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Abstract 
 

A class of controlled queueing systems with several heterogeneous conflicting 

input flows is investigated. A model of such systems is a time-homogeneous 

multidimensional Markov chain with a countable state space. Classification of the 

chain states is made: a closed set of recurrent aperiodic states and a set of transient 

states are determined. An ergodic theorem for the Markov chain is formulated and 

proved.  
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1  Introduction 
 

Nowadays, there is a great amount of works that deal with the problems of controlled 

queueing systems [1, 2]. Many of similar researches have high applied value since they concern 

real biological, logistical, engineering and technical objects (e. g. [3, 4, 5]). Various quality 

characteristics and scores for such systems are investigated. One of the important goals of these 

works is system optimization. In order to synthesize an optimal system, it is usually necessary to 

study its asymptotic behaviour [4, 6, 7, 8, 9]. In particular, a number of works are devoted to 

obtaining the limit theorems and searching for the conditions of stationarity existence. Mainly such 

investigations are based on the mathematical and imitation modeling. If a quite simple reliable 

mathematical model is constructed, it becomes possible to study limiting dynamics and to 

determine existence of a stable stationary mode. 

The work [10] studies a system with several stochastic independent conflicting input flows 

of customers (demands). In this work a specific model of input flows constructed in [11] is 

considered. The system carries not only service functionality for the customers but also control 

functions for the flows. It is supposed that the flows are controlled by a cyclic algorithm. As a rule, 

such control algorithm is applied if the input flows are regarded to be homogeneous, which means 

no preference is given to any of the flows. A case of heterogeneous input flows is considered in 

[12]. Such heterogeneity may imply, for example, different probabilistic structure of the flows, 

substantially different arrival intensities, different priority of the flows, etc. It is usually assumed in 

such case that a complicated adaptive feedback control algorithm is used. The present work is a 

continuation and expansion of [12] and it mainly focuses on the limiting behavior of the system. 
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2  System description 
 

A system that controls 𝑚 ≥ 2 independent conflicting flows Π1, Π2, ..., Π𝑚 and serves their 

customers is studied. It is assumed that the input flows are formed under the influence of the 

similar external environments. This means they can be approximated by the non-ordinary Poisson 

flows. For example, it is shown in [11] that a non-ordinary Poisson flow can be an adequate model 

for a traffic flow under certain external conditions. If the weather or the roadbed is quite bad, the 

heterogeneity of the vehicles becomes clear: some slow vehicles become a trouble for the fast ones. 

That is why vehicles start to gather into groups – traffic bathes. There is a certain dependency 

between the vehicles inside a batch while the different batches can be considered as independent. 

Similarly, it is supposed in this work that each input flow can be approximated by non-ordinary 

Poisson flow Π𝑗 (henceforth, 𝑗 ∈ 𝐽 = {1,2, … ,𝑚}) with the following parameters: 𝜆𝑗 > 0 – arrival 

intensity for the batches (groups of customers), 𝑝𝑗, 𝑞𝑗 and 𝑠𝑗 – probabilities of batches of one, two 

and three customers in a batch correspondingly (𝑝𝑗 + 𝑞𝑗 + 𝑠𝑗 = 1). The expressions for the one-

dimensional distributions of the non-ordinary Poisson flow of this kind are derived in [11]. 

Probability 𝜑𝑗(𝑛; 𝑡) that 𝑛 ∈ 𝑋 = {0,1, … } customers of the flow Π𝑗 arrive to the system during the 

interval [0, 𝑡), 𝑡 > 0, is given by formula  

 

 𝜑𝑗(𝑛; 𝑡) = 𝑒
−𝜆𝑗𝑡 ∑

[
𝑛

2
]

𝑢=0
∑
[
𝑛−2𝑢

3
]

𝑣=0 𝑝𝑗
𝑛−2𝑢−3𝑣𝑞𝑗

𝑢𝑠𝑗
𝑣 (𝜆𝑗𝑡)

𝑛−𝑢−2𝑣

𝑢!𝑣!(𝑛−2𝑢−3𝑣)!
. 

 

Though the flows have the same probabilistic structure, they differ in priority and arrival intensity. 

The flows Π1, Π2, ..., Π𝑚−1 are the low-intensity flows, the flow Π𝑚 has the highest intensity. At the 

same time, the customers of the flow Π1 have the highest priority. The considered queueing system 

is a lossless system. The customers of the flow Π𝑗 that arrive to the system and cannot be served at 

once are forced to wait in the queue 𝑂𝑗. The service device that also perform control functions for 

the flows can be in one of the states of the set Γ = {Γ(1), Γ(2), … , Γ(2𝑚+1)}. The service device stays in 

each state Γ(𝑘), 𝑘 ∈ {1,2, … ,2𝑚 + 1}, during a time period of duration 𝑇𝑘. The state Γ(2𝑗−1), where 𝑗 ∈

{1,2, … ,𝑚 − 1}, is reserved for servicing the flow Π𝑗. A service intensity in this case is 𝜇𝑗 > 0. Since 

the flow Π𝑚 has the highest intensity, there are two service states for this flow: Γ(2𝑚−1) and Γ(2𝑚). 

The service intensity is the same for both of these states and it equals 𝜇𝑚 > 0. It is also assumed 

that 𝑇2𝑚 < 𝑇2𝑚−1. The input flows are conflicting which means no two of them can be served 

simultaneously. Moreover, for the sake of safety, it is recommended to have certain adjusting 

states between the service states for different flows. Therefore, the intermediate readjusting state 

Γ(2𝑗), 𝑗 ∈ {1,2, … ,𝑚 − 1} is allocated for safe switching between service of the flow Π𝑗 and Π𝑗+1. The 

readjusting state after the flow Π𝑚 is Γ(2𝑚+1). The variables 𝑙𝑗 = [𝜇𝑗𝑇2𝑗−1], 𝑗 ∈ 𝐽, and the variable 

𝑙𝑚
′ = [𝜇𝑚𝑇2𝑚] characterize the capacity of the service device in the corresponding state. It is 

supposed that the system always functions in the emergency mode [10]. This means there is no 

unmotivated downtimes. Each time the service device is in a service state for certain flow Π𝑗, as 

many customers waiting in the queue 𝑂𝑗 as possible are served.  

 

At the same time, the number of served customers cannot exceed the service capacity in this state. 

When the service period for certain flow ends, either the current state switches to the next one 

according a certain control algorithm 𝑠(Γ) or the decision to prolong service is made. The control 

algorithm 𝑠(Γ) is to be described later. The served customers of the flow Π𝑗 compose the output 

flow Π𝑗
′. A general scheme of the considered class of the systems is presented in Figure. 1. 
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Figure  1: General scheme of the considered class of systems 

   

Let 𝜏𝑖, 𝑖 ∈ 𝐼 = {0,1, … }, denote the moments in which the decisions about state switching or 

prolongations are made. Such moments are the random variables since the initial state of the 

service device is unknown, an initial distribution of the state in moment 𝑡 = 0 may be set and, 

generally speaking, the durations 𝑇1, 𝑇2, ..., 𝑇2𝑚+1 are different. The time axis 0𝑡 is divided by these 

moments into the intervals Δ−1 = [0, 𝜏0), Δ𝑖 = [𝜏𝑖 , 𝜏𝑖+1), 𝑖 ∈ 𝐼. The following random variables and 

elements characterize the system in the interval Δ𝑖  for 𝑖 ∈ 𝐼: 1) Γ𝑖 ∈ Γ – state of the service device; 2) 

𝜂𝑗,𝑖 ∈ 𝑋 – number of demands of the flow Π𝑗 arrived to the system; 3) 𝜉𝑗,𝑖 – maximum number of 

demands of the flow Π𝑗 that can be served; 4) 𝜉𝑗,𝑖
′  – number of customers of the flow Π𝑗 that are 

actually served during this interval. Here for any 𝑗 ∈ {1,2, … ,𝑚 − 1} we have 𝜉𝑗,𝑖 ∈ 𝐵𝑗 = {0, 𝑙𝑗} and 

𝜉𝑗,𝑖
′ ∈ 𝑌𝑗 = {0,1, … , 𝑙𝑗} and 𝜉𝑚,𝑖 ∈ 𝐵𝑚 = {0, 𝑙𝑚

′ , 𝑙𝑚}, 𝜉𝑚,𝑖
′ ∈ 𝑌𝑚 = {0,1, … , 𝑙𝑚}. Apart from this, let the 

variable  æ 𝑗,𝑖 ∈ 𝑋 count the random number of customers waiting in the queue 𝑂𝑗 at the moment 

