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Abstract 
 

We follow the ideas of measuring strength of dependence between random events, presented at two 

previous MMR conferences in South Africa and Tokyo. In our work here we apply it for analyzing local 

dependence structure of some popular bivariate distributions. At the Grenoble conference presentation 

we focus on the Bivariate Normal distributions with various correlation coefficients, and on the 

Marshal-Olkin distribution with various parameter’s combinations. We draw the surface z =  gii(x,y), 

i=1,2 of dependence of i-th component on the other component j≠i within the squares [x, x +1]x[y,y+1], 

and  [x, x +.5]x[y,y+.5].  The points (x,y) run within the square [-3.5, 3.5]x[-3.5, 3.5] for Bivariate 

Normal distribution, and in [0.10]x[0,10] for the Marshal-Olkin distribution. 
   

Keywords: Local dependence, local regression coefficients, strength of dependence, 

strength of dependence, surface of dependence, Bivariate normal, Marshal-Olkin 

distributions 

 

 

I. Introduction 
 

In several previous publications [1-6] we developed an idea how probability tools can be used to 

measure strength of dependence between random events. More details contain articles [1] and [2]. 

In the present article we propose to use it for measuring magnitude of local dependences between 

random variables. Such dependence is completely different from the global measure of 

dependence, measured usually by the correlation coefficient. As illustration, we demonstrate how 

it works in measuring local dependence inside the jointly distributed pairs of random variables, 

using the regression coefficients between random events. Short illustrations (graphics and tables) 

are showing the use of these measures in already known popular Bivariate Normal distribution 

with different correlation values, and inside the popular in reliability Marshal-Olkin distribution. 

 

II. How people indicate dependence 

 
The dependence in uncertainty is a complex concept. In the classical approach conditional 

probability is used to determine   if two events are dependent, or not: А and B are independent 

when the probability for their joint occurrence equals to the product of the probabilities for their 

individual appearance, i.e. when 
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Otherwise, the two events are dependent.  

In courses on Probability the independence for random events is always introduced 

simultaneously with conditional probability. Where independence does not hold, events are 

dependent, but more the dependence is never discussed. There are ways to go deeply in the 

analysis of dependence, to see some detailed pictures inside the global pictures, and use it in the 

studies of uncertainty. This matter is discussed in our previous articles ([1] and [2]). Some 

particular situations are analyzed in [3] to [6]. We refer to these articles for making a quick passage 

to the essentials.  

First we notice here that the most informative measures of dependence between random 

events are the two regression coefficients. Their definition is given here:  

Definition.  Regression coefficient )(ArB  of the event А with respect to the event В is 

called the difference between the conditional probability for the event А given the event В, and the 

conditional probability for the event А given the complementary event B , namely 

)(ArB = )|( BAP  -  )|( BAP .                                                       (1) 

This measure of the dependence of the event А on the event В, is directed dependence.  

 The regression coefficient )(BrA  of the event В with respect to the event А, is defined 

analogously,  

)(BrA = )|()|( ABPABP  . 

From the many interesting properties of the regression coefficients we would like to point 
out here just few: 

(r1)  The equality to zero )(ArB = )(BrA =0 takes place if and only if the two events are 

independent.  

(r2)  The regression coefficients )(ArB  and )(BrA are numbers with equal signs and this is 

the sign of their connection ),( BA =P(AᴖB)-P(A)P(B). The relationships  
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The numerical values of )(ArB  and )(BrA  may not always be equal. There exists an 

asymmetry in the dependence between random events, and this reflects the nature of real life.   

(r3)  The regression coefficients )(ArB  and )(BrA are numbers between –1 and 1, i.e. they 

satisfy the inequalities  1)(1  ArB ;          1)(1  BrA . 

(r4.1)  The equality 1)( ArB  holds only when the random event А coincides with (or is 

equivalent to) the event В. Тhen is also valid the equality )(BrA =1; 

(r4.2)  The equality 1)( ArB  holds only when the random event А coincides with (or is 

equivalent to) the event B  - the complement of the event В. Тhen is also valid )(BrA = - 1, and 

respectively.  

(r5)   The name regression coefficient of the random event A with respect to the event B 

comes from the following fact: If IA(ω) and IB(ω) are the random indicator variables, related to the 

two events A and B, then the best linear regression between IA(ω) and IB(ω) is expressed by the 

equation 

 

IB(ω) = )|( ABP  + rB(A) IA(ω)  + ϵ(ω), 
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where ϵ(ω)is a r.v. with zero expectation and minimum variance. 

