝑥0𝜷(𝜆ℬ + 𝑆)
−1𝑒 = 𝑥0 − 𝜆𝑥0𝜷[𝑆

−1(𝐼 − 𝜆(1 − 𝜌′)−1ℬ𝑆−1)]𝑒

= 𝑥0 − 𝜆𝑥0𝜷𝑆
−1𝑒 + 𝜆2𝑥0(1 − 𝜌)

−1𝜷𝑆−1ℬ𝑆−1𝑒

= 𝑥0 + 𝜌′𝑥0 + 𝜌
′2(1 − 𝜌′)𝑥0 = (1 − 𝜌′)𝑥0 = 1,

 

so that 𝑥0 = (1 − 𝜌′).  

 Letting y = ∑∞𝑖=1 𝑥𝑖, it is obtained that y = 𝜌′ 𝜋 . In the sequel partition y = (y1, y2, y3), so 

that y𝑖 = 𝜌′ 𝜋 𝑖 , 1 ≤ 𝑖 ≤ 3.  

 

4  Poisson arrival with exponential service 
 

In this section we consider customers arrive according to the Poisson process with rate 𝜆 and 

desired (correct) service time follows exponential distribution but the undesired (incorrect) service 

follows phase type distribution. Let 𝑁(𝑡) be the number of customers in the system 𝑁∗(𝑡) the type 

of service and 𝑆(𝑡) the phase of service at time 𝑡. Then {(𝑁(𝑡), 𝑁∗(𝑡), 𝑆(𝑡)), 𝑡 ≥ 0} is a continuous 

time Markov chain with state space {0, 1, 2, . . . } where  
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 𝑖 = {(𝑖, 1,0), (𝑖, 3, 𝑟 + 1)}⋃ {(𝑖, 2, 𝑗),1 ≤ 𝑗 ≤ 𝑟}𝑓𝑜𝑟𝑖 ≥ 1. 

Thus the infinitesimal generator is of the form 

𝑄 =

0 1 2 3 . . . .

0
1

2

⋮

(

−𝜆 𝑏0
𝑐0 𝐴1 𝐴0

𝐴2 𝐴1 𝐴0
⋱ ⋱ ⋱

)
  

𝑤ℎ𝑒𝑟𝑒 𝑏0 = 𝜆(𝑝, 𝑞𝜷, 0),    𝑐0 = (

𝜇

𝑆̃1
0

𝜇
) , 𝐴0 = 𝜆𝐼  

 𝐴1 = (

−𝜆 − 𝜇 0 0

0    𝑆̃  − 𝜆𝐼    𝑆̃2
0

0 0 −𝜆 − 𝜇
) , 𝐴2 = (

𝜇𝑝 𝜇𝑞𝜷 0

𝑝   𝑆̃1
0 𝑞   𝑆̃1

0𝜷 0
𝜇𝑝 𝜇𝑞𝜷 0

)𝑤𝑖𝑡ℎ 𝑆̃𝑒 + 𝑆̃1
0 + 𝑆̃2

0 = 0. 

 

4.1  Stability condition 

 Consider 𝐴 = 𝐴0 + 𝐴1 + 𝐴2  

 = (

−𝜇𝑞 𝜇𝑞𝜷 0

𝑝   𝑆̃1
0    𝑆̃  + 𝑞   𝑆̃1

0𝜷    𝑆̃2
0

𝜇𝑝 𝜇𝑞𝜷 −𝜇
) (39) 

 the generator matrix of the Markov chain corresponding to the phase changes. Let  

Π = (𝜋0, 𝝅̂, 𝜋𝑟+1) be the steady state probability matrix of 𝐴. Solving the relations  

 Π𝐴 = 0,    Π𝑒 = 1 (40) 

 we obtain  

 −𝜇𝑞  𝜋0 + 𝑝𝝅̂     𝑆̃ 1
0 + 𝜇𝑝  𝜋𝑟+1 = 0 (41) 

 𝜇𝑞𝜋0𝜷 + 𝝅̂(   𝑆̃  + 𝑞   𝑆̃ 1
0  𝜷) + 𝜇𝑞  𝜋𝑟+1𝜷 = 0 (42) 

 𝝅̂     𝑆 2
0 − 𝜇𝜋𝑟+1 = 0 (43) 

 Equation (43) gives  

 𝜇𝜋𝑟+1 = 𝝅̂     𝑆̃ 2
0 (44) 

 Putting this in equation(41),  

 𝜇𝑞  𝜋0 = 𝑝(𝝅̂     𝑆̃ 1
0 + 𝝅̂     𝑆̃ 2

0) (45) 

 Substituting these in equation(42) and simplifying we get  

 𝝅̂(𝑆 + 𝑞   𝑆̃ 1
0  𝜷) + 𝑝𝝅̂  (   𝑆̃ 1

0𝛽 +     𝑆̃ 2
0  𝜷) + 𝑞𝝅̂     𝑆̃ 2

0  𝜷 = 0 

 ⇒ 𝝅̂  (   𝑆̃  +    𝑆̃ 1
0  𝜷 +     𝑆̃ 2

0  𝜷) = 0 

 so that  

 𝝅̂ = 𝑐  𝜷(−   𝑆̃ )−1 (46) 

 𝑐 being a constant and is computed from the normalizing condition. Let 𝛿 be the probability that a 

customer getting correct service from incorrect services and 𝜂 the probability of staying back in 

incorrect services. Then  

 𝛿 = 𝜷  (−   𝑆̃ )−1     𝑆̃ 2
0 (47) 

 and  

 𝜂 = (𝜷(−   𝑆̃ )
−1
𝑒)

−1

 (48) 

 Then the probability that a customer leaves the system without getting required service is  

 1 − 𝛿 = 𝜷  (−   𝑆̃ )−1     𝑆̃ 1
0 (49) 

 and the mean time a customer stay back in incorrect services is  

 
1

𝜂
= (𝜷(−   𝑆̃ )

−1
𝑒) (50) 

 The normalizing equation is 𝜋0 + 𝝅̂  𝑒 + 𝜋𝑟+1 = 1. Substituting for the components of Π which are 

now computed as  
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 𝜋0 =
𝑝𝑐

𝜇𝑞
, 𝝅̂  𝑒 =

𝑐

𝜂
, 𝜋𝑟+1 =

𝑐𝛿

𝜇
 (51) 

 we get 
𝑝𝑐

𝜇𝑞
+

𝑐

𝜂
+

𝑐𝛿

𝜇
= 1 which shows  

 𝑐 =
𝜇𝑞𝜂

𝑝𝜂+𝜇𝑞+𝛿𝑞𝜂
. (52) 

 

 

Theorem 4.1 The system is stable if and only if 𝜆 <
1

𝑞
  𝑐.  

  

Proof. The condition for the stability of the system is Π𝐴0𝑒 < Π𝐴2𝑒. Simplification gives 

Π𝐴0𝑒 = 𝜆. Now 𝐴2𝑒 = (
𝜇  𝑆1

0 𝜇
)
𝑇

. Therefore Π𝐴2𝑒 = 𝜇𝜋0 + 𝝅̂(   𝑆̃ 1
0 +   𝑆̃ 2

0) Substituting for 𝜇𝜋0, 

right hand side becomes 
1

𝑞
𝝅̂(   𝑆̃ 1

0 +   𝑆̃ 2
0). Using equation(46) and the fact that (   𝑆̃ )−1(   𝑆̃ 1

0 +

   𝑆̃ 2
0) = 𝑒, the result follows. Hence the system is stable if 𝜌 < 1 where 𝜌 = 𝜆  

𝑞

𝑐
.  

  

4.2  Steady-State probability Vector 

 Let the steady state probability vector 𝑥 of 𝑄 be 𝑥 = (𝑥∗, 𝐱(1), 𝐱(2), . . . ) be such that 𝑥𝑄 =

0, 𝑥𝑒 = 1. Partitioning gives 𝐱(𝑖) = (𝑥0(𝑖),⌢  𝑥(𝑖), 𝑥𝑟+1(𝑖)). The relation 𝑥𝑄 = 0 gives the following 

system of equations.  

 −𝜆𝑥∗ + 𝐱(1)𝑐0 = 0 (53) 

 𝑥∗𝑏0 + 𝐱(1)𝐴1 + 𝐱(2)𝐴2 = 0 (54) 

 For𝑖 ≥ 1, 𝐱(𝑖 − 1)𝐴0 + 𝐱(𝑖)𝐴1 + 𝐱(𝑖 + 1)𝐴2 = 0 (55) 

 

From the matrix geometric structure we obtain  

 𝐱(𝑖) = 𝐱(1)𝑅𝑖−1, 𝑖 ≥ 1 (56) 

 where 𝑅 is the minimal non negative solution to the matrix quadratic equation 𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0 =

𝑂. Equation (53) shows  

 𝑥∗ =
1

𝜆
𝐱(1)𝑐0. (57) 

 Equation (54) together with normalizing condition gives  

 𝑥∗𝑏0 + 𝐱(1)(𝐴1 + 𝑅𝐴2) = 0 (58) 

  

 subjectto𝑥∗𝑒 + 𝐱(1)(𝐼 − 𝑅)−1𝑒 = 1. (59) 

 Substituting for 𝑥∗,  

 𝐱(1) (𝐴1 + 𝑅𝐴2 +
1

𝜆
𝑐0𝑏0) = 0 (60) 

  

 subjectto𝐱(1) (
1

𝜆
𝑐0 + (𝐼 − 𝑅)

−1𝑒) = 1. (61) 

 But 𝑐0𝑏0 = 𝜆𝐴2 which implies  

 𝐱(1)(𝐴1 + 𝑅𝐴2 + 𝐴2) = 0 (62) 

  

 subjectto𝐱(1) (
1

𝜆
𝑐0 + (𝐼 − 𝑅)

−1𝑒) = 1. (63) 

  

4.2.1  Computation of 𝑹 
 𝑅 can computed explicitly along the following lines. 

We have  

 𝐴2 = (

𝜇𝑝 𝜇𝑞𝜷 0

𝑝 𝑆̃1
0 𝑞 𝑆̃1

0𝜷 0
𝜇𝑝 𝜇𝑞𝜷 0

) = [

𝜇

𝑆̃1
0

𝜇
] [
𝑝 𝑞𝜷 0

] (64) 
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 so that  

 𝐴2𝑒 = [

𝜇

𝑆̃1
0

𝜇
] = 𝑐0 (65) 

 Also from the relation 𝑅𝐴2𝑒 = 𝐴0𝑒, we obtain  

 𝑅𝐴2𝑒 = 𝜆𝑒. (66) 

 Now, 𝑅2𝐴2 = 𝑅
2 (

𝜇

𝑆̃1
0

𝜇
) (𝑝 𝑞𝜷 0) = 𝑅2𝐴2𝑒(𝑝 𝑞𝜷 0). 

Substituting for 𝑅𝐴2 from (66), we get  

 𝑅2𝐴2 = 𝑅𝜆𝑒(𝑝 𝑞𝜷 0) (67) 

 Therefore  

 𝜆𝑅𝑒 (𝑝 𝑞𝜷 0) + 𝑅𝐴1 + 𝜆𝐼 = 0. (68) 

 This gives  

 𝑅 = 𝜆(

𝜇 + 𝜆𝑞 −𝜆𝑞𝜷 0

−𝜆𝑝𝑒 𝜆𝐼 − 𝜆𝑞𝑒𝜷 −   𝑆̃ −   𝑆̃2
0

−𝜆𝑝 −𝜆𝑞𝜷 𝜆 + 𝜇

)

−1

. (69) 

  

Lemma 4.2 𝑥∗ = 1 − 𝜌 so that 𝒙(1)(𝐼 − 𝑅)−1𝑒 = 𝜌.  

  

Proof. Multiplying by 𝑒 on the right side of equation (54) and simplifying we get the 

relation  

 𝜆𝑥∗ + 𝐱(1) (

−𝜆 − 𝜇

 𝑆̃ − 𝜆𝐼 +   𝑆̃2
0

−𝜆 − 𝜇

) + 𝐱(2) (

𝜇

𝑆̃1
0

𝜇
) = 0. (70) 

 Equation (53) gives  

 𝜆𝑥∗ = 𝐱(1) (

𝜇

𝑆̃1
0

𝜇
). (71) 

 Putting this in (70) the following relation is obtained.  

 𝐱(2) (

𝜇

𝑆̃1
0

𝜇
) = 𝜆𝐱(1)𝑒. (72) 

  

 Multiplying equation(55) on right side by e and recursive use of the relation results in  

 𝐱(𝑖) (

𝜇

𝑆̃1
0

𝜇
) = 𝜆𝐱(𝑖 − 1)𝑒    for  𝑖 ≥ 3. (73) 

 Adding (71), (72) and (73)  

 ∑ 𝐱(𝑖)∞
𝑖=1 (

𝜇

𝑆̃1
0

𝜇
) = 𝜆. (74) 

 Adding the system of equations (55) with equation (54) and using the fact that  

𝑥∗𝑏0 = 𝐱(1)𝐴2 we get  

 ∑∞𝑖=1 𝐱(𝑖)  𝐴 = 0. (75) 

 But the relation (40) says  

 ∑∞𝑖=1 𝐱(𝑖)   = 𝑑  Π    forsomeconstant  𝑐 (76) 

 which in turn gives  

 ∑∞𝑖=1 𝐱(𝑖)   = (1 − 𝑥∗)  Π (77) 

 Multiplying on the right side by (

𝜇

𝑆̃1
0

𝜇
) and using the relation in (??) 

 ∑ 𝐱(𝑖)∞
𝑖=1  (

𝜇

𝑆̃1
0

𝜇
) = (1 − 𝑥∗) 

𝜆

𝜌
 (78) 

 The result follows from (74) and (78).  



 
Krishnamoorthy A., Vishnevsky V., Manjunath A., Shajin D. 
SINGLE SERVER QUEUES WITH SEVERAL SERVICES 

RT&A, No 4 (47) 
Volume 12, December 2017  

23 

4.3  System Performance measures 

   

    1.  Probability that the system is idle = 𝑥∗  

    2.  Rate of loss = ∑∞𝑖=1  ⌢  𝑥(𝑖)   𝑆̃ 1
0 = 𝜆𝑞(1 − 𝛿)  

    3.  Probability of loss = 𝑞(1 − 𝛿)  

    4.  Mean number of customers in the system = ∑∞𝑖=1 𝑖𝐱(𝑖)𝑒 = 𝐱(1)(𝐼 − 𝑅)−2𝑒  

    5.  Mean number of customers in the queue = ∑∞𝑖=1 (𝑖 − 1)𝐱(𝑖)𝑒 = 𝐱(1)(𝐼 − 𝑅)
−2𝑒 − 𝐱(1)(𝐼 − 𝑅)−1𝑒  

    6.  Probability that the server is busy serving in correct mode  

 ∑ 𝐱(𝑖)∞
𝑖=1  (

1
0
1
) = 𝐱(1)(𝐼 − 𝑅)−1 (

1
0
1
) = 𝜌(𝜋0 + 𝜋𝑟+1) = 𝜌 −

𝜆𝑞

𝜂
 

 

    7.  Probability that the server is busy serving in correct mode  

 ∑ 𝐱(𝑖)∞
𝑖=1   (

0
𝑒
0
) = 𝜌 ⌢  𝜋𝑒 =

𝜆𝑞

𝜂
 

  

5  An illustration 
  

 
In this section we consider a queueing model consisting of two service stations - preliminary 

service and main service. Customers arrive to this system according to a MAP (Markovian Arrival 

Process) with representation (𝐷0, 𝐷1) of order 𝑚. A customer, which taken for service is directly 

selected for main service with probability 𝑝 or to the preliminary service with probability 𝑞(= 1 −

𝑝). A threshold clock starts ticking if a customer enters to preliminary service. When the duration 

of preliminary service exceeds the threshold clock, the customer move out of the system, else he 

goes to main service. The threshold clock follows exponential distribution with parameter 𝜁. 

Service times of the customers at these stations follow phase type distributions with representation 

(𝜶, 𝑆𝑃), (𝜸, 𝑆𝑀) and of order 𝑎, 𝑏 respectively. Write 𝑆𝑃
0 + 𝜁𝑒 = −𝑆𝑃𝑒 and 𝑆𝑀

0 = −𝑆𝑀𝑒 where 𝑒 is a 

column vector of 1’s of appropriate order. Hence service time of a customer can be modeled as a 

phase type distribution with representation (𝝃, 𝑈) of order 𝑎 + 2𝑏 such that 𝑈𝑒 + 𝑈0 = 0 where  
 𝝃 = (𝑝𝜸 𝑞𝜶 0) 

 

 𝑈 = (

𝑆𝑀 0 0

0 𝑆𝑃 𝑆𝑃
0𝜸

0 0 𝑆𝑀
) ,𝑈0 = (

𝑆𝑀
0

𝜁𝑒

𝑆𝑀
0
). 

Let 𝑁(𝑡), 𝑁∗(𝑡), 𝑆(𝑡), 𝐴(𝑡) denote respectively the number of customers in the system, nature of 

service, phase of service and phase of arrival at time 𝑡.  
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 𝑁∗(𝑡) = {

1 𝑚𝑎𝑖𝑛𝑠𝑒𝑟𝑣𝑖𝑐𝑒
2 𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦𝑠𝑒𝑟𝑣𝑖𝑐𝑒
3 𝑜𝑛𝑒𝑡ℎ𝑎𝑡𝑐𝑜𝑚𝑒𝑓𝑟𝑜𝑚𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦𝑠𝑒𝑟𝑣𝑖𝑐𝑒

 

The process Ω = {(𝑁(𝑇), 𝑁∗(𝑡), 𝑆(𝑡), 𝐴(𝑡)), 𝑡 ≥ 0} is a continuous time Markov chain with state 

space {(𝑛, 𝑖, 𝑗, 𝑘); 𝑖 = 1,3,1 ≤ 𝑗 ≤ 𝑏, 1 ≤ 𝑘 ≤ 𝑚}⋃ {(𝑛, 2, 𝑗, 𝑘); 1 ≤ 𝑗 ≤ 𝑎, 1 ≤ 𝑘 ≤ 𝑚} for 𝑛 ≥ 1. Note 

that when 𝑁(𝑡) = 0, the only other component in the state vector is 𝐴(𝑡). Thus the infinitesimal 

generator of Ω is of the form  

 𝑄∗ =

(

 
 

𝐷0 𝐴01
𝐴10 𝐴1 𝐴0

𝐴2 𝐴1 𝐴0
⋱ ⋱ ⋱

)

 
 

 (79) 

 where 𝐴01 = 𝝃⊗ 𝐷1, 𝐴10 = 𝑈
0⊗ 𝐼𝑚 , 𝐴0 = 𝐼𝑎+2𝑏⊗𝐷1, 𝐴1 = 𝑈⊕ 𝐷0, 𝐴2 = 𝑈

0𝝃⊗ 𝐼𝑚. 

The infinitesimal generator 𝑄∗ given by (79) is of the same form as 𝑄 of the model 

described initially. Thus the analysis of the Markov chain with infinitesimal generator 𝑄∗ can be 

done in the same way as for 𝑄. 

The significance of this model is as follows: customer arriving to a single server belong to 

two categories, though they join the same. Only while taken for service the category will be 

revealed. Call them category 1 and category 2, respectively. Category 1 are qualified for the main 

service without undergoing preliminary service. However, category 2 have to be given the 

preliminary service before admitted to mean service. However, if such customers do not get 

service in preliminary before realization of the timer (random clock), they get disqualified and so 

leave the system forever. On the other those among category 2, completing service successfully in 

preliminary are immediately admitted to main service. On completion of that service such 

customers leave the system. 

 

Remark 5.1 In telecommunication it is this type of situation that is often encountered. Packages 

have to identify the server in idle state; then wait for a while. But in the mean time another message may get 

through, making the server busy. Then the customer (packet) under consideration has to go through a series 

of contention windows. These passages could be regarded as unwanted service. In case the process of going 

through contention windows exceeds a threshold time limit, the message will not get served.  

  

Remark 5.2 The problem discussed in Madan [3] and Medhi [5] could be arrived at from our model 

as follows. Suppose that we reverse the order of preliminary and main service, that is, main service first and 

preliminary (hereafter we call it optional) service next. Then after completion of main service, the customer 

asks for an optional service with probability 1 − 𝑞 (this optional service time has exponential distribution in 

Madan [3]). With probability 𝑞, the customer leaves the system immediately after main service completion. 

This model is also the same as a queue with instantaneous feedback after a service and immediate 

commencement of his service (feedback restricted to one). This feedback policy is referred to as queues with 

instantaneous feedback as head of the queue.  

  

6  Numerical illustration 
 

The following numerical illustration is based on the description in Section 2. 

We fix parameters 𝑛1 = 2, 𝑛2 = 3, 𝑛3 = 4, 𝜷1 = (0.4    0.6), 𝜷2 = (0.3    0.5    0.2), 𝜷3 =

(0.2    0.3    0.3    0.2),  

 𝑆1 = [
∗ 6
8 ∗ ] , 𝑆1

0 = [
7
8 ]  𝑤𝑖𝑡ℎ 𝑆1𝑒 + 𝑆1

0 = 0, 
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𝑆2 = [

∗ 5 5
6 ∗ 6
5 7 ∗

] , 𝑆2
0 = [

3
3
2
] , 𝑆2

0 = [

4
5
6
]𝑤𝑖𝑡ℎ  𝑆_2 𝑒 + 𝑆_2^0 + 𝑆_2^0 = 0, 

 

𝑆3 =

[
 
 
 
 
∗ 7 8 9
6 ∗ 7 7
6 6 ∗ 6
8 7 6 ∗

]
 
 
 
 

, 𝑆3
0 =

[
 
 
 
 
6
7
8
9
]
 
 
 
 

  𝑤𝑖𝑡ℎ  𝑆3𝑒 + 𝑆3
0 = 0. 

For the arrival process, we consider the following two sets of values for 𝐷0 and 𝐷1 as follows. The 

arrival processes labeled 𝑀𝑁𝐶𝐴 and 𝑀𝑃𝐶𝐴 respectively, have negative and positive correlation for 

two successive inter-arrival times with values -0.48891 and 0.48891. The standard deviation of the 

inter-arrival times of these two arrival processes are, respectively, 0.2819 and 0.2819. 