𝜏𝑖. For each flow Π𝑗 it is also necessary to introduce the random variable 𝜉𝑗,−1
′ ∈ {0,1, … } – number 

of demands of the flow Π𝑗 that are really served during the interval Δ−1. Now the control algorithm 

is to be introduced. Decision about the next state of the service device is made according to the 

following rule:  

 
 Γ𝑖+1 = 𝑢(Γ𝑖, æ 1,𝑖 , 𝜂1,𝑖), 

 

where the control function 𝑢: Γ × 𝑋 × 𝑋 → Γ is given point-wise:  

 

 𝑢(Γ(𝑘), 𝑥1, 𝑛1) =

{
  
 

  
 
Γ(𝑘+1), 𝑘 ∈ 𝑀\{2𝑚 − 2,2𝑚, 2𝑚 + 1};

Γ(2𝑚−1), 𝑘 = 2𝑚 − 2, 𝑥1 + 𝑛1 < ℎ1;

Γ(2𝑚), 𝑘 = 2𝑚 − 2, 𝑥1 + 𝑛1 ≥ ℎ1;

Γ(2𝑚), 𝑘 = 2𝑚, 𝑥1 + 𝑛1 < ℎ1;

Γ(2𝑚+1), 𝑘 = 2𝑚, 𝑥1 + 𝑛1 ≥ ℎ1;

Γ(1), 𝑘 = 2𝑚 + 1.

 (1) 

 

Such algorithm has several peculiarities. Firstly, it implements feedback on the number of 

waiting customers in the queue for the high-priority flow. Secondly, the service device may 

prolong service for the flow with high intensity. Thirdly, the described algorithm is an anticipatory 

algorithm, since it takes into account data about the number 𝜂1,𝑖 of customers that are to arrive to 

the system during the succeeding time period. It should be noted that a conflict of interests 

between high-intensity and high-priority flows is resolved with the help of a threshold priority 

variable ℎ1 ∈ {0,1, … }. The service device state is switched from the service of high-intensity flow to 

the service of the high-priority flow only if the number of waiting customers in the high-priority 

queue reaches the threshold value. A graph of the described control algorithm is shown in 

Figure 2. 
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Figure  2: Graph of the control algorithm 𝑠(Γ) 

   

The variables 𝜂𝑗,𝑖 and 𝜉𝑗,𝑖 are defined by their conditional distributions  

 

 𝐏(𝜂𝑗,𝑖 = 𝑛  |  Γ𝑖 = Γ
(𝑘)) = 𝜑𝑗(𝑛; 𝑇𝑘), 

 

 𝐏(𝜉𝑗,𝑖 = 𝑏  |  Γ𝑖 = Γ
(𝑘)) = 𝛽𝑗(𝑏; Γ

(𝑘)), 

 

where function 𝛽𝑗 : 𝐵𝑗 × Γ → {0,1} is given point-wise:  

 

 𝛽𝑗(𝑏; Γ
(𝑘)) =

{
 
 

 
 
1, 𝑏 = 0, 𝑘 ∈ 𝑀\{2𝑗 − 1}, 𝑗 ∈ 𝐽\{𝑚};

1, 𝑏 = 0, 𝑘 ∈ 𝑀\{2𝑚 − 1,2𝑚}, 𝑗 = 𝑚;

1, 𝑏 = 𝑙𝑗 , 𝑘 = 2𝑗 − 1, 𝑗 ∈ 𝐽;

1, 𝑏 = 𝑙𝑚
′ , 𝑘 = 2𝑚, 𝑗 = 𝑚;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (2) 

 

 Moreover, these variables are conditionally independent. 

 

3  Problem statement 
 

It is proposed in [12] to consider a random vector  

 

 𝜒𝑖 = (Γ𝑖, æ 1,𝑖 , æ 𝑚,𝑖 , 𝜉1,𝑖−1
′ , 𝜉𝑚,𝑖−1

′ ) ∈ Γ × 𝑋 × 𝑋 × 𝑌1 × 𝑌𝑚 (3) 

 

 as a system state at the moment 𝜏𝑖, 𝑖 ∈ 𝐼. This approach allows one to study the system dynamics 

from the point of view of two flows: Π1 and Π𝑚. The following recurrent relations are given in [12]:  
Γ𝑖+1 = 𝑢(Γ𝑖 , æ 1,𝑖 , 𝜂1,𝑖), æ 1,𝑖+1 = max{0, æ 1,𝑖 + 𝜂1,𝑖 − 𝜉1,𝑖},   æ 𝑚,𝑖+1 = max{0, æ 𝑚,𝑖 + 𝜂𝑚,𝑖 − 𝜉𝑚,𝑖}, 

 
 𝜉1,𝑖

′ = min{ æ 1,𝑖 + 𝜂1,𝑖 , 𝜉1,𝑖}, 𝜉𝑚,𝑖
′ = min{ æ 𝑚,𝑖 + 𝜂𝑚,𝑖 , 𝜉𝑚,𝑖}. 

 

They describe changes in the system state for any 𝑖 ∈ 𝐼. The work [12] contains a proof of the 

following theorem. 

 

Theorem 1 Vector sequence  

 

 {(Γ𝑖, æ 1,𝑖 , æ 𝑚,𝑖 , 𝜉1,𝑖−1
′ , 𝜉𝑚,𝑖−1

′ ); 𝑖 ∈ 𝐼} (4) 

 

 with initial distribution of vector (Γ0, æ 1,0, æ 𝑚,0, 𝜉1,−1
′ , 𝜉𝑚,−1

′ ) is a multidimensional time-

homogeneous controlled Markov chain.  

A purpose of this work is to study the state space of the Markov chain (4) and to research 

its limiting behaviour. 



 
Rrachinskaya M., Fodotkin M. 
RESEARCH OF A MULTIDIMENSIONAL MARKOV CHAIN 

RT&A, No 1 (48) 
Volume 13, March 2018  

51 

4  Markov chain state space classification 
 

Let 𝑄𝑖(Γ
(𝑘), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) for any Γ(𝑘) ∈ Γ, 𝑥1, 𝑥𝑚 ∈ 𝑋, 𝑦1 ∈ 𝑌1, 𝑦𝑚 ∈ 𝑌𝑚 be the following 

probabilities:  

 𝑄𝑖(Γ
(𝑘), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) = 𝐏(Γ𝑖 = Γ

(𝑘), æ 1,𝑖 = 𝑥1, æ 𝑚,𝑖 = 𝑥𝑚 , 𝜉1,𝑖−1
′ = 𝑦1, 𝜉𝑚,𝑖−1

′ = 𝑦𝑚). 

The proof of Theorem 1 from [12] contains the foundation for the following relation:  

 𝑄𝑖+1(Γ
(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) = ∑

2𝑚+1
𝑟=1 ∑∞𝑣1=0 ∑

∞
𝑣𝑚=0

∑𝑙1𝑤1=0 ∑
𝑙𝑚
𝑤𝑚=0

𝑄𝑖(Γ
(𝑟), 𝑣1, 𝑣𝑚 , 𝑤1, 𝑤𝑚) × 

 

 × ∑∞𝑛1=0 ∑𝑏1∈𝐵1 ∑
∞
𝑛𝑚=0

∑𝑏𝑚∈𝐵𝑚 𝜑1(𝑛1; 𝑇𝑟)𝛽1(𝑏1; Γ
(𝑟))𝜑𝑚(𝑛𝑚; 𝑇𝑟)𝛽𝑚(𝑏𝑚; Γ

(𝑟)) × 

 

 × 𝐏(𝑢(Γ(𝑟), 𝑣1, 𝑛1) = Γ
(𝑘), max{0, 𝑣1 + 𝑛1 − 𝑏1} = 𝑥1, 

 
 max{0, 𝑣𝑚 + 𝑛𝑚 − 𝑏𝑚} = 𝑥𝑚, min{𝑣1 + 𝑛1, 𝑏1} = 𝑦1 , min{𝑣𝑚 + 𝑛𝑚, 𝑏𝑚} = 𝑦𝑚). 