We interpret the properties (r4) of the regression coefficients in the following way: As closer 

is the numerical value of )(ArB  to 1, “as denser inside within each other are the events A and B, 

considered as sets of outcomes of the experiment”. In a similar way we interpret also the negative 

values of the regression coefficient. 

The regression coefficient is always defined, for any pair of events А and В (zero, sure, 

arbitrary).  

In our opinion, it is possible one event to have stronger dependence magnitude on the other 

than the reverse. This measure suits for measuring the magnitude of dependence between events. 

The distance of the regression coefficient from the zero (where the independence holds) could be 

used to classify the strength of dependence, e,g. as in some interpretations of the regression 

coefficient measuring the global dependence: 

• almost independent     (when |RA(B)| < .05) ; 

• weakly dependent      (when .05 < |RA(B)|< .2) ;   

• moderately dependent   (when .2 < |RA(B)| < .45) ; 

• in average dependent   (when .45 < |RA(B)|< .8) ; 

• strongly dependent   (when |RA(B)| > .8) . 

 

Predictions using Regression coefficients    

One serious advantage of the Regression coefficients is that its magnitude can be used to 

evaluate the posterior probability of one event when information that the other event occurred is 

available. We have the following relation fulfilled: 

 

P(A | B ) = P(A) + RB(A)[1-P(B)].                                                             (2) 

 

This formula competes with the BAYES RULE, that requires joint probability P(A∩B). We 

offer to use the strength of dependence RB(A) instead of the Bayes rule. It seems much more 

natural for applications, since it uses long run experience. 

 

 

III. Transfer rules: From events to random variables and distributions 
 

The above measures allow studying the behavior of interaction between any pair of numeric r.v.’s 

(X,Y) throughout the sample space, and better understanding and use of dependence.  

Let the joint cumulative distribution function (c.d.f.) of the pair (X,Y) be F(x,y)=P(X ≤ x, Y ≤ 

y), with marginal c.d.f.’s F(x)=P (X ≤ x), G(y)=P(Y ≤ y). Let introduce the events 

 

Ax={x≤X≤x+∆1x};  By ={y≤Y≤y+∆2y}, for any x, y ϵ ( -∞, ∞). 

 

Then the measures of dependence between events Ax and By turn into a measure of local 

dependence between the pair of r.v.’s X and Y on the rectangle D=[x, x+∆1x]×[y, y+∆2y].  Naturally, 

they can be named and calculated as follows: 

Regression coefficient of X with respect to Y, and of Y with respect to X on the rectangle [x, 

x+∆1x]×[y, y+∆2y] can be introduced in analogy to considerations in previous section. By the use of 

Definition 1 we get 
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Here ∆DF(x,y) denotes the two dimensional finite difference for the function F(x,y) on rectangle  

D=[x, x+∆1x]×[y, y+∆2y].  Namely 

 

∆DF(x,y)  =F (x+∆1x, y+∆2y)- F (x+∆1x, y)- F (x, y+∆2y)+ F (x, y).                           (4) 

 

In an analogous way is defined RX((X,Y)ɞD). Just denominator in the above expression is changed 

(symbol F to symbol G) respectively.  

Using these rules one can see and visualize the local dependence between every pair of two 

r.v.’s X and Y with given joint distribution F(x,y) and marginal s F(x) and G(y).  

The biggest advantage of the Regression Coefficients as measures of the magnitude of 

dependence is their easy interpretation, described above, and the fact that they come available 

from the knowledge of the probabilities of the respective events, or proportional number of 

individuals in the sets of subpopulations of interests. 

In Probability modeling which use Multivariate Distribution we see GREAT Advantages: 

knowing that one component falls within an interval, then we can predict everything that may 

happen with the other component. For instance, when we know that X[a,b], we can predict (by 

use of measure the strength) how likely is that Y[c,d], for any choice of c and d. 

Next we illustrate specific rules in calculation of Regression Coefficients as measures of 

dependence to analyze the local dependence structure in Bivariate Normal Distribution, and in the 

Marshal-Olkin Distribution. We end our theoretical background of the general local dependence 

structural studies. Next we illustrate its application on the two selected qualitative and 

quantitative probability models. 

 

 

IV. Correlated Bivariate Normal distribution 

I. Analytical expressions 

 

The random vector (X Y) has Bivariate Normal probability distribution if its probability density 

function is given by the expression:  
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where ρ is the correlation coefficient  between X and Y ;  μ1 , μ2 are the expected values, and σ1 , σ2  

are the standard deviations of the components X and Y correspondingly. We analyze how the 

magnitude of the correlation between components influences this local dependence structure, 

assuming μ1=μ2=0, and σ1=1, σ2 any. The   functions   

 

 

(5) 

 

Here we consider the symmetric case  σ2 =1, and then 

 g2(x,y) = g1(y,x)                                                                                                 (6) 

identify the magnitude of dependence between the two components X and Y on the square 

[x,x+1]x[y,y+1] with the lower left vertex (x,y) and side lengths equal to 1. 
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• The marginals FX(x) and GY(y) are Normal Distributions of means μi and st. deviations σi  

i=1,2.  