 1. 𝑴𝑨𝑷 with negative correlation (𝑴𝑵𝑪𝑨):  

 𝐷0 = (

−5.0111 5.0111 0
0 −5.0111 0
0 0 −1128.75

) , 𝐷1 = (

0 0 0
0.05011 0 4.96099
1117.4625 0 11.2875

)  

   

 𝑝   𝑃𝑙𝑜𝑠𝑠   𝜇𝑁𝑆   𝑃𝐶    𝑃𝐼    𝑅𝐶 𝑅𝐼  𝑊𝑆  

.4   0.2136   7.5229   0.5242   0.3921   2  1.9320   1.5046 

.5  0.1780  4.9744   0.5483  0.3267   2.5  1.6100  0.9949 

.6  0.1424  3.6690  0.5724  0.2614   3  1.2880   0.7338 

.7  0.1068  2.8654  0.5965  0.1960  3.5  0.9660  0.5731 

.8  0.0712  2.3138  0.6206  0.1307   4  0.6440   0.4628 

.9   0.0356  1.9069   0.6447   0.0653   4.5  0.3220   0.3814 

  

Table  1: Effect of 𝑝 for 𝑀𝑁𝐶𝐴 

   

 2. 𝑴𝑨𝑷 with positive correlation (𝑴𝑷𝑪𝑨):  

 𝐷0 = (

−5.0111 5.0111 0
0 −5.0111 0
0 0 −1128.75

) , 𝐷1 = (

0 0 0
4.96099 0 0.05011
11.2875 0 1117.4625

)  

   

 𝑝   𝑃𝑙𝑜𝑠𝑠   𝜇𝑁𝑆   𝑃𝐶    𝑃𝐼    𝑅𝐶 𝑅𝐼  𝑊𝑆  

.4   0.2136  546.8179   0.5242  0.3921  2  1.9320   109.3646 

.5   0.1780   349.9587  0.5483  0.3267   2.5  1.6100   69.9924 

.6   0.1424   250.7699  0.5724  0.2614  3  1.2880   50.1545 

.7   0.1068  191.0008  0.5965  0.1960   3.5  0.9660   38.2005 

.8   0.0712   151.0402   0.6206  0.1307   4  0.6440   30.2083 

.9   0.0356   122.4351  0.6446  0.0653   4.5  0.3220   24.4873 

 

Table  2: Effect of 𝑝 for 𝑀𝑃𝐶𝐴 

  

The output in Tables 1 and 2 are on expected lines. Note that 𝑃𝑙𝑜𝑠𝑠 decreases with 

increasing value of 𝑝. The value of 𝑃𝐶(𝑅𝐶) steadily increases with 𝑝 and values of 𝑃𝐼(𝑅𝐼) and 𝑊𝑆 

decrease with increase in value of 𝑝, as expected. 

The main comparison in Tables 1 and 2 is between values of 𝜇𝑁𝑆 in 𝑀𝑁𝐶𝐴 and 𝑀𝑃𝐶𝐴. Both 

decrease with increase in value of 𝑝. However, 𝑀𝑁𝐶𝐴 has much smaller values compared to their 

𝑀𝑃𝐶𝐴 counter parts. This indicates that positive correlation in the arrival process results in 

accumulation of large number of customers in the system. 

 



 
Krishnamoorthy A., Vishnevsky V., Manjunath A., Shajin D. 
SINGLE SERVER QUEUES WITH SEVERAL SERVICES 

RT&A, No 4 (47) 
Volume 12, December 2017  

26 

7  𝑴/𝑮/𝟏 Model 
 

In this section we consider an 𝑀/𝐺/1 system with two service stations – preliminary service and 

main service. Customers arrive to this system according to a Poisson process with rate 𝜆. A 

customer, when taken for service, is directly selected for main service with probability 𝑝 or to the 

preliminary service with probability 𝑞  (= 1 − 𝑝). A threshold clock starts ticking if a customer 

enters to preliminary service. When the duration of preliminary service exceeds the threshold 

clock, the customer moves out of the system, else he goes to main service. The threshold clock 

follows exponential distribution with parameter 𝜁. Here the service times, 𝑉𝑝, 𝑉𝑚 of the preliminary 

and main services are independent having general distributions with distribution function 

𝐺1(. ), 𝐺2(. ), LST 𝐺1
∗(. ), 𝐺2

∗(. ) respectively. 

The (total) service time 𝑉 of a unit is  

 𝑉 =

{
 

 
𝑉𝑓 𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑞 • 𝑃(𝐺1(. ) > exp(𝜁))

𝑉𝑝 𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑞 • 𝑃(𝐺1(. ) < exp(𝜁))

𝑉𝑚 𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑝
 

where 𝑉𝑓 is the duration of threshold clock realization. 

Thus  

 𝐺(𝑡) = 𝑃(𝑉 ≤ 𝑡) = 𝑞 [∫
𝑡

0
𝜁𝑒−𝜁𝑢(1 − 𝐺1(𝑢))𝑑𝑢 + ∫

𝑡

0
𝑒−𝜁𝑢𝐺1(𝑢)𝑑𝐺2(𝑡 − 𝑢)] + 𝑝 ∫

𝑡

0
𝑑𝐺2(𝑢) 

and LST 𝐺∗(𝑠) of 𝑉 is given by 𝐺∗(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑑𝐺(𝑡). 

 

Remark 7.1 This modelling closely resembles the protocol IEEE 802.11. This is so because of a 

message generated has to wait before checking for idle server; if server is busy it has to go through a series of 

contention windows and then look for idle server. In case this process takes longer duration than the life of 

message (before its significance is lost), then the message does not serve any purpose. In the opposite case it is 

transmitted before its expiry time.  

  

Remark 7.2 Assume the random clock to be of infinite duration (ie., its rate of realization goes to 

zero). Now interchange the roles of preliminary and main services (in this case, we call the preliminary 

service, which is the second one now, as optional service). Invariably main service is given for all customers. 

Thus the main service is followed by an optional service to which customers, on completion of main service, 

proceed with probability 𝑞. Then our model reduces to Madan [3] with exponentially distributed optional 

service and to Medhi [5] in the case of arbitrarily distributed optional service time.  

Transient solution 

 The supplementary variable technique (see Cox [1], Medhi [4]) could be used to get the 

transient solution. Denote by ℎ(𝑥) =
𝑑𝐺(𝑥)

1−𝐺(𝑥)
, the hazard function of the service time distribution 

𝐺(. ) and the probability density function of 𝑉 is given by  
 𝑔(𝑥) = ℎ(𝑥)exp{−𝑁(𝑥)} 

where  

 𝑁(𝑥) = ∫
𝑥

0
ℎ(𝑢)𝑑𝑢        (𝑁(0) = 0𝑎𝑛𝑑

𝑑

𝑑𝑥
𝑁(𝑥) = ℎ(𝑥)). 

If 𝑉 is the total service time, then ℎ(𝑥)𝑑𝑥 = 𝑃(service will be completed in (𝑥, 𝑥 + 𝑑𝑥) given that 

service time exceeds 𝑥) and 𝐸(𝑉) = ∫ 𝑥𝑔(𝑥)𝑑𝑥 = −𝐺∗(1)(0). 

The supplementary variable 𝑋(𝑡) considered is defined below. Let  

 

𝑁(𝑡) = 𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑖𝑧𝑒𝑎𝑡𝑡𝑖𝑚𝑒𝑡

𝑋(𝑡) = 𝑡𝑖𝑚𝑒𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑠𝑝𝑒𝑛𝑡𝑖𝑛𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑢𝑝𝑡𝑜𝑡𝑜𝑓𝑎𝑢𝑛𝑖𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑝𝑛(𝑡) = 𝑃(𝑁(𝑡) = 𝑛)𝑤𝑖𝑡ℎ𝑝0(0) = 1

𝑝𝑛(𝑡, 𝑥)𝑑𝑥 = 𝑃(𝑁(𝑡) = 𝑛, 𝑥 ≤ 𝑋(𝑡) < 𝑥 + 𝑑𝑥), 𝑛 ≥ 1

 

 

 𝑝𝑛(𝑡) = ∫
∞

0
𝑝𝑛(𝑡, 𝑥)𝑑𝑥,    𝑄(𝑡, 𝑧) = ∑

∞
𝑛=0 𝑝𝑛(𝑡)𝑧

𝑛, 𝑄(𝑡, 𝑥, 𝑧) = ∑∞𝑛=1 𝑝𝑛(𝑡, 𝑥)𝑧
𝑛 
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Now we have  

 𝑝0(𝑡 + 𝛿𝑡) = [1 − 𝜆𝛿𝑡 + 𝑜(𝛿𝑡)]𝑝0(𝑡) + ∫
∞

0
𝑝1(𝑡, 𝑥)ℎ(𝑥)𝑑𝑥𝛿𝑡. 

 

 𝐴𝑠𝛿𝑡 → 0,    
∂

∂𝑡
𝑝0(𝑡) = −𝜆𝑝0(𝑡) + ∫

∞

0
𝑝1(𝑡, 𝑥)ℎ(𝑥)𝑑𝑥. (80) 

  
 𝐹𝑜𝑟𝛿𝑥 > 0, 𝑝1(𝑡 + 𝛿𝑡, 𝑥 + 𝛿𝑥) = [1 − 𝜆𝛿𝑡 + 𝑜(𝛿𝑡)][1 − ℎ(𝑥)𝛿𝑥 + 𝑜(𝛿𝑥)]𝑝1(𝑡, 𝑥). 

Subtracting and adding a term 𝑝1(𝑡, 𝑥 + 𝛿𝑥) to the LHS, then dividing by 𝛿𝑡(𝛿𝑥) and taking as 𝛿𝑡 →

0(𝛿𝑥 → 0), we get  

 (
∂

∂𝑡
+

∂

∂𝑥
) 𝑝1(𝑡, 𝑥) = −(𝜆 + ℎ(𝑥))𝑝1(𝑡, 𝑥). (81) 

  

 𝐹𝑜𝑟𝑛 ≥ 0, (
∂

∂𝑡
+

∂

∂𝑥
) 𝑝𝑛(𝑡, 𝑥) = −(𝜆 + ℎ(𝑥))𝑝𝑛(𝑡, 𝑥) + 𝜆𝑝𝑛−1(𝑡, 𝑥). (82) 

 We have the following boundary conditions:  

 𝑝1(𝑡, 0) = ∫
∞

0
𝑝2(𝑡, 𝑥)ℎ(𝑥)𝑑𝑥 + 𝜆𝑝0(𝑡) (83) 

 and  

 𝑝𝑛(𝑡, 0) = ∫
∞

0
𝑝𝑛+1(𝑡, 𝑥)ℎ(𝑥)𝑑𝑥,        𝑛 ≥ 2. (84) 

 Multiplying (82) by 𝑧𝑛 , 𝑛 = 2,3, . .. and (81) by z, then adding all the terms we get  

 (
∂

∂𝑡
+

∂

∂𝑥
)∑∞𝑛=1 𝑝𝑛(𝑡, 𝑥)𝑧

𝑛 = −(𝜆 + ℎ(𝑥)) ∑∞𝑛=1 𝑝𝑛(𝑡, 𝑥) + 𝜆 ∑
∞
𝑛=2 𝑝𝑛−1(𝑡, 𝑥) (85) 

  

 (
∂

∂𝑡
+

∂

∂𝑥
)𝑄(𝑡, 𝑥, 𝑧) = −(𝜆 − 𝜆𝑧 + ℎ(𝑥))𝑄(𝑡, 𝑥, 𝑧). (86) 

 Now multiplying (84) by 𝑧𝑛 , 𝑛 = 2,3, . .. and (83) by z, then adding the terms we have  

 𝑄(𝑡, 0, 𝑧) = ∫
∞

0
(∑∞𝑛=1 𝑝𝑛+1(𝑡, 𝑥)𝑧

𝑛)ℎ(𝑥)𝑑𝑥 + 𝜆𝑧𝑝0(𝑡). (87) 

 Now  

 

∫
∞

0
(∑∞𝑛=1 𝑝𝑛+1(𝑡, 𝑥)𝑧

𝑛)ℎ(𝑥)𝑑𝑥 = ∫
∞

0
(
1

𝑧
)∑∞𝑛=1 𝑝𝑛+1(𝑡, 𝑥)𝑧

𝑛+1ℎ(𝑥)𝑑𝑥

= ∫
∞

0
(
1

𝑧
) [∑∞𝑛=1 𝑝𝑛(𝑡, 𝑥)𝑧

𝑛 − 𝑝1(𝑡, 𝑥)𝑧]ℎ(𝑥)𝑑𝑥

= (
1

𝑧
) ∫

∞

0
[𝑄(𝑡, 𝑥, 𝑧) − 𝑝1(𝑡, 𝑥)𝑧]ℎ(𝑥)𝑑𝑥

= (
1

𝑧
) [∫

∞

0
𝑄(𝑡, 𝑥, 𝑧)ℎ(𝑥)𝑑𝑥 − 𝑧(𝑝′0(𝑡) + 𝜆𝑝0(𝑡))]𝑏𝑦(80)

 

Thus (87) reduces to 

 

𝑄(𝑡, 0, 𝑧) = (
1

𝑧
) [∫

∞

0
𝑄(𝑡, 𝑥, 𝑧)ℎ(𝑥)𝑑𝑥 − 𝑧(𝑝′0(𝑡) + 𝜆𝑝0(𝑡))] + 𝜆𝑧𝑝0(𝑡)

= (
1

𝑧
) [∫

∞

0
𝑄(𝑡, 𝑥, 𝑧)ℎ(𝑥)𝑑𝑥 − 𝑧(𝑝′0(𝑡) + 𝜆𝑝0(𝑡)) + 𝜆𝑧

2𝑝0(𝑡)]
 

 

 𝑧𝑄(𝑡, 0, 𝑧) = ∫
∞

0
𝑄(𝑡, 𝑥, 𝑧)ℎ(𝑥)𝑑𝑥 − 𝑧𝑝′0(𝑡) + 𝜆𝑧(𝑧 − 1)𝑝0(𝑡). (88) 

 

 The partial differential equation (86) can be solved using the boundary condition (88) and the 

normalizing condition ∑∞𝑛=0 𝑝𝑛(𝑡) = 1. 

 

7.1  Steady state distribution 

Let  
 𝑙𝑖𝑚𝑡→∞𝑝𝑛(𝑡) = 𝑝𝑛, 𝑛 ≥ 0 

and  

 
lim
𝑡→∞

𝑝𝑛(𝑡, 𝑥) = 𝑝𝑛(𝑥), 𝑥 > 0, 𝑛 ≥ 1

= 𝑝0(𝑥) = 0, 𝑥 > 0.
 

Then {𝑝𝑛 , 𝑛 ≥ 0} gives the distribution of the general time system size. 
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Let  

𝑄(𝑥, 𝑧) = ∑𝑝𝑛(𝑥)𝑧
𝑛

∞

𝑛=1

 = ∑ [lim
𝑡→∞

𝑝𝑛(𝑡, 𝑥)] 𝑧
𝑛

∞

𝑛=1

 

= lim
𝑡→∞

[∑𝑝𝑛(𝑡, 𝑥)𝑧
𝑛

∞

𝑛=1

 ] = lim
𝑡→∞

𝑄(𝑡, 𝑥, 𝑧)
 

and  

 𝑄(𝑧) = ∫
∞

0
𝑄(𝑥, 𝑧)𝑑𝑥. 

Then  

 (80) ⇒ 𝜆𝑝0 = ∫
∞

0
𝑝1(𝑥)ℎ(𝑥)𝑑𝑥 (89) 

  

 (81)𝑎𝑛𝑑(8182) ⇒
∂

∂𝑥
𝑝𝑛(𝑥) = −(𝜆 + ℎ(𝑥))𝑝𝑛(𝑥) + 𝜆𝑝𝑛−1(𝑥), 𝑛 ≥ 1 (90) 

  

 (83) ⇒ 𝑝1(0) = ∫
∞

0
𝑝2(𝑥)ℎ(𝑥)𝑑𝑥 + 𝜆𝑝0 (91) 

  

 (84) ⇒ 𝑝𝑛(0) = ∫
∞

0
𝑝𝑛+1(𝑥)ℎ(𝑥)𝑑𝑥, 𝑛 ≥ 2. (92) 

 The partial differential equation (86) and the boundary condition (88) reduces to  

 
𝑑

𝑑𝑥
𝑄(𝑥, 𝑧) = −(𝜆 − 𝜆𝑧 + ℎ(𝑥))𝑄(𝑥, 𝑧) (93) 

  

 𝑧𝑄(0, 𝑧) = ∫
∞

0
𝑄(𝑥, 𝑧)ℎ(𝑥)𝑑𝑥 + 𝜆𝑧(𝑧 − 1)𝑝0 (94) 

 and  

 𝑝0 + 𝑄(1) = 1. (95) 

 From relation (93)  

 

∫
𝑑𝑄(𝑥,𝑧)

𝑄(𝑥,𝑧)
 = ∫−(𝜆 − 𝜆𝑧 + ℎ(𝑥))𝑑𝑥

log(𝑄(𝑥, 𝑧)) = 𝑙𝑜𝑔𝑐(−𝜆(1 − 𝑧)𝑥 − 𝑁(𝑥))

𝑄(𝑥, 𝑧) = 𝑐exp(−𝜆(1 − 𝑧)𝑥 − 𝑁(𝑥))

𝑄(0, 𝑧) = 𝑐

 

 

 𝑄(𝑥, 𝑧) = 𝑄(0, 𝑧)exp(−𝜆(1 − 𝑧)𝑥 − 𝑁(𝑥)) (96) 

 Substituting (96) in (94) we get  

 

𝑧𝑄(0, 𝑧) = ∫
∞

0
𝑄(0, 𝑧)𝑒(−𝜆(1−𝑧)𝑥−𝑁(𝑥))ℎ(𝑥)𝑑𝑥 + 𝜆𝑧(𝑧 − 1)𝑝0

= 𝑄(0, 𝑧) ∫
∞

0
𝑒−𝜆(1−𝑧)𝑥[𝑒−𝑁(𝑥)ℎ(𝑥)]𝑑𝑥 + 𝜆𝑧(𝑧 − 1)𝑝0

= 𝑄(0, 𝑧)𝐺∗(𝜆(1 − 𝑧)) + 𝜆𝑧(𝑧 − 1)𝑝0.
 

Thus  

 𝑄(0, 𝑧) =
𝜆𝑧(𝑧−1)𝑝0

𝑧−𝐺∗(𝜆−𝜆𝑧)
. (97) 

 Now from (96) we have  

 

𝑄(𝑧) = ∫
∞

0
𝑄(𝑥, 𝑧)𝑑𝑥

= ∫
∞

0
𝑄(0, 𝑧)𝑒(−𝜆(1−𝑧)𝑥−𝑁(𝑥))𝑑𝑥

= 𝑄(0, 𝑧) ∫
∞

0
𝑒(−𝜆(1−𝑧)𝑥𝑒−𝑁(𝑥)𝑑𝑥

=
𝑄(0,𝑧)

𝜆(1−𝑧)
[1 − ∫

∞

0
𝑒−𝜆(1−𝑧)𝑥(𝑒−𝑁(𝑥)ℎ(𝑥))𝑑𝑥]

 

 

 𝑄(𝑧) =
𝑄(0,𝑧)

𝜆(1−𝑧)
[1 − 𝐺∗(𝜆 − 𝜆𝑧)] (98) 

 From (97) and (98) we get  
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 𝑄(𝑧) =
𝑧[𝐺∗(𝜆−𝜆𝑧)−1]𝑝0

𝑧−𝐺∗(𝜆−𝜆𝑧)
 (99) 

 Using L’Hospital rule, we get  

 

𝑄(1) = lim
𝑧→1

𝑄(𝑧)

= 𝑝0
[𝐺∗(𝜆−𝜆𝑧)−1]+𝑧𝜆𝐺∗(1)(𝜆−𝜆𝑧)

1+𝜆𝐺∗(1)(𝜆−𝜆𝑧)

= 𝑝0
𝜆𝐸(𝑉)

1−𝜆𝐸(𝑉)

 

From (95) we obtain  
 𝑝0 = 1 − 𝜆𝐸(𝑉). 

Hence  

 𝑄(𝑧) =
𝑧[𝐺∗(𝜆−𝜆𝑧)−1][1−𝜆𝐸(𝑉)]

𝑧−𝐺∗(𝜆−𝜆𝑧)
. (100) 

  

7.2  Busy period 

 Let 𝑇 be the length of a busy period (starting with a customer arrival to an idle server, 

until the becomes idle again). Define 𝐵(𝑡) = 𝑃(𝑇 ≤ 𝑡). Then 𝐵(𝑡) satisfies the relation  

 𝐵(𝑡) = ∫
𝑡

0
∑∞𝑘=0

(𝜆𝑢)𝑘

𝑘!
𝑒−𝜆𝑢𝐵∗𝑘(𝑡 − 𝑢)𝑑𝐺(𝑢) (101) 

 The Laplace Stieltjes Transform (LST) of busy period 𝐵(𝑡) be denoted by 𝐵∗(𝑠). That is,  

 

𝐵∗(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑑𝐵(𝑡)        (𝑓𝑜𝑟𝑅𝑒(𝑠) > 0)

= ∫
∞

0
𝑒−𝑠𝑡 ∫

𝑡

0
∑∞𝑘=0

(𝜆𝑢)𝑘

𝑘!
𝑒−𝜆𝑢𝐵∗𝑘(𝑡 − 𝑢)𝑑𝐺(𝑢)𝑑𝑡

= ∫
∞

0
∑∞𝑘=0

(𝜆𝑢)𝑘

𝑘!
𝑒−𝜆𝑢𝑒−𝑠𝑢 ∫

∞

𝑢
𝑒−𝑠(𝑡−𝑢)𝐵∗𝑘(𝑡 − 𝑢)𝑑𝑡𝑑𝐺(𝑢)

= ∫
∞

0
∑∞𝑘=0

(𝜆𝑢)𝑘

𝑘!
𝑒−𝜆𝑢𝑒−𝑠𝑢(𝐵∗(𝑠))𝑘𝑑𝐺(𝑢)

= ∫
∞

0
∑∞𝑘=0

(𝜆𝐵∗(𝑠)𝑢)𝑘

𝑘!
𝑒−(𝜆+𝑠)𝑢𝑑𝐺(𝑢)

= ∫
∞

0
𝑒−(𝜆+𝑠−𝜆𝐵

∗(𝑠))𝑢𝑑𝐺(𝑢)

 

Therefore  

 𝐵∗(𝑠) = 𝐺∗(𝜆 + 𝑠 − 𝜆𝐵∗(𝑠)). (102) 

 From this the mean and higher moments of the number of customers in the system can be 

computed.  

Conclusion: 

We examined a queueing model offering 𝑛 distinct services to which arrival is according to a 𝑀𝐴𝑃 

forming a single line. Service time has phase type distribution. A single server serves the 

customers. The service station provides two types of services - one is desirable and other is 

unwanted for each customer. If the service starts in an undesirable state then a clock also 

simultaneously starts ticking. In case this clock realizes before the exact requirement of the server 

is realized, then that customer leaves the system forever without being eligible for the service that 

he actually requires. On the other extreme, in case the correct identification of required service 

occurs before realization of clock, then the customer is served in that state and then leaves the 

system. In case right at the beginning of service the exact requirement of service is identified, then 

the customer starts getting that service right at the time when taken for service. Several system 

performance measures are evaluated. Applications of the model in hospital, telecommunication etc 

are indicated. Stochastic decomposition of the system state is analyzed. Some particular cases are 

indicated. 

In a future work we propose to extend the model to multi server case.  
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Abstract 
For a Markov model described by a one-dimensional diffusion with ergodic control 

without discount on the infinite horizon an ergodic Bellman equation is proved for 

the optimal readiness coefficient; convergence of the iteration improvement 

algorithm is established. 

  

 

 

1   Introduction 
 

According to textbooks in reliability – see, e.g., [7], [19] – coefficient of readiness is one of the main 

characteristics of reliability of the system. In this paper the model under consideration is presented 

by an ergodic Markov process described as a one-dimensional diffusion process which is 

controlled so as to spend more time in a “good domain” on average on the infinite horizon of time. 