Note that taking into account (1) and (2) this relation is transformed into several special-case 

relations:  

 
𝑄𝑖+1(Γ

(1), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) = ∑
𝑥1
𝑣1=0

𝜑1(𝑥1 − 𝑣1; 𝑇2𝑚+1) ∑
𝑥𝑚
𝑣𝑚=0

𝜑𝑚(𝑥𝑚 − 𝑣𝑚; 𝑇2𝑚+1) ×

× ∑
𝑙1
𝑤1=0

∑𝑙𝑚𝑤𝑚=0 𝑄𝑖(Γ
(2𝑚+1), 𝑣1, 𝑣𝑚 , 𝑤1, 𝑤𝑚)𝐏(𝑦1 = 0, 𝑦𝑚 = 0).

 (5) 

  

 

𝑄𝑖+1(Γ
(2), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) = ∑

𝑦1
𝑣1=0

𝜑1(𝑦1 − 𝑣1; 𝑇1) ∑
𝑥𝑚
𝑣𝑚=0

𝜑𝑚(𝑥𝑚 − 𝑣𝑚; 𝑇1) ×

× ∑
𝑙1
𝑤1=0

∑𝑙𝑚𝑤𝑚=0 𝑄𝑖(Γ
(1), 𝑣1, 𝑣𝑚, 𝑤1, 𝑤𝑚)𝐏(𝑥1 = 0, 𝑦1 < 𝑙1, 𝑦𝑚 = 0) +

+∑
𝑥1+𝑙1
𝑣1=0

𝜑1(𝑥1 + 𝑙1 − 𝑣1; 𝑇1) ∑
𝑥𝑚
𝑣𝑚=0

𝜑𝑚(𝑥𝑚 − 𝑣𝑚; 𝑇1) ×

× ∑
𝑙1
𝑤1=0

∑𝑙𝑚𝑤𝑚=0 𝑄𝑖(Γ
(1), 𝑣1, 𝑣𝑚, 𝑤1, 𝑤𝑚)𝐏(𝑦1 = 𝑙1, 𝑦𝑚 = 0);

 (6) 

  

 
𝑄𝑖+1(Γ

(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) = ∑
𝑥1
𝑣1=0

𝜑1(𝑥1 − 𝑣1; 𝑇𝑘−1) ∑
𝑥𝑚
𝑣𝑚=0

𝜑𝑚(𝑥𝑚 − 𝑣𝑚; 𝑇𝑘−1) ×

× ∑
𝑙1
𝑤1=0

∑𝑙𝑚𝑤𝑚=0 𝑄𝑖(Γ
(𝑘−1), 𝑣1, 𝑣𝑚, 𝑤1 , 𝑤𝑚)𝐏(𝑦1 = 0, 𝑦𝑚 = 0),    𝑘 ∈ {3,4, … ,2𝑚 − 2};

 (7) 

  

 
𝑄𝑖+1(Γ

(2𝑚−1), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) = ∑
𝑥1
𝑣1=0

𝜑1(𝑥1 − 𝑣1; 𝑇2𝑚−2) ∑
𝑥𝑚
𝑣𝑚=0

𝜑𝑚(𝑥𝑚 − 𝑣𝑚; 𝑇2𝑚−2) ×

× ∑
𝑙1
𝑤1=0

∑𝑙𝑚𝑤𝑚=0 𝑄𝑖(Γ
(2𝑚−2), 𝑣1, 𝑣𝑚 , 𝑤1, 𝑤𝑚)𝐏(𝑥1 < ℎ1, 𝑦1 = 0, 𝑦𝑚 = 0);

 (8) 

  

 

𝑄𝑖+1(Γ
(2𝑚), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) = ∑

𝑥1
𝑣1=0

𝜑1(𝑥1 − 𝑣1; 𝑇2𝑚−2)∑
𝑥𝑚
𝑣𝑚=0

𝜑𝑚(𝑥𝑚 − 𝑣𝑚; 𝑇2𝑚−2) ×

× ∑
𝑙1
𝑤1=0

∑𝑙𝑚𝑤𝑚=0 𝑄𝑖(Γ
(2𝑚−2), 𝑣1, 𝑣𝑚 , 𝑤1, 𝑤𝑚)𝐏(𝑥1 ≥ ℎ1, 𝑦1 = 0, 𝑦𝑚 = 0) +

+∑
𝑥1
𝑣1=0

𝜑1(𝑥1 − 𝑣1; 𝑇2𝑚−1) ∑
∞
𝑐𝑚=0

∑𝑐𝑚𝑣𝑚=0 𝜑𝑚(𝑐𝑚 − 𝑣𝑚; 𝑇2𝑚−1) ×

× ∑
𝑙1
𝑤1=0

∑𝑙𝑚𝑤𝑚=0 𝑄𝑖(Γ
(2𝑚−1), 𝑣1, 𝑣𝑚 , 𝑤1, 𝑤𝑚) ×

× 𝐏(max{0, 𝑐𝑚 − 𝑙𝑚} = 𝑥𝑚 , 𝑦1 = 0,min{𝑐𝑚 , 𝑙𝑚} = 𝑦𝑚) +

+∑
𝑥1
𝑣1=0

𝜑1(𝑥1 − 𝑣1; 𝑇2𝑚) ∑
∞
𝑐𝑚=0

∑𝑐𝑚𝑣𝑚=0 𝜑𝑚(𝑐𝑚 − 𝑣𝑚; 𝑇2𝑚) ∑
𝑙1
𝑤1=0

∑𝑙𝑚𝑤𝑚=0 𝑄𝑖(Γ
(2𝑚), 𝑣1, 𝑣𝑚, 𝑤1 , 𝑤𝑚) ×

× 𝐏(𝑥1 < ℎ1, max{0, 𝑐𝑚 − 𝑙𝑚
′ } = 𝑥𝑚, 𝑦1 = 0,min{𝑐𝑚, 𝑙𝑚

′ } = 𝑦𝑚);

 (9) 

  

 

𝑄𝑖+1(Γ
(2𝑚+1), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) = ∑

𝑥1
𝑣1=0

𝜑1(𝑥1 − 𝑣1; 𝑇2𝑚) ×

× ∑∞𝑐𝑚=0 ∑
𝑐𝑚
𝑣𝑚=0

𝜑𝑚(𝑐𝑚 − 𝑣𝑚; 𝑇2𝑚)∑
𝑙1
𝑤1=0

∑𝑙𝑚𝑤𝑚=0 𝑄𝑖(Γ
(2𝑚), 𝑣1, 𝑣𝑚 , 𝑤1, 𝑤𝑚) ×

× 𝐏(𝑥1 ≥ ℎ1, max{0, 𝑐𝑚 − 𝑙𝑚
′ } = 𝑥𝑚, 𝑦1 = 0,min{𝑐𝑚, 𝑙𝑚

′ } = 𝑦𝑚).

 (10) 

 

 

Theorem 2 State space 𝑆 = 𝛤 × 𝑋 × 𝑋 × 𝑌1 × 𝑌𝑚 of the Markov chain (4) consists of set 𝐷 of 

transient states and minimal closed set 𝐸 of recurrent aperiodic states:  

 𝐷 = {(Γ(1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {0,1, … , ℎ1 − 1}} ∪ 
 ∪ {(Γ(𝑘), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑘 ∈ 𝑀\{2}, 𝑦1 ∈ 𝑌1\{0}} ∪ 
 ∪ {(Γ(𝑘), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑘 ∈ 𝑀\{2𝑚, 2𝑚 + 1}, 𝑦𝑚 ∈ 𝑌𝑚\{0}} ∪ 
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 ∪ {(Γ(2), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ 𝑋\{0}, 𝑦1 ∈ 𝑌1\{𝑙1}} ∪ 
 ∪ {(Γ(2), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) ∈ 𝑆: 𝑦1 ∈ {0,1, … , ℎ1 − 1}} ∪ 
 ∪ {(Γ(2𝑚−1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }} ∪ 
 ∪ {(Γ(2𝑚), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {0,1, … , ℎ1 − 1}, 𝑥𝑚 ∈ 𝑋\{0}, 𝑦𝑚 ∈ 𝑌𝑚\{𝑙𝑚