• We use standard normal marginals μi = 0, σi =1 and correlated components with different numeric 

values of the Correlation Coefficient ρX,Y  in our illustrations. 

• Our goals are to study local dependence between X and Y as functions of the values of the 

Correlation Coefficient ρ, and of the width a of the rectangle (square) [x,x+a]x[y,y+a].  

The predictions one can make by use of the Global Correlation Coefficient  are through the 

regression equation 

 

                                  Y =  

 

Here   is a r.v. with Standard Normal Distribution. 

 Our approach suggests to use INTEVAL Regression Coefficients, based on the alternative 

to the Bayes Formula for poster for probabilities cited above.  

For any pair of variables (X,Y) it looks like this:  

 

P{Y[c,d]|X[a,b]} = P{Y[c,d]) + RX[a,b](Y[c,d])[1-P{ X[a,b]}]. 

 

It is easily presented in terms of any particular Bivariate Distribution, including the Normal one. 

 Brief analytical and algorithmic discussion, and more graphics and numeric illustrations 

are used in our concluding observations. Here we give just one of many, illustrating global and 

local dependence on squares of sides lengths equal to 1 and .5, for values of the correlation 

between X and Y equal to  .95,   .5 and  .15: 

 

I. Graphical illustrations 

 
All graphing and numeric illustrations are made by program system Maple. Since the 

symmetry we show only one of the two options. 

Correlated Bivariate Normal –Local Dependence Function g2(x,y): ρ = + - .95 

 

                         

Figure 1. Correlated Bivariate Normal –Local Dependence Function g1(x,y): ρ = -.95, and 

squares of length 1 and .5, and the global distribution pdf. 

 

There are some lines of discontinuity on both surfaces. We observe these in a table of selected 

values of the local correlation function given below. In our opinion, this defect is due to the 

counting/graphing program, which in this case is MAPLE. 
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Table 1. Numeric values of the function g1(x,y) on integer points in the square [-3,3]x[-3,3], ρ=.95   

X\Y -3 -2 -1 0 1 2 3 

-3 .6531 .1818 -.3884  -.1389 -.0219 -.0013 

-2 .0324 .6289 -.1354 -.3948  -.0248 -.0015 

-1 -.0325 -0707 .6396 -.2937 -.2062  -0020 

0  -.2062 -.2937 .6396 -.0707 -.0325  

1 -.0248  -.3948 -.1354 ‘6829 .0324 -.0015 

2 -.0219 -.1389  -.3484 .1818 .6531 .0244 

3 -.0214 -.1361 -.3418  -.1353 .4884 .5773 

 

In both cases ρ=.95 we observe some lines of discontinuity in the surface functions z=g1(x,y) 

and z=g2(x,y); Analytic reason for us is unclear for now. We think the deficiency is in the used 

program. However, the symmetry between local dependence magnitudes are seen from the table. 

Another interesting fact is, that no matter if the global correlation ρ between X and Y is 

negative or positive, their local Regression Coefficients are positive near the lines y=x (for positive 

global regression), and the line y=-x (for negative global correlation). Also local regression 

dependence measure becomes negative (drops quickly) not so far from these lines, and goes to 

indication of independence with the growth of the distance driven from those lines. 

One more interesting fact is, that the local regression magnitudes do nor exceed the global 

correlation magnitude, but vary with the location of the square within the considered range.  

Speaking of predictions, if X[x, x+1] it is most likely that Y[x, x+1] when ρ is positive, or 

Y[-x, -x-1] when ρ is negative, based on the rule (2)  

The function g2(x,y) exhibits similar behavior and it is symmetric to g1(x,y) with respect to 

the line y=x. We omit the show of these details. 

Also we observe high positive local dependence close to the line y=x, and negative local 

dependences, also of relatively high magnitude, about the opposite signs y= - x. This magnitude 

vanishes as long the points become far from the origin (0,0). Notice reduction of magnitude on 

smaller square. 

 

Correlated Bivariate Normal –Local Dependence Function g2(x,y): ρ = + - .5 

 

                            
 
  Figure 2. Bivariate Normal density functions f(x,y): ρ = .5 : Global and local Interval dependence 

 

In both cases ρ = + - .5 we observe saddle points on the surface functions z=g1(x,y) and z=g2(x,y) in 

the region of the origin (0,0), showing slight positive local dependence; 

Interesting fact is, that the Regression Coefficients between X and Y still behave negative or 
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positive, not exceeding in absolute value the global correlation  ρ . 