The current readiness of the system is measured by a non-negative function 𝑓 taking values on the 

interval [0,1]: one signifies a full readiness, while zero means that the model is in the break down 

state. Hence, in particular, we do not just split the real line into two parts – where 𝑓 = 1 or 𝑓 = 0 – 

but allow a soft transition from full readiness (𝑓 = 1) to a complete failure of the model (𝑓 = 0). 

Both coefficients of the diffusion as well as the function 𝑓 itself may depend on the control. We 

allow only feedback (Markov) control strategies with values from some compact set. The main 

result states an ergodic Bellman equation on the optimal readiness characteristic 𝜌 along with some 

auxiliary function; this 𝜌 may be regarded as the most favourable readiness averaged 

simultaneously in space and time. Also we state an algorithm of improvement of control which in 

principle provides a tool to solve the Bellman equation approximately. 

Earlier results on ergodic control in continuous time were obtained in [13], [15], [3], et al. 

The latest works include [1], [2], [18], see also the references therein. In the very first papers and 

books compact cases with some auxiliary boundary conditions – so as to simplify ergodicity – were 

studied; convergence of the improvement control algorithms were studied only partially. In the 
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later investigations noncompact spaces are allowed; however, apparently,  ergodic control in the 

diffusion coefficient 𝜎 of the process was not tackled earlier. About controlled diffusion processes 

on a finite horizon, or, on infinite horizon with discount (also known as killing) the reader may 

consult in [3], [10]. 

Discrete time and space theory was developed simultaneously in the monographs [5], [6, 

8], [14], [17] and some others; important journal references can be found therein. Technical 

difficulties related to control in the diffusion coefficients are not an issue in discrete models. 

Combination of discrete state spaces and continuous time can be found in [18], et al. Reliability was 

not an issue in most of the cited works; however, it may be introduced in any Markov model. The 

paper consists of five sections not counting two lines of the Conclusions: 1 – Introduction, 2 – 

Setting, 3 – Assumptions and Auxiliaries, 4 – Main result and 5 – Sketch of the Proof. 

 

2   Setting 
 

Given a standard probability space (Ω, ℱ, (ℱ𝑡), 𝑃) and a one-dimensional (ℱ𝑡) Wiener process 𝐵 =

(𝐵𝑡)𝑡≥0 on it we consider a one-dimensional SDE with coefficients 𝑏, 𝜎 and a control parameter 𝛼 

described as follows:  
 𝑑𝑋𝑡

𝛼 = 𝑏(𝛼(𝑋𝑡
𝛼), 𝑋𝑡

𝛼) 𝑑𝑡 + 𝜎(𝛼(𝑋𝑡
𝛼), 𝑋𝑡

𝛼) 𝑑𝑊𝑡 ,    𝑡 ≥ 0, 

  (1) 
 𝑋0

𝛼 = 𝑥 ∈ ℝ. 

 Its (weak) solution does exist [11] and under our conditions – 1D, boundedness of all coefficients 

and uniform non-degeneracy (or ellipticity) of 𝜎2 – is weakly unique. 

Let a non-empty compact set 𝑈 ⊂ ℝ be a range of possible control values. Without any 

further reminder 𝑈 being compact is always bounded. Let 𝑏: 𝑈 × ℝ → ℝ, 𝜎: 𝑈 × ℝ → ℝ, 𝛼:ℝ → 𝑈 be 

given Borel functions (some more regularity assumptions will be presented later). 

Denote the (extended) generator, which corresponds to the equation (??) with a fixed 

function 𝛼(⋅) by 𝐿𝛼:  

 𝐿𝛼(𝑥) = 𝑏(𝛼(𝑥), 𝑥)
∂

∂𝑥
 +

1

2
𝜎2(𝛼(𝑥), 𝑥)

∂2

∂𝑥2
,    𝑥 ∈ ℝ. 

Given a running cost function 𝑓:𝑈 × ℝ → ℝ from a suitable function class we aim to choose an 

optimal (in some relaxed setting, at least, “nearly-optimal”) control strategy 𝛼:ℝ → 𝑈 (Markov 

homogeneous, or, in another language, Markov feedback strategy) such that the corresponding 

solution 𝑋𝛼 maximizes the averaged cost function  

 𝜌𝛼(𝑥): = liminf
𝑇→∞

 
1

𝑇
 ∫
𝑇

0
𝔼𝑥𝑓(𝛼(𝑋𝑡

𝛼), 𝑋𝑡
𝛼) 𝑑𝑡. (2) 

 Recall that the function 𝑓 takes values  

 0 ≤ 𝑓 ≤ 1, (3) 

 then this running cost may be regarded as a measure of current readiness of the underlying 

device. Namely, any value between zero and one we can treat as a measure of availability, while 

the limit 𝜌𝛼 if it exists, can be understood as an averaged – with respect to time and “ensemble” – 

availability (=readiness) of the system. This is especially natural for the set of possible values {0; 1} 

for such a function; however, the whole interval of values [0,1] also makes an evident sense in the 

context of reliability theory. In the sequel we assume that the assumption (3) is satisfied. 

By 𝐾 we denote the class of strategies 𝛼:ℝ → 𝑈 which are Borel measurable. For 

convenience for every 𝛼 ∈ 𝐾 we define the function 𝑓𝛼: ℝ → ℝ, 𝑓𝛼(𝑥) = 𝑓(𝛼(𝑥), 𝑥), 𝑥 ∈ ℝ. Now, 

instead of(2) we can use the equivalent form,  

 𝜌𝛼(𝑥) = liminf
𝑇→∞

 
1

𝑇
 ∫
𝑇

0
𝔼𝑥𝑓

𝛼(𝑋𝑡
𝛼) 𝑑𝑡. 

The “maximin” cost function – or, in other terms, the ergodic availability or readiness coefficient of 

the system – is defined by the expression  

 𝜌(𝑥): = sup
𝛼∈𝐾

liminf
𝑇→∞

 
1

𝑇
 ∫
𝑇

0
𝔼𝑥𝑓

𝛼(𝑋𝑡
𝛼) 𝑑𝑡. (4) 

 Suppose that for every 𝛼 ∈ 𝐾 the solution of the equation (??) 𝑋𝛼 is an ergodic process, that is, 



 
Anulova, S.V., Mai1, H., Veretennikov, A.Yu. 
ON AVERAGED EXPECTED COST CONTROL  

RT&A, No 4 (47) 
Volume 12, December 2017  

33 

there exists a unique limiting distribution 𝜇𝛼 of 𝑋𝑡
𝛼 , 𝑡 → ∞, the same for all initial conditions 𝑋0 =

𝑥 ∈ ℝ. Then it is true that for every 𝑥 ∈ ℝ,  

 𝜌𝛼(𝑥) ≡ 𝜌𝛼: = ∫ 𝑓𝛼(𝑥′) 𝜇𝛼(𝑑𝑥′) =: 〈𝑓𝛼 , 𝜇𝛼〉, (5) 

 and  

 𝜌(𝑥) ≡ 𝜌:= sup
𝛼∈𝐾

∫ 𝑓𝛼(𝑥′) 𝜇𝛼(𝑑𝑥′) = sup
𝛼∈𝐾

〈𝑓𝛼 , 𝜇𝛼〉. (6) 

 Note that under our assumptions 𝜌 does not depend on 𝑥. Ergodicity requires special conditions 

on the characteristics 𝑏, 𝜎, 𝛼; they will be later specified in the next section. We also define an 

auxiliary function which depends on 𝑥 and which looks like a cost function but it is not,  

 𝑣𝛼(𝑥): = ∫
∞

0
𝔼𝑥(𝑓

𝛼(𝑋𝑡
𝛼) − 𝜌𝛼) 𝑑𝑡,    𝛼 ∈ 𝐾. 

This integral will converge under the recurrence assumptions below. 

  

Solutions of the equation (??) will be understood as weak ones. Correspondlingly, the 

ergodic Bellman equation (7) below will be established for weak solutions. 

  

 The first goal of the paper is to prove that the cost 𝜌 – which is a constant in the ergodic 

setting – is the component of the pair (𝑉, 𝜌), which is a unique solution of the  ergodic HJB or 

Bellman’s equation,  

 sup
𝑢∈𝑈

[𝐿𝑢𝑉(𝑥) + 𝑓𝑢(𝑥) − 𝜌] = 0,    𝑥 ∈ ℝ, (7) 

 where 𝑉 will be unique up to an additive constant, while 𝜌 will be unique in the standard sense. 

The meaning of the function 𝑉 is that it coincides with 𝑣𝛼  for the optimal strategy 𝛼 if the latter 

exists, and this function is the main tool for finding an optimal strategy. Note that due to the uni-

dimensional setting and the non-degeneracy of 𝜎2 which will be assumed, the equation (7) is 

equivalent to the folowing,  

 sup
𝑢∈𝑈

𝜎2(𝑢, 𝑥) [
1

2
𝑉′′(𝑥) +

𝑏(𝑢,𝑥)

𝜎2(𝑢,𝑥)
𝑉′(𝑥) +

𝑓𝑢(𝑥)

𝜎2(𝑢,𝑥)
−

𝜌

𝜎2(𝑢,𝑥)
] = 0,    𝑥 ∈ ℝ. (8) 

 Further, due to the non-degeneracy of 𝜎2 and in particular because the right hand sides in (7) and 

(8) are equal to zero, we conclude that they are both equivalent to  

 sup
𝑢∈𝑈

[
1

2
𝑉′′(𝑥) +

𝑏(𝑢,𝑥)

𝜎2(𝑢,𝑥)
𝑉′(𝑥) +

𝑓𝑢(𝑥)

𝜎2(𝑢,𝑥)
−

𝜌

𝜎2(𝑢,𝑥)
] = 0,    𝑥 ∈ ℝ. (9) 

 

 The second goal is to show that the “RIA” algorithm (“reward improvement algorithm”, or, 

in some papers, “PIA” for “policy improvement algorithm”) provides a sequence of convergent 

approximate costs, 𝜌𝑛 → 𝜌, 𝑛 → ∞. Also let us emphasize that unlike in the finite horizon case, here 

in the average ergodic control setting, the solution of the HJB equation is  a couple (𝑉, 𝜌), where 𝜌 is 

the desired cost while 𝑉 is some auxiliary function, which also admits a certain interpretation in 

terms of control theory. 

Note that solutions of the equations (7), (8) and (9) will be studied in Sobolev classes, 

hence, (second) derivatives will be defined up to almost everywhere with respect to Lebesgue’s 

measure. To keep all strategies Borel, all expressions involving Sobolev derivatives will be 

uderstood as Borel measurable expressions since for any Lebesgue’s function there is a Borel 

function which coincides with the former almost everywhere. Respectively, all HJB or Poisson 

equations will be understood in the Sobolev sense with Borel versions of any second order Sobolev 

derivative. First order derivatives are all continuous due to Sobolev imbedding theorems. 

 

3  Assumptions and auxiliaries 
 

To ensure ergodicity of 𝑋𝛼 under any feedback control strategy 𝛼 ∈ 𝐾, we make the following 

assumptions on the drift and diffusion coefficients.   

    1.  The function 𝑏 is bounded, 𝐶1 in 𝑥, and  

 lim
|𝑥|→∞

sup
𝑢∈𝑈

 𝑥 𝑏(𝑢, 𝑥) = −∞. (10) 
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    2.  The function 𝜎 is bounded, uniformly non-degenerate and 𝐶1 in 𝑥. 

 

    3.  The function 𝑓 takes values in the interval [0,1]. 

 

    4.  The functions 𝜎(𝑢, 𝑥), 𝑏(𝑢, 𝑥), 𝑓(𝑢, 𝑥) are continuous in (𝑢, 𝑥). 

 

    5.  The set 𝑈 ⊂ ℝ is compact. 

 

Lemma 1  Let the assumptions (A1) – (A4) be satisfied. Then the function 𝑣𝛼  has the following 

properties: 

  

    1.  For any strategy 𝛼 the function 𝑣𝛼  is continuous as well as (𝑣𝛼)′, and there exist 

𝐶,𝑚 > 0 such that sup𝛼(|𝑣
𝛼(𝑥)| + |𝑣𝛼(𝑥)′|) ≤ 𝐶(1 + |𝑥|𝑚). 

 

    2.  𝑣𝛼 ∈ 𝑊𝑝,𝑙𝑜𝑐
2  for any 𝑝 ≥ 1. 

 

    3.  𝑣𝛼 ∈ 𝐶1,𝐿𝑖𝑝 (i.e., (𝑣𝛼)′ is locally Lipschitz).  

    4.  𝑣𝛼  satisfies a Poisson equation in the whole space,  

 𝐿𝛼𝑣𝛼(𝑥) + 𝑓𝛼(𝑥)−< 𝑓𝛼 , 𝜇𝛼 >=
𝑎.𝑒.

0, (11) 

 in the Sobolev sense. 

 

    5.  Solution of this equation is unique up to an additive constant in the class of Sobolev 

solutions 𝑊𝑝,𝑙𝑜𝑐
2  with a no more than some (any) polynomial growth. 

 

    6.  < 𝑣𝛼 , 𝜇𝛼 >= 0. 

  

 

 

Proof. follows from [21] & [16]; see also [9, Lemma 4.13 and Remark 4.3].  

 

 

Lemma 2  Let the assumptions (A1) – (A3) hold true. Then,   

    • For any 𝐶1, 𝑚1 > 0 there exist 𝐶,𝑚 > 0 such that for any strategy 𝛼 ∈ 𝐾 and for any 

function 𝑔 growing no faster than 𝐶1(1 + |𝑥|
𝑚1),  

 sup
𝑡
|𝔼𝑥𝑔(𝑋𝑡

𝛼)| ≤ 𝐶(1 + |𝑥|𝑚). (12) 

 

 

    • For any strategy 𝛼 ∈ 𝐾 the function 𝜌𝛼 is a constant, and there exists 𝐶 < ∞ such that  

 sup
𝛼
|𝜌𝛼| ≤ 𝐶 < ∞. (13) 

  

    • For any 𝛼 ∈ 𝐾, the invariant measure 𝜇𝛼 integrates any polynomial:  

 ∫ |𝑥|𝑚 𝜇𝛼(𝑑𝑥) < ∞. 

 

  

  Proof follows from [21] and [16]. 
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4   Main result 
 

Recall that the state space dimension is 𝐷 = 1 and that all SDE solutions with any Markov strategy 

are weak, unique in distribution, strong Markov and ergodic. All of these follow from [11] and 

from the assumptions (A1) and (A2) (see [21] about ergodicity). 

The “exact RIA” reads as follows. Let us start with some homogeneous Markov strategy 

𝛼0, which uniquely determines 𝜌0 = 𝜌
𝛼0 ≡ 〈𝑓𝛼0 , 𝜇𝛼0〉 and 𝑣0 = 𝑣

𝛼0 . Next, for any couple (𝑣, 𝜌) such 

that 𝑣 ∈ 𝐶2, or 𝑣 ∈ 𝑊𝑝,𝑙𝑜𝑐
2  with any 𝑝 > 0, and for 𝜌 ∈ ℝ, define  

 𝐹[𝑣, 𝜌](𝑥): = sup
𝑢∈𝑈

[𝐿𝑢𝑣(𝑥) + 𝑓𝑢(𝑥) − 𝜌] = max
𝑢∈𝑈

[𝐿𝑢𝑣(𝑥) + 𝑓𝑢(𝑥) − 𝜌]. 

Recall that unless 𝑣 ∈ 𝐶2, we consider a Borel version of the expression in the right hand side. 

Now, by induction given 𝛼𝑛, 𝜌𝑛 and 𝑣𝑛, the next “improved” strategy 𝛼𝑛+1 is defined as follows: 

for any 𝑥,  

 𝐿𝛼𝑛+1𝑣𝑛(𝑥) + 𝑓
𝛼𝑛+1(𝑥) − 𝜌𝑛 = 𝐹[𝑣𝑛 , 𝜌𝑛](𝑥). (14) 

 which is equivalent to  
 𝐿𝛼𝑛+1𝑣𝑛(𝑥) + 𝑓

𝛼𝑛+1(𝑥) = max
𝑢
[𝐿𝑢𝑣𝑛(𝑥) + 𝑓

𝑢(𝑥)] =: 𝐺[𝑣𝑛](𝑥). 

In the sequel we  assume that a Borel measurable version of such a strategy can be chosen. In our case 

existence of such a Borel strategy follows from Stschegolkow’s (Shchegolkov’s) theorem, see [20], 

[12, Satz 39], [4, Theorem 1] (the first two references are in German, the last one cites the same 

result in English), which states that if any section of a (nonempty) Borel set 𝐸 in the direct product 

of two complete separable metric spaces is sigma-compact (i.e., equals a countable sum of closed 

sets) then a Borel selection belonging to this set 𝐸 exists. 

Now, the value 𝜌𝑛+1 is defined as  
 𝜌𝑛+1: = 〈𝑓

𝛼𝑛+1 , 𝜇𝛼𝑛+1〉, 

where, in turn, 𝜇𝛼𝑛+1  is the (unique) invariant measure, which corresponds to the strategy 𝛼𝑛+1. 

Recall that  

 𝑣𝑛(𝑥) = ∫
∞

0
𝔼𝑥(𝑓

𝛼𝑛(𝑋𝑡
𝛼𝑛) − 𝜌𝑛) 𝑑𝑡. 

 

Theorem 1  Let the assumptions (A1) – (A5) be satisfied. Then the Bellman equation (7) holds true 

for 𝜌 and some auxiliary function 𝑉 ∈ 𝐶2, solution of this equation is unique for 𝜌, and for any 𝑛, 𝜌𝑛+1 ≥

𝜌𝑛, the sequence 𝜌𝑛 is bounded, and there is a limit 𝜌𝑛 ↑ 𝜌, 𝑛 → ∞. 

 

5  Sketch of the Proof 
 

Let us show the sketch of the main steps of the proof. 

  

noindent  1. From (14) and (11) it may be derived that  

 (𝐿𝛼𝑛+1𝑣𝑛 − 𝐿
𝛼𝑛+1𝑣𝑛+1)(𝑥) ≥

𝑎.𝑒.

𝜌𝑛 − 𝜌𝑛+1. 

 Further, from Dynkin’s formula applied to (𝑣𝑛 − 𝑣𝑛+1)(𝑋𝑡
𝛼𝑛+1) we obtain,  

 𝔼𝑥𝑣𝑛(𝑋𝑡
𝛼𝑛+1) − 𝔼𝑥𝑣𝑛+1(𝑋𝑡

𝛼𝑛+1) − 𝑣𝑛(𝑥) + 𝑣𝑛+1(𝑥) ≥ (𝜌𝑛 − 𝜌𝑛+1) 𝑡. 

 Since the left hand side here is bounded for a fixed 𝑥, after division of all terms by 𝑡 and at 𝑡 → ∞, 

we obtain,  
 0 ≥ 𝜌𝑛 − 𝜌𝑛+1, 

as required. Therefore, 𝜌𝑛 ≤ 𝜌𝑛+1, so that 𝜌𝑛 ↑ 𝜌̃ with some 𝜌̃. Thus,  the RIA does converge, 

although so far we do not know whether 𝜌̃ = 𝜌. Clearly, 𝜌̃ ≤ 𝜌, since 𝜌 is the sup over all Markov 

strategies, while 𝜌̃ is the sup over some its countable subset. 

 

Recall that now we want to show that 𝑣𝑛 → 𝑣̃ such that the couple (𝑣̃, 𝜌̃) satisfies the HJB 

equation (7), and that 𝜌̃ – as well as 𝑣̃ in some sense – here is unique. 

  

  2. What we want to do is to pass to the limit in the equation  
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 𝐿𝛼𝑛+1𝑣𝑛+1(𝑥) + 𝑓
𝛼𝑛+1(𝑥) − 𝜌𝑛+1 = 0,     𝑎𝑠     𝑛 → ∞, 

after having showed compactness of the set (𝑣𝑛) at least in 𝐶1 (and later on, in 𝐶1,𝛽 for any 0 < 𝛽 <

1). Since  

 𝜌𝑛 = 𝐿𝛼𝑛𝑣𝑛(𝑥) + 𝑓
𝛼𝑛(𝑥), 

we obtain after division by 𝜎2/2,  

 𝑣𝑛′′(𝑥) =
2𝜌𝑛

𝜎2
(𝑥) −

2𝑓

𝜎2
(𝑥) −

2𝑣𝑛′

𝜎2
(𝑥). (15) 

 Due to the local boundedness and absolute continuity of 𝑣𝑛′ – see the Lemma 1 – we conclude that 

the sequence (𝑣𝑛) is locally (i.e. on any bounded interval) tight in 𝐶1. Hence, there is a subsequence 

𝑛′ → ∞ such that 𝑣𝑛′ converges in 𝐶1 on any bounded interval to some function 𝑣̃ ∈ 𝐶1 (in fact, 

even 𝑣̃ ∈ 𝐶1,𝐿𝑖𝑝 = {𝑔 ∈ 𝐶1(ℝ): 𝑔′ ∈  𝐿𝑖𝑝 } as will be clear in a few lines and follows, e.g., from (15)). 

Denoting  

 𝐹1[𝑥, 𝑣′, 𝜌]: = max
𝑢
[𝑏̂𝑢𝑣′ + 𝑓𝑢 − 𝜌̂](𝑥) ≡ max

𝑢
[𝑏̂𝑢𝑣′ + 𝑓𝑢 −

𝜌

𝑎𝑢
] (𝑥), 

where  

 𝑎𝑢(𝑥) =
1

2
(𝜎𝑢(𝑥))2, 𝑏̂𝑢(𝑥) = 𝑏𝑢(𝑥)/𝑎𝑢(𝑥), 𝑓𝑢(𝑥) = 𝑓𝑢(𝑥)/𝑎𝑢(𝑥), 𝜌̂𝑢(𝑥) =

𝜌/𝑎𝑢(𝑥), 

 and by using the bounds as in [10, Chapter 1],  it can be shown the limiting equation as 𝑛′ → ∞  

 𝑣′̃(𝑥) − 𝑣′̃(𝑟) + ∫
𝑥

𝑟
𝐹1[𝑠, 𝑣′̃(𝑠), 𝜌̃] 𝑑𝑠 = 0, (16) 

 which implies by differentiation that  

 𝑣′̃′(𝑥) + 𝐹1[𝑥, 𝑣′̃, 𝜌̃](𝑥) = 0. (17) 

 This equation is equivalent to (9) and, hence, to (7), as required. In other words, the limiting pair 

(𝑣̃, 𝜌̃) satisfies the HJB equation (7). 