′ , 𝑙𝑚}} ∪ 
 ∪ {(Γ(2𝑚), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 𝑥𝑚 ∈ 𝑋\{0}, 𝑦𝑚 ∈ 𝑌𝑚\{0, 𝑙𝑚}} ∪ 
 ∪ {(Γ(2𝑚+1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {0,1, … , ℎ1 − 1}} ∪ 
 ∪ {(Γ(2𝑚+1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 𝑥𝑚 ∈ 𝑋\{0}, 𝑦𝑚 ∈ {0,1, … , 𝑙𝑚

′ − 1}} ∪ 
 ∪ {(Γ(2𝑚+1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 𝑦𝑚 ∈ {𝑙𝑚

′ + 1, 𝑙𝑚
′ + 2,… , 𝑙𝑚}}; 

  

 𝐸(Γ(1)) = {(Γ(1), 𝑥1, 𝑥𝑚, 0,0): 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 𝑥𝑚 ∈ 𝑋}; 
 𝐸(Γ(2)) = {(Γ(2), 𝑥1, 𝑥𝑚, 𝑙1, 0): 𝑥1 ∈ 𝑋, 𝑥𝑚 ∈ 𝑋} ∪ 
 ∪ {(Γ(2), 0, 𝑥𝑚, 𝑦1, 0): 𝑥𝑚 ∈ 𝑋, 𝑦1 ∈ {ℎ1, ℎ1 + 1,… , 𝑙1 − 1}}; 
 𝐸(Γ(𝑘)) = {(Γ(𝑘), 𝑥1, 𝑥𝑚 , 0,0): 𝑥1 ∈ 𝑋, 𝑥𝑚 ∈ 𝑋}, 𝑘 ∈ {3,4, … ,2𝑚 − 2}; 
 𝐸(Γ(2𝑚−1)) = {(Γ(2𝑚−1), 𝑥1, 𝑥𝑚 , 0,0): 𝑥1 ∈ {0,1, … , ℎ1 − 1}, 𝑥𝑚 ∈ 𝑋}; 
 𝐸(Γ(2𝑚)) = {(Γ(2𝑚), 𝑥1, 𝑥𝑚, 0,0): 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 𝑥𝑚 ∈ 𝑋\{0}} ∪ 
 ∪ {(Γ(2𝑚), 𝑥1, 𝑥𝑚 , 0, 𝑙𝑚): 𝑥1 ∈ 𝑋, 𝑥𝑚 ∈ 𝑋\{0}} ∪ 
 ∪ {(Γ(2𝑚), 𝑥1, 0,0, 𝑦𝑚): 𝑥1 ∈ 𝑋, 𝑦𝑚 ∈ 𝑌𝑚} ∪ 
 ∪ {(Γ(2𝑚), 𝑥1, 𝑥𝑚 , 0, 𝑙𝑚

′ ): 𝑥1 ∈ {0,1, … , ℎ1 − 1}, 𝑥𝑚 ∈ 𝑋\{0}}; 
 𝐸(Γ(2𝑚+1)) = {(Γ(2𝑚+1), 𝑥1, 𝑥𝑚 , 0, 𝑙𝑚

′ ): 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 𝑥𝑚 ∈ 𝑋\{0}} ∪ 
 ∪ {(Γ(2𝑚+1), 𝑥1, 0,0, 𝑦𝑚): 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 𝑦𝑚 ∈ {0,1, … , 𝑙𝑚

′ }}, 
 𝐸 = ⋃2𝑚+1𝑘=1 𝐸(Γ(𝑘)). 

  

Proof. First of all, it is necessary to determine the states of the Markov chain such that 

probabilities of being in them are equal to zero for any moment starting with 𝜏1. Based on relation 

(5) and control algorithm function (1), it follows that the Markov chain can move with positive 

probability to the state of the form (Γ(1), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) ∈ 𝑆 only from a state of the form 

(Γ(2𝑚+1), 𝑣1, 𝑣𝑚, 𝑤1, 𝑤𝑚) ∈ 𝑆. The probability 𝐏(𝑦1 = 0, 𝑦𝑚 = 0) in the right side of equation (5) 

equals zero if at least one of the equalities 𝑦1 = 0 and 𝑦𝑚 = 0 does not take place. That is why a 

probability of being in any state from the set  

 𝐷(Γ(1)) = {(Γ(1), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) ∈ 𝑆: 𝑦1 ∈ 𝑌1\{0}} ∪ {(Γ
(1), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑦𝑚 ∈ 𝑌𝑚\{0}} 

at the moment 𝜏𝑖 equals zero for any 𝑖 ∈ 𝐼\{0}. According to relation (6), if the Markov chain 

initially starts from any state from the set 𝐷(Γ(1)), it moves with a positive probability to the state 

(Γ(2), 0, 𝑥𝑚 , 𝑙1, 0) ∈ 𝑆. Following the algorithm 𝑠(Γ) the chain further comes with a positive 

probability to the state of the form (Γ(2𝑚+1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆, leaving which the Markov chain has 

the zero probability of moving to any state from the set 𝐷(Γ(1)). Therefore, the states from the set 

𝐷(Γ(1)) are transient by definition. 

Similarly, based on recurrent relations (6)–(10), it can be derived that the probabilities of 

being in any state from the sets  

 𝐷(Γ(2)) = {(Γ(2), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) ∈ 𝑆: 𝑦𝑚 ∈ 𝑌𝑚\{0}} ∪ 
 ∪ {(Γ(2), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ 𝑋\{0}, 𝑦1 ∈ 𝑌1\{𝑙1}}, 
 𝐷(Γ(𝑘)) = {(Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑦1 ∈ 𝑌1\{0}} ∪ 
 ∪ {(Γ(𝑘), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑦𝑚 ∈ 𝑌𝑚\{0}},    𝑘 ∈ {3,4, … ,2𝑚 − 2}, 
 𝐷(Γ(2𝑚−1)) = {(Γ(2𝑚−1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑦1 ∈ 𝑌1\{0}} ∪ 
 ∪ {(Γ(2𝑚−1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑦𝑚 ∈ 𝑌𝑚\{0}} ∪ 
 ∪ {(Γ(2𝑚−1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }}, 
 𝐷(Γ(2𝑚)) = {(Γ(2𝑚), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑦1 ∈ 𝑌1\{0}} ∪ 
 ∪ {(Γ(2𝑚), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {0,1, … , ℎ1 − 1}, 𝑥𝑚 ∈ 𝑋\{0}, 
 𝑦𝑚 ∈ 𝑌𝑚\{𝑙𝑚

′ , 𝑙𝑚}} ∪ {(Γ
(2𝑚), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 

 𝑥𝑚 ∈ 𝑋\{0}, 𝑦𝑚 ∈ 𝑌𝑚\{0, 𝑙𝑚
′ }}, 

 𝐷(Γ(2𝑚+1)) = {(Γ(2𝑚+1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑦1 ∈ 𝑌1\{0}} ∪ 
 ∪ {(Γ(2𝑚+1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {0,1, … , ℎ1 − 1}} ∪ 
 ∪ {(Γ(2𝑚+1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 
 𝑦𝑚 ∈ {𝑙𝑚

′ + 1, 𝑙𝑚
′ + 2,… , 𝑙𝑚}} ∪ 

 ∪ {(Γ(2𝑚+1), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 
 𝑥𝑚 ∈ 𝑋\{0}, 𝑦𝑚 ∈ {0,1, … , 𝑙𝑚

′ − 1}} 
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 at the moment 𝜏𝑖 for 𝑖 ∈ 𝐼\{0} equal zero, which means all of the states mentioned above are 

transient. 

Secondly, consider one more of the subsets of the state space 𝑆. According to (5), the 

following equation takes place for any 𝑥1, 𝑥𝑚 ∈ 𝑋:  

 𝑄𝑖+1(Γ
(1), 𝑥1, 𝑥𝑚, 0,0) = ∑

𝑥1
𝑣1=0

𝜑1(𝑥1 − 𝑣1; 𝑇2𝑚+1) × 

 × ∑
𝑥𝑚
𝑣𝑚=0

𝜑𝑚(𝑥𝑚 − 𝑣𝑚; 𝑇2𝑚+1) ∑
𝑙1
𝑤1=0

∑𝑙𝑚𝑤𝑚=0 𝑄𝑖(Γ
(2𝑚+1), 𝑣1, 𝑣𝑚 , 𝑤1, 𝑤𝑚). 