The Local Regression Coefficients are positive near the lines y=x (for positive global 

regression), and the line y=-x (for negative global correlation). Local regression dependence 

measure becomes negative (drops) near these lines, and goes to indication of independence with 

the growth of the distance driven from those lines. Interesting level curve is at level L=0. There the 

two variables X and Y are independent on the square {x, x+1]x[y, y+1]. 

The local regression magnitudes do not exceed the global correlation magnitude, and vary 

with the location of the square.  

Speaking of predictions, if X[x, x+1] it is most likely that Y[x, x+1] when ρ is positive, or 

Y[-x, -x+1] when ρ is negative, based on the rule (2) 

Here we just observe the dependence of the graphs of local dependences how are these 

influenced by the sign of the Correlation Coefficient. Obviously, one is symmetric with respect to 

the ordinate axes compare to the other. The level curves are shown on most graphs. They show 

points of the same magnitude of local dependence. 

 

Correlated Bivariate Normal Density: when ρ = + - .1 

 

 

               
 

Figure 3. Bivariate Normal density functions f(x,y): ρ = .1 : Global and local Interval dependence 

 

The original Distribution is almost symmetric. No significant global correlation. However, 

we observe differences in the graphs of local dependences, and how are these influenced by the 

sign of the Regression Coefficient. 

Obviously, the magnitudes do not exceed 60% of the correlation, but go up and down. 

The level curves are shown on most graphs. They show points of the same magnitude of 

local dependence. 

In general, we observe again high positive local dependence close to the line y=x, and 

negative local dependences, also of relatively high magnitude, about the opposite signs y= - x. This 

magnitude vanishes as long the points become far from the origin (0,0) and away from the lines 

y=x, or y-x in case of negative global correlation. Notice reduction of magnitude in half on smaller 

square. 

Something similar we observe and in the case of low correlations ρ = -.10 and ρ = -.15.   As 

the ancient Greeks used to say, when you have a graph, “Just seat, watch, and make your own 

conclusions”.     
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V. The Bivariate Marshal-Olkin Distribution 
 

This distribution is well known in reliability from the “fatal shock models”, where two 

exponentially distributed life times X and Y interact so their residual life times have the joint 

distribution 

 

P{X>x, Y>y}=e-λx-μy-ν.max(x,y),   x,y≥0.                                                        (7) 

 

The marginal residual life times are 

 

P{X>x}=e-(λ+ν)x, x≥0, and P{Y>y}=e-(μ+ν)y, y≥0.                                                  (8)                

 

Applying these functions into the rules (3) (4) with Δx=Δy = a, we get the expressions for the 

regression coefficients on the squares [x, x+a]x[y, y+a], namely  

 

R1(x,y) =  

 

Respectively, R2(x,y) is given by a similar expression with the change of μ by λ and of x by y. 

The two functions are symmetric with respect to the line y=x only when μ = λ. Due to the limited 

space, we present our graphs of the local dependence surfaces between the components X and Y 

on the squares of size a=.5 and 1 on the square [0,3]x[0,3], and for values of the parameters λ=1, μ=2 

and ν=3. We observe    high positive dependence in a neighborhood of the origin, negative 

dependence of the small values of dependent variable, positive dependence along the line y=x, and 

vanishing dependence on the large values of the dependent variable.   

Respectively, R2(x,y) is given by a similar expression with the change of μ by λ and of x by y.  

The two functions representing Regression Coefficients surfaces are symmetric with respect 

to the line y=x only when μ = λ.  

Our graphs show the local dependence surfaces between the components X and Y on the 

squares of size a=.5 and a =1 on the square [0,3]x[0,3], and for values of the parameters λ=1, μ=2 

and ν=3. They are presented on the next figures 4 and 5. 

On both we observe high positive dependence in a neighborhood of the origin, negative 

dependence around the small values of dependent variable, positive dependence along the line 

y=x, and vanishing dependence on the large values of the dependent variable.   

 

                             
Figure 4. Marshal-Olkin λ=1, μ=2, ν=3 – Local Dependence Functions R1(x,y) and R2(x,y): on squares of 

length 5 



 
Dimitrov B., Esa E. 
INTERVAL DEPENDENCE STRUCTURE OF TWO BIVARIATE  

RT&A, No 1 (48) 
Volume 13, March 2018  

36 

      
 

Figure 5. Marshal-Olkin λ=1, μ=2, ν=3 – Local Dependence Functions R1(x,y) and R2(x,y): on squares of 

length 1. 