  

  3.  Uniqueness for 𝜌. Suppose there are two solutions of the (HJB) equation, 𝑣1, 𝜌1 and 

𝑣2, 𝜌2 with a polynomial growth for 𝑣𝑖 . Denote 𝑣(𝑥):= 𝑣1(𝑥) − 𝑣2(𝑥) and consider two Borel 

strategies 𝛼1(𝑥) ∈  𝑎𝑟𝑔𝑚𝑎𝑥 𝑢(𝐿
𝑢𝑣(𝑥)) and 𝛼2(𝑥) ∈  𝑎𝑟𝑔𝑚𝑖𝑛 𝑢(𝐿

𝑢𝑣(𝑥)), and denote by 𝑋𝑡
𝑖 a (weak) 

solution of the SDE corresponding to each strategy 𝛼𝑖. (It exists and is weakly unique.) Note that  
ℎ2(𝑥): = max

𝑢
(𝐿𝑢𝑣(𝑥) − 𝜌1 + 𝜌2) = max

𝑢
(𝐿𝑢𝑣1(𝑥) + 𝑓𝑢(𝑥) − 𝜌1 − 𝐿𝑢𝑣1(𝑥) − 𝑓𝑢(𝑥) + 𝜌2) 

  

 ≥ max
𝑢
(𝐿𝑢𝑣1(𝑥) + 𝑓𝑢(𝑥) − 𝜌1) − max

𝑢
(𝐿𝑢𝑣2(𝑥) + 𝑓𝑢(𝑥) − 𝜌2) =

𝑎.𝑒.
0, 

 and similarly,  
 ℎ1(𝑥):= min

𝑢
(𝐿𝑢𝑣(𝑥) − 𝜌1 + 𝜌2) = −max

𝑢
(𝐿𝑢(−𝑣)(𝑥) − 𝜌2 + 𝜌1) 

  

 ≤ − [max
𝑢
(𝐿𝑢𝑣2(𝑥) + 𝑓𝑢(𝑥) − 𝜌2) − max

𝑢
(𝐿𝑢𝑣1(𝑥) + 𝑓𝑢(𝑥) − 𝜌1)] =

𝑎.𝑒.
0. 

 

We have, 𝐿𝛼2𝑣(𝑥) = ℎ2(𝑥) − 𝜌
2 + 𝜌1, and 𝐿𝛼1𝑣(𝑥) = ℎ1(𝑥) − 𝜌

2 + 𝜌1. Further, Dynkin’s 

formula is applicable. So,  

 𝔼𝑥𝑣(𝑋𝑡
1) − 𝑣(𝑥) = 𝔼𝑥 ∫

𝑡

0
𝐿𝛼1𝑣(𝑋𝑠

1) 𝑑𝑠 

  

 = 𝔼𝑥 ∫
𝑡

0
ℎ1(𝑋𝑠

1) 𝑑𝑠 + (𝜌1 − 𝜌2) 𝑡 ≤
(ℎ1≤0)

(𝜌1 − 𝜌2) 𝑡. 

 The last inequality here is due to the ℎ1 ≤
𝑎.𝑒.

0 along with Krylov’s bounds [10]. Here the left hand 

side is bounded (𝑥 fixed) due to the Lemma 2, so, we obtain,  
 𝜌1 − 𝜌2 ≥ 0. 

Absolutely similarly we show that also  

 𝜌1 − 𝜌2 ≤
(ℎ2≥0)

0. 
Thus, eventually,  

 𝜌1 = 𝜌2. 

  

  4.  Proof of the equality 𝜌 = 𝜌̃. We have seen that for any initial (𝛼0, 𝜌0), the sequence 𝜌𝑛 
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converges monotonically to 𝜌̃, which is a component of solution of the Bellman equation (7), as 

shown earlier in the step 2, and this component 𝜌̃ is unique as was just shown in the step 3. Hence, 

given some (any) 𝜀 > 0, take any initial strategy 𝛼0 such that  
 𝜌0 = 𝜌

𝛼0 > 𝜌 − 𝜀. 

Then, clearly, the corresponding limit 𝜌̃ will satisfy the same inequality,  
 𝜌̃ = lim

𝑛
𝜌𝑛 > 𝜌 + 𝜀. 

Due to uniqueness of 𝜌̃ as a component of solution of the equation (7), and since 𝜀 > 0 is arbitrary, 

and because it is already established that 𝜌̃ ≤ 𝜌, we now conclude that  
 𝜌̃ = 𝜌. 

The sketch of the proof of the Theorem 1 is thus completed. 

 

6  Discussion 
 

Thus, we have an approach which in principle allows to evaluate the ergodic readiness coefficient 

in certain diffusion Markov models. 

 

7  Addendum: Borel measurability 
 

In the presentation of RIA we have assumed existence of a Borel measurable version of such a 

strategy to be chosen which maximizes some function ofr a fixed 𝑥. In our case existence of such a 

Borel strategy follows from Stschegolkow’s (Shchegolkov’s) theorem, see [20], [12, Satz 39], [4, 

Theorem 1] (the first two references are in German, the last one cites the same result in English), 

which states that if any section of a (nonempty) Borel set 𝐸 in the direct product of two complete 

separable metric spaces is sigma-compact (i.e., equals a countable sum of closed sets) then a Borel 

selection belonging to this set 𝐸 exists. In our case 𝐸 = {(𝑢, 𝑥): 𝐹[𝑢, 𝑥] = 𝜙(𝑥): = max𝑣∈𝑈𝐹[𝑣, 𝑥], 𝑥 ∈

ℝ}. This set is nonempty and closed and, hence, Borel. Indeed, if 𝐸 ∋ (𝑢𝑛, 𝑥𝑛) → (𝑢, 𝑥), 𝑛 → ∞, then 

𝐹[𝑢𝑛, 𝑥𝑛] → 𝐹[𝑢, 𝑥] due to continuity of 𝐹. Also, due to continuity of 𝐹, 𝜙(𝑥𝑛) → 𝜙(𝑥). Since each 𝑢𝑛 

is a point of  𝑎𝑟𝑔𝑚𝑎𝑥 (𝐹[⋅, 𝑥𝑛]) where 𝐹[𝑢𝑛, 𝑥𝑛] = 𝜙(𝑥𝑛) we have, 𝐹[𝑢, 𝑥] = lim𝑛→∞𝐹[𝑢𝑛, 𝑥𝑛] =

lim𝑛→∞𝜙(𝑥𝑛) = 𝜙(𝑥), we find that (𝑢, 𝑥) ∈ 𝐸, i.e., 𝐸 is closed. Further, any section 𝐸𝑥 of 𝐸 is also 

closed itself again due to continuity of 𝐹, as if (𝑢𝑛, 𝑥) ∈ 𝐸 and 𝑢𝑛 → 𝑢, then 𝐹[𝑢𝑛, 𝑥] → 𝐹[𝑢, 𝑥], i.e., 

actually, 𝐹[𝑢𝑛, 𝑥] = 𝐹[𝑢, 𝑥]. Thus, Stschegolkow’s theorem is applicable. 
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Abstract 
 

This conceptual paper discusses the main provisions of the functional-

parametrical (FP) approach in reliability studies. The FP itself is a detailed 

frame algorithm suggested for use in design of new and unique technical items. 

The article also presents possibilities and perspectives of using FP approach in 

problems for “building in” reliability in analogy to these for technical devices 

and systems. It is pointed out that for solving problems of analysis and 

ensuring of desired reliability it is appropriate to use parallel and distributed 

processing techniques. We discuss the idea of constructing efficient parallel 

algorithms for multivariate statistical analysis necessary to calculate estimates 

of the probability for failure-free operation with different nominal values of 

internal parameters. More use of parallel algorithms, including in continuous 

media via discretization are discussed 

 

Keywords: computational methods, conceptual algorithms, gradual failure, 

parallel computing, parametric synthesis, projected reliability, scanning 

method.  

 

 

 

I. Introduction 
 

In modern reliability analysis there are several methodological trends, the dominant 

position of which is the probabilistic and statistical trend. The methodology of this trend is based 

on empirically established fact for statistical stability failure rates. This enables the use the analytic 

probability theory and some elements of queuing studies. 

Calculation of reliability within a probabilistic-statistical approach is based on the 

construction of block diagrams for the processes running in the studied system (reliability model). 

When constructing a model for system reliability each of its elements is usually allowed to have 

only two possible states - full functionality or complete failure. Consequently, the system can be 

also in only two states - full functionality or complete failure. Any possibility of partial functioning 

of the system or of its components is usually excluded. Thus, in estimation of reliability the real 

system is replaced by a logical (Boolean) model. Its various modifications, such as models in the 

form of a fault tree and even as a Markov model with finite space of states, does not change the 

fundamental nature of the reliability model. The main element of the design characteristics of the 

reliability of such models is the failure rate. Methods of this trend are quite simple, convenient for 

mailto:abramov@iacp.dvo,ru
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engineering calculations, and do not require (in majority of the application) the use of modern 

computer equipment, since the solution of the main tasks in this direction can be obtained in 

closed form. 

At the same time, the two-staged model used in probabilistic and statistical approach does 

not reflect the reliability indices with performance of multiple functions by the item, i.e. model 

cannot be functional and realistic. The process of developing technical objects with desired 

characteristics is associated mostly with current research. It is based on functional models 

(physical, mathematical, or combined). Functional reliability model are supposed to reflect the 

relationships between the specified functions (output parameters) of the system and the 

parameters of its elements. There are tolerance types of interactions between the given system 

functions and operational factors; between the functions of the elements and the physical-chemical 

processes (that cause changes in their parameters during the operation process); between different 

types of a prior information about the processes of changes in element parameters and in the 

system as a whole. 

Note also, that using of probabilistic and statistical approach does not give trustful results 

in solving the reliability for unique objects and systems for critical applications where failures are 

not massive and do not present statistically regular phenomenon. 

The study of the reliability problems for technical systems from the viewpoint of the 

random walk theory in phase space is the most common and promising. Reliability models of this 

type have been proposed originally (Gnedenko, Beliaev, Soloviev, 1969). It is allowed to find a 

deep connection between reliability modeling and the general theory of random functions, and 

allows formulating a detailed methodological approach which we call functional-parametric (FP) 

approach. 

The possibilities and feasibilities of establishing a FP-approach not only arise from the 

deficiencies in the classical approach to solve reliability problems. The FP approach is pre-

determined by the successful development of methods of mathematical modeling of complex 

systems, automation, the mathematical description of the processes during their operation, as well 

as research methods of reliability of gradual failures (Becker and Jensen 1977). Nowadays we also 

may rely on much better computational equipment and digital technology which make even the 

wildest dreams to get true. 

 

 

II. The main idea of the functional- parametric approach 
 

The functional-parametric approach naturally follows from the generally accepted 

conventional definition of reliability as a property of an object to keep the values of its parameters in 

prescribed limits, which characterize object’ ability to perform the required functions in specified modes. In 

accordance with this definition any mathematical model for determination of the reliability should 

reflect possible relation between the reliability rates and the functions of operating items in 

changing conditions and time. We grab this main idea of the FP-approach to describe in detail how 

the problems of system’s reliability can be resolved by following the next basic principles: 

1. The process of operation of the system and its technical conditions at any time is 

determined by some finite set of variables - parameters of the process and the system; 

2. The accumulation of various impacts on the system leads to the evolution of its 

indicators (changes in the parameter values with the time). Therefore, to keep track on the 

possibility of switching to a different qualitative state is an important action; 

3. Failures are results of deviations of parameter’ values from their original prescription to 

current. The forms of identification of a failure consist in the departure of a parameter outside the 

allowed tolerance range (acceptability region); 

4. When the process of parameters change is admissible (observable, predictable, or 

controllable), then there is (in principle) a possibility to prevent failures; 
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5. In FP-approach the problems of evaluating and assessment of desired reliability during 

the system design, its manufacture and operation are interrelated. They can all be represented as a 

kind of management tasks to model, simulate and analyze appropriate stochastic processes. 

Respective decision should be based on the results of the forecasting intervals of possible 

parameter’s changes (technical condition) and overall assessment of the reliability of the studied 

objects.  

The forecasting and control methods need to keep into account the specifics of modelled 

random processes and descriptions in drifts of parameter changes. These may belong to the class of 

non-stationary and locally controlled processes. Sometimes characteristics of such control may 

have the form of a pulse or shock correction. 

Thus, when solving a problem related to reliability of technical objects based on the FP-

approach it could be necessary to take into account several things: (a) Possible deviations true 

parameters from the calculated values; (b) To foresee the consequences of these deviations and (c) 

To develop a set of measures that provide sufficient information about required characteristics of 

the object in terms of these deviations. It is understandable that in the framework of the FP-

approach in reliability evaluation is a natural extension of conventional engineering approach at 

the design stage. Performance assessment in the framework of the FP-approach is based on 

creation and optimal use of reserves of admissible variations of the system parameters. In addition, 

the possible control of the most important parameters, prediction of parameter changes for 

prevention their exit out of the permissible limits, availability of parameter’ adjustments, or 

replacements of worn out components should be included in considerations. The reliability 

evaluation problem can be considered as an extended form of the optimal parametric synthesis 

problem (Abramov 2006). 

 

 

III. Reliability models creation for technical systems and the FP-approach 
 

The reliability and quality of technical devices and systems is built within numerous 

activities performed on stages of development, production (manufacturing), testing and operation. 

The stage of development is of a particular importance, since at this moment the principles of 

quality assurance and future reliability are planned. A significant part of the activities aimed at the 

implementation of these principles, subsequently implemented, in particular in the production and 

exploitation. However, their successful implementation is built in the items the most during 

development stage. It is essential to find out, to what extent there are taken into account the 

processes expected to occur in subsequent phases. 

The basis in the development phase is the technical design and specification, which decides 

required parameter values (requirements needed for operations in the field), Numerical data 

describing the ranges of possible variability in environmental parameters (conditions of operation), 

a qualitative description of the restrictions, ergonomic requirements and conditions that are not 

directly measurable – each detail may affect the development phase run. 

One main part of the technical specifications is the inclusion of the requirements about 

outcome parameters from the object of development (technical requirements). Certain 

relationships between output parameters and technical requirements will be called serviceability 

specifications. These will be later given to the item users as instructions in operation. It is needed 

in the design process and it is necessary to find solutions that are acceptable. First of all, from the 

point of view of the designer, it is important, to ensure the achievement of the conditions of 

functionality. Together with that, the designer should build in the pre-determined quality 

indicators. This is a set of quality indicators determines the ability of an object to perform its 

functions and therefore, characterizes the generalized states of the object.  

The concept of quality should include a description of the object properties that determine 

the success of the problem solution in certain conditions. Such properties can be efficiency, 
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productivity, accuracy, stability, reliability, survivability, safety, ergonomic solutions, etc. 

Indicators (criteria) of quality are necessary for qualitative estimation of object features. They can 

be used also as quantitative measures for the degree of conformity of the object to its intended 

purpose. The review article (B. Dimitrov, 1998) may serve in great extend in this phase. 

In the traditional sense, the problem of parametric synthesis is reduced to the selection of 

parameter values (for a given structure) under which serviceability specifications are performed. 

Consideration of possible parameters deviations from the calculated values and development of 

measures that ensure the operation of the object in the presence of such deviations are transferred 

to the subsequent stages of the design. Sometimes they appear in the stages of the production and 

operation. This approach to the problem of parametric tolerance synthesis is most common in 

practice. 

The stage of parametric synthesis involves two procedures. The first one is the choice of 

initial values of the internal parameters, which is usually carried out on the basis of simple 

calculations, or is based on the experience and intuition of the engineer. The second one consists in 

appropriate correction of the initial values of the parameters. Synthesis vector of internal 

parameters found at this stage suggests only that the "tentative" project is operational. 

Deviations of the parameters from the calculated nominal values can lead to loss of efficiency, 

so the next step of parametric synthesis is to set optimal values of internal parameters. For 

example, those which provide greatest perform ability margins or maximum probabilities of the 

specified performance fulfillment deserve special attention. 

Selection of the optimal parameter values does not always allow creation of an object with the 

required consumer properties, i.e. to provide the functions of a given quality. Thus, defining the 

nominal parameter values, which guarantee maximum probability for non-failure work of the 

object within a certain period of time Pmax(Т). Comparing the obtained values with desired ones, 

Pd(Т), the developer cannot consider the design process completed, if Pmax(Т)< Pd(Т). In this case, it 

is necessary to look for ways of further design improvement. The required reliability can be 

achieved by adjusting (tuning) some parameters. Thus, to ensure the required quality of operation 

for the item, it is necessary to select and implement some strategies for control of its parameters. 

Next step is to determine some parametric synthesis in a narrow sense, as evaluation of the 

nominal values of the parameters of the item, and in wide sense as a result of certain strategy for 

parameters control. The main content of the methodology of parametric synthesis in wide sense 

are hidden in the answers of the following two related questions: which control parameters to 

choose, if it is necessary to keep them under control and which values should take these controlled 

parameters. 

Parameters deviations are formed under the influence of factors in the manufacture, 

storage, service (use), and may have random character. Therefore, the internal parameters have to 

be considered as some random functions depending on time. Consequently, serviceability 

conditions can be met only with a certain probability like the following 

 

  t  Dx,   t [0, T]}, 

 

Here (t) is a random process of the internal parameters changes; Dx is the set of acceptable 

changes for internal parameters (region of acceptability); T is the projected operation time. Selected 

nominal values of the parameters ratings (nominal ones) xr=(x1r ,..., xnr) can be considered as 

components of the vector of average according to distribution of the random process X(t) at time t 

=0, i.e. 
)1(

rx = М [X(0)]. 

If probability for correct fulfillment of the performance specifications with selected in the 

previous step nominal values of the internal parameters within given time Р(Т, 
)1(

rx ) is below the 

desired Рd (T), it will be necessary to make a switch to  parametric synthesis as in the second level. 

Here we mean a choice of the nominal values for the parameters with respect of their patterns in 
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the conditions of manufacturing and operational variations. 

Parametric synthesis in the second level is to select such nominal values of internal 

parameters, which provide maximum efficiency (the maximum probability for non-failure 

operations during a given time, or maximum operation time between failures, etc.). 

Thus, the parametric synthesis at the second level is an optimization problem with stochastic 

criteria. The result of its solution is the values of the internal parameters 

 
)2(

rx = arg max t  Dx, for any  t [0, T]},  xr  Dc. 

 

Here Dc Dx   is the space of acceptable internal controlled parameters. 

When the probability of failure does not meet the requirements with the values of 

parameters selected in parametric synthesis on second level, then proceed to parametric synthesis 

of the next level. 

Increase of the probability of performance specifications can be achieved if some of the 

internal object and process parameters are tuned (adjusted). Synthesis of tuned objects will be 

called parametric synthesis in the third level. The task of selecting the set of parameters at which most 

appropriate to carry out adjusting (of controlled parameters), and to change their reasonable 

ranges becomes of independent importance in the process of synthesis. After its solution arises the 

problem of choosing the optimal values of tuning parameters (as shown in Abramov 2016). 

The one-time adjustment problem can be solved in the process of parametric synthesis in the 

third level, but does not guarantee the quality of synthesized object. 

Next level of parametric synthesis is the synthesis of items with multiple adjustable 

parameters. We call it parametric synthesis of the fourth level. It aim is to give an answer to all the 

above questions: what parameters, when and how should be changed to ensure that specified 

requirements for the object performance quality are achieved.  

In the parametric synthesis of the fourth level the optimization of parameters is carried out to 

prevent possible loss of efficiency, and has the character of preventive corrections. It is necessary to 

choose for tuned items a set of tuning options (the control parameters), which will allow to 

determine the appropriate moments of preventive corrections (settings) of parameters, and to give 

recommendations for choosing optimal values of the tuned parameters. For non-tuned objects it is 

necessary to assign the timescales of preventive measures, to give recommendations for finding 

components needed to be replaced, and to determine the parameters of the replacement 

components. 

At this level of synthesis it is necessary to distinguish between item parameters which are 

not controlled during the operation, and item parameters with control. Moments of change and 

optimal values of the controlled parameters for the first group are defined by some prior 

information about the processes operational changes in parameters.  The previous experience with 

a set of similar items (of a group nature), can be determined on the basis of prior data and as 

results of monitoring of particular item parameters. The just obtained recommendations are valid 

only for a particular item, since strategies of parameters control are strictly individual. In each case 

necessity of identifying the specific ways of control measurements will arise.  

We give now a general frame algorithm formulation for solving reliability optimization) 

problems, formulated as problems of parametric synthesis. 

1. The problem of optimal selection of nominal parameter values. With determined characteristics 

X(t), defined Dx  and T, find such nonrandom initial nominal values    Е1, Е2, ... , Еn, for which  

 

P {(X1(t)+E1,  X2(t)+E2, ..., Xn(t)+En)  Dx,   t [0, T]}, = max P. 

 

2. The problem of optimal adjustment. With determined characteristics of random process 

under varying non-adjustable parameters, X1(t), ... Xk (t)  and adjustable parameters, Xk+1(t), ... Xn(t) 

find such values Ek+1 , ..., En , for which  



 
Abramov O., Dimitrov B. 
RELIABILITY DESIGN IN GRADUAL FAILURES  

RT&A, No 4 (47) 
Volume 12, December 2017  

44 

 

P {(X1(t), ... Xk (t), Xk+1(t) + Ek+1 , ... , Xn(t)+En)  Dx,   t [0, T]}, = max P 

 

3. The problem of prevention maintenance: 

a) Heuristic prevention maintenance. With determined characteristics from the random priory 

selected process )(trP
X , given the tolerance box Dx and the desired time Т find a non-random 

function E(t), for which 

 

PTtDtEtXtEtXP xn

P

n

P rr max}],0[,))()(,...),()({( 11  , 

In each case check if С(t)  C0 , where 
t

dxxECtC
0

))(()(  is the costs related to the parameters 

correction (needed maintenance), where C0 is an acceptable level of maintenance costs; 

b) Posterior (individual) preventions maintenance. With the known characteristics of the 

posterior stochastic process  )(tPs
X  derived from prior data with respect of the control results, 

define Dx and T, find a function E(t), for which  

 

PTtDtEtXtEtXP xn
P
n

P ss max],0[,))()(,...),()({( 11   

In each case check if С1 (t)  C0, where С1 (t) is the costs related to the control and correction of 

parameters. 

Analyzing the given algorithm formulation, it is important to verify if there are 

fundamental commonalities, and if problems at stages 1 and 2 are special cases of the problem in 

stage 3. Inherently, they all belong to the class of control problems for stochastic processes. Their 

solution should be based on the results of the forecasting of parameters drift process (the technical 

condition) and reliability of an optimized item.  

Mathematical and computational complexity of the methods of optimal synthesis of technical 

systems is taking into account the laws of random variations of their parameters and proposed 

reliability requirements. The difficulty of obtaining the necessary initial information about 

parametric perturbations raises certain pessimism regarding the practical usefulness of FP-

approach. However, in recent years an active development of sufficiently radical ways for 

reducing the complexity in solving complex computational problems is observed. It is based on the 

idea of parallel processes of searching final results. Currently it is gained some experience in 

creation of algorithms and software tools for calculation and parametric optimization in reliability 

design of technical devices and systems, based on the use of technology in parallel and distributed 

computing.  

To overcome the complexities associated with the deficiency or absence of information 

about the patterns in stochastic processes for the parameters changes of the studied systems. 

Possible solutions are offered, based on using the ideas of robustness and minimax approaches. In 

other words, the necessary level of reliability is ensured either by the creation of systems that are 

insensitive to variations of their parameters (robustness), or as a result of giving them a required 

stamina. These approaches take into account the most unfavorable variations of the system 

parameters. 

 

 

IV. The technology of parallel computing in parametric synthesis problems 
 

The stochastic nature of the optimality criterions, the dimensionality of the search space, 

the need to solve global optimization problems forced researchers to seek ways of creating efficient 

numerical methods for solving problems of parametric synthesis (PS). One of the most radical 
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solutions to the problems of high computational complexity is the parallelization of the solutions 

search process. 