 This means a state of the form (Γ(1), 𝑥1, 𝑥𝑚 , 0,0), 𝑥1 ∈ {0,1, … , ℎ1 − 1}, 𝑥𝑚 ∈ 𝑋, is achievable only 

from the set 𝐷(Γ(2𝑚+1)), namely from the states (Γ(2𝑚+1), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) ∈ 𝑆 for any 𝑥1 ∈ {0,1,… , ℎ1 −

1}. Therefore, at any moment 𝜏𝑖, starting from 𝑖 = 2, a probability of being in any state of the set  

 𝐷∗(Γ(1)) = {(Γ(1), 𝑥1, 𝑥𝑚 , 0,0) ∈ 𝑆: 𝑥1 ∈ {0,1, … , ℎ1 − 1}} 

is equal to zero and 𝐷∗(Γ(1)) also contains only transient states. In its turn, according to (6), the 

Markov chain can move with a positive probability to the states of the set  

 𝐷∗(Γ(2)) = {(Γ(2), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆: 𝑦1 ∈ {0,1, … , ℎ1 − 1}} 

only from the states of the set 𝐷∗(Γ(1)). This means at any moment 𝜏𝑖 for 𝑖 ∈ 𝐼\{0,1,2} the Markov 

chain (4) has the zero probabilities of being in states of the set 𝐷∗(Γ(2)). Therefore, 𝐷∗(Γ(2)) is a set 

of transient states as well. Note that  

 𝐷 = ⋃2𝑚+1𝑘=1 𝐷(Γ(𝑘)) ∪ 𝐷∗(Γ(1)) ∪ 𝐷∗(Γ(2)). 

The set 𝐷 is an open set which contains only transient states of the chain (4). 

It can be easily verified that 𝐸 = 𝑆\𝐷. Let us show that all states from the set 𝐸 

communicate with each other. At first, consider the state (Γ(2𝑚−2), 0,0,0,0) ∈ 𝐸. For any 

(Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝐸 let us demonstrate that it is possible to get to this state from 

(Γ(2𝑚−2), 0,0,0,0) and get back with a positive probability and finite-step transition. Such transition 

between states will be further illustrated with the help of the arrows directed to the final state. If 

one-step transition is considered, the arrow will also be marked with the probability of such 

transition. 

1. For any 𝑥1, 𝑥𝑚 ∈ 𝑋 transition (Γ(2𝑚−2), 𝑥1, 𝑥𝑚 , 0,0) → (Γ
(2𝑚−2), 0,0,0,0) may be performed 

as follows. 

1.1. In case 0 ≤ 𝑥1 < ℎ1:  

 (Γ(2𝑚−2), 𝑥1, 𝑥𝑚, 0,0)
𝜑1(ℎ1−𝑥1;𝑇2𝑚−2)𝜑𝑚(0;𝑇2𝑚−2)
→                       (Γ(2𝑚), ℎ1, 𝑥𝑚, 0,0)

𝜑1(0;𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→                

 → (Γ(2𝑚+1), ℎ1, max{0, 𝑥𝑚 − 𝑙𝑚
′ },0,min{𝑥𝑚 , 𝑙𝑚

′ })
𝜑1(0;𝑇2𝑚+1)𝜑𝑚(0;𝑇2𝑚+1)
→                    

 → (Γ(1), ℎ1, max{0, 𝑥𝑚 − 𝑙𝑚
′ },0,0)

𝜑1(0;𝑇1)𝜑𝑚(0;𝑇1)
→             

 → (Γ(2), 0,max{0, 𝑥𝑚 − 𝑙𝑚
′ }, ℎ1, 0)

𝜑1(0;𝑇2)𝜑𝑚(0;𝑇2)
→            (Γ(3), 0,max{0, 𝑥𝑚 − 𝑙𝑚

′ },0,0) → 

 → ⋯
𝜑1(0;𝑇2𝑚−3)𝜑𝑚(0;𝑇2𝑚−3)
→                   (Γ(2𝑚−2), 0,max{0, 𝑥𝑚 − 𝑙𝑚

′ },0,0). 

 Such procedure should be repeated [
𝑥𝑚

𝑙𝑚
′ ] + 1 times untill the Markov chain gets to the state 

(Γ(2𝑚−2), 0,0,0,0). 

1.2. In case 𝑥1 ≥ ℎ1:  

 (Γ(2𝑚−2), 𝑥1, 𝑥𝑚, 0,0)
𝜑1(0;𝑇2𝑚−2)𝜑𝑚(0;𝑇2𝑚−2)
→                   (Γ(2𝑚), 𝑥1, 𝑥𝑚 , 0,0)

𝜑1(0;𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→                

 → (Γ(2𝑚+1), 𝑥1, max{0, 𝑥𝑚 − 𝑙𝑚
′ },0,min{𝑥𝑚 , 𝑙𝑚

′ }) → 

 
𝜑1(0;𝑇2𝑚+1)𝜑𝑚(0;𝑇2𝑚+1)
→                   (Γ(1), 𝑥1, max{0, 𝑥𝑚 − 𝑙𝑚

′ },0,0) → 

 
𝜑1(0;𝑇1)𝜑𝑚(0;𝑇1)
→            (Γ(2), max{0, 𝑥1 − 𝑙1},max{0, 𝑥𝑚 − 𝑙𝑚

′ },min{𝑥1, 𝑙1},0) → 

 
𝜑1(0;𝑇2)𝜑𝑚(0;𝑇2)
→            (Γ(3), max{0, 𝑥1 − 𝑙1},max{0, 𝑥𝑚 − 𝑙𝑚

′ },0,0) → ⋯ → 

 
𝜑1(0;𝑇2𝑚−3)𝜑𝑚(0;𝑇2𝑚−3)
→                   (Γ(2𝑚−2), max{0, 𝑥1 − 𝑙1},max{0, 𝑥𝑚 − 𝑙𝑚

′ },0,0). 

 Such combination of transitions is repeated [
𝑥1

𝑙1
] times. If any of the inequalities  

 max{0, 𝑥1 − [
𝑥1

𝑙1
] × 𝑙1} > 0 

 

 max{0, 𝑥𝑚 − [
𝑥1

𝑙1
] × 𝑙𝑚

′ } > 0 

take place, then proceed with 1.1 after performing such combination. 

2. Consider the states (Γ(2𝑚−1), 𝑥1, 𝑥𝑚 , 0,0) ∈ 𝐸(Γ
(2𝑚−1)) for 𝑥1 ∈ {0,1, … , ℎ1 − 1}. The 
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transition  

 (Γ(2𝑚−2), 0,0,0,0)
𝜑1(𝑥1;𝑇2𝑚−2)𝜑𝑚(𝑥𝑚;𝑇2𝑚−2)
→                     (Γ(2𝑚−1), 𝑥1, 𝑥𝑚, 0,0) 

is possible. Backward transition may be as follows: 

 

 (Γ(2𝑚−1), 𝑥1, 𝑥𝑚, 0,0)
𝜑1(ℎ1−𝑥1;𝑇2𝑚−1)𝜑𝑚(0;𝑇2𝑚−1)
→                        

 → (Γ(2𝑚), ℎ1, max{0, 𝑥𝑚 − 𝑙𝑚},0,min{𝑥𝑚, 𝑙𝑚})
𝜑1(0;𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→                

 → (Γ(2𝑚+1), ℎ1, max{0, 𝑥𝑚 − 𝑙𝑚 − 𝑙𝑚
′ },0,min{max{0, 𝑥𝑚 − 𝑙𝑚}, 𝑙𝑚

′ }) → 

 
𝜑1(0;𝑇2𝑚+1)𝜑𝑚(0;𝑇2𝑚+1)
→                   (Γ(1), ℎ1, max{0, 𝑥𝑚 − 𝑙𝑚 − 𝑙𝑚

′ },0,0) → 

 
𝜑1(0;𝑇1)𝜑𝑚(0;𝑇1)
→            (Γ(2), 0,max{0, 𝑥𝑚 − 𝑙𝑚 − 𝑙𝑚

′ }, ℎ1, 0) → 

 
𝜑1(0;𝑇2)𝜑𝑚(0;𝑇2)
→            (Γ(3), 0, max{0, 𝑥𝑚 − 𝑙𝑚 − 𝑙𝑚

′ },0,0) → ⋯ → 

 
𝜑1(0;𝑇2𝑚−3)𝜑𝑚(0;𝑇2𝑚−3)
→                   (Γ(2𝑚−2), 0,max{0, 𝑥𝑚 − 𝑙𝑚 − 𝑙𝑚

′ },0,0). 