 

These graphs and numeric values on the axes of the boxes indicate that the magnitude of 

dependence is slightly affected on the size of the squares. 

There is a negative dependence near the lines y=0, and x=0 depending with respect to which 

variable dependence is measured. Then this magnitude quickly rises and keeps a positive value 

along lines parallel to the respective axis. Then magnitude of mutual local dependence drops for a 

while, and rises again near the line y=x. 

On the opposite direction dependence vanishes with the growth of the distance from the line 

y=x. 

The local dependence functions R1(x,y) and R2(x,y) on squares length a=1 and a=.5 for 

combination λ=3, μ=2, ν=1 between parameters in the Marshal-Olkin distribution is shown on 

Fig.6. 

 

          
 

Figure 6. Marshal-Olkin local dependence functions R1(x,y) and R2(x,y) on squares of length 1 and .5 fpr 

parameters λ=3, μ=2, ν=1. 

 
The graphs and numeric values on the coordinate axes of the box indicate that the magnitude 

of dependence is now affected on the sides of the square. One is of magnitude .6, the other one – of 

magnitude .15. However, the shape of the surface of dependence is similar to others. 

The negative dependence near the lines y=0, and x=0 depending with respect to which variable 

dependence is measured still saves behavior, and keep stable value along the variable with smaller 

value parameter. 

The magnitude of this dependence is now higher compare to the case where the interacting 
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component has had higher intensity (compare =3 to =1).  

The magnitude near the line y=x keeps its ridge kind of shape. 

On the opposite directions dependence vanishes with the growth of distance from the line y=x. 

 

   
 

Figure 7. Marshal-Olkin local dependence functions R1(x,y) and R2(x,y) on squares of length 1 and .5 for 

parameters λ=1, μ=1, ν=3, and λ=3, μ=3, ν=1. 

    

The last combinations of numeric values between parameters in Marshal-Olkin distribution show 

that the magnitude of dependence is not affected on the values of parameters of the marginals ( as 

soon as the two marginals are equal =), no matter the value  of the interaction component is. 

The overall shape of the graphs of local mutual dependence is similar to others. The 

magnitude of the dependence rises near the origin (up to .6, compare to .5 in other numeric 

combinations between parameters) 

On the opposite direction  of the pair (Y w.r.t. X, or X w.r.t. Y) dependence vanishes with the 

distance from the line y=x. 

The ridge local dependence along the line y=x  stays steady positive near the origin and slowly 

vanishes away from the origin. 

 

VI. Conclusions 
 

• We discussed Regression Coefficients as measures of dependence between two random 

events. These measures are asymmetric, and exhibit natural properties.  

• Their numerical values serve as indication for the magnitude of dependence between random 

events. 

• These measures provide simple ways to detect independence, coincidence, degree of 

dependence.  

• If either measure of dependence is known, it allows better prediction of the chance for 

occurrence of one event, given that the other one occurs. 

• We observe unexpected behavior of the Regression Coefficients between the two components 

of symmetric Bivariate normal distribution with different magnitude of the correlation 

coefficient. 

• These measures are examined by the 3-D surface of dependence on squares [x, x+a]x[y,y+a] 

with a=.5; a=1.0 and (x,y)[-3.5, 3.5]x[-3.5,3.5] 

• There is some high positive local dependence close to the lines y=x or y=-x; negative local 

dependences also is present. The magnitudes of dependence vanish as long the points become 

far from the origin (0,0) or from the lines of correlation.. 

•  Notice reduction of magnitude on smaller square. 
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• We observe unexpected behavior of the Regression Coefficients between the two components 

of the M-O Distribution. 

• These measures are examined by the 3-D surface of dependence on squares [x, x+a]x[y,y+a] 

with a=.5; a=1.0 and (x,y)[0, 3]x[ 0,3] 

• There is some high positive local dependence close to the origin and along the line y=x 

• Negative local dependences is presented near the axis of the variable w.r.t. which Regression 

Coefficient is considered. 

•  The magnitudes of dependence vanish at the opposite side, as the points get far from the 

origin (0,0). 

• Notice reduction of magnitude on smaller square for interacting component with lower 

parameter’ values. 

• The magnitudes of dependence do not change with the value interacting component 

parameter as long the two components have same distributions. 

 

As possible future investigation we challenge the readers of this article to compare the local 

dependence structures in the asymmetric bivariate normal distribution. Also look and compare 

our findings to the local dependence structures in the copulas of the bivariate inside any of the 

known bivariate distribution normal and the Mashal-Olkin distribution. Open is the local structure 

with correlated components. 
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