There are some versions of PS strategies using the technology of parallel computing. The 

base of the first strategy is the idea of parallel methods for calculation of the objective functions 

using optimization techniques. 

Creation and implementation of a parallel analogue of the method of statistical simulations 

(Monte Carlo) does not cause essential difficulties. The use of parallel computation in this method 

is quite logical, as far as the idea of parallelism – the repetition of a certain process model with 

varying sets of data is inherent in the very structure of the method. It is intuitively clear that the 

use of k independent processors and the distribution between them as independent trials reduces 

the complexity of statistical simulation about almost k times. The cost of the final summation and 

averaging of results is almost negligible (see Abramov 2010). 

Further, reducing the time of solving the problem of PS can be achieved by parallelization 

of the algorithm of search of extreme values of the objective functions. 

The simplest method for global optimization, having the property of potential parallelism, 

is the scanning (full enumeration) method. The essence of the method lies in the fact that the search 

area is divided into unit cells, in each of them (by a particular algorithm) is chosen the point: in the 

center of the cell, or on the edges or the vertices. In each cell there is a consequent view for the 

values of the objective function and finding among them the extreme values is just a simple task. 

The accuracy of the method, naturally, is determined by how tightly the points in the search area 

are selected. 

The main advantage of the scanning method is that using it with fairly dense points of 

location, it always guarantees to find the global optimum. However, this method requires 

significant amount of computation, which can be reduced by parallelization of the computational 

algorithm. 

In the tasks of the PS sample, the set of nominal parameters is in most cases finite. This is 

due to the values of most parameters of radio components (resistors, capacitors, inductors, 

operational amplifiers, etc.) are regulated by technical specifications and standards. On the basis of 

experience and intuition, the developer can usually set the necessary options as used in active 

elements. Therefore, the nominal values of their parameters are known. In cases where it is 

possible to select nominal values of parameters in a continuous range, the researcher can use 

discretization procedure. Thus, in most cases it can be assumed that the sample set of nominal 

parameters for solving PS problem is discrete. 

In the simplest case, the search of the solutions is reduced to exhaustive enumeration on 

the full set of possible nominal values of the internal parameters }|{ xr
in
r

in
r DxxD  , in each 

point 
in
rx  at which is needed to find the value of the objective function. Taking into account the 

cyclical nature of the calculation procedure for objective functions, it is easy to apply data 

parallelism. 

Let the solution process can be performed using k processors (slaves). The set 
in
rD  is 

partitioned into non-overlapping subset 
in
rD  = 

k

j j

in

r
D

1

}{


, for which to the j-th processor is 

assigned a subset of original data. Thus, each j-th processor calculates the objective function for all 

elements of the set 
in

jrD  and finds the best vector of values of parameters for the assigned 

subareas. The results are transmitted to the master processor: which selects the optimal vector 

from the values throughout the area
in
rD . Such partitioning of the entire search set on non-

overlapping subsets constitutes the essence of blocks of the scheduling parallel distributed process. 

For symmetric computing cluster consisting of k equal computing nodes, the total number 

of selected points is divided into equal amounts for each of the subordinated processes.  In the case 
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of an asymmetric cluster it is necessary to perform a preliminary procedure for the complexity 

assessment. As a typical procedure in the optimization method, it acts as a single simulation of the 

item’s operation, verification of performance specifications, and calculates the criterion of 

optimality. In this case the computational load is divided between the components of the complex 

in proportion to their productivity. 

Upon completion of the program scheduling of parallel computation process, each 

computing component of the complex receives original data from the borders of the subset
in

jrD . 

On the end of computation the main processor receives the results from subordinates and 

generates the final result of discrete optimization on the entire set
in
rD . 

Another possible strategy of the PS is based on the design of the region of admissible 

values of the internal parameters (region of acceptability) Dx. The attractiveness of this strategy is 

related to the possibility of decomposition of the general task of the PS into two subtasks. The first 

one consists in the construction, analysis and approximation of the area Dx. This is a task of highest 

computational complexity, as it is connected with the necessity of multiple calculations of the 

values for output parameters of the system (see Abramov, Katueva and Nazarov 2006). The second 

subtask involves the calculation of the objective function and finding optimal values of the 

nominal parameters, using information about the field of Dx. Obtaining the solution in this case is 

not related to the need to referee to the model of the investigated system, which significantly 

reduces the complexity of the parametric synthesis. 

Thus, the strategy of PS in this case will consist of two stages, the first concerned with 

design of the regions of permissible values of parameters (variations region of acceptability) Dx. 

Parallel algorithms of the region of acceptability design are given in Abramov, Nazarov 2015. 

The second stage is focused on the search of optimal solutions. With the known region of 

acceptability, the complexity of calculating the values of the objective function and the search for 

extreme is significantly reduced. In this case it is not necessary to compute values of the system’s 

output parameters. 

In addition, a significant reduction in computational costs and efforts can be achieved by 

the use of area Dx for parallel analogues of search optimization models. Thus, when using the PS 

strategy, based on region of acceptability design, the solution of this problem is carried out in two 

phases, the first of which can be considered as a pre-requisite  (construction  of area Dx), and the 

second – the optimization one. 

 

 

V. Other areas of use the functional-parametrical approach 
 

Using of the FP-approach appears to be promising in solving the problems of ensuring, 

assessing and maintaining reliable and safe operation of complex technical systems for critical 

important applications. 

A, The problem of preventing failures and reducing the techno-genic risks is of particular 

relevance to the technical objects, which failures are associated with large financial losses, or with 

catastrophic consequences. Most of these complex systems are produced in small numbers, 

operated in variable conditions and realizing extreme technologies. Such systems are commonly 

called unique. 

In the study of the techno genic risks, where a risk event is considered as a loss of 

functionality (failure) of a technical object, the correct design is a key issue. The characteristics of 

the objects are the operating time (uptime) or the times to failure, and the probability 

characteristics   which are determined by methods of mathematical statistics and reliability theory. 

Unfortunately, in the study of complex systems to get fairly representative statistics of failures is 

not always possible. This is because such systems are manufactured in small numbers when 

needed by specific instances, and are operated in varying conditions. Their failures are rare events. 
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Moreover, the problem is to prevent failures rather than to accumulate its statistic. 

B. In solving the problem for management of technogenic risks on the basis of the FP-

approach, the constructors and designers should be able to estimate the current technical state of 

the system in order to predict changes in it (the time of transition to the critical state). Moreover, 

they have to determine the respective total and operating costs related to the monitoring of the 

states, carrying out preventive measures and the damages upon occurrence of a risk event. 

C. It is essential to note that risk management related to the solution of the problem of 

individual planning of the operation is an important factor. The basis of individual approach to the 

problems of control of the operations is to predict changes in the parameters of technical states, 

based on the results of monitoring. Predicting of the technical state based on observations of each 

particular item can be carried out only if there are known a sufficient amount of prior 

characteristics of the processes occurring in similar items (or on models of a random process in 

different parameter variations). As theoretical basis of technical state predicting it may serve the 

classical methods of optimal estimation and extrapolation. The result of such predictions is the 

point estimates of the controlled parameter at some future point in time. The problem of risk 

management is associated with finding the moment of the first outage of the parameters outside 

the regions of acceptability. The use of this approach is allowable, if the probabilistic characteristics 

of the measured errors and the accepted model of parameters drift are known exactly. 

The main difficulties in solving the problem of forecasting the state of synthesis of the 

management strategy of techno-genic risks are, that the predicting has to be carried out for 

individual items. They are produced in small volumes and sources of information are based on a 

small sample sets from control tests. In the presence of interference between control errors 

statistical properties of estimates are not known. In these circumstances, classical methods of 

engineering statistics and theory of random processes lose their attractive properties. Their use in 

predicting leads to significant errors and low accuracy in prediction. Therefore, it is necessary to 

expand the initial information base by conducting a comprehensive object surveys and following 

monitoring of its states. Development of new methods for predicting, supplementing the already 

existing knowledge is imminent. Some approaches to solving the problem of individual prediction 

of the reliability issues in complex technical engineering systems and operations planning in 

conditions of deficiency and incomplete initial information were presented here. This approach 

allows us to obtain suitable results in these circumstances, and get sufficiently reliable results, as 

reviewed in Abramov and Nazarov 2016. 

D. The basic ideas of FP-approach are useful in solving problems for ensuring the 

survivability and safety of technical objects. 

Survivability is usually described as the ability of a system to maintain its basic functions 

(albeit with some loss of quality of performance) in adverse effects of environmental factors, 

beyond the designed operating conditions. It is worthy to notice that adverse impacts may cause 

abnormal changes of external parameters, which can lead to unacceptable deviations of the 

internal and output parameters. It seems obvious that basic ideas of FP-approach can be used in 

the solution of the ensuring the survivability. In this case the description of possible anomalous 

effects and parametric changes is necessary. In such way the levels of allowable degradation of the 

system (change of quality indicators of functioning) can be specified. Ensuring survivability in 

general is also based on creating a certain (limit-exceeding) redundancy of the alleged anomalous 

deviations in the parameters and the optimal strategy for using this reserve can be established. In 

this case, some of reserve components should be used only when an abnormal situation occurs. 

E. Understand safety is a key property of dynamical systems, which allow maintaining a 

safe condition at any stage of the life cycle. The safety theory is the science about foreseeing 

dangerous conditions (catastrophic, emergency, danger, etc.), threatening the destruction of 

systems or environment, and measures to prevent them. The safety theory cannot proceed from 

multiple phenomena, with dangerous consequences: from system destruction, sufficient to create a 

single emergency. It is important also that the basis for the safety management (prevention of 
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dangerous situations) is the need for monitoring, assessing and forecasting of systems studied and 

used. Thus, an objective assessment of the safety of a system can be made, observing the process of 

changing its states. For this purpose it is necessary to build a region of the safe state (similar to the 

region of acceptability in the reliability described above). By highlighting all modes leading to 

breach of safety (e.g. crash in the system) such monitoring can be achieved. In order to prevent a 

breach in the safety it is needed to create a safety reserve, to predict the changes (decrease) in such 

reserve and to take decisions on timely reserve refreshments or termination of the system 

operation. 

 

VI. Conclusions 
 

In this paper we formulate a conceptual algorithmic approach which combines traditional 

theoretical and practical steps in assessing reliability of technical systems subject to gradual, time 

depending failures. This approach is called functional-parametric (FP) since it uses possible 

parameter variability in tolerances type of restrictions. Under FP approach reliability assessment if 

based on the creation and optimal use of reserves (margin) of admissible variations of the system 

and process parameters. Monitoring of the governing parameters, prediction of changes in the 

parameters and prevention of exits out of admissible range are essential components of the FP 

approach. Correction in parameter values, adjustments or replacements of worn out components 

are part of the system control. Reliability support successfully can be used in several enhanced 

forms of parametric synthesis tasks. The FP approach naturally arises with the numerous of 

technical research tools and algorithms in reliability and risk studies authors discussed earlier,  

It is outlined that the basic ideas of the FP approach and the tools of its practical 

implementations can be applied in solving a wide range of other problems in risks, theory, safety, 

survivability and many other fields. 
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Abstract 
 

A Monte Carlo method for calculation of dispersion in large water areas with complex 

coastlines is presented. Having utilized a multi-year database of sea currents and of 

distributions of the mixed layer depth, a model of statistical ranking of water areas based 

on contamination levels is proposed. Techniques for parallelization of the Monte-Carlo 

method and statistical postprocessing of results have been realized. The method and the 

techniques have been validated against releases into a particular large water area. 

 

Keywords: Monte Carlo method, ocean dispersion model, pseudorandom 

number generator, parallel calculations 

 

 

I. Introduction 
 

Now a significant number of objects related to the Cold War nuclear legacy are present in 

Russian coastal water areas [1-2]. Such objects are concentrated in the Arctic and Far-East regions. 

The inventory of these objects comprises coastal radioactive waste repositories (Andreeva Bay, 

Gremikha Bay, Sayda Bay in the Arctic region and Razboynik Bay in the Far-East region) as well as 

about 18 000 radiation hazardous objects resting on the seafloor of seas of the Arctic ocean 

including containers with solid radioactive waste and sunken nuclear submarines. 

 Therefore, the Arctic and the Far-East regions are considered to pose potential hazards. This 

is mainly due to nuclear submarines which are kept afloat near coastal storage facilities. Though, 

the probability of occurrence of pertinent emergency situations is very low a radiation safety 

analysis of possible consequences of emergency situations for the environment was conducted.  It 

was demonstrated that under unfavorable conditions high concentrations of contamination can be 

maintained in plume [3].  

 According to the International Atomic Energy Agency (IAEA) recommendations state-of-the-

art software packages are to be used in optimization of monitoring strategies near radiation 

hazardous objects through discerning dominant contamination pathways in the environment [4].  

In the Nuclear Safety Institute, a software package allowing calculation of probabilistic 

characteristics of possible levels of contamination and tracing of key water areas for establishing 

monitoring sites has been developing. The exceedance of concentration in those water areas may 

be considered as a trigger for extending of the routine monitoring strategy. 

The necessity of a probabilistic approach to modelling of consequences of radioactive releases 

into coastal waters is justified by the seasonal variability of ocean currents as well as uncertainty in 

the source parameters. 

mailto:dzama.dv@mail.ru
mailto:dasfandiyarov@ibrae.ac.ru


 
Sorokovikova O., Dzama D., Asfandiyarov D., Blagodatskikh D. 
PROBABILISTIC DISPERSION MODELS IN LARGE WATER AREAS 

RT&A, No 4 (47) 
Volume 12, December 2017  

50 

Ensemble approaches based on multy-year meteorological data have been widely used for 

modelling of dispersion of contaminants in the atmosphere and allow conservative estimates to be 

obtained for various localizations of the source. Finnish software package SILAM [5] can be 

considered as an example of such an approach. 

As regards ocean currents, similar approaches are still at early stage of development due to 

the fact that for large water areas pertinent databases have been compiled relatively recently. Four-

dimensional data in the ocean can only be obtained through reanalysis of the coupled ocean -

atmosphere circulation based on data assimilation. Furthermore, information on ocean currents is 

sparse even in the vicinity of coastlines. Yet, in recent years the situation has changed for good due 

to ever increasing amount of corresponding data. Sophisticated ocean models allowing free access 

to reanalysis data have been developing by scientific groups in various countries. 

Therefore, in order to tackle such problems, a real-time mathematical model and input data 

for a long period of observations with a high space- and time- resolution are needed. Furthermore, 

a probabilistic analysis is a computationally demanding task that cannot be performed without 

introducing an efficient parallelization method. Thus, an appropriate database of ocean currents 

for a particular water area, efficient usage of computing resources and tools for postprocessing are 

at the core of practical implementation of any probabilistic approach for estimation of 

contamination in large water areas. 

The probabilistic model presented in this article is intended for performing analysis of ocean 

currents and for determining various contamination pathways in large water areas in the Arctic 

and Far-East regions of Russia.  As a test case a hypothetical release into Razboynik Bay in the Far-

East region has been simulated. The choice of that particular water area is not arbitrary due to the 

presence of one of the largest coastal radioactive waste repositories.   

 

II. Mathematical formulation of the model 

I. General Assumptions 
 

In this article a quasi three-dimensional ocean dispersion model for calculation of surface 

contamination is presented.  It is assumed that in the upper layer of the ocean contaminants drift 

with the current.  Contamination is regarded either as a solution or fine-disperse aerosol affected 

by gravitational deposition. 

The main assumption of the model is that a homogeneous distribution in the mixed layer 

(above the seasonal thermocline) is present.  Thus, it is supposed that turbulent mixing is 

negligible below the seasonal thermocline whereas above it intense vertical turbulent mixing 

occurs due to wind forcing. Vertical currents into deeper layers of the ocean are attributed to large-

scale horizontal divergence of surface currents. 

The mathematical model employs the transport equation for Lagrangian particles and one 

which determines the increase in particles dimension. In addition the model utilizes a 

parametrization of the turbulent diffusion coefficient, takes into account large-scale downwelling 

and interaction of particles with a coastline. 

 

II. Governing equations 

 
The governing equation of the model is the convection-diffusion transport equation in the 

spherical coordinates: 

 

   
       

         
       

        
2 2cos coscos

HC HCU HCV HC HC
Q t

t R R R R
 (1) 
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where the following notation is used: C - concentration (Bq/l),   and   - longitude and latitude, 

R - Earth radius (m), H - the mixed layer depth (m), U and V - the zonal and meridional 

components of wind velocity (m/s),  - the turbulent diffusion coefficint (m2/s),  Q t - the time -

dependent source rate (Bq·m2/s).  H , C , U , V ,   depend on  ,   and t . The source can also 

occupy a finite volume. 

As a computational algorithm of the proposed model, a Monte Carlo method utilizing 

Lagrangian particles is used. At any moment contamination is regarded as a set of Lagrangian 

particles. Each particle is characterized by the longitude and the latitude of the center of the 

particle, the horizontal dimension and the activity of the particle. The distribution of concentration 

within each particle is described by the two-dimensional normal distribution with the dispersion 

equal to the horizontal dimension of the particle. The vertical dimension of the particle depends on 

the mixed layer depth. The distribution of concentration in the Eulerian coordinates is calculated 

as the total contribution from the particles. 

The equation (1) is solved applying the Lagrangian coordinates. Hence, the probability 

density function of Lagrangian particles is a solution for the equation if the motion of the particles 

is governed by the Ito stochastic differential equation: 

   dX Udt B dW  (2) 

where dX  is the change in the position a particle over the time interval dt , U - the velocity of the 

particle, B - diagonal matrix with non-zero elements determining the intensity of turbulence, W - 

the Wiener process. 

The advection and diffusion members of the equation (2) are numerically discretized as 

follows: 
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where  - the time integration step;  is a variable model parameter ranging from 0 to 1,  - the 

horizontal dimension of the particle. When  1  a classical Lagrangian stochastic model is 

realized, i.e. turbulent diffusion affects only the displacement of particles, whereas when  0  

turbulent diffusion has no influence on the positions of the centers of particles. In this model the 

coefficient   is equal to 0,9. 

The increase of the horizontal dimension of particles is given by the following equation: 

         


  
1

2 2 2 1
n n

 (4) 

As parametrization schemes of the turbulent diffusion coefficient   two models are 

employed – those of Ozmidov [6] and Smagorinsky [7]. In the Ozmidov model the turbulent 

diffusion coefficient is ascribed to the whole plume taking into account its dimensions. In the 

Smagorinsky model this coefficient is determined through calculation of the local value of the 

shear stress tensor thereby being different for various computational cells. At any moment the 

maximum of the two magnitudes is ascribed to every particle. 

 The distribution of concentration in the Eulerian coordinates is integrated as contribution 

from the clouds of particles. The horizontal dimension of the cloud of a particle is assumed to be 

finite and is equal to three radii of the particle (“the three-sigma rule”). 
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The application of Gauss particles with finite dimensions, as opposed to a classical 

Lagrangian stochastic model, significantly loosens restriction imposed on the total number of 

particles in order to obtain “smoothed” solutions. The choice of the numerical value of the 

parameter   be equal to 0,9 is justified in the article [8]. 

The integration time step is limited by the maximum value of the flow velocity since the 

change in the displacement a particle must not exceed the dimensions of an Eulerian cell: 

 
max 2

L
U , where L  is the horizontal dimension of the Eulerian cell. 

The effect of large-scale downwelling at the lower border of the mixed layer is introduced in 

the model. The corresponding vertical current W  conveys contamination to the lower cold layers. 

The decrease of the total activity in a fluid column of the height H  and of the surface S  is given by 

the following equation: 

  
dA

WS
dt

 (5) 

where    /A S H  is the specific volume activity. 

Thus, over the period of the duration   concentration is diminished by a value given by 


 
    

 
0

1
W

HA A e . 

 

III. Interaction with the coastline 
 

The way the distribution of concentration is calculated in the vicinity of the coastline is 

different as opposed to the other parts of computational domain. Hence, all cells are split into   

computational cells which are occupied by fluid and ghost cells where no motion of fluid occur. 

Thus, the coastline is represented by a number of computational cells that adjacent to ghost cells. 

The horizontal dimension of a particle in the vicinity of the coastline is adjusted so as to guarantee 

intersection of the particle only with computational cells.  At a distance from the coastline, which is 

equal to 3  , the particle dimension is strictly determined by turbulent diffusion. If 3  is larger 

than a distance from the coastline, then 3  is limited by that distance. Thus, the increase of 

concentration within a particle approaching to the coastline is modelled as a consequence of the 

law of conservation of mass. 

In Fig. 1 results obtained using a classical Lagrangian approach and a puff Lagrangian 

stochastic approach are presented. In the latter case one need to filter out artificial values of 

concentration occurring in the ghost cells, while in the former one particles do not intercept ghost 

cells due to the fact that their radii are equal to zero. In order to obtain a smooth distribution of 

concentration in the case of a classical Lagrangian approach a significant increase in number of 

particles is required. The usage of Gauss particles allows for a smooth distribution of concentration 

to be obtained while putting a reasonable upper limit on the total number of particles. 

Trajectories of Lagrangian particles are calculated regardless of computational mesh. Hence, 

the motion of particles in the vicinity of the coastline has to be corrected in order to avoid 

intersection of the center of a particle and the coastline.  If the displacement vector of a particle 

occurring over the time step intersects the coastline, then the method of images is used. Thus, the 

part of the segment of the displacement vector lying outside the coastline is reflected. Having 

made a few such iterations, one can force the center of the particle to be in a computational cell. 

Then, the minimal distance from the center of the particle to the coastline is determined with 3  of 

the particle being equal to that distance. 
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Figure 1: Illustration of different approaches to modelling of interaction between the plume of contamination and the 

coastline 

 
 

IV. Input data 
 

In order to perform a calculation, the following parameters are required: 

— a two-dimensional array where each element stands either for land or water; 

— a relief map for postprocessing; 

— a multy-year database of the zonal and meridional components of velocity in the upper 

layer in the Arctic and the far-East-regions; 

— the mixed layer depth distribution in a given region. 

The two-dimensional array used to represent the coastline in the model is interpolated from 

Earth relief data which is quite accessible in the present [9-12]. Databases of ocean currents are 

generated as a result of simulations of various coupled ocean-atmosphere general circulation 

models. In the last years, such data have been provided for free access by the largest research 

centers [13-16]. In this article only free access databases were used. 

 

V. Parallelization method 
 

The accuracy of modelling strongly depends on the total number of particles. In order to 

obtain statistically significant results, the number of particles is requiered to be large enough. 

Hence, the efficiency of a method is determined by the parallelization technique applied which in 

terms of hardware is the way how a whole task is divided into processes. Trajectories of the 

particles being independent, the solution of the problem can be obtained through performing N 

independent calculations. The whole release is divided equally between N processes which are 

carried out independently from each other. Thus, summing results obtained in each process one 

can obtain the solution of the whole task. 

In order to avoid occurrence of identical trajectories in different processes, a unique statistic is 

ascribed to each process via utilizing different subsequences of a whole sequence of 

pseudorandom numbers with a long period. In this article all results are obtained using the 

pseudorandom generator (PNG) [17]. 