 If max{0, 𝑥𝑚 − 𝑙𝑚 − 𝑙𝑚
′ } ≠ 0, go to step 1.1 after completing such procedure. 

3. Consider states (Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝐸(Γ
(2𝑚)). 

3.1. Let 𝑘 = 2𝑚, 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 𝑥𝑚 ∈ 𝑋, 𝑦1 = 𝑦𝑚 = 0. Then the transition  

 (Γ(2𝑚−2), 0,0,0,0)
𝜑1(𝑥1;𝑇2𝑚−2)𝜑𝑚(𝑥𝑚;𝑇2𝑚−2)
→                     (Γ(2𝑚), 𝑥1, 𝑥𝑚, 0,0) 

takes place. The backward transition starts with  

 (Γ(2𝑚), 𝑥1, 𝑥𝑚, 0,0)
𝜑1(0;𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→                

 → (Γ(2𝑚+1), 𝑥1, max{0, 𝑥𝑚 − 𝑙𝑚
′ },0,min{𝑥𝑚 , 𝑙𝑚

′ }) → 

 
𝜑1(0;𝑇2𝑚+1)𝜑𝑚(0;𝑇2𝑚+1)
→                   (Γ(1), 𝑥1, max{0, 𝑥𝑚 − 𝑙𝑚

′ },0,0) → 

 
𝜑1(0;𝑇1)𝜑𝑚(0;𝑇1)
→            (Γ(2), max{0, 𝑥1 − 𝑙1},max{0, 𝑥𝑚 − 𝑙𝑚

′ },min{𝑥1, 𝑙1},0) → 

 
𝜑1(0;𝑇2)𝜑𝑚(0;𝑇2)
→            (Γ(3), max{0, 𝑥1 − 𝑙1},max{0, 𝑥𝑚 − 𝑙𝑚

′ },0,0) → ⋯ → 

 
𝜑1(0;𝑇2𝑚−3)𝜑𝑚(0;𝑇2𝑚−3)
→                   (Γ(2𝑚−2), max{0, 𝑥1 − 𝑙1},max{0, 𝑥𝑚 − 𝑙𝑚

′ },0,0). 

 If max{0, 𝑥𝑚 − 𝑙𝑚
′ } ≠ 0 or max{0, 𝑥1 − 𝑙1} ≠ 0, proceed with step 1. 

3.2. Let 𝑘 = 2𝑚, 𝑥1 ∈ 𝑋, 𝑥𝑚 ∈ 𝑋\{0}, 𝑦1 = 0, 𝑦𝑚 = 𝑙𝑚. Then it is possible to perform the 

following transition:  

 (Γ(2𝑚−2), 0,0,0,0)
𝜑1(0;𝑇2𝑚−2)𝜑𝑚(𝑥𝑚+𝑙𝑚;𝑇2𝑚−2)
→                        (Γ(2𝑚−1), 0, 𝑥𝑚 + 𝑙𝑚, 0,0) → 

 
𝜑1(𝑥1;𝑇2𝑚−1)𝜑𝑚(0;𝑇2𝑚−1)
→                    (Γ(2𝑚), 𝑥1, 𝑥𝑚 , 0, 𝑙𝑚). 

 The backward transition starts with  

 (Γ(2𝑚), 𝑥1, 𝑥𝑚, 0, 𝑙𝑚)
𝜑1(max{0;ℎ1−𝑥1};𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→                         (Γ(2𝑚), max{𝑥1, ℎ1}, 𝑥𝑚 , 0,0), 

and continues with transition in analogy with case 3.1. 

3.3. In case 𝑘 = 2𝑚, 𝑥1 ∈ 𝑋, 𝑥𝑚 = 0, 𝑦1 = 0, 𝑦𝑚 ∈ 𝑌𝑚 the forward transition can be 

performed as follows:  

 (Γ(2𝑚−2), 0,0,0,0)
𝜑1(0;𝑇2𝑚−2)𝜑𝑚(𝑦𝑚;𝑇2𝑚−2)
→                    (Γ(2𝑚−1), 0, 𝑦𝑚, 0,0) → 

 
𝜑1(𝑥1;𝑇2𝑚−1)𝜑𝑚(0;𝑇2𝑚−1)
→                    (Γ(2𝑚), 𝑥1, 0,0, 𝑦𝑚). 

 In its turn, the backward transition is  

 (Γ(2𝑚), 𝑥1, 0,0, 𝑦𝑚)
𝜑1(max{0;ℎ1−𝑥1};𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→                         (Γ(2𝑚), max{𝑥1, ℎ1},0,0,0), 

and after that proceed with transition 3.1. 

3.4. Let 𝑘 = 2𝑚, 𝑥1 ∈ {0,1, … , ℎ1 − 1}, 𝑥𝑚 ∈ 𝑋\{0}, 𝑦1 = 0, 𝑦𝑚 = 𝑙𝑚
′ . There is a positive 

probability that the transition  

 (Γ(2𝑚−2), 0,0,0,0)
𝜑1(0;𝑇2𝑚−2)𝜑𝑚(0;𝑇2𝑚−2)
→                   (Γ(2𝑚−1), 0,0,0,0) → 

 
𝜑1(𝑥1;𝑇2𝑚−1)𝜑𝑚(0;𝑇2𝑚−1)
→                    (Γ(2𝑚), 𝑥1, 0,0,0)

𝜑1(0;𝑇2𝑚)𝜑𝑚(𝑥𝑚+𝑙𝑚
′ ;𝑇2𝑚)

→                    (Γ(2𝑚), 𝑥1, 𝑥𝑚, 0, 𝑙𝑚
′ ) 

 takes place. The backward transition starts with transition  

 (Γ(2𝑚), 𝑥1, 𝑥𝑚, 0, 𝑙𝑚
′ )

𝜑1(0;𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→               (Γ(2𝑚), 𝑥1, max{0, 𝑥𝑚 − 𝑙𝑚

′ },0,min{𝑥𝑚 , 𝑙𝑚
′ }), 

which is repeated [
𝑥𝑚

𝑙𝑚
′ ] + 1 times, untill the state (Γ(2𝑚), 𝑥1, 0,0,0) is reached. After that, the 

transition continues with  

 (Γ(2𝑚), 𝑥1, 0,0,0)
𝜑1(max{0;ℎ1−𝑥1};𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→                         (Γ(2𝑚), max{𝑥1, ℎ1},0,0,0), 
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and, then, proceed with case 3.1. 

4. Consider now the states (Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝐸(Γ
(2𝑚+1)). 

4.1. Let 𝑘 = 2𝑚 + 1, 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 𝑥𝑚 ∈ 𝑋\{0}, 𝑦1 = 0, 𝑦𝑚 = 𝑙𝑚
′ . In this case it is 

possible to perform transition  

 (Γ(2𝑚−2), 0,0,0,0)
𝜑1(𝑥1;𝑇2𝑚−2)𝜑𝑚(𝑥𝑚+𝑙𝑚

′ ;𝑇2𝑚−2)
→                        (Γ(2𝑚), 𝑥1, 𝑥𝑚 + 𝑙𝑚

′ , 0,0) → 

 
𝜑1(0;𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→               (Γ(2𝑚+1), 𝑥1, 𝑥𝑚 , 0, 𝑙𝑚

′ ) 

 and backward transition  

 (Γ(2𝑚+1), 𝑥1, 𝑥𝑚, 0, 𝑙𝑚
′ )

𝜑1(0;𝑇2𝑚+1)𝜑𝑚(0;𝑇2𝑚+1)
→                   (Γ(1), 𝑥1, 𝑥𝑚, 0,0) → 

 
𝜑1(0;𝑇1)𝜑𝑚(0;𝑇1)
→            (Γ(2), max{0, 𝑥1 − 𝑙1}, 𝑥𝑚 , min{𝑥1, 𝑙1},0) → 

 
𝜑1(0;𝑇2)𝜑𝑚(0;𝑇2)
→            (Γ(3), max{0, 𝑥1 − 𝑙1}, 𝑥𝑚 , 0,0) → ⋯ → 

 
𝜑1(0;𝑇2𝑚−3)𝜑𝑚(0;𝑇2𝑚−3)
→                   (Γ(2𝑚−2), max{0, 𝑥1 − 𝑙1}, 𝑥𝑚, 0,0), 

 which is continued with case 1. 