That PNG constitutes a multiplicative congruent sequence with a very long period: 

 







1

1
0,

mod ,

/ .
k k

k k

u u

a u

u

A M

M
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where the modulus  1282M , the multiplier  1001095 modA M  and the period  1262P . The values 

thus obtained conform to the uniform distribution, which in turn can be transformed into values 

described by the standard normal distribution using the Box–Muller transform. A whole sequence 
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of the length P generated by the PNG can be arbitrary divided into a number of subsequences of 

equal lengths nested into the whole sequence. In order to discern such a subsequence, one needs to 

know the first element of each subsequence, which is determined for the m-th subsequence of the 

length n as follows: 

 
 

 


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0
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ˆ 1,

ˆ ˆ  mod ,
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m m

m m
n

u

u u A n M

A n A

Ma u
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 (7) 

Therefore, one does not need to recalculate the values generated before given subsequences in 

order to skip those subsequences, which is very important in parallel calculations. 

Two levels of nesting are used: the first one is a subsequence applied for calculation of a given 

scenario of emergency situation, the second one constitutes a set of subsequences for running 

different processes. 

The peculiarity of the PNG used in this article lies in its program realization due to the fact 

that it operates with very large numbers which cannot be processed without overflow using even 

64-bit computing. In the model a version of the PNG [18] written in the C language is used. 

 

III. Simulation results 
 

As an example of hypothetical emergency situation various scenarios of releases into the 

ocean near Razboynik Bay (one the largest repositories of radioactive waste) were considered. The 

source of releases is located at 132,36°E, 42,89°N. To determine a typical pattern of propagation of 

contamination in that water area a number of calculation with varying parameters of the release 

were conducted. 

In the first calculation a release of 90Sr and 137Cs was simulated with the total activity of the 

source as follows: 90Sr -1,87 ∙ 1015 Bq, 137Cs – 6,22 ∙ 1016 Bq. The source rate was kept constant 

during the calculation which covered a period from 1 January 2001 to 31 December 2004.  

In the figures 2 - 4 instant fields of concentration (Bq/l) are presented for some dates within 

the aforementioned period. The legend used in these figures coincides with that applied for the 

figure 5. 

Knowing a series of values of concentration in every point of the water area obtained for 

different dates, one can determine a field of statistical characteristics. In figure 5 maximum levels 

of concentration with a 95% confidence interval are plotted. 

This probabilistic estimate is most applicable for the case of a long-term release in the 

environment. In case of emergency situation when the duration of the release is much less than the 

characteristic time scale of propagation of contamination, ensemble calculations are used. It is 

assumed that the release might occur at an arbitrary moment within a given time interval. For 

every such a moment corresponding simulation of propagation of contamination with fixed 

parameters of the source is performed. Thus, the empirical distribution function in a given point of 

the water area is obtained. Given a value of the confidence interval, seldom peaks of concentration 

can be cut off. 
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Figure 2: Instant fields of concentration on 10 February 2001 (left) and 2002 (right) 

 

 
 

 
 

Figure 3 Instant fields of concentration on 20 July 2001 (left) and 2002 (right) 
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Figure 4: Instant fields of concentration on 25 November 2001 (left) and 2002 (right) 

 

 
 

 
 

Figure 5: Maximum levels of instant concentration with a 95% confidence interval 
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The aforementioned approach was tested against the releases in the same water area 

(Razboynik bay) with the same localization of the source whereas the discharge was supposed to 

occur instantly. The date of the release varied from 1 to 31 January 2008. Each simulation covered a 

period of three months so as to allow contamination to be removed from the calculation domain. 

A series of time-integrate concentration in every point of the water area is obtained. It 

represents the impact of the release in an arbitrary point of the water area. In the same way as 

described before a probabilistic field with a given confidence interval is determined. In the figure 6 

maximum levels of time-integrated concentration (Bq*s/l) in every point of the water area with a 

95% confidence interval are plotted. 

 

 

 
 

Figure 6: Maximum levels of time-integrated concentration with a 95% confidence interval 

 
 

IV. Conclusion 
 

In this article a Lagrangian stochastic model for calculation of ocean dispersion and 

probabilistic approaches to estimations of simulation results are presented. It was demonstrated in 

the case of a hypothetical emergency situation at Razboynik Bay that stable distribution patterns of 

contamination may occur in a large water area. Therefore, it is confirmed that an analysis utilizing 

the methods described in this article can be used for optimization of sampling strategy near coastal 

nuclear legacy repositories under assumption of the seasonal variability of ocean currents. 
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Abstract 
 

Renewal density of restorable systems and their components which depends on 

statistical estimates based on real operational data is studied. It is assumed that 

objects’ entire life cycle is described by the Weibull-Gnedenko distribution. 

Analytical and discrete approaches for the solution to the renewal equation are 

proposed. New calculation schemes of the renewal density of restorable 

systems and their components are presented. Equivalence of suggested 

approaches is illustrated by numerical examples.  

 

Keywords: the Weibull-Gnedenko distribution, reliability theory, renewal 

density (intensity), numerical methods, collocation knots, moments generating 

function 

  

1   Introduction 
 

All mechanisms, engineering constructions, operational systems are subjected to the processes of 

aging, degradation or failures in work. The renewal of normal operation mode possesses doubtless 

economical and sometimes vital importance. Construction of suitable for applications 

mathematical models of the renewal processes is thus far an actual challenge in the reliability 

theory, as existing models involve cumbersome calculations, while analytical solutions are not 

available in general case. This paper is devoted to the development of analytical and simple 

discrete schemes for the solution of the renewal density equation. Renewal functions have wide 

variety of applications in warranty analysis, inventory theory, supplies planning [1]. Examples of 

processing of real statistical data on refusals of technologically active elements of gas supply 

systems are considered in [2]. 

The scheme of a simple renewal process is the following. Let component (or system) 

failures occur at time moments 𝑡1, 𝑡2, … , 𝑡𝑛, … and it is assumed that replacement time is 

negligible relative to the operational time. Then 𝑡𝑛 represents the operational time until the 𝑛-th 

failure takes place. And it is supposed the time intervals between failures 𝑇𝑛 = 𝑡𝑛 − 𝑡𝑛−1 are 

independent and identically distributed. In this case 𝑇𝑛 is the random life time of the 𝑛-th item with 

cumulative distribution function 𝐹(𝑡) and probability density function (PDF) 𝑓(𝑡), and 𝑁(𝑡) is the 

number of renewals in the time interval (0, 𝑡). The renewal function 𝐻(𝑡) is the expected value of 

renewals in that interval 𝐻(𝑡) = 𝐸(𝑁(𝑡)). The renewal density (intensity) by definition is given by 

the equality ℎ(𝑡) = 𝐻′(𝑡). The fundamental renewal density equation has the form (e.g. [3]):  

 ℎ(𝑡) = 𝑓(𝑡) + ∫
𝑡

0
ℎ(𝜏)𝑓(𝑡 − 𝜏) 𝑑𝜏. (1) 

Solution of this equation does not have explicit form, except for some cases when the 

renewal process is driven by the exponential and the Erlang distributions. In this paper new 
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analytical and discrete methods of calculating of ℎ(𝑡) are presented for the Weibull-Gnedenko 

probability density function which depends on two parameters: 𝛼, named "scale" parameter and 𝛽, 

called "shape" parameter:  

 𝑓(𝑥) = {
𝛼𝛽𝛽𝑥𝛽−1𝑒−(𝛼𝑥)

𝛽
, 𝑥 > 0

0,                            𝑥 ≤ 0.  (2) 

This distribution was chosen for the study, because it allows to capture all life cycle of 

systems investigated in the reliability theory, that makes it one of key distributions. By results of 

many studies the typical curve of the hazard rate ([4]) usually is U-shaped, thus, it contains three 

main periods of life cycle: initial burn-in, normal operation and degradation. All these periods of 

the system functioning can be modelled by the Weibull-Gnedenko distribution with different 

shape parameter ([4], [5]). In particular, the first period corresponds to the Weibull-Gnedenko 

distribution with parameter 𝛽 ∈ (0; 1), the second period — with parameter 𝛽 ≈ 1 and the third 

period — with parameter 𝛽 > 2. It should be noticed that upon transition from the second to the 

third stage the value of shape parameter jumps from 1 to the value more than 2. And this property 

thus far remains the opened question for discussion. 

For large 𝑡 it is well-known the asymptotic result for the renewal density function  

 ℎ(𝑡)~
1

𝜇
, (𝑡 → ∞), 

where 𝜇 = 𝐸(𝑇𝑛). But the values of ℎ(𝑡) can oscillate (see Fig. 3) about the asymptotic value, thus it 

is important to have opportunity to calculate values of ℎ(𝑡) more accurately. 

W.L. Smith and M.R. Leadbetter [3] developed the method for computation of the renewal 

function for the Weibull-Gnedenko distribution by using power series expansion of 𝑡𝛽, where 𝛽 is 

the shape parameter of the Weibull-Gnedenko PDF. However, for 𝛽 > 1, the numerical 

computation of this series is limited to the small range of 𝑡: 0 < 𝑡 < 2,5. A. G. Constantine and N.I. 

Robinson [6] presented estimation method of 𝐻(𝑡) (and automatically ℎ(𝑡)) by residue calculations 

of the Laplace transform of the renewal integral equation to form uniformly convergent series of 

damped exponential terms. There are also many other approximations of the renewal function 

explored for the Normal, Gamma, Uniform underlying lifetime distributions developed by L. Cui 

and M. Xie [7], E. Smeltink and R. Dekker [8], S. Maghsoodloo and D. Helvaci [9]. 

 

2  Methods 

2.1  The moment problem 

In the present paper the analytical solution of the renewal density equation is closely connected 

with the moment problem or the problem of unique determination of a distribution of a 

nonnegative random variable by its moments. Consider this problem for basic distributions used 

in the reliability theory. As for the background the problem of unique determination of a 

distribution by the sequence of its moments was first investigated by P. L. Chebyshev back in 1874 

in connection with research on limit theorems of probability theory. 

It can be shown that such distributions as exponential, normal, truncated normal, gamma 

distribution and the Weibull-Gnedenko distribution (with the shape parameter 𝛽 ≥
1

2
) are uniquely 

determined by their moments, and the log-normal distribution, Student’s 𝑡-distribution and the 

Pareto distribution can not be determined uniquely. The solution of this problem can be verified by 

the necessary and sufficient criterion of Krein  M. (1944) (or the Krein condition [10]). The 

distribution with the PDF 𝑓(𝑥) is determined uniquely if  

 ∫
+∞

0

ln𝑓(𝑥2)

1+𝑥2
 𝑑𝑥 = ∞. 
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2.2  Analytical solution of the integral renewal equation 

To solve equation (1), we use the method of moments generating function [11] under the 

assumption of the two-parameter Weibull-Gnedenko distribution. The Laplace transform (or 

moments generating function) for the given distribution has the form:  

 𝑓(𝑠) = ∫
+∞

0
𝑒−𝑠𝑡𝑓(𝑡) 𝑑𝑡 = ∫

+∞

0
∑+∞𝑛=0

(−𝑠𝑡)𝑛

𝑛!
 𝑓(𝑡) 𝑑𝑡 = ∑+∞𝑛=0 (−1)

𝑛 𝑠
𝑛

𝑛!
𝜈𝑛 , 

where 𝜈𝑛 is the 𝑛-th initial moment of a random variable 𝜉 with PDF 𝑓(𝑡):  

 𝜈𝑛 = ∫
+∞

0
𝑡𝑛𝑓(𝑡) 𝑑𝑡, 

which for the Weibull-Gnedenko distribution has the form  

 𝜈𝑛 =
1

𝛼𝑛
⋅ Γ (1 +

𝑛

𝛽
) 

and Γ(𝑠) = ∫
+∞

0
𝑥𝑠−1𝑒−𝑥𝑑𝑥 is the Euler gamma function, 𝑠 ∈ ℂ. It should be noted that this series is 

absolutely convergent only for 𝛽 > 1. Equation (1) in the Laplace transform domain has the form  

 ℎ̃(𝑠) = 𝑓(𝑠) + ℎ̃(𝑠)𝑓(𝑠). 
Consequently  

 ℎ̃(𝑠) =
𝑓̃(𝑠)

1−𝑓̃(𝑠)
=

∑+∞𝑛=0
(−1)𝑛

𝑛!
⋅Γ(1+

𝑛

𝛽
)⋅(

𝑠

𝛼
)
𝑛
 

−∑+∞𝑛=1
(−1)𝑛

𝑛!
⋅Γ(1+

𝑛

𝛽
)⋅(

𝑠

𝛼
)
𝑛
 
=

∑+∞𝑛=0 (−1)
𝑛𝜈𝑛
𝑛!
𝑠𝑛 

∑+∞𝑛=1 (−1)
𝑛+1𝜈𝑛

𝑛!
𝑠𝑛 
. 

Applying the well-known in calculus technique of dividing infinite series, one can obtain the 

following expansion:  

 ℎ(𝑡) = ∑+∞𝑘=0
𝑐𝑘

𝜈1
𝑘+1 ⋅ 𝐹

(𝑘)(𝑡), (3) 

 where 𝐹(0)(𝑡) = 𝐹(𝑡) is the cumulative distribution function and 𝐹(𝑘)(𝑡) designates the 𝑘-th 

derivative of 𝐹(𝑡). The coefficients of the expansion have the following form:  
 𝑐0 = −1,        𝑐1 = −𝑚0,         

 

 𝑐𝑘 =

|

|

1 0 … 0 −𝑚0

−𝑚0 1 … 0 𝑚1

𝑚1 −𝑚0 … 0 −𝑚2

−𝑚2 𝑚1 … 0 𝑚3

… … … 1 …
(−1)𝑘+1𝑚𝑘−2 (−1)𝑘𝑚𝑘−3 … −𝑚0 (−1)𝑘𝑚𝑘−1

|

|

,    𝑘 = 2, 3, … 

where  

 𝑚𝑘 =
𝜈1
𝑘𝜈𝑘+2

(𝑘+2)!
,    𝑘 = 0, 1, 2, … 

It was proved that  

 ∑+∞𝑘=0 𝑐𝑘 =
1

−1+∑+∞𝑘=0 (−1)
𝑘𝑚𝑘

< +∞, 

consequently  
 lim

𝑘→∞

 𝑐𝑘 = 0. 

Thus, the solution (3) of equation (1) is obtained in terms of the probability moments of the initial 

distribution of a nonnegative random variable. Moreover, one can notice that the expansion (3) is 

true not only for the Weibull-Gnedenko distribution (2) under some conditions, not discussed in 

the present paper. 

A good estimate of exact solution is found (Fig. 2) by taking only 7 leading terms of the 

expansion (3) unlike the series of damped exponential terms in [6] when it is necessary to compute 

500 or more coefficients of the given series [4]. 

The offered solution (3) is applicable only for the values of 𝛽 > 1, characteristic for the 

degradation processes [5]. The start of system operation corresponds to the case of 0 < 𝛽 < 1 and 

its description is sometimes actual. Numerical methods can work with any values of 𝛽. So, we 

proceed to the description of discrete methods. 
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3.3  The discrete methods 

A numerical method which generates a cubic spline approximation of the renewal function by the 

Galerkin technique for solving the renewal equation was proposed by Z.S. Deligonul and S. Bilgen 

[12]. The discretizing time method has been used by M.Xie [13] to approximate the renewal 

equation. Numerical algorithm in papers of M.Xie was based on the definition of the Riemann - 

Stieltjes integral (RS-method). T.K. Boehme, W.Preuss, V. van der Wall also used the similar 

method [14]. M. Tortorella [15] presented a paper describing analysis of the method based on 

quadrature schemes for Stieltjes integrals. Some numerical procedures, when the time scale is 

discrete, can be found in the books on reliability theory by E.A. Elsayed [1], A. K. S. Jardine, A. H. 

C. Tsang [16]. 

In this paper the function ℎ(𝑡) is approximated by step functions or linear functions. The 

accuracy of this discretization was checked in three different ways. It is obvious that 

approximation error can be diminished by increasing of the number of collocation knots. All 

calculations presented below were done by using Wolfram Mathematica software including 

calculation of integrals (5), (8) without algorithm of numerical quadrature schemes. 

The first step in the discretization scheme is the division of the specified time interval [0,

𝑡] into 𝑛 equal-length subintervals by points (collocation knots)  
 𝑡0 = 0, 𝑡1 = 𝑡0 + Δ,… , 𝑡𝑛 = 𝑡0 + 𝑛 Δ, 

where Δ = 𝑡/𝑛 is the length of each subinterval. 

The method of right knots. Approximate solution 𝑢𝑛(𝑡) for function ℎ(𝑡) can be found in 

the form of a linear combination 𝑢𝑛(𝑡) = ∑𝑛𝑘=1 𝑢𝑘𝐼𝑘(𝑡), where 𝑢𝑘 =   ℎ(𝑡𝑘) and the so-called 

coordinate functions 𝐼𝑘(𝑡) which are equal to zero outside the interval (𝑡𝑘−1,   𝑡𝑘] and 𝐼𝑘(𝑡) = 1,

𝑡𝑘−1 < 𝑡 ≤ 𝑡𝑘. Thus, the approximate solution is determined from the conditions in right 

collocation knots. Similar approximation was proposed by A. Brezavscek in [17]. 

The midpoint method. Let the value of the approximate solution in the 𝑘-th segment be 

the average value (Fig. 1)  

 𝑢̃𝑘 =
𝑢𝑘−1+𝑢𝑘

2
,    𝑢𝑘 =   ℎ(𝑡𝑘). 

 

 
 

Figure  1: The discrete methods 

 

   The approximate solution, respectively, has the form 𝑢𝑛(𝑡) = ∑𝑛𝑘=1 𝑢̃𝑘𝐼𝑘(𝑡). 

The Line Spline Finite Element solution. The function ℎ(𝑡) in [𝑡𝑘−1,   𝑡𝑘] can be 

approximated by the Lagrange polynomials as follows  
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 𝑢̃̃𝑘(𝑡) = 𝑢𝑘−1
𝑡𝑘−𝑡

𝑡𝑘−𝑡𝑘−1
+ 𝑢𝑘

𝑡−𝑡𝑘−1

𝑡𝑘−𝑡𝑘−1
, 

where 𝑢𝑘 =   ℎ(𝑡𝑘). 

Let us consider calculation schemes for the approximate solution of the renewal equation 

(1). The first method solution is defined by the following recurrent formulas:  

 

{
 
 

 
 
𝑢0 = 𝑓0,                                                        
𝑢1 = 𝑓1/(1 − 𝐹1),                                        

𝑢2 = (𝑓2 + 𝑢1𝐹2)/(1 − 𝐹1),                        
⋯
𝑢𝑛 = (𝑓𝑛 + ∑

𝑛−1
𝑗=1 𝑢𝑛−𝑗 𝐹𝑗+1)/(1 − 𝐹1).        

 (4) 

 where  
 𝑓0 = 𝑓(0),⋯ , 𝑓𝑛 = 𝑓(𝑡𝑛), 

 

 𝐹1 = ∫
𝑡1
0
𝑓(𝑟)𝑑𝑟,⋯ ,    𝐹𝑛 = ∫

𝑡𝑛
𝑡𝑛−1

𝑓(𝑟)𝑑𝑟. (5) 

 

The second method gives the next formulas:  

 

{
 
 
 

 
 
 
𝑢0 = 𝑓0,                                                                                        

𝑢1 = (𝑓1 +
𝑢0

2
𝐹1) / (1 −

𝐹1

2
),                                                    

𝑢2 = (𝑓2 +
𝑢1

2
𝐹2 +

𝑢0

2
𝐹2 +

𝑢1

2
𝐹1) / (1 −

𝐹1

2
),                        

⋯

𝑢𝑛 = (𝑓𝑛 +
𝑢0

2
𝐹𝑛 +∑

𝑛−1
𝑗=1

𝑢𝑛−𝑗

2
(𝐹𝑗+1 + 𝐹𝑗)) / (1 −

𝐹1

2
),        

 (6) 

 where 𝑓𝑘 and 𝐹𝑘 , 𝑘 = 0,1, . . . , 𝑛 are defined by formulas (5) 

The recurrent formulas for approximate solutions obtained by linear splines have the form:  

 

{
 
 

 
 
𝑢0 = 𝑓0,                                                                                                        
𝑢1 = (𝑓1 − 𝑢0𝐺10)/(1 − 𝐺11),                                                                  

𝑢2 = (𝑓2 − 𝑢0𝐺21 + 𝑢1(𝐺22 − 𝐺10))/(1 − 𝐺11)                                    
⋯
𝑢𝑛 = (𝑓𝑛 − 𝑢0𝐺𝑛 𝑛−1 + ∑

𝑛−1
𝑗=1 𝑢𝑛−𝑗(𝐺𝑗+1𝑗+1 − 𝐺𝑗 𝑗−1))/(1 − 𝐺11),        

 (7) 

 where  

 𝐺𝑘𝑗 = ∫
𝑡𝑘
𝑡𝑘−1

𝑓(𝑟)𝑙𝑗(𝑟)𝑑𝑟, (8) 

  

 𝑙𝑘(𝑡) =
𝑡𝑘−𝑡

𝑡𝑘−𝑡𝑘−1
=

𝑡𝑘−𝑡

Δ
. 

It should be noted that the first and the third methods were considered earlier [18]. And large 

computing capacities were required for the solution of the corresponding linear systems. Formulas 

(4), (7) introduced in the present paper dramatically diminished the computational complexity of 

the algorithms. So, mentioned algorithms are important if the calculation involves large number of 

knots. 

The second method of discretization, that is, the midpoints method (6) gives the best 

agreement with analytical solution (3). The third method is time consuming for large values of 𝑛 >
40. 

The discrete methods presented here can be used where the underlying lifetime 

distribution has the PDF with a singularity at the origin, such as the Weibull - Gnedenko 

distribution (2) with shape parameter less than unity. It is applied in the modelling of gas supply 

systems [19]. 

Fig. 2 illustrates the results of numerical computations of the renewal density performed 

according to all four methods of this paper. The solutions of equation (1) are presented for the 

Weibull-Gnedenko distribution with 𝛼 = 1, 𝛽 = 2 which coincides the Rayleigh distribution. Red 

curve for the analytical solution was plotted using seven terms of the expansion (3). There were 

used twenty collocation knots (𝑛 = 20) in calculations by the discrete methods. It is worth noticing 
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here that presented methods allow to carry out accurate calculation of the renewal function 

oscillations unlike the asymptotic formula mentioned above. The corresponding asymptotic value 

is shown by the straight green line. The curve of the PDF for the Rayleigh distribution is shown 

with green dotted line.  

  

  

Figure  2: The Rayleigh renewal density 

 

     

  

Figure  3: The Weibull-Gnedenko renewal density 

   

In (Fig. 3) the curves for the analytical and all discrete solutions are shown for the Weibull-

Gnedenko distribution with 𝛼 = 1, 𝛽 = 4 and the number of knots 𝑛 = 100. This increase of 

collocation knots gives a practical coincidence of approximate solutions found using all the above 

methods. While for less amount of collocation knots (Fig. 2) the agreement between the results is 

not ideal. One can see, that all presented methods give oscillations of the renewal density which 

tends to the asymptotics for big values of 𝑡. This can be explained by the specifics of the renewal 

process, when the underlying lifetime distribution has rather big shape parameter 𝛽. The higher 

the value of 𝛽, the more often failures of the system take place. So, the operation and renewal 

process become unstable. The curve of the corresponding PDF is also shown in Fig. 3. As it can be 

seen from the formulas (4), (6), (7) the first member of the series representing the solution is equal 

to the value of the PDF for 𝑡 = 0. It explains the proximity of the presented solutions to the PDF 

curve in the vicinity of 𝑡 = 0. So, if one needs to know the system behavior in the initial period of 

time, it is sufficient to evaluate the PDF of the underlying lifetime distribution. The parameters of 

this distribution can be obtained from the statistical data processing. 
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3  Results & Discussion 
 

The research techniques of restorable systems and their components renewal density are 

presented. They are based both on analytical and discrete methods and they consider the 

dependence of the renewal density on time. Using the Weibull-Gnedenko distribution some 

peculiarities of the renewal density behavior can be investigated. 

The variation of the shape parameter 𝛽 allows observation of the restorable system 

properties. As it was mentioned the higher the value of 𝛽 the more often failures of the system take 

place, consequently, the less stable its behavior. For relatively small values of 𝛽 the renewal 

density does not oscillate at all, that is the system operates in normal mode. This can be seen in Fig. 

2. For larger values of 𝛽 (Fig. 3) the oscillations are observed for some period of time, after which 

the renewal density goes to the asymptotics, corresponding to normal operation mode of the 

system. In [6] it was shown that for even higher values of 𝛽 the oscillations period is longer. And 

this fact can be easily checked using the approaches of the present paper. Also the influence of the 

scale parameter 𝛼 on the solution can be studied. Its variation gives the expansion or contraction of 

the curves over the time axis. So, a sort of criterion for restorable systems analysis can be 

developed if the failures statistics is approximated by the Weilbull-Gnedenko distribution. 

Unstable oscillating period is for sure undesirable for any application. The length and shape of this 

period are regulated by the parameters of the Weibull-Gnedenko distribution. The knowledge of 

these parameters values for a given restorable system can give a recommendation on its 

exploitation. It worth mentioning also, that the time scale in the renewal function dependences 

shown in Fig. 2 and Fig. 3 is conditional and should be adopted for each application separately. 

Practical significance of research results was demonstrated on several examples of processing of 

real statistical data on technologically active elements in gas supply systems failures [2, 19]. 

The advantages of the considered methods include their simplicity of algorithms and 

calculations. Nevertheless, one should keep in mind that the analytical approach (3) is valid only 

for the values of 𝛽 higher than unity, which correspond to the most actual degradation period of 

restorable systems life cycles. Moreover, expansion (3) represents the asymptotic series, which 

does not converge uniformly. The summation of series (3) should be restricted by several 

members, giving the least relative error. This property was taken into account in curves plotting 

for Fig. 2 and Fig. 3. The presented discrete methods are more universal, thought their application 

is more time consuming. 
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Abstract 
 

We present some analytical results obtained for probability characteristics of  

flow thinning  with limited aftereffect. The thinning is processed according to a 

given function which depends on the evolution time and on the number  of 

customers in the thinned flow and the  number of lost customers in the original 

flow. The characteristics are obtained in the form of Laplace-Stieltjes transforms 

which are defined by the system of recurrence equations  using the  inverse  

Laplace-Stieltjes transform.  

 

Keywords: flow with limited aftereffect, thinning of the flow, time-dependent 

function of thinning, Laplace-Stieltjes transform, inverse Laplace-Stieltjes 

transform. 

 

 

1. Introduction 
 

Below we present  some results on flow thinning . Renyi, A. [1] in 1956  proved the first theorem 

on thinning  of renewal flow. The  customer remains in the thinned flow with constant probability 

q and is lost with probability 1- q .  By changing the time scale, the flow rate remains constant. Let 

the thinning is performed n  times with different probabilities  nqq ,...,1 . Then, provided that 

n  and nqq ,...,1 0 , the thinned  flow converges to  Poisson flow. In his review of 

"Random threads and theory of recovery" of the book by D. Cox and V. Smith [2], 

Yu.K. Belyaev [2]  investigated the preservation properties of Poisson flow in the thinning of the 

original Poisson streams.  

Belyaev Yu. K. [3] generalized this fact to an arbitrary stream. In the book Gnedenko B. V. 

and  I.N. Kovalenko I. N. [4], Belyaev’s theorem was generalized to the case of non-stationary limit 

flow. A. D. Solov'ev [1] in 1971 proved that asymptotically the time of the first occurrence of a rare 

event in a regenerative process with appropriate normalization tends to an exponential random 

variable with parameter 1. Some other results about  thinned flows can be found in [8-12]. 

For all of these works, the aim was to produce the ultimate results in the infinite thinning 

under appropriate normalization. Common for the above works was the fact that the thinning was 

carried out according to rules which were not time-dependent. 

The outstanding feature  of this paper is that the thinning is performed according to a set 

of time dependent procedures,  
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2. Statement of the problem 
 

 V. Smith [6] studied the flow of customers with differently distributed  intervals between the 

moments of  customer appearance. A. J. Khinchin [7] called these flows by flows with a limited 

aftereffect. This article considers such flows with thinning. The first customer of this flow enters at 

the random time having distribution )(1 xF . The time interval from the arrival of the first and 

second customer has a distribution )(2 xF . The  interval time between the  i - 1-st customer to the 

and i  -st customer has a distribution )(xFi , etc. 

The thinning goes on as follows. If the customer was received at time t   and the number of 

received customers of the thinned flow up to  this point in time is equal i - 1, and the number of 

lost customersin the original flow is equal j , then the customer joins the customers of the thinned 

flow with a probability of )(1 tP ji  , where the functions )(1 tP ji   are assumed to be known, and 

the time before admission of the followed customer of flow has distribution function ).(xF ji  

Otherwise it is lost. It is necessary to find the distribution of the number of received requirements 

of the thinned stream to an arbitrary point in time , t  under the condition that at t  = 0 the number 

of acted customers of thinned flow was equal zero. 

 

3. Problem solution 
 

We introduce the following notation: )(t  the number of received сustomers of the thinned 

stream, )(0 t  the number of lost сustomers from the initial flow with limited aftereffect, )(t  

time prior to t of the receipt of the following сustomer of the flow with limited aftereffect. 

 First, consider the process )(t ( ),(t ))(t . This process will not be Markovian 

random process, since its development after the time t  will  depend not only on )(t  and on )(t , 

but and will also depend on the number of lost сustomers to the time t of the initial flow with 

limited aftereffect. This is because lost сustomers shift the points in time of receiving of сustomers 

of the thinned stream on the time axis. 

 Indeed, consider two consecutive time 0  and 0  + . Let both times received сustomers 

original flow with limited aftereffect has not joined the thinned stream, the probability of this 

event equals (1 - (0P 0 ))(1 - (0P 0 + )). If we consider the process )(t  ( ),(t ))(t , the 

probability of this event is equal to 

 (1 - (0P 0 )) 2 , as the shift on the time axis by the amount   will not be considered because the 

value )(t  it does not take into account. 

 Let us now consider the process )(t ( ),(t )(0 t , ))(t . This process already takes 

into account the fact that the lost сustomers shift points in time of receipt of сustomers of the 

thinned stream on the time axis. Therefore, the process 

)(t ( ),(t )(0 t , ))(t  will already be a Markov random process, its development after the 

time t  will depend on )(t , )(0 t  and )(t , i.e. will not depend on its states before time t. We 

introduce the notation 

),(, xtji  = (P ,)( it  )(0 t =j, ))( xt  , )(, tji  = ),(, tji , ,...2,1,0i , ,...2,1,0j . 

The problem of finding the distribution of the number of received сustomers of the thinned 

flow )(, tji  to a fixed point in time t  is placed.  
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First we find the distribution of the number of received requirements of the thinned stream 

together with an additional variable x  to a fixed point t , i.е. ),(, xtji . At the initial time of 

number сustomers is zero. 

For desired quantities ),(, xtji  we derive the corresponding system of differential equations. We 

have the following system of difference equations 

 

),(0,0 txtt   = ),(0,0 xt - tt ,(0,0 ) , 

… 

),(,0 txttj   = ),(,0 xtj - ttj ,(,0 ) + ),(1,0 ttj  (1- )(1,0 tP j ) )(xF j , ,0j  

… 

 ),(0, txtti ),(0, xti ),(0, tti   + ,0),()(),( 0,10,1   ixFtPtt iii  

 ),(1, txtti ),(1, xti ),(1, tti   +   )()(),( 11,11,1 xFtPtt iii  

,0),())(1)(,( 10,0,   ixFtPtt iii  

… 

),(, txttji   = ),(, xtji - ttji ,(, ) + ),(,1 ttji  )(,1 tP ji )(xF ji  + 

),(1, ttji  (1- )(1, tP ji  ) )(xF ji , .0i                                           (1) 

This yields the following system of differential equations for ),(, xtji : 

t

 ),(0,0 xt  - 
x

 ),(0,0 xt  = - 
x

 )0,(0,0 t ,  

… 

t

 ),(,0 xtj  - 
x

 ),(,0 xtj  = - 
x

 )0,(,0 tj +
x

 )(1)(0,( 1,01,0 tPt jj   ) )(xF j , ,0j   

),(0, xt
t

i



 - 

x

 ),(0, xti  = - 
x

 )0,(0, ti  + 
x

 )0,(0,1 ti )(0,1 tPi
)(xFi , ,0i          

),(1, xt
t

i



 - 

x

 ),(1, xti  = - 
x

 )0,(1, ti  + 
x

 )0,(1,1 ti )(1,1 tPi
)(1 xFi  

+ 
x

 )0,(0, ti (1- )(0, tPi ) )(1 xFi , ,0i      

…                

),(, xt
t

ji



 - 

x

 ),(, xtji  = - 
x

 )0,(, tji  + 
x

 )0,(,1 tji )(,1 tP ji )(xF ji   

+ 
x

 )0,(1, tji  (1- )(1, tP ji  ) )(xF ji , .1,0  ji                                      (2) 

We introduce the notation: 





0

1

)0(

0 )()(~ xdFes sx = ),(~
1 s , ,)()(~

0




 xdFes i

sx

i ,0i  

dtxtdesu jix

utsx

ji 







0

,

0

, ),(),(~  , dtteu ji

ut

ji 



0

,, )()(~  , 
x

 )0,(~
, uji  = 





0

ute
x



dttji )0,(, , 
x


)0,(

~~
, uji 





0

ute
x

 )0,(, tji dttP ji )(, , ,...2,1,0i , ,...2,1,0j . 

  

Then we have the  following theorem: 
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Theorem 1. For the Laplace-Stieltjes ),(~
, suji of  function ),(, xtji  fair following formulas 

 

 ),(~
0,0 su 1)(  su ( )(~

1 s - )(~
1 u ),                                   (3)    

… 

),(~
, suji  = 

1)(  su  (- 
x

 )0,(~
, uji  + 

x


)0,(

~~
,1 uji )(~ sji  

                     +
x

 )0,(~
1, uji  )(~ sji  - 

x


)0,(

~~
1, uji  )(~ sji , .1,0  ji   

where 
x

 )0,(~
, uji  are determined sequentially from the following recurrent equations 

 

x

 )0,(~
, uji = )(~ uji (

x


)0,(

~~
,1 uji +

x

 )0,(~
1, uji   - 

x


)0,(

~~
1, uji  ) = 

  )(~ uji ( 




0

ute
x

 )0,(,1 tji dttP ji )(,1 + 




0

ute
x

 )0,(1, tji  (1 - dttP ji ))(,1,  ),          (4) 

Consistent application of recurrent equations (4) given in proof of  this theorem ". 

Proof. Applying to (2) transform of the Laplace-Stieltjes obtained 

 ))(,(~
0,0 susu -

x

 )0,(~
0,0 u  + )(~

1 s , 

… 

),(~
,0 suj  )( su  - 

x

 )0,(~
,0 uj +

x

 )0,(~
1,0 uj )(~ sj -

x


)0,(

~~
1,0 uj )(~ sj , ,0j  

),(~
0, sui  )( su  - 

x

 )0,(~
0, ui  + 

x


)0,(

~~
0,1 ui )(~ si , ,0i          

),(~
1, sui  )( su  - 

x

 )0,(~
1, ui  + 

x


)0,(

~~
1,1 ui )(~

1 si  

+ 
x

 )0,(~
0, ui )(~

1 si  - 
x


)0,(

~~
0, ui )(~

1 si , ,0i      

…                

),(~
, suji  )( su  - 

x

 )0,(~
, uji  + 

x


)0,(

~~
,1 uji )(~ sji  

                     +
x

 )0,(~
1, uji  )(~ sji  - 

x


)0,(

~~
1, uji  )(~ sji , .1,0  ji                   (5) 

Assuming in (5) su  , get 

 
x

 )0,(~
0,0 u  = )(~

1 u , 

 
x

 )0,(~
,0 uj =

x

 )0,(~
1,0 uj )(~ uj -

x


)0,(

~~
1,0 uj )(~ uj , ,0j  

… 

 
x

 )0,(~
0, ui  = 

x


)0,(

~~
0,1 ui )(~ ui , ,0i    

 
x

 )0,(~
1, ui  = 

x


)0,(

~~
1,1 ui )(~

1 ui + 
x

 )0,(~
0, ui )(~

1 ui  - 
x


)0,(

~~
0, ui )(~

1 ui , ,0i    

 
x

 )0,(~
, uji  = 

x


)0,(

~~
,1 uji )(~ uji +

x

 )0,(~
1, uji  )(~ uji  - 

x


)0,(

~~
1, uji  )(~ uji , 

.1,0  ji                                                       (6) 

 Inversing the first equation (6) we obtain the following expression 
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x

 )0,(0,0 t = )(1 tF .                                                       (7) 

                                                                                                                                                                                                                                                                                              

From the second equation (6) have at 1j  

x

 )0,(~
1,0 u = )(~

1 u )(~
1 u -

x


)0,(

~~
0,0 u )(~

1 u = )(~
1 u ( )(~

1 u - 




0

ute )(1 tF ))(0,0 dttP ).   (8) 

Inversing (8), we can find the unknown function 
x

 )0,(1,0 t . 

  Then from the second equation (6) have at 2j  

x

 )0,(~
2,0 u = )(~

2 u (
x

 )0,(~
1,0 u - 





0

ute
x

 )0,(1,0 t ))(1,0 dttP ).                     (9) 

Inversing (9), we can find the unknown function 
x

 )0,(2,0 t . 

Then from the second equation (6) with arbitrary j>0,we have the following recursive sequence 

completely determines 
x

 )0,(,0 tj , namely, from the following expression 

 

x

 )0,(~
,0 uj = )(~ uj (

x

 )0,(~
1,0 uj - 





0

ute
x

 )0,(1,0 tj ))(1,0 dttP j )                (10) 

by his conversion it is possible to find the unknown function 
x

 )0,(,0 tj . 

 From the third equation of (6) obtained by 1i  

x

 )0,(~
0,1 u  = 

x


)0,(

~~
0,0 u )(~

1 u  = )(~
1 u 





0

ute
x

 )0,(0,0 t dttP )(0,0  =  

)(~
1 u  





0

ute )(1 tF dttP )(0,0 .                                           (11) 

Inversing (11), we can find the unknown function 
x

 )0,(0,1 t . 

 Further, from the third equation of (6) at 1i  have 

x

 )0,(~
0, ui  = 

x


)0,(

~~
0,1 ui )(~ ui = )(~ ui 





0

ute
x

 )0,(0,1 ti dttPi )(0,1 , 1i .        (12)   

Reversing (12), we can find the unknown function 
x

 )0,(0, ti , since (12) together with (11) is a 

recurrence formula for finding 
x

 )0,(0, ti  at 1i . 

 Let us consider the fourth equation of (6)  at 1i , 1j . It can be converted to the form 

 

x

 )0,(~
1, ui  = )(~

1 ui (
x


)0,(

~~
1,1 ui + 

x

 )0,(~
0, ui  - 

x


)0,(

~~
0, ui ) = )(~

1 ui   

( 




0

ute
x

 )0,(1,1 ti dttPi )(1,1  + )(~ ui 




0

ute
x

 )0,(0,1 ti dttPi )(0,1  - 

)(~ ui 




0

ute
x

 )0,(0, ti dttPi )(0, ), ,0i 1j .                           (13) 
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Reversing (13), we can find the unknown function 
x

 )0,(1, ti , since (13) together with (12) is a 

recurrence formula for finding 
x

 )0,(1, ti  at 1i , 1j . 

Let us consider the last fifth of equation (6) at 1i , 1j . It can be transform to the form 

x

 )0,(~
, uji  = )(~ uji (

x


)0,(

~~
,1 uji +

x

 )0,(~
1, uji   - 

x


)0,(

~~
1, uji  ) = 

)(~ uji ( 




0

ute
x

 )0,(,1 tji dttP ji )(,1 + 




0

ute
x

 )0,(1, tji  (1 - dttP ji ))(1,  .          (14) 

 Equation (14) is a recurrence relation expressed 
x

 )0,(, uji  through 
x

 )0,(,1 tji  and  

x

 )0,(1, tji  . The beginning of this recurrence relation initiated by formulas (12) together with 

(11) and formulas (13) together with (12). 

 Thus, the expression for 
x

 )0,(, uji  it is possible to obtain by the above method. 

Substituting these expressions into the formula (5), we can obtain expressions for the desired 

quantities ),(~
, suji . 

Corollary 1. "For the Laplace-Stieltjes )(~
, uji  function )(, tji  fair following formulas 

 )(~
0,0 u  1u (1 - ))(~

1 u ),                                            (15)    

… 

)(~
, uji   

1)(  su  (- 
x

 )0,(~
, uji  + 

x


)0,(

~~
,1 uji )(~ sji  

                     +
x

 )0,(~
1, uji  )(~ sji  - 

x


)0,(

~~
1, uji  )(~ sji , ,1,0  ji   

where 
x

 )0,(~
, uji  consistently determined from recurrent equations (4).” 

 

4.  Special case 
 

We now turn to the consideration of the problem of thinning of the flow, when the probability of 

thinning of this thread )(, tP ji  not time-dependent, and depend only on the received number of 

сustomers thinned flow and the number of lost сustomers of the initial flow, i.e. have the form 

., jiP  This gives the following results. Function 
x


)0,(

~~
, uji  takes the form 

x


)0,(

~~
, uji jiP , 





0

ute
x

 )0,(, tji dt  = jiP ,
x

 )0,(~
, uji , ,...2,1,0i , ,...2,1,0j . 

Theorem 1 transforms into theorem 2, which has the following form. 

         Theorem 2. "For the Laplace-Stieltjes ),(~
, suji  function ),(, xtji fair following formulas 

  

 ),(~
0,0 su 1)(  su ( )(~

1 s - )(~
1 u ),                                   (16)    

… 

),(~
, suji  = 

1)(  su  (- 
x

 )0,(~
, uji  + )(~ sji ( jiP ,1

x

 )0,(~
,1 uji  
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                     +(1- 1, jiP )
x

 )0,(~
1, uji  )), .1,0  ji   

where 
x

 )0,(~
, uji  are determined sequentially from the following recurrent formulas 

 

x

 )0,(~
, uji = )(~ uji ( jiP ,1

x

 )0,(~
,1 uji  + (1 - )1, jiP

x

 )0,(~
1, uji  ),             (17) 

and 
x

 )0,(~
0,0 u = )(~

1 u , 
x

 )0,(~
1,0 u  = )(~ 2

1 u (1 - 0,0P ),     

x

 )0,(~
,0 uj = )(~ uj (1- )1,0 jP

x

 )0,(~
1,0 uj  = )(~

1 u 


j

l 1

)(~ ul (1 - 1,0 lP ), 1j , 

x

 )0,(~
0,1 u  = )(~ 2

1 u 0,0P ,    

x

 )0,(~
0, ui  = )(~ ui 0,1iP

x

 )0,(~
0,1 ui  = )(~

1 u 


i

l 1

)(~ ul 0,1lP , 1i .” 

 Here are a few of the subsequent formulas. Have 

x

 )0,(~
1,1 u = )(~

2 u ( 1,0P
x

 )0,(~
1,0 u  + (1 - )0,1P

x

 )0,(~
0,1 u ) = 

)(~
2 u )(~ 2

1 u ( 1,0P  (1 - 0,0P ) +(1 - )0,1P 0,0P ), 

x


 )0,(~

1,2 u  = )(~
3 u ( 1,1P

x

 )0,(~
1,1 u  + (1 - )0,2P

x

 )0,(~
0,2 u ) = 

)(~
3 u ( 1,1P ( )(~

2 u )(~ 2

1 u ( 1,0P  (1 - 0,0P ) +(1 - )0,1P 0,0P )) + 

(1 - )0,2P )(~
1 u 



2

1l

)(~ ul 0,1lP ), 

x


 )0,(~

2,1 u  = )(~
3 u ( 2,0P

x

 )0,(~
2,0 u  + (1 - )1,1P

x

 )0,(~
1,1 u ) = 

)(~
3 u ( 2,0P )(~

1 u 


2

1l

)(~ ul (1 - 1,0 lP ) + 

(1 - )1,1P )(~
2 u )(~ 2

1 u ( 1,0P  (1 - 0,0P ) +(1 - )0,1P 0,0P )).   

 

Thus, in the article, obtained some analytical results for probability characteristics of a 

thinning of the flow with different-distributed intervals between the moments of customers 

entrance (flow with limited aftereffect). The thinning is processed according to a given function 

which depends on evolution time and on the number customers of the thinned flow and the 

number of lost customers in theoriginal flow. The characteristics are obtained in the form of 

Laplace-Stieltjes transforms which are defined by the system of recurrence equations with using 

inversion of Laplace-Stieltjes transforms.  
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Abstract 
 

The log-linear function between life and stress which is just a simple re-

parameterization of the original parameter of the life distribution is used to 

obtain the estimates of original parameters in many of the studies concerning 

Accelerated life testing (ALT). But from the statistical point of view, it is 

preferable to work with the original parameters instead of developing inferences 

for the parameters of the log-linear link function.  In this study we introduce the 

geometric process for the analysis of accelerated life testing with Generalized 

Rayleigh Distribution for constant stress. Assuming that the lifetimes of units 

under increasing stress levels form a geometric process, the maximum likelihood 

estimation approach is used for the estimation of parameters. The confidence 

intervals (CIs) of the model parameters are derived. A Simulation study is also 

performed to check the statistical properties of estimates of the parameters and 

the confidence intervals. 

 

Keywords: Geometric process, Generalized Rayleigh Distribution, Maximum 

Likelihood Estimator, Fisher Information Matrix, Asymptotic Confidence 

Interval, Simulation Study. 

 

 

1. Introduction 
 

Accelerated life testing is the process of testing a product by subjecting it to conditions (stress, strain, 

temperatures, voltage, vibration rate, pressure etc.) in excess of its normal service parameters in an 

effort to uncover faults and potential modes of failure in a short amount of time. By analyzing the 

product's response to such tests, statisticians can make predictions about the service life and 

maintenance intervals of a product. 

   In general, ALT deals with three types of stress patterns: constant stress, step stress and 

Progressive stress. In the former case, each unit is run at a pre-specified constant stress level which 

does not vary with time. This means that every item is subjected to only one stress level until the 

item fails or the test is stopped for other reasons. In use, most products such as semiconductors 

and microelectronics, capacitors, lamps …etc, run at a constant stress. This type of stress is widely 

used and preferred because the stress is constant in most applications, it is much easier to apply 

and quantify constant stress and models for constant stress are available, widely publicized and 

empirically verified. 