4.2. Let now 𝑘 = 2𝑚 + 1, 𝑥1 ∈ {ℎ1, ℎ1 + 1,… }, 𝑥𝑚 = 0, and also 𝑦1 = 0, 𝑦𝑚 ∈ {0,1, … , 𝑙𝑚
′ }. The 

forward transition  

 (Γ(2𝑚−2), 0,0,0,0)
𝜑1(𝑥1;𝑇2𝑚−2)𝜑𝑚(𝑦𝑚;𝑇2𝑚−2)
→                     (Γ(2𝑚), 𝑥1, 𝑦𝑚 , 0,0) → 

 
𝜑1(0;𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→               (Γ(2𝑚+1), 𝑥1, 0,0, 𝑦𝑚) 

 is possible. The backward transition may, for example, be as follows:  

 (Γ(2𝑚+1), 𝑥1, 0,0, 𝑦𝑚)
𝜑1(0;𝑇2𝑚+1)𝜑𝑚(0;𝑇2𝑚+1)
→                   (Γ(1), 𝑥1, 0,0,0) → 

 
𝜑1(0;𝑇1)𝜑𝑚(0;𝑇1)
→            (Γ(2), max{0, 𝑥1 − 𝑙1},0,min{𝑥1, 𝑙1},0) → 

 
𝜑1(0;𝑇2)𝜑𝑚(0;𝑇2)
→            (Γ(3), max{0, 𝑥1 − 𝑙1},0,0,0) → ⋯ → 

 
𝜑1(0;𝑇2𝑚−3)𝜑𝑚(0;𝑇2𝑚−3)
→                   (Γ(2𝑚−2), max{0, 𝑥1 − 𝑙1},0,0,0). 

 In case max{0, 𝑥1 − 𝑙1} ≠ 0 proceed with transition 1. 

5. For any state (Γ(𝑘), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) from the set 𝐸(Γ(1)) equalities 𝑘 = 1, 𝑥1 ∈ {ℎ1, ℎ1 +

1,… }, 𝑥𝑚 ∈ 𝑋, 𝑦1 = 0, 𝑦𝑚 = 0 take place. Therefore, transition  

 (Γ(2𝑚−2), 0,0,0,0)
𝜑1(𝑥1;𝑇2𝑚−2)𝜑𝑚(𝑥𝑚+𝑙𝑚

′ ;𝑇2𝑚−2)
→                        (Γ(2𝑚), 𝑥1, 𝑥𝑚 + 𝑙𝑚

′ , 0,0) → 

 
𝜑1(0;𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→               (Γ(2𝑚+1), 𝑥1, 𝑥𝑚 , 0, 𝑙𝑚

′ )
𝜑1(0;𝑇2𝑚+1)𝜑𝑚(0;𝑇2𝑚+1)
→                   (Γ(1), 𝑥1, 𝑥𝑚 , 0,0) 

 is possible. The backward transition starts with  

 (Γ(1), 𝑥1, 𝑥𝑚 , 0,0)
𝜑1(0;𝑇1)𝜑𝑚(0;𝑇1)
→            (Γ(2), max{0, 𝑥1 − 𝑙1}, 𝑥𝑚 , min{𝑥1, 𝑙1},0) → 

 
𝜑1(0;𝑇2)𝜑𝑚(0;𝑇2)
→            (Γ(3), max{0, 𝑥1 − 𝑙1}, 𝑥𝑚 , 0,0) → ⋯ → 

 
𝜑1(0;𝑇2𝑚−3)𝜑𝑚(0;𝑇2𝑚−3)
→                   (Γ(2𝑚−2), max{0, 𝑥1 − 𝑙1}, 𝑥𝑚, 0,0). 

 Then, it continues with case 1 if 𝑥𝑚 ≠ 0 or max{0, 𝑥1 − 𝑙1} ≠ 0. 

6. Consider a state of the form (Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝐸(Γ
(2)). 

6.1. If 𝑘 = 2, 𝑥1, 𝑥𝑚 ∈ 𝑋, 𝑦1 = 𝑙1, 𝑦𝑚 = 0, the forward transition may be as follows:  

 (Γ(2𝑚−2), 0,0,0,0)
𝜑1(ℎ1;𝑇2𝑚−2)𝜑𝑚(𝑥𝑚+𝑙𝑚

′ ;𝑇2𝑚−2)
→                        (Γ(2𝑚), ℎ1, 𝑥𝑚 + 𝑙𝑚

′ , 0,0) 

 
𝜑1(0;𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→               (Γ(2𝑚+1), ℎ1, 𝑥𝑚 , 0, 𝑙𝑚

′ ) → 

 
𝜑1(𝑥1+𝑙1−ℎ1;𝑇2𝑚+1)𝜑𝑚(0;𝑇2𝑚+1)
→                         (Γ(1), 𝑥1 + 𝑙1, 𝑥𝑚, 0,0)

𝜑1(0;𝑇1)𝜑𝑚(0;𝑇1)
→            (Γ(2), 𝑥1, 𝑥𝑚, 𝑙1, 0). 

 The backward transition contains  

 (Γ(2), 𝑥1, 𝑥𝑚 , 𝑙1, 0)
𝜑1(0;𝑇2)𝜑𝑚(0;𝑇2)
→            (Γ(3), 𝑥1, 𝑥𝑚 , 0,0) → ⋯ → 

 
𝜑1(0;𝑇2𝑚−3)𝜑𝑚(0;𝑇2𝑚−3)
→                   (Γ(2𝑚−2), 𝑥1, 𝑥𝑚, 0,0). 

 In case 𝑥1 ≠ 0 or 𝑥𝑚 ≠ 0, it is then necessary to go on with case 1. 

6.2. Consider the case 𝑘 = 2, 𝑥1 = 0, 𝑥𝑚 ∈ 𝑋, 𝑦1 ∈ {ℎ1, ℎ1 + 1,… , 𝑙1 − 1}, 𝑦𝑚 = 0. The feasible 

forward transition is  

 (Γ(2𝑚−2), 0,0,0,0)
𝜑1(ℎ1;𝑇2𝑚−2)𝜑𝑚(𝑥𝑚+𝑙𝑚

′ ;𝑇2𝑚−2)
→                        (Γ(2𝑚), ℎ1, 𝑥𝑚 + 𝑙𝑚

′ , 0,0) → 

 
𝜑1(0;𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→               (Γ(2𝑚+1), ℎ1, 𝑥𝑚 , 0, 𝑙𝑚

′ ) → 

 
𝜑1(𝑦1−ℎ1;𝑇2𝑚+1)𝜑𝑚(0;𝑇2𝑚+1)
→                       (Γ(1), 𝑦1, 𝑥𝑚, 0,0)

𝜑1(0;𝑇1)𝜑𝑚(0;𝑇1)
→            (Γ(2), 0, 𝑥𝑚 , 𝑦1, 0). 

 And a probable backward transition has the following form:  



 
Rrachinskaya M., Fodotkin M. 
RESEARCH OF A MULTIDIMENSIONAL MARKOV CHAIN 

RT&A, No 1 (48) 
Volume 13, March 2018  

56 

 (Γ(2), 0, 𝑥𝑚 , 𝑦1, 0)
𝜑1(0;𝑇2)𝜑𝑚(0;𝑇2)
→            (Γ(3), 0, 𝑥𝑚, 0,0) → ⋯ → 

 
𝜑1(0;𝑇2𝑚−3)𝜑𝑚(0;𝑇2𝑚−3)
→                   (Γ(2𝑚−2), 0, 𝑥𝑚, 0,0). 

 If 𝑥𝑚 ≠ 0, proceed with case 1. 

7. Finally, let (Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝐸(Γ
(𝑟)), 𝑟 ∈ {3,4, … ,2𝑚 − 2}. Then 𝑘 ∈ {3,4, … ,2𝑚 − 2}, 

𝑥1, 𝑥𝑚 ∈ 𝑋, 𝑦1 = 𝑦𝑚 = 0 and the following transition take place:  

 (Γ(2𝑚−2), 0,0,0,0)
𝜑1(ℎ1;𝑇2𝑚−2)𝜑𝑚(𝑥𝑚+𝑙𝑚

′ ;𝑇2𝑚−2)
→                        (Γ(2𝑚), ℎ1, 𝑥𝑚 + 𝑙𝑚

′ , 0,0) → 

 
𝜑1(0;𝑇2𝑚)𝜑𝑚(0;𝑇2𝑚)
→               (Γ(2𝑚+1), ℎ1, 𝑥𝑚 , 0, 𝑙𝑚

′ ) → 

 
𝜑1(𝑥1+𝑙1−ℎ1;𝑇2𝑚+1)𝜑𝑚(0;𝑇2𝑚+1)
→                         (Γ(1), 𝑥1 + 𝑙1, 𝑥𝑚, 0,0) → 

 
𝜑1(0;𝑇1)𝜑𝑚(0;𝑇1)
→            (Γ(2), 𝑥1, 𝑥𝑚 , 𝑙1, 0)

𝜑1(0;𝑇2)𝜑𝑚(0;𝑇2)
→            (Γ(3), 𝑥1, 𝑥𝑚 , 0,0) → 

 → ⋯
𝜑1(0;𝑇𝑘−1)𝜑𝑚(0;𝑇𝑘−1)
→                 (Γ(𝑘), 𝑥1, 𝑥𝑚 , 0,0) 

 and  

 (Γ(𝑘), 𝑥1, 𝑥𝑚 , 0,0)
𝜑1(0;𝑇𝑘)𝜑𝑚(0;𝑇𝑘)
→             …

𝜑1(0;𝑇2𝑚−3)𝜑𝑚(0;𝑇2𝑚−3)
→                   (Γ(2𝑚−2), 𝑥1, 𝑥𝑚, 0,0). 

 Note that if 𝑥1 ≠ 0 or 𝑥𝑚 ≠ 0, it is necessary to continue with case 1. 

Now it is seen that every two states of the set 𝐸 communicate with each other – at least, 

across the state (Γ(2𝑚−2), 0,0,0,0). Therefore, the set 𝐸 is an indecomposable class of recurrent 

communicating states, i. e. a minimal closed set (see [13]). Moreover, this class contains the state 

(Γ(2𝑚), 0,0,0, 𝑙𝑚
′ ) for which a loop-transition  

 (Γ(2𝑚), 0,0,0, 𝑙𝑚
′ )

𝜑1(0;𝑇2𝑚)𝜑𝑚(𝑙𝑚
′ ;𝑇2𝑚)

→                (Γ(2𝑚), 0,0,0, 𝑙𝑚
′ ) 

is possible. Thus, this state has period 1, which means the class 𝐸 is a class of aperiodic states (see 

[14]).  

 

5  Ergodic theorem 
 

Theorem 3 For any initial distribution  

 

 {𝑄0(Γ
(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚): (Γ

(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆} 

 

of the multidimensional Markov chain (4) two limiting options are possible: either 1) for any 

(Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝑆 the limiting equality  

 

 lim
𝑖→∞
𝑄𝑖(Γ

(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) = 0 

 

takes place and there is no stationary distribution, or 2) the limits  

 

 lim
𝑖→∞
𝑄𝑖(Γ

(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) = 𝑄(Γ
(𝑘), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) 

exist, where  

 𝑄(Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) > 0for(Γ
(𝑘), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) ∈ 𝐸, 

 

 𝑄(Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) = 0for(Γ
(𝑘), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) ∈ 𝐷, 

equality  

 ∑(Γ(𝑘),𝑥1,𝑥𝑚,𝑦1,𝑦𝑚)∈𝑆 𝑄(Γ
(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) = 1 

 

takes place and there is one and only stationary distribution.  

 

Proof. Since set 𝐷 is countable, a situation may take place when the Markov chain with an 

initial distribution given in the set of transient states may walk in this set indefinitely. Demonstrate 

that such behaviour is not possible for the Markov chain (4). According to notation (3) and 

relations (5)–(10), the probability  
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 𝑃0
1(Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) = 𝐏(𝜒1 ∈ 𝐸  |  𝜒0 = (Γ

(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚)) 
 

that the Markov chain (4) moves from (Γ(𝑘), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) ∈ 𝐷 to any state from the set 𝐸 is 

positive. Moreover, for any state (Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝐷 estimation  

 

 𝑃0
1(Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) > min{𝜑1(ℎ1; 𝑇1)𝜑𝑚(0; 𝑇1), 𝜑1(ℎ1; 𝑇2𝑚+1)𝜑𝑚(0; 𝑇2𝑚+1)} > 0 (11) 

 

 takes place. Let 𝑃0
å(Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) be a probability that the chain (4) ever comes to the class 𝐸 

starting from a transient state (Γ(𝑘), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) ∈ 𝐷, i. e.  

 

 𝑃0
å(Γ(𝑘), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) = 

 = ∑∞𝑛=1 𝐏(𝜒𝑛 ∈ 𝐸, 𝜒𝑖 ∈ 𝐷, 𝑖 = 0,1, … , 𝑛 − 1  |  𝜒0 = (Γ
(𝑘), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚)). 

 

 Then, according to [15] these probabilities meet the system of linear equalities  

 

 

𝑃0
å(Γ(𝑘), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) = ∑(Γ(𝑟),𝑣1,𝑣𝑚,𝑤1,𝑤𝑚)∈𝐷 𝑃0

å(Γ(𝑟), 𝑣1, 𝑣𝑚 , 𝑤1, 𝑤𝑚) ×

× 𝐏(𝜒1 = (Γ
(𝑟), 𝑣1, 𝑣𝑚, 𝑤1, 𝑤𝑚)  |  𝜒0 = (Γ

(𝑘), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚)) +

+𝑃0
1(Γ(𝑘), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚),    (Γ

(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝐷.

 (12) 

 

Inequality (11) for any (Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) ∈ 𝐷 allows one to prove estimation  

 

 

∑(Γ(𝑟),𝑣1,𝑣𝑚,𝑤1,𝑤𝑚)∈𝐷 𝐏(𝜒1 = (Γ
(𝑟), 𝑣1, 𝑣𝑚, 𝑤1 , 𝑤𝑚)  |  𝜒0 = (Γ

(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚)) =

= 1 − 𝑃0
1(Γ(𝑘), 𝑥1, 𝑥𝑚 , 𝑦1, 𝑦𝑚) <

< 1 − min{𝜑1(ℎ1; 𝑇1)𝜑𝑚(ℎ1; 𝑇1), 𝜑1(ℎ1; 𝑇2𝑚+1)𝜑𝑚(ℎ1; 𝑇2𝑚+1)} < 1.

 

 

Thus, the system (12) is a completely regular system. Then, according to [16], this system 

has an only limited solution. It can be easily verified that such solution is 𝑃0
å(Γ(𝑘), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) = 1 

for any (Γ(𝑘), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) ∈ 𝐷. Therefore, the Markov chain leaves the set 𝐷 of transient states 

with probability one. 

If the initial distribution is given only in the closed set 𝐸 of recurrent states, the Markov 

chain (4) becomes an irreducible aperiodic Markov chain. In such case the statement of the theorem 

follows from the ergodic theorem in [15].  

 

Note that the reasonings above demonstrate a general method for proving similar 

statements for the systems with scheme in Figure 1. Such method is especially useful if it becomes 

difficult to determine based on recurrent relations the finite number of steps that a Markov chain 

needs to leave the set of transient states. However, it was proved in Theorem 2 that in case of the 

algorithm 𝑠(Γ) with graph in Figure 2 it is enough to make three steps in order to leave the set 𝐷. 

In other words, for any initial distribution  

 𝑄𝑖(Γ
(𝑘), 𝑥1, 𝑥𝑚, 𝑦1, 𝑦𝑚) = 0 

for any (Γ(𝑘), 𝑥1, 𝑥𝑚, 𝑦1 , 𝑦𝑚) ∈ 𝐷 and 𝑖 ∈ 𝐼\{0,1,2}. 

 

6  Conclusion 
 

The multidimensional Markov chain which is a model of controlled queueing systems is 

researched. The structure of the Markov chain state space is investigated. It is proved that for any 

initial distribution, the Markov chain leaves the set of transient states for the finite number of steps. 

Thereby, it is further recommended to chose initial distribution only in set of recurrent states. 

Ergodic theorem is formulated and proved. The results form the basis for the further investigations 

concerning conditions of stationary mode existence and synthesis of optimal control. 
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