  There is a lot of literature on constant stress accelerated life testing, for example, Ahmad et al. [1], 

Islam and Ahmad [2], Ahmad and Islam [3], Ahmad et al.[4] and Ahmad [5] discuss the optimal 

constant stress accelerated life test designs under periodic inspection and Type-I censoring. Yang 

[6] proposed an optimal design of 4-level constant stress ALT plans considering different censoring 

mailto:showkatmaths25@gmail.com
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times. Pan et al. [7] proposed a Bivariate constant stress accelerated degradation test model by 

assuming that the copula parameter is a function of the stress level that can be described by the 

logistic function. Wilkins and johns [8] considered constant stress accelerated life test based on 

Weibull distribution with constant shape and a log-linear link between scale the stress factor which 

is terminated by a Type-II censoring regime at one of the stress levels. 

    The concept of geometric process in accelerated life testing was first introduced by Lam [9] in the 

problems of repair replacement. Lam [10] studied the geometric process model for a multistate 

system and concluded a replacement policy to minimize the long run average cost per unit time. 

Since then a lot of studies in maintenance problems and system reliability have been shown that a 

GP model is a good and simple model for analysis of data with a single trend or multiple trends, 

for example, Lam and Zhang [11], Lam [12] and Zhang [13]. Huang [14] introduced the GP model 

for the analysis of constant stress ALT with complete and censored exponential samples. Kamal et 

al. [15] extended the GP model for the analysis of complete Weibull failure data in constant stress 

ALT. Zhou et al. [16] implement the GP in ALT based on the progressive Type-I hybrid censored 

Rayleigh failure data. Kamal et al. [17] used the geometric process for the analysis of constant 

stress accelerated life testing for Pareto Distribution with complete data. S. Saxena [18] introduces 

the Rayleigh geometric process model for the analysis of accelerated life testing under constant 

stress. Sadia Anwar et al. [19] presented the mathematical model of accelerated life testing for 

Marshall-Olkin extended exponential distribution using geometric process and extended her work 

using type I censored data [20]. Recently Kamal [21] presented an application of the geometric 

process in accelerated life testing analysis on type-I censored Weibull failure data. 

   In the present study, the GP model is implemented in the analysis of ALT for the Generalized 

Rayleigh life distribution under constant stress with complete data. Maximum likelihood (ML) 

estimates of parameters and their asymptotic confidence intervals (CIs) are obtained. The 

performance of the estimates is evaluated by a simulation study. 

 

2. The Model and Test Procedure 

 

2.1. The Geometric Process 
 

A geometric process describes a stochastic process  ,...2,1, nX n
, where there exists a real-

valued 0  such that  ,...2,1,1  nX n
n  forms a renewal process. It can be shown that if 

 ,...2,1, nX n
 is a GP and the probability density function of 

1X  is )(xf with mean   and 

variance 2  then the probability density function of 
nX will be )( 11 xf nn    with  

1


nnXE



 

and  
 12

2

var



nnX



 . Thus ,  and 2 are three important parameters of GP. 

 

2.2. The Generalized Rayleigh Distribution  
 

The probability density function (pdf) of a generalized Rayleigh distribution is given by 

             0,0,0
,0

)1(
,/

2






 







x
elsewhere

e
xf

x

 

 

where, 0  is the shape parameter and 0 , is the scale parameter of the distribution. 

Generalized Rayleigh distribution is a member of the family of Burr distributions which was 

appeared since 1942. It is known also Burr type X distribution. The cumulative distribution 

function (cdf) of generalized Rayleigh distribution is 
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  ,/xF { (1 − 𝑒
−𝛽𝑥2)

𝛼

0  , 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
   , 𝑥 > 0 , 𝛼 > 0 , 𝛽 > 0 

 

The Hazard function of the Generalized Rayleigh distribution takes the following form 

 

     
2

11,/ xexS   

 

The failure rate (or hazard rate) for the Generalized Rayleigh distribution is given by 

 

   
 

 





2

22

11

12
,/

1

x

xx

e

exe
xh









  

 

The two-parameter Generalized Rayleigh distribution was first proposed by (Raqab and Kundu; 

2003) [22] and is denoted by  ,GR . It is observed that the hazard function of a Generalized 

Rayleigh distribution can be either bathtub type or increasing function, depending on the shape 

parameter . For
2

1
 , the hazard function is bathtub type and for

2

1
 , it has an increasing 

hazard function. Surles and Padgett (2001) [23] showed that the two-parameter GR distribution can 

be used quite effectively in modelling strength data and also modelling general lifetime data. 

 

2.3. Assumptions and test procedure 
 

1. Under any constant stress, the time to failure of test unit follows Generalized Rayleigh 

distribution. 

2. The Generalized Rayleigh shape parameter   is constant, i.e. independent of stress. 

3. Let the sequence of random variables
sXXX ,..., 10
 denote the lifetimes under each stress level, 

where 0X
denotes lifetime of an item under the design stress. We assume 

 skX k ,...,2,1, 
 is a 

geometric process with ratio 0 . 

4. Suppose that an ALT under skzk ,...,2,1,  , arithmetically increasing stress levels is performed. A 

random sample of niN i ,...,2,1,  , identical items are placed under each stress level and start to 

operate at the same time. Whenever an item fails, it is removed from the test and its observed 

failure time kix  is recorded. 

5. The scale parameter is a log-linear function of stress that is
ii bSa log , here a and b are 

unknown parameters depending on the nature of the product and the test method. 

 

Theorem: If the stress level in an ALT is increasing with a constant difference then under each stress level 

the lifetimes of items forms a GP. That is, If 
kk SS 1

is constant for 1,...,2,1  sk , then 

 skX k ,...,2,1,   forms a GP. 

Proof: From assumption (5), we get 

  SbSSb kk

k

k 












1

1log



 

This shows that the increased stress levels form an arithmetic sequence with a constant difference

S . 

Now the above equation can be written as 
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  saye Sb

k

k 



 1                                                                                                   (1) 

It is clear from (1) that 

 k

kkk   ...2

2

1  

The lifetime PDF of an item at the kth  stress level is 

        1
2

22

12






 xx

kX
kk

k
exexf  

                             
1

2 22

12








 


 xxk kk

exe                                                                 (2) 

This implies that 

   xfxf k

X

k

X k


0
                                                                                                     (3) 

 

      Now, from the definition of GP and from expression (3) it is clear that, if density function of 0X  

is  xf X0
, then the pdf of kX will be given by  xf k

X

k 
0

 , sk ,...,2,1 . Therefore, it is clear 

that lifetimes under a sequence of arithmetically increasing stress levels form a GP with ratio . 

Now, the pdf of a lifetime of an item at the thk  stress level is 

 

  ,,/xf
kx          

1
2 22

12








 


 xxk kk

exe                                             (4) 

It is clear from above expression that if lifetimes of items under a sequence of increasing stress 

level form a geometric process with ratio   and if the life distribution at design stress level is 

generalized Rayleigh with characteristic  , then the life distribution at 
thk stress level will also be 

generalized Rayleigh with characteristic life 
k . 

 

2.4. Maximum likelihood Estimation 
 

The likelihood function for constant stress ALT for complete case generalized Rayleigh distribution 

failure data using GP for s stress levels is given by: 

 

         
12

1 1

22

12,,




 














 ik
k

ik
k

i

xx

k

s

k

n

i

k eexL                                            (5) 

 

The log likelihood of (5) can be written a            

 

 
 

   
 































s

k

n

i
x

k
k

k

ik
k

ii

e

xxk

l
1 1

2

2

1log1

loglog2log22log

,,






  

 

Partial derivatives of above equation with respect to and  are: 

 

    











 

 


D

A
xkxk

kl
ii k

k

k

k
s

k

n

i

212212

1 1

122
2




                                    (6) 
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From equations (6) and (7), it is observed that these equations are non-linear. Therefore, the closed 

forms of MLEs of  and   do not exist. So, Newton-Raphson method must be used to solve 

these equations simultaneously to obtain the MLEs of  and  . 

 

3. Asymptotic Confidence Interval 
 

Let  ,I  denotes the Fisher Information matrix, then observed Information matrix of  ,I  is 

given as 
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 Now, the variance-covariance matrix can be written as 
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 The  %1100   asymptotic confidence interval for   and   are then given respectively as 
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4. Simulation Studies: 
 

Simulation of data is the initial task for studying different properties of parameters. It is an attempt 

to model an assumed condition to study the behaviour of the function. 

1. First, to perform the simulation study, first, a random sample is generated from Uniform 

distribution by using R software. 

2. Now, we use inverse cdf method to transform the cdf at kth stress level in terms of u and get the 

expression of .,...,2,1;,...,2,1, niskX ki 

 
....,,2,1;...,,2,1,

1 2

1

nisk
uIn

X
kki 








 

Where kiX  is obtained for n=20, 40 and 60. 

3. The values of parameters and numbers of the stress levels are chosen to be 1.1,8.2,1    

and 64 ors  . 

4. By using optim() function, we obtain ML estimates, the mean squared error (MSE), relative 

absolute bias (RAB), relative error (RE) and lower and upper bound of 95% and 99% confidence 

intervals for different sample sizes n=20,40 and 60. The results obtained in the above simulation 

study are summarized in Table1 & 2. 

 

Table 1: Simulation results of Generalized Rayleigh distribution using GP at 1.1,8.2,1  

and 4s . 

Sample Estimate Mean SE √MSE LCL UCL 

 

20 

   β 3.078 0.319 0.095 2.452 

2.254 

3.703 

3.901 

   λ 1.107 0.103 0.099 0.797 

0.732 

1.202 

1.267 

 

40 

   β 3.039 0.256 0.061 2.536 

2.377 

3.542 

3.701 

   λ 1.081 0.103 0.100 0.797 

0.732 

1.202 

1.267 

 

60 

   β 3.003 0.241 0.054 2.529 

2.380 

3.477 

3.627 

   λ 1.072 0.103 0.099 0.797 

0.733 

1.202 

1.267 
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Table 2: Simulation results of Generalized Rayleigh distribution using GP at 1.1,8.2,1    

and 4s . 

Sample Estimate Mean SE √MSE LCL UCL 

 

20 

β 3.078 0.218 0.078 2.491 

2.311 

3.628 

3.807 

λ 0.977 0.112 0.103 0.797 

0.732 

1.202 

1.267 

 

40 

β 3.039 0.209 0.074 2.520 

2.348 

3.609 

3.781 

λ 0.981 0.103 0.101 0.797 

0.732 

1.202 

1.267 

 

60 

β 2.953 0.192 0.044 2.551 

2.416 

3.407 

3.543 

λ 0.992 0.020 0.100 0.784 

0.732 

1.202 

1.267 

 

5. Conclusions 
 

In this study, the geometric process is introduced for the analysis of accelerated life testing under 

constant stress when the life data are from a generalized Rayleigh distribution. It is a better choice 

for life testing because of its simplicity in nature. The Mean, SE and RMSE of the parameters are 

obtained. Based on the asymptotic normality, the 95% and 99% confidence intervals of the 

parameters are also obtained.  

 

The results show in Table 1 and Table 2 that the estimated values of  β and λ are very close to true 

(or initial) value with very small SE and RMSE. As sample size increases, the value of SE and 

RMSE decreases and the confidence interval become narrower.  For the Table 2, the maximum 

likelihood estimators have good statistical properties than the Table 1 for all sample sizes. 
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Abstract 
 

In this paper, a finite capacity Markovian single-server queuing system with 

discouraged arrivals, reneging, and retention of reneging customers is studied. The 

time-dependent probabilities of the queuing system are ob- tained by using a 

computational technique based on the 4th order Runge- Kutta method. With the 

help of the time-dependent probabilities, we develop some important measures of 

performance of the system, such as expected system size, expected reneging rate, 

and expected retention rate. The time-dependent behavior of the system size 

probabilities and the ex- pected system size is also studied. Further, the variations 

in the expected system size, the expected reneging rate, and the expected retention 

rate with respect to the probability of retaining a reneging customer are also 

studied. Finally, the effect of discouragement in the same model is ana- lyzed. 

 

Keywords: time-dependent analysis, single server queuing system, discouraged 

arrivals, reneging, Runge-Kutta method, retention 

 

 

   Introduction 
 

Queuing systems are used in the design and analysis of computer-communication networks, 

production systems, surface and air traffic systems, service systems etc. The study of queueing 

systems help to manage waiting lines and to construct an optimal system for balancing customer 

waiting time with the idle time of the server Gnedenko and Kovalenko (1989). The enormous 

literature in queuing theory is available where the customers always wait in the queue until their 

service is completed. But in many practical situations customers become impatient and leave the 

systems without getting service. Therefore, queuing systems with customers’ impatience have 

attracted a lot of attention. The study of customers’ impatience in queueing theory is started in the 

early 1950’s. Haight (1959) studies a single-server queue in steady-state with a Poisson input and 

exponential holding time, for various reneging distributions. Ancker and Gafarian [(1963a), 

(1963b)] analyze an 𝑀/𝑀/1/𝑁 queuing system with balking and reneging. In addition, the effect of 

reneging on an 𝑀/𝑀/1/𝑁 queue is investigated in the works of Abou El-Ata (1991), Zhang et al. 

(2006), Al Seddy et al. (2009), and Wang and Chang (2002). Kovalenko (1961) discusses some 

queuing systems with restrictions. 

Queuing systems with discouraged arrivals are widely studied due to their significant role 

in managing daily queueing situations. In many practical situations, the service facility possesses 

mailto:kuk@yahoo.co.in
mailto:sapanasharma736@gmail.com
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defense mechanisms against long waiting lines. For instance, the congestion control mechanism 

prevents the formation of long queues in computer and communication systems by controlling the 

transmission rates of packets based on the queue length(of packets) at source or destination. 

Moreover, a long waiting line may force the servers to increase their rate of service as well as 

discourage prospective customers which results in balking. Hence, one should study queueing 

systems by taking into consideration the state-dependent nature of the system. In state-dependent 

queues the arrival and service rates depend on the number of customers in the system. The 

discouragement affects the arrival rate of the queueing system. Customers arrive in a Poisson 

fashion with rate that depends on the number of customers present in the system at that time i.e. 
𝜆

𝑛+1
. Morse (1958) considers discouragement in which the arrival rate falls according to a negative 

exponential law. Natvig (1974), Van Doorn (1981), Sharma and Maheswar (1993), and 

Parthasarathy and Selvaraju (2001) have also studied the discouraged arrivals queuing systems. 

Ammar et. al (2012) derive the transient solution of an M/M/1/N queuing model with discouraged 

arrivals and reneging by employing matrix method. Abdul Rasheed and Manoharan (2016) study a 

Markovian queueing system with discouraged arrivals and self-regulatory servers. They discuss 

the steady-state behavior of the system. Rykov (2001) considers a multi-server controllable queuing 

systems with heterogeneous servers. He studies several monotonicity properties of optimal 

policies for this system. Koba and Kovalenko (2002) study retrial queuing systems which are used 

in the analysis of aircraft landing process. Efrosinin and Rykov (2008) study a multi-server 

heterogeneous queuing system and obtain its steady-state solution. They derive the waiting and 

sojourn time distributions. They also study the optimal control of the queuing system. Rykov 

(2013) generalizes the slow server problem to include additional cost structure. He finds that the 

optimal policy for the problem has a monotone property. Sani et al. (2017) perform the reliability 

analysis of a system subjected to deterioration before failure. They use system state transition 

probabilities to derive the Markov models of the system.  

Queuing systems with customers’ impatience have negative impact on the performance of 

the system, because it leads to the loss of potential customers. Kumar and Sharma (2012a) take this 

practically valid aspect into account and study an 𝑀/𝑀/1/𝑁 queuing system with reneging and 

retention of reneging customers. Kumar (2013) obtains the transient solution of an 𝑀/𝑀/𝑐 queue 

with balking, reneging and retention of reneging customers. Kumar and Sharma (2014) obtain the 

steady-state solution of a Markovian single server queueing system with discouraged arrivals and 

retention of reneging customers by using iterative method. 

The steady-state results do not reveal the actual functioning of the system. Moreover, 

stationary results are mainly used within the system design process and it cannot give insight into 

the transient behavior of the system. That is why, we extend the work of Kumar and Sharma (2014) 

in the sense that the time-dependent analysis of the model is performed. The time-dependent 

numerical behavior is studied by using a numerical technique Runge-Kutta method. 

 

1  Queuing Model Description 
  

In this section, we describe the queueing model. The model is based on following assumptions:   

    1.  We consider a single-server queueing system in which the customers arrive in a 

Poisson fashion with rate that depends on the number of customers present in the system at that 

time i.e. 
𝜆

𝑛+1
.  

    2.  There is single server and the service time distribution is negative exponential with 

parameter 𝜇.  

    3.  Arriving customers form a single waiting line based on the order of their arrivals and 

are served according to the first-come, first-served (FCFS) discipline.  

    4.  The capacity of the system is finite (say 𝑁).  

    5.  A queue gets developed when the number of customers exceeds the number of 
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servers, that is, when 𝑛 > 1. After joining the queue each customer will wait for a certain length of 

time 𝑇 (say) for his service to begin. If it has not begun by then he may get renege with probability 

𝑝 and may remain in the queue for his service with probability 𝑞 (= 1 − 𝑝) if certain customer 

retention strategy is used. This time 𝑇 is a random variable which follows negative exponential 

distribution with parameter 𝜉. The reneging rate is given by 

 

 𝜉𝑛 = {
0, 0 < 𝑛 ≤ 1
(𝑛 − 1)𝜉, 𝑛 ≥ 2

 

  

2  Mathematical Model 
 

Let {𝑋(𝑡), 𝑡 ≥ 0} be the number of customers present in the system at time 𝑡. Let 𝑃𝑛(𝑡) = 𝑃{𝑋(𝑡) =

𝑛}, 𝑛 = 0,1, . .. be the probability that there are 𝑛 customers in the system at time 𝑡. We assume that 

there is no customer in the system at 𝑡 = 0. 

 

The differential-difference equations of the model are:  

 
𝑑𝑃0(𝑡)

𝑑𝑡
= −𝜆𝑃0(𝑡) + 𝜇𝑃1(𝑡), (1) 

  

 
𝑑𝑃𝑛(𝑡)

𝑑𝑡
= − [(

𝜆

𝑛+1
) + 𝜇 + (𝑛 − 1)𝜉𝑝] 𝑃𝑛(𝑡) + (

𝜆

𝑛
) 𝑃𝑛−1(𝑡) + 

 (𝜇 + 𝑛𝜉𝑝)𝑃𝑛+1(𝑡),1 ≤ 𝑛 < 𝑁 (2) 

  

 
𝑑𝑃𝑁(𝑡)

𝑑𝑡
= (

𝜆

𝑁
) 𝑃𝑁−1(𝑡) − (𝜇 + (𝑁 − 1)𝜉𝑝)𝑃𝑁(𝑡), (3) 

  

3  Transient analysis of the model 
 

In this section, we perform the time-dependent analysis of a finite capacity single-server 

Markovian Queuing model with discouraged arrivals and retention of reneging customers using 

Runge-Kutta method of fourth order (R-K 4). The “ode45" function of MATLAB software is used to 

find the time-dependent numerical results corresponding to the differential-difference equations of 

the model. 

We study the following performance measures in transient state: 

 1. Expected System Size (𝑳𝒔(𝒕))  
 𝐿𝑠(𝑡) = ∑𝑁𝑛=0 𝑛𝑃𝑛(𝑡) 

  2. Average Reneging Rate (𝑹𝒓(𝒕))  

 𝑅𝑟(𝑡) = ∑𝑁𝑛=1 (𝑛 − 1)𝜉𝑝𝑃𝑛(𝑡) 

  3.Average Retention Rate (𝑹𝒓(𝒕))  
 𝑅𝑅(𝑡) = ∑𝑁𝑛=1 (𝑛 − 1)𝜉𝑞𝑃𝑛(𝑡) 

Now, we perform the time-dependent numerical analysis of the model with the help of a 

numerical example. We take 𝑁 = 10, 𝜆 = 2, 𝜇 = 3, 𝜉 = 0.1, and 𝑝 = 0.4. The results are presented in 

the form of Figures 1-5. Following are the main observations: 

 In Figure 1, the probabilities of number of customers in the system at different time points 

are plotted. We observe that the probability values 𝑃1(𝑡), 𝑃2(𝑡), ..., 𝑃10(𝑡) increase gradually until 

they reach stable values except the probability curve 𝑃0(𝑡) which decreases rapidly in the 

beginning and then attains steady-state with the passage of time.  

Figure 2 shows the effect of the probability of retaining a reneging customer on the 

expected system size in transient state. One can observe that as the probability of retaining a 

reneging customer increases, the expected system size also increases. This establishes the role of 

probability of retention associated with any customer retention strategy.  

In Figure 3, the change in average reneging rate with the change in probability of retaining 
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a reneging customer is shown. One can observe that there is a proportional decrease in average 

reneging rate with the increase in probability of retention, 𝑞.  

The variation in average retention rate with probability of retention is shown in Figure 4. 

We can see that there is a proportional increase in 𝑅𝑅(𝑡) with increase in 𝑞, which justifies the 

functioning of the model.  

In figure 5, the impact of discouraged arrivals on the performance of the system is shown. 

We compare two single server finite capacity Markovian queuing systems having retention of 

reneging customers with and without discouraged arrivals. One can see from Figure 5 that the 

expected system size is always lower in case of discouraged arrivals as compare to the queuing 

model without discouragement. 

 

 
 

Figure  1: The probability values for different time points  

are plotted for the case 𝑁 = 10, 𝜆 = 2, 𝜇 = 3, 𝜉 = 0.1, and 𝑝 = 0.4 

  

 

 
 

Figure  2:  The expected system sizes versus probability of retention (𝑞) are plotted  

for the case 𝑁 = 10, 𝜆 = 2, 𝜇 = 3, 𝜉 = 0.1, 𝑡 = 0.5, and 𝑞 = 0.1,0.2, … ,0.9 
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Figure  3:  Variation of average reneging rate with the variation in probability of retention  

for the case 𝑁 = 10, 𝜆 = 2, 𝜇 = 3, 𝜉 = 0.1, 𝑡 = 0.5, and 𝑞 = 0.1,0.2, … ,0.9 

 

 

 
 

Figure  4: Variation of average retention rate with the variation in probability of retention  

for the case 𝑁 = 10, 𝜆 = 2, 𝜇 = 3, 𝜉 = 0.1, 𝑡 = 0.5, and 𝑞 = 0.1,0.2, … ,0.9 

 

 
 

Figure  5: The impact of discouragement on expected system size 

  



 
Rakesh Kumar, Sapana Sharma 
TIME DEPENDENT ANALYSIS OF A SINGLE_SERVER QUEUING MODEL 

RT&A, No 4 (47) 
Volume 12, December 2017  

89 

4  Conclusions 
 

The time-dependent analysis of a single-server queuing system with discouraged arrivals, 

reneging and retention of reneging customers is performed by using Runge Kutta method. The 

numerical results are computed with the help of MATLAB software. The effect of probability of 

retaining a reneging customer on various performance measures is studied. We also study the 

impact of discouraged arrivals on the system performance. 